APPENDIX A

Additional Details and Fortification
for Chapter 1

A.1 Matrix Classes and Special Matrices

The matrices can be grouped into several classes based on their operational prop-
erties. A short list of various classes of matrices is given in Tables A.1 and A.2.
Some of these have already been described earlier, for example, elementary, sym-
metric, hermitian, othogonal, unitary, positive definite/semidefinite, negative defi-
nite/semidefinite, real, imaginary, and reducible/irreducible.

Some of the matrix classes are defined based on the existence of associated matri-
ces. For instance, A is a diagonalizable matrix if there exists nonsingular matrices T
such that TAT ~! = D results in a diagonal matrix D. Connected with diagonalizable
matrices are normal matrices. A matrix B is a normal matrix if BB* = B*B. Normal
matrices are guaranteed to be diagonalizable matrices. However, defective matri-
ces are not diagonalizable. Once a matrix has been identified to be diagonalizable,
then the following fact can be used for easier computation of integral powers of the
matrix:

A=T"'DT — A*=(T7'DT)(T'DT).--(T7'DT)=T7'D'T
and then take advantage of the fact that
dr 0
DX = .
0 as
Another set of related classes of matrices are the idempotent, projection, invo-
lutory, nilpotent, and convergent matrices. These classes are based on the results of
integral powers. Matrix A is idempotent if A? = A, and if, in addition, A is hermitian,
then A is known as a projection matrix. Projection matrices are used to partition an
N-dimensional space into two subspaces that are orthogonal to each other. A matrix

B is involutory if it is its own inverse, that is, if B> = I. For example, a reflection
matrix such as the Householder matrix is given by

2
H=1— —vw*
V¥V

where v is a nonzero vector, and then H = H~!. A convergent matrix (also known as
stable matrix) C is a matrix for which lim;_, o, C¥ = 0. These matrices are important
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Table A.1. Matrix classes (based on operational properties)

Class Definition Remarks
Convergent (Stable) klim Ak =0
— 00
r
k _
Defective (Deficient) ; aA” =0
o #0;r<N
1 L
Diagonalizable AT dlagonal
for some nonsingular 7'
Any matrix that scales,
interchanges, or adds
Elementary multiples of rows or e Used in Gaussian elimination
columns of another
matrix B
Gram A = B*B for some B e Are Hermitian

e (B + B*) /2 is the hermitian
Hermitian A=A part of B.
e B*B and BB* are hermitian

Idempotent A2 =A e det(A) = 1 or det(A) =0

e Examples: identity matrix
Involutory A2=1ie. A=A"" reverse unit matrices,
symmetric orthogonal matrices

Negative definite x*Ax <0 x#0

Negative semidefinite x*Ax <0 x#0

Nilpotent (of degree k) Ak =0;k>0 o det(A) =0
Normal AA* = A*A e Are diagonalizable
Nonsingular (Invertible) |Al #0

for procedures that implement iterative computations. If, in addition, £ < oo for
C* = 0, then the stable matrix will belong to the subclass of nilpotent matrices.
Aside from the classifications given in Tables A.1 and A.2, we also list some spe-
cial matrices based on the structure and composition of the matrices. These are given
in Table A.3. Some of the items in this table serve as a glossary of terms for the special
matrices already described in this chapter. Some of the matrices refer to matrix struc-
tures based on the positions of zero and nonzero elements such as banded, sparse,
triangular, tridiagonal, diagonal, bidiagonal, anti-diagonal, and Hessenberg. Some
involve additional specifications on the elements themselves. These include iden-
tity, reverse identity, shift, real, complex, polynomial, rational, positive/negative, or
nonpositive/nonnegative matrices. For instance, positive (or nonnegative) matrices
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Table A.2. Matrix classes (based on operations)

Class Definition Remarks
Orthogonal AT = A1

Positive definite x*Ax > 0;x#0

Positive semidefinite x*Ax > 0;x #0

Projection Idempotent and Hermitian

There exists permutation P
Reducible such that A = PAPT
is block triangular

det(A) = 0if Nis odd

e a; =0, thus trace(4) =0
(B— B")/2is the
skew-symmetric part of B

Skew-symmetric AT = —-A

e a; = 0 or pure imaginary
Skew-hermitian A*=—-A e (B— B*)/2isthe
skew-hermitian part of B

e B”Band BBT are both symmetric
but generally not equal

e (B+ BT)/2is the
symmetric part of B

Symmetric A=AT

Unitary AF=A"1

are matrices having only positive (or nonnegative) elements.' Some special matrices
depend on specifications on the pattern of the nonzero elements. For instance, we
have Jordan, Toeplitz, Shift, Hankel, and circulant matrices, as well as their block
matrix versions, that is, block-Jordan, block-Toeplitz, and so forth. There are also
special matrices that depend on collective properties of the rows or columns. For
instance, stochastic matrices are positive matrices in which the sum of the elements
within each row should sum up to unity. Another example are diagonally dominant
matrices, where for the elements of any fixed row, the sum of the magnitudes of
off-diagonal elements should be less than the magnitude of the diagonal element in
that row. Finally, there are matrices whose entries depend on their row and column
indices, such as Fourier, Haddamard, Hilbert, and Cauchy matrices. Fourier and
Haddamard matrices are used in signal-processing applications.

As can be expected, these tables are not exhaustive. Instead, the collection
shows that there are several classes and special matrices found in the literature.
They often contain interesting patterns and properties such as analytical formulas
for determinants, trace, inverses, and so forth, that could be taken advantage of
during analysis and computations.

1 Note that positive matrices are not the same as positive definite matrices. For instance, with

(s 7)o )

A is positive but not positive definite, whereas B is positive definite but not positive.
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Table A.3. Matrices classes (based on structure and composition)

Name Definition Remarks

e AB (or BA) will reverse
sequence of rows (columns)

0 o1 of B, scaled by «;
Antidiagonal A= ( e ) o det(A) = (D[
o MATLAB:
A=flipud(diag(alpha))
where alpha=(ay,...,an)

Band (or banded) or e g s the left-bandwidth

i>j+p . . .
a; = 0if : e p is the right-bandwidth
j>i+gq

o det(A) =TT, &
e Let B= A1 then
lf] > i, bij =0

@ 0 i) =i, by = —
Bidiagonal A= P o ali i1
(Stieltjes) a ifi>j, bj=— 1_[ (_@)
0 Bn-1  an Hhs N
e MATLAB:
A=diag(v)+diag(w,-1)
where v= (a1, ..., an)

W= (ﬂ], ...,ﬂN_l)

e Often used to indicate
Binary a;j=0or1 incidence relationship
between i and j

e Are nonsingular (but often
ill-conditioned for large N)

For given x and y o det(A) =
1 N il
— ey 40 N Lo
Cauchy i Xi+y; Xty # M
and elements of x and y [Tis l_[j:1(xi +i)
are distinct where fi; = (x; — x;)(vi — y})
e MATLAB:

A=gallery(‘cauchy’,x,y)

e Are normal matrices

oo OGN e Are special case of Toeplitz
Circulant A= N ON-L e MATLAB:
N a o A=gallery(‘circul’,alpha)
2% ! where alpha= (ay,---, ay)
“Pp-1 v TPL [TPO e py are coefficients of a
polynomial:
Companion A= 1 0 0 SN+ pvaas™ T+ pis+po
. : e MATLAB: A=compan(p)
0 1 0 where p= (1, pu_1,..., P1, Po)

Complex a;; are complex-valued
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Name Definition Remarks
a1 0 o det(A) =[],
Diagonal A= e MATLAB: A=diag(alpha)
0 ay where alpha= (o, ..., an)
Diagonally dominant laji| > Z |ai]-} . Nonsmgl.llz:r (based on
i#] Gersgorin’s theorem)
i=12,...,N

Fourier

aj = (1//N)yw=Di-1)

W =exp (—x/jlzﬁ”)

Are orthogonal

e Used in Fourier transforms
o MATLAB:

h=ones(N,1)*[0:N-17;
W=exp(-2*pi/N*1i);
A=W.(h.*h’)/sqrt(N)

Givens (Rotation)

Identity matrix with 4
elements replaced based on
given p and ¢:

ap, = agg = cos(6)

Apg = —agp = sin(6)

Used to rotate points

in hyperplane

Useful in matrix reduction
to Hessenberg form

Are orthogonal

Hadamard

Hy[=]2k x 2k

Elements either 1 or —1

e Are orthogonal
e MATLAB: A=hadamard(Zk)

Hankel

Each anti-diagonal has the
same value
MATLAB: A=hankel([v,w])
where v= (..., B, @)
w=(a, 9, ...)

Hessenberg

ajkj =0
2<k=(N-})

Useful in finding eigenvalues

e For square B, there is unitary

QO such that A = Q*BQ is
upper hessenberg
MATLAB:
[Q,Al=hess(B);
where A=(Q") (B) (Q)

Hilbert

A

Symmetric and positive definite

o MATLAB:

h=[1:NJ;
A=gallery(‘cauchy’,h,h-1)

Identity

Often denoted by Iy
det(A) =1
AB=BA=B
MATLAB: A=eye (N)

(continued)
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Table A.3 (continued)

Name Definition Remarks
A=IB
Imaginary where B is real
andi=+—1
s 1
e Are bidiagonal
_ o det(A) =sV
Jordan block A= o MATLAB:
0 A=gallery(’jordbloc’,N,s)

Lower Triangular

a,v,j=0;j>i

o det(A) = ﬁaﬁ

o LetD = dii:alg(A) andK=D—-A
Al =p! [1 + Ni (KDl)Z}

« MATLAB: A-tr11(8)
extracts the lower triangle of B

Negative a; <0
Non-negative a; >0
Non-positive a; <0
T e PA (or APT) rearranges
. pP= ( €k, Chy ) columns (or rows) of A based
Permutation
Ky o £k on sequence K
e; is the j™ unit vector e MATLAB: B=eye(N);P=B(K,:)
. A[=]N x N A = RH for reverse identity R
Persymmetric .
a;j = AN+1—j),(N+1—i) and symmetric H
Positive a; >0
Polynomial i are .
polynomial functions
Real a;; are real valued
Rational i are .
rational functions
Rectangular e if N > M then A is tall

(non-square)

A[=]N x M; N #M

o if N < M then A is wide

Reverse identity

e AB (or BA) will reverse the
order of the rows ( or columns)
of B

o det(A) = (—1)M? if Nis even
det(A) = (—1)N-D/2 if Nis odd

e MATLAB: A=flipud(eye(N))

Sparse

Significant number of
elements are zero

(see Section 1.6)
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Name

Definition

Remarks

Stochastic
(Probability,
transition)

A is real, nonnegative
and Z?’:l ajj = 1
fori=1,2,...N

aka Right-Stochastic
Left-Stochastic if
Yiiay=1Yj
Doubly-Stochastic if

both right- and left- stochastic

Shift

Are circulant, permuation and
Toeplitz

AN =1y

MATLAB:
A=circshift(eye(N),-1)

Toeplitz

Each diagonal has the

same value

A = BH with reverse

identity B and hankel H
MATLAB: A=toeplitz(v,w)
where v= (o, y, - )

w= (. B,

Tridiagonal

o

BNn-1

N

Are Hessenberg matrices

Solution of Ax = b can be

solved using the Thomas

algorithm

MATLAB:

A=diag(v)+diag(w,1)...

+ diag(z,-1)

where V= (a1, - -+, ay)
w=(B1, ", Bn-1)
z=(y1,- -+, ¥n-1)

Unit

aij=1

MATLAB: A=ones (N,M)

Unitriangular

Ais (lower or upper)
triangular and a; = 1

det(A) =1

Upper Triangular

a,;j:O;j<i

N
det(A) = 1_[ a;
i=1

Let D = diag(A) and
K=D-A
N-1
Al =D [1 +y (KD*)‘}
=1
MATLAB: A=triu(B)

extracts the upper triangle
portion of B

Vandermonde

o

N

If square, det(A) = [],_; (i — ;)
Becomes ill-conditioned for
large N

MATLAB: A=vander(v)
where v= (o1, ..., an)

Zero

MATLAB: A=zeros(N,M)
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A.2 Motivation for Matrix Operations from Solution of Equations

Instead of simply taking the various matrix operations at face value with fixed
rules, it might be instructive to motivate the development of the matrix algebraic
operations through the use of matrix representation of equations’ origination from
using indexed variables. The aim of this exposition is to illustrate how the various
operations, such as matrix products, determinants, adjugates, and inverses, appear
to be natural consequences of the operations involved in linear equations.

A.2.1 Matrix Sums, Scalar Products, and Matrix Products

We facilitate the definition of matrix operations by framing it in terms of equations
that contain indexed variables. We start with the representation of a set of N linear

equations relating M variables xi, x, ..., x) to N variables y1, ys, ..., yn given by
yi = anxi+---+aiuxm
YN = anix1+ -+ aNnuxXm

The indexed notation for these equations are given by
M
inZainj i=1,2,...,N (Al)
j=1

By collecting the variables to form matrices:
»1 X1 an - aiy
YN XM any -+ anm

we postulate the matrix representation of (A.1) as

y = Ax (A2)
For instance, consider the set of equations
n = x1 + 3x;
Y2 = =X —2x

then

_ _ 3. _(»n)). . _(xn
y = Ax where A_<_1 _2>,y_<y2>,x_<xz)

Aswe proceed from here, we show that the postulated form in (A.2) to represent
(A.1) will ultimately result in a definition of matrix products C = AB, which is a
generalization of (A.2), thatis, withy = Cand x = B.

Now let y1,...,yyand zi, ..., zy be related to xq, .. ., xp as follows:

M M
yi:Zaijj and zi=Zbk,~xj i=1,...,N
j=1 j=1

where g;; and b;; are elements of matrix A and B, respectively.
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Letu; =y, +z,i=1,...,N, then
M M M M
u = Zaijxj + Zbijxj = Z (aki + bii) xj = Zgijxj
j=1 j=1 j=1 j=1

where g;; are the elements of a matrix G. From the rightmost equality, we can then
define the matrix sum by the following operation:

i=1,...,N
G=A+8B <~ gij = aij + bjj i=1.....M (A.3)
Next,letv; = ay;,i =1,...,N,andy; = Zjle ayjx;, where o is a scalar multiplier,

then
M M M
Vi =« E ajjxj = E aaijXp = E h,-jx,-
j=1 j=1 j=1

where h;; are the elements of a matrix /. From the rightmost equality, we can then
define the scalar product by the following operation:

i=1,...,N

H=qaA <« hij = aa;j i=1 M

(A.4)

Next, let wy = Zf\;l ciyi.-k=1,...,K,and y; = ijzlaiij, i=1,...,N,where
cki and g;; are elements of matrices C and A, respectively, then

N M M N M
we= D e | 2 ayx | = Q| D cway | xj =D fiuxi
i=1 =1

j=1 \i=1 j=1

where fj; are the elements of a matrix F. From the rightmost equality, we can then
define the matrix product by the following operation:

al 1,....K
F =CA <> fkj = ;Ck,'agj _ 1: ’ .. ,,M (AS)
A.2.2 Determinants, Cofactors, and Adjugates
Let us begin with the case involving two linear equation with two unknowns,
anxi +apx; = b (A6)
anx +anx; = b

One of the unknowns (e.g., x) can be eliminated by multiplying the first equation
by ay; and the second equation by —aj;, and then adding adding both results. Doing
so, we obtain

(anax — apax)x; = anby —apnb; (A7)

We could also eliminate x; using a similar procedure. Alternatively, we could simply
exchange indices 1 and 2 in (A.7) to obtain

(axan — axia) x; = annby — ax b (A.8)
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The coefficients of x; and x; in (A.7) and (A.8) are essentially the same, which we
now define the determinant function of a 2 x 2 matrix,

miq mip
npy My

det (M) = det ( ) = MMy — Mi2Ms1 (A9)

Equations (A.7) and (A.8) can be then be combined to yield a matrix equation,

(@) (3 )=( = o)) (A1)

If det (A) # 0, then we have

X1 _ 1 axp —ap by
X det(A) \ —an  an by

and find that the inverse matrix of a 2 x 2 matrix is given by

PN ap —ap
det(A) \ —ax a

Next, we look at the case of three equations with three unknowns,

anxy +apx; +aizxs = b
X1 +apx; +axxy = b (All)
aznxi +apx; +apnxs = b3

We can rearrange the first two equations in (A.11) and move terms with x3 to the
other side to mimic (A.6), that is,

apxi + anx; b1 —aizx3

a1x1 + anx; by — axx;

then using (A.10), we obtain
X1 axp —ap b1 — ajzxs
= A.12
0l<3)( X2 > ( —a an )( by — axx3 ) ( )
ap) = det an  ap
a  ap

Returning to the third equation in (A.11), we could multiply it by the scalar « 3
to obtain

where

X
( asy asp )Ol<3> ( x; ) = Ol<3)b3 — aA330(3)X3 (A13)

We can then substitute (A.12) into (A.13) to obtain

ay —ap by — a13x3
asy  as = a3 b3 — aszaxs (A.14
( )< —ay  an ) ( by — a3 > ® %3 (A-14)

Next, we note that

an —ap
(an ax )( — an ) = ( (as1ax — axaz) (—aza; + axan) )

= (-Be ve ) (A15)
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where

a|  ap ai;  asi
3 = det and y;3 = det
P ( az  axp ) ve) ap  axp

Substituting (A.15) into (A.14) and rearranging to solve for unknown x3, we obtain

(013/3(3) —axyE) + a330€<3>> x3 = Byb1 — vy + b3 (A.16)

Looking closer at B3y, v3), and a3, they are just determinants of three matrix redacts
A3y, A, and Asz ), respectively (where A;;, are the matrices obtained by removing
the i row and j' column, cf. (1.5)). The determinants of A;;; are also known as the
ij™™ minor of A. We can further incorporate the positive or negative signs appearing
in (A.16) with the minors and define them as the cofactor of a;;, denoted by cof (a;;),
and given by

cof(a;;) = (—1)"det (A;;)) (A.17)
Then we can rewrite (A.16) as
3 by
(Z ai3 cof (aiS)) X3 = ( cof (a13) cof (ax) cof (as3) ) b, | (A.18)
i=1 b3

Instead of applying the same sequence of steps to solve for x; and x,, we just
switch indices. Thus to find the equation for x;, we can exchange the roles of indices
1 and 3 in (A.18). Likewise, for x,, we can exchange the roles of indices 2 and 3 in
(A.18). Doing so, we obtain

3 by
(Z a; cof (dn)) Xy = ( cof (a;;) cof (ax;) cof (a31) ) by (A.19)
i=1 b3

3 by
(Z ap cof (ai2)> Xy = ( cof (a1p) cof (an) cof (az) ) by (A.20)

i=1

If we expand the calculations of the coefficients of x3, x; and x; in (A.18), (A.19)
and (A.20), respectively, they all yield the same sum of six terms, that is,

3 3 3
Z ai cof (ﬂi]) = Z ap cof ([l,‘z) = Z a3 cof ([l,‘j,)

i=1 i=1 i=1
= a11a22a33 — A114230432 — 12021433

+ apaxaz + aizaxian — 4130203 (A.21)

The sum of the six terms in (A.21) can now be defined as the determinant of a
3 x 3 matrix. By comparing it with the determinant of a 2 x 2 matrix given in (A.9),
we can inductively define the determinants and cofactors for any size matrix as given
in Definitions 1.4 and 1.5, respectively.
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Based on the definition of determinants and cofactors, we can rewrite (A.10)
that was needed for the solution of the size 2 problem as

D T Il [ TS

2 cof (6112) cof (azz) bz
Likewise, if we combine (A.18), (A.20), and (A.19) for a size 3 problem, we obtain
cof (611 1 ) cof (021 ) cof (Ll31)
x1 by
det(A)| x» | =| cof(ain) cof(axn) cof(axn) by (A.23)
cof (a;3) cof (a3) cof (a33)

We see that the solution of either case is guaranteed if det(A) # 0. From (A.22)
and (A.23), we can take the matrix at the right-hand side that premultiplies vector
b in each equation and define them as adjugates. They can then be induced to yield
definition 1.6 for matrix adjugates.

A.3 Taylor Series Expansion

One key tool in numerical computations is the application of matrix calculus in
providing approximations based on the process of linearization. The approximation
process starts with the Taylor series expansion of a multivariable function.

Definition A.1. Let f (x) be a multivariable function that is sufficiently differen-
tiable; then the Taylor series expansion of f around a fixed vectorX, denoted by
Taylor (f, x,X), is given by

Taylor (f,x,%) = f (X) + >_ Fx (f. x.X) (A.24)
K=1
where
1 aKFf N
Fr(f,x.X) = X — %) (A25
K(f ) k]’.;kNZO k]'kN' 8fo1 '“axII(VN lljll( ) ( )
— (x=X)
¥ ki=K
For K =1, 2, 7| and F, are given by
d ~
A= (L)
F o= x-% L &f (x—%)
S 2 dx? |

THEOREM A.1. If the series Taylor (f, x,X) converges for a given x and X then
f (x) = Taylor (f, x,X) (A.26)
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PROOF. (See Section A.4.8)

If the series Taylor (f, x, X) is convergent inside aregion R = {x | |x —X| < r}, where
r is called the radius of convergence, then f (x) is said to be analytic in .

When x is equal toX, the Taylor series yields the identity f (x) = f (X). We expect
that as we perturb x away from X, the terms with (x; — 5&)"” will become increasingly
significant. However, if we keep (x; —X;) sufficiently small, then the terms involving
(x; —Ec\l-)k" can be made negligible for larger values of k; > 0. Thus a multivariable
function can be approximated “locally” by keeping only a finite number of lower
order terms of the Taylor series, as long as x is close to X. We measure “closeness”
of two vectors x and X by the Euclidean norm p (x — X), where

Y (i—%)’

i=1

p(x—%X) =

The first-order approximation of a function f (x) around a small neighborhood
of X, that is, p (x —X) < ¢, is given by

Vins I =1F @+ /| x-%) (A2)

X

Because the right-hand side is a linear function of x;, the first-order approximation is
usually called the linearized approximation of f (x), and the approximation process
is called the linearization of f (x).

The second-order approximation of f (x) is given by

2
omss @) = @1+ or] 6=9+3 69" ()

X:

(x-%) (A2)

where the right-hand side is a quadratic form for x;. Higher-order approximations
are of course possible, but the matrix representations of orders > 2 are much more
difficult.

EXAMPLE A.1. Consider the function
f (xl»x2) =1- eg(xl,xz)

where,

g@hm)=—4(ﬁq—Q$2+Qa+0$2)

A plot of f (x1, x2) is shown in Figure A.1.
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<SS
SIS
SoNS S

NN
SO\

Figure A.1. A plot of f(x) for Example
Al

The partial derivatives are given by

of _ f _ g
i 8ef (x1 — 0.5) o 8es (x +0.5)
*f 2 *f 2
— 8 —
Pyo i e (8 64 (x1 — 0.5) ) ot e (8 64 (x, +0.5) )

3f 3?*f
= = —064¢8 —-0.5 0.5
3X1 3)62 ax28x1 ¢ (X1 ) (x2 + )

Choosing X = (0, 0), we have the first-order approximation given by

[funor ] =[1—e?]+4e( -1 1) ( o )

X2
or

frin,0,07 (X) = (1 - e—z) +4de™? (—X1 +X2)

and the second-order approximation given by

[fouad.00r ®X)] = [l—e?]+4e?( -1 1 )( o )

X2
_ -1 2 X1
+4e2(x1 x2)< ) —1)()62)

fQuad,(O’O)T (x) = (1 — 6’2) +4e2 (—xl +x; — x% + 4dx1xy — x%)

or

The first-order approximation is a 2D plane that has the same value as f atx =X.
Conversely, the second-order approximation is a curved surface, which also has
the same value as f at x =X. A plot of the errors resulting from the first-order
and second-order approximations are shown in Figure A.2 in a circular region
centered at X = (0, 0). As shown in the plots, the errors present in the second-
order approximation are much smaller than the errors present in the first-order
approximation.
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foo~"

Figure A.2. The errors from f of the first-order approximation (left) and the second-order
approximation (right) at X = (0, 0)7.

From Figure A.1, we can see that minimum value of f(x) occurs at x; = 0.5
and x, = —0.5. If we had chosen to expand the Taylor series around the point
X =(0.5,—0.5)", the gradient will be df/dx = (0, 0). The Hessian will be given

by
d? 8§ 0
prie ( 0 8 )
and the second-order approximation is
fauad.05.-05)7 (X) =4 <(x1 —0.5) + (v + 0-5)2)

A plot of fouad,(05,—0.5)7 (X) for a region centered at X = (0.5, —O.S)T is shown
in Figure A.3. Second-order approximations are useful in locating the value of
x that would yield a local minimum for a given scalar function. At the local
minimum, the gradient must be a row vector of zeros. Second, if the shape of the
curve is strictly concave at a small neighborhood around the minimum point,
then a minimum is present. The concavity will depend on whether the Hessian,
d?f/dx?, are positive or negative definite.

f 2,(0.5,-0.5)

0.04
0.03

0.02
Figure A.3. The second-order approxima-

tion atX = (0.5, —0.5)7.

-06 0.4
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A.4 Proofs for Lemma and Theorems of Chapter 1

A.4.1 Proof of Properties of Matrix Operations

1. Associative and Distributive Properties.

The proofs are based on the operations given in Table 1.3 plus the associativity
of the elements under multiplication or addition. For example,

(A+B+0); = ay+(bj+cy)
= (aj+bj)+ci=(A+B)+ C),»]-
— A+(B+C)=(A+B)+C

For the identity (AB) ® (CD) = (A® C)(B® D),let A[=]m x p and B[=]p x n
and then expand the right-hand side,

anC . aip C bllD . blnD
(A® O)(B® D) =
am1C . Amp C bplD . ban
Zle a1,-b,~1 CD . Zle a1,~bl-,, CD
le;l dmibﬂ CD e Zf;l amibin CD
= (AB)® (CD)

2. Transposes of Products.

Let A[=]N x M, B[=]M x L, then

M M
((AB)T),',' - Z ajmbmi = Z bimitjm = (BTAT)U
m=1

m=1
— (AB)T = BT AT
Let A[=]N x M, B[=]L x P, then
(a0 B)T)ij = aiby = (AT 0 BT),
— (AoB)T = AT o BT
T
auB | -+ | aiuB anB? | .- | amBT
AeB’ = S R =
amiB | -+ | anuB ayyBT | - | aunBT

AT @ BT
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3. Inverse of Matrix Products and Kronecker Products.

Let C= B 'A~! then
C(AB) (B'A")(AB)=B"'B=1
(AB)C (AB)(B'A™')=BB' =1
Thus C = B~'A~! is the inverse of AB.

For the inverse of Kronecker products use the associativity property,
(A® C)(B® D) =(AB)® (CD)
then,
(A®B)(A'®B) = AA'®@BB'=1
(A'®BHYA®B) = A'A®B'B=1I
Thus
(AB) '=A"l@B!

4. Vectorization of Sums and Products.

LetA,B,C[=][N xMand C=A+ B
vee(C)j_ywvyi = Cij = aij +byj = vec(A);_yyy4; + vee(B) vy
— vec (A + B) = vec (A) + vec (B)
Let M, j) denote the j™ column of any matrix M, then

Clj

r
XOwp = XCap=(Xen - Xen )| ¢ [=DcXes
o =1
Extending this to BXC,
(BXC)ojy = (BX)Cij=B(XCup) =D ciBXw
i=1
X(o.1)
X(e.2)
= ( cljB Csz s Cr]'B ) .
X(er)
= (B B -+ ¢iB )vec(X)
Collecting these into a column,
(BXC) ) cuB B -+ c¢uB
(BXC) a2 cpB B -+ cpB
vec(BXC) = . = . . . . vec (X)
(BXC)(.!X) C1SB C2]B s CrsB

= (C" ® B) vec(X)
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5. Reversible Operations.

((AT)T)ij = Ay
— (AN =4
Let C= (A‘l)_l, then
cAl=a'c = 1
N C=a")"=4

A.4.2 Proof of Properties of Determinants

1. Determinant of Products.

Let C = AB, then ¢y, = Yy _; air,bex,- Using (1.10),

n
det(C) = Y ekik) [T
kigtkat-Ekn i=1
n n
= Z €<k],...,kn) Zawlbglkl Zan&,binkn
kl7ék27£"'7£kn =1 =1
n n n n
= Z Z...Ze(kl,...,kn)naieinbziki
Kithythy 01=1  £y=1 =1 j=1
n n
= Z...Z(aul..-anen) Z e(kl,...,kn) (beyk, - -+ be,k,)
(fl:l enzl k[#kz;é;ékn
but
Z 6(k17-~'akn> (b&kl"'b[nk”):o lf€l=€]
ky#ko#-7Fkn
SO

det(Q) = > (awaw) Y €(kikn) (o bk,

bFl 7 Fly ki#ky - #kn
The inner summation can be further reindexed as
3 e(kl,...,kn>e<£1,...,En)(blkl---bnk")
k17£k27£“'9£kn
and the determinant of C then becomes

n
det(C) = Z € (El, ey En) l_[a,»g,
L #EbFEF#ly i=1
<[> ek k) [T,
kﬁékz?g'”?gkn j=1

det(A) det(B)
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2. Determinant of Triangular Matrices.

For 2 x 2 triangular matrices,

uip U L11 0
det = uju ;o det =414
( 0 uy > 11U ( by U ) 11422

d 0
det( 61 oy ) =dydxn

Then using induction and row expansion formula (1.12), the result can be proved
for any size N.
3. Determinant of Transposes.

For a 2 x 2 matrix, that is,

a a ai  az
det 1 12 = ayaxn — apay; = det
a1 an ain an

By induction, and using (1.12), the result can be shown to be true for matrices
of size N.
4. Determinant of Inverses.

Because A~'A = I, we can take the determinant of both sides, and use the
property of determinant of products. Thus

1

det(A7'A) =det( A" )det(A) =1 - det(a™!) =

5. Determinant of Matrices with Permuted Columns.

. ‘A.,k}\, ):A( €,

det( e || e ) =e(x)

Then using the property of determinant of products,

exy ):e(K)det(A)

Let

AK = ( Ao,kl

€in )

Using (1.10),

det(AK) - det(A)det( ex,

6. Determinant of Scaled Columns.

B an By ain a ain B1 0

B1 an BN ann ani ann 0 BN
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Using the properties of determinant of products and determinant of diagonal
matrices,

B1 an By a1n N an ain
det : e : = (H ﬂi) det ol :
i=1

B1 ant By ann ' ant ann

. Multilinearity Property.

Letaij =Vjj = U),']‘,j 75 k and Vik — Xj, Wik = Yi, ik = Xj +yif0ri,j = 1,2, N (8
By expanding along the k' column,

det(A) = Xn:(xﬂr yi) cof (ai)

i=1

= in cof (vix) + ZYI' cof (wix)

i=1 i=1

= det(V)+det(W)

8. Determinant when Y ;' ; y;A; . = 0, for some yx # 0.

Let the elements of matrix V (k, y) be the same as the identity matrix / except
for the k™ row replaced by yi, ... yn, that is,

1 Y1 0

1 e
Vik,y) = Yk
Vi1 1

V.N 1
where y, # 0. Then evaluating the determinant by expanding along the k' row,
det (V(k.y) ) =n

Postmultiplying A by V (k, y), we have
AV(k,y) = (A.,1 ‘ e ‘ Ae (k-1 ‘ (Zj\;l ViA.,j> ‘ Ae (k+1) ‘ e ‘ A.,N)

= (A1 ]| | Aemty | 0| Avisny | -+ | Ae)

Taking the determinant of both sides, we get det(A)yx = 0. Because yx # 0, it
must be that det(A) = 0.

A.4.3 Proof of Matrix Inverse Formula (1.16)
Let B = A adj(A), then

N
bl‘]‘ = Zaig cof(a]-g)
=1
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Using (1.13), b;; is the determinant of a matrix formed from A except that the j*
row is replaced by the i row of A, that is,

ar te aiN
ai e aiN
bl‘]‘ = det
th
aji e aiN <~ ] Trow
ani e aNN

We can use the property of determinant of matrices with linearly dependent rows to
conclude that b;; = 0 when i # j, and b; = det (A), that is,

det(A) 0
Aadj(A) = B = — det (A) I
0 det(A)

or

1 . _
A (m ad](A)) =1

Using a similar approach, one can show that

1 . _
(m adJ(A)) A=1

Thus

A.4.4 Proof of Cramer’s Rule
Using A~! = adj(A)/det(A),

X b
x; cof(a)) --- cof(any) b;
~ det(A) : : : :
cof(aiy) --- cof(any) b
Xn N

Thus, for the k' entry in x,
> -1 bjcof(ay;)
det(A)

The numerator is just the determinant of a matrix, A p), which is obtained from A
with k™ column replaced by b.

Xk =

581
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A.4.5 Proof of Block Matrix Properties
1. Block Matrix Multiplication (Equation (1.30)).

The result can be shown directly by using the definition of matrix multiplication
as given in (A.S).

2. Block Matrix Determinants (Equations (1.31), (1.32) and (1.33)).

(a) Proof of (1.31):

det< fC‘ g ) _ det(A)det(D)

Equation (1.31) is true for A = (a) [=]1 x 1, that is,

a|o0
det< c B >=adet(B)

Next, assume that (1.31) is true for A[=](n — 1) x (n — 1). Let

G|O
sary
with G[=]n x n. By expanding along the first row,

n+m

det (Z) = Z leCOf(le)
j=1

where
o 81 ifj<n
a5 = { 0 j>n
cof(zj)) = (—1)1+jdet< gllj g ) ,j<n
of
then

det (2) = ]; gujcof(g1j)det (B) = det (G) det (B)
Then (1.31) is proved by induction.

(b) Proof of (1.32): (assuming A nonsingular)

Using (1.30), with A nonsingular,

A| B I|-A"'B\ [ A] 0
C|D 0] I ~\ C|D-CcA'B

Applying property of determinant of products and (1.31),

det (%'%) det (1) — det(A)det (D . CA—lB)
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(c) Proof of (1.33): (assuming D nonsingular)
Using (1.30), with D nonsingular,

A| B I |0\ (A-BD'C|B
c|D -D'c|1 )~ 0 | D

Applying property of determinants of products and transposes and (1.31),

A B 1
det (%) det() = detD det (A _BD c)

3. Block Matrix Inverse (Equation (1.34)).

AW +BY = AA7'(I+Br'CA™)+B(-r'cAa™)
= I+B(I'cAY)Y-B(Ir'cA™')=1

AX+BZ = —-AA'Br'4+Brl=o0

CW+DY = CA'(I+Br'cAa)y+D(-r'ca™)
= CA'+cAa'BrlcAa!' —pr-tca!
= CA'+(CA'B-D)r'cA™
= cA'-rr'ca'=0

CX+DZ = -—CA'Br!'+pr!

= (D-cA'B)I!
= IT'=1
A.4.6 Proof of Derivative of Determinants

To show the formula for the derivative of a determinant, we can use the definition
of a determinant (1.10),

di (det (A)) = di Z € (kl, ey kN) Mk A2k - -+ ANy
! tkﬁﬁkz#“'#kN
= Z E<k1, ...,kN) <%a1,k1> D ky -« AN ky
ki#ky#-Fkn
+ ...+ Z G(kl,...,kN) A Wky -+ - (%aN,kN>
ki#ky#-#kn

N
= Z det (Z(,,))
n=1
where

~ d
det (A(m) = kl#k§‘#kwé (kl, e, kN) Ak --- (Ean,kn) vor AN ky

583
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A.4.7 Proofs of Matrix Derivative Formulas (Lemma 1.6)

1. Proof of (1.49): [ d(Ax)/dx = A ]

Let N = 1. Then with x = (x;) and A = (a11, . . ., a;m)T,
4 d(ayix1)/dx,
—AX = : = A
dx X :
d(apmix1)/dx

Assume (1.49) is true for Z[:]M x (N —1)andX[=](N — 1) x 1. Let

~ X
A=(A|v) and XZ(T)
where v[=]N x 1 and « is a scalar. Then
d d , -~ X
d

= = (AX + va)

= (&R +vo) | § (AR +va) )

= ( A | v ):A
Thus equation (1.49) can be shown to be true for any N by induction.

2. Proof of (1.50): [ d(x" Ax)/dx = x" (AT + A) ]
Let N =1, then with x = (x1) and A = (ay1),

d
EXTAX =2x1a;1 =X (AT + A)

Assume that (1.50) is true for A[=](N — 1) x (N — 1) and X[=](N — 1) x 1. Let
Alv %
A= ( ) and x = <L>
wl | B o
where v[=](N — 1) x 1, w[=](V — 1) x 1, and «, 8 are scalars. Then

d ; _d (g Te | 2
s Ax = E(X AX+a(wW+v) X+a'B

= (’iT(ET—i—E)-i-a(wT—i-v ’?ZT(W+V)+2O‘/3>
- () (B
X o wT+VT| 2[3

- | ()G

_— (AT +A

4
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where we used the fact that x” v and x” w are symmetric. Thus equation (1.50)
can be shown to be true for any N by induction.

3. Proof of (1.51): [ d?(xT Ax)/dx> = A+ AT ]

2 T T
% (XTAX) = % I:%XTAX] = % [xT (AT +A)] =A+AT

A.4.8 Proof of Taylor Series Expansion (theorem A.1)

Let f (x) be set equal to a power series given by

fF®) =ap+ > Sk (f.x.%)

K=1
where
N
Sk(£xR) =D o D gy iy [ [ (i = %)
k1>0 kn>0 =1
> ki=K

At x =X, we see that Sk (f,X,X) =0 for K > 0, or

f®X) =a
Then, for a fixed value of k1, ..., kn,
aKf
— = (k! kN agx
ax]fl . ax;‘\’;’ ( ) 1s N

N
+ terms involving 1_[ (x; — %)

=1

l Z{il Bi>0

After setting x = X and rearranging, we have

1 rf
Ak ooy =
koo ky k! kp! axlfl e 8X1;VN

(x=%)

Thus we find that

SK (f, X,;(\) = .71( (f, X,/)Z)
with Fx given in (A.25)

A.4.9 Proof of Sufficient Conditions for Local Minimum (Theorem 1.1)

Let df /dx = 0 at x = x*. Then using the second-order Taylor approximation around
a perturbation point (x* + AX),

(x—§)+%(Ax)T ( i f)

d
FO+ A= f(x) + o f o

(Ax)

X=X* X=X
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becomes

(Ax)

X=x*

2
Foc+an - 160 = 00" (45)

With the additional condition that the Hessian is positive definite, that is,

" (455)

(Ax) >0 AX # 0

X=

then
f(x*+ Ax) > f(x¥) for all Ax # 0

which means that x* satisfying both (1.43) and (1.44) are sufficient conditions for x*
to be a local minimum.

A.5 Positive Definite Matrices

We have seen in Section 1.5.2 that the Hessian of a multivariable function is crucial
to the determination of the presence of a local minima or maxima. In this section,
we establish an important property of square matrices called positive definiteness.

Definition A.2. Let f(x) be a real-valued multivariable function such that
f(0) =0. Then f (x) is positive definite if

f(x)>0 forallx#0 (A29)
and f (x) is positive semi-definite if

f(x)>0 forallx (A.30)

For the special case in which f (x) is a real-valued function given by

N N
f (X) = Z Z aij)_cixj (A31)
i=1 j=1
where X; is the complex conjugate of x;, (A.31) can be represented by
[f (x)] =x"Ax (A.32)
or
[f ®)] = x"Ox (A33)

where Q is the Hermitian component of A, that is, O = (A + A*) /2. To see that
(A.32) and (A.33) are equivalent, note that [f] is a real-valued 1 x 1 matrix that is
equal to its conjugate transpose, that is,

xAx = (x*Ax)*
= X'A'x
Then adding x*Ax to both sides and dividing by two,

1
X"Ax = EX* (A+A")x =x*0Ox
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Definition A.3. An N x N matrix A is positive definite, denoted (A > 0), if
X*Ax >0 forallx #0 (A34)
and A is positive semi-definite if

x*Ax >0 forallx (A.35)

EXAMPLE A.2. Let N = 2, and

[f ()] =x"Ox

where Q = O* = (A + A*) /2: Expanding the quadratic form in terms of Q and
complete the squares,

* - q1 412 X1
X'0Ox = (X xz)(c_h2 q22)<xz)

quxX1x1 + qpX2x1 + q1aX1x2 + gnXx2x

_ qi2 G2 _ q12q12 _ 12912 —
= qn <x1x1 + q—lzxzm + X0+ — 12x2x2) - %025 + quiaxs

2
11 qi1 911 qan

qu <x1 + @Xz) (x1 + qﬁm) + w@xz
qi1 q11 qu

det(Q)

quyy +

where
y=x1+ @xz
qi

Because ( yy ) and ( X,x, ) are positive real values, a set of sufficient conditions
for x*Ox > 0 is to have g;; > 0 and det(Q) > 0. These conditions turn out to
also be necessary conditions for A to be positive definite.

For instance, consider

(50 (5 1p
A‘(13)_’Q‘<1/2 3>

Because g11 = 5 and det(Q) = 14.75, the quadratic form is given by
x*Ax—Sx—i—lx x—i—lx +14'75)_cx
= T T 5 YX2
which we can see will always have a positive value if x # 0. Thus A is positive
definite.

Note that A does not have to be symmetric or Hermitian to be positive definite.
However, for the purpose of determining positive definiteness of a square matrix A,
one can simply analyze the Hermitian component O = (A + A*) /2, which is what
the theorem below will be focused on. We can generalize the procedure shown in
Example A.2 to N > 2. The same process of completing the square will produce

587
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the following theorem, known as Sylvester’s criterion for establishing whether a
Hermitian matrix is positive definite.

THEOREM A.2. An N x N Hermitian matrix H is positive definite if and only if the

determinants dy, k = 1, ..., N, are all positive, where
hi hip o oo hi
hy hyn oo g
di = det . . . . (A.36)
ha hia oo Bk

EXAMPLE A.3. Let H be a symmetric matrix given by

2 3 3
H=| 3 6 01
3 01 2

Using Sylvester’s criterion, we take the determinants of the principal sub-
matrices of increasing size starting from the upper left corner:

- 2 3 3
det(Q) =2 det( 2% ):3 . det| 3 6 01 |=-4052
301 2

Because one of the determinants is not positive, we conclude that H is not
positive definite.
Now consider matrix Q given by

3 -1 01
o=| -1 4 2
01 2 3
Using Sylvester’s criterion on Q, the determinants are:
3 1 3 -1 01
det(3) =3, det( 1 4 ) =11, det| -1 4 2 =20.56
01 2 3

Because all the determinants are positive, we conclude that Q is positive definite.
Note that matrices that contain only positive elements are known as positive
matrices. Thus H given previously is a positive matrix. However, as we just
showed, H is not positive definite. Conversely, O given previously is not a
positive matrix because it contains some negative elements. However, Q is
positive definite. Therefore, it is crucial to distinguish between the definitions
of positive definite matrices and positive matrices.
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B.1 Gauss Jordan Elimination Algorithm

To obtain Q and W, we use a sequence of elementary row and column matrices to
obtain (2.3). Each step has the objective of “eliminating” nonzero terms in the off-
diagonal positions. This method is generally known as the Gauss-Jordan elimination
method.

We begin with the pivoting step. This step is to find two permutation matrices
that would move a chosen element of matrix A[=]N x M, known as the pivet, to
the upper-left corner, or the (1, 1)-position. A practical choice for the pivot is to
select, among the elements of A, the element that has the largest absolute value.
Suppose the pivot element is located at the &M row and ' column; then the required
permutation matrices are P and P, where P is obtained by taking an N x N
identity matrix and interchanging the first row and the £" row, and P is obtained
by taking an M x M identity matrix and interchanging the first row and the 7' row.
Applying these matrices on A will yield

PuAPL =B

where B is a matrix that contains the pivot element in the upper-left corner.

By choosing the element with the largest absolute value as the pivot, the pivot is
0 only when A = 0. This can then be used as a stopping criterion for the elimination
process. Thus if A # 0, matrix B will have a nonzero value in the upper-left corner,
yielding the following partitioned matrix:

b11 WT
PAPL = B= B.1
&) ( v W (B.1)

The elimination process takes the values of by, v and w! to form an elemen-
tary row operator matrix G;[=]N x N and a column elementary operator matrix
GRr[=]M x M given by

1 1
— 0O ... 0 I
by L ‘ by v
G = 1 1 0| and Gr=] 0 [ 1 0| B2
b : .
Tl 1 0|0 1

589
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These matrices can now eliminate, or “zero-out”, the nondiagonal elements in the
first row and first column, while normalizing the (1, 1) element, that is,

1 1
— 0 -~ 0 b
bn ! T
T
G;BGr = X 1 0 (bll V:'IJ) 0 1 0
_b_v " v E .
" 0 1 0 0 1
110 0
0
= 1
U— — yw!
biy
0

Leta = a; , be the pivot of A. For computational convenience, we could combine
the required matrices, that is, let £;, = G Pz and Eg = P(fl )GR, then

Ife=1,
o [0 -+ 0
—ay, /Ol 1 0
E, = . _ (B.3)
—am /o | 0 1
otherwise, if £ > 1,
0{0 --- 0 1/« 0o -~ 0
011 0| —azy/x |0 --- O
0 0 1 —ng_l,n/Ol 0 0
E, = 110 -« 0| —aj /e [0 - 0 < £ row
010 - 0| —ag1p/a |1 0
010 -« O —apy/a |0 1
T
gh column (B4)
Ifn=1
1| —agafa -+ —ag,/a
0 1 0

Er=| | . (B.5)
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otherwise, if n > 1

0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
Ep = |q|_ %2 0 Gl Gl Geadl e N
o o o o o < n'" row
0 0 0 0 1 0
0 0 0 0 0 1
1«
n™ column (B.6)

EXAMPLE B.1. Let A be given by

N

I
—

|
N = =
B~
W W =

|

The pivotis ¢ = a3 = 4; thus £ = 3 and n = 2. Using (B.4) and (B.6),

0 0 1/4 0 1 0
E.=[0 1 -1 Er=| 1 -12 -3/4
1 0 —1/4 0 0 1

from which we get

E AER = (

The complete Gauss-Jordan elimination method proceeds by applying the same
elimination process on the lower-right block matrix to eliminate the off-diagonal
elements in the second row and second column, and so on. To summarize, we have
the following Gauss-Jordan elimination algorithm:

Gauss-Jordan Elimination Algorithm:

Objective: Given A[=]N x M, find Q and W such that QAW satisfies (2.3) and the
rank r.

Initialize: r < 0, Q < Iy, W < Iy and Q <« A.

Iteration: While r < min (N, M) and Q # 0,
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1. Determine the pivot @ = max (|Qi}- \) If @ = 0, then stop; otherwise, continue.
ij

2. Construct E;, and Ef using (B.3)-(B.6) and extract I’

E QER =

3. Update Q, W, and Q as follows:

Ep
&
( I, | Oprsc(M=r)] )Q
Opv—r)xr] E;
Er
&
W( I, | Oprsc(M—r)] )
Orv—ryxn] Eg
«~ T

4. Increment r by 1.

EXAMPLE B.2. For the matrix A given by

|

1
-1

1

1
2 3
2 4 3

the algorithm will yield the following calculations:

ifr=0

otherwise

ifr=0

otherwise

Iteration Q o | &ln E; Eg

111 0 0 1/4 0 1

1 -1 2 3] 4 (3]|2]|0o 1 —12 1 —1/2 -3/4
2 4 3 1 0 —1/4 0 0
-2 32 -1/2 0 1 3/4

2 (1/2 1/4) -2t <1/4 1> <0 1)

5
3 (5/8) =AEER! (8/5) (1)
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from which Q and W can be obtained as

1 0] 0 0 0 1/4
0 = 0 1] 0 0 1 —1/2
0 0|85 1 0 —1/4
0 0 1/4
= 0 —1/2 1/4
8/5 2/5 -3/5
0 1 0 110 o 1 0|0
W= 1 —1/2 -3/4 0|1 3/4 0 1]0
0 0 1 0lo 1 0 01
0 1 34
= 1 —1/2 -9/8
0 0 1

and the rank r = 3

Remarks:

1.

By choosing the pivot « to be the element having the largest absolute value,
accuracy is also improved because division by small values can lead to larger
roundoff errors.

The value of rank r is an important property of a matrix. If the matrix is square,
r =M = N implies a nonsingular matrix; otherwise it is singular. For a non-
square M x N matrix, if 7 = min(M, N), then the matrix is called a matrix of full
rank; otherwise we refer to them as partial rank matrices.'

Because roundoff errors resulting from the divisions by the pivot tend to propa-
gate with each iteration, the Gauss-Jordan elimination method is often used for
medium-sized problems only. This means that in some cases, the value of zero
may need to be relaxed to within a specified tolerance.

The Gauss-Jordan elimination algorithm can also be used to find the determinant
of A. Assuming r = M = N, the determinant can be found by taking the products
of the pivots and (—1) raised to the number of instances where & # 1 plus the
number of instances where n # 1. For example, using the calculations performed
in Example B.2, there is one instance of &£ # 1 and one instance of n # 1 while
the pivots are 4, —2, and 5/8. Thus the determinant is given by

det (A) = (—1)* (4) (-2) @) —_5

A MATLARB file gauss_jordan.m is available on the book’s webpage that
finds the matrices Q and W, as well as inverses Q' and W~!. The program allows
one to prescribe the tolerance level while taking advantage of the sparsity of £,
and Eg.

1" As discussed later, the rank r determines how many columns or rows are linearly independent.
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B.2 SVD to Determine Gauss-Jordan Matrices Q and W

In this section, we show an alternative approach to find matrices Q and W. The
Gauss-Jordan elimination procedure is known to propagate roundoff errors through
each iteration; thus it may be inappropriate to use for large systems. An approach
based on a method known as the singular value decomposition can be used to find
matrices nonsingular Q and W to satisfy (2.3) with improved accuracy but often at
some additional computational costs. For any matrix A, there exist unitary matrices
UandV (ie., U* = U' and V* = V~!) and a matrix X such that

UV =A (B.7)
where ¥ contains r non-negative real values in the diagonal arranged in decreasing
values and where r is the rank of A, that is,

01 0

Or

where o0;>0,i=1,...,r (B.8)

0 0
The details for obtaining U, V', and T can be found in Section 3.9. Based on (B.7),
Q and W can be found as follows:
o=x"YU* and W=V (B.9)

where,

Alternatively, we can have Q = U* and W = V(1.

For non-square A[=]N x M, let k = min(N, M); then we can set =~V [=]k x k.
If N > M, we can then have Q = U* and W = VZ-1D, Otherwise, we can set Q =
Ut and W = V.

Remarks: In MATLAB, one can find the matrices U, V, and S = ¥ using the state-
ment: [U,S,V] = svd(A). A function gauss_svd.m is available on the book’s
webpage that obtains Q and W using the SVD approach.

EXAMPLE B.3. Let A be given by

12 -32 28
0 —4 2
A= 10 24 2

3 -8 7
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Then the singular value decomposition can be obtained using MATLAB’s svd
command to be

—0.7749 0.2179 0.0626  —0.5900
—0.0728 0.8848 —0.2314 0.3978
—0.5972 —-0.4083 —0.3471 0.5968
—0.1937 0.0545 0.9066 0.3708

—0.2781 —0.6916 0.6667 )

U =

V = 0.7186 —0.6103 —0.3333
—0.6374 —0.3864 —0.6667

57'0128 1 8852 8 0.0175 0 0
¥ = 0 ' 0 0 — b= 0 0.5304 0
0 0 0 0 0 1.0000

Finally,

—0.0049 —0.3668 0.6667
Q=U" and W=vzth = 0.0126 —0.3237 —0.3333
—0.0112 —-0.2049 —0.6667

B.3 Boolean Matrices and Reducible Matrices

Boolean matrices are matrices whose elements are boolean types, that is, TRUE and
FALSE, which are often represented by the integers 1 and 0, respectively. They are
strongly associated with graph theory. Because the elements of these matrices are
boolean, the operations will involve logical disjunction (“or”) and logical conjunc-
tion (“and”). One important application of boolean matrices is to represent the
structure of a directed graph ( or digraph for short).

A digraph is a collection of vertices v; connected to each other by directed arcs
denoted by (v;, v;) to represent an arc from v; to v;. A symbolic representation of
a digraph is often obtained by drawing open circles for vertices v; and connecting
vertices v; and v; by an arrow for arcs (v;, v;). For instance, a graph

G= ({01, V2, v3}

{(v1,v2), (v3, 1), (v3, vz)}) (B.10)

is shown in Figure B.1.

A boolean matrix representation of a digraph is given by a square matrix, say
Gp, whose elements g;; = 1 (TRUE) if an arc (v;, v;) exists. Thus the boolean matrix
for digraph G specified in (B.10) is given by

00 1
Gg=|1 0 1
00 0)g

(We use the subscript B to indicate that the elements are boolean.)

Figure B.1. The digraph G given in (B.10). @
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Figure B.2. The influence digraph correspond-
ing to (B.11).

One particular application of boolean matrices (and the corresponding digraphs)
is to find a partitioning (and reordering) of simultaneous equations that could
improve the efficiency of solving for the unknowns. For a given nonlinear equa-
tion such as x3 = f(x1, xs5), we say that x; and x5 will influence the value of x3. Thus
we can build an influence digraph that will contain vertices vy, vs, and vs, among
others, plus the directed arcs (vq, v3) and (vs, v3).

EXAMPLE B.4. Consider the following set of simultaneous equations:

x1 = fi(xs, xe) _

x2 = fa(x2 xs,x7) jzz ; ;2 gj Z; (B.11)
x3 = fi(x2,x7) x; = f1(x3,x5)

X4 = fa(x1,x2) ’ e

The influence digraph of (B.11) is shown in Figure B.2.
The boolean matrix representation of digraph G is given by

0000 T1T10
0100 1 0 1
01 00 0 0 1

Gg=|1 1 0 0 0 0 0 (B.12)
01 100 0 0
000 1 0 0 1
001010 0

B

The vertices of Figure B.2 can be moved around to show a clearer structure
and a partitioning into two subgraphs G and G, as shown in Figure B.3, where
Gi = {x2, x3, x5, x7} and G, = {x1, x4, X¢}. Under this partitioning, any of the
vertices in Gy can link to vertices in G,, but none of the vertices of G, can
reach the nodes of G;. This decomposition implies that functions {f>, f3, fs, f7}
in (B.11) can be used first to solve for {x;, x3, x5, x7} as a group because they are
not influenced by either x1, x4, or x6. Afterward, the results can be substituted
to functions {f1, f4, fe} to solve for {x1, x4, x¢}.2

The sub-digraphs G; and G in Figure B.3 are described as strongly connected.
We say that a collection of vertices together with their arcs (only among the vertices
in the same collection) are strongly connected if any vertex can reach any other

2 The process in which a set of nonlinear equations are sequenced prior to actual solving of the
unknowns is known as precedence ordering.
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Gl

Figure B.3. The influence digraph corresponding to

(B.11) after repositioning and partitioning. K / j
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vertex in the same collection. Obviously, as the number of vertices increases, the
complexity will likely increase such that the decomposition to strongly connected
subgraphs will be very difficult to ascertain by simple inspection alone. Instead, we
can use the boolean matrix representation of the influence digraph to find the desired
partitions.

Because the elements of the boolean matrices are boolean (or logic) variables,
the logical “OR ” and logical “AND ” operations will replace the product (“-”) and sum
(“4+”) operations, respectively, during the matrix product operations. This means

that we have the following rules®:
O+0)g=0
O+D)g=0+0)g=10+1)g=1
0-0)g=(1-0)g=(0-0)g=0
(1-Hg=1

(A-B)g=C <«— Cij=((ail'blf)B+"'+(aiK'bKj)B>B

(Ak)B =(A-A---A)p (B.13)
For instance, we have
1 0 1 0 0 1 1 0 1
0 0 1 . 1 1 0 = 1 0 1
1 0 1 1 0 1 1 0 1 B

Using the rules in (B.13), we note that for a digraph A[=]N x N, the result of
(Ak) g With k < N will be to add new arcs (v;, vj) to the original digraph if there exists
a path consisting of at most k arcs that would link v; to v;. Thus to find the strongly
connected components, we could simply perform the boolean matrix conjunctions
enough times until the resulting digraph has settled to a fixed boolean matrix, that
is, find k < N such that (4¥)g = (AF)g.

3 For clarity, we include a subscript B to denote boolean operation.
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EXAMPLE B.5. Using the boolean matrix representation of digraph (B.11) given
by (B.12), we can show that

0000110 1111111
0100101 0110101
0100001 0110101

G)g=l1 100000 =] 1111111 =(G)g
0110000 0110101
0001001 1111111
0010100 0110101

B B

From the result of (G®)g, we see that columns {2, 3, 5, 7} have the same entries,
whereas columns {1, 4, 6} have the same entries. These two groups of indices
determine the subgraphs G; and G, obtained in Example B.4.

For the special case of linear equations, we could use the results just obtained
to determine whether a matrix is reducible or not, and if it is, we could also find the
required permutation matrix P that is needed to find the reduced form.

Definition B.1. A square matrix A is a reducible matrix if there exists a permuta-
tion matrix P such that

PAPT =B =
( B | Bx

A matrix that is not reducible is simply known as an irreducible matrix.

Algorithm for Determination of Reducible Matrices
Given matrix A[=]N x N

1. Replace A by a boolean matrix G, where g;; = 1g if a;; #0 and g; = 0g
otherwise.

2. Perform matrix conjunctions (G¥)g until (G¥)g = (G*~')g, k < N.

3. Let «(¢) be the number of logical TRUE entries in column £. Sort the columns
of (G")B in descending sequence, {j1, ..., jn}, where j; € {1,...,N}and b > a
if (jn) < k(jo)-

4. Set the permutation matrix to be

P=( ey || eiv )

5. Evaluate the reduced block triangular matrix B = PAP” given by

By By
B= ) )
Byt Bwmx -+ Buwm

where the block matrices are B;[=]¢; x ¢; and )_,_; M{; = N.
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Remarks: A MATLAB code that implements the algorithm for finding the reduced
form is available on the book’s webpage as matrixreduce.m.

EXAMPLE B.6. Consider the matrix given by

0 0 0 O 2 -1 0
0 1.0 0 -1 0 1
0 3 0 0 0 0 1
A=] -2 1 0 O 0 0 0
0 1 1 0 0 0 0
0 0 0 4 0 0 1
0 01 0 -1 0 0

then the influence graph is given by the same boolean matrix Gg given in exam-
ple B.5. The algorithm then suggests the following sequence: [2,3, 5,7, 1, 4, 6]
for P, that is,

01 0 0 0 0 O
0O 0 1 0 0 0 O
0O 0 0 0 1 0 O
P=10 0 0 0 0 0 1
1 0 0 0 0 0 O
0 0 01 0 0 O
0 0 0 0 0 1 O

which then reduces A to a lower block triangular matrix according to the fol-
lowing transformation:

1 0 -1 1] 0 0 0
30 0 1] 0 0 0
11 00| 00 0
PAPT =A=| 0 1 -1 0] 0 0 0
0 0 2 0] 0 0 —1
10 00|-2 10 0
00 0 1] 0 4 0

Which means that A is reducible.

Once the block triangular structure has been achieved, a special case of (1.34)
can be used, that is,

-1
Bi| O Bl_l1 ‘ 0

By | Bn —32_2132131_11 Bz_zl

assuming both Bj; and By, are nonsingular.

There are several classes of matrices that are known to be irreducible and do
not need to be processed by boolean matrices. One example of a class of irreducible
matrices is the tri-diagonal matrices with nonzeros entries above and below the main
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diagonal. Tri-diagonal matrices are a particular example of sparse matrices, which
are matrices that contain a large number of zero entries. For sparse matrices, instead
of the search for reduced forms, it is often more useful to find transformations that
would reduce the “bandwidth” of the matrices. These issues are discussed in the next
section.

B.4 Reduction of Matrix Bandwidth

One of the most often used methods for finding the reordering permutation P to
reduce matrix bandwidth is the Cuthill-Mckee algorithm. This algorithm does not
guarantee a minimal bandwidth, but it often yields an acceptable bandwidth while
implementing a reasonable amount of computation. (To simplify the discussion, we
assume that the matrix under consideration will already be irreducible. Otherwise,
the techniques found in Section B.3 can be used to separate the matrix into strongly
connected components, i.e., irreducible submatrices.)

We first introduce a few terms with their corresponding notations:*

1. Available nodes: U = {u1, up, ...}. This is a set of indices that has not been
processed. It is initialized to contain all the indices, that is, U = {1, 2, ..., N}.
The members are removed after each iteration of the algorithm. The algorithm
ends once U becomes empty.

2. Current sequence: V = [vq, v2, ...]. This is the set of indices that indicates the
current sequence of the permutation P taken from collection U but arranged
according to the algorithm.

3. Degree function: p(k) = number of nonzero off-diagonal entries in column k. It
determines the number of neighbors of index k.

4. Neighbors of index k: Ne(k) = {ney, ne,, ...} where ne; are the row indices of
column k in A that are nonzero. We could also arrange the elements of Ne(k) as
the ordered neighbors Ne*(k) = [ne}, nej, ...] sequenced in increasing orders,
that is, p(ne}, ;) > p(nej).

5. Enteringnodes: Ent(k, V') = [Ne*(k) \ V]where k € V. Thisis the set of ordered
neighbors of index & that has not yet been processed, that is, excluding indices
that are already in V.

For instance, consider the matrix

1 -1 0 0 2

-1 2 0 0 0

A= 0 0 3 -1 0
0 0 -1 4 1

2 0 0 1 5

The degrees of each index are given by (p(l), 0(2), p(3), p(4), p(S)) =(2,1,1,2,2).
Suppose that the current sequences U and V are given by

U=1{3.45) and V =[2.1]

4 We use a pair of curly brackets to indicate a collection in which the order is not relevant and a pair
of square brackets to indicate that the order sequence is important.
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then
Ne(1) =1{2,5} Ne*(1)=1[2,5] and Ent(1,{2,1})=[5]

For a given initial index s, the Cuthill-McKee sequencing algorithm is given by
the following algorithm:

Cuthill-McKee Sequencing Algorithm:
Given matrix A[=]N x N and starting index s,

1. Evaluate the degrees p (i),i=1,..., N.
2. Initialize U = {{1, 2,...,N} \s}, V =[s]and k = 1.
3. While U is not empty,
(a) Determine entering indices, Q = Ent (vg, V).
(If Q is empty, then skip the next two steps and continue the loop
iteration.)
(b) Update UandV: U <« {U\ Q}and V « [V, Q].
(c) Increment, k < k+ 1.

Different choices of the starting index s will yield different sequences V' and
could result in different bandwidths. One choice is to start with the index hav-
ing the lowest degree p(s), but this may not necessarily yield the minimal band-
width. However, exploring all the indices as starting indices is not desirable either,
especially for large matrices. Different methods have been developed to choose
the appropriate starting index that would yield a sequence that produces close
to, if not the exactly, the minimum bandwidth. We discuss one approach that is
iterative.

Using a starting index s (e.g., initially try the index with the lowest order), the
Cuthill-McKee algorithm will yield the sequence V and its corresponding permu-
tation matrix Ps. This should generate a transformed matrix By = PSAPST that will
have a block tri-diagonal structure known as the level structure rooted at s, in which
the first block is the 1 x 1 block containing s:

N R1 0
Fi | Dy
B, =
. . | R,
0 Fo | D

and where the diagonal blocks D; are square. The value m is the maximal value that
attains a block tri-diagonal structure for By and is known as the depth of B;. Let ¢
be the size of the last diagonal block, D,,. Then we can test the indices determined
by the last £ entries of V as starting indices and apply the Cuthill-McKee algorithm
to each of these indices. If any of these test indices, say index w, yield a smaller
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Figure B.4. A graphical representation of the C60 molecule.

bandwidth, then we update s with w and the whole process is repeated.’ Otherwise,
V = Vi, is chosen to be the desired sequence.

Remarks:

1. Often, especially in the solution of finite element methods, the reversed ordering
has shown a slight computational improvement. Thus a slight modification yields
the more popular version known as the Reverse Cuthill-McKee reordering,
which is to simply reverse the final sequence in V' found by the Cuthill-McKee
algorithm.

2. The MATLAB command that implements the reverse Cuthill-McKee reorder-
ing algorithm of matrix A is: p=symrcm(A), and the permuted matrix can be
obtained as: B=A(p,p).

3. A MATLAB function p=CuthilIMcKee(A) is available on the book’s web-
page that implements the Cuthill-McKee algorithm.

EXAMPLE B.7. Consider the C60 molecule (or geodesic dome popularized by
Buckminster Fuller), which is a form of pure carbon with 60 atoms in a nearly
spherical configuration. A graphical figure is shown in Figure B.4. An adjacency
(boolean) matrix describing the linkage among the atoms is shown in Figure B.5
in which the dots are TRUE and the unmarked positions are FALSE. The band-
width of the original indexing is 34. Note that each node is connected to three
other nodes; thus the degrees of each node is 3 for this case. After applying
the Cuthill-McKee reordering algorithm, the atoms are relabeled and yield the
adjacency matrix shown in Figure B.6. The bandwidth of the reordered matrix
is 10.

B.5 Block LU Decomposition

When matrix A is large, taking advantage of inherent block partitions can yield effi-
cient methods for the solution of Ax = b. The block structure could come directly

5 The method of choosing new starting indices based on the last block of the level structure is based
partially on the method developed of Gibbs, Poole and Stockmeyer (1976) for choosing the initial
index. Unlike their method, the one discussed here continues with using the Cuthill-McKee algorithm
to generate the rest of the permutation.
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Figure B.5. The initial adjacency matrix
for the C60 molecule.

10

20

30

40

50

60

from modular units of connected subsystems, for example, from physical processes
composed of different parts. In some cases, it results from the geometry of the
problem (e.g., from the finite difference solutions of elliptic partial differential equa-
tions). In other cases, the block structure results from reordering of equations and
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One of the simplest case is when A is lower block triangular.
Ly 0
A= : (B.14)
Lyt | -+ | Lun

where L; j[=]N; x Nj,i > j. This induces a partitioning of vectors x and b as follows

X1 by
X = : and b= : (B.15)

Xn bn

where x; and by are column vectors of length N.

It is possible that even though the original matrix A does not have the lower
block triangular structure of (B.14), one might still be able to find permutation
matrices P such that A = PAPT attains a lower block triangular structure. If so, then
A is known as reducible. One could use boolean matrices to find the required P,
and details of this method are given in Section B.3 as an appendix. Furthermore,
a MATLAB code that implements the algorithm for finding the reduced form is
available on the book’s webpage as matrixreduce.m.

Assuming that the block diagonal matrices Ly, are square and nonsingular, the
solution can be obtained by the block matrix version of forward substitution, that is,

k-1
X = L{ll b, and X; = lekl <bk — ZLW xe) s k=2,....,n (B.16)
=1
Likewise, when A is upper block triangular, that is,
U | - | U,
A= : (B.17)
0 Unn

where U; j[=]N; x N;, i < j, and assuming that the block diagonal matrices Uy are
square and nonsingular, the solution can be obtained by the block matrix version of
backward substitution, that is,

X, = U,ib, and x; = U (bk— > Uk,,zxe> s k=n-1,...,1 (B.18)
{=k+1

Let A be partitioned as
Aip | - | A
A= : : (B.19)
Anl ce Ann

where A;j[=]N; x N; with Ay square. Then block matrix computation can be
extended to yield block LU decompositions. The block-Crout’s method and the
block-Doolittle’s method are given in Table B.1. Note that L;; and U;; are matrices
of size N; x N; and are not triangular in general. Furthermore, when A is block
tri-diagonal, a block version of the Thomas algorithm becomes another natural
extension. (See Exercise E2.16 for the block-Thomas algorithm ).
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Table B.1. Block matrix LU decompositions

Name Algorithm (Forp =1,...,N)

Up = Iy,

p—1
L,'p = (A,'p — Z L,‘k Ukp) fori= )2 n
k=1

Block Crout’s Method

p—1
U, = L;}, (Apj — ZLPkka> forj=p+1,..., n
k=1
Lpy = INp
p—1
U, = A, — L, Uy forj=p,..., n
Block Doolittle’s Method Y ( ” ; ’ 1)
p—1
Ly, = (A,-p - ZL,-kUkp> U,} fori=p+1,..., n
k=1

B.6 Matrix Splitting: Diakoptic Method and Schur Complement Method

B.6.1 Diakoptic Method

Let Pg and Pc be row permutation and column permutation matrices, respectively,
that will move nonzero elements of S = A — M to the top rows and left columns,
leaving a partitioned matrix that has a large zero matrix in the lower-right corner.

(B.20)

Assume that the size of Sn is significantly smaller than the full matrix. If either
S12 = 00r 85y = 0, then an efficient solution method known as the Diakoptic method
is available.

Case 1. §12 =0

Inthiscase, Pr = I[.WithS§=A - M and S = SPE , the problem Ax = b can be recast
as follows:

Ax=(M+S)x=b — (I+HS)y=1z

where H = PcM~!,y = Pcx and z = PcM~'b. Let Sy [=]r x r. With S;, = 8, = 0,
L = (I + HS) will be block lower triangular matrix, that is,

b G ()] () - ()
0| In-, Hy | Hxp S |0 YN-—r ZN—;
(o)) - ()
Ly | Ly YN-r ZN—
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where L1 =1, + H11§11 + H12§21, Ly = Hz]gn + H22§21 and L,, = In_,. Note that
the blocks of L are obrained by just partitioning (I + H@
Assuming L1 is nonsingular,

-1
Yy = L11 z :PT< Y- ) B21
YN—r =  Zn—— Loy, - C\ yn-r (B.21)
EXAMPLE B.8. For the equation Ax = b, let
5 0 1 0 1 0 9
1 4 -1 0 0 O 6
0 1 4 0 2 0 16
A=l 10 1 4 0 o0 and b=1 ",
1 2 0 1 5 0 9
-1 0 2 -1 1 5 -3
Choosing M to be lower triangular portion of A, we have
5 0 0 0 0 O 0 O 1 0 1 O
1 4 0 0 0 O 0 0 -1 0 0 O
0 1 4 0 0 O 0 O 0O 0 2 O
M=1"1 01 40 0 and S=1109 0 00 0 0
1 2 0 1 5 0 0 O 0 0 0 O
-1 0 2 -1 1 5 0 O 0O 0 0 O
Let Pc be
0O 01 0 0 O
0O 0 0 01 0
P 1 0 0 0 0 O
1o 10 0 00
0O 0 01 0 O
0O 0 0 0 0 1
then we obtain
1.075 0513 [0 0 0 O 3.737
0.094 1016 |0 0 O O 1.297
0.2 0.2 1 0 0 O 1.8
U+H) =1 05 o0s o 1 0 0| ™ z=[ 1o
—-0.069 —-0.178 |10 0 1 O —1.384
—-0.023 —-0204 |10 O O 1 -2.271
Finally, we get
1
1 2
~(3 ; = 2 and x= 3
yr— 1 5 yN—r— -1 - -1
-2 1
-2




Appendix B: Additional Details and Fortification for Chapter 2

Case 2. §21 =0

For this case, Pc = I. With matricessS=A - M andS = PRSPE ,the problem Ax = b

can be recast as follows:

Ax=(M+S)x=b —

(I+SH)y=%

where H = M~'PF,y = PrMx andZ = Pgb. Let Su[=]r x r. With S5, = S5, =0,

Sui | Sz

Hy | Ho

00

It

Hy | Hy

|

YN

< Un | Un
0 | Un

It

YN—r

%)
Yr>

where Uy =1, +§11ﬁ11+§12ﬁ21, Up= 3‘\11[/:[12 +§121/‘\sz2\ and Uy, = Iy_,. Theblocks
of U are obtained by simple partitioning of (I + SH). Assuming Uj; is non-

singular,

YN-r =

o~

Yy =

IN—y

Uﬁl (z, — Uinyn-r)

5

S = OO

5 10

0 4 1

0 0 4
M=10 0 o
0 0 O

0 0 O

Let Pr be given by

1
4

-1

1

SO B~ = O

0
0
0

1

2
0
1
5
0

0

N O =

)

Pr =

1
0
1
4
0
0

-1

SO~ OO

N = O N =

SO RO OO

- x=M"P} (

EXAMPLE B.9. For the equation Ax = b, let

1
0
2
1
1
5

and b=

and S =
1 0
0 0
0 0
0 0
0 1
0 0

S oo o~ O

0

SRk Ok O

—_— o O oo o

Choosing M to be upper triangular portion of A, we have

[N eNel =)

~

,yy’ ) (B.22)

—r

9

13

6

-1

10
—10
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
2 0 0 O
0 0 0 O

607
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then
1075 0094 | 02 —03 —0069 —0.023 6
0513 1016 | 02 —005 —0178 0.204 10
— 0 0 | 1 o0 0 o | . | o
(IT+SH) =1 0o | o 1 0 o |° 7| 13
0 o | o o 1 0 1
0 o | o o 0 1 ~10

Finally, we obtain

1

9 2

- 13 o~ 7 3
Ww—r=1 _4 ;Y= ( 3 ) and x= 1
10 1

-2

B.6.2 Schur Complements

In solving partial differential equations, the problem can sometimes be partitioned
into subdomains. The boundaries of each subdomain will either be specified by
boundary conditions or interfaced with other subdomains. In these approaches,
known as domain decomposition, the matrix A can end up with the following block
structure:

An 0 Aln
A= (B.23)
0 An—l,n—l An—l.n
An.l e An,nfl An,n

EXAMPLE B.10. Consider the domain given in Figure B.7 in which a larger rectan-
gular region (Subdomain I) is attached to a smaller rectangular region (Subdo-
main IT). We identify points {1, 2, 3, ..., 10} and {11, 12, 13, 14} to be the interior
points of Subdomain I and Subdomain II, respectively. The remaining interior
points {15, 16} are the interface points that link both subdomains.

The partial differential equation that models the steady-state temperature
distribution is given by

%u + 9%u
ox2  9y?
subject to values that are fixed for u at the boundaries. Let the boundary points
described by the various points shown in Figure B.7 have the following values:

(ta> up, e, ug, ue, ug, ug) = (100, 90, 80, 70, 60, 50, 40)

=0
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Subdomain 1

d
/5“ = fd\d d d
e

Interface Points 1 3

12 14 Subdomain I1

o o]
g g g 4

Figure B.7. The labeling of various points for Example B.10.

Using finite difference approximations (cf. Example 1.3) with Ax = Ay = 1, the
linear equation will be:
A | 0 | A X b;
0 | An | Ax x | =1 b
Azl | Az | Az X3 bs
where,
—4 1 1 0 0 0 0 0 0 0 0 0
1 —4 0 1 0 0 0 0 0 0 1 0
1 0|—4 1 1 0 0 0 0 0 0 0
0 1 1 —4 0 1 0 0 0 0 0 1
0 0 1 0|—-4 1 1 0 0 0 00
An=19 ol 0 1| 1 —4| 0o 1] 0 ol'M=|o o
0 0 0 0 1 0|—-4 1 1 0 0 0
0 0 0 0 0 1 1 —4 0 1 0 0
0 0 0 0 0 0 1 0|—-4 1 0 0
0 0 0 0 0 0 0 1 1 —4 0 0
-4 1 ‘ 1 0 10
1 -4 0 1 0 0
A = 1 0| -4 1 e
0 1 1 -4 0 0
A — 0O 1 000 0 0 0 0O
=L 0o 001 00 00 0 0
1 0 0 O —4 1
A32:(0 0 1 o)’A33:< 1 —4)
blT = ( 190 8 100 70 100 70 100 70 190 150 )
b, = (60 9 60 90)
bl = (70 70)
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T _

X = (ul Up U3 U4 Us Us U7 U U u1o)
T

X, = (wn un ws uy)

T

X3 = (ws wpe )

Note that the structures of A11, Ay, and Ajzz are block tri-diagonal, whose inverse
can be obtained using the block LU methods (or more specifically, using the
block-Thomas algorithm; see Exercise E2.16).

Let us now focus on the solution of Ax =b. With A = M + S,
Ax=M+S)x=b —- ((+H)x=z

where H = M~'S and z = M~'b. Choosing M to be

A 0
M =
0 Ann
we have
A7l 0 0 At n
-1
Ay
H=M'S =
0 Anfl,n
0 A;r} An,l e An,n—l 0
0 Al_llAl,n
0 AL At
A;,}An,l s A;,}An,nfl 0

-1
Let By = A,:klAkn and Q = (A,m — Z;} A,,,kBk) . Note that the product QA,,, is
the inverse of the Schur complement of A,,,. Using the block matrix inverse formula
given in (1.36), we obtain

W | Xx
x=(U+H) 'z= z (B.24)
Y | Z
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where,
Z=QAnn 5 Y=_Q(An1|"‘|An,n—l )
B By
X=-— : QA : W=1I+ : Q( An | | Apner )
Bn,1 anl

EXAMPLE B.11. We can implement the Schur complement method to the problem
in Example B.10. The value of €2 and z can be found to be

Q- —0.3331 -0.1161
| —0.1161 —0.3362

7l = (80.357, 52.698, 78.731, 50.436, 84.131, 70.313, 87.481, 76.686,

89.107, 78.948, 33.75, 41.25, 33.75, 41.25, 23.333, 23.333)
and with (B.24), the solution is
ul = (90, 80, 90, 80, 90, 80, 90, 80, 90, 80, 60, 50, 60, 50, 70, 70)

which is expected because the given boundary conditions in B.10 show a linear
temperature distribution.

B.7 Linear Vector Algebra: Fundamental Concepts

In this section, we give some of the fundamental concepts of linear algebra of vectors.
Matrices are treated as collections of column vectors, and thus the product Ax is the
process of linearly combining the columns of A scaled by the entries in x.

Let F be a field of scalars, for example, the fields of real numbers or field of
complex numbers. The abstract definition of a linear vector space £ (over F) is a
collection of objects called vectors such that a sum operation is closed; that is, if v
and w are in £, then so is their sum v + w. Furthermore, the vector sum operations
and the scalar product operations need to obey the conditions given in Table B.2.
Some useful definitions and concepts connected with linear vector spaces are given
in Table B.3.

To illustrate the idea of span, consider the two vectors

1 2
V| = 1 and V) = 1
0 -1

Based on the definition given in Table B.3, the span of v; and v; is the collection of
all vectors obtained by a linear combination of these two vectors. A representative
vector is then given by

vV = avi+bw
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Table B.2. Conditions for a linear vector space

Conditions for Vector Sums

1 Associative v+(wW+y) =(vV+w+y
2 Commutative V+W=W+V
3 Identityis 0 0+v=v
4  Inverse exist and unique v+ (—v) =0
Conditions for Scalar Products
1  Associative a(Bv) = (aB)v
2 Identityis 1 lv=v

3 Vector is distributive
over scalar sums

4 Scalar is distributive
over vector sums

(a+pB)v=av+ pv

a(v+w)=av+aw

X 2b
y = a+b
z a—>b

or with x and y as independent variables,

Z=y—x

which is the equation of a 2D plane. Next, consider another point

1
V3 = 1
1

This point is no longer in the span of v; and v, because the three elements of vz do

not satisfy z =y — x.

Table B.3. Some important definitions for linear vector spaces

Terms and concepts

Conditions

1  wis a linear combination
of {vi, ..., vg}
based on {a1, ..., ag}

w= sz=1 o;v;

2 Spanof {vy, ..., vg}

is the space of possible

Span (vy, ..., vg) = {w}
such thatw = YK oyv;

linear combinations foro; € F
3 {vy,...,vg}are Zf;l aivi =0
linearly independent only if o; = 0 for all i
4 A{vqy,...,vg)are Zf;, av; =10
linearly dependent for some «; # 0
5 A{vi,...,vg} {v1, ..., vk} is linearly independent,
is the basis of subspace S and Span(vy,...,vk) =S

6  Aninteger d = dim (S) is the
dimension of subspace S

There exist {v{, ..., vq}
that is a basis of S
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Table B.4. Conditions for vector norms

1 Positivity vl >0

2 Scaling llavll = lel vl

3 Triangle Inequality v+ w| <|v||+ [lw]|
4 Unique Zero [[v] =0onlyifv=0

The space of column vectors, using the matrix algebra operations discussed in
Section 1.2, satisfy the conditions in Table B.2. Vectors vy, ..., vy, (each of length
N) can then be linearly combined using scalars x;, that is,

M
E XiVi
i=1

or Ax, where

A=(vi | |w)

Let A[=]N x M; then an exact solution to Ax = b written out as
X1Ae1+ ... +xyAepy=b

means that b has to be linearly dependent on the columns of A; that is, b has to
reside in the span of the columns of A. The dimension of the span of the columns of
A is also the rank of A. This means that the rank of A simply determines how many
columns of A are linearly independent. Thus if we augment the columns of A with
b and find an increase in rank, this could only mean that b is independent of the
columns of A.

The evaluation of exact solutions has already been discussed in Chapter 1 and 2.
However, if the columns of A and b have lengths larger than the number of columns
in A, that is, N > M, then an exact match will not be likely. Instead, the problem
becomes the search for a linear combination of the columns of A that match b as
close as possible, based on some chosen measure.

Thus one needs to equip the linear vector space with a measure called the
norm. Returning to the abstract linear vector space £, a norm is a function that
assigns a positive real number to the vectors of £. We denote the norm of v by |v|.
Furthermore, this function needs to satisfy the conditions given in Table B.4.

Based on a chosen norm, a vector v # 0 can always be normalized by scaling v
by the scalar o = v, that s,

Among the various possible norms for matrix vectors, we have the Euclidean
norm, denoted ||v||, defined by

1 1
— = —vl=1 B.25
vl H vl ( )

Ivll, = Vviv =

N
Z ﬁivi (B26)
i=1

In most cases, we default to the Euclidean norms and drop the subscript ‘2’, unless
the discussion involves other types of norms. One can show that this definition
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satisfies the conditions given in Table B.4 (we include the proof that (B.26) is a
norm in Section B.10.1 as an appendix.) If the vectors are represented by points in
a N-hyperspace, then the norm is simply the distance of the points from the origin.
Note also that only the zero vector will have a zero norm.

B.8 Determination of Linear Independence of Functions

Given a set of multivariable functions, {f1 (v), ..., fu (v)}, where v = (v1, ..., vg)
are independent variables. The functions are linearly independent if and only if the
only «; = - - - = oy = 0 is the unique solution of

o1 f1 (V) + ... taufu (V) =0 (B.27)

One method to determine whether functions {f1, ..., fu} are linearly indepen-
dent is the Wronskian approach, extended to multivariable functions. First, take the
linear combination

arfixX)+...+apufu(x)=0 (B.28)
Next, generate several partial derivatives of this equation, that is,
fi . fm " 0
8f1/3v1 cee an/3v1 . 0
of1/ova -+ Ofm/0v2 : =10
. aM .

Enough equations are generated until a nonsingular submatrix can be obtained.
If this occurs, then it would establish that {f1, ..., f,;} are linearly independent.
However, the Wronskian approach requires the evaluation of partial derivatives
and determinants that involve the independent variables. This means that except for
small number of functions, the general case will be cumbersome to solve symbolically.

Another method, called the substitution approach, first chooses different values
for v, say, v; with i = 1, ..., M, and then substitutes them into f; (v). Matrix A can
then be formed as follows:

filv) o fu(n)
A= 1
fivm) - fu(vm)
If Ais nonsingular, we conclude that {f; (v), ..., far (v)} are linearly independent.

EXAMPLE B.12. Consider the linear-in-parameter model:

y=a0+a1v+~--+aM_1vM71 (B29)
Here, we have one independent variable v. The functions are f;(v) = v*"L.
Using the Wronskian approach, we have

ao

am—1 0
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where
1 v - pM-1
0 1 - (M—-1)M72
W = . .
o o -.. (M -1)!

The determinant of W is given by
Wi=M-1D)IM-2)!---1#£0

This shows that {1, v, - - - v*~!} form a linearly independent set of functions.
Using the substitution approach, we could set different constants for v, that

1S, v = Ay, - -+, Ay—1, and substitute each one to obtain Z,
1 e .. )Lfl"ffl
R T a - At
A= . .
1 Apq - A%:}

which is a Vandermonde matrix. The determinant will be nonzero as long as
A1, -+, Ay—1 are all distinct. Thus using this approach, we obtain the same
conclusion about the linear independence of {1, v, - - - vM~1}.

The model given by (B.29) is a very popular empirical nonlinear model
known as the polynomial-fitting model.

EXAMPLE B.13. Consider another linear-in-parameter model:
y=ap+a U% + ap (U1 — v2) vy + a3v% (B.30)

Here, we have two independent variables v; and v,. The functions are f1(v) =1,

fz(V) = U%, f3(V) = (v1 — Uz) 1%} and f4(V) = U%.
Using the extended-Wronskian approach, we have

1 v% (v1 —v2) v v%

0 2U2 1%) 0

_ 0 0 —21)2 2v2
W= 0 2 0 0
0 0 1 0
0 0 -2 2

We can take two different tracks. The first is to take the determinant of the
Grammian WT W. This will mean a4 x 4 determinant involving symbolic manip-
ulations. The other method is to choose rows and determine whether a nonsin-
gular submatrix emerges. We show the second track by choosing rows 1, 4, 5,
and 6. Doing so, we have

1 v% (v1 — ) v v%
0o 2 0 0
Wiasa =1 o ¢ 1 0
0 0 -2 2

whose determinant is 4. Thus the functions are linearly independent.

615
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Using the substitution method, we can choose

(2)=0o)-(7)-00)(4)

Substituting these values to the various functions, we obtain

1 1 0 0
-~ 1 0 -1 1
A=11 1 o1
11 -2 1

whose determinant is —2. Thus it also shows that the functions are linearly
independent.

B.9 Gram-Schmidt Orthogonalization

Suppose we have a set of linearly independent vectors xi, X, .. ., Xy, each of length
N, which are basis vectors that span an N-dimensional space. In some cases, the
vectors may be too close to each other. The Gram-Schmidt orthogonalization is a
simple procedure to obtain a better set of basis vectors with same span, but are
perpendicular (or orthogonal) to each other. The Gram-Schmidt algorithm is one
procedure to obtain these mutually perpendicular basis vectors.

Definition B.2. Let a and b be two vectors of the same length. The inner product

of aand b, denoted by (a,b), is given by
(a,b) = a*b (B.31)

Definition B.3. Let a and b be two vectors of the same length. Then a and b are

orthogonal o each other if (a,b) = 0. A set of vectors z1, . .., zy is an orthonor-
mal set if
0 ifi#j
(Zi, Zj) = (B32)
1 ifi=j

Gram-Schmidt Algorithm:

Let {ay, ..., ay} be linearly independent. Set z; = “:—1” Fork=2,...,N,
1

k-1

Ve = m—) (a.z)z

i=1
L
Iy«

Then {z1, ..., zy} is an orthonormal set.

Zj =
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EXAMPLE B.14. Given

) (1) ()

Using the Gram-Schmidt method, we obtain

0.408 —0.436 0.802
z1=| 0.816 = —0218 3= | —0.534
0.408 0.873 0.267

We can check that (z;,z1) = (22, ;) = (23,23) = 1, and (z;, z;) = 0 for i # j.

B.10 Proofs for Lemma and Theorems in Chapter 2

B.10.1 Proof That Euclidean Norm Is a Norm

We need to show that the Euclidean norm defined in (B.26)

vl = vviy=

satisfies each of the requirements of Table B.4.

1. Positivity is immediate from the definition, because v = Re (v)> 4 Im (v)*.
2.

3. Because v;v; = 0if and only if v; = 0, the only vector that will yield a zero norm

4.

The scaling property is shown as follows:

N
lavl = Vaa | v
i=1

= lalllvl

isv=0.

The triangle inequality is more involved. It requires a relationship known as

Cauchy-Schwarz inequality:

[viw| < IIvil IIwl

The proof of the Cauchy-Schwarz inequality is given later. For now, we apply

(B.33) to prove the triangle inequality of Euclidean norms.

Iv+wl? = V'V+V'W+wy+ w'w

IA

VI + |[vw| + |w*v| + [w]?

VI + 2 vl Wi+ WP = (vl wl)?

A

Thus

v+ wi < (vl + [Iwll

617
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PROOF® of Cauchy-Schwarz inequality, Equation (B.33):
For complex numbers a and b,

lab| = ||ale” @&@)|p)ef @) < |4)|p] (B.34)
and
0 < (lal— b))
0 < |a?—2la||b| + |b]?
2lallbl < laf* + |b]?
1
lallb] < 5(|a|2+|b|2) (B.35)
Combining (B.34) and (B.35),
1
jab| < 3 (lal* + bI*) (B.36)

Next let a and b be normalized vectors defined by

vl wli

Applying (B.36) plus the fact that |a = [[b]| =1,

N

> ab,

i=1

1 (X N

3 (Z lail> + |b,»|2) =1
i=1 i=1

b =

<
Then
latb| < 1
VW
[V w]| < 1
(vl fIwll
V'w| < lIvl llwl

B.10.2 Proof for Levenberg-Marquardt Update Form (Lemma B.2)

(The proof given here is based on Dennis and Schnabel Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice Hall, 1983.)
Let ¢ (A*x) be the function to be minimized in (B.109),

1 21 T
) (Akx) = 5 Hl‘k —}—JkAkXH = Er,{rk + l‘/{./kAkX—l- (Akx> JZJkAkX

% We limit the proof only for the case of Euclidean norms, although the Cauchy-Schwarz can be
applied to different norms and inner products.
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If the minimum of ¢ lies inside the trust region, then the problem resembles the
unconstrained problem, whose solution is immediately given by

Ax == (IF1) T

thatis, u = 0.

However, if the trust region is smaller, then the minima will be on the boundary of
the trust region, thatis, | A*x* || = M. This means that the solution to the constrained
minimization problem given in (B.109) will be a step A¥x* such that when we perturb
it by another vector, say v, the value of ¢ can be decreased only at the expense of
moving it outside the trust region.

A perturbation v will minimize ¢ (A*x*) further only if

T
0 <o (Akx* + v) —@ (Akx*> = <1‘TJk + (Akx*> JkTJk) v+ vTJkTka
or, because v J [ Jv > 0,
T
(rTJk + (Akx*) Jr Jk> v>0 (B.37)

The other requirement for v is that the perturbed step A*x* 4+ v will have a norm
greater than My, that is,

T
” ARx* 4 VH > H Akx* — (Akx*) v>0 (B.38)

The implication is that the vectors premultiplying v in (B.37) and (B.38) must point
in the opposite directions, or

T+ Tl reatxt = —p (%)
for some p > 0. Thus Axx* is given by the form
A = — (T T+ D) T ey
To show uniqueness, let
s(w)= (I Te+pl) " Il x
and let g (1) be the difference

q () = [s (W] — My

whose derivative is given by

dg YT T+ ud) Il
dp s ()]
The derivative dg/du is always negative for u > 0, and equal to zero only when

r!J, = 0 (which occurs only when x[¥! is already the minimum of ¢). This implies
that g () is zero only for a unique value of .
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B.11 Conjugate Gradient Algorithm

B.11.1 The Algorithm

We begin with some additional terms and notations. The error vector is the difference
of x from the exact solution X, denoted by err(®,

err® =x0 —x (B.39)

The mismatch between b and Ax" is called the i residual vector, denoted by r®,
that is,

r) = b — Ax® (B.40)
By taking the gradient of f (x), we can see that the residual vector is the transpose

of the negative gradient of f (x) at x = x\, that is,

= (x"A-b")| = -7 (B.41)

x=x()

d
Ef (x)

x=x()
The relationship between the residual vectors and error vectors can be obtained
by adding AX — b = 0 to (B.40),

D = b—Ax?D 4+ (AX—Db)
= -A (x(i) —32) = —Aerr? (B.42)

Returning to the main problem, we formulate the following update equation,
x(HD) = xO 4 oD g® (B.43)
where d® is the i" correction vector and o is a factor that will scale the correction

vector optimally for the i" update. (The choice for d” and «? is discussed later).
The residual vector is

D = p — Ax(+D (B.44)

A more efficient calculation for r*! can be used. Taking (B.43), we can subtract X
from both sides, multiply by A, and then use (B.42),

D% = xO _g4 g0
o™ = err® 4 o0d®
Aerr™) = Aerr® +oDAd?
D = @ D490 (B.45)

Although (B.45) is the preferred update equation, it can sometimes accumulate
round-off errors. For very large problems, most implementations of the conjugate
gradient method include an occasional switch to (B.44) once every K iterations (e.g.,
K < 50) and then switch back to (B.45).

The initial direction vector is usually chosen as the initial residual vector,’ that
is,

d? =1 =p - 4xO (B.46)

7 This means that the conjugate gradient method begins with the same search direction as a gradient
descent method, because r(?) is the negative gradient of f (x) at x(¥.
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Afterward, the next correction vector will be a combination of the previous correc-
tion vectors and the most recent residual vector, that is,

d(i+l) — y(i+1)r(i+1) + ﬂ(iJrl)d(i) (B47)
where (1 and *+1) are weighing factors.
All that remains is to choose the three factors: «®, 8®, and . These values

are obtained such that:

1. Each i direction vector d® is independent from the previous direction vectors
d?) with j < i. Specifically, they are chosen to be conjugate (i.e., A-orthogonal)
to previous direction vectors,

@NTAdD =0  forj <i (B.48)

2. The ith residual vector is orthogonal to previous residual vectors, and it is also
orthogonal to previous direction vectors, that is,

N = 0; @)TaD =0 forj <i (B.49)

Asisshown later in Lemma B.1, these criteria are achieved by using the following
values for the scaling factors:

Sy g2 OOy @ A0

= @oyraw P = @yrae B
(@) (@)

Putting all these pieces together, we have the following algorithm:

Algorithm of Conjugate Gradient.

1. Imitialize: For a given symmetric matrix A[=]N x N, vector b, and initial guess
()
x\, set

dO — 1O — p_ Ax©® (B.51)

2. Update: For a specified maximum number of iterations, imax > N and specified
tolerance € < 1, perform the following steps:

Although i < ipax,

@N7AdD| > 0and B9 > ¢,

)T (i)

0 _ @)

o = (dD)T AdD (B-52)

XD = O 4 o) (B.53)

D = O 0 4q0 (B.54)
N

gisy __ @)TadY (B.55)
(d(z))TAd(l)

di+D) = gD 4 gD @) (B.36)

621
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The relationships among the various residual vectors and direction vectors are

outlined in the following lemma:

LEMMAB.1. For i > 1 and j < i, using the conjugate gradient algorithm (B.51) to
(B.56), we have the following identities for ¥ and d:

T = 0 (B.57)
xHTad) = o (B.38)
()T ¢ W Y (B.59)
@NHTAdD = 0 (B.60)
(d(i))TAd(i) (r(i))TAd(i) (B61)
)T 4@ B ()T y®
(AT AdG—D (DTG0 (B.82)
N7 ArD = (D) 440D (B.63)
@NHTA) = 0 (B.64)
(r(i+1))TAd(j) - 0 (B.65)
N4 ) = 0 (B.66)

PROOF. (See Section B.11.2.)

The properties given in Lemma B.1 have the following implications:
1. Equation (B.62) show that 8+ in (B.55) of the algorithm can be replaced by

g (e+D) T gli+)
B (r(i) ) T (i)

Because this equation is simpler to calculate, it is implemented in most conjugate
gradient methods instead of (B.55).

2. Equations (B.57) and (B.58) show that the residual vectors are orthogonal to
past residual vectors and past direction vectors.

3. Equation (B.60) shows that the direction vectors are A-orthogonal to past direc-
tion vectors.

4. Equations (B.64) and (B.66) shows that r*!) and d) are A-orthogonal to r')
with j < i.8

5. Equation (B.65), together with (B.60), (B.64), and (B.65), shows that both r(+1)
and d® are orthogonal to the subspace

(B.67)

s={a® . a0} ={4aa®, ... aa0-)

Based on (B.64), we see that the updated direction vectors d#*1) are chosen to be A-orthogonal, or
conjugate, to current residual vectors, r)), which is the gradient of f (x) at x). This is the reason
why the method is called the conjugate gradient method.
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6. Equation (B.63) underlines the fact that although r*! is A-orthogonal to r()
with j < i, ¥*1 is not A-orthogonal to r.

One of the more important implications is that if the round-off errors are not
present, the solution can be found in a maximum of N moves, that is,

THEOREM B.1. Let A[=]N x N be symmetric positive-definite. Then, as long as there
are no round-off errors, the conjugate gradient algorithm as given by (B.51) to (B.56)
will have a zero error vector after at most N iterations.

PROOF. (See Section B.11.3.)

We now give a simple example to illustrate the inner workings of the conjugate
gradient method for a 2D case.

EXAMPLE B.15. Consider the problem Ax = b where
2 —0.5 —-1.25
A= ( —-05 125 ) b= < 0.875 >

Using the initial guess,
1.5
© —
X —< L5 )

the conjugate gradient method evaluates the following vectors:

-35
O — g0 —
r=d ‘( —025 >
~0.3181 0.0712 -35
M _ L) 40 —
X _( 1.3701 ) o ‘( —0.9967 > d ‘( —0.25 )

0 05 0
@ _ @ _ @ _
=) =(0) *=(5)

The method terminated after two iterations, and we see that x® solves the linear
equation.

To illustrate how the method proceeds, we can plot the three iterations of
x as shown in Figure B.8. Attached to points x(¥) and x(!) are concentric ellipses
that are the equipotential contours of f (x), where

[f (x)] = [x" Ax — x"b]
Because A is a symmetric positive definite matrix, we could factor A to be equal

to STS,

0 1.0607

S—( 1.4142  —0.3536 )

623



624

Appendix B: Additional Details and Fortification for Chapter 2

Figure B.8. A plot of the iterated solutions
using the conjugate gradient method. The
ellipses containing p® and p® are the con-
tours where f (x) =constant.

-3

Then we could plot the same points ¥, x(, and x® using a new coordinate
system,
»
= = Sx
Y ( Y2 )
which yields,

O = 1.5910 O = —0.9342 O = —0.8839
1.5910 1.4533 0.5303
The scalar function f (x) in terms of y yields
[f1[x"Ax —x"b] = [x" S"Sx —x"b] = [y 'y —y" (§"D)]

We can plot the same iteration points in terms of the new coordinate system
shown in Figure B.9. This time the equipotential contours of f attached to the
iterated points are concentric circles instead of ellipses.

Because the first direction vector was chosen to be the residual vector, that
is, d? = r®_ where r? is also equal to the gradient of f (x) at x = x(¥), we see
from Figure B.8 that the direction vector is perpendicular to the contour f (x) at
x = x(9, Afterward, the succeeding direction vectors are chosen A-orthogonal to
the previous direction vector. We see in Figure B.8 that d® is not perpendicular
to dV). Instead, A-orthogonality between d® and dappears as orthogonality
in Figure B.9 because

(Sd“))T (Sd(°>) = @D)7 5T 5d® = (@) Ad® =0

Thus a geometric interpretation of the conjugate gradient method is that
aside from the first direction vector, the next iterations will have, under the
coordinate system Sx, direction vectors that are perpendicular to increas-
ingly smaller concentric, spherical, equipotential-contours of f. However, these
steps are achieved without having to solve for S or transformation to new
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Figure B.9. A plot of the iterated solutions using ¥, Tr
the conjugate gradient method but under the

new coordinates y = Sx. The circles containing oF
p® and p® are the contours where f(y) =
constant. 1
—2F
4

coordinates y.’ Instead, the conditions of A-orthogonality of the direction vec-
tors are achieved efficiently by the conjugate gradient method by working only
in the original coordinate system of x.

B.11.2 Proof of Properties of Conjugate Gradient method (Lemma B.1)

Based on the initial value of ry = dy, we can show that applying (B.52) to (B.56) will
satisfy (B.57) to (B.66), that is,

(r(l))TdO =0 (r(l))TrO -0 (r(l))Tr(l) _ (r(l))Td(l)
(dD) Adg =0 (@) AdD = )T AdD (D)7 Arg = ()" Ady
(dD)T Arg =0 ) Arg = 0 )T Ady = 0

D) Ady (D)7 D

(do)TAdy — (x0)"ro (B.68)

Assume that the lemma is true for i and j < i. Then

1. Using (B.54) and (B.61),

HFINT o) — T o) _ AT T 4 ) _ (0T o) _ (0T 1D
(l‘ )l' =(l')l' —m(d)Ar =(l')l' —(r)r =0

ereas usin 54), (B.57), an .64),

Wh ing (B.54), (B.57), and (B.64
()T ()
VT 0) — (T _ T T Gy
YY) = (@) r (d("))TAd(i)(d ) A =0
Taken together, this shows that
(@HENT U+ = ¢ (B.69)

° 1In fact, there are several possible values for S such that S7§ = A.
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2. Using (B.54) and (B.59)

(N Tr®
(dD)T AdD

Whereas using (B.54), (B.58), and (B.60)

N7 = (@) q® — dN7T 4dD = ¢@)Ta®D — )T =0

. . . . (N Ty® , ,
@ FNTA0) = x)Tql) — m(d(L))TAd(f) =0
Taken together, this shows that
@ auth =0 (B.70)
3. Using (B.56) and (B.70),
i i i i @) A" i
(r( +1))Td( +1) (1‘( +1))Tl.( +1) _ m(r(z+l))Td()
(r(i+l))Tr(i+l) (B71)
4. Using (B.56),
) . ) . (r(i+1))TAd(i) . .
(d(L-H))TAd(z) — (r(L-H))TAd(z) _ W(d(l))TAd(l)

(r(iJrl))TAd(i) _ (r(iJrl))TAd(i) =0
Whereas using (B.56), (B.60), and (B.65)

(r(iJrl) ) TAd(i)

HINT Aq() — (pG+FINT 4q() - 2/ <77
(dFNT AdD) = (D) Ad @) A0

(d(i))TAd(j) =0

Taken together, this shows that

(dHNT A@0+D = 0 (B.72)
5. Using (B.56) and (B.72)
. : . . @ HENT 44O ,
(d(t+l))TAd(l+1) — (l.(l+1))TAd(l+l) _ (d(i))TAd(,') (d(t))TAd(L-H)
@) Aq+Y (B.73)
6. Using (B.54) and (B.57),
; ‘ , 4 ®D)Ty@ ‘
(l‘( +1))Tr(z+1) — (l.(t+1))Tr(z) _ m(r( +1))TAd(z)
N i
= OO iy 4q0
(dD)T AdD
or rearranging
pEHDYT p(i+1) PN 440
) ()" Ad

T~ (dD)T AdO (B.74)
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7. Using (B.56) and (B.65),

N7 Ad-D
(d(i—l))TAd(i—l)

(T ApD (B.75)
8. Using (B.56), (B.61), and (B.75),

(r(i+1))TAd(i) — (r(i+1))TAr(i) _ (l.(H-l))TAd(i—l)

(r(iJrl))TAd(i)
(d0)T AdD)
(T ArD _ (YT 40 —
Whereas using (B.56), (B.64), and (B.66),

(d(i+1))T A — (r(i+1))T ArD _ (d(i))T Ar®

i i i i (l'(i+1))TAd(i) i i
(d(“))TAr(/) = (r( +1))TAr(1) — m(d())TAr(l) =0
Taken together, this shows that
(+DNT gp(i+1) —
(d")" Ar 0 (B.76)
9. Using (B.54) forrx! ,, (B.61), (B.62), and (B.76),
i+2
(ri+2)TAd(i) — (r(iJrl))TAd(i) _ a(i+1)(d(i+1))TA2d(i)
(r(i+1))Tl.(i+1) . .
) <_W("“))TA““’

a(i+1) ) ) .
i T(d(z+1))TA (r(‘“) _ r(‘))
o

(r(i+1))Tl.(i+1) . ;
B <_W(d“>”““

(l.(i+l))Tr(i+1) . .
' (W(d“””‘d“ =0

Whereas using (B.54) for "Zfzv multiplying by Ad¥), and then using (B.65) and
(B.76),

AT AQD = (DT 4g0) — (D (DT 42400
. . 1 . .
g T A (L () _ ) =
—  _alFD(@itD) A(a(i) (r r )) -0

Taken together, this shows that
(@2 T AqU+D =0 (B.77)
10. Using (B.56) for dU+D, multiplying by (x@*»)7 and then using (B.77)
()T ApU+) — (1+D)T 4 (d(j+1> _ ﬂoﬂ)d(z‘)) —0 (B.78)

Thus (B.69) through (B.78) show that if (B.57) to (B.66) apply to i with j < i, then
the same equations should also apply to i 4+ 1. The lemma then follows by induction
fromi=1.
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B.11.3 Proof That err™™) = 0 Using CG Method (Theorem B.1)

If the initial guess x(*) was chosen fortuitously such that d®) = 0for ¢ < (N — 1), then
the conjugate gradient algorithm would have terminated at less than N iterations
with r+h) = 0.

More generally, with an arbitrary initial guess x(¥), we expect to have the set
D= (d?,...,d™D) to be a linearly independent set of vectors that, according to
(B.60), is an A-orthogonal set, that is,

@NTAdY <
We can then represent err®) using D as the basis set,

N-1

err®) = Z wrd® (B.79)
k=0

To identify the coefficients 1y, multiply (B.79) by (d¥)” A while using the A-
orthogonal properties of d©),

(d(@))T Aerr® = 4, (d(l))T Ad®
AT A err® dOFO
we = (dY)" A err _ r (B.80)
(d©)T Ad®) (d©)T Ad©
From (B.53), we have
X = x© 4+ aod(o)
x2 = xi+od; =x9+ad® + o d®V
i-1
X0 = x0 43 g,dm
m=0
which, when we subtract x* on both sides, will yield
i-1
err® = err® + Z ot d (B.81)
m=0
or after multiplying both sides by —A,
i-1
r =10 - 3" g, 4d" (B.82)
m=0
Premultiplying (B.82) ( with i = ¢ ) by (d¥)”, we have
@O = (d)T¢O®
which, after applying (B.59), yields
@) = ()T ¢® (B.83)
Applying (B.83) to (B.80) and recalling (B.52), we find that
(r(ﬁ))T r®
Me = — —0y

(dO)T Ad® —
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or going back to (B.79),

N—1
err®) = — Z ad® (B.84)
k=0

Now take (B.81) and substitute (B.84),

N-1 i-1
err) = (— Zakd(k)> + (Z amd(’”))
k=0 m=0

Thus wheni = N,
N-1 N-1
err™ = <— Zakd(k)> + (Z Olmd(m)> =0
k=0 m=0

B.12 GMRES Algorithm

B.12.1 Basic Algorithm

To simplify our discussion, we restrict the method to apply only to nonsingular A.
Let x® be the k™ update for the solution of Ax = b, with x(”) being the initial guess,
and let r¥) = b — Ax(® be the k" residual error based on these updates. Beginning
with a normalized vector uy,

0

amatrix Ux[=]N X k can be constructed using an orthonormal sequence {u, uy, ...}
as

Up = (111 [up | - |“k> (B.86)

that is, U; Uy = I, where u, are obtained sequentially using Arnoldi’s method given
by
Pk

o]

One can show that Arnoldi’s method will yield the following property of U, and

pi = (I — UrUy) Aug ; Wy = (B.87)
Uisr:
Ui, AUy = Hy (B.88)

where Hi[=](k + 1) x k has the form of a truncated Hessenberg matrix, that is, a
Hessenberg matrix with the last column removed,

X X X
X X X
H, = X X
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Suppose the length of x is N. Using the matrices U generated by Arnoldi’s
method, GMRES is able to transform the problem of minimizing the residual r'®) to
an associated least-squares problem

[ @]
~ 0
(U1 AUK) Yk = Hiyk =1sq : (B.89)
0

where y, has a length k, which is presumably much smaller than N. Because of
the special Hessenberg structure of Hjy, efficient approaches for the least-squares
solution of (B.89) is also available. Thus, with yj, the k' solution update is given by

x® = xO0 4 Uy, (B.90)

To show that (B.89) together with update (B.90) is equivalent to minimizing the
k'™ residual, we simply apply the properties of U obtained using Arnoldi’s method
as follows:

o 9] = oo+ )
- - i
= min | (KOs - Ui (U, AU y |
= min | Uks1 (e — Hry) || (B.I91)

where ¢, = (Ir©Q],0,..., O)T has a length (k +1). Because Uy,
reduces to (B.89).

If the norm of r¥) is within acceptable bounds, the process can be terminated.
Indeed, GMRES often reaches acceptable solutions of large systems for k much
less than the size N of matrix A. The vectors u, obtained using Arnoldi’s method
introduce updates that are similar to the directions used by conjugate gradient
method.

Further areas of improvement to the basic GMRES approach just described are
usually implemented. These include:

Ui = I, (B91)

1. Restarting the GMRES method every m <« N steps to reduce the storage
requirements.

2. Taking advantage of the structure of Hy to solve the least-squares problem.

3. Incorporating the evaluation of [r®| inside the iteration loops of the Arnoldi
method.

A practical limitation of GMRES is that the size of Uy keeps getting larger as k
increases, and Uy, is generally not sparse. However, if k is small, the k' residuals may
not be sufficiently small at that point. One solution is then to “restart” the GMRES
method using the last update after m steps as the new initial guess for another batch
of m iterations of GMRES. These computation batches are performed until the
desired tolerance is achieved. As expected, small values of m would lead to a slower
convergence, whereas a large value of m would mean a larger storage requirement.

Details that address the other two other improvements, that is, special least-
squares solution of Hessenberg matrices and the enhanced Arnoldi steps, are
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included in Section B.12.2, where the GMRES algorithm is also outlined in that
section with the improvements already incorporated.
Note that for both the conjugate gradient method and GMRES method, we
have
k-1
r® = Z cr Afr® (B.92)
i=0
where ¢; are constant coefficients. For the conjugate gradient method, this results
directly from (B.45).
For the GMRES method, we have from Arnoldi’s method,

* .
uiAu;

Wi = C(_ Al.lj — ( L1§] | s | u; ) = bjAllj + (Z a,-u,)
! ut Au; =1

for some coefficients a;,i =1, ..., j and b;. When appliedtoj =2, 3, ..., k, together
with u; = r®/ ||, we can recursively reduce the last relationship to

k-1

0 = Z G A
i=1

which when applied to the k™ update, x©) = x©) + Uy,

k—1 k-1
A (x(k) _ X<o>> =10 D =3 ygAt0 o =3 A
i=1 i=0
When seen in this space, the critical difference between the conjugate gradient
and GMRES methods lies in how each method determines the coefficients ¢; for the
linear combination of A'r”). Otherwise, they both contain updates that resides in a
subspace known as the Krylov subspace.

Definition B.4. A k™-order Krylov subspace based on square matrix A[=]N x N
and vector v[=]N x 1 is the subspace spanned by vectors A'v, withi =1, ..., N,
k < N, that is,

Ki(A, v) = Span (v, Av, -, Ak_]v)

There are several other methods that fall under the class known as Krylov
subspace methods including Lanczos, OQMR, and BiCG methods. By restricting
the updates to fall within the Krylov subspace, the immediate advantage is that the
components of Krylov subspace involve repeated matrix-vector products of the form
Av. When A is dense, Krylov methods may just be comparable to other methods,
direct or iterative. However, when A is large and sparse, the computations of Av can
be significantly reduced by focusing only on the nonzero components of A.

More importantly, for nonsingular A, it can be shown that the solution of Ax = b
lies in the Krylov subspace, K (A, b) for some k < N. Thus as we had noted earlier,
both the conjugate gradient method and the GMRES method are guaranteed to
reach the exact solution in at most N iterations, assuming no round-off errors. In some
cases, the specified tolerance of the error vectors may even be reached at k iterations
that are much fewer than the maximal N iterations. However, the operative word
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here is still “nonsingular.” Thus it is possible that the convergence will still be slow
if A is nearly singular or ill-conditioned. Several methods are available that choose
matrix multipliers C, called preconditioners, such that the new matrix A = CA has
an improved condition number, but this has to be done without losing much of the
advantages of sparse matrices.

B.12.2 Enhancements

We address the two improvements of the basic GMRES. One improvement centers
on taking advantage of the truncated Hesseberg structure of Hy during the least-
squares solution. The other improvement is to enhance the Arnoldi method for
calculating u; by incorporating the values of the residuals r¥).

We begin with an explicit algorithm for Arnoldi’s method:

Arnoldi Method:

Given: A[=]n x n,1 <k <n,and p[=]n x 1.
Initialize:
1]

Iterate: Loop fori=1,...,k,

and U1=(ll1 )

W, = All,' 5 h,’ = U[*Wl
pi =w;— Uh; ; ai = | pi|

Ifa; >00ri<n

Uy = Pi and Un = < U; | i )
o
Else
Exit and report the value of i as the maximum number of orthogonal
vectors found.
End If

End Loop

At the termination of the Arnoldi algorithm, we can generate matrices H =
U \AU; or H; = UAU; depending on whether o; > 0 or not. Alternatively, we
could set the nonzero elements of Hy and ?Ik directly at each iteration of the method
by using h; and «; as follows:

hj(i) fork=>j>1i,
He(i,]) =1 « fork>j=i—1 and Hk=<
0 otherwise

H
0ck—1) |

) (B.93)

Using the QR decomposition of Hy = QiRy, where Qy is unitary and Ry is upper
triangular, we can form an orthogonal matrix

O =< Ok 0k1><1 )

01><k
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such that

~ o~ R,
QkHHk_( Ok | o )

If o is nonzero, we can use another orthogonal matrix Giyi[=](k+1) x (k+1)
given by

I | Oe-1yx2)
Giy1 = c s
02 (k1)) P

where ¢ = Ri(k, k)/px, s = ar/pr and pi = \/Ri(k, k)? + . Then

o~ Ry )
G i He = | ————
k+1Q7 1 H < e
where ﬁk[=]k x k is an upper triangular matrix that is equal to Ry except for the
lower corner element, Ri(k, k) = px.
Let Q11 = G105, be the combined orthognal matrix. Premultiplying both
sides of (B.89) by Q41, the least-squares problem reduces to

Qp1(1,1)
Rey = H r© H : (B.94)
Q1 (k, 1)
Because Ry is upper triangular, the value of y can be found using the back-substitution

process.
Recursion formulas for €, and Ry are given by

Q| 04
Q1 = Ge+1< 0, if) (61) 1 ) (B.95)
R = (Rt | Qhy) (B.96)

Using Q; = [1] and Ry as a null matrix, the recursions (B.95) and (B.96) can be
incorporated inside the Arnoldi iterations without having to explicitly solve for Q.

Furthermore, when the equality in (B.94) is satisfied, the norm of the k' residual
is given by

O] = 2 (e - )|

Qr1(1,1) ~
Sl )
: 0
Qk-ﬁ-] (k +1, 1)
0] [+ 1.1)| (B.97)

This means that the norm of the k™ residual can be incorporated inside the iterations
of Arnoldi’s method, without having to explicitly solve for x(X).

When Q41(k +1,1) = 0, (B.97) implies that x¥) = x(¥ + U,y is an exact solu-
tion. Note that the Arnoldi method will stall at the i iteration if o; = 0 because
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u;;1 requires a division by «;. However, this does not prevent the formation of ﬁl, as
given in (B.93). This implies that (@,’; +1Hk) is already in the form required by Ry and
that Q1 = @lt-H’ or Qi41(k + 1, 1) = 0. Thus when the Arnoldi process in GMRES
stalls at a value 7, the update x; at that point is already an exact solution to Ax = b.
This is also the situation when i = n, assuming no roundoff errors.

In summary, we have the GMRES algorithm given below:

GMRES Algorithm:

Given: A[=]n x n, b[=]n x 1, initial guess x(’[=]n x 1 and tolerance tol.
Initialize:

9 =p-Axx® ﬂ:”r(O)H ; u:r(o)/ﬂ
U=(u) 5 0=(1) ; R=[]
y=8 ; i=0 ; a=8
Iterate: i <— i+ 1
While y > tol and «a > tol

w=Auw;, h=U'w; p=w-Uh; r=0h; o= |p|

ifa > tol
P
v=(U]mr)
p=+/r()2+a% ; c—@, s=2
o
ri<p; R« ( % r )
L | 0 o1lo0
0 « 0 ‘ ( c s ) (—'70 1 )
—s
Yy < Qi
end if
End While Loop
Solve for y using back-substitution:
Q11
Ry=pg[
Qi1

Evaluate the final solution:

x=x + Uy
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local quadratic
model

model trust
region

Figure B.10. The trust region and the local quadratic model based on x*). The right figure
shows the contour plot and the double-dogleg step.

B.13 Enhanced-Newton Using Double-Dogleg Method

Like the line search approach, the double-dogleg method is used only when a full
Newton update is not acceptable. The method will use a combination of two types
of updates:

1. Gradient Descent Update

8¢ =—JIF (x(k)) (B.98)
2. Newton Update

8 =~ (x) (B.99)

Because the Newton update was based on a local model derived from a truncated
Taylor’s series, we could limit the update step to be inside a sphere centered around
x(X) known as the model-trust region approach, that is, with M; > 0

| Al < Mg (B.100)

Assuming the Newton step is the optimum local step, the local problem is that of
minimizing a scalar function ¢; given by

1
ok (AX) = 3 (Fi + T AX)" (Fi + T Ax)
1 1
= SEFc+ (FT7:) ax+ Sax’ (7)) ax a0y

Note that the minimum of ¢ (Ax) occurs at Ax = —J 'Fy, the Newton step.

The local model is shown in Figure B.10 as a concave surface attached to the
point x®) whereas the trust region is the circle centered around x*).

The double-dogleg procedure starts with the direction along the gradient, that
is, a path determined by Ax = 08,?. This will trace a parabola along the surface of
the quadratic model as o increases from 0:

1 2
P (@) = ¢ (05¢) = SF{Fi— o (E[ 1 [ i) + 2 (FL (Jus])" i)

635
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[k]
[k] Newton [k+1]

~ -

xN\ /x

4
4

~

. S
L4 X P
¢ . Figure B.11. The double-dogleg method for obtaining the
\‘ update Xy 1.
I !
1
4
4
L4
- L4
-~ N “ 4

The minimum of this parabola occurs at

. FLJJ [y

F7 (J,J 1) Fy

This yields the point known as the Cauchy point,

X&) = x® 4 6%50 (B.102)
Note that if xg?, is outside the trust region, xg}), will need to be set as the intersection
of the line along the gradient descent with the boundary of the trust region. In
Figure B.10, the contour plot is shown with an arrow originating from x*) but
terminates at the Cauchy point.

The full Newton step will take x*) to the point denoted by xgcgwmn, which is the
minimum point located at the center of the elliptical contours. The Cauchy point,
full-Newton update point, and other relevant points, together with the important
line segments, are blown up and shown in Figure B.11.

One approach is to draw a line segment from xg‘gwton to the Cauchy point x(Ckg.
Then the next update can be set as the intersection of this line segment with the
boundary of the trust region. This approach is known as the Powell update, or the
single-dogleg step. However, it has been found that convergence can be further
improved by taking another point along the Newton step direction, which we denote

by xﬁ(}). The Dennis-Mei approach suggests that XJ(\I;) is evaluated as follows:

xﬁ\lﬁ) =x® 4 778,];] =x® — nJ,:lF (x(k)) (B.103)

where

n=02+080" [M}

F/F,

The double-dogleg update can then be obtained by finding the intersection

between the boundary of the trust region and the line segment from xj(\l,c) to xgz as

shown in Figure B.11, that is,

() = x® 1 (1= p)x®) 4 px© (B.104)
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where
_ —b+ /b —ac
po= a
2
o=
® 0\
b = (X/\/ _XCP> Xcp
2
-

and M, is the radius of the trust region. In case the update does not produce satis-
factory results, then the radius will need to be reduced using an approach similar to
the line search method.

To summarize, we have the following enhanced Newton with double-dogleg
procedure:

Algorithm of the Enhanced Newton’s Method with Double-Dogleg Search.

1. Initialize. Choose an initial guess: x(¥)
2. Update. Repeat the following steps until either ||F (x¥)| < € or the number of
iterations have been exceeded
(a) Calculate Jy.
(If J is singular, then stop the method and declare “Singular Jacobian.”)
(b) Calculate the 8¢ and 8. (cf. (B.98) and (B.99), respectively).

(c) Evaluate points xg‘g and xﬁ\’}): (cf. (B.102) and (B.103))
(d) Evaluate the step change Agx:

k k
Agx = (1 —p) xég + pxj\/)

where p is obtained by (B.104).
(e) Check if Axxis acceptable. If

HF (x(k) + Akx> H2 > ”F (x(k)) ”2 + 2aF,{JkAkx

with o € (0, 0.5) (typically « = 10~*), then update is unacceptable. Modify
the trust region:

M, < max(O.le, min (0.5My, A [|Axx] ) )

where
F]{Jk AkX
(1F (c+ ) = [F () > = 2677 Arx)

and repeat from step 2c above.
Otherwise, if acceptable, continue to next step.

(f) Update x®: x+D = x0) 1 A x
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Figure B.12. A surface plot of f (x1, x2) of (B.105) is shown in the left figure. The right figure
shows the contour plot and the performance of the enhanced Newton with double-dogleg
method with the initial guess at (x1, x;) = (4, —6).

Remarks: A MATLAB code nsolve.m is available on the book’s webpage that
implements the enhanced Newton method, where the line-search method is imple-
mented when the parameter “type” is set to 2. Also, another MATLAB code that
uses the enhanced Newton method for minimization of a scalar function is avail-
able on the book’s webpage as NewtonMin.m, where the line-search method is
implemented when the parameter type is set to 2.

EXAMPLE B.16. Consider the multivariable function

flx)=8+5+2 (B.105)
where
X X 1
¢1(x1,x2) = 5 tanh (—?1 4 ?2 — E)
x
H(x,x) = 1- 72

A surface plot of f (x1, x,) is shown in Figure B.12. When the enhanced Newton
with double-dogleg method was used to find the minimum of f (x1, x,), we see in
Figure B.12 that starting with (x1, x2), = (4, —6), it took only three iterations to
settle at the minimum point of (x1, x2)* = (0.5, 2) which yields the value f = 2.
Conversely, applying the line-search method, in this case with the same initial
point, will converge to a different point (x1, x,) = (=432, 2) with f = 27.

A particular property of the function f (x1, x;) in (B.105) is that the min-
imum is located in a narrow trough. When the line-search approach was
used, starting at (x1, x2), = (4, —6), the first Newton step pointed away from
(x1,x2)" = (0.5, 2). However, the double-dogleg method constrained the search
to a local model-trust region while mixing the gradient search direction with the
Newton direction. This allowed the double-dogleg method a better chance of
locating the minima that is close to the initial guess.
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B.14 Nonlinear Least Squares via Levenberg-Marquardt

There are several cases in which the linear least-squares methods given in Section 2.5
are not applicable. In those cases, Newton’s methods can be used to find the least-
squares solution when the unknown parameters are in nonlinear form. We can
formulate the nonlinear least squares as follows:

min ||r (x) H (B.106)

where r is the vector of residuals

ri(x1, ..., %)

r(x) =

P (X1, .0, Xn)
with m > n. For instance, suppose we wish to estimate parameters x = (x, .. ., X,)"
of a nonlinear equation

fx,w)y=0

where w are measured variables, for example, from experiments. Assuming we have
m sets of data given by wy, ..., Wy, the residual functions are

ri(x) = f(x,w;) i=1,....m

One could apply Newton’s method directly to (B.106). However, doing so would
involve the calculation of d’r/dx?,

dzr de\" [ dr N " dr
_r = J— J— Vi—=
dx? dx dx P dx?

which is cumbersome when m is large.
Another approach is to first linearize r around x, that is,

d
l'(x) = l‘(xl]) + &l'

where J is the Jacobian matrix given by

(X —X0) = T(xy) +J (%) (X — X0)

X=X(

81’1 8}’1
0x1 0xy,
Jixo) =
orm oy,
axq 0xy, X=X

This transforms the nonlinear least-squares problem (B.106) back to a linear least-
squares problem (cf. Section 2.5) that is,

min > Hf(xw +J ) (X = %0)[° (B.107)

whose solution is given by the normal equation,

-1
T T
X—Xo=— (J(xn)J(XO)) J(xu)r(m)
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We obtain an iterative procedure by letting x¥) = x, be the current estimate and
letting x*+1) = x be the next update. This approach is known as the Gauss-Newton
method for nonlinear least-squares problem:

D) = x® — (7T 1) I (B.108)
where
Ji=J (x(k)) ; I =r (X(k))

As it was with Newton methods, the convergence of the Gauss-Newton method
may need to be enhanced either by the line-search method or by a model-trust
region method. However, instead of the line search or the double-dogleg approach,
we discuss another model-trust region method known as the Levenberg-Marquardt
method.

Recall, from Section B.13, that the model trust region is a sphere centered
around the current value x*), The minimization problem can then be modified to be
the constrained form of (B.107):

1 2
mzn 7 Hrk + JkA"‘xH subject to H AkXH < M (B.109)
Afx

where AFx = x(+1D) — x(®) is the update step and M; is the radius of the trust region.

From Figure B.10, we see that there is a unique point in the boundary of the
trust region where the value of function in the convex surface is minimized. This
observation can be formalized by the following lemma:

LEMMA B.2. Levenberg-Marquardt Update Form
The solution to the minimization problem (B.109) is given by

Akx* = — (JkTJk + ,ul)_] Il (B.110)

for some unique value . > 0.

PROOF. (See Section B.10.2.)

Lemma B.2 redirects the minimization problem of (B.109) to the identification
of u such that

q (1) = |su] =M =0 (B.111)
where
Sy =— (JkTJk+MI)_IJkTrk
Note that we set u = 0 if ||so|| < My. Also, the derivative of g (1) is given by
dqg stk —+—,ul)_1s,4
du s

Although the Newton method can be used to solve (B.111), the Moré method
has been shown to have improved convergence. Details of the Moré algorithm are
included in Section B.14.1.

q (1) = (B.112)
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To summarize, we have the Levenberg-Marquardt method:
Algorithm of Levenberg-Marquardt Method for Nonlinear Least Squares.

1. Imitialize. Choose an initial guess: x(*)
2. Update. Repeat the following steps until either |[r (x®)| < € or the number of
iterations have been exceeded
(a) Calculate Jy.
(b) Calculate u and s, using the Moré algorithm.
(c) Set Axx =, and check if Axx is acceptable. If

2 2
Hr (x(k) + Akx) H > Hr (x(k)) H + 2arZJkAkx

with o € (0, 0.5) (typically « = 10~#), then update is unacceptable. Modify
the trust region:

Mj < max ( 0.1Mx, min (0.5M, » || Aex] ) )

where
I‘Z]k Arx

(e (9 + ) [ — [ (x) [P — 2, Frex)

and repeat from step 2b above.
Otherwise, if acceptable, continue to next step.

(d) Update x®: xk+1) = x(k) 4 A x

Remarks: A MATLAB code for the Levenberg-Marquardt method (using the More
algorithm) for solving nonlinear least squares is available on the book’s webpage as
levenmarg.m.

EXAMPLE B.17. Suppose we want to estimate the parameters a, b, ¢, d, and e of
the function:

y=d exp(ax* +bx+c)+e

to fit the data given in Table B.5. Applying the Levenberg-Marquardt method
with the initial guess: (a, b, c,d, e) = (0,0,0,0,0), we obtain the estimates:
(a,b, c,d, e) = (—0.0519, 0.9355, —1.1346, 0.0399, 2.0055). A plot of the model,
together with data points, is shown in Figure B.13. We also show, in the right
plot of same figure, the number of iterations used and the final value of the
residual norm.

B.14.1 Appendix: Moré Method
Algorithm of Moré Method to obtain

1. Generate initial guess.

ifk=0

0= M
m = k—1 .
(M |x:x<k—1>) M, otherwise
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Table B.5. Data for example B.17

x y x y x y

0.1152  2.0224 6.5207 2.6118 12.6037 2.4487
0.7604  2.0303 7.0276 ~ 2.7355 13.1106 2.3750
1.2673  2.0408 7.5346 27855 13.7097  2.2855
2.7419  2.1197 83180 2.8539 14.3548 2.2013
3.4332  2.1803 9.4700 2.8645 15.0461 2.1355
43088 22776 103917 2.7934 16.2442  2.0671
48618 23645 11.2212 2.6645 17.5806  2.0250
53687 2.4382 12.0507 2.5487 19.7465 2.0039
6.4747  2.6303

2. Update.

0 _ G-y Iswol (@
M= u M, q/

u:ﬂtiw)

M(j) if Lo; < /L(j) < Hi,-

3. Clip u between minimum and maximum values

1
max (./Loj -Hi/. , 10*3Hi]~> otherwise
where
0 e
- q/( ) ifj=0
q'(0)
LO]' <
max (M — i{) , Loj_y otherwise
Q" ) | u=uli-n
3 10°
2.8
- 10°
¥ e 12
2.4¢
107
2.2¢
: : : o 107 : : :
0 5 10 15 20 0 10 20 | 30 40
X Iteration

Figure B.13. The model together with the data given in Table B.5. On the right plot, we have
the number of iterations performed and the corresponding norm of the residuals.
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4. Repeat until:

|7 e

itj =0
M, "

min (Hij_1, Mo_l)) if q (M(]_l)) <0

Hi;_q otherwise

s € [ 0.9Mk . 110 |
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APPENDIX C

Additional Details and Fortification
for Chapter 3

C.1 Proofs of Lemmas and Theorems of Chapter 3

C.1.1 Proof of Eigenvalue Properties

* Property 1: Eigenvalues of triangular matrices are the diagonal elements.
Let A be triangular then

N
det(A—al) =[] (ai—») =0
i=1
Thus the roots are: ai1, ..., ann.
For diagonal matrices,
Ae; = a;ie; = Aie;

Thus the eigenvectors of diagonal matrices are the columns of the identity matrix.
* Property 2: Eigenvalues of block triangular matrices are the eigenvalues of the
block diagonals.
Let A; be i block diagonal of a block triangular matrix A, then

N
det (A — D) =[] (Ai =) =0
i=1

or
det(A; —Al) =0
* Property 3: Eigenvalues of «¢A is aA.
(¢A)v = (ar) v

* Property 4: Eigenvalues of A and AT are the same.
Because det (B) = det (BT),

det (A — 1I) = det(A — )" =det (AT —AI) =0

Thus the characteristic equation for A and A” is the same, yielding the same
eigenvalues.
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Property 5: Eigenvalues of A* are AX.
For k = 0, A’ = I and the eigenvalues are all 1’s.
For k > 0,
ARy = A1 (Av) = a4 v = =0k
For k = —1, assuming A is nonsingular,
1
v=Alav=24" - Alv= Xv

(Note: Property 7 implies that eigenvalues are nonzero for nonsingular matrices.)
Then for k < —1,
AkV = Ak+1 (A_IV) = ... = kkv

Property 6: Eigenvalues are preserved by similarity transformations.

Using the eigvenvalue equation for T 'AT,

det (T7'AT —aI) = det(T ') det(A— rl)det(T)
= det(A—Al)

Because the characteristic polynomials for both A and T ' AT are the same, the
eigenvalues will also be the same.

If v is an eigenvector of A corresponding to A and B = T ~'AT then

TBT 'v = v
AV=W = BTy = a(TW)

that is, 7 ~!v is a eigenvector of B.
Property 7: [[ 1; = |A|.
Using the Schur triangularization,

Mo X eee X
)\2 X

U*AU =
0 0 - Ay

where U is unitary and ‘x’ represent possible nonzero entries. After taking the
determinant of both sides,

N
\U*[1A11U| = 1Al =] [ mi
i=1

Property 8: " A; = tr (A).
Using Schur triangularization,

A X X

0 X X
U*AU = .

0 0 AN

After taking the trace of both sides.

N
tr (U*AU) = tr (AUU*) = tr(A) = ) _ 2
i=1
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* Property 9: Eigenvalues of Hermitian matrices are real, and eigenvalues of skew-
Hermitian matrices are pure imaginary.
Let H be Hermitian, then

(V'HV)" = v'H*vV = v*Hv
which means v*Hv is real. Now let A be an eigenvalue of H. Then
Hv = v
vViHv = vy

Because v*v and v*Hy are real, A has to be real.
Similarly, let H be skew-Hermitian, then

(VHY) =VHV = — (V'H*V)

which means v* HV is pure imaginary. Let A be an eigenvalue of H, then

H = v
VHV = AWV

Because V*V is real and V*HV is pure imaginary, 2 has to be pure imaginary.
* Property 10: Eigenvalues of positive definite Hermitian matrices are positive.
Because H is positive definite, v*Hv > 0, where v is an eigenvector of H.
However, v:Hv = A |v|>. Because v > 0, we must have A > 0.
¢ Property 11: Eigenvectors of Hermitian matrices are orthogonal.
If H is Hermitian, H*H = H?> = HH*. Thus, according to Definition 3.5,
is a normal matrix. Then the orthogonality of the eigenvectors of H follows as a
corollary to Theorem 3.1.
* Property 12: Distinct eigenvalues yield linearly independent eigenvectors.

Let A1, ..., Ay be a set of distinct eigenvalues of A[=]N x N, with M < N,
and let vy, ..., vy be the corresponding eigenvectors. Then
AkVi = )\,’Ak_lvi =...= )Lf'cvi

We want to find a linear combination of the eigenvector that would equal the
ZEero vector,

avi+ -+ apv, =0
After premultiplication by A, A2, ..., AM~1,

MV + -t ayiyvy = 0

al)\,jl\471V1 + -+ oeM)\%flvM = 0
Combining these equations,

1 A - )JlW*l
Ay e )szfl
(oavi | oo | amvar ) S : = Opvxm)

1 Ay - )\%—1
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The Vandermonde matrix is nonsingular if A; # - - - # Ay (cf. Exercise E1.14).
Thus

vy =---=o,vy =0
Because none of the eigenvectors are zero vectors, we must have
o) = =0y = 0

Thus {vy, ..., vy} is a linearly independent set of eigenvectors.

C.1.2 Proof for Properties of Normal Matrices (Theorem 3.1)

Applying Schur triangularization to A,

M obn - bin
U*AU =B =
bn_1n
0 AN

If A is normal, then B = U*AU will also be normal, that is,
B*B = (U*AU)" (U*AU) = U*A*AU = U*AA*U = (U*AU) (U*AU)" = BB*

Because B is normal, we can equate the first diagonal element of B*B to the first
diagonal element of BB* as follows:

N
P =P+ Ibul®
k=2

This is possible only if b1 = 0,for k = 2, ..., N. Having established this, we can now
equate the second diagonal element of B*B to the second diagonal element of BB*
as follows:

N
Mol = Dol + > bl
k=3

and conclude that by, =0, for k =3,..., N. We can continue this logic until the
(N — 1) diagonal of B*B. At the end of this process, we will have shown that B is
diagonal.

We have just established that as long as A is normal, then U*AU = A, where A
contains all the eigenvalues of A, including the case of repeated roots. Next, we can
show that the columns of U are the eigenvectors of A,

U'AU = A
AU = UA
(AU |- | AUwN ) = ( MUes | -+ | swUen )

or

AU, ; =1 U, ;
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Now assume that a given matrix, say C[=]N x N, has orthonormal eigenvectors
{v1,---, vy} corresponding to eigenvalues {11, ..., Ay}, thatis, V*CV = A, where
A= diag():l, . ,)\.N).

*

>)
Il

(V*CV)* (V*CV) = V*C'CV
(V*CV)(V*CV)* = V*CC'V

> >)
>)
Il

cc=cc

This means that when all the eigenvectors are orthogonal, the matrix is guaranteed
to be a normal matrix.

C.1.3 Proof That Under Rank Conditions, Matrix Is Diagonalizable
(Theorem 3.2)

Suppose 1, is repeated k; times. From the rank assumption,
rank(MI — A) =N -k
means that solving
MI-A)yv=0

for the eigenvectors contain k; arbitrary constants. Thus there are k; linearly inde-
pendent eigenvectors that can be obtained for ;. Likewise, there are k, linearly
independent eigenvectors that can be obtained for A,, and so forth. Let the first set
of k; eigenvectors vy, ..., v, correspond to A; while the subsequent set of &, eigen-
vectors Vi, 11, - - -, Vi, +k, cOrrespond to eigenvalue X, and so forth. Each eigenvector
from the first set is linearly independent from the other set of eigenvectors. And
the same can be said of the eigenvectors of the other sets. In the end, all the N
eigenvectors obtained will form a linearly independent set.

C.1.4 Proof of Cayley Hamilton Theorem (Theorem 3.3)

Using the Jordan canonical decomposition, A= TJT~!, where T is the modal
matrix, and J is a matrix in Jordan canonical form with M Jordan blocks,

aol + A+ -+ a,AN = T(apl +arJ + -+ a,JN)T !

charpoly(J1) 0 e 0
0 charpoly(J2) --- 0 (C.1)
=T . . . . !
0 0 .-+ charpoly(J )

The elements of charpoly(J;) are either 0, charpoly(2;), or derivatives of charpoly(2;),
multiplied by finite scalars. Thus charpoly(J;) are zero matrices, and the right-hand
side of Equation (C.1) is a zero matrix.
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C.2 QR Method for Eigenvalue Calculations

For large systems, the determination of eigenvalues and eigenvectors can become
susceptible to numerical errors, especially because the roots of polynomials are
very sensitive to small perturbations in the polynomial coefficients. A more reliable
method is available that uses the QR decomposition method. First, we have present
the QR algorithm. Then we describe the power method, which is the basis for the
QR method for finding eigenvalues. Finally, we apply the QR method.

C.2.1 QR Algorithm
QR Decomposition Algorithm (using Householder operators):
Given A[=]N x M.

1. Initialize. K = A, O = Iy

2. Iterate.
Forj=1,...,min(N, M) -1
(a) Extract first column of K: u=K,;
(b) Construct a Householder matrix:

wy <~ up—|uf
H = [——u

(c) Update K: K <~ HK

(d) Update last (N — j) rows of @: @[j ..... Nlo < H@U ,,,,, Nl

(e) Remove the first row and first column of K: K« K1,
3. Trim the last (N — M) rows of Q if N > M:
4. Obtain Q and R:

)
T
T
i
=

0 = 0O

R = 0A

C.2.2 Power Method

Let square matrix A have a dominant eigenvalue, that is, [A{| > |Aj ,]>1.An
iterative approach known as the power method can be used to find 1; and its
corresponding eigenvector v;.

Power Method Algorithm:

Given matrix A[=]N x N and tolerance € > 0.

1. Initialize. Set w = 0 and select a random vector for v
2. Iterate. While ||[v —w| > ¢

w <~ \4

vV <« Aw

vl
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10 ‘ ‘
0 5 10 15

Iteration (k)

Figure C.1. Convergence of the eigenvector estimation using the power method.

1
3. Obtain eigenvalue: A= —V'Av
vy

A short proof for the validity of the power method is left as an exercise
(cf. E3.24). The power method is simple but is limited to finding only the dominant
eigenvalue and its eigenvector. Also, if the eigenvalue with the largest magnitude is
close in magnitude to the second largest, then convergence is very slow. This means
that convergence may even suffer for those with complex eigenvalues that happen
to have the largest magnitude. In those cases, there are block versions of the power
method.

EXAMPLE C.1. Let A be given by

3 2 1
A=| 1 2 3
2 1 3

the power method found the largest eigenvalue A = 6 and its correspond-
ing eigenvector v = (0.5774, 0.5774, 0.5774)T in a few iterations. The norm
[v®+D — v®)| is shown in Figure C.1.

C.2.3 QR Method for Finding Eigenvalues

As discussed in Section 2.6, matrix A can be factored into a product, A = QR where
Q is unitary and R is upper triangular. If we let Al/!l be a similarity transformation
of A based on Q,

Al = 0*AQ = RO (C2)

then Al simply has reversed the order of Q and R. Because the eigenvalues are
preserved under similarity transformations (cf. Section 3.3), A and AlM] will have
the same set of eigenvalues. One could repeat this process k times and obtain

Al — Q[<k>]R[<k)]
Al R[<k)]Q[<k>]
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where the eigenvalues of Al will be the same as those of A. Because RI¥' is upper
triangular, one can show! that A%l will converge to a matrix that can be partitioned

as follows:
i (S1E)

where F is either a 1 x 1 or a 2 x 2 submatrix. Because the last matrix is block
triangular, the eigenvalues of A will be the union of the eigenvalues of B and the
eigenvalues of F. If F[=]1 x 1, then F is a real eigenvalue of A; otherwise, two
eigenvalues of A can be found using (3.21).

The same process can now be applied on B. The process continues with QR
iterations applied to increasingly smaller matrices until all the eigenvalues of A are
found.

EXAMPLE C.2. Consider the matrix

-1 1 0
A= -1 0 1
1 1 0

After approximately 33 iterations using the QR method described, we obtain

~1.3333  1.1785 —0.4083
AlB3] — 0.9428 —0.6667  0.5774
0.0000  0.0000  1.0000

which means one eigenvalue can be found as A; = 1. For the remaining two
eigenvalues, we can extract the upper left 2 x 2 submatrix and use (3.21) to
obtain i, =1+4+iand A3 =1—1i.

Although the QR method will converge to the required eigenvalues, the conver-
gence can also be slow sometimes, as shown in preceding example. Two enhance-
ments significantly help in accelerating the convergence. The first enhancement is
called the shifted QR method. The second enhancement is the Hessenberg formula-
tion. Both of these enhancements combine to form the modified QR method, which
will find the eigenvalues of A with reasonable accuracy. The details of the modified
QR method are included in Section C.2.4.

C.2.4 Modified QR Method

In this section, we discuss the two enhancements that will accelerate the convergence
of the QR methods for evaluation of the eigenvalues. The first enhancement is to
shift the matrix A% by a scaled identity matrix. Then second is to use Householder
transformations to achieve a Hesseberg matrix, which is an upper triangular matrix,
but with an additional subdiagonal next to the principal diagonal.

1 For a detailed proof, refer to G. H. Golub and C. Van Loan, Matrix Computations, 3rd Edition,
1996, John Hopkins University Press.

651



652

Appendix C: Additional Details and Fortification for Chapter 3

C.2.5 Shifted QR Method
Instead of taking the QR decomposition of A*’, one can first shift it as follows:
Ao — gk _ stk (C.4)

where o¥) is the (N, N)™ element of A%,
We now take the QR decomposition of A%,

Ak — Ok RK (C5)
which we use to form A%+1 by
Ak — RIOOW 4 sk (C.6)

Even with the modifications given by (C.4), (C.5), and (C.6), A*+D will still be a
similarity transformation of A) starting with A = A. To see this,

= RWOW 4oy

_ (é(ld)_] (A<k> _ G(k),) D% 1 gy

A<k+1>

_ (@m)‘1 A D
Note that these modifications introduce only 2N extra operations: the subtrac-
tion of 0¥ 1 from the diagonal of A%, and the addition of /¥ ] to the diagonal of
R¥ Q% Nonetheless, the improvements in convergence toward attaining the form
given in (C.3) will be significant.

C.2.6 Hessenberg Forms

The second enhancement to the QR method is the use of Householder operators
to transform A into an upper Hessenberg form. A matrix is said to have the upper
Hessenberg form if all elements below the first subdiagonal are zero,

X X X

a= > - - (C.7)
S
0 X X

where “x” denotes arbitrary values.
To obtain the upper Hessenberg form, we use the Householder operators Uy_y
given in (3.7),

2
Upy=l—- —————(x-y)(x—y)
! (x—y) (x—y)
which will transform x to y, as long as [|x|| = ||y||. With the aim of introducing zeros,

we will choose y to be

Il
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Two properties of Householder operators are noteworthy: they are unitary and
Hermitian. The following algorithm will generate a Householder matrix H such
that HAH will have an upper Hessenberg form. Also, because HAH is a similarity
transformation of A, both A and HAH will have the same set of eigenvalues.

Algorithm for Householder Transformations of A to Upper Hessenberg Form:

Start with G < A.
Fork=1,...,(N-2)
1. Extract vector w: wi=Grpix 5 i=1,....,(N—=k)
2. Evaluate H:

Iy if [w—y| =0
H=
Iy 0 .
( 0 Uw_y> otherwise
T
where, y = (lwl 0 - 0)
2 .
Upy = I———(W-y)(W-y)
[w—y]

3. Update G: G~ HGH
End loop for k

Because the Householder operators Uy will be applied on matrices, we note the
following improvements:
Let =2/ (v*v),w; = A*v,w, = Av and y = v*Ayv,

1. Instead of multiplication UyA, we use UyA = A — Bvwy.
2. Instead of multiplication AUy, we use AUy = A — Bw,v.
3. Instead of multiplication UyAUy, we use UyAU, = A — pvw] + (yv — pwz) v*.

The improvement comes from matrix-vector products and vector-vector products
replacing the matrix-matrix multiplications.

Remarks: In Matlab, the command H=hess (A) will obtain the Hessenberg matrix
H from A.

EXAMPLE C.3. Let

3 -4 0 12 12
0 1 0 0 2
A=1 0 0 -2 3 3
0 2 0 -5 -6
0 -2 0 6 7

Using the algorithm, the resulting Hessenberg form is

3 —4 0 12 12

0 1 —1.4142 1 1
G=HAH=]| 0 2.8284 1 —8.4853 —8.4853

0 0 0 1.6213 3.6213

0 0 0 —0.6213 —-2.6213

One can check that the eigenvalues of G and A will be the same.
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Note that for this example, the resulting Hessenberg form is already in
the desired block-triangular forms, even before applying the OR or shifted QR
algorithms. In general, this will not be the case. Nonetheless, it does suggest
that starting off with the upper Hessenberg forms will reduce the number of QR
iterations needed for obtaining the eigenvalues of A.

C.2.7 Modified QR Method
We can now combine both enhancements to the QR approach to determine the
eigenvalues of A.
Enhanced QR Algorithm for Evaluating Eigenvalues of A:
* Initialize:

1. Setk=N.
2. Specify tolerance e.
3. Obtain G, a matrix in upper Hessenberg form that is similar to A.

* Reduce G: While k > 2
Case 1: (|Gy 1| < €).

1. Add Gy to the list of eigenvalues.
2. Update G by removing the last row and last column.

Case 2: (‘Gk,k—l‘ > 6) and (‘Gk—l,k—Zy =< 6).

1. Add p; and p, to the list of eigenvalues, where

—b+ VB —dc —b— Vb —4c
pl=—-—":""_: [la=—F7+——
2 2
and b = —(Gik-1k-1+ Gri)
¢ = Giax-1Grk — Gri-1Gr-1k

2. Update G by removing the last two rows and last two columns.

Case 3: (|Grk—1| > €) and (|Gi—1 x—2| > €).
Iterate until either Case 2 or Case 3 results:
Let 0 = Gy,

1. Find Q and R such that: OR=G—-ol
2. Update G- G <~ RO +ol

End While-loop
* Termination:
Case 1: G = [A], then add A to eigenvalue list.
Case 2: G[=]2 x 2, then add u; and u; to the list of eigenvalues,
where

b+ Vb —dc —b— /b —4c

M“1 3 s M2 = 3

and

b=—-(Gu+Gn) ; c=G1Gp—G6uGyp
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EXAMPLE C.4. Let

1 2 0 1 1
2 1 0 0

A=l 1 0 -1 2 -1
2 2 1 0
0 0 2 0 1

After applying Householder transformations H, we obtain G = HAH that has
the upper Hessenberg form

1 -2 —0.1060 —-1.3072 —0.5293
-3 1.8889 —1.1542 23544 1.7642

G= 0 —1.0482 0.8190 0.6139  —0.4563
0 0 —1.2738  0.0036 2.9704

0 0 0 —0.8456 —1.7115

After ten iterations of the shifted-QR method, G is updated to be
42768 0.2485 —2.2646 22331 —-5.7024

0 —1.8547 23670 —1.3323  0.2085

0 —1.5436  0.4876 1.0912  —0.0094
0 0 —0.2087 03759  —0.0265
0 0 0 0 —1.2856

and we could extract —1.2856 as one of the eigenvalues. Then the size of G is
reduced by deleting the last row and column, that is,

42768 0.2485 22646  2.2331

G < 0 —1.8547 23670 —1.3323
0 —1.5436  0.4876 1.0912
0 0 —0.2087  0.3759

Note that along the process, even though G will be modified and shrunk, it will
still have an upper Hessenberg form.

The process is repeated until all the eigenvalues of A are obtained: —1.2856,
0.0716, —0.5314 + 1.5023i, and 4.2768.

C.3 Calculations for the Jordan Decomposition

In this section, we develop an algorithm for the construction of a modal matrix T
that would obtain the Jordan decomposition of a square matrix A. The canonical
basis, that is, the columns of 7', is composed of vectors derived from eigenvector
chains of different orders.

Definition C.1. Given matrix A and eigenvalues X, then an eigenvector chain
with respect to A, of order r is
chain(A, A, r) = (v, v2, ..., V;) (C.8)
where
(A=AD)'v,=0 (A=A)"'v, #0
Vi =(A—-A)vj j=@-1),...,1

655
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Note: If the order of the chain is 1, then the chain is composed of only one eigen-
vector.

Algorithm for Obtaining Chain (A4,1,r).

1. Obtain vector v, to begin the chain.
(a) Construct matrix M,

(A=At | -1
we.n = (“G 5y 0 )

(b) Use Gauss-Jordan elimination to obtain Q, W, and g such that

_ (g | O
OMW = < 0o To
(c) Construct vector h

ho— 0 i=12,...,q
77| arandomly generated number j=q+1,...,2n

(d) Obtain v, by extracting the first N elements of z = Wh.
2. Calculate the rest of the chain.

vi =(A-M)vjn ji=0-1),...,1

Note that as mentioned in Section B.2, the matrices Q and W can also be found
based on the singular value decomposition. This means that with UXV* = M, we
can replace W above by V of the singular value decomposition. Furthermore, the
rationale for introducing randomly generated numbers in the preceding algorithm
is to find a vector that spans the last (2n — g) columns of W without having to
determine which vectors are independent.

EXAMPLE C.5. Let

SR O W
S O W o
S W oo
N O = O
=Nl

o
)
)
)
98]

Using the algorithm, we can find the chain of order 3 for A = 3,

0 —-1.2992 0.8892

0 —-1.2992 1.1826
chain(A4,3,3)=(vi v» vz )=| —-12992 0.8892 1.8175

0 0 0

0 0 —1.2992

we can directly check that
(A=)’ vs=0 (A=A’ v3#£0

and

V2=(A—)»I)V3 V1=(A—)»I)V2
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To obtain the canonical basis, we still need to determine the required eigenvector
chains. To do so, we need to calculate the orders of matrix degeneracy with respect
to an eigenvalue %;, to be denoted by N, , which is just the difference in ranks of
succeeding orders, that is,

N; i = rank(A — ;)5 — rank(A — AT)* (C.9)

Using these orders of degeneracy, one can calculate the required orders for
the eigenvector chains. The algorithm that follows describes in more detail the
procedure for obtaining the canonical basis.

Algorithm for Obtaining Canonical Basis.

Given A[=]N x N.
For each distinct A;:
1. Determine multiplicity m;.
2. Calculate order of required eigenvector chains.

Let
pi = arg <1min [rank(A — M) =(N- mi)})
<p=n
then obtain ord; = (¥, 1, ..., ¥ip,), Where
, _{ Nik itk =p;
VT max(0, [Nox — X0y vig]) ik < p;
where,

N = rank(A — 41)*" — rank(A — ;1)

3. Obtain the required eigenvector chains.
For each y;x > 0, find y; sets of chain(A, A;, k) and add to the collection of
canonical basis.

One can show that the eigenvector chains found will be linearly independent.
This means that 7 is nonsingular. The Jordan canonical form can then be obtained
by evaluating T'AT =J.

Although Jordan decomposition is not reliable for large systems, it remains
very useful for generating theorems that are needed to handle both diagonalizable
and non-diagonalizable matrices. For example, the proof of Cayley-Hamilton the-
orem uses Jordan block decompositions without necessarily having to evaluate the
decompositions.

EXAMPLE C.6. Consider the matrix A,

SO = O
SO O WwWo
SO W oo
SN O~ O
W OO~ -

657
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then

| A |mi | pi| Nixe | ordi |
211 1] [ o
304 3 [RLI|[LO0,1]

Next, calculating the required chains:

0 0
—0.707 —0.5843
chain(A4,2,1) = 0 chain(4,3,1) = | -1.0107
0.707 0
0 0
0 —1.2992  0.8892
0 —1.2992  1.1826
chain(4,3,3) =1 —-1.2992 0.8892 1.8175
0 0 0
0 0 —1.2992

The modal matrix 7 can then be constructed as,

0 0 0 —-1.2992  0.8892

—0.7071 —0.5843 0 —1.2992  1.1826

T = 0 —-1.0107 —-1.2992  0.8892 1.8175
0.7071 0 0 0 0

0 0 0 0 —1.2992

The Jordan canonical form is

J =T AT =

S oo oM
SO O WwWo
OO W oo
S WKk OO
W= o oo

C.4 Schur Triangularization and SVD

C.4.1 Schur Triangularization Algorithm

Given: A[=]N x N
Initialization: Set Gy = A.
Form=N,N-1,...,2

Obtain A, an eigenvalue of G,,, and its corresponding orthonormal eigen-
vector v.

Using Gram-Schmidt algorithm (cf. Section 2.6), obtain an orthonormal set of
(m — 1) vectors {wy, ..., W,_1} that is also orthonormal to v.



Appendix C: Additional Details and Fortification for Chapter 3 659

LetH, = (v | Wi | | Wy_1 ); then use
. A b7
it~ (510

to extract G,,_1 and construct U,, as

Calculate the product:

U=UnUn_1---Us

C.4.2 SVD Algorithm

1. Apply the QR algorithm on A*A:
(a) Initialize: D = A*A,V = Iy, €
(b) Iterate: While Hvec (D — diag(D)) H > €
i. D = QR via QR algorithm
ii. D < RQ
iii. V< VQ
(Note: Re-index D and V such that dy1 > dy.)
2. Calculate singular values: o; = /d;;,i=1,..., M.
3. Obtain U:
Let r be the number of nonzero singular values.
(a) Extract V, as the first r columns of V.
(b) Set ¥, = diag (o1, ..., 0,).
(c) Calculate: U, = AV, 1.
(d) Find U,[=]N x (M — r) such that U, is orthogonal to U,.
(e) SetU=( U, | Uy ).

4. Form X[=|N x M: %;; = {

o ifi=j<r
0 otherwise

C.5 Sylvester’s Matrix Theorem

THEOREM C.1. Let A have all distinct eigenvalues. Let vy and wj, be the right and left
eigenvectors A, respectively, corresponding to the same k'™ eigenvalue Ay, such that
wivi = 1. Then any well-defined matrix function f (A) is given by

N
F(A) =" F () vaw (C.10)

k=1

The classic version of Sylvester’s matrix theorem gives equivalent formulations
of (C.10), two of which are the following:

N —
flA) = Zf (M) M (C.11)

k=1 He;ek (Ae = Ai)
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and

N .
f(A) = Zf()‘k) adj(l —A) (C.12)
k=1 £k ()‘E - )\k)

The advantage of (C.11) is that it does not require the computation of eigenvectors.
However, there are some disadvantages to both (C.11) and (C.12). One is that all
the eigenvalues have to be distinct; otherwise, a problem arises in the denomina-
tor.

To show that (C.10) can be derived from (3.35), we need to first show that the
rows of V1 are left eigenvectors of A. Let w} be the k™ row of V=1, then

AV = VA
viAa = aAv
wi A 0 wi
A =
Wy 0 AN Wy

or
WA = AWy
Thus wj is a left eigenvector of A. Using this partitioning of V1, (3.35) becomes

f () 0 wi
P = (vl ) . ;
0 f()»N) W}kv

3
Wi

N
( v | | VN )(Zf()»k)equ)
k=1

= f)viw] +...+ f (Ay) VoW

3
Wn

C.6 Danilevskii Method for Characteristic Polynomial

There are several methods for the evaluation of eigenvalues. For smaller matrices,
the characteristic polynomials are first determined, and then the roots are then
calculated to be the eigenvalues. For larger cases, other methods can be used that
bypass the determination of the characteristic polynomial. Nonetheless, there are
situations in which the determination of characteristic polynomials becomes the
primary goal, such as problems in which the Cayley-Hamilton theorems are used.

One highly effective approach to finding the characteristic polynomial is the
Danilevskii method. The main idea is to find sequences of elementary matrix oper-
ators (e.g., those used in Gaussian elimination) such that a nonsingular matrix S can
be used to transform a square matrix A into a lower block triangular matrix in which
the block diagonal matrices are in the form of companion matrices.
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Definition C.2. A square matrix C is said to be a companion matrix fo a monic
polynomial

p(s)=s"+ 18" L+ ags +

if it has the form

0 1 0 0
0 0 1 0
C= : : : : (C.13)
0 0 o - 1
—ay  —e  —0p ot~

It is left as an exercise (cf. E3.8) to show that the characteristic equation of C
defined in (C.13) will be

p)=s"+a1s" "+, +os+a=0 (C.14)
Furthermore, each distinct eigenvalue A of C has a corresponding vector given by
1
A
V= . (C.15)
)\’n.fl

Thus with a similarity transformation of A based on a similarity transformation
by §

o) .o
» On | G
STAS = : - - (C.16)
er Qr2 T Cr

where C; are n; x n; companion matrices to polynomials

the characteristic polynomial of A is then given by
charpoly(A) = l_[ pi(s) (C17)
i=1

To find S, we have the following recursive algorithm:

Danilevski Algorithm:

Let A[=]N x N;then Danilevski(A) should yield matrix S such that (C.16) is satisfied.
Initialize k =0 and S = Iy
While k < N,
k<~ k+1
tEN=1,

661
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else

Ifg#0

Interchange rows i 4+ 1 and jmax of A
Interchange columns i + 1 and jyax of A
Interchange columns i + 1 and jax of S

—ak,j/ak,k+1 ifiZk—i—l,j;ﬁk—}—l

X = (xif) ; Xjj = —1/aj k+1 ifi=k+1,j=k+1

1 ifi=j#k+1
0 otherwise
ag; ifi=k+1
Y=0ij)  yj=11 ifi=j#k+1
0 otherwise
A <« YAX
S <« SX
else

Extract the submatrix formed by rows and columns i + 1 to N of A as H,
then solve for G = Danilevkii(H)

I |0
S<—S<0 G)

end If
End while

The Danilevskii algorithm is known to be among one of the more precise meth-
ods for determination of characteristic polynomials and is relatively efficient com-
pared with Leverier’s approach, although the latter is still considered very accurate
but slow.

A MATLAB function charpoly is available on the book’s webpage for the
evaluation of the characteristic polynomial via the Danilevskii method. The program
obtains the matrix S such that S™!AS is in the form of a block triangular matrix
given in (C.16). It also yields a set of polynomial coefficients p,[ff{] saved in a cell
array. Finally, the set of eigenvalues is also available by solving for the roots of the
polynomials. A function po 1y (A) is also available in MATLAB, which is calculated
in reverse; that is, the eigenvalues are obtained first, and then the characteristic
polynomial is formed.
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EXAMPLE C.7.
Given
1 2 3 0 0
4 5 0 0 O
A= 1 -2 0 0 O
2 1 0 1 2
-1 -1 1 0 1

then applying the Danilveskii method, we find

1 0 0 0 0
—275 =025 025 0 0
S = 15 05 -01667 0 0
0 0 0 1 0

0 0 0 -05 05

0 1 0 0 0

0 0 1 0 0

S1AS = -39 6 6 0 0

—0.75 =025 025 0 1

575 125 —.5833 | -1 2

and the characteristic polynomial is given by

pi(s) = s> =65 —65+39 P = pis)pals)
pals) = s —2s+1 = 5 — 8% 4753 +455> — 845 + 39
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APPENDIX D

Additional Details and Fortification
for Chapter 4

D.1 Proofs of Identities of Differential Operators

The proofs for the identities of differential operations of orthogonal curvilinear
coordinates are given as follows:

1.

Gradient (4.90): apply (4.89) on .
Divergence (4.91): Using (4.55),
V- (wed,) =38, Vw, +w,V-§, (D.1)

The first term in (D.1) can be expanded using (4.90)as follows:

1 . dw, 1 _ dw, 1 . dw,
5 Vw, =8 (—8 - —
G YWa= 2 <aa-“aa+ab-bab+ac-cac

From (4.87) and (4.88),

_ 1 ow,
T w, da

(D.2)

8, =28, x 3, = (apVp) X (,) = apa, Vb x Ve
Then the second term in (D.1) becomes,
w,V-38, = w,V-(apa.Vbx Vc)
= wy (apatV - (Vb x V) + w, (VD x V) - V (apac)
Ly (L Lyt | L s

5 . il
apote " \a, ¢ 0da oy’ b a. ¢ dc

_ o, 1 d(apee) (D.3)
aLopa.  0a

= wll

where we used the fact that V - (Vb x Vc¢) = 0 (see Exercise E4.17).
Substituting (D.2) and (D.3) into (D.1),
1 % St 1 (apae) _ 1 d(waopo)

V-(w,d,)=—
(wad,) o, 0a T aaopee  Oa 00l oa

Similarly, we can obtain

1 d(aawpoe) ) V- (wb,) = 1 (azepwe)

V- 8,) = ;
(sd) 0gOlpOL ob 0 OLpOLe ac
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Combining,

V.w=

1 8 a c 8 a Cc aa c
<(waba)+ (awba)+ (aotbw)>

Qaplc da ob ac

Curl (4.92): Using (4.56) and (4.61), the curl of w,d, can be expanded as
follows:

V x (wsd,) = V x(wu,Va)
= wua, (V x Va) + V(wsa,) x Va
————
=0
A(waaq) 8(waoza) A(wq0ty) 1
= —38 8 8 —3
(aa‘“ da + ab‘b ab ozc ac o, !
B A(wa0y) 1 I waay)
- Ze + éb
o0 ab o0, ac
Similarly,
1 a(wbab) 1 B(wbozb)
\Y% ) = )
x (wpdy) ape, < da ozbac ac
8(wcac) 1 a(wcac)
\% = _
x (wed.) acop " 0b o0y 8 da

Combining all three curls,

1 v, <8(acwc) B 3(04bw17)>

o OLpOLe ab ac

+ apd, (a(a“w“) _ 3(“cwc)>

dc da
Aapwp)  (agwy)
ol ( 9a b

Laplacian of scalar fields (4.93): Substituting

3%” oy I
=Vy = l
W=Vy =gt -”abJr See

into (4.91),

b (B f(mee) o) B () BV O () OV
T G () ) ) S ) () 5))
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5. Gradient-Vector Dyad (4.94):

Vw =V Z Wil
k=a,b,c
= Y ((Vw) g +uwvs,)
k=a,b,c
1 ow w . 08
= XX ot XX gk
k=a,b,c m=a,b,c k=a,b,c m=a,b,c

D.2 Derivation of Formulas in Cylindrical Coordinates

At a point (r, 6, z), the pair of unit vectors §, and §, is just the pair of unit vectors
d, and § rotated counter-clockwise by an angle 6, which could be achieved using a

rotation operator,!

cosf sinfd 0
R_.=|-—sinf cosd® O (D.4)
0 0 1

Because R,_,. is an orthogonal matrix,

ér éx éx ér
S|=R-c|8 | = |5]|=R_.|8% (D.5)
éZ éz é éz

which is relationship 1 in Table 4.6. We can then apply (D.5) for vector v,

5, 5, s,
(o v v)[&]=y=( v ) 8| = (o v w)RL |
g, g, g,

Comparing both ends of the equations, we have

vy Uy Uy vy

T
vwl=Roc|lvy]|=|v|=R_.|v (D.6)
Uz Uz Uz Uz

which is relationship 2 in Table 4.6.
For the relationship between the partial differential operators of the rectangular
and the cylindrical coordinate system, the chain rule has to be applied. This yields,

d ox Jdy 90z d . 0
> 5%  ar  ar P cosf sind 0 a
9 _ ox 9y 9z 9 _ | —rsind rcos® 0 9
w|l|=1|00 06 a0 ay | = ay
A 0 o 1|2
0z 0z 0dz 0z 0z 0z

1 Note that the operator in (D.4) will rotate an input vector clockwise by an angle . However, because
we are rotating the reference axes, the operator would do the reverse; that is, it rotates the axes
counterclockwise.
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Let D, = diag (1, 7, 1). Then,

0 0
ar 0. 0 ar

9 T 1
30 | =Di=cRise 5 — 5 =R_.D._.| 9 (D.7)
0z 0z 0z 0z

which is relationship 3 in Table 4.6.
To obtain the relationship of the gradient operator V between the rectangular
and the cylindrical coordinates, we can apply both (D.5) and (D.7),

) ar
Vo= (& & &)|am|=|6 & &)R-||RLDL |0
0z 9z
ar
1 _
= (& -8 &)|a (D.8)
9z

which is relationship 4 in Table 4.6.

To obtain the partial derivatives of unit vectors in the cylindrical coordinate
systems, note that:

1. The direction and magnitude of §,, §,, and §_ will not change if we just modify
the r position. Thus
38, 93, 98,
or  ar  or
2. Likewise, the direction and magnitude of §,, é,, and §, will not change if we just
modify the z position. Thus

8§r_8§9_8§2_0
dz 9z 9z

3. If we just change the 6 position, the direction or magnitude of §_ will also not
change. Thus

28,

a0
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8.(1,6416,2)

A8 8.(,6,2)
8.(1,6+00,2)

Figure D.1. Unit vectors along r at different 6 positions.

What remains is the behavior of §, and §, as we change the 6 position. In both
cases, the directions do change. Let us first look at how g, changes with 6. The partial
derivative of §, with respect to 6 is given by

24 ) 0+ A6, z) — & 0

3, _ o 8(r0+860.2)=8,(0.2)

00 A0 A6
where the subtraction is a vector subtraction. This is shown in (the right side of)
Figure D.1. As A6 — 0, we can see that the vector difference will be pointing per-
pendicular to §, (r, 0, z). Thus

G
direction <8;9’> = direction (§,)

For the magnitude,

lim 8,(r,0+ AB) —4,(r,0) — lim 2|8,]sin A6/2 _q
AO—0 A6 AO—0 AN
Because the direction and magnitude matches §,,
04,
— =9 D.9
=8 (D9)

Using a similar argument for §,,

08) _ 8 (n0+20,2) ~8,(6,2)
90 A0 A6

The vector subtraction is shown in Figure D.2, where the limit yields a vector that is
pointing in opposite direction of §,. The magnitude of the limit is also 1. Thus

L)
20
0 (T, 6+16,2) 6,(,6,2) 8, (1,64A6,2)-8,(1,6,2)

6,(1,6,2)
A6 =

0 8, (1;6+16,2)

Figure D.2. Unit vectors along 6 at different 6 positions.
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Alternatively, to find the derivatives of the unit vectors of cylindrical coordinates,
we could use the fact that §,, §,, and §, have fixed magnitudes and direction. Then
using (D.4) and (D.5),

) d 0
J =r 0 =r
a_ ) = <8_R7—>C) RrT—>c é& =10
r s, r s, 0
) )
8 =r 8 =r
— 18 = <—R ) RT |&
=0 r—>c r—c | =0
00 8. 20 3.
—sinf@ cos6é 0\ fcos® —sing 0\ /8,
= —cosf —sinf 0] [sind cos¢ 0] |4,
0 0 0 0 0 0/ \g,
L
= -4,
0
) ) 0
J =r 0 =r
8_ é@ = <8_R’—>L> RZ—)L é@ =10

D.3 Derivation of Formulas in Spherical Coordinates

To transform the unit vectors in rectangular coordinates to spherical coordinates at
a point (x, y, z) < (r, 0, ¢), we need the following sequence of operations:

1. A rotation of ¢ radians counterclockwise along the (§x, §y) plane using the
rotation operator R,.

2. A rotation of 6 radians clockwise along the (§,.3,) plane using the rotation
operator R,.
3. A reordering of the unit vectors using the permutation operator E,,.

where,
cos¢ sing 0 cosf 0 —sind 0 0 1
Rrsl = | —sin ¢ COS ¢ 0 RrsZ = 0 1 0 Ers =11 0 0
0 0 1 sinf 0 cos¢ 01 0

Combining all three orthogonal operators in the prescribed sequence will yield an

orthogonal operator used to transform (§x, §y, §Z> to @,, 8y, §¢)

sinfcos¢ sinfsing  cos6
R _s=E R xR = | cosfcos¢p cosfsing —sinb (D.11)
—sin¢ cos ¢ 0
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Then, following the same approach used during transformations between rect-
angular and cylindrical coordinates, we have

[ 3, 3, s,
S| =R-s |4, = 8 |=RL |4 (D.12)
3 8 3, 3,
Uy Uy Uy Uy
ve | =Ros | vy = v | =RL | v (D.13)
Vg Uz Uz )

The partial differential operators between the rectangular and spherical coordi-
nate system are obtained by using the chain rule,

] ox Jdy 0z 0
ar ar ar ar ox SoC SoSe Co ox
0 dx dy 0z
— 1 _ 1= = — — | _ FCoCyp  FCySy  —TSp —
0 ]1=|00 00 060 ay | = ay
i a_x 8_y % i — ISeSp  ISeCy 0 7
0¢p op od¢p ¢ 0z 0z
Let D,_,; = diag (1, r, rsin 9). Then,
9 d 9 0
ar 0x 0x ar
0 0 0 . 1 0
0 | = DRy 3y — 3y = RresDr_es a0 (Dl4)
0 0 0 0
¢ 0z 0z o)

To obtain the relationship of the gradient operator V between the rectangular
and the spherical coordinates, we can apply both (D.12) and (D.14),

a
B) or
0 T 1
\% = (éx éy éz) 8y = (ér é@ §¢7) Rr‘” Rr—>sDr_—>S a6
9z B
or
1 1 _
= § -5 —36 D.15
("‘ r rsin9‘1> 96 ( )
¢
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1o
|
[iNY

IS}

c

Figure D.3. Unit vectors at fixed r and ¢. The " /
unit vectors are represented by: a =34, (1,6, ¢), b = /
8,(r.0,0),e=28,(r,0+ A6, ¢),d=25,(r,0+ A6, §). g

To obtain the partial derivatives of unit vectors in the spherical coordinate
systems, note that:

1. The direction and magnitude of §,, §,, and §, will not change if we just modify
the r position. Thus

aér . aée . 8§¢ _0
ar or ar

2. The direction and magnitude of §, will not change if we just modify the 6
position. Thus

The remaining partial derivatives of unit vectors will change their direction
based on their position in space. For a fixed r and ¢, the vector subtractions are
shown in Figure D.3, and the partial derivatives are then given by

98 98
==y, 2= s (D.16)

For a fixed r and 6, the vector subtractions are shown in Figure D.4. Note that
four of the unit vectors are first projected into the horizontal plane prior to taking
limits. The partial derivatives are then given by:

%) d
8;; = —cos6d,—sinb3, ; = = sin6y, ; — = cosfd, (D.17)
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o @
f 5 ~

y f-b
ad B

X

Figure D.4. Unit vectors at fixed r and 6. The unit vectors are represented by: a = §, (7, 0, ¢),
b=3,(r0.9). c=3,(r.¢), d=5 (0.9 + Ap), £ = 8,(r.0, ¢+ Ap), g =3, (.0, ¢ + Ap).
The unit vectors projected into the horizontal planes are: a=34,(r0 ¢)sing, E =
8,(r.0,9)cos6,d=3,(r,0,¢+ A¢)sind, f =3§,(r, 0, ¢ + A¢) cos 6.

Alternatively, to find the derivatives of the unit vectors of spherical coordinates,
we could use the fact that §,, §,, and §, have fixed magnitudes and direction. Then
using (D.11) and (D.12),

9 ér 9 ér 0
. é@ = <_Rr—>5> RVT—>v §9 =10
or 5 or 5 0
% %
8 é
9 = P Zr
@ g@ = (B_QR’HS> RZ;S gé)
¢ ¢
CoCy CoS¢y —Sg SoCy CoCy —S¢ ér
= —S9Cy —S08¢ —Cp A CoS¢ Co é@
0 0 0 Co —Sp 0 éz
3y
= -4,
0
8
a =r a =r
—|&] = (=R-s)RL,|S
3¢ 30 (8r S> r—s | =0

—S86S¢ SoCqy 0
—coSp  Cocp O

(

S6Cy CoCy —S¢
SoSp  CoS¢  Co 3y
Co —So 0 é

|

<

=5

&
A \_/

o O
oL &
Fes



APPENDIX E

Additional Details and Fortification
for Chapter 5

E.1 Line Integrals

Line integrals are generalizations of the ordinary integrals of single-variable func-
tions to handle cases in which variations occur along specified curves in two or three
dimensions. The line integrals therefore consists of three components: the path of
integration C(x, y, z), which is a continuous curve; the integrand F (x, y, z), which is
a scalar function; and the differential dA.

Definition E.1. A line integral of F (x, y, z), with respect to variable ) and path
C(x, y, ), is defined by

N
/CF (x,y,2)dxr = Ak;lgrlb%oo ;F (xi, yis 2i) Ay (E.1)

In most applications, the differential dx is set to either dx, dy, dz or ds, where

ds = \/dx? + dy* + dz? (E.2)

For the 2D case, F = F(x, y) and the path C = C(x, y). Figure E.1 gives the area
interpretation of the line integrals. The integral [ F(x, y)ds is the area under the
curve F(x, y) as the point travels along curve C. Conversely, the line integral with
respect to x, [ F(x, y)dx is the area projected onto the plane y = 0. The projected
integral [ Fdx is with respect to segments where C(x, y) has to be single-valued with
respect to x. Otherwise, the integration path will have to be partitioned into segments
such that it is single-valued with respect to x. For example, the integration path from
A to Bin Figure E.2 will have to be partitioned into segment ADE, segment EF, and
segment FGB. Thus for the integration path shown in Figure E.2, the line integral
with respect to x is given by

/ F(x,y)dx = / F(x,y)dx + / F(x, y)dx + / F(x,y)dx (E.3)
c [ADE] [EF) [FGB]

For the 3D case, another interpretation is more appropriate. One could visualize
a mining activity that accumulates substance, say, O, along path C in the ground
containing a concentration distribution of Q. Let F(x, y, z) be the amount of Q
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p_ o Flxy)

AF

F(xpy)

SN

F(x,y)ds FigureE.l. Areainterpretation oflineintegrals.

gathered per unit length traveled. Then, along the differential path ds, an amount
F(x,y, z)ds will have been accumulated, and the total amount gathered along the
path Cbecomes [ F(x, y, z)ds. Conversely, the integral [ F(x, y, z)dx is the amount
of Q gathered along the projected path in the x-direction. In this mining scenario, the
line integral [ F(x, y, z)dx does not appear to be as relevant compared with the line
integral with respect to s. However, these line integrals are quite useful during the
computation of surface integrals and volume integrals because differential surfaces
s are often described by dx dy, dx dz, or dy dz, and differential volumes are often
described by the product dx dy dz.! Another example is when the integral involves
the position vector F of the form

/f-di:f(fxdx+fydy+fzdz)
C C

E.1.1 The Path of Integration

The path of integration will be assumed to be a continuous and sectionally smooth
curve. The curve can either be open or closed. A path is closed if the starting point
of the path coincides with the end point of the path. Otherwise, the path is said to
be open. In either case, the direction of the path is crucial during integration. If the
path is not self-intersecting at points other than the terminal points, then we say that
the curve is a simple curve. Non-simple curves can be treated as the direct sum of
simple curves, as shown in Figure E.3.

When the path is closed and non-intersecting, we often indicate a closed path
by the following notation:

f Fds C is a closed, sectionally smooth, nonintersecting path
c

A 3D path can be described generally by C = (x(t), y(1), z(t)) = ¥(¢), where F is

the position vector and ¢ is a parameter going from ¢ = 0 to f = 1.2 In some cases,
the curve can be parameterized by either x = ¢, y =t or z =t. In these cases, the
other variables are said to possess an explicit form, for example, for x = ¢, we can
use y = y(x) and z = z(x).}

1" One could then expect that in other coordinate systems, dA may need involve those coordinates, for
example, dr, df, d¢, and so forth.

2 A more general formulation would be to let the parameter start at ¢ = a and end with ¢ = b, where
b > a. Using translation and scaling, this case could be reduced back toa = 0and b = 1.

3 The parameterizations can also originate from coordinate transformations such as polar, cylindrical,
or spherical coordinates.
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y
D
Figure E.2. A curve in which the projection of Conto x or y is notsingle A, E B
valued. /'
> X
F
G Curve C
EXAMPLE E.1. Consider the closed elliptical path described by
X+ 3 2 2
> +(+2) =4 (E.4)
traversed in the counterclockwise direction as shown in Figure E.4. Let the
path start at point a : (—7, —2) and pass through points b : (=3, —4), c: (1, =2),
d : (-3, 0),and then back to a. The path can then be described in three equivalent
ways:
1. Parameterized Form.
Path Cppeqs : x = —3 —4cos(2nt)
y = —2-—2sin(2nt)
fromtr=0totr=1
2. Explicit function of x.
Path Cabcda = Cape + Ccda
where
3\2
Cope 1y =—-2— 4_(x—; > fromx=—-7tox=1
3 2
Ccda:y=—2+‘/4—(x; ) fromx=1tox = -7
3. Explicit function of y.
Path Cabcda = Cab + Cbcd + Cda
d
b

d ﬁ
) .. . A as b
Figure E.3. Separation into simple curves. r% —r
a c
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1k
d
O,
1t
> _2F 4 c . . . .
Figure E.4. A close path of integration in
_3l | counterclockwise direction.
4t
b
_5t
-8 -6 -4 -2 0

where

Cop:x=-3-2/4—(y+2)* fromy=-2toy=—4

2
Cbcd:x=—34—2\/4—()1—}—2)2 fromy=—-4toy=0

Cia:x=-3-2/4—(y+2) fromy=0toy = -2

E.1.2 Computation of Line Integrals

With the parameterized form of path C based on ¢, the integrand also becomes a
function of ¢, that is,

F (x(0). y(2). 2(0)) = () (E5)

Using the chain rule, the line integrals become
! dx
tH)— ) dt
[ (s0%)
[ (o)
0
( ) ar
! dx\* [(dy\*> (dz
[ (g@/(a) (@) (2 )a @

However, if an explicit form is possible, these should be attempted in case they
yield simpler calculations. For instance, suppose y = y(x) and z = z(x); then setting

/ F(x,y, z)dx
c

/ F(x,y, z)dy
c

/ F(x, y, 2)dz
C

/ F(x,y,z)ds
c
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x =t, (E.6) are modified by replacing dx/dt = 1, dy/dt = dy/dx and dz/dt = dz/dx
with the lower limit X« and upper limit x.nq. For example,

f F(x,y,z)dx = /xmd F(x, y(x), z(x))dx
C Xstart

EXAMPLE E.2. Consider the scalar function given by
Fx,y)=2x+y+3

and the counter-clockwise elliptical path of integration given in Example E.1.
Using the parameterized form based on ¢,

x(t) = —=3—4cos(2nt)
y(t) = —2-2sin(2nr)
gt) = F (x(t), y(t)) —2(=3 — 4cos (27t)) + (=2 — 2sin (27t)) + 3
and
dx = 8msin(2nt)dt
dy = —4mcos(2nt)dt
ds = 471\/ 4sin? (2nt) 4 cos? (2nt)dt
Thus
1
/ F(x,y)dx = f g(t) (8msin 2nt)) dt = —8n
c 0
1
/ F(x,y)dy = f g(t) (—4mcos (2nt)) dt = 167
c 0

1
f F(x,y)ds = / I40) (471\/4 sin? (27tt) + cos? (2m)> dt = —96.885
c 0
Using the explicit form y = y(x) for the integration path
C= Cabc + Ccda

3 2
Cabc3y=yabc=—2—,/4—<x; ) fromx=—-7tox=1
[ 3\ 2
Ceda 'Yy =Yeda = =2+ 4_<x42— ) fromx=1tox = -7

The integrand and differentials for the subpaths are

(-2
F6Y)aa = 2x+3+(—2+m)

Fx,Y)ae = 2x+3+
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(dy) _ x+3

dx abc B 2\/ (1 - X) (x + 7)
(d_y) - . x+3

dx cda 2 (1 - X) (X + 7)
ds

— = /1+dy?

<dx>abc - yabc

ds

- = /1 2
<dx>cda * dycda

Note that ds has a negative sign for the subpath [cda]. This is because the
direction of ds is opposite that of dx in this region.
The line integrals are then given by

1 -7
[Fanac = [ Pt [P
C -7 1
= -8
1 d -7 d
/F(X,y)dy = / F(xsy)abc <_y> dx+/ F(X,Y)cda <_y> dx
C =7 dx abc 1 dx cda
= 1l6x
! ds -7 ds
F(x,y)ds = / F(x, ac(_) dx+/ F(x, ca(_) dx
[ rey [ reu () ave [ Fevw(G)
= —96.885

This shows that either the parameterized form or the explicit form approach
can be used to obtain the same values. The choice is usually determined by the
tradeoffs between the complexity of the parameterization procedure and the
complexity of the resulting integral.

E.2 Surface Integrals

Definition E.2. A surface integral of F (x, y, z), with respect to area A and sur-
face of integration S(x, y, z), is defined by

N
/S F(x,y,2)dA = oo lim W;F (X1, yi, 71) AA; (E.7)
In most applications, the differential area is specified for either dA = dxdy, dydz,
dxdz, or dS, where dS is the differential area of the surface of integration

To visualize surface integrals, we could go back to the mining scenario for
the substance Q, except now the accumulation is obtained by traversing a surface
instead of a path. Thus the surface integral (¢ f(x, y, z)dS can be thought of as the
total amount mined by sweeping the total surface area S.
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E.2.1 Surface of Integration

A general parametric description of surface is based on two independent parameters,
u and v,

S : (x(u, v), y(u, v), z(u, v)) as u and v vary independently in a closed domain.
(E.8)

If the parameterization can be done by letting # = x and v = y, then the surface is
given by the explicit form for z

S : z=1z(x,y) asxandy varyindependently in a closed domain (E.9)

Other explicit forms are possible, for example, y = y(x, z) and x = x(y, 2).

Two important variables are needed during the calculation of surface integrals:
the unit normal vector m, and the differential area dS at the point (x,y, z). As
discussed in Section 4.6, the unit normal to a surface is given by (4.30), that is,

.t xt
= (E.10)
t, xt,
where
- oF - O
t, = ™ and t, = 3
Specifically, we have
rai: (. 2) Az, x) ¢ 0(x,y)
t xt = ) ) B E.11
fu X Lo <a(u, V)~ + (u, v)™ + (u, v)™* ( )

where we used the shorthand notation for the Jacobian determinants given by

da oda
a
(a.b) _ det| ¢ ¥
a(c, d) ab b
dc ad

However, the differential surface area is given by the area of the parallelogram
formed by differential arcs form by movement along constant v and u, respectively,
that is, the area formed by t, du and t, dv. Thus

H @u du) x @U dv) H =

A, 2D\ [(3z0)\  [3(x )\
02\, (2@D\ (DY 4o
a(u, v) a(u, v) a(u, v)
If the explicit form z = z(x, y) is possible, that is, with x = u and y = v, the
formulas reduce to the more familiar ones, that is,

9 d
8- 8,48
ox oy
- (E.13)

B ECHE)

as fu X fv du dv

(E.12)
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Vi
Figure E.5. The boundary of domain D for
D . .
parameter space can either have (a) an indepen-
Y dent range, or (b) an interdependent range.
u u
u, ) u,
(a) (b)

9z\’ 9z\>
as = 1+ =) +|= dxdy (E.14)
0x ay
Note that with the square root, the choice for sign depends on the interpretation

of the surface direction. In most application, for a surface that encloses a region of
3D space, the surface outward of the enclosed region is often given a positive sign.

EXAMPLE E.3. Consider a circular cylinder of radius R of height 4 with the bottom
base centered at the origin. The differential area at the top and the bottom can be
parameterized in terms of r and 6; that is, x = rcos 6 and y = rsin 6. At the top,
we have z =0 and set u = r and v = 0 as the parameterization. At the bottom,
we have z = & but will need to set u = r and v = 0 as the parameterization to
obtain the expected outward normal direction. Thus, for the top,

N N éx éy éz ﬁtop = éz
t, xt =det cos 6 sinf 0 =ry, —
—rsinf rcosf 0 dSp = rdrdo
For the bottom, we have
R R 3, éy éz ﬁbottom = _éz
t,xt =det| —rsind rcosd O =-rd, -
cosf sind 0 dSpottom = rdrdb

For the side of the cylinder, we let u = 6 and v = zand r = R. Then

3, 8 4
t,xt,=det] —Rsinf Rcosé 0 =R (cos 08, + sin 9§y) = Ré,
0 0 1
which the yields

ﬁSid(;‘ = ér and dSside = Rd@dz

E.2.2 Computation of Surface Integrals

Under the parameterized form of the surface of integration, the domain of the
parameter space is a closed 2D plane in the (u, v) space. The boundary may either
be defined independently by fixed ranges for # and v, or the boundary has to described
by giving explicit dependencies of u on v or vice versa (see Figure E.5).
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V lower

—p U » U

Ujower u upper

(@) (b)
Figure E.6. The two possible domain descriptions: (a) boundary is partitioned into two seg-
ments such that v = ¢(u), and (b) boundary is partitioned into two segments such that u = v (v)

If the ranges of u# and v are independent, then domain D can, without loss of
generality, be given as

D:0<u<l1l ; 0O<v<l1

The surface integral becomes

1,1
/F(x,y, z)dS:/ / g(u, v)dudv
s o Jo
where

2 2
s -t () + (25 + (3)

(E.15)

Thus

1
h(v) = / g(u, v)du holding v constant
0

1
/ F(x,y,2)dS = / h(v)dv (E.16)
S 0

If # and v are interdependent at the boundary of the parameter space, then two
domain descriptions are possible:

D, : uower u =< Uupper 5 ¢0(u) <v= ¢1(u) (E17)

or
Dy @ Viower SV = Uupper ; 1»[/O(U) =u= 1//1(1)) (E18)

where Uiower, Uupper> Viower and vypper are constants. Both domain descriptions are
shown in Figure E.6, and both are equally valid.
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With the first description given by (E.17), the surface integral is given by

é1(u)
h(u) = / g(u, v)dv holding u constant
Bo(u)

/ F(x.y.2)dS = / " () du (E.19)
S Ulower

where g(u, v) is the same function as in (E.15). Similarly, using the second description
given in (E.18),

Y1 (v)
h(v) = / g(u, v)du holding u constant
Yo(v)

/ ™ ) (E.20)

Vlower

/F(x, y, 2)dS
S

For the special case in which the surface is given by z = z(x, y),

u = X v=y
92\’ 9z\’
g v) = gley)=fCy. 2y 1+ ) +| 5
ox ay
Ulower =  Xlower Uypper = Xupper
o) = ¢i(x) $o(u) = do(x)
Vlower =  Ylower Vupper = Yupper
viv) = YY) Yo(v) = Yo(y)
EXAMPLE E.4. Consider the integrand given by
F(x,y,z2)=2x+y—2z+3
and the surface of integration provided by the ellipsoid,
2 Y 2 2
X"+ ( 2) +z7=1
A parameterized form is given by
x =sin(u)cos(v) ; y=sin(u)sin(v) ; z=cos(u)

where the parameter domain is described by
0<u<22rm O<v<m

The Jacobian determinants can be evaluated as

g = Emwes
09 sty
d(x, 2)

sin?(u) cos(v)

a(u, v)
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which then gives

2 2
g(u, v) F(x, y, z)\/ a(y, Z) a(z, x)) N (a(x’ y)>

8(u v) 8(u, V) A(u, v)
a(u, v)B(u, v)

where

a(u,v) = 2sin(u) cos(v) + 2sin(u) sin(v) — cos(u) + 3

p(u.v)

\/3 cos?(v) ((cos(u) —1)% (cos(u) + 1)2> + (1 +2cos?(u) — 3 cos*(u))

The surface integral can then be solved numerically to be

T 2w
/ / g(u, v)dudv = 64.4
0o Jo

As an alternative, we can partition the elliptical surface into two halves. The
upper half and lower half can be described by z, and z,, respectively, where

In either half, the (x, y)-domain can be described by

D: —-1=<x=<1 —2V1—x2<y<2J1—x2

For the upper half,

dz, —2x dz, —y/2

E_\/4—4xz—y2 d_}’_\/4—4x2—y2

with an integrand

y2 1/ 3y?2-16
— _ _y2_(Z [ A —
gu(x9 )’) - (2x +y 1 x (2 ) +3) (2 —4 + 4x2 +y2

For the lower half,

dz, 2x dz, y/2

dx Va4 —4x2 —y? E_\/4—4x2—y2

with an integrand

y2 1/ 3y2-16
) =12 1—-x2—{(z 3l =z ————
ge(x,y) <x+y+ X <2>+ )(2 A4l 1y
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Combining everything, we can calculate the surface integral via numerical inte-
gration to be

Ly

1 2V
/ / gulx, y)dydx = 26.6
-1 Jooyime

1 2V
/ / ge(x, y)dydx =37.8
-1 J-2v1-22

Z

/ fdS = T,+TI, =644
S

which is the same value as the previous answer using the parameterized descrip-
tion.

Remark: In the example just shown, we have used numerical integration. This is
usually the preferred route when the integrand becomes too complicated to inte-
grate analytically. There are several ways in which the numerical approximation can
be achieved, including the rectangular or trapezoidal approximations or Simpson’s
methods. We have also included another efficient numerical integration technique
called the Gauss-Legendre quadrature method in the appendix as Section E.4.

E.3 Volume Integrals

Definition E.3. A volume integral of F (x, y, z), with respect to W and volume
of integration V (x, y, 2), is defined by

N
/ F(x.y.2)dW= _lim Y F(x.y.z)AW, (E.21)
|4

AW;—0,N—oo0 4
i=0

In most applications, the differential volume is specified by dW = dxdydz.

To continue the visual interpretation via mining used earlier for both the line
and surface integrals, the mining activity now accumulates substance ( indicated by
[y, F(x,y, 2)dV by carving out a volume V specified by the boundary.

E.3.1 Volume of Integration

In most cases, the rectangular coordinate system is sufficient to describe the surface
of the volume, and thus the differential volume is given by dV = dx dy dz. However,
in other cases, another set of coordinates allow for easier computation, for example,
cylindrical or spherical coordinates. Let this set of new coordinates be given by
parameters (u, v, w). Let F be the position vector. At a point p, we can trace paths
Ci, (;, and C; that pass through point p, each path formed by holding the other two
parameters fixed. This is shown in Figure E.7, where the differential arcs along each
of each curve are given by a, b, and ¢ where
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dV=ce(axb)

OR
=du—=
4 "au
OR
b=dv 55
OR
c=dwz,

Figure E.7. Graphical representation of differential volume, dV/, as function of u, v, and w.
Note that the position described by F can be anywhere on or inside V.

The differential volume is then formed by the absolute value of the triple product
formed by a, b, and ¢, that is,

dx dx  Ox
o v dw
ay dy 9y
dV =|c-(axDb) ‘ =|det| 5. 5w du dv dw (E.22)
dz 09z 0z
o v dw

EXAMPLE E.5. For the spherical coordinates, using x =rsinfcos¢, y=
rsinfsin¢, and z = rcos 6 with the parameters u =r, v =0, and w = ¢, we
have

sinfcos¢ rcosfcos¢ —rsindsing
dV =det | sinfsing rcosfsing rsinfcos¢ |drdb dy = r*siné dr do de
cos 6 —rsiné 0

E.3.2 Computation of Volume Integrals

Having determined the differential volume and the integrand, one needs to identify
the limits of integration in each of the variables x, y, and z, or of parameters u, v,
and w.

If the limits are independent,

Umin S U < Umax 5 Umin =V = Umax 5 Wmin = W = Wmax
the volume integral can be integrated in a nested fashion,

Wmax Umax Umax 9 SV,
/ FdV = / / G v, w)| 252D g L aw | aw  (B23)
Vv Wmin Umin Umin a(u’ v, w)
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Wmin S W < Wmax
v
Emax (VW)
n max (W) \ me
\
o,
Monin(W) -
" &min (V,W)
» U
Figure E.8. A nested description of volume boundaries.
where
Gu, v, w) = F (x(u, v, w), y(u, v, w), 2(u, v, w)) (E24)

If the surface of the volume space is represented by a set of interdependent
parameters, there are six possible descriptions that can be used based on the sequence
of dependencies. We only describe the sequence w — v — u. Asshown in Figure E.§,
we can first identify the maximum and minimum value of w, that is,

Wmin = W = Wnax

Taking a slice of the volume at a fixed w, a closed region whose boundary can
be identified by

nmin(w) =v = nmax(w)
Finally, as shown in Figure E.§, the limits of v for this slice will divide the closed
curve into two segments. Each of these segments can then be described by functions
of v and w, where the value of w was that used to obtain the slice,
Smin(va w) =u = Smax(va w)
Thus we end up with a slightly different nested integration given by

Wmax Nimax (W) Emax (v, w) 0
[rav=[""] Gl v w) | 722D
\%4 w, n

dudvdw (E25)
miﬂ(w) Emin(uyw) a(u, v, w)

'min

where G(u, v, w) is the same function as in (E.24).

EXAMPLE E.6. Consider the integrand given by
F(x,y,2)=2x+y—2z+3
and the volume of integration given by the ellipsoid
2 A
x*+ ( 2) +z7 <1

Using the parameterization

x = usin(v) cos(w) ; y = 2usin(v)sin(w) ; z = ucos(v)
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with boundaries,
O<u<l1l;0<v<2mr;0<w<mnm

Let s, = sin(w), ¢, = cos(w), s, = sin(v), and ¢, = cos(v). Then the differential

volume is
SyCw  UCYCy — —USLSy
dv = l|det| 2svSw 2ucySy  2usycy dudvdw
Cy —us, 0

= 2u* s, dudvdw
while the integrand becomes
G =2us, (cy + 5u) —uc, +3

Combining all the elements together, we can compute the volume integral as

T 27 1
f / f G(u, v, w) (2u2 Sy dudvdw) = 8n
o Jo Jo

Alternatively, we could use the original variables x, y and z. Doing so, the
differential volume is dV = dxdydz, whereas the boundary of the volume of
integration is given by

Surface boundary: —/1-22= (%)2 < x <,1-z2- (%)2
2V/1-2< y =2/1-2
-1< z <1
Thus the volume integral is given by
W1-2 V1=2-p)2)
/ /Nﬁ —— (2x+y—z)dxdydz = 8n

which is the same answer obtained by using the parameterized description.

E.4 Gauss-Legendre Quadrature

The n-point Gauss-Legendre quadrature is a numerical approximation of the integral
fjll F (x)dx that satisfies two conditions:

1. The integral is approximated by a linear combination of n values of F(x), each
evaluated at —1 < x; < 1, that is,

/ F(x)dx ~ Z WiF (x;) (E.26)

i=1

and

687
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2. When F(x) is a (2n — 1) order polynomial, the approximation becomes an
equality, that is, if F(x) = Zif;ol Apx™,

2n—1

n 2n—1
/l (Z amx'”> dx = Z W; (Z amxf”) (E.27)
=1 \ ;=0 i=1 m=0

Approximations having the form given in (E.26) are generally called quadrature
formulas. Other quadrature formulas include Newton-Cotes’ formulas, Simpson’s
formulas, and trapezoidal formulas. The conditions given in (E.27) distinguish the
values found for W; and x; as being Gauss-Legendre quadrature parameters.

A direct approach to determine W; and x; is obtained by generating the required
equations using (E.27):

‘\L
)
L M7
S
3
&

3
N—
&

Il

n 2n—1
Z W; <Z amxf”>
i=1 m=0
2n—1 1 2n—1 n

> a3 W
m=0 i=1

o)
3
=
3
—
=
s
=
Il

m=0 -1
2n—1 1 n
> an ( / Xdx =Y Wl-x;") = 0 (E.28)
m=0 -1 i=1

Because the condition in (E.27) should be true for any polynomial of order
(2n — 1), (E.28) should be true for arbitrary values of a,,, m =0,1,...,(2n —1).

This yields
Y Wal'=ym  form=0,1,....2n—1) (E.29)
i=1
where
1 2/(m+1) ifmiseven
Vin = / xX"dx = (E.30)
-1 0 if m is odd

This means that we have 2n independent equations that can be used to solve the
2n unknowns: x; and W;. Unfortunately, the equation becomes increasingly difficult
to solve as n gets larger. This is due to the nonlinear terms such as W;x]* appearing
in (E.29).

An alternative approach is to separate the problem of identifying the x; values
from the problem of identifying the W; values. To do so, we use Legendre polyno-
mials and take advantage of their orthogonality properties.

We first present some preliminary formulas:

1. Any polynomial of finite order can be represented in terms of Legendre poly-
nomials, that is,

q q
> ax' =3 " bPi(x) (E.31)
i=0 j=0
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where P;(x) is the Legendre polynomial of order j. (To obtain a Legendre
polynomial, one can either use definition given in (I.31) or use Rodriguez’s
formula given in (9.46).)

2. Let Rpq—1)(x) be a polynomial of order (2n — 1) formed by the product of a
polynomial of order (n — 1) and a Legendre polynomial of order n, that is,

n—1
Ron_1)(x) = (Z cl-xi> (Pa(x)) (E.32)
i=0

With this definition, the integral of R(,_1)(x), with limits from —1 to 1, is
guaranteed to be zero. To see this, we apply (E.31) to the first polynomial on the
right-hand side of (E.32), integrate both sides, and then apply the orthogonality
properties of Legendre polynomials (cf. (9.48)), that is,

1 1 n—1
/ Ron—1y(x)dx / |:<Z bﬂ%(x)) (Pn (x)):| dx
-1 “1L\izo

n—1 1
= 3o [ / 1 Pi(x)Pn(x)dx}

= 0 (E.33)

3. One can always decompose a (2n — 1) order polynomial, say, ¥,—1)(x), into
a sum of two polynomials

Yan-1)(X) = Sn-1) (x) + Ran-1) (x) (E.34)

where ¢(,—1)(x) is an (n — 1)'" order polynomial and R,-1 (x) is a (2n — 1)
order polynomial that satisfies the form given in (E.32).

To show this fact constructively, let r, . .., r, be the roots of the n'"-order
Legendre polynomial, P,(x). By virtue of the definition given in (E.32), we see
that R,—1 (r;) = 0 also. Using this result, we can apply each of the 7 roots to
(E.34) and obtain

Von-1y(r) =¢u-ny ()  i=1,2,....n (E.35)

One can then obtain (,_1)(x) to be the unique (n — 1) order polynomial that
passes through n points given by (ri, ¥(24-1)(r;)). Subsequently, R2,—1)(x) can
be found by subtracting g(,—1y(x) from ¥2,_1)(x).

4. Using the decomposition given in (E.34) and the integral identity given in
(E.33), an immediate consequence is the following identity:

1 1
/ Yien-1)(x)dx = / E(n-1)(x)dx (E.36)
-1 -1

This means the integral of an (2n — 1) order polynomial can always be

replaced by the integral of a corresponding (n — 1) order polynomial.

We now use the last two results, namely (E.35) and (E.36), to determine the
Gauss-Legendre parameters. Recall (E.27), which is the condition for a Gauss-
Legendre quadrature, and apply it to ¥2,—1)(x),

1 n
| Vennds = 3 Wibian1y(x) (E37)
- i=1
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Now set x; = r;, that is, the roots of the n'* order Legendre polynomial. Next, apply
(E.35) on the right-hand side, and apply (E.36) on the left-hand side of the equation:

1 n
/1 Vony®dx =Y Wihou_1)(ri)

i=1

> Wikiay(ri) (E.38)

i=1

1
/ 1 {n-1)(x)dx

Let {,_1y(x) = Y4} bex*. Then (E.38) becomes

n—1 n n—1
/ 1 Y bfdx = > W, (Z bkrf.<>
1 =0 i=1 k=0

n—1 n—1 n

Zbk/lxkdx = ZkaW,»rf‘

k=0 Y71 k=0  i=1
n—1 n
> b (Z Wirf — yk> = 0 (E.39)
k=0 i=1

where

1 2/(k+1) ifkiseven
Vi = f xkdx = (E.40)
-1 0 if k is odd

The by value should be left arbitrary because it corresponds to a general polynomial
Yn—1), as required by the second condition for a Gauss-Legendre quadrature. This
then yields n equations. In matrix form, we have

1 1 1 Wi Yo
r r In W2 "1

Tl = _ (E.41)
A R W, Y1

In summary, to obtain the parameters for an n-point Gauss-Legendre quadra-
ture, first solve for the roots r; of the n'"-order Legendre polynomial, i =1, ..., n.
After substituting these values into (E.41), we can solve for W;,i=1,...,n.*

4 The first equation in (E.41), "%, W; = 2, can be viewed as a partition of the domain —1 < x < 1
into n segments having widths W;. As each of these partitions are given the corresponding heights
of F(x; = r;), the integral approximation is seen as a sum of rectangular areas. This means that the
process replaces the original shape of the integration area into a set of quadrilaterals. Hence, the
general term “quadrature.” For integrals of function in two dimensions, a similar process is called
“cubature.”
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EXAMPLE E.7. For n = 3, we have
X
Ps(x) = 3 (5x* = 3)

whose roots are, arranged in increasing order, r; = —+/0.6,r, = 0 and r3 = +/0.6.
Substituting these values in (E.41),

1 1 1 W 2
—/0.6 0 0.6 W, | = 0
0.6 0 06 Ws 2/3
whose solution is given by W, = W3 =5/9 and W, = §/9.
Note that r; = —r3;. This is not a coincidence but a property of Legendre

polynomials. In general, for an n'"-order Legendre polynomial: (1) for n odd,
one of the roots will always be zero, and (2) each positive root will have a
corresponding negative root of the same magnitude.

Extending the results to p-dimensional box domains represented by mutually
orthogonal coordinates: {x1, ..., x,}, the Gauss-Legendre formulas can be applied
one dimension at a time, that is,

1 1
/A--~[1[f(x1,...,xn)]dx1-~-dxp

1 1 n
:/1~~/1 ZW[pf(xl,...,xp,l,rip) dxy -+ -dx,_y

=t

=3 (W W) F( ) (E.42)

i=l =1

where W; and r; are the same values obtained earlier for the one-dimensional case.

E.5 Proofs of Integral Theorems

E.5.1 Proof of Green’s Lemma (Lemma 5.1)

To prove the lemma, we make use of two possible descriptions of the boundary as
given in (E.17) and (E.18).
Recalling (E.17), the domain of the surface of integration S is given by

D : uower <u =< Uyppers ¢o(u) < v < ¢1(u)
where the closed contour C is the sum given by
C= CO.v - Cl,v

where Cy , and C; ,, the curves described by ¢ (u) and ¢; (1), respectively, are positive
with increasing values of u.
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Applying this description to the second surface integral in (5.1),

F Uupper (P](u) 8F
/ OF (u, v) dudv = f i f (, v) dv )| du
S dv Ulower $o(u) v

- /””"P“ (F(u, ¢1(w)) — F(u, ¢o(u))) du

Ulower

= - ch(u v)du (E43)
Likewise, using (E.18), the domain of the surface of integration S is given by
D : Viower <V < Vupper;  Yo(v) < u < 1 (v)
where the closed contour Cis now equal to the sum given by
C=Cu—Cu

where Gy, and Cj,, the curves described by ¥y(u) and ¥ (u), respectively, are
positive with increasing values of v.
Applying this domain description to the first surface integral in (5.1),

Vupper Y1(v)
/ 3G ) gy = f " f 36 ) 1Y au
S ou Vlower Yo(v) du

‘/Uupper (G(Y1(v), v) — G(Yo(v), v)) du

Vlower

f G(u, v)dv (E.44)
c

Combining (E.43) and (E.44), we arrive at the formula given in Green’s lemma,

f G(u, v)dv + % F(u, v)du = / Mdudv - / Mdudv
c c s s 0

ou v

E.5.2 Proof of Divergence Theorem (Theorem 5.1)

In rectangular coordinates, let f be given by

Ezfxéx+fy§y+f2§z

The volume integral in (5.5) can be expanded to be the sum of three terms

/V~de:fa—ﬁ(dV+/%dV+[a—ﬂdV (E.45)
v v ox v 9y v 0z
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Figure E.9. The normal vector to the sur-
face x = &nax(y, 2) is given by N, which
has a magnitude equal to the differential

693
_OR
g_ﬁy dy
_OR
Qiaz
N=a X b

surface, dS;. - )
X= max y,z

For the first term in (E.45), we can use the following description of the volume of
integration: 3

V. Zmin

IA

Z = Zmax

A

nmin(z) =y = nmax(Z)
gmin(yv Z) = x = gmax(y’ Z)
to obtain the following triple integral formulation

9 ; Zmax Nmax(2) Emax(¥,2) 0 x
f f dv = / / f dxdydz
Zmax n

'min (Z) &Emin ()’ Z) x

After performing the inner integration with respect to x, the result is a difference of
two surface integrals

8fx Zmax rlmax(z)
/ f / fx(émax(_)’a Z), y, Z) dydz
Zmin )

v 3x min(2)

Zmax [ Tmax(2)
/ / fxGmin(y. 2), y, 2) dydz  (E.40)
Zmax ¥ 1hmin(2)

The first surface integral in (E.46) is with respect to the surface: S1: x = &nax(y, 2). To
determine the differential area of the surface, dS; at a point in the surface, we can
use the position vector ¥ of the point in surface S;. Along the curve in the surface,
in which z is fixed, we have a tangent vector given by (9r/dy) dy. Likewise, along the
curve in the surface, in which y is fixed, we have a tangent vector given by (0¥/3z)dz.
This is shown in Figure E.9. By taking the cross product of these two tangent vectors,
we obtain a vector N; which is normal to surface S; whose magnitude is the area of
the parallelogram formed by the two tangent vectors, that is,

El = d$ ﬁl

where 1, is the unit normal vector.
Thus, with the position vector ¥ along the surface given by

I = Emax(y, Z)§x+YQy+Z§z

5 This assumes that any line that is parallel to the x axis will intersect the surface boundary of region V
at two points, except at the edges of the boundary, where it touches at one point. If this assumption
is not true for V, it can always be divided into subsections for which this assumption can hold.
After applying the divergence theorem to these smaller regions, they can be added up later, and the
resulting sum can be shown to satisfy the divergence theorem.
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Figure E.10. The normal vector to the sur-
face x = &nin(y, 2) is given by N, which has
=t (y,z) A magnitude equal to the differential sur-
e face, dS,.

we have

. or Or
s i, = <—§x Z) dydz

By taking the dot product of both sides with §_,
(m, - 8,) dS) = dydz (E47)

The same arguments can be used for the other surface given by x = &yin(y, z). The
difference is that, as shown in Figure E.10, the normal vector N, = (9F/dz) x (9¥/dy),
and thus

(i, - 3,) dS; = — dydz (E.48)

Returning to equation (E.46), we can now use the results in (E.47) and (E.48) to
obtain,

/ " dvzf& fr (my '§X)+[g2fX(ﬁ2'§x)=[gfx§x'ﬁ (E.49)

y ox

Following the same procedure, we could show that the other two terms in (E.45) can
be evaluated to be
d
v dy s

[Lav - [ra

Adding the three equations: (E.49), (E.50) and (E.51), we end up with the divergence
theorem, that is,

ﬁ(%ﬁa—f;u%) dvzﬁ(fx§x+fy§y+fz§z)~ﬁds (E52)

=

(E.50)

=

(E.51)
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Figure E.11. A small sphere of radius p. removed from V, yielding
surface S; and S,. S

E.5.3 Proof of Green’s Theorem (Theorem 5.2)

First, we have
V(@) = (V¢-V¥)+eViy
V-(yVe) = (V¥ Vo) +yVip

Subtracting both equations,
V9V — YY) = 6V — YV

Then taking the volume integral of both sides, and applying the divergence theorem,

/S (pVY — ¥ Ve) -ndS = /V (oV2y — yV29) dV

E.5.4 Proof of Gauss’ Theorem (Theorem 5.3)

Suppose the origin is not in the region bounded by S. Then,

1 1 1
r r

72
2 1 /2
= —584+5 <;>

= 0

Thus with the divergence theorem,

[(2)s 3= (2=

Next, suppose the origin is inside S. We remove a small sphere of radius p., which
leaves a region having two surfaces: the original surface S; and a spherical surface
inside given by S, (see Figure E.11).

The reduced volume V is now bounded by S; and §,. Because the region in 1%
satisfies the condition that the origin is not inside, we conclude that

/ 6dV /—26, nds+ —6 nds=0
S] r SZ
Focusing on S, the unit normal is given by —§,, and
1. - 1
—=48,-n= — —5 nds =4n

p2=r = 72 5, 7
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Thus if the origin is inside § = S,
/ —26, nds =4n
sr

E.5.5 Proof of Stokes’ Theorem (Theorem 5.4)

Let S be parameterized by u and v, then,

$roa = ¢ pdcsfdy+ fz
c C
ox ox ay ay
= | —d d —du+ —d
7§Cf (E)u u+8v ”)J“?gcfy(au u+8v v)
0z 0z
—du+ —d
+¢;fz(8u u+8v v)

= % f(u, v)du + g(u, v)dv (E.53)
c

where,

fu,v)

feg +fyau+fz—

glu,v) = fx +fy fza_
v
Applying Green’s lemma, (5.1), to (E.53)

0 a
?ﬁ (F (1, V)t + g (11, v)dlv) = / % _ N guay (E.54)
el S ou 8
The integrand of the surface integral in (E.54) can be put in terms of the curl of f as
follows:
og of _ [(dfrox Ly 8%x afyay Ly 3%y +8fzaz y
ou ov  \owdv T vou T u v avau T ou ov Zavau
df. ox ?x  df, dy O’y | af 0z
—(=—== + fx_ + === fy : fz
ov du oudv  dv du dudv ' v ou 8u8v

oF om 3k oF 0m 3k
= 2 2 Gmamde 2 2 Imavom

m=x.,y,2 k=x,y,z m=x,y,2 k=x,y,z

<3fx 00,3) | 0f, 0, x)) (8_fy ix.y) oy 0, y))
ay d(u,v) 9z d(u,v) ax o(u,v) 9z A(u,v)

of; a(x,z)  af; 9(y,2)
(a_x 3w, v) oy o, v))

<8fy 8fx> 3(x,y) +<8fz 3fy) (. 2)

ox A(u, v) a(u, v)
afy  9fz 9(z,x)
i (a—z ) —> 3. v)
Iy, 2) 3(z, x) a(x, y)
— (VxD)- (8(% A e iy §Z> (E.55)



Appendix E: Additional Details and Fortification for Chapter 5 697

Recall that i dS is given by

Lo (3.2 3(z, x) 3(x, )
nds = (a(u, 0 8, + o 3, + 3t v) §Z> dudv (E.56)

Combining (E.53), (E.54), (E.55) and (E.56), will yield

$rodi= [ (vxp)-ids
C N

which is Stokes’ theorem.

E.5.6 Proof of Leibnitz formulas

1. One-Dimensional Case (Theorem 5.6). Using the definition of a derivative:

d A 1 h(a+Aa)
— / F(a,x)dx] = lim — / F(a+ Aa, x)dx
da \ Jg, Aa = 0 Ad \ Jg(a+aa)

h(a)
- / F(o, x)dx
8(@)

(E.57)

The first integral in the left-hand side of (E.57) can be divided into three
parts,

ha+na) ha+aa)
/ F(a+ Ao, x)dx = / F(a+ A, x)dx

8(etda) )

h 8@
—{-/ F (a4 Aa, x)dx + / F (o + A, x) dx (E.58)

8(a) 8(a+na)

Furthermore, the first integral in the left-hand side of (E.58) can be approxi-
mated by the trapezoidal rule,

h(a+Azx) 1
/ F (a+ Aa, x)dx ~ 5 [F (o + Aat, hasaa))
ha)

+ F(a+ A, b)) ] (haraw = b)) (BES9)

Likewise, we can also approximate the third integral in the left-hand side of
(E.58) as

8(«)
/ F(a+ Ao, x)dx ~ = [F (a4 Ad, §(a+aa))

8(a+ha)

N =

+ F o+ Ad. gw)] (8@ — 8@+an) (E.60)
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Substituting (E.59) and (E.60) into (E.58), and then into (E.57),

e (@) ~
[ F @ jim [/ (Fltonn-re),
8(a) <

do Aa—0 (@) Ao

F (oz + Aa, h(wm)) + F (Ot + Ac, h(a))
+
2Ax

(hataa) = ay)

F (a4 A, g+am) +F (0 + Act, 8o
+ ( (et 2)105 ( ) (g(a)_g(a+Aa)):|

he@) 5 dh d
/ D P (0 de+ F (@ (@) 2 F (0, g(a))
g(@)) Jdo da da

2. Three-Dimensional Case (Theorem 5.7). From the definition of the derivative,

d
- fx.y. z,a)dV
do V() ,
= lim [— / fex,y,z,a+ Aa)dV — flx,y, z, oz)dV]
Aa—0 | Aa V(a+Aa) V()
By adding and subtracting the term |}, @/ (x,y, z, @ + Aa)dV in the right-hand
side,
d
— fx,y, z,0)dV
da V(a)

1
= lim — Aa)dV —
A;IBO Aa [ V(a) f(x,y, Lot a)

fx,y, z, oz)dV}
)

V(a

1
+ lim — [/ fx,y, z,a+ Aa)dV — / flx,y, z,a+ Aoz)dV}
Aa=0 Aa | Jy(ataa) V()

1
= / %dv + lim — [/ f(x,y, z, a4+ Aa)dV
v V(a+Ae)

(@) O Aa—0 A

| feyza+ Aa)dV] (E.61)
V()

The last group of terms in the right-hand side (E.61) is the difference of two
volume integrals involving the same integrand. We can combine these integrals
by changing the volume of integration to be the region between V (o + Aw) and
V().

/ flx,y,z, 0+ Aa)dV — f(x,y,z,a+ Aa)dV =
V(a+Aa) )

V(a
/ fG,y, z,a+ Aa)dV  (E.62)
V(ataa)-V ()

We could approximate the differential volume in (E.62) as the parallelepiped
formed by the vectors (8F/0u)du, (9%/dv)dv and (0F/da)do, where u and v are
parameters used to describe surface S(«). This is shown in Figure E.12.
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S(a)

curve as o. increases

Figure E.12. Graphical representation of differential volume emanating from points in S(«)
towards S(o + Ac).

Recall that

gdu X galv =ndS
ou av
which then gives a differential volume attached to S(«)

of (dF OF
dVl(x,y,Z)EV(a+Act)—V((x) = £ : (5 X 5) dodudv

= 2@(1&0[5‘
o

The volume integral for points bounded between the surfaces of V(«) and
V(a + Aca) can now be approximated as follows:

o
f fGx,y, z,a+ Aa)dV =~ fx,y,z,0+ Ae)— -n Aa dS
Vieran)=V() ) dor

S(«
(E.63)

Substituting (E.63) into (E.62) and then to (E.61),

d
do V()

fx,y,z,0)dV :/ idV

V() oo

+ lim

or
— WV, Z, Aa)— - nAadS
Aa—0 A S(e) f(x »oa + a) oo L

0 or
=/ —de+ f(x,y.z @)= @ dS
V(a) o S(a) Ja

which is the Leibnitz rule for differentiation of volume integrals.
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APPENDIX F

Additional Details and Fortification
for Chapter 6

F.1 Supplemental Methods for Solving First-Order ODEs

F.1.1 General Ricatti Equation

In some cases, the solution of a first-order differential equation is aided by increasing
the order to a second-order differential equation. One such case is the generalized
Ricatti differential equation given by the following general form:
dy _ 2
T = PO+ Q)y + R(x) (F.1)
Note that when P(x) = 0, we have a first-order linear differential equation, and when
R(x) = 0, we have the Bernouli differential equation.
Using a method known as the Ricatti transformation,

(W)=~ 5o W
Y P(x)w dx
we obtain
dy _ 1w 1 (dw\' 1 dP(du
dx Pw dx* = Pw? \ dx P2w dx \ dx
1 (dw)’
2 —_ R -
By = Pu? <dx>
. O dw
@ = Pw dx
which then reduces (F.1) to be
d*w dP(x)/dx dw
- === — 4+ P(x)R = F.2
= (™ o) G+ PR =0 (F2)

Note that (F.2) is a second-order ordinary differential equation. Nonetheless,
it is a linear differential equation, which is often easier to solve than the original
nonlinear first-order equation.
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EXAMPLE F.1. Consider the following differential equation:

dy , 2 1

a= Y TS
Noting that P(x) = x, Q(x) = —2/x and R(x) = —1/x>, the Ricatti transforma-
tion y = —(dw/dx)/(xw) converts it to a linear second-order differential equa-
tion given by

,d*w dw

F +x— i =0
which is a Euler-Cauchy equation (cf. Section 6.4.3). Thus we need another
transformation z = In(x), which would transform the differential equation fur-

ther to be
d*w _

dz?
whose solution becomes,

w(z) = Ae *+ Be* —  wx) = A + Bx

Putting it back in terms of y,

A
1 dw 2 B 1C—x?

y: - = -
A 2 2
xw dx x<—+Bx) x2C+x

X

where C = A/B is an arbitrary constant.

F.1.2 Legendre Transformations

Usually, methods that introduce a change of variables involve only transformations
from the original independent and dependent variables, say, x and y, to new inde-
pendent and dependent variables, say, p and g. In some cases, however, we need to
consider the derivatives as separate variables in the transformations, for example,

d
(or2)

p =
dy
= X —_
q q\x.y, dx
d d
A b
dp dp dx

(F.3)

These types of transformations are called contact transformations.

One particular type of contact transformation is the Legendre transformation.
This type of transformation is very useful in the field of thermodynamics for obtain-
ing equations in which the roles of intensive and extensive variables need to be
switched in a way that conserves the information content of the original funda-
mental equations. In the case here, the Legendre transformation is used to solve
differential equations.
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Figure F.1. Description of a curve as an envelope of tan-
gent lines used for Legendre transformation rules.

> X

\ia\ngent\h'lz\es

The Legendre transformation takes a curve y = y(x) and obtains an equivalent
description by using an envelope generated by a family of tangent lines to the curve
at the point (x, y), that is,

y=px+(—q) (F.4)

where p is the slope and —gq is the y-intercept. This is illustrated in Figure F.1.
The Legendre transformation uses the following transformations:
. dy ) dy

gq=x——y and — =x (F.5)
X

P=ax d dp

where p is the new independent variable and ¢ is the new dependent variable. The
inverse Legendre transformations are given by

dq dq dy
_ . —pa _ d = = F.6
¥=gpt Y=pg,ma and So=p (F.6)
Now consider the differential equation
dy
—]1=0 F.7
f (x,y, dx) (F.7)
In terms of the new variables, we have
dq dg
—,p— — F.8
f < P q,p> (F.8)

It is hoped that (F.8) will be easier to solve than (F.7), such as when the derivative
dy/dx appears in nonlinear form while x and y are in linear or affine forms. If this is
the case, one should be able to solve (F.8) to yield a solution of the form given by:
S(p, q) = 0. To return to the original variables, we observe that

g_s + <§> 4 g g(p.xp —y) +h(p.xp —y)x=0
p  \dq/ dp

where g and £ are functions resulting from the partial derivatives. Together with
f(x,y, p) =0, one needs to remove the presence of p to obtain a general solu-
tion s(x,y) = 0. In some cases, if this is not possible, p would have to be left as
a parameter, and the solution will be given by curves described by x = x(p) and

y=y(p)
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In particular, Legendre transformations can be applied to a differential equa-
tions given by

y=x¥(p)+n(p) (F.9)

where ¥ (p) # p.! For instance, one may have a situation in which the dependent
variable y is modeled empirically as a function of p = dy/dx in the form given by
(F.9). After using the Legendre transformation, we arrive at

() ()
dp - \¥(p)—p p—v(p)
which is a linear differential equation in variables p and q.

EXAMPLE F.2. Consider the differential equation given by

dy\> d
() -+t

dx dx
then after the Legendre transformation, we obtain
dq 1 p
ap 2172
whose solution is given by
p?
q= 3 +C{p
After taking the derivative dq/dp,
dq 2 C
b t=3p+ Eﬁ

Unfortunately, p (x) is not easily found. Instead, we could treat p as a parameter,
that is, x = x(p), and insert this back to the given equation to obtain

2 C
y = —x(a) a + & ; subject to x(a) = 3 + Eﬁ

where « is a parameter for the solution (y(«),x(«)), and C is an arbitrary
constant.

F.2 Singular Solutions

For some differential equations, a solution may exist that does not have arbitrary
constants of integration. These solutions are called singular solutions. Singular solu-
tions, if they exist for a differential equation, have a special property that it is the
envelope of the general solutions. Thus their utility is often in the determination of
the bounds of the solution domain.

For a first-order differential equation,

dy
¥, =0 F.10
£ (w0 %) (E.10)
the general solution is given by
o(x,y,C)=0 (F.11)

L If y(p) = p, an algebraic equation results, that is, g = —n(p).
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where C is an arbitrary constant. For ¢ to be a singular solution, it should not be a
function of the arbitrary constant C. Thus

o9

— =S(,y)=0 F.12

50 =S (F.12)
where S(x, y) is obtained with the aid of (F.11). To determine whether S(x, y) = 0 is
indeed a singular solution, one needs to check if

as aSd

BLRY_y (F.13)

ox  dydx

will satisfy the original differential equation (F.10). If it does, then it is a singular
solution.

EXAMPLE F.3. Clairaut’s equation is given by

dy (dy\’
y=x_ + (E) (F.14)

Using the quadratic equation to find dy/dx as an explicit function of x and y,
this can be rearranged to give

dy x y
o1+ 1442
dx 2( + x2>

which is an isobaric equation (cf. (6.13)). By introducing a new variable, u =
y/x?, the original differential equation can be reduced to a separable equation,
that is,

du . 1dx
u+1EVT+du 2
whose solution is given by

In(vV4u+1+1)=—-In(x)+k — y=Cx+C

where C is an arbitrary constant.
To search for the singular function, following (F.11) yields

Pp(x,y,C)=y—Cx—C*=0 (F.15)
then
o9
—=-x-2C=0 F.16
ac " (F.16)

where C can be eliminated from (F.16) using (F.15) to obtain

2
S(x,y) =% /x2+4y=0 — y:—xz (F.17)

Finally, we can check that (F.17) satisfies (F.14), thus showing that (F.17) is
indeed a singular solution of (F.14).

A simpler alternative approach to solving Clairaut’s equation is to take the
derivative of (F.14) with respect to x while letting p = dy/dx, that is,

dp dp
— T P
p p+xdx+ pdx

dp
0 = X 2
dx(X+ P)
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Figure F.2. Plot of the general solution y;(x) =
Cx + C? (dotted lines) and the singular solution
y2(x) = —x?/4 (solid curve).

X

then

dp X

i S d =_Z

dx an P 2
yielding two solutions of different forms

$2
yi=cx+c; and y;= vy +c3

Substituting both solutions into (F.14) will result in ¢3 = 0 and ¢, = ¢?. Thus the
general solution is given by

V1 =cx + 2

while the singular solution is given by

2

)’2=—Z

If we plot the general solution y;(x) = cx + ¢? and the singular solution, y, =
—x?/4, we see in Figure F.2 that the singular solution is an envelope for the
general solution.

F.3 Finite Series Solution of dx/dt = Ax + b(t)
The method shown here solves the linear equation with constant coefficient A given
by

d

7= Ax + b(t)

subject to x(0) = xq. It is applicable also to matrices A that are not diagonalizable.
The steps of the procedure are given as follows:

1. Let the vector of eigenvalues of A[=]n x n be grouped into p distinct sets of
repeated eigenvalues, that is,

A= ]| 4) with A= - &) [E]1xm

where A; # A, when i # k, and Y7 m; = n.

10
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2. Next, define the matrix Q[=]n x n,

O qGoo(Ai) - qon-1(A)
0= : Qi = : : [=] m; x n (F.18)
Op Gm—10(A) -+ Gm—1-1 (M)
where,
0 if ¢<j
gj.c () =
j.e (M) £ D
—=n
and define the vector g(¢)[=]n x 1 as
1
g1 ¢
g =| g = : Mt [=]m; x 1 (F.19)
gp tm;fl
3. Combining the results, we have
Co
V(1) = : =07'g(n)
Cnfllnil

where Q, as given in (F.18), is a matrix of constants. The matrix exponential is
then given by

n—1
e = v (DA (F.20)
=0
We can now apply (F.20) to solve the general linear equation,

d
d_tx = Ax + b(?) A is constant

In terms of Q and g(¢) given in (F.18) and (F.19), respectively, we have

x(t)=H1 g(t) + Hy w(t) (F.21)
where
H = (X() | Axg | | An_IX()) Q_l
Hy = (| Al |47 (0" &)

t
w() = t—t)®b(1)dr [=] n® x 1
0 = [e(=r)ob(r)ar
The advantage of (F.21) is the clear separation of constant matrices H; and H,

from g() and w(¢), respectively.? This allows for the evaluation of integrals given in
each element of w(¢) one term at a time. For instance, one could use the following

2 The span of the columns of Hj is also known as the Krylov subspace of A based on xg.
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convolution formula for the special case of b; = e

! =1
m (e“’—e“Z—(a—)»)ktk) ifr#o

. ((7 _ )L)m+l — kl
(t—1)" M e dr =
0 tm+1
eM ifli=0
m+1
(F.22)

Because Q is formed by the eigenvalues of A, both H; and H, are completely
determined by A and x, alone, that is, they are both independent of b(f). AMATLAB
function 1inode_mats.mis available on the book’s webpage. This function can be
used to evaluate H; and H,, with A, x; as inputs.

EXAMPLE F.4. Consider the linear system

-2 0 0 1 )
d 1 1
d_tX: ~5 -2 —3 X+ 2 ; x(O):((l))
1 2 0 —e

The eigenvalues of A are {—2, —1, —1}. Then, we can evaluate Q and g as

1 -2 4 e
o=\|1 -1 1 ; g=| e
0 1 -2 te!

Matrices H; and H, are

1 0 0 1 0 0 0 0 0 O 0 0

1 1 1 1 1 1

H, = ) H, = 7 0 0 ) 1 0 0 -1 )
-1 2 1 -1 0 O 1 0 1 0 2 1

and the integrals can be evaluated to be

W= [‘g(1-) b () dr= 220

(e —e) 2
1—-(1+1e™?
2-2(1+1)e™

(—e*3f (=20 e*f) /4
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2r o« 1 Figure F.3. A plot of the solution of the sys-
! tem given in Example F.4.

Note that w(0) = 0 as it should, because the initial conditions are contained
only in H;. Furthermore, note that columns 2, 3, and 7 in H, are all zero, which
implies that the corresponding elements in w(¢) are not relevant to the solution
of x(?).

Combining the results using (F.21), a plot of the solutions is shown in
Figure F.3.

F.4 Proof for Lemmas and Theorems in Chapter 6
F.4.1 Proof of Theorem 6.1: Similarity Transformations Yield
Separable-Variables Forms
Using the conditions of symmetry,

APTOF (x,y) = F (A%x, APy) (F.23)
where F(x,y) = —M(x,y)/N(x,y). Taking the partial derivative of (F.23) with
respect to A,

OF (2x, APy) IF (x2x, APy)

_ )\',chtle , — )\'a*l )\‘ﬂfl
(B = a) W, y) = xS gy
Next, fix A = 1 to obtain
oF oF
- - —a)F
i Hh = (- a)

which is a linear first-order partial differential equation that is solvable using the
method of characteristics.> The characteristic equations are given by,
dx dy  dF

ax By  (B—a)F

3 See Section 10.1 for details on the method of characteristics.
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which yield two invariants, ¢; and ¢,, given by

y* F

¢1 = E =Uu and ¢2 = W
from which general solution is obtained as
d
$2 = G(¢1) - F= d_i = xR G(u)

Taking the derivative of u with respect to x,

du d [y u dy u U (p-a) u
_— = — | — = _— = p— = — o aG — b—
dx dx (xﬂ> Oly dx 'Bx (xyx () ﬂx

and with y = ul/*xP/o,

du

= (ozu("‘_l)/"‘G(u) - ,Bu) )lc

F.4.2 Proof of Similarity Reduction of Second-Order Equations, Theorem 6.2

Using the similarity transformations,

>y ~~dy

e -7 (x’y’ d_%>

d?y dy
MR = ax, APyaf1 =

dx? f( BV

d d
)Js_zf x,y, ol frx, Aﬂy, P ol
dx dx

Next, we take the partial derivative of this equation with respect to A and then set
r=1,

of of dy of
- — -H|l=)——=(B-2
st b+ -0 () s = B -1
which is a linear first-order partial differential equation. The characteristic equations*

are given by

dx dy  d(dy/dx) df

x By (B=D(dy/dx)  (B-2)f

which yields three invariants, ¢1, ¢», and ¢3,

¢ = )% =u
(dy/dx)
¢ = praall
f
¢ = s

4 See Section 10.1 for details on the method of characteristics.
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The general solution for the partial differential equation is then given by

B=Gng) — H5=Gu)

We can evaluate the derivatives of u and v,

xdu 5
— = v—Bu
dx
dv d’y 1 f
xa = ﬁm—i-(l—ﬁ)v:m—i-(l—ﬁ)v

= Gu,v)+1A-p)v
Dividing the last equation by the one before it,

dv  G(u,v)+(1—-p)v

du v— Bu

F.4.3 Proof of Properties of Exponentials, Theorem 6.3

Let matrices G; and H; be defined as

i j
_ Ui S

G = A,
i!

then eA’ and e can be expanded to be

Al Go+Gi+ G+ G+
N = Hy+H +Hy+Hs+ -

a
Il

taking the matrix product,
AMed = (Go+Gi+Ga+ G+ )(Hy+Hy +Hy + Hy+ - -
= GoHo+ GiHy+ GoHy+ GsHyp + - -
+ GoH, + G1H, + GoHy + GsHy + - -
+ GoHy, + GiHy + GoHy + GsHy + - - -

+ .-
= Q+0i1+0r+---
where
k
Qv = Y Gl
=0

k

- 2(#) (=)

1 .~ K,
— _Ak £ k—i
Kl gquys

1 k k
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Thus

eMer = T4+ (+DA+

(s +1)° 2
TA + .-

eA(s-H)

which proves (6.51). Note also that matrices eA’ and e commute.
By letting s = —t,
eAtefAt — efAteAt =7
Thus e~A! is the inverse of eA!
Now let matrices €2; and W; be defined as

Q = gAi, —
then A’ and e" can be expanded to be

A= QFUFDFUF

V' o= W+ W+ U+ Wt

taking the matrix product,

MW = (Q+ QU+ AUt ) (VoY + W+ W)

= QoWo+ QW+ W+ QW+ - -

+ QoW1 + QW + QW + QW + - -

+ QoW + QW + QW) + QW) + - -

= Ro+Ri+R+---
where
k
Ry = ZQi‘I’lm
i=0
k i k—i
£ ¢ .
SN
; (1! (k=)
k

k!

1, ! _—
= kY AWK
k! lgo:i!(k—i)!

Suppose A and W commute, then
(A+W)Y = (A+W)(A+W)
= A+ WA+ AW+ W
= A’ 42AW+ W
(A+W) = (A+W)3>(A+W)
= A’4+2AWA + W?A

(F.24)
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+A’W 4+ 2AW? + W3
= A’ +4+3A°W+3AW? + W3

k

k!
k k—i
(A+W) = § l'(k—l)'Aw

which will not be true in general unless A and W commute. Thus, if and only if A
and W commutes, (F.24) becomes

tk
Ri= 17 (A + W)

and

2
AV = T+1(A+W) + 57 (A+ W) +. (F.25)

= ATWx (F.26)

Lastly, for (6.54),

d , d 2., £,
K VY § NI A
@i dt( TAF AT A

z2 £
= A+A2l+—'A3+§A4+

= A<I+At+ 'A2—|— A3 )

2! 3!

— AeAt — eAtA

which implies that A and eA’ commutes.

F.4.4 Proof That Matrizants Are Invertible, Theorem 6.4
Using property 9 of Table 1.6,

% (det (M)) = ; det (M)

where,
m;j ifi£k
M, = (ﬁil(]k)> ; ﬁ’lz(jk) = dmij
I ifi=k
Recalling the property of M, (cf. (6.65)),
M _ Am - dm” Zazemu

dt
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where a;; and m; are the (i, j)™ element of A and M, respectively. Then

m min

o™ n n
My = (Ze=1 (] mi,l) (Z[:lak,f m&n)

| T Mpp
and
mp e My,
n . .
det (Mk) = Zak’z det My 1 N My n
=1 . .
mMpu1 e Myp
Thus
d
7 (det (M) ) = ay; det(M) + --- + ay, det(M) = trace(A) det(M)
Integrating,

det(M) — eftrace(A)dt

Because the trace of A is bounded, the determinant of M will never be zero, that is,
M1 exists.

F.4.5 Proof of Instability Theorem, Theorem 6.5.

For the general case, including nondiagonalizable matrices, we use the modal matri-
ces that transforms A to a canonical Jordan block form,

A=TJT!
where
A 1 0
J1 0
J = ; Ji=
0 Iom 1
0 Ak

Letz = T 'x and Q(f) = T'b(¢), then
d d
Ez:]z+Q — ztzk=fklk+qk

If a Jordan block is a 1 x 1 matrix, then the corresponding differential equation is
a scalar first-order differential equation. However, for larger sizes, the solution is
given by

7 (1) = €Ikle(0) + /Otelk(t_r)qk(l)d‘f
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where
et e o (= 1))eM
i 0 e . (172 =2))eM
0 0 - e)“k[

If any of the eigenvalues have a positive real part, then some elements of z will grow
unbounded as ¢ increases. Because x = Tz, the system will be unstable under this
condition.



APPENDIX G

Additional Details and Fortification
for Chapter 7

G.1 Differential Equation Solvers in MATLAB

G.1.1 IVP Solvers

As a quick example, consider the following system:

dy1 _

— = (2e7'+1 -3

7 ( e + )yz V1

dy>

- = =2 G.1
dr y2 ( )

with y1(0) = 2 and y,(0) = 1. Then the following steps are needed:

1. Build a file, say derfunc.m, to evaluate derivatives of the state space model:
function dy = derfunc(t,y)
yl = y(1); y2 = y(2) ;

dyl = (2%exp(-t)+1)*y2 -3*yl ;
dy2 = -2*y? ;
dy = [dyl;dyZ2] ;

2. Run the initial value solver

>> [t,yl=oded5(@derfunc,[0,2],[2;11);

where [T,y ] are the output time and states, respectively, derfunc is the file
name of the derivative function, [0, 2] is the time span, and [ 2 ; 1] is the vector
of initial values. A partial list of solvers that are possible alternatives to ode45
is given in Table G.1. It is often suggested to first try ode45. If the program
takes too long, then it could be due to the system being stiff. In those cases, one
can attempt to use odel5s.

There are more advanced options available for these solvers in MATLAB.
In addition to the ability to set relative errors or absolute errors, one can also
include “event handling” (e.g., modeling a bouncing ball), allow passing of model
parameters, or solving equations in mass-matrix formulations, that is,

d
M(, y)ay =f(1y)
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Table G.1. Some initial value solvers for MATLAB

Solver Description Remarks

ode?3 (2, 3)"™ Bogacki-Shampine
Embedded Runge-Kutta

(4, 5)™ Dormand-Prince

Embedded Runge-Kutta Efficient for most non-stiff problems.

ode45

Also for non-stiff problems.
0dell3 Adams-Bashforth-Moulton Used when state-space model is

Predictor-Corrector . . .
more computationally intensive.
For stiff problems. May not
be as accurate as 0de45.
Allows settings/definition of
Jacobians. Can be used to solve
DAE problems with index-1.
For stiff problems. May solve
problems where odel5s fails.
For stiff problems. Implements
some numerical damping. Used
also to solve DAE problems
with index-1.
For stiff problems.
May be more efficient than
odelb5s at crude tolerances.

Variable-order BDF

odelbs (Gear’s method)

ode?3s Order-2 Rosenbrock method

0de23t Trapezoid method

Trapezoid method stage

ode23th followed by BDF stage

where M(t,y) is either singular (as it would be for DAE problems) and/or has
preferable sparsity patterns.

G.1.2 BVP Solver

As a quick example, consider the same system as (G.1), but instead of the initial
conditions, we wish to satisfy the following two-point boundary conditions: y;(1) =
0.3 and y,(0) = 1. Then the following steps are needed to solve this boundary value
problem in MATLAB:

1. Build the model file, say, derfunc.m, as done in the previous section.
2. Letrbe the vector of residuals from the boundary conditions; that is, reformulate
the boundary conditions in a form where the the right hand side is made equal

to zero,
P < y1(1)—0.3 )
y2(0) — 1
Now build another file, say, bconds . m, that generates r,

function r = bconds(yinit,yfinal)
rl = yfinal(1)-0.3 ;
re yinit(2)-1 ;
r = 1[rl;r2] ;
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Note that this file does not know that the final point is at t = 1. That information
will have to come from a structured data, trialSoln, thatis formed in the next
step.

3. Create a trial solution data, trialSoln,

>> trialSoln.x = Tinspace(0,1,10);
>> trialSoln.y = [0.5;0.2]*ones(1,10);

The data in trialSoln.x give the initial point ¢ = 0, final point t = 1, and
10 mesh points. One can vary the mesh points so that finer mesh sizes can be
focused around certain regions. The datain trialSoln.y just give the intial
conditions repeated at each mesh point. This could also be altered to be closer
to the final solution. (Another MATLAB command bvpinit is available to
create the same initial data and has other advanced options.)

4. Run the BVP solver,

>> soln = bvp4c(@derfunc,@conds,trialSoln);

The output, so1n, is also a structured data. Thus for plotting or other postpro-
cessing of the output data, one may need to extract the ¢ variable and y variables
as follows:

>> t=soln.x; y=soln.y;

There are several advanced options for bvp4c, including the solution of multi-
point BVPs, some singular BVPs, and BVPs containing unknown parameters. The
solver used in bvp4c is said to be finite difference method coupled with a three-stage
implicit Runge-Kutta method known as Lobatto III-a.

G.1.3 DAE Solver

Consider the van der Pol equation in Lienard coordinates given by
dyi

a0

3
y1— (% —Y2)

which could be put into the mass matrix form as

(5 0)aCn) (o)

The following steps are needed to solve this DAE problem using MATLAB.

0

1. Build the model file, say, daevdpol .m,

function dy = daevdpol( t, y )

yl = y(1) ;
y2 = y(2) ;
dyl = -y? ;
dy2 = yl - (y2°3/3 - y2) ;
dy = [dyl;dy2] ;

2. Make sure the initial conditions are consistent. For instance, the algebraic con-
dition is satisfied for y = (—0.0997, 0.1)7.
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3. Set the parameter, 0ptions, to include the mass matrix information using the
command

>> options=odeset(’Mass’,[1,0;0,01);
4. Run the DAE solver
>>[t,y]=0delbs(@daevdpol,[0,2],[-0.0997;0.1],0ptions)

where [0, 2] is the time span.

G.2 Derivation of Fourth-Order Runge Kutta Method

G.2.1 Fourth-Order Explicit RK Method

To obtain a fourth-order approximation, we truncate the Taylor series expansion as
follows:
dy

~ h —
Yk+1 = Yk + I

h? d’y
o
Ties Vi '
The coefficient of A’ in (G.2) can then be matched with the coefficients of 4 in
(7.13). This approach is very long and complicated. For instance, by expanding the
derivatives of y in terms of f and its partial derivatives,

h dy
w3 dx3

h* d*y

— = (G.2)
e A dx*

tk, U, Yk

dy

i f

dy o o

e 9t dy

&y >f Pf  Pf ., fdf ()
27— LS 22 T el

dr or? * fatay * 8y2f * ot dy + (ay) f

The number of terms increases exponentially with increases in the order of
differentiation. These equations, including those for higher orders, can be made
more tractable using an elegant formulation using labeled trees (see, e.g., Hairer
and Wanner [1993]).

As an alternative, we simplify the process by picking specific forms for f(z, y).
The first choice is to let f(, y) = £>. The analytical solution from yy to y 1 is given by

d 3
— = t
d’
(e +h)* 12
Yikr1 =Yk = a1
3,0 32,2 3, 1
Vet1 = Yk+tih+ Etkh + th’ + Zh (G.3)
Applying a four-stage Runge-Kutta method using (7.12) and (7.13),
81 = h f/%
S,y = h (tk + Ll2h)3

8,5 = h (i +ash)
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Ska = h (tk + Ll4h)3

Y1 = Y+ 18k + 28k + 3643 + C4bpa

yi+(c1+cr+es+ca)Bh
+ 3 (202 + 303 + caas) L2H*
+ 3 (23 + €305 + caa}) (e’
+ (283 + 303 + cuay) tih?

Comparing (G.3) and (G.4),

cgt+et+et+ces = 1
1
Cap + c3a3 +csays = 5
1
cza% + C3[l§ + C4a421 = 3
1
Czag + cw% + C4ai = Z
Next, we choose f(t, y) = ty. The analytical solution is given by
d —_
In <)’k+1> _ (Gt hy — ¢
Yk 2
(te +h) — ¢
Vil = Ve &Xpl
The Taylor series expansion is given by,
1
Virl = Yk [l +uh+ 5 (1+)n*

1 15\ ;4
(Elk—i-gtk)h
T o1, 1 4\,4 5
<§+Ztk+ﬁtk)h +O(h)

Applying the four-stage Runge-Kutta method using (7.12) and (7.13),

Skt = h LYk
-1
S = h (t+ajh)|ye+ Z bjedke J=23.4
=1
Y1 = Y+ 18k + 2k + 3643 + C4dpa

= yi[l4+ovitch+ (020 + ‘72,21%) w
(0’3,1[]( + (73,3113() h3

(04,0 + 0uty + o4 ati) h* + O(hs)]

(G4)

(G.5)

(G.6)

(G.7)

(G.8)
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where,

o1,1

02,0

02,2

031

033

04,0

04,2

04,4

4
E cia;
i=2

> e} bia;
i=3 j=2
4 i—2 i 4 i -1
Z cia; Z Z bijbje + Z ¢ ) biag Z byj + cabyzbzas
i=3 =1 j=tt1 i=3 (=2 i=1
c4byzbar by

Now compare the coefficients of (G.8) and (G.7). Using (7.17) and includ-
ing (G.5), we end up with the eight equations necessary for the fourth-order

approximation:
1
a+ot+cate = 1 csbnar + ¢4 (bisas + b)) = 6
. 1 1
Coy + €303 +Cady = 5 c3asbxnay + csas (byzaz + bpaz) = 3
(G.9)
2% + c3a2 + cyal = ! !
2w Ty T ad =3 C3b32a§ +ca (b43a§ + b4261%) - 12
3 3 3 _ 1 1
2y + a3+ aay = g Cabpzbna, = 54

Afterreplacinga; with ), bj¢, there are ten unknowns (b;; and¢j,i < j,j =1,2,3,4)
with only eight equations, yielding two degrees of freedom. One choice is to set
b3y = by; = 0. This will result in the coefficients given in the tableau shown in (7.14).
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Another set of coefficients that satisfies the eight conditions given in (G.9) is the
Runge-Kutta tableau given by

0 0 0 0 O

. B Y 0 000
=1¢|-1 1 0 0 (G.10)

1 1 -1 1 0

e IR

G.2.2 Fourth-Order Implicit Runge Kutta (Gauss-Legendre)

Let us now obtain the two-stage implicit Runge Kutta method that yields a fourth-
order approximation.! We begin by choosing f (¢, y) = y from which the full implicit
formulation becomes

h (Yi + b118ia + b12dr2)
h (Yi + b2181a1 + bndro)

S

%)

( 22 >=< (1/}1)[9;1% (1/;)b1—2b22 )_1< } >yk

Substituting into (7.13),

or

-1
Vet = wt+(a o) < Uﬂi)bz_l " (1/;)1)]—2 b ) ( i )yk
2

. <% ) (G.11)
where

p1 = ci+c—by—byn

p2 = ci(biy—bn)+ca(by — biy) + bubi — biaby

q = —by—bxn

@ = biiby —bpby

The analytical solution of dy/dt = y is yx1 = yxe". In light of the rational form
given in (G.11), we can use a fourth-order Pade’ approximation of " instead of the
Taylor series expansion, that is,

(G.12)

1+ (h/2)+ (h2/12))

Vet =V (1 Z(h/2) + (2/12)

1" The usual development of the Gauss-Legendre method is through the use of collocation theory, in
which a set of interpolating Lagrange polynomials is used to approximate the differential equation
at the collocation points. Then the roots of the s-degree Legendre polynomials are used to provide
the collocation points. See, e.g., Hairer, Norsett and Wanner (1993).
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Matching the coefficients of (G.11) and (G.12), we obtain

1
5 = c+c—biu—by
1
o = A (bi2 — bn) + 2 (ba1 — bi1) + bubii — biaby
1
= —bu—b
3 11— by
1
o = bi1by — bioby (G.13)

which still leaves two degrees of freedom. A standard choice is to use the roots of
the second-degree Legendre polynomial to fix the values of a; and a,,? that is,

Po(t) = —t+(1/6)

yielding the roots

1 V3 1, V3
== - — =—-+ — 14
a 5 6 and ap 5 + 6 (G )
Also, recall the consistency condition (7.17),
1 V3 1 V3
56 = bii+b,  and st4 = b1 + b (G.15)

From (G.13) and (G.15), we find that: ¢; = ¢, =1/2, bjy = by = 1/4, by = 1/4 —
V3/6 and by = 1/4 + +/3/6.

G.3 Adams-Bashforth Parameters

To determine the values of b; for the Adams-Bashforth method, we choose f(y)
that facilitates the determination of the coefficients. The simplest choice is f(y) = y.
Doing so, the n™- order Adams-Bashforth method becomes

Vist =Yk +h OB (vie) = v+ h Y by (G.16)
j=0 j=0
where m = n — 1. With f(y) = y, the analytical solution of y;_, starting at y is given
by

Vire = €™ yi (G.17)
Substituting this relationship to (G.16) results in

=1+h) bel (G.18)
j=0

which when expanded using Taylor’s series will yield

h W

Ithtsr+ 5+ = 1+h2(;bj<l—jh+
j=

(h?* (k)
TR +)

2 See Section 9.2 for a discussion on Legendre polynomials.
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h W - L Ghy? (R
1+2_!+§+." == Zob}<1_]h+2_!_T+"'>
j=
m m . W2 m 5
= ij —h Z]bj +E Z]bj + -
j=0 j=0 j=0

By comparing the different coefficients of 4° on both sides we get

(D' [ X b ife>0
c+1 | b ife=0

or in matrix form,

11 1 1 bo 1
1

= (G.19)
0o 1 2m mn By b))
m+1

G.4 Variable Step Sizes for BDF

For variable step sizes, the coefficients of the multistep methods will no longer be
constant. In this section, we treat only the BDF formulas. The approach should
generally be similar for the other multistep methods.

Let Ay be the step size at f;, and put the BDF equation (7.38) into an equivalent
form,’

Z Vailk) Yi—i = hif (yk+1) (G.20)
i=—1

Using the same technique of finding the necessary conditions by the simple appli-
cation of the approximation to dy/dt =y, that is, f(y) =y and y = €'yy, we note
that

Viej = e(tl(—j—tk+l)yk+l
Then (G.20) reduces to

m
Do vaw €Ty = hykn

i=—1

a (trei — tir1)
Zy(i\k) <1+(tk—i_tk+l)+—_l o u +> = h
i=—1 ’

3 The form (G.20), in which the derivative function f is kept on one side without unknown coefficients,
is often preferred when solving differential algebraic equations (DAE).
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For the p'-order approximation, we again let m = p — 1, and the equation will

vield
1 1 1 . 1 V(—1|k) 0
0 (1 —t) (i1 —te1) oo (kg1 — t—pg1) Y(oik) — hy
0 (tip1 — 1) (ke —tc1)” oo (et — tieps1)’ vaw | =| O
0 (k1 — ) (e —t1)” oo (e —tipr)” ) \ Vo100 0

(G21)

Because the right-hand side is just —Aye;, this equation can be solved directly using
Cramer’s rule and using the determinant formulas of Vandermonde matrices. The
results are

p
1, — 1
PP ife=—1
s Tkl — Tk—j
Vi) = (G.22)
t —t 1 —
_<k+1 k) <k+1 k]) ite=0
Tkt1 — Tk—e Tk—e — Tk—j

j=0,j£¢

Note that this formula involves product terms that are the Lagrange formulas used
in polynomial interpolation, which is how most textbooks derive the formulas for
BDF coefficients. The approach taken here, however, has the advantage that it
automatically fixes the order of approximation when we truncated the Taylor series
of the exponential functions based on the chosen order.

When the step sizes are constant, that is, i = h, then (tx41 — tx—j) = (j + 1)h,
and (G.22) can be used to find y, independent of k. For instance, for the sixth-order
BDF method, that is, p = 6, the coefficient of y;_3 becomes

11 2 3 5 6\ 15
ey \1-4' 2-4'3-4'5-46-4)" 1

To determine the appropriate value for Ay, we can first set hy = hx—1 and then
use either of the error-control methods given in Section G.5 to modify it. The step-
doubling approach might be simpler for the general nonlinear case.

G.5 Error Control by Varying Step Size

To improve accuracy, one could include more terms from the Taylor series expan-
sion. Another way is to decrease the value of 4. However, decreasing / will increase
the number of points to be solved, thereby increasing the length of computation and
storage. Thus the step size has to be chosen by balancing accuracy requirements with
computational loads. In addition, the step sizes /; do not need to be uniform at each
step
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G.5.1 Estimation of Local Truncation Error

First, we need to estimate the truncation error at the kth step. Consider two integra-
tion methods: one that obtains an nth order approximation, and another that obtains
an (n + 1)th order approximation. Starting from the same value of yy, let wi,1 and
Zk+1 be the update value for y, using the (n + 1)th and the nth order approximation
methods, respectively, that is, for one-step methods

Wiyt = Yk + M@, Yi)l(na 1y order  a0d Zy1 = Vi + he®(te, Vi) l(n)ih order

where ®(1, yr) is a transition formula based on the particular method chosen.
Subtracting zx41 from w1, we obtain an estimate of the truncation error of

f(t, y), that is,

W1 — Zis1l

e (G.23)

Tk+1 (hk) =
In addition, we expect that the truncation error, ti41(h), is of the order of A}, that
is, for some constant C,

W1 — Zksl
hy

We want to find a different step size, h®** = 6hy ( 6> 0 ), such that the
truncation error using the revised step size will be less than a prescribed tolerance e,
that is, 7411 (6hx) < €. Using (G.24),

t(h) =CH > Ch'= (G.24)

Tes1(0h) = (C) (Ohi)" = 6" Chi} = gf'wkﬂh;zﬂﬂ e
k

Rearranging,

0 < <€h—k)1/n (G.25)

W1 — Zht1]

To incorporate (G.25), we can set 6 to be equal to the right hand side of (G.25)

with € divided by 2, that is,
R h Y
0= () (G.26)
2{wiee1 — 2kl

This would guarantee a strict inequality in (G.25).

The implementation of (G.26) is shown in the flowchart given in Figure G.1. In
the flowchart, we see that if the truncation error, 7.1, is less than the tolerance e,
we can set yy1 to be wy, 1. Otherwise, we choose 6 to be

~

6 = min (Gmax, max (Omin, 0) ) (G.27)

If 741 happens to be much less than ¢, the scaling factor 6 will be greater than unity,
which means the previous step size was unnecessarily small. Thus the step size could
be increased. However, if 741 is greater than €, 6 will be less than unity, which means
the step size has to be reduced to satisfy the accuracy requirements. As shown in the
flowchart, we also need to constrain the step size A, to be within a preset maximum
bound, /A,x, and minimum bound, Ay,.
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Yk s tk
< hk
nth Order (n+1)th Order
Method Method
Ziry Wit
Wi 7
W™ Tn

Yir1 <*— Wiy

(or z,,) os
tig =— tk+hk b

k<—k+1
no
A In, o \n
0=(3) (<)
> 9=min( emax’max(emin’é) )
hk - min(hmux’ehk)
Declare “h too small” | yes 5 no

and terminate ° hy <h,;,’

Figure G.1. Flowchart for error control.

G.5.2 Embedded Runge-Kutta Formulas

The error control procedure shown in the flowsheet given in Figure G.1 requires
two Runge-Kutta computations for the update of y;. One is an nth order method,
whereas the other is an (n + 1)th order method. Normally, this would mean using
two Runge-Kutta tableaus, one for each method. However, to improve efficiency,
one could find a different tableau such that both updates can share some of the
intermediate calculations of §;; given in (7.13). This is done usually at a cost of
increasing more terms in (7.13). Conversely, because both tableaus are merged into
one tableau, the net change would usually mean fewer function evaluations. When
two or more tableaus are merged to share the same function evaluations, we refer
to these as embedded Runge-Kutta formulas, and the corresponding tableaus are
called embedded Runge-Kutta tableaus.

Two of the more popular embedded Runge-Kutta methods are the Fehlberg-
4-5 method and the Dormand-Prince-5-4 method. The Fehlberg tableau is given
in (G.28). The row for zx.1 (second from the bottom) is used to determine the
fourth-order update, whereas the row for wy,; (last row) is used to determine
the fifth-order update. However, the Fehlberg method uses zx+; (the lower order
result) as the update for y,y; because the parameter values of the embedded
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tableau were determined to minimize errors in the fourth-order estimates. The
Dormand-Prince tableau is given in (G.29). The Dormand-Prince has a few more
additional terms than the Fehlberg tableau. It was optimized for the fifth-order esti-
mate instead. This means that the last row is the fourth-order estimate, whereas
the second to the last row is the fifth-order estimate. So the Dormand-Prince
tableau shown in (G.29) will use w1, a fifth-order result, as the update for yz,1. A
MATLAB code for the Fehlberg 4/5 embedded Runge-Kutta method together with
the error control algorithm shown in Figure G.1 is available on the book’s webpage as
fehlberg4b.m.

0
1 1
g i
3 3 9
8 32 32
12 1932 7200 7296
3 2197 2197 2197
. 439 _ 3680 845
F45 1 216 8 313 1104 (G.28)
1 8 9 35 1859 11
2 27 2565 104 0
25 1408 2197 1
2+l | 216 0 2565 s —5 O
w 16 0 6656 28561 9 2
L Wkt 135 12825 56430 50 55
- 0 _
1 1
5 5
3 3 9
10 70 70
4 44 _ 36 32
5 s 5 9
8 19372 25360 64448 212
9 6561 2187 6561 729
DP54 : (G.29)
1 9017 355 46732 49 5103
3168 33 5247 176 18636
1 35 0 500 125 2187 11
384 1113 192 6784 84
35 500 125 2187 11
el 384 0 1113 192 6784 84 0
w 5179 0 7571 393 92097 187 1
L Wk+1 | 37600 16695 640 339200 2100 40 |
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0.11

0.1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

Figure G.2. Numerical solution for Example G.1 showing varying step sizes based on error-
control strategy for tolerance € = 1078,

EXAMPLE G.1. Consider the following set of differential equations to model the
production of enzyme

dy
O - -D
0 (u = D)y
dy> Uy
s - D _ _ =22
0 (25 = y2) v

— Mmax)?2

km + 2

where Y =0.4, D =03, yoy =4.0, pmax = 0.53, and k,, = 0.12 are the yield,
dilution rate, feed composition, maximum rate, and Michaelis-Menten parame-
ter, respectively. Assuming an initial condition of y(0) = (0.1, 0)”, we have the
plots shown in Figure G.2 after applying the Fehlberg 4/5 embedded Runge-
Kutta method using error control with tolerance € = 1078, We see that the step
sizes are smaller near ¢t = 0 but increased as necessary.

G.5.3 Step Doubling

For implicit methods, such as the fourth-order Gauss-Legendre IRK method given
in Section 7.2.2, there are no embedded methods. One approach is to use a higher
order version and, together with the fourth-order result, obtain an estimate of the
local error to be used for step-size control.

Another method is the step-doubling approach. In this approach, one approx-
imation, zx4+2 ~ Yi+2, is obtained by using the chosen implicit method twice with a
step-size of hi. Another approximation, wyis = Y42, is obtained by applying the
chosen implicit method once, but with a step-size of 24;. Let Err (hy) be the local
error using a step-size of Ay, which will be proportional to hZH, where n is the order
of accuracy of the solver, then

Err (he) = ChyH! — Err (2hy) = 2" Chit
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and
’wk+2 — Zk+2’ = 2"Mcnptt —20mt!
= (2" =2)Err(h)
or
‘wk+2 - Zk+2‘
Err(h) = ==~

To control the error within a tolerance, €, we need to change the step-size by a
factor 9, that is,

Err(6hy) < €
C(ehk)nJrl <
@ Err (hy) <
‘wk+2 - Zk+2‘
+1 =

2n+1 -2

where y < 1, for example, y = 0.9. This yields the formula for 6 based on the step-
doubling approach:

1/(n+1)
b ye (2n+1 _ 2)

_ (G.30)
‘ W42 — Zk+2)

The MATLAB code for the Gauss-Legendre IRK is available on the book’s
webpage as g1irk.m, and it incorporates the error control based on the step-
doubling method.

EXAMPLE G.2. Consider the van der Pol oscillator described by the following

equation:
i
a y2
dyZ 2
A 1— —
o (L =yi)y2—n

subject to the initial condition y = (1, 1)7. When pu = 500, the system becomes
practically stiff. Specifically, for the range t =0 to t = 800, the Fehlberg 4/5
Runge Kutta will appear to “hang.” Instead, we could apply the Gauss-Legendre
Implicit Runge Kutta, together with error-control based on the step-doubling
approach using tolerance € = 107%. This results in the plot shown in Figure G.3,
which shows that small step sizes are needed where the slopes are nearly
vertical.
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Figure G.3. The response for a van der Pol oscil-
lator when p = 500 using Gauss-Legendre IRK
method with error control based on step-doubling
procedure.

0 200 400 600 800
t

G.6 Proof of Solution of Difference Equation, Theorem 7.1

First, we can rewrite the (7.46) in terms of constants f; ; instead of ¢; ; as follows:

ki—1 kj—1 |
sGm = | Lot | = Cbugg | @
=0 =0 :
kj—1
= Y B D ()"
=0

4

d
where (Dﬁj = 2o ) Next, apply the difference operators of (7.43) on S (j, n) in
gj

place of y, with x(o,) = Y7 a; (aj)i ,

P k-1 P '
> o (S (j,n)) = > Biulo) D [ D (o)™ ]
i=0 =0 i=0
k-1
= Y Bju(o) D [ X (07)" ]
=0

kj—l 14
£!

_ . Y e 0— \n

- Z B (o) Z m!(€ — m)!D‘rZ' [X(Jf)] D™ [(G’) ]
=0 m=0

Because o; is a k;j-fold root of x(;) =0,
¢ . _
Dl ey =0 5 =01 k-1

p
- > a9 (S(.n)=0

i=0
Combining all the results,

p M o/ p
Z%’Qi Om) = Z (ZaiQi (S (. n))) =0
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G.7 Nonlinear Boundary Value Problems

Consider the nonlinear boundary value problems given by

%x =F(t,x) (G.31)
subject to the nonlinear boundary conditions,
q(x(0),x(T)) =0 (G.32)

First, let us define the following vectors:

1. Let x¢ be any initial value of x for the system given in (G.31).
2. Letxy be the value of x at t = T corresponding to xg. Thus

X7 = X7 (X0) (G.33)

and these vectors could be evaluated by using any initial value solvers such as
Runge-Kutta method after setting xq as the initial condition.

The main idea of the shooting method is to find the appropriate value for xq
such that the boundary conditions given in (G.32) are satisfied, that is,

Find xo such that q(xg,x7(X0)) =0

For some small problems, a trial-and-error approach may be sufficient. However, as
the number of variables and the level of complexity increase, a systematic method
such as Newton’s method is preferable.*
Newton’s method uses an initial guess, x(()o)
tively using the following update equation:

, and improves the value of x itera-

x(()kﬂ) = ng) + Ax(()k) (G.34)
where,
Axgk) = —Jlq (ng)’ X7 (ng))) (G.35)
d
7 “ (G.36)
AdxXo |y —x®

(k) (k)

. k
Once q (Xo , XT (Xo )) is close to zero, we can set Xy = xg )

and solve for x(z) from

t =0tot = T.If the number of iterations exceeds a maximum, then either a better
initial guess is required or a different method needs to be explored.

The terms in (G.36) generate a companion set of initial value problem. Specif-
ically, J is the square Jacobian matrix of q. The added complexity stems from the
dependence of q on x7, which in turn depends on xj through the integration process
of (G.31).

Let the boundary conditions be given as

C]l (x019 "'1x0n1le» -"1xTn)

q(xo, X7) = 0 (G.37)

Gn (X015 -+, X0, XT1s - - - XTn)

4 The Newton-search approach is not guaranteed to converge for all systems. It is a local scheme and
thus requires a good initial guess.
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then
dq (E)q(a, b) 83) n <3q(a, b) db)
dxg 08 9%/ 4y, bx, b dxo ),y pex,
= Qq (X0, X7)+ Op (X0, X7)M(T) (G.38)
where,

ni - - NMn
O, = : : (G.39)

Mn1 e Nnn

0q; (a1, ...,a,,b1,...,b,
n = (@ - ! ) (G.40)
aj a=xXok,be=xr¢

w11 o Wi
Q, = Lo : (G41)

Wn1 ccr o Wan

ag; (ai,...,a,, b1,..., by,
wj = 2 (@, o By ) (G.42)
9b o, b=
A =X0k,0¢=XT¢
M)y - & (G.43)
- dX() ’

To determine M(T'), take the derivative of the original differential equation
(G.31) with respect to xg,

d [d d
d_xo (EX> = d_xOF (t, X)
d ([ dx _ OF dx
dt \ dxg T 9xdxg
%M(t) = A, x)M(®) (G.44)
where
My = & (G.45)
dX(]
oF
A = — 4
(t,x) x (G.46)
and
M0) =1 (G47)

Note that A(z, x) depends on the x consistent with the x¢ used. Thus the following
integration needs to be performed simultaneously:

%x = F(1,x) x(0) = xo (G43)
M — A@oM M(0) = I (G.49)

dt
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N

X

|

‘é—’t‘ =Fx)  x(0)=x,

S N

dt l l |

M =M(T) x=X(T) ——»| q = q(X(,X7)

| |

> Qa (X()’xT)
Oy, (Xp:Xy)

no

l yes
J=0,+OM;

|

Ax,=- J'lq —=F(t, x) x(0)=x,

: 1

X, < X, T Ax,

Solution:

x(0),x(h).x(2h),...x(T)

Figure G.4. A flowchart for nonlinear shooting implemented with Newton’s method.

Having calculated x; = x(7") and M(T'), we can then substitute these values together
with x¢ to determine Q,, Q) and dq/dx,. Thereafter, the update to xy can be deter-
mined, and the iteration continues until the desired tolerance on ||q|| is obtained. A
flowchart showing the calculation sequences is given in Figure G.4.

EXAMPLE G.3. Consider the following set of differential equations:

d X1 —kle*thlxz + kj3
_ X — —k —2t k
2 | = 1677 X1X2 + K2X3
dt k —2t —k
X3 1€ " X1X2 2X3

subject to the following boundary conditions:

x1(0) — x(T) — 0.164
q(x(0),x(T)) = x2(0)x2(T) — 0.682 =0
x3(0) +x3(T) — 1.136

with T =2,k; =10,k; =3 and k3 = 1.
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Figure G.5. Solution for boundary value
problem given in Example G.3.

0 0.5 1 1.5 2

We can calculate Q, and Q,, to be in a form that can be evaluated readily
based on values of xy and x7,

1 0 0
Qa = 0 XZ(T) 0
0 0 1
0 -1 0
Qb = 0 Xz(O) 0
0 0 1

Similarly, we can calculate A = 9F/0x,
(—k1 e’thz) (—k1 e’Z’xl) 0
A([, X) = (—kle’thz) (—kle’Z’xl) ko
(kle*thz) (kle*thl) —ky

Using an initial guess of xf)o) =(1,1, 1)T and a tolerance of e = 1 x 10710, it
took five iterations to converge to the following initial and final conditions:

1.516 1.083
xo=| 0.504 xr = | 1.352
0.992 0.144

Plots of the solutions are shown in Figure G.5. (A MATLAB file nbvp.m
is available on the book’s webpage and solves this specific example. The code
contains sections that are customizable to apply to different nonlinear boundary
value problems.)

G.8 Ricatti Equation Method

Consider the linear differential equation,

%x = A()x +b() (G.50)
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with separated boundary conditions such that k conditions are specified at t = 0 and
(n — k) conditions are specified att = T,

Qox(0) = fBo (G51)
Orx(T) = Br (G.52)

where Qy is a k x n matrix of constants and Q7 is an (n — k) x n matrix of constants.
As an alternative to the shooting method, we look for a transformation of the
original state variable given by

x(£) = S()z(7) (G.53)

where S(¢) is an n x n transformation matrix and z(¢) is the new state vector. The
aim of the transformation is to recast the original problem into a partially decoupled
problem such that the solution of first k values of z can be solved independently of
the last (n — k) values of z, that is,

d (z Hu@) 0 z q: (1)

dt ( 5 ) N < Hy (1)  Hx(1) > ( 5 ) + ( q@(?) ) (G349
where z,(t)[=]k x 1 and z,(¢)[=](n — k) x 1. In addition, the transformation will be
done such that the z; (0) can be specified from (G.51), whereas z,(T') can be specified
from (G.52).

Thus z; is first solved using initial value solvers to determine z;(¢t = T). After-
ward, z;(T') is combined with z(T'), after using (G.52), to form z(t = T'). The ter-
minal condition for x(¢) at t = T can then be found from (G.53). Having x(7'), the
trajectory of x(¢) can be evaluated by integrating backward from ¢t = T to t = 0.

To obtain the form in (G.54), we first apply (G.53) to the original equation,
(G.50),

d d
%z = S (A(t)S(t) — dits) z+ S71(t)b(¢)
= H(@z+q(t)
where
d
S~ (A(t)S(t) - ES> = H(®)
%S = A@®SEH) —SOH() (G.55)
and
q(®) = S7'b(r) (G.56)
We can choose S to be an upper triangular matrix given by

S = ( g‘ f(_tz ) (G.57)

whose inverse is given by

5! =< g‘ _If_(:) ) (G.58)
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After substitution of (G.57) into (G.55),

0 4R B Ay Ap I R0\ (1 RQ@ H; 0
0 0 - A21 A22 0 1 0 1 Hy Hpyp
( Ay — (Hu +RHy) ApnR+ A — RHy >

Ay — Hy AR+ Ay — Hy

By comparing elements on both sides, we have the following equations

Hy = Axn

Hy = AnR+Ap

Hy = An—RHy =An — RAn

%R — AuR+ Ap — RAuR — RA» (G.59)

where the last equation is a matrix Ricatti equation.
Because Hi; depends on R(¢), we need to solve for z; and R using the first k
equations of (G.54) and (G.59) as initial value problems, that is,

d

i (A1 — RA) 7 +qu
d
ER = AR+ Ap — RA3R — RA» (G.60)

Note that z; is a vector, whereas R is a matrix. To determine the required initial
conditions, we can find z;(0) in terms of R(0) using (G.53) and (G.58),

20)=( Iy | =R )x(0) (G.61)

Assume that the first k columns of Qy in (G.51) are linearly independent’; that is,
let C be the nonsingular matrix consisting of the first & columns of Qy, then

Qux(0)=C( I | C'D )x(0) = po
Next, choose R(0) = —C~!' D and premultiply z;(0) (in (G.61)) by C,
Cru(0)=C( I | C'D )x(0)=p — 21(0)=C'8y  (G.62)

In summary, the first phase, known as the forward-sweep phase of the Ricatti
equation method, is to solve for R(¢) and z;(¢), that is,

d
ER =AR+Ap—RAyR—RA» ;  RO)=-C'D (G.63)

where Qg = < C ‘ D ),followed by

d
Ez1=(An—RAzl>zl+(l‘—R)b L nO)=C'% (G6d)

and integrate until = T to obtain the values of z;(7') and R(T).

5 If the first k columns of Qy are not invertible, a reordering of x may be required.
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The second phase of the method is to find the conditions for x(7") by combining

the results from the first phase with the other set of boundary conditions given by
(G.52). By partitioning Qr as
or=(r o)

where Fis (n — k) x nand Gis (n — k) x (n — k), we get

ann=(r0)(1 )25 = »

Fz; + FR(T)2o(T) + Gzo(T) = Br
2(T) = (FR(T) + G)™ (Br — Fui(T)) (G.65)
which can be used to form x(7'), that is,
x(T) =< é R(IT) )( «(T) ) (G.66)

Having evaluated x(7') means we now have all the information at one boundary.
We could then use the original differential equations given in (G.50) and integrate
backward starting from ¢ = T until ¢+ = 0. This second phase is also known as the
backward-sweep phase of the Ricatti equation method.

The Ricatti equation method (which is also sometimes called the invariant
embedding method) is sometimes more stable than the shooting method, espe-
cially when the process (7.55) is unstable. However, there are also situations when
the shooting methods turn out to be more stable. Thus both methods may need to
be explored in case one or the other does not yield good results. Note also that
our development of the Ricatti equation method is limited to cases with separated
boundary conditions.
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H.1 Bifurcation Analysis

The behavior around a non-hyperbolic equilibrium point can change under slight
modifications of the process parameters. Under these conditions, the system is classi-
fied as structurally unstable. By perturbing the parameter slightly, the characteristics
can sometimes yield additional equilibrium points and can change the stability of
equilibrium points. Bifuraction analysis is the study of how the structural behaviors
of the system are affected by variations in the key parameters.

For the one-dimensional case, there are three main types of bifurcations. A
summary of the different types of bifurcations for one-dimensional systems is given
in Table H.1. Included in the table are the normal forms and the corresponding
bifurcation diagram. The bifurcation diagrams show the locus of equilibrium points,
if they exist, at different values of parameter r. We use the convention that represents
the locus of stable equilibrium points by solid curves and the locus of unstable
equilibrium points by dashed curves.

The first type of bifurcation is the saddle-node. Saddle-node bifurcations are
characterized by the absence of equilibrium points to one side of the non-hyperbolic
equilibrium point, and saddle-node bifurcations are also known as blue-sky bifurca-
tions to highlight the sudden appearance of equilibrium points as if they appeared
“out of the sky.” The term “saddle-node” is more appropriate for the 2D case.
The second type of bifurcation is the transcritical bifurctation. Transcritical bifur-
cations are characterized by the intersection of two locus of equilibrium points at a
non-hyperbolic point. After both curves cross each other, their stability switch from
stable to unstable and vice versa. The third type of bifurcation is the pitchfork bifur-
cation. Pitchfork bifurcations are characterized by additional equilibrium points as
they cross the non-hyperbolic equilibrium point from a single locus curve of stable
(supercritical) or unstable (subcritical) equilibrium points. The name of this bifur-
cation comes from the bifurcation diagram (as shown in Table H.1) resembling a
pitchfork.

For cases that are more general than the given normal forms, let x = f(x, r)
where x = 0is a non-hyperbolic equilibrium point at 7 = 0. A Taylor series expansion
around (x, ) = (0, 0) is given by
of  of  x*o*f  rrof O f

ax T T2 T2 T rax

f ) =f0.0)+x L
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Table H.1. Types of bifurcations for one-dimensional systems

Type Normal form Bifurcation diagram
1 Saddle-Node x=r+x e
*.unstable
X o
stable
’_‘1 0 1
r
2 Transcritical f=rx—x° 1
stable
stable
Xo “"Unstable”
'."unstable
-1 ‘
-1 0 1
. o _ .3 ..
3 Pitchfork X=rx—x (Supercritical )
1
stable
stable unstable
X op—————f e e an e
stable
= 0 1
r
 — 3 ..
r=rx+ux (Subcritical)
1=
“~._unstable
xc stable K unstable
unstable
-1

where all the various partial derivatives are evaluated at (x, r) = (0, 0). Because
(x, r) = (0, 0) is a non-hyperbolic equilibrium point, the first two terms are zero, that
is, £(0,0) = 0 and 3f/0x(0,0) = 0.

We will truncate the series after the second-order derivatives to yield bifurcation
analysis of saddle-node bifurcations and transcritical bifurcations. This means that
equilibrium points near (x, r) = (0, 0) will be given by the roots of the second-order

polynomial in x,

oy () x> +ay () x4+ ay(r) =0
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where
a; (r) = r;;fx

which was obtained by setting the right-hand side of the Taylor series expansion
to zero. Solving for the roots of (H.1), we find the neighboring equilibrium points
around (x, r) = (0, 0),

e /ﬂ(;f—ai)za;f(%%)(amizif) -

a2

For saddle-node bifurcations, consider |r| < 1. Then (H.2) will reduce to

S ——CATEIA o

-1
af\ [ *f
for equilibrium points to exist.

For transcritical bifurcations, we set an additional condition that 9f/dr(0, 0) = 0.

which then requires

Then (H.2) reduces to
() - (A (5
T oy Py 2 2
Yoy = orox orox 4 ox or (H.5)
f
0x?

A pair of equilibrium points will then exist if the value inside the square root is
positive, plus 8 f/dx> # 0, that is,

(Fo) ()0 e Theo o

As r changes sign, the stability of the equilibrium points will switch, thereby giving
the character of transcritical bifurcations.

For both saddle-node and transcritical bifurcations, the stability can be assessed
by regrouping the Taylor series approximation as

X~ ag(r)+ (051(”) + az(f)X) x =ao(r) + Bu.nx
where

ﬂ(x.r) =] (}’) + 052(7))(
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Figure H.1. Two-parameter bifurcation diagram.

Then applying the formulas for x., (Equation (H.3) for saddle-node bifurcations and
Equation (H.5) for transcritical bifurcations), we find that

Xeqi isstableif B, <0 fori=1,2

For pitchfork bifurcations, the Taylor series will need to include third-order
derivatives such that a third-order polynomial can be obtained for the equilib-
rium points. The computations are lengthier, but with the additional condition that
af/ar(0,0) = 0 and 8 f/9x*(0, 0) = 0, the conditions simplify to the following condi-
tions

32f Bf >0 for single equilibrium points

r (H.7)

0x9r 9x° <0 for three equilibrium points
It is important to remember that all the partial derivatives given in the conditions
(H.4), (H.6), and (H.7) are evaluated at (x, r) = (0, 0).

Aside from the three type of bifurcations discussed thus far, the introduction of
one more parameter can also make the bifurcations change, including the addition or
removal of non-hyperbolic equilibrium points. This situation is known as codimen-
sion two bifurcations. An example of these types of bifurcation is the catastrophe
model given by

ix=f(x.rh)=x>—r—h (H.8)

where r and h are parameters. A surface locus of equilibrium points is shown in
Figure H.1. In the figure, we see that the surface has a continuous fold, and thus,
dependent on the values of 7 and 4, there can be either one, two, or three equilibrium
points. These regions can be separated by two intersecting curves as shown in the
(r, h) plane as shown in Figure H.2. The point where the two separating curves
intersect is known as the cusp point. Many physical phenomenon, such as phase
changes of material, that is, vapor liquid equilibria, are described by these types of
bifurcations or catastrophe models.

Next, consider the bifurcation diagram for x., at r =2 as shown in Fig-
ure H.3. When r =2, there are two non-hyperbolic equilibrium points: one at
(x, h) = (0.816, —1.089) and another at (x, &) = (—0.816, 1.089), both of which yield

741
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2
1.5 one equilibrium point
1
0.5 1
h three
0 equilibrium
/ points Figure H.2. Phase diagram in the (r, 4)-plane.
-0.5 1
cusp point
-1
-1.5
-2 -
=2 -1 0 1 2
r
saddle-node bifurcations. When /4 > —1.089 and gradually decreased, the equilib-
rium points following the top curve in Figure H.3 will also decrease continuously.
However, as h moves past the critical value & = —1.089, the equilibrium point will
jump to follow the values of the lower curve. The opposite thing happens for the
lower curve; that is, as 4 gradually increases until it passes the value of 1.089, the
equilibrium point jumps to follow the upper locus of equilibrium points. This char-
acteristic of having the behavior depend on the direction of parameter change is
known as hysteresis.

The bifurcations of second-order systems include all three types of the first-order
cases, namely saddle-node, transcritical, and pitchfork bifurcations. These three
types of bifurcations are extended by means of simply adding one more differential
equation. The canonical forms are given in Table H.2. These types of bifurcations
are centered at non-hyperbolic equilibrium points that have zero eigenvalues.

The Hopf bifurcation is a type of bifurcation that is not available to one-
dimensional systems because it involves pure imaginary eigenvalues. These bifur-
cations yield the appearance or disappearance of limit cycles. A supercritical Hopf
bifurcation occurs when a stable focus can shift to a stable limit cycle. Conversely,
a subcritical Hopf bifurcation occurs when an unstable limit cycle changes to an

2
stable
1.5
1
“
0.5 '+ _unstable
X el
o5 S~ . Figure H.3. Bifurcation diagram for (x, #) when r = 2.
e .
-1
-1.5
stable
-2
-2 -1 1 2

Aol
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Table H.2. Normal forms for Bifurcations of 2D

Systems
Type Normal form

1 Saddle-Node y=-y
X=r+x?

2 Transcritical y=-y
i=rx—x?

3 Pitchfork Supercritical:
y=-y
i=rx—x
Subcritical:
y=-y
x=rx+x

4 Hopf =w
b= up+ap

Supercritical: a <0
Subcritical:  a >0

unstable focus. The canonical form of a Hopf bifucation given in terms of polar
coordinates (p, ),

de dp 3

— = and — =upota

a = a T
where p = /x2 + y?and # = tan~! (y/x). It can be shown that when a < 0, the system
exhibits a supercritical Hopf bifurcation. However, when a > 0, the system exhibits
a subcritical Hopf bifurcation. These are shown in Figures H.4.

It turns out that Hopf bifurcations can occur for orders > 2. A general theorem

is available that prescribes a set of sufficient conditions for the existence of a Hopf
bifurcation.

THEOREM H.1. Let Ay, be a value of parameter A such that the system dx/dt = £ (x; 1)
has an equilibrium point X.q(Ay) with the Jacobian matrix J = df/dx at X = X.q(Ap)
having a pair of pure imaginary eigenvalues, +i (1) (i = ~/—1), whereas the rest of
the eigenvalues have nonzero real parts. In addition, let the real and imaginary parts
of the eigenvalues () be smooth functions of parameter ) in which

9 (Re(u)) #0

in a neighborhood around \j. Under these conditions, the system will have a Hopf
bifurcation at . = i

There are several physical systems that exhibit Hopf bifurcations, such as in
the fields of biomedical science, aeronautics, fluid mechanics, and chemistry.! In

LA good elementary treatment of Hopf bifurcations, including several examples and exercises, can
be found in S. Strogatz, Nonlinear Dynamics and Chaos, Perseus Book Publishing, Massachusetts,
1994.
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a=-0.5; mu=0.2

a=-0.5; mu=-0.5

-

(a) Supercritical Hopf bifurcations.

a=0.1;mu=-0.01 a=0.1;mu=0.01

0.5 0.5+

I < &

-0.5- -0.5-

(b) Subcritical Hopf bifurcations.

Figure H.4. Phase plane plots showing supercritical and subcritical Hopf bifurcations.
(0 =0.5).

chemistry, there are several well-known reaction systems, such as the Belousov-
Zhabotinsky (BZ) system, known collectively as oscillating chemical reactions.
Depending on the critical conditions, the systems can oscillate spontaneously. One of
the well-known examples of a Hopf bifurcation is the Brusselator reaction, which is
given in Exercise E8.19. Although it is strictly fictitious, its simplification still allows
one to understand the onset of Hopf bifurcations in real systems.
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I.1 Details on Series Solution of Second-Order Systems

For N = 2, the differential equation for which x = 0 is a regular singular point is

given by
- d? - d -
szz(x)—y +xP; (x)—y + Py(x)y=0
dx? dx

where
;’z(x) = Do+ Pix+ ,"0’2,2x2 + -
Pi(x) = Pro+Diax+Dpia®+--
Po(x) = Doo+Do1x + Poax®+---

and ?)42,0 75 0.

The indicial equation (9.28) becomes
P00+ pror +poo(r)(r—1) = 0

D20+ (Pro—D20)r+%00 = O

and the indicial roots are

(P20 — P1.0) £ \/(52,0 — P1.0)> — 4P0.0P2.0
r= ~
22,0

We denote the larger root (if real) by r, and the other root by ry.

When the roots differ by an integer, say r, —r, = m > 0,

Fat+ry, = _,Q
02,0
2rp—m =
1 ~
ra = = m—i—l—@
2 02,0

When the roots are equal, m = 0,

Fq =

(-5)
ﬁz,o

N =

(L1)

(1.2)

(13)

(L4)

(L5)

(L6)
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Using r,, we are guaranteed one solution, which we will denote by u(x),

u(x) = Z G (rg)x"at"

n=0
where
1 ifn=0
an (ra) = n— ~
> %0 Ok (ra)dic(ra) .
- ifn>0
Qn,n(ra)
Oni(ra) = Dok + Pra—i(k +ra) + Pon-i(k +ra)(k+r, — 1)

(17)

If (r, — rp) is not an integer, the second solution, v(x), is immediately given by

o) = 3 Bl

n=0
where
1 ifn=0
an(rb) = n— ~
120 Qi (r)Pi(rv) .

ifn >0

Qn,n(rb)

Ouni(rs) = Ponrk + Pk +rp) + Do ni(k + 1)k +r,—1)

(L8)

If the indicial roots differ by an integer, that is, 2 > 0, we can use the d’Alembert
method of order reduction (cf. Lemma I.1 in Section 1.2) to find the other solution.

For N = 2, this means the second solution is given by

v(x) = u(x)/z(x)dx

(L9)

where z(x) is an intermediate function that solves a first-order differential equation
resulting from the d’Alembert order reduction method. Using u(x) as obtained in

(1.7), z(x) can be obtained by solving

= dz ~ du
szz(x)uE + <2X2Pz(x)a + xPy (x)”) z =0
1dz Pi(x) 1du
= = | = +2—— 1.10
zdx (xPz(x) u dx (L.10)

With u, P,(x) and P;(x) defined by equations (1.7) and (1.2), respectively, the left-

hand side of (I.10) can be replaced by an infinite series,

1d >
__Z = Z (an +.3n)xn

zdx =

(1.11)
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where the terms «,, and 8, are defined as

2r, ifn=-1

@, = 5 . . (1.12)
(2(ra +n+ 1)¢n+l(ra) - Zszl ak¢n—k(ra)) ifn > 0

£1.0/02.0 ifn=-1
Bn = » . - N ) (I.13)
<P1,n+1 — Zk:1_1 ,kaz,nfk) /P20 ifn>0

For (1.12), we used the fact that ¢y(r,) = 1.
For indicial roots differing by an integer, we can use (1.5), and the coefficient for
first term involving (1/x) in (I.11) becomes

o 1~|—,31=&+2ra_m+1
02,0

Then returning to (I.11), z can be evaluated as follows:

1dz m+l & "
EE = —<T+n§=0(0‘n+,3n)x )
_ m+1 (O‘n + Bn) K+l
In(z) = (ln + E: 1 )
— (m+1) § : (0[,, + 18" n+1
©= *Xp |: n+1

We can also expand the exponential function as a Taylor series,

exp[ Z( n+1 n+1:|=)/0+)/1x+)/2x2+--~

Due to the complexity of the definitions of y;, i = 1,2, ..., we just treat the y;’s as
constants for now. The Taylor series expansion is being used at this point only to
find the form needed for the second independent solution. Once the solution forms
are set, a direct substitution is used later to find the unknown coefficients. Thus we
can rewrite z as

Zk o )/kxk —m—1
7= + me_l + Zzozmﬂ )/n)Cn_m_1 ifm >0
0x T+ D00 yx ! ifm=0

and

Yhmo (v (k — m)) xk=m
/de — + Y In |x| + anmﬂ (Yu/mn—m)x"  ifm >0

voln|x| + Y07 (yu/n) X" ifm=0
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This integral can now be combined with u to yield the form for the second
independent solution, that is,

v(x) = u(x)fzdx

(Zg’nxr””) / zdx
n=0

nuln x|+ Y 02 o byx™™  ifm >0

v(x) (1.14)

uln |x| + Y07, byx" iftm=0

Note that for m = 0, the infinite series starts at n = 1 and the coefficient of
(uln |x|) is one. The parameter 7 is set equal to 1 when m = 0 because n will later
be combined with a constant of integration. However, when m > 0,  should not be
fixed to 1, because n = 0 in some cases. Instead, we will set by = 1 in anticipation of
merging with the arbitrary constant of integration.

Having found the necessary forms of the second solution, Theorem 9.2 summa-
rizes the general solution of a second-order linear differential equation that includes
the recurrence formulas needed for the coefficients of the power series based on the
Frobenius method.

1.2 Method of Order Reduction

For an N"-order homogenous linear differential equation given by
N iy
P;(x)== =0 L.15
> #05; (115)

Suppose we know one solution, say, u(x), that solves (1.15). By introducing another
function, g(x), as a multiplier to u(x), we can obtain

y = q(x)u(x) (I.16)

as another solution to (I1.15) that is linearly independent from u. To evaluate g(x),
we will need to solve another linear differential equation of reduced order as given
in the following lemma:

LEMMA L.1. d’Alembert’s Method of Order Reduction
Let q(x) be given by
q(x) = / Z(x)dx (L.17)

where z(x) is the solution of an (N — 1)™ order differential equation given by

N .
d=1z
;:F,-(x)m =0 (L18)
with

N A
k! d*=y
Fi(x) = ; =i Dy (x) D) (1.19)
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and u(x) is a known solution of (I.15). Then y = q(x)u(x) is also a solution
of (I.15).

PROOF. First, applying Leibnitz’s rule (9.6) to the n'h derivative of the product y = qu,

dy (i) dad D
dx! _;'=0 J ) dxi dxG=D)

Substituting these derivatives into (I.15),

d(iij)u
Z @, (x) Z < ) dxi dx(-7) =0

where

(i)
(qZ<1>(x) >+Z‘D(")Z< )Z;?Zxo}f; =0

Because u satisfies (I.15), the first group of terms vanishes. The remaining terms can
then be reindexed to yield

N /N ;
k d%Du\ diq
2(;( )q)"()d(ko a0

Letting z = dg/dx, we end up with an (N — 1) order linear differential equation
in z.

This method can be used repeatedly for the reduced order differential equations.
However, in doing so, we require that at least one solution is available at each stage of
the order reductions. Fortunately, from the results of the previous section, it is always
possible to find at least one solution for the differential equations using the Frobenius
method. For instance, with N = 3, the Frobenius series method will generate one
solution, say, u. Then via d’Alembert’s method, another solution given by y = qu
produces a second-order differential equation for z = dg/dt. The Frobenius series
method can generate one solution for this second-order equation, say, v. Applying
the order reduction method one more time for z = wv, we end up with having to
solve a first-order differential equation for w.!

Having solved for w, we can go backward:

Z = oV +owu
q = al/vdx+a2/wvdx
y = pu+ pqu

Biu + ,3205114/ vdx + ,3201214/ wvdx

' The resulting first-order differential equation is always of the separable type.
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with o1, oy, B1, and B, as arbitrary coefficients. Thus the approach of recursive
order reduction can be used to generate the general solution for homogenous linear
differential equation. One disclaimer to this solution approach is that, although
the general solutions can be found in principle, the evaluation of the integrals via
quadrature may still be difficult. This means that in case another simpler method is
available, such as when all the indicial roots are distinct, those approaches should be
attempted first.

1.3 Examples of Solution of Regular Singular Points

In this section, we have three examples to show how Theorem 9.2, which is
the Frobenius series solution to linear second-order equations, is applied to the
cases where r, —rp is not an integer, r, —r, =0, and r, —r, = m is a positive
integer.

EXAMPLE I.1. Given the equation

dzy
2x? ﬁ+x(1—x)— —y=0
The terms for p;; are pr0 =2, p1o =1, p1,1 = —1, and Py = —1, whereas
the rest are zero. The indicial roots become r, = 1 and r, = —0.5. Because the
difference is not an integer, n = 0 and b, = ¢,,(rp). The only nonzero values of

O,k are
Oun(r)=n@n+4r—1) and  Quu1(r)=—(n—1+7)

The recurrence formulas are then given by

~ n—1+r ~
¢,,(r) = md)n_l(l‘) where n>0
Thus
~ 1 1 1\ ~
oulra) = 33 ’“)=<2n+3> <2n+1)"'<§)¢°
_ (2n+2)(2n)---6-4! _ 32”“(n—i—1)!
N (2n—|—3)(2n+2)(2n—|—1)---5~4! T (2n+3)!
~ 1 1 1\ ~
Gn(rs) = ¢n 1(rp) = < ><2(n 1)> (§> $o(ry) = !
and the complete solution is given by
2" +1(”+1) —(1/2)
y(x) = AZ3 n 13y Bzznn'

This can be put in closed form as follows:

3 2n X &2
_ _ e /2 Z —
y(x)_A< 3+2,/ — ¢ erf<2)>+Bﬁ
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EXAMPLE 1.2. Given the equation

A%y | dy
ﬁ—i-xd— +xy=0

The terms for p; j are b0 = 1, p10 = 1, and 5,1 = 1, whereas the rest are zero.
The indicial roots are r, = r, = 0. Because the difference is an integer with
m = 0, we have n = 1. The only nonzero values of Q,, x are

0,,0)=n*> and  Q,,1(0)=1
Thus ¢o(0) = 1 and for n > 0,

$1(0) = 2¢n 1(0) = ( 1)(@ 11)2>~~(—1)=((;!1)):

which yields the first solution u(x)

o (=",
u(x) = ; WX

which could also be cast in terms of the hypergeometric function | F; as

ulx)=1-xGF2[1;2,2;—x])

For the second solution, we need o,(0),
(=D)"2n
(n!)?
Because m = r, — r, = 0, we set by = 0, and the other coefficients are given by
_ Qn,nfl(o)bnfl + 0,,(0)
Q1.1 (0)
(PN G ) (R o (P ) LD

= TR TG T e T e T T Ty

= 2O (14441

Thus the second solution is given by

v = () () =23, % ( %)
n=1 ’ k=1

and the complete solution is y = Au(x) + Bv(x).

0,(0) = (21) $u(0) =

b, =

EXAMPLE 1.3. Given the equation

,d? dvy dy

2 +3xd—+(2x—8)y 0

The terms for ; j are 20 =9, P10 =3, Poo = —8, and po,1 = 2. The indicial

roots are r, = 4/3 and r, = —2/3. The difference is an integer; then m = 2.
The only nonzero values of Q,, x are

Oun(r)=n <9n +92r—1)+ 3) and Onna(r)y=2

9x?
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Thus $o(r) = 1 and

2
nOn+92r—-1)+3)

an(r) = - %n—l(r)

Using the larger root, r, = 4/3,
a 4 . -2 ¢ 4
"\3) T mmn+2)"""

(9n<;2+ 2)) <9<n - f)in + 1)) <9_%> # @

(_1)n2n+1
9 (n!)(n 4 2)!

The first solution is then given by

(=D"2""
u(x) = Z9”(n')(n+2)'x (4/3)

or in terms of hypergeometric functions,

u(x) = x*3 (1 _ §—7 <1F2 [1 2.4 —29"}»

Because m = 2, we only need 51(’%) for the second solution,

()i

Next, we need o,(r,) and n,

(=1)2"18(n + 1)
9 (n")(n 4 2)!

on(ra) = [9Qr.+2n—1)+3]¢, (r)) =

_ Qum1fma(r) 2
U()(I’a) - 92

For the coefficients b,,, we have by = 1, b =2/9, b, = 0 and the rest are found
by recurrence, that is,

_ Qn,n—l (rh)b _ nUn—m(ra)
Qun(re) " Qunlrs)

2 (—1y12+1 \ [ (n=1)
- 9n(n—2)b”*1Jr (9"(n—2)!n!> (n(n—2))
(—2)1-22 (—1ym2n+1 2 (n—1)
= S o2 <9”(n - 2)!n!) ((3)(1) R P Y 2))

D2 NE (n—1-k)
N (9”(11 - 2)!n!) —(n—k)(n—-2-k)

bn

forn > 2
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The second solution is then given by

2 2
23 2.8
v(x) x 7 4 9o~ 81uln(x)

. (-2t N\ (&R (n—1-k)
+Z (2/3)<9”(n—2)'n') (g(n—k)(n—2—k)

and the complete solution is y = Au(x) + Bv(x).

1.4 Series Solution of Legendre Equations

1.4.1 Legendre Equations

The Legendre equation of order . is given by the following equation:

d? dy
(1—x)d—x)2}—2xd—+,u(/t+1)y_0

Using the series solution expanded around the ordinary point x = 0, we seek a

solution of the form

o0
y= E apx"
n=0

With N =2, the coefficients p;; are: pyo=1, pr2 =—1, pi1 = -2, and ppo =

(e +1). Based on (9.21), the only nonzero values are for n = k, that is,

P00t pra(n) + ppa()(n—1)  p(p+1)—nn+1)

nn = o) +2) . (D +2)

(ut+n+1)(n—n)
(n+1D(n+2)
which yields the following recurrence equation:
(k+n+1)(n—n)
(n+1)(n+2)

When separated according to even or odd subscripts, with n > 1,

apyo = — n

n n—1
o ((;,3 [Te -2 — )] 1 +2(n — k) + 1] ag
© k=0
1" T
Aont1 [Tl =20 = k) = 1] [ +2(n — k) + 2] ay

@+t

where ag and a; are arbitrary.
Let functions A;, () and Ay,1(w) be defined as

G

M) = gw—z(n—k))wz(n—k)ﬂ)

n—1

=D

Agpr(p) = @i | H( —2(n—k) = 1) (u+2(n—k)+2) (1.24)
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then the solution to the Legendre equation of order u is

y = ay (1 + Z Azn(u)x2”> +a (x + Z A2n+1(u)x2”+l> (1.25)

n=1 n=1

The two infinite series are called the Legendre functions of the second kind,
namely Leyen(x) and Loga(x), where

Leen(®) = 14 Ag(u)x™ (1.26)
n=1
Loaa(®) = x4+ Agpyr(u)*! (1.27)

n=1

For the special case when = fieven is an even integer, A, . +2j(even) =0,
j=1,..., and thus Leyn(x) becomes a finite sum. Similarly, when u = pqq is an
odd integer, A, 4+2j(oda) =0, j =1,..., and Legq(x) becomes a finite sum. In
either case, the finite sums will define a set of important polynomials. By carefully
choosing the values of ay and ay, either of the finite polynomials can be normalized
tobe 1 at x=1. If 4 = fleven = 2¢, we need

20)!
= A(-1)* ( 1.2
ap = A(-1) 2 @) (L.28)
Conversely, if 4 = poaqa =2¢ + 1,
(2¢ +2)!
=A(-1)'——— 1.29
a =AY ST (1.29)

where A is arbitrary. Thus with these choices for ay and a;, we can rewrite (I.25) to
be

y = APu(x) + BQ,(x) (1.30)

where 7 is an integer. Q, is the Legendre function that is an infinite series, whereas
‘P, is a finite polynomial referred to as Legendre polynomial of order » and given by
D 1)k [2n — 2k]!

Pal) = kg; 27k (n — k)l(n — 2k)!xn72k (L31)

where

n/2 if n even

Int(n/2) = { (n—1)/2  iftnodd (132)

The Legendre functions, Q,,(x), has a closed form that can be obtained more con-
veniently by using the method of order reduction. Applying d’Alembert’s method of
order reduction, we can set Q,,(x) = q(x)P,(x), where g(x) is obtained via Lemma I.1
given in Section I.2. Applying this approach to (I1.20),

dz dp
_ ) ) n
0 = (1 x)Pn—dx+<2(1 x) I

- ZxPn) z

dz 2x dx ap,
&= it A Dkl
1—x2 Py
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= 1 ex/ Z_x dx
SR R R S

1
(1—x2) (P,)

Thus with ¢ = — [ zdz,

1
Qu(x) = Pn(x)/ [m] dx (I.33)

where we included a factor of (—1) to make it consistent with (1.26) and (1.27).

1.4.2 Associated Legendre Equation

A generalization of the Legendre equation (1.20) is the associated Legendre equation
given by

d’y dy m?
a4y, _om
(1-x%) = 2x X+<n(n+1) 1_x2)y 0 (1.34)

Note that if m = 0, we get back the Legendre equation.

We now consider the situation in which » and m are nonnegative integers.
Instead of solving (I.34) by series solution, we approach the solution by using a
change of variable, namely let

w=(1—-x*)"2y (L35)

With y = qw, where q¢ = (1 — x?)"/2, the terms on the right-hand side of (1.34) can
each be divided by g and then evaluated to be

1 m2 2
5<n(n+1)—1_—xz>y = <}’l(}’l+1)—1 2>w
2x dy 2mx? ) dw
_ — —_—w — 2X—
q dx 1—x2 dx
1—x%d% m[(m—1)x* —1] dw d*w
-7 = —dmx— + (1 = 2 ==
qg dx? 1—x2 W x+( x)dx2
Doing so reduces (1.34) to
d>w dw
— 2 —_—— — — =
(1-x%) I 2(m+1)x o (n—m(n+m+Dw=0 (1.36)
Now let S be defined by
S(x) = AP, (x) + BQ,(x) (1.37)

Then S satisfies the Legendre equation given by (1.20). With f(x) = 1 — x?, df/dx =
—2x and a = n(n + 1), (1.20) can be rewritten with S replacing y, as

S df dS

_—t = — S=0 1.38
dx? dxdx+a (I.38)
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Furthermore, with d?f/dx*> = —2 and d*f/dx* = 0 for k > 2, the mth derivative of
each term in (1.38) is, using the Leibnitz rule (9.6),

4am dzs m dx (2+m k) S
prll Wiy = Z ]1: 2+m—k
dx dx —~ dx dx(@rm=k)

d(2+m)S d d(1+m)S
= f Team | T ) De(tm)

(1+m k)S
dx(1+m—k)
AV
dx2 ) \ dxm

@ (arasy i (2o
dx™ \ dx dx o dxk+

d d(1+m)S
= —f ( ) +m

dx \ dx(1+m)

;7.
o
/—\ \_/

d"s

dxm

@)

dx’”

and adding all the terms together, we obtain

(1- ):22 (ﬂ> —2(m+1)x% (ﬂ) (= m)n D) <de)

dx™ dx™
(1.39)
Comparing (1.39) with (1.36),
w = 3
dxm
(1- xz)_m/zy = Ad;:;” + Bd;x%”
Thus the solution to the associated Legendre equation (1.34) is

Y = AP, (%) + BQ, () (1.40)

where P,,, and Q,, are the associated Legendre polynomials and associated
Legendre functions, respectively, of order n and degree m defined by?

Pn,m

(=" )

)m/2 am

Qn,m (_1)m (1 - _Qn( ) (141)

2 Insome references, the factor (—1)" is neglected, but we chose to include it here because MATLAB
happens to use the definition given in (1.41).
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1.5 Series Solution of Bessel Equations

1.5.1

The Bessel equation of order v is given by the following differential equation:

d’y | dy

2 2 2\ v —

Using a series expansion around the regular singular point x = 0, we can identify the
following coefficients: 7,0 = 1, 1.0 = 1, Do.o = —v?, and > = 1. The indicial roots
using (9.2) are r, = v and r, = —v. Applying the Frobenius method summarized in

Theorem 9.2, the only nonzero values of Q,, x are
Ounoar)=1 and Qun(r) =n(n+2r)

thus ¢o(r) = 1, ¢1(r) = 0, ¢, (r) = —pn_2(r)/[n(n + 2r)],forn > 1,and 0,,(r) = (2r +
2n)¢, (r). Furthermore, because ¢ (r) = 0, functions corresponding to odd subscripts
will be zero, that is,

Gons1(r) =0 forn=0,1,...

For those with even subscripts,

Pu() = L= (W) <m> ”
(=D"
4! [Ty (n +r — k)

Depending on the value of the order v, we have the various cases to consider:

* Case 1: 2v is not an integer. We have a1 = b1 =0,k =0,1, ... ,andforn =
1,2,...

-1 -1
= (1 ) and by, = (1 )
! [TeZo (n+v—k) 4! [TiZo (n —v—k)

The two independent solutions are then given by

on

e (_1)nx2n+v & (_1)nx2n—v

R D e S P oy

n=0 n=0

These results can further be put in terms of Gamma functions (cf. (9.9)), and
after extracting constants out of the summations, we obtain

u(x) =2"T(v+ 1)/, (x) and v(x) =27"T(—v+ 1)J_,(x)
where J,(x) is known as the Bessel function of the first kind defined by
O N\ 2n+v (=1)"
Ju(x) = = _ 1.43
() Z(2) n!l(n+v+1) (143)

n=

where the order v in the definition (I.43) may or may not be an integer. Thus in
terms of Bessel functions, the complete solution, for v not an integer, is given by

y=AJl,(x)+ BJ_,(x) (1.44)
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¢ Case 2: 2v is an odd integer. Let m = r, — r, = 2v be an odd integer ¢. Because,

Ek = 0 when £ is odd, the value 7 in (9.43) will be zero. This means that b,,, =
¢2,(—v), and we end up with the same result as that of case 1, that is,

y = Al (x) + BJ_,(x) (1.45)

¢ Case 3: 2v # O is an even integer. Let v = ¢ with ¢ an integer. For the first root

r, = £, we have ay, = 52,1 (¢) and the first solution becomes
u(x) =21 ,(x) (1.46)

For the second solution, we will separate v(x) into three parts: vy , vy, and vs,
where vy contains the terms with by, (x), n < €, v, is the term with In(x) and v3
contains the rest of the terms.

€ —-n-1)

m and obtain
"nl(£ —1)!

For vy, we take n < £, for which by,, = EZH(—E) =

1

-1 y2n—t &~
(t—n—1) ot (0 —n —1)!
vi(¥) = (e —1)! [z@(z - 1)'] Z( ) n! (L47)

n=0 n=0

For v,, with m = 2¢, we find that

_ O220-2(—O)oe_2(—) B 2
o0(£) 4 —1)!

and together with u(x) in (1.46), we obtain

1

v2(x) = nu(x) In(x) = -2 |:21£(£—_1)1

] Jo(x) In(x) (1.48)

For v3, one can first show that

Q2020140 (=) b2in—14¢) + 1024 (£)
O2(n+0),2(n+0)(—€)

bynve)

v,
20
4npl(n + €)!

* |:4‘(€1— 1)!] |:4”n(!(_nl?:€)!:| % (nik + n —}c+€)
k=0

Because b,, = by = 0, we obtain v3(x) to be

n

v3(x) = |:2‘(K 1)'] Z [( )2n+e n!E;i)"e)' Z( k+£)] (1.49)
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Adding up (1.47), (1.48) and (1.49), we have the second solution v(x) as

WX = vi) + 0+ uk)

- L e - £

n=0
i it (1) " /1 1
_;(g) nl(n + ¢)! (; <z+k_+ﬁ>)} (1.50)

A more standard solution formulation known as the Weber form is given by
y = AJ(x) + BY,(x) (L51)

where the function Y,(x) is known as Bessel function of the second kind (also
known as the Neumann function), defined as

-1

2 X 1 /x\¢t (L —n-1)!
v = ()] 226G) T
1 oo X\ 20+t (_1)n n+t 1
—— = —_— - 1.52
nz<2) nl(n+¢)! |:Zk (152)
n=0 k=1
where y is known as Euler’s constant, defined by
. 1 1

y = lim [ (1 + 3 +-+ Z) —In(n) i| = 0.572215664.. .. (1.53)

* Case 4: v = 0. With n = 1, a similar procedure as in Case 3 above will lead to a
solution of the same Weber form,

y = AJo(x) + BYo(x) (1.54)
where
nw= ) )26 G (1)
n=1 ) k=1

An alternative method for computing the Bessel functions is to define the Bessel
function of the second kind as

Jo(x)cos(vmr) —J_,(x)

Y, (x) = - 1.56
) sin(vrr) (L.56)
Then for v = n, an integer, we simply take the limit, that is,

Y, (x) = lim Y,(x) (L.57)

This means we can unify the solutions to both cases of v being an integer or not, as

Y(x) = A-]v(x) + BY‘,(X) (158)
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1.56.2 Bessel Equations of Parameter A

A simple extension to the Bessel equation is to introduce a parameter X in the Bessel
equation as follows
d’y | dy

X —= 4 x

2.2 2
— —_— = I.
12 dx+()\x )y=0 (1.59)

Instead of approaching the equation directly with a series solution, we could
simply use a change of variable, namely w = Ax. Then

1 dy  dy d’y _ ,d%
dx = —d ; — =1 ; —= =1
e dx ~ “dw a2 " du?
Substituting these into (1.59), we get
d’y - dy
2 2_ .2
w W+w@+(w —v)y:O
whose solution is given by
y = Al (w) + BY,(w)
or
y = AJ,(Ax) + BY,(Ax) (1.60)
1.5.3 Modified Bessel Equations and Functions
The modified Bessel equations of order v is given by
d’y | dy
2 2 02\, —
xEjoa—(x +17)y=0 (L.61)
which is just the Bessel equation with parameter i = 4/—1, that is,
d? d
P g T (0% =)y =0
Then the solution is given by
y = Al ,(ix) + BY,(ix)
Another form of the solution is given by
y = Al (ix) + BK,(ix) (1.62)

where 1,(x) is the modified Bessel equation of the first kind of order v defined by

VTl

1,(x) = exp ( > )Jv(ix) (1.63)

and K, (x) is the modified Bessel equation of the second kind of order v defined by

v+ Dmi

K,(x) =exp < >

> [J,(ix) + iY,(ix)] (1.64)
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1.6 Proofs for Lemmas and Theorems in Chapter 9

1.6.1 Proof of Series Expansion Formula, Theorem 9.1

Assuming a series solution of the form

y= Za,,x" (L.65)
n=0
the derivatives are given by

d [o.¢] B oo .

% = ;nanx" 1 ;(I/L + Dayq1x
d2 o0 B o0
d—xﬁ - ;(n +1)(n)ap X"t = ;(n +2)(n + Dapgox”
"y < (m+N)! 0 L6
TN Z TanJrNx (L.66)

n=0
After substitution of (9.18) and (1.66) into (9.17), while using (9.5),

[e'S) n N k N
I Bp ] (HPPREL B

n=0 k=0 j=0

Because x is not identically zero, we have

n N .
k+ ).
Zz(akﬂ-p,,n_k%)zo forn=0,1,....00  (L6)

k=0 j=0

For a fixed n, let

(k+])' LO,n—m lf] =0
ke = Pjn—k =7 - Mjm—j =

pjnemi [12g (m—i) ifj >0

We can rearrange the summation in (I.67) to have the following structure:

j=0|j=1|---|j=N
0,0 ao
Mo,1 M1,0 a
Mo,2 M11

: 1,2 N0
M0,n : N1

M1,n MUN,2
MUN,n ApN

where the group of terms to the left of a, are summed up as the coefficient of
an. Note that u;, =0 if £ < 0. In addition, we can define p; , = 0 for £ < 0, and
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obtain p; ,,—j = 0 for m — j > n. Thus the coefficients of a,, for m < (n + N) can be
formulated as

N
MO,m"‘Zﬂj,mq’ ifm<n+N

coef (an) = j=1
UN,n ifm=n+N
Letting ag, a1, ..., ay—1 be arbitrary, we have forn =0, 1, ..,
n+N-1 N
UNn@nN + Z am | Lom + Z Mim—j | =0
m=0 j=1
n+N-1 N
Z am | Hom + Z i m—j
m=0 j=1
anyN = -
MN,n
n+N-1
= Z ¢n mm
m=0
where
N j-1
P0.n—m + Z Pj,n—m+j l_[(m - l)
_ j=1 i=0
¢n,m - (_1) N
PN,O H(” + i)
i=1
and

,OMZO £ <0

1.6.2 Proof of Frobenius Series Method, Theorem 9.2

The formula of a, has already been discussed (cf. (I1.7)). The same is true for when
(rp — r4) is not an integer, where we simply set n = 0 and b, = ¢, (r3) (cf. (1.8)). Thus
the remaining case to be proved is when r, — r, = m is a positive integer.

Based on the forms given in (I.14), consider the case where m > 0. Then v,
x(dv/dx) and x*(d*v/dx*) becomes

v = nuln(x)+ Z byx"tr
n=0
d d =
x% = 7 [u +x1n(x)d—z] + g by(n + rp)X"
,d*v

du 2 dzu > n+r
XYoo= [_LH_ZXE +x ln(x)ﬁ] + gbn(n +rp)(n+rp — DX
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Substituting into

2P2(x) + xPy (x)— + Py(x)v =

we have
0 = nln(x)( 2P2(x) +xP1(x)— +P0(x)u)
+1 [ﬁz(x) ( u+ 2xZ—> + P (x)u:|

+ Py(x) > ba(n+ rp)(n 4 rp — DXt
n=0

+ P (x) Z by (n + rp)x"*"

n=0
- o0

+ Py(x) Z byx"t"
n=0

Because u is a solution to the differential equation, the group of terms multiply-
ing In(x) is equal to zero. After substitution of P;j(x) =Y - 0;.x" and u(x) =
Yoo dn(ra)x™ e, the equation above becomes

S0 " Gi(ra) Bron-ic + 2ra+ 2k = 1) Prni)
n=0 k=0

+ XY b Qui(ry) = 0
n=0 k=0

With r, = rp, + m, the first summation can be reindexed, that is,

n—m

o0
Z n-+rp Z (ra) (bll,n—m—k —+ (2}’,1 + 2k - 1)%2,}1—”’1—]()
n=m

+ Y XY b Quil(ry) = 0

n=0 k=0

Using the definition of o,,() given in (9.40), we arrive at the working equation,
m—1 n
(Z Xy kan,k(rb)>
n=0 k=0

m—1
+ x/vtm (nao(ra) + bin Qm.m(rp) + Z kamk(%))

k=0

( Z anrrh |:r)an m(ra) + Z kan k(l’b)j|> = 0

n=m+1
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Thus for n < m, the formula for b, becomes those for 5,, (rp). For n = m, note that
Om.m(rp) =0, and we have b, arbitrary, which we can set to zero. Doing so and
making the coefficient of x"*" be equal to zero,

R Bk Qi)

- Uo(ra)

Forn > m > 0, each coefficient of x"*"* can be set to zero, which yields the recurrence
formula for b,

. ﬁanm(ra) + ZZ;(]) Qn,k(rb)bk
Qn,n(rb)

Finally, if m = 0, a similar derivation can be followed, except that we can set n =1
as discussed before. The working equation is now given by

by =

x't (Uo(ra) + memm(rb))

+ (Z X't |:0n—m(ra) + Z kan,k(rb)j|) = 0

n=1 k=0

Note that for this case, r, = rp = (1 — 01.0/02.0)/2, which means oy = 0. With
Qo.0(rp) =0, by can be arbitrary and thus can be set to be zero. The remaining
coefficients then become

_Gn(ra) + ZZ;(]) Qn,k(rb)bk

b, =
Qn,n(rb)

1.6.3 Proof of Bessel Function Identities

1. Derivatives of J, (x). Recall the definition of J,(x),

R G V2
LOEDD mIT(m + v + 1) (5)

m=0

To show (9.63), multiply J,(x) by x* and then take the derivative with respect
to x,

d ) d o0 (_1)mx2m+2v
dx ) = dx |:mz_% m!\T'(m + v + 1)22m+y

B i (_1)m(2m + Zv)x2m+2v—1
N = mIl(m + v+ 1)22m+y

by (EDM ey 2
- me!F(m—i—v) (E) )

m=0

= x"J,.1(x)
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To show (9.64), multiply J,(x) by x~¥ and then take the derivative with respect
to x,

d . L dfE (1)

dx () = dx [,;) m!T'(m+ v+ 1)22m+“]
i (_1)m(2m)x2m71

N m!C(m + v+ 1)22m+v

m=1

i (_1)mx2m—l
© A (m = DIT(m A+ v+ )22

i —1)yn 2m—+v+1
IS S ) %)
mzom!I‘(m+v+2) 2

= —x ")

To show (9.65), expand the derivative operation on x"J ,(x)
d v v—1 v d
o (x"J(x)) = v T, (x) +x dev(x)
and equate with (9.63) to obtain
v—1 v d v
X" (x) + x d—],,(x) = x",-1(x)
X

Jor(x) — )BCJ],(x)

d

=7,

o)
To show (9.66), expand the derivative operation on x~"J,(x)

d d
= (x7"o(x)) = —ux U, (x) + x‘“EJV(x)
and equate with (9.64) to obtain
—ux (%) +x"’ij x) = —=x"uk)
v dx v - v+1

dii]”(x) = —Jv+1(x)+£Jv(x)

Derivatives of Y, (x). Recall the definition of Y, (x),

T

1S (=D e [O81
~ 2 X oo 3) [Zz}

m=1

IS (=) ey [ER1
2 X i 3) [ z]

m=0 k=1

Ko = 2l DTG
m=0
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To show (9.67), multiply Y,(x) by x” and then take the derivative with respect
to x, while incorporating (9.63),

% xY,(x)) = %% ([ln (g) + J/] xva(x))

1d X_:(v—m—l)!xz’”

m!22m—u

1d & (_l)mx2m+2v [ m 1
_;E;m!(mﬂ)!zzw ZE

(_1)mx2m+2u [(m+v 1

1d &
_;EX%m!(mH)!zZmH ZE

m=l

1 21: (v —m — 1)l

St (m — 1)122m—v-1

1 (—1)my2m2v-1 [
i ”E:l m!(m + v — 1)122m+v-1 _; zi|

1 (—1ynx2m+2v-1 [l
I rg m!(m+ v — 1)122m+v-1 ] kX:; Ei|

2 © (=" 2m+v
- o ()
2 () ]en

T

RO

m=0
1, (1" xn2mv-1 [ L1
2 L o1 () kZ%}

1, (1" X\ 2mtv—1 [ 1
B ;x ;)m!(m—}-v— 1)! (E) | = %:|

= x"Y,1(x)
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To show (9.68), multiply Y, (x) by x~¥ and then take the derivative with respect
to x, while incorporating (9.64),

Zrw) = 25 () )

1d i (v—m — 1)lx¥m=2
7 dx ot ml22m—v

1d S (=1 "1
 mdx ; m!(m + v)122m+v [; %}

1

1d i (=1)mx2m ™1
mdx ~~ m!(m + v)122m+v —~k

= %x“’_llv(x) — % [ln (;) + y] X 1(x)

Ya2m=2v-1

(
Z vm122m v—1

1 & (—1)my2m=1 m
T ; (m — 1)!(m + v)122m+v-1 |:Z

k=

1 i (_1)mx2m—1 m
m = (m—1)l(m + p)122m+v—1

k=

H
x| -
| I |

+
<

ENY
1

—_

= i[ln<2>+y]x Sy ()
_VZ (V(;l;??)' (2)2”’ vl

1 — ad (—l)m xy2m+v+l | 1
2 L e (3) [Zz}

k=1
1 00 _1yn v+l m+v+1 1
o m'(n(1+?)+1)' (g) [ 2. k
m=0 """ ’ k=1
= —=x"Y,1(x)

To show (9.69), expand the derivative operation on x"Y,,(x)
d v v— v d
o (x"Y,(x)) = " 1Y, (x) + x EYU(X)

and equate with (9.67) to obtain

vx”_lYU(x)—i—x”iYU(x) = x"Y,1(x)
dx
Ly = vaw-tre
dx v = v—1 X v
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To show (9.70), expand the derivative operation on x~"Y,,(x)

d d
—va - _ —v—1 Yv —v Yv
= (x 7Y, (x)) VX (x) +x = (x)

and equate with (9.68) to obtain

d
Y@ Y0 = Y ()
dx
d v
d_YU(x) = —YV+1(X) + _Yv(x)
™ X

3. Derivatives of /,(x). Recall the definition of 7,(x),

I,(x) =exp (—%i) J,(ix)

To show (9.71), multiply 7,(x) by x” and then take the derivative with respect
to x, while using (9.65),

ix"l (%)

pm exp (—%i) [vx”’lfu(ix) +x’ (i]\,_l(ix) - )—t]v(ix))]

= xXexp <_ (v _21)”1') J o1 (ix)

= x"[,_1(x)

To show (9.72), multiply 7,(x) by x and then take the derivative with respect
to x, while using (9.66),

ix“’l w(x)

T exp (—% ) [—vx_”_llv(ix) +x¥ (—iJV+1 (ix) + ;JU(ix))]

x"exp (— w +21)71i) J i1 (ix)

= x"[(x)

To show (9.73), expand the derivative operation on x"/,(x)

4 (x"I,(x)) = vx" "1, (x) + x"ilv(x)
dx dx

and equate with (9.71) to obtain

d
v—llv v_IV — VIU,
vx (x)+x T (x) x"I,_1(x)
d v
d_IV(x) = IL,1(x)—-1,(x)
X x

To show (9.74), expand the derivative operation on x~"7,(x)

d —v _ —v—1 —v d
o (x"L,(x)) = —ux " (x) + x dxlv(x)
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and equate with (9.72) to obtain
—v—1 —v d —v
—VX Iu(x) +x d_lv(x) = X Iu+1(x)
x

D0 = L+ L
dx X

Derivatives of K, (x). Recall the definition of 7,(x),

v+
2

K,(x) = exp < i> (Jo(ix) + 1Y, (ix))

To show (9.75), multiply K, (x) by x” and then take the derivative with respect
to x, while using (9.65) and (9.69),

%x”Kv(x) = exp <(V +21)ni) [x"~" (J,(ix) + iY,(ix))
0 (i) = 2,(0) = Yot (i) = 12 Yo(i0) ) |
= —x"exp <%1) (Jy—1(ix) + iY,_1(ix))
= x"K,_1(x)

To show (9.72), multiply /,(x) by x* and then take the derivative with respect
to x, while using (9.66) and (9.70),

%x“’KU(x) =

27 (=il (16) + S0 + Vo) + 12V, (00))

(v+2)r .
2

= —x"exp ( l) (Jo41(ix) + Y11 (ix))

= —x"'K;i(x)
To show (9.77), expand the derivative operation on x"K,(x)
d - v d
o (x"K,(x)) = w" 1K, (x) + x aKu(x)

and equate with (9.75) to obtain

v LK, (x) + x”diKu(x) = —x"K,~1(x)
X
e K0 - V1,0
—K,(x) = —-K,1(x)—-1,(x
dx ! X

To show (9.78), expand the derivative operation on x K, (x)

d —v _ —v—1 —v d
7 (x"Ky(x)) = —ux " K (x) + x deU(x)
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and equate with (9.72) to obtain

d
—x T K () + x TV —K (%)

= —_ 7VKV

dx X +1(x)

"KW = K+ UKW

—K,(x) = —K,x)+-K,(x

dx o X
Bessel functions of negative integral orders. We use induction to prove the
identity.

The recurrence formula yields the following two relationships,
2n
Jona(x) = _?]—n(x) —J n1(x)
2n
Jn-1 (x) = ?Jn (x) —Jns1 (x)

Adding and subtracting these equations,

Jaa® = =200 T

= (Ton1(x) + T po1(x)) = T (x) (1.68)
Jaa® = =200 + W)

= (Ton1(x) = Tpo1(x)) + T (x) (1.69)

If n is even, while using the inductive hypothesis, that is, supposing that J,(x) =
J_p(x)and J,_1(x) = —J_,+1(x), we can then use (1.68) and see that

Iy (¥) = =41 (x)

If n is odd, while using the inductive hypothesis, that is, supposing that J,(x) =
—J_y(x)and J,_1(x) = J_,11(x), we can then use (1.69) and see that

J—1)(x) = Jps1(x)
To complete the proof, we note that
Jo(x) = (=1)7o(x)
and with the recurrence formula,
Jo1(x) = =J1(x)

We can then continue the induction process to show that the identity is satisfied
forn = 2,3, ... and conclude that

Jon(x) = (=1)"Jn(x)

Similar approaches can be used to show the identities for Y_,(x), I_,(x) and
K_,(x).
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Additional Details and Fortification
for Chapter 10

J.1 Shocks and Rarefaction

For the general quasilinear first-order PDEs, it is possible that the solutions of
the characteristic equations will yield a surface that contains folds — resulting in
multiple values of u for each point in some region of the space of independent
variables. When this occurs, the classic solution (i.e., completely smooth solution)
is not possible. Instead, a discontinuous solution that splits the domain into two or
more regions with continuous surface solutions will have to suffice. A solution that
covers both the classic solution and solutions with discontinuities are called weak
solutions or generalized solutions. The discontinuities are known as shocks, and their
paths can be traced as curves in the domain of the independent variables known as
shock paths.

We limit our discussion to PDEs whose independent variables are time 0 < ¢ <
oo and a space dimension —co < x < oo, given by the form

ou u
- = Nl
o + b(x, t, u) o c(x, t,u) J.1)

subject to a Cauchy condition
u(x, t =0) = up(x) J.2)

The method of characteristics immediately yields the following characteristic

equations

dt dx du

— =1 : = =bxt, . — =c(x, ¢t J.3
ds T ds (x, ) ds ctx. ,u) (7-3)
subject to initial conditions, t(a, s = 0) = 0, x(a, s = 0) = a, u(a, s = 0) = up(a). The
solution for ¢ is immediately given by ¢ = s. This reduces the problem to

d d

d—j =b(x,s,u) ; d—? =c(x,s, u) J.4)
which can be solved either analytically or numerically for fixed values of a, where
a is the parameter along the Cauchy condition. Because of the coupling of the
equations in (J.4), the solution for x and u is a curve C(x, u) that is parameterized by
a and s. Unfortunately, these curves can contain folds, that is, several u values may
correspond to a point (x, ).

771
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To illustrate, consider the inviscid Burger equation given by

ou n ou

JE— u— —=

ot 0x
with the Cauchy initial condition (J.2). Then the solution of (J.4) with b(x, s, u) = u,
c(x,s,u) =0,u(a, s =0) = uy(a), and x(a, s = 0) = q, is given by

0 (1.5)

u(a, s) = up(a) and x(a,s) = up(a)s +a

Furthermore, let uy(x) be given by

3 1 1 1 , x—10)?
w0 =3 | am g5 ta) v @=(g0) 69

We can plot u(a, s) versus x(a, s) at different fixed values of s with —80 < a < 100 as
shown in Figure J.1.

From the plots in Figure J.1, we see that as s increases, the initial shape moves
to the right and slants more and more to the right. Ats = 29.1, portions of the curve
near x = 41.0 will have a vertical slope, and a fold is starting to form. When s = 80,
three values of u correspond to values in the neighborhood of x = 78. At s = 120,
portions of the curve near x = 54.8 will again have a vertical slope. Then at s = 300,
we see that around x = 165 and x = 235, three values of u correspond to each of these
x values. Finally, we see that at s = 600, there are five values of u that correspond to
x = 370.

J.1.1 Break Times

We refer to the values of s(= ) in which portions of the curves just begin to fold
as the break times, denoted by spreax. From the plots given in Figure J.1, we see
that several shocks are possible, each with their respective break times. Assuming
that the initial data uy(a) are continuous, the shock that starts to form at the break
time is along a characteristic that starts at a, which intersects with a neighboring
characteristic that starts at a + €. This means

% =0 at s = Spreak (J.7)
da

Suppose the shock at the break time will belong to a characteristic starting from
a that belongs to a range [a@jer, aright]. For instance, one could plot the characteristics
based on a uniform distribution of a and then determine adjacent values of a whose
characteristics intersect, as shown in Figure J.2. The values of ajef; and ayign: can then
be chosen to cover this pair of adjacent values of a. The break time spreax and the
critical point dcritical can then be determined by solving the following minimization
problem

a
min  {s} such that ( £ < O) (J.8)

aclat, aright]

The values of x at spreqx along the characteristic corresponding to dcitica; Will be the
break position, denoted by xpreax,

Xbreak = X (Acritical» Sbreak) J.9)
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Figure J.1. Plots of u versus x for different values of s, with —80 < a < 100.
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150[

100

50

Figure J.3. The characteristics corresponding to uni-
formly distributed values of a. Also included are two
characteristics along aciica;- The circles are the break
POintS (xbreaka Sbreak)~

/

L L L J
0 50 100 150 200
X

In particular, the characteristics (x, ¢) for the inviscid Burger equation (J.5) are

given by straight lines

X—a

t=—— if 0 J.10

e @ # (1.10)
(If up(a) = 0, the characteristics are vertical lines at a.) For the initial data uy(x) of
(J.6), aset of characteristics corresponding to a set of uniformly distributed a values is
shown in Figure J.3. From this figure, we could set [ajefi, @rignt] = [0, 50] to determine
the break time of the first shock point. We could also set [ajeft, @right] = [—50, 0] to
determine the break time of the other shock point. Solving the minimization problem
of (J.8) for each of these intervals yields the following results:

Sbreak,1 = 29.1 Acritical,1 = 19.84 3 Xbreak,1 = 41.0
Sbreak,2 = 120 5 Ocritical 2 = —15.25 5 Xbreak,2 = 54.8

In Figure J.3, this information is indicated by two darker lines starting at (z, x) =
(0, dgritica1) and ending at the points (¢, X) = (Sbreak, Xbreak ). 1hese break times and
break positions are also shown in Figure J.1 for s =29.1 and s = 120 to be the
correct values where portions of the curves are starting to fold.

J.1.2 Weak Solutions

Once the break times and positions have been determined, a discontinuity in solution
will commence ast = sincreases and a weak solution has to be used. A function ii(x, 1)
is a weak solution of a partial differential equation, such as (J.1),

ou ou
m + b(x, t, u)a =c(x,t, u)
if
R ol ol .
/ / <z9(x, 1) [— + b(x, t,u)— — c(x, ¢, u):|> dxdt=0 J.11)
0 —00 ot 0x

for all smooth functions ¢ (x, £), which has the property that ¥ = 0 for x outside of
some closed interval [Xief, Xrignt | and for ¢ outside of some closed interval [fiow, thigh ]
(with —00 < Xy < 00 and 0 < fiow < thigh < 00). The main idea of (J.11) is that
via integration by parts, partial derivatives of discontinuous #(x, t) can be avoided
by transferring the derivative operations instead on continuous functions 9(x, t).
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u

Area I

775

Area,=Area,

Figure J.4. The location of xg« based on equal area rule.
Area 5

Xshock

Another important point is that the function 9(x, t) is kept arbitrary; that is, there is
no need to specify this function nor the domain given by Xright, Xieft, flow» OT fhigh. This
will keep the number of discontinuities to a minimum. For instance, if a continuous
it can satisfy (J.11) for arbitrary ¢, then no discontinuity need to be introduced, and
it = u, a classic solution.

For the special case in which c(x, t, i) = c(x, t) is continuous, let the desired
discontinuity that satisfies (J.11) occur at (t = s, Xshock(s)). The value of xghock Will
occur when two characteristics, one initiated at a = a(_) and another initiated at
a = a4, intersected to yield Xghock. The condition (J.11) implies that Xghock is located
at a position where the area of the chopped region to right of xs,oc is equal to the
area of the chopped region to the left of xgock, as shown in Figure J.4.

J.1.3 Shock Fitting

Based on the equal area rule, a shock path xgpock (5) With s > spreax can be determined
by solving the following integral:

fu . [u(a, s)%:| da =0 (1.12)

=)

such that x (a), s) = x (@), ) = Xshock (5)-

Generally, the location of the shock path, especially one that is based on the
equal area rule, will require numerical solutions. We outline a scheme to determine
the shock path in a region where the folds yield triple values u for some x (i.e., the
case shown in Figure J.4). This scheme depends on the following operations that
require nonlinear solvers:

1. Detection of Fold Edges. Let acritical be the value found at the break time of the
shock, then

( Gedge.1 > = EDGE (ritical) (1.13)
aedge,2
where

0. b

= =0= = and Qedge,1 < Acritical < dedge,2

da aa ’ ’

Aedge,1 Qedge,2
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2. Root Finding for a. Let x, be in a region where three different values of u
correspond to one value of x and s.

a, | =FINDa/(x,,s) (J.14)

where

ay>ay >a3; and x(ai,s) =x(a, s) = x(az,s) = xg

3. Evaluation of Net Area.

(y) = /:;()y) |:u(s, a)g—z:| da J.15)

where a;(y) and a3(y) are found using the operation FINDa(y).

Shock-Fitting Scheme:

* Given: Spreak, As and deritical
® Fors = Spreak + AS, Sbreak + 2AS, ...

1. Calculate x, as the average of the edge values,

Xg == [x (S, ﬂedge,l) +x (S, aedge,z) ]

where dedge, 1 and dedge 2 are found using EDGE (acritical )-
2. Using x, as the initial guess, find & such that

I(%)=0

3. xshock(s) <~ X

Using the shock-fitting scheme on the Burger equation (J.5) subject to the initial
condition (J.6), we find two shocks paths, one starting at (¢, x) = (29.1, 41) and the
other one starting at (¢, x) = (120, 54.8), as shown in Figure J.5. One can see that the
shock paths for this example are approximately straight lines. Furthermore, we also
note that the two shock paths do not intersect with each other. Thus even though the
curves shown in Figure J.1 for the case of s = 600 may contain portions in which u has
more that three values corresponding to a specific value of x, it does not immediately
imply that the two shocks path would intersect. In the next section, we show that
the shock paths will need to satisfy jump conditions and that the path being linear is
not due to the initial condition but rather due to the coefficient b(x, t, u) = u for the
inviscid Burger equation.
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150}
Figure J.5. Two shock paths for the Burger equa- ¢

tion under the conditions given by (J.6) using
the shock-fitting scheme based on the equal-area 100}
principle.

501
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J.1.4 Jump Conditions

We further limit our discussion to the case where b(x, t, u) = b(u) in (J.1). Under
this condition, the differential equation (J.1) results from (or can be recast as) a
conservation equation given by

aﬁt ﬂﬁ u(x,t)dx = (ﬂux (U(a,r)) — flux (u(ﬂ,,))> + fﬂ c(x,t,u)dt  (J.16)

o

where flux(u«) = [ b(u)du and c(x, t, u) is the volumetric rate of generation for u.

Now suppose at ¢, o < B is chosen so that the shock discontinuity is at x = x;
located between « and . Let x; and x;F be the locations slightly to left of and right
of x;, respectively. Then

B

% (/axx u(x, t)dx + /f u(x, 1) dx) = (ﬂuX (U(a,r)) — flux (u(ﬂ,,))> + / c(t, x) dt

Xg o

(J.17)
Applying the Leibnitz rule (5.52) to (J.17), we obtain

% du _, dx; P du Lo axf
/a de+u(xs,t) yr +/x;§dx—u(xs,t) o

= (ﬂuX (t4(ar)) — flux (u(ﬁ,t))) + /ﬁ c(t,x)dt

Next, we take the limit as « — x; and 8 — x;. This yields

_ o\ dxg dxy
u(x;, 1) TR (xF. 1) o= (ﬂux (t(y; ) — flux (”(@,:)))

s

N
where fxx, cdx = 0 if we assume that c(x,t,u) is piecewise continuous.! As the
previous section showed, the shock propagation is continuous and implies that

1" A more complete assumption for c is that it does contain any Dirac delta distribution (i.e., delta
impulses).

200
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dxf /dt = dx; /dt = dx,/dt. Using the jump notation, | &7 = &,y — &luuer ., We
arrive at
dx, _ | fluxtw) | (1.18)
dt Lu]
which is known as the Rankine-Hugoniot jump conditions.? This condition equates
the shock speed dx,/dt to the ratio of jump values of the flux(«) and u. This can be
used to help find the next position of the discontinuity for some simple cases; that
is, the shock path can be found using (J.18) without using the equal area approach
discussed in the previous section. Furthermore, the jump condition can be used to
eliminate some shock solutions that satisfy the partial differential equations on the
piecewise continuous region, but nonetheless would violate the Rankine-Hugoniot
conditions.

EXAMPLE J.1. Consider the inviscid Burger’s equation
ou ou
o o

subject to the discontinuous condition

=0

1 ifx<a
M&®={O ifx > a
For this problem, b(u) = u, and the flux is
2

flux(u) = /udu = %

Because the initial condition is immediately discontinuous, the break time in
this case is at # = 0. Using the Rankine-Hugoniot jump condition (J.18),

2
deg, | 2 ut +u

dt L u W 2
Because u = constant along the characteristics, = = 1 and u™ = 0, yielding

dx; . 1 S = t ta
d 2 T2
Thus the solution is given by

t

1 ifx<-
1x_2+a

u(x,t) = ;

0 if —
1x>2+a

2 If the conservation equation (J.16) is given in a more general form by

9 [P B
% /a ¢ (x,t,u)dx = (ﬂux (o1, U(g,)) — flux (B, 1. u(ﬂ_,))) +/a c(x.t,u)dt

the Rankine-Hugoniot condition (J.18) should be replaced instead by
dxg _ L flux (x, ¢, u) -|

dt [ &t u)]
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The jump conditions given in (J.18) will generally not guarantee a unique solu-
tion. Instead, additional conditions known as admissibility conditions, more popu-
larly known as Lax entropy conditions, are needed to achieve physical significance
and uniqueness. We now state without proof the following condition known as
the Lax entropy conditions applicable to the case where flux(u) is convex, that is,
d? flux/du® > 0:

d flux dx; d flux
> >
du T dt — du

u=u

J.19)
u=ut
Thus these conditions put the necessary bounds on the shock speed, at least for the
case of convex fluxes.? This condition simply implies that if the characteristics appear
to be intersecting in the direction of decreasing ¢ (time reversal), then this solution
is not admissible.

EXAMPLE J.2. For the inviscid Burger equation and initial condition given by

A forx<0

u ou
oo u(x,O)z{B forx > 0

ot tu ax
where A < B.Let0 < m < 1, then a solution that contains two shock paths given
by

A forx < (A+m)t/2
ux,t)=3 m for(A+m)t/2 <x < (m+ B)t/2 (J.20)
B forx > (m+ B)/2

will satisfy the Rankine-Hugoniot jump conditions at both regions of disconti-
nuities. This means there are an infinite number of possible solutions that will
satisfy the differential equation and jump discontinuity conditions.

However, using the entropy conditions given in (J.19), we obtain

A>—>8B
>dt>

which is not true (because it was a given in the initial condition that A < B).
This means that the discontinuous solutions in (J.20) are inadmissible based on
the entropy conditions. We see in the next section that the rarefaction solution
turns out to be the required solution.

J.1.5 Rarefaction

When a first-order quasilinear PDE is coupled with a discontinuous initial condition,
we call this problem a Riemann problem. We already met these types of problems in
previous sections. In Example J.1, we saw that the Riemann problem there resulted in
a shock propagated solution for the inviscid Burger equation, where u(x < a,0) =1
and u(x > a,0) = 0. However, if the conditions were switched, that is, with u(x <
a,0) =0and u(x > a,0) = 1, the method of characteristics will leave a domain in the
(x, £) plane without specific characteristic curves, as shown in Figure J.6.* In contrast

3 A set of more general conditions are given by Oleinik entropy conditions, which are derived using
the approach known as the vanishing viscosity methods.

4 If the initial condition were not discontinuous, this would have been filled in without any problem,
especially because the characteristics would not even intersect and no shocks would occur.
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u(x,t)=?

/ Figure J.6. Rarefaction in a Riemann problem.

to the shock-fitting problem, this case is called the rarefaction, a term that originates
from the phenomenon involving wave expansion of gases.

We limit our discussion to the case of (J.1), where b(x, t, u) = b(u) and c(x, t, u) =
0 with the additional assumption that the inverse function b~!(-) can be obtained.

Consider
ou ou
— +b(u)— =0 J21
5 T (J.21)
subject to
0 ueft  ifx <a 12
u(x,0) = . .
(= 0) utht ifx >a (1-22)

where b (u'*') < b (u"€"). Let the initial data be parameterized by &, that is, at s = 0,
t(s =0) =0, x(s = 0) = £ and u(&, 0) = u'" or u(£,0) = u"e" when £ <aor &£ > a,
respectively. Then the characteristics are given by
b(uyr+& ifé<a
x=b(u0)t+& — x=
b(ue)t+& ifeé>a

Rarefaction will start at x = a when ¢ = 0. The characteristics at this point can be
rearranged to be

w(a,0)= lim b (" — ”)

(x,6)—(a,0) t

We could pose that the solution in the rarefaction domain to be of the form

u(x, ) = b-! (x - ”)

and see that this will satisfy the differential equation, that is,

a g =0~ () G (7)) =0

The solution of (J.21) subject to (J.22) is then given by

uleft if x < b (uleft) t+a

u(x,t)=19 b! (

yright ifx>b (uright) t+a

X —a

) i) t+a<x<bue)r+a J.23)

It is left as an exercise (E10.20) to show that (J.23) is piecewise continuous.
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EXAMPLE J.3. For the inviscid Burger equation and initial conditions given by,

%—L; + ug—x =0 subjectto u(x,0)= { (1)2 g;c i ;
the rarefaction solution becomes
0.5 ifx<05t+2
u(x,t) = )%2 if05t+2 <x<1.5t+2

1.5 ifx>1.5t4+2

J.2 Classification of Second-Order Semilinear Equations: n > 2

When the number of independent variables is more than two, the principal part of
the semilinear equation is given by the following general form:

prm = Z Z o j (X) Mij (J24)

i=1 j=1

Just as we did in the previous section, we look for a new set of independent
variables {&q, ..., &,}, such that under the new coordinates,

n
Fprin(s],...,gn)zze,uf? where e=0, —lor +1  (J.25)

where we use the following notation:

© _ ou
0&;
2
2O 3_0!7 l<ij<n
" 0§;0§; - T
3
'U“@)k — a—u’ 1<i’]'7k<n
" 08,0808 - -

(1.26)

The classification of these forms is then given in the following definition:

Definition J.1. The canonical forms of second-order semilinear equations given
by

Ze,u” = (El,...,én,u M§S),...,u§f)) J.27)

are classified to be elliptic, parabolic, hyperbolic, and ultrahyperbolic according
to the following conditions:

Elliptic: if €; # 0 all have the same sign
Parabolic: ife;=0forsomel <i<n
Hyperbolic: if €; # 0 all have the same sign except for one
Ultra-Hyperbolic: ife;i Z0and e, > €, >0, e, <eg<0foratb#c#d
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Unfortunately, finding a change in coordinates,
gizéi(xl,xz,...,xn) i=1,2,...,n (J28)

that would yield the canonical forms (J.27) may not be always be possible. However,
when the coefficients in the principal parts are constants, then the equation can be
transformed into the canonical forms given in Definition J.1.

THEOREM J.1. Consider the second-order semilinear equation given by

n n
ZZAI',]'ML/' =f(xv uv H’l?”w“‘n) (J29)
i=1 j=1
where A; j = A;; are constants. Let (&1, &, ...,&,) be a set of new independent vari-
ables defined by
&1 X
& X2
. =DU . (J.30)
&n Xn

where, U is an orthogonal matrix such that UAUT = A, where A = diag(1,
A2, ..., An) Is the diagonal matrix of eigenvalues of A and D = diag (di, da, ..., dy),
where

Nl ify #0
di =
0 ifai=0

and X; is the ith eigenvalue of A. Then under the change of coordinates given by (J.30),
the partial differential equation (J.29) becomes

n
Zei,ufi.):f(él,...,én,u,uf),...,uff)) , =0 —1lorl (J31)
i=1

PROOF. With (J.30), the partial differential operators 9/dx; are

8/0x1 8/08
5/0x, 3/0&,
N = UTD .
50, 8%,

Using the partial differential operators, the partial differential equation (J.29) can
written as

8/3)(1
3/3x>

(9/oxy 9/ox, --- d/ox, A u=fX,u ..., M)

3/0x,
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or

/0&
( 9/061 --- 9/3& )DUAU'D : w=f(X U ft1,..., ML)
/08,

which can then be simplified to be

ngn(x)u@) g u®)

where
+1 if )‘-i >0
sign(};) = 0 ifx=0
-1 ifx <0

EXAMPLE J.4. Consider the second-order differential equation with three inde-
pendent variables x, y, and z,
’u ’u Pu  u o’u 3%u
—+5—-2—+-—=+4+2—+3— =k 132
e T dxdy  0xdz * dy? + ayoz * oz ! (1:32)

We now look for new coordinates &, &, and &; that would transform (J.32) into
the canonical form given in (J.27) for purposes of classification.
Extracting the coefficients into matrix A,

325 -1
A= 25 1 1
-1 1 3

Using Schur triangularization, we can obtain the orthogonal matrix U

( 0.5436 —0.7770  0.3176 )

U=\ -0.0153 0.3692 0.9292

0.8392 0.5099  —0.1888
and the diagonal normalizing matrix D,
D = diag (0.9294, 0.5412, 0.4591)
The new coordinates are obtained as follows
& X 0.5252x — 0.7221y + 0.5029z
& =DU| y = —0.0083x + 0.1998y + 9.5029z
& z 0.3853x + 0.2341y — 0.0867z

As acheck, we can apply the change of coordinates while noting that the second-
order derivatives of &, e.g., 3°&;/ (3xdy), are zero. Thus

E E ( d ]) fOl‘p q—x Z
8 a 8 a 8 a 5 ’ »y,
p q =1 j=1 p q %i SI
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When substituted into (J.32), we obtain

3 3
22 oz, as,as,

i=1

where

%8 & 2%']
o2 +a 12—8 X3y +---+a 2

€j =a11
For instance,
€12 = (3)(0.5052)(—0.083) + (2.5)(0.5052)(0.1998)
+(—1)(0.5052)(0.5029) + --- + (3)(0.2952)(0.5029)

After performing the computations, we find €11 = —1,€2» = €33 = 1l andfori # j,
€ij = 0, i.€.
92u N 9%u N Pu
061061 06,08, 08306
Thus we can classify (J.32) to be hyperbolic.

J.3 Classification of High-Order Semilinear Equations

For partial differential equations that have orders higher than two, the canonical
forms are more difficult to fix. Instead, the classification is to indicate whether
a solution by characteristics is possible or not. We limit our discussion to cases
involving two independent variables.

Recall that for the second-order equation with two independent variables given
by

A(x, Y)uee + B(x, y)uey + Cx, Yuyy = f(x, ¥, u, uy, uy) (J.33)

the characteristics were obtained by solving the characteristic form,

O(&x. &) = A(x. y)& + B(x, y)&&y + Cx, y)&, (1.34)

Prior to the determination of whether the equation can be transformed to the hyper-
bolic, elliptic, or parabolic canonical forms, the roots of the characteristic form
became critical. For the hyperbolic equations, the roots were real. For the parabolic
equations, the roots were equal. And for the elliptic equations, the roots were com-
plex. By using the character of the roots, we can then extend the concept of hyper-
bolic, parabolic, and elliptic to higher orders.

Definition J.2. For an mth-order semilinear partial differential equation in two
independent variables x and y,

m
0"u
ZO:A,‘(X, y)m = f (X, Yo U, Ly - - - H/[mfl]) (J35)
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the characteristic form is given by

m m
Q(5.&) = ) Alx, EE " =[] (& —rilx. &) (J.36)
i=0 i=0
where ri(x,y), i =1,2, ..., mare the roots of the polynomial
m .
D Ai(xy)r=0 (3.37)
i=0
Then at a fixed point (x, y), equation (J.35) is classified as
Hyperbolic: if all the roots r; are real and distinct
Parabolic: if all the roots r; are equal
Elliptic: if all the roots r; are complex
Mixed: otherwise

Thus for the hyperbolic case, we can determine m characteristics &;(x, y) by
solving the m characteristic equations given by

Eiyx — 1i(x, ¥)EGy =0 i=1,2,....,m (J.38)
that is, solving
d d
Tx = _r,-(x),]y) &) (x, y) = constant (J.39)

Furthermore, note that if m is an odd number, then the partial differential
equation can not be elliptic.
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Additional Details and Fortification
for Chapter 11

K.1 d’Alembert Solutions

Having the general solution for the one-dimensional wave equation as given in
(11.17), we can start fitting them to initial and boundary conditions. We first consider
the case with an infinite x domain and only the initial conditions are specified. The
solution for this type of problem is given by a form known as the d’Alembert
solution. Next, we consider the case of semi-infinite domain, that is, x > 0, where
we extend the applicability of d’Alembert solutions for systems with additional
boundary conditions. Finally, we consider the case where the spatial domain is a
finite segment, for example, 0 <x < L.

K.1.1 Infinite-Domain Wave Equation with Only Initial Conditions

The system is described by

d’u 182u_0 o <1<
Xz 2o -
ou
subect to u(x,0) = f(x) and ™ (x,0) =g(x)
Applying the initial conditions to the general solution for u given in (11.17),
ux,0) = fx)=¢@)+v(x)

aa_L; (x, 0) (K.1)

I
oQ
—

=
~

I

a
=
|

because at t =0, ¢(x + ct) = ¢(x) and ¥ (x — ct) = ¥ (x). Taking the derivative of
f(),

af d¢+ dy
dx ~ dx dx

Solving (K.1) and (K.2) simultaneously for d¢/dx and dvr/dx,

(K.2)

de¢ _ 1df 1 dyr . 1df 1
dx — 2dx ch(x) and dx ~ 2dx 2Cg(x)
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Time = 0.0

50

0
[ /_/J\ Time =1.0 7
0 .
0
A~ N\
0

50
Time = 3.0

1r Time = 8.0

0 ~\ ~/\
-50 0 50
x

Figure K.1. A surface plot of the trajectories of u, (left) and a set of four snapshots of u, at
different time instants (right) for the d’Alembert’s solution based on zero initial velocity.

and
00 = S+ [ s@drr

1o = 30— [Ce@dre

However, k1 = —«;, because f(0) = ¢(0) + ¥ (0). Returning to (11.17),
u(x,t) = L [fx—c)+ f(x+ct)]+ S /Ha (r)dr (K.3)
) 2 )u 8 '

x—ct

Equation (K.3) is known as the d’Alembert’s solution of the initial value problem.

4
EXAMPLE K.1. Let ¢ = 3, g(x) = sech(x), and f(x) = Z ¢ (a4, Bi, i, X), where

i=1
| L | A | Bi | Vi |
) T 1] 4] 1
¢(o, By, x) = 5 [1 + tanh (ax + ,3)] and 2 1 | =4 1
31 4]=05
Z (1] 10] 05
1 1 [rta
Let u(v.0)=5 (e +f(x—c)) and up(v.0) = - f 2(s)ds.
x—ct

From Figures K.1, we see that the initial distribution given by f(x) is grad-
ually split into two shapes that are both half the height of the original dis-
tribution. Both shapes move at constant speed equal to ¢ but travel in the
opposite directions. However, for u;, we see from Figures K.2 that the influ-
ence of the initial velocities is propagated within a triangular area deter-
mined by speed c. Combining both effects, the solution u = u, + uy, is shown in
Figures K.3.
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1r Time = 0.0

ub
0

-50 0 50
1+ Time = 1.0
0 J\

-50 0 50
1 Time = 3.0
0 A

-50 0 50
1r Time = 8.0
0 / . \

-50 0 50

X

Figure K.2. A surface plot of the trajectories of u, (left) and a set of four snapshots of u, at
different time instants (right) for the d’Alembert’s solution based on zero initial distribution.

K.1.2 Semi-Infinite Domain Wave Equation with Dirichlet
Boundary Conditions

The equations are given by

2u 1 0%u

@_C_ZW = 0 for XZO
au(x,O) = fx) .
u orx >0 ; u(0,1) = c(¢t t>0
Yoy = s = ©-0=<0

(K.4)
where, for continuity, ¢(0) = f(0) and d¢/dt(0) = g(0). We can first find a solution,

v(x, 1), whose domain is —oo < x < co. The desired solution, u(x, t), will be obtained
by restricting v(x, ¢) values at 0 < x < oo, that is,

u(x,t) = v(x, ) |x20 (K.5)

u 1r Jf_\ Time = 0.0
0 L
-50 0 50
1t //\ Time = 1.0
0 L
-50 0 50
T //\_,z\ Time = 3.0
0 L
-50 0 50
1 Time = 8.0
0 Vs L \
-50 0 50
X

Figure K.3. A surface plot of the trajectories (left) and four snapshots of the distribution at
different time instants for u = u, + u,.
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Thus let v be the solution of the extended problem given by

v 1 0%
w2 2 —o=Xx=o00
av(x, 0) = fulx)
8_1; 0 = g0 ; v(0,)=¢(t) >0

where,

fe(x) = f(x) and ge(x)=g(x) forx=>0

Note that f, and g, have not been defined completely. The solution for v(x, t) is the

d’Alembert’s solution, given by v = ¢.(x + ct) + ¥.(x — ct), where

¢e(s) = %fe(s) + % /Osge(f)df and I/fe(s) = %fe(s) - %/Osge(f)df

For x > 0, we have (x + ct) > 0 and so ¢.(x + ct) is immediately given by

1 1 X+ct
Pe(x + ct) = zf(x +ct) + % /0 g(v)dr

However, because (x — ct) < 0 when x < ct, Y.(x — ct) has to be handled differently

because f. (s < 0) and g. (s < 0) has not been defined. At x = 0, we have

v(0, 1) = ge(ct) + Yre(—ct) = 5(1)

or
s X
I/IE(S) =g (__) - (be(_s) - I/IE(X - Ct) =g (t - _) - ¢e(Ct - x)
c c
Combining the results, and restricting the domain to x > 0,
1 1 ct+x
3 [f (ct+x)—f(ct —x)] + 5 /Ct_x g(r)dr
+§(t—)—c> forO<x <ct
u(x,t) = ¢

[f (x—ct)+ f(x+ Ct)] + Zlc /xirag(r)dt for x > ct

N =

K.1.3 Semi-Infinite Wave Equation with Nonhomogeneous
Neumann Conditions

The equations are given by

Pu 1 d%u
W aw — 0 =0
u(x,0) = f(x)
forx >0 ; u(0,1) = ¢(¢) t>0

T = g

(K.6)

(K.7)
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daf

where, for continuity, #(0) = —(0). Again, we solve the following extended problem

but this time with the Neumann boundary condition,

ax2 2o - -
0 = .
; —(0,1) =0t
a_: (x.0) = g(x) ’ ax 00 =00

with f, (x > 0) = f(x) and g. (x > 0) = g(x). As before, we have v = ¢.(x + ct) +
VYe(x — ct), where

N

060 = 30+ 5 [ g0de and w0 =306~ 5 [ s0de

Because (x + ct) > 0,

1 1 X+ct
Ge(x +ct) = zf(x +ct)+ % /0 g(r)dr

However, for y.(x — ct), we can use the Neumann condition to handle the range

0<x<ct,
220.0) = 900 = 6 (e)) + ¥ (~<t)
from which
—s/c
) o) = —cf o g-)
Vi) = (=) - eul-s) — ;

We(x - Ct)

t—(x/c)
- c/ ¥(r)dt — ¢l (ct — x)
0

Combining the results, while restricting the solution to x > 0,

1 1 x+ct
sl -re-n]so [ e
(/) ct—x
—c/ ¥(r)dt forO<x<ct
wx, £) = 0 (K.8)
% [f (x—c)+f(x+ Ct)] + 2lc /Xfag(t)dr for x > ct

K.1.4 Wave Equation in Finite Domain

We consider only the special homogeneous Dirichlet condition for 0 < x < L < oo.
The equations are given by
Pu 1 d%u
ﬁ — EW = 0 for 0 <x=< L
W(x,0) = f(x)

u forO<x<L ; u(0,1) =0 t>0 (K9
Zw0) = g(x)} =rs ©.9 (K9
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where, for continuity, we need f(0) = 0 = f(L). For this case, we use the method of
reflection given by the following extension,

v 1 9%
ol ol Toosxsee
av(x, 0) = fex)
v ®0) = g v(0,£) =0
ot
with f, and g, both extended to be odd periodic functions, that is,
f(x) forO0<x<L
fe(x) = —f(—x) for —L<x=<0
fo(x —2L) x| > L
The solution can then given by
u(x, ) = v(x, z)‘ ) (K.10)

where

W)= 3 Gt fe -+ o [ g

—ct

K.2 Proofs of Lemmas and Theorems in Chapter 11

K.2.1 Proof for Solution of Reducible Linear PDE, Theorem 11.1

First, let m = 2. Substituting (11.12), while using the commutativity between L; and
L, given in (11.11),

Lu = LiLy(oqug + oun) = Ly (oq Loy + o louy)
= Ol1L1L2u1 = Ol1L2 (Llul) =0

Next, assume the theorem is true form = £ — 1. Thenwith L = L4L, = L, 4 where
Ly= ]_[f;l L; whose solution is given by uy = Zf;ll o;u;, and with u = uy + oy,
we have

Lu

LAL[ (MA + (X@U() = LA (LgMA + (X@L(Mg)
= LaLuy =Ly (Lauag)=0

Then, by induction we have proven that (11.12) is a solution for the case when
Li#Ljfori#j,i,j=1,...,m.
For the case where L; is repeated k times, note that

k!

k
Lf(gu) = Y. W Lig; Li ‘u;
P et

= u;Ligi=0

k
Lfc (Zgl) u; | = 0
j=1

Thus
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K.2.2 Proof of Sturm-Liouville Theorem, Theorem 11.2

We begin with the following identity, where ¢, # ¢p:

d dey, ddm do, dém
= (ro]on -0 2 = 0 5 [p0%2 | - 6,5 [ 2]
Using (11.51) to substitute for terms on the right-hand side, we get
dz(x)

dx = ()\n - Am) r(x)¢n¢m

where,

o) = mwm¢ﬂq

Integrating both sides,

72(B) — z(A)

B
T :/A r(x)¢ndmdx

Functions ¢, and ¢,, both satisfy the boundary condition at x = B, which we could

write in matrix form as
)=(0)
B = K.11
(2 ’ (K1)

_( #n(B) dpn/dx(B)
#u(B)  d,/dx(B)

where

Because, in a Sturm-Liouville system, 8p and yp are not allowed to both be zero,
(K.11) has a solution only if the determinant of matrix B is zero. This implies

dgy dm ]

(B) — én(B)—— | (B) = p(B)det (B) =0

4mp®W®

The same argument follows through with the boundary condition at x = A, which
implies z(A) = 0. Thus we have for A, # A,

B
/:4 F(X)$n (X) P (x)dx = 0 form#n

K.2.3 Proof of Similarity Transformation Method, Theorem 11.3

Assuming symmetry is admitted based on the similarity transformations 7 = A%,
X = A"Px and & = A7"u, we have

F (Aﬁx, P TR e G L e B ) -0 (K.12)

where

[k,m—k] __ 9"

= e
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After taking the derivative with respect to A and then setting A = 1, we obtain a
quasilinear differential equation given by

oF  OF oF oF
- o Vl— ... —ka — (m — beom—i] 72 4 L=
Bx 7 + at P + yu P +-- (y ko — (m /c)ﬁ) i Byl ] + 0

where the other terms include the partial derivatives of F with respect to the par-
tial derivatives 9ii/df, 9%/dx, etc. Method of characteristics yields the following
equations:

dM[K,m—K] dF

(y—ra—m—rp)ulens O

EiS

Bl &
S

At this point, we assume that o = 1 for brevity.! Solving the first equations excluding
the last term will yield the following invariants

di dx r X

_ = —= e = =

r Bx P

di du " u

_ == —> = <=

t yi t
ii‘ _ du[/{,mﬂc] . P _ IIL[K,M7K]
T T fy—k—(m—x)p)

(7=~ (=) e

plus F, which is another invariant. We also can now use x, ¢, and « instead of ¥, 7, and
7 because the invariants also satisfy the symmetry conditions. The general solution
of the quasilinear equation can now be given by

F=g(§9w”¢/cmv)=0

For the invariants with « = 0, that is, the partial derivatives with respect to x only,
we have

(0.m] _ yn_u — (ﬂ/*mﬁ) dm_w - dom dm_l//

H* o don "= gom

With

aK
lem—] _ 9 ( [O,mfl(])
w YL 1

one can show by induction that

K,m—kK —k—(m—x - j dmkarjw - 1 dm7;<+j,¢.
/’L[ m—i] _ py—r—(m )ﬂzcj 7 W - em= ch Il W
j=0 j=0

1 Tf & = 0, then we could set 8 = 1 and proceed with the role of ¢ replaced by x.
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where c; are simply constants that depend on j, m, «, 8, and y whose complicated
forms are not needed for the purpose of this proof. Thus we conclude that because
the invariants ¢, ,, are just functions 4, ,, of ¢, ¢ and derivatives of ¥(¢), we have
shown that

g(;,zp,...,@,m,...)=g(§,¢,...,hk,m<;,1//,%,...),...)=0

is a nonlinear ordinary differential equation for ().



APPENDIX L

Additional Details and Fortification
for Chapter 12

L.1 The Fast Fourier Transform

In this appendix, we obtain matrix representations of the discrete Fourier transforms,
which is often used to find the Fourier series through the use of numerical integration
methods.

For a periodic function g(¢) with period 7', we have the complex form of the
Fourier series defined by

grs(t)= Y Crexp (27;]“) (L.1)

k=—00

where i = +/—1. The Fourier coefficients C, can be evaluated by first setting grs(¢) =
g(#) and then multiplying (L.1) by exp(—27i¢/T), followed by an integration with
respect tot fromOto T,

fOTg@exp( T )i = ch / p(Z )

Because
e = cos (2mm) + isin 2mm) = 1 with m an integer
we have
/T exp (M) dt = T (eZm'(k—l) _ 1) _] T ifk=1¢
0 r 2mi (k =€) 0 ifk#e
Thus
1T 27il
Ce=— /0 g(t) exp <—Tt) dt (L2)

Now suppose the function g(7), t € [0, T'], is represented by (N + 1) uniformly
distributed points, thatis, go, . .., gn, With gx = g(kAf), At =ty — tx,and T = NAt.
Using the trapezoidal approximation of the integral in (L.2), we have the discretized
version given by

N-1
1 (go+gn 2tk
C=— At — At
¢ NAt( 2 +ngexp( Nl) )

k=1
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Now let y, = NC; and
8o+ 8N

fork=1
Xk = 2 (L3)
8k-1 fOI'k=2,...,N
then we obtain
N
ye=y Wiy k=t N (L.4)
k=1

where Wiy = e("2"/Mi, Equation (L.4) is known as the discrete Fourier transform
of vector x = (x1,...,xy)’. For the determination of y,, £ =1,..., N, a matrix
representation of (L.4) is given by

y = Finvx (L.5)
where
1 1 e 1
1 Wi - W[N}ﬁl
Fa=| 1 Wy Wiy (L.6)
g

For the special case of N = 2" for some integer m > 1, we can obtain the classic
algorithm known as the Radix-2 Fast Fourier Transform, or often simply called Fast
Fourier Transform FFT. The FFT algorithm significantly reduces the number of
operations in the evaluation of (L.5).

First, note from (L.6) that F[j) = 1. For N = 2", m > 1, we can separate the odd
and even indices and use the fact that W[ZN] = W|n/2) to obtain a rearrangement of
(L.4) as follows:

N2
k— - k— —
ye = Z()Qk—lw&] 2 1)) + (xsz[(i,] e 1))
k=1

N/2 N/2

(k=1)(e-1) (k=1/2)(e-1)
= ) X (W[ZN]) + v (W[ZN])
k=1 k=1

N/2 N/2
(k—=1)(¢-1) -1 (k—1)(¢—1)
- sz"‘l Winn +Win Zx2kW[N/2] (L.7)
k=1 k=1

Equation (L.7) is known as the Danielson-Lanczos equation. Lety = ( yg | y: )T
T
where y4 = (y1,....yn2)" and yg = (yv2)41.-...¥n) . Because WfX,] =1 and

W[]VN/]Zz—l,fOI'g:ls"'7N/2’

Ya = FinpPx+ Qv Fiva Piv'x

even
X

y8 = FivaPNix — Qv Fiva Py
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where
T T
P[‘}{,j]dz(e1|e3|...|eN_1) 5 P%Tn2(02|e4|...|e]v)
1 0
Wim
Qny2) = .
(N/2)-1
0 W[N]
Comparing with (L.5), we have
Fovey | QwveFvy | o)
Fiv = P[N] = Z|n] (Iz ® F[N/Z]) P[N] (L.8)
Fingy | =S ing
where
(0l0) N Inpg | Q)
P[N] = ven and Z[N] =
Py Ing | =y

Using the identities AC® BD = (A® B)(C® D) and AQ (BRC)=(A® B)® C,
we have

L®Fngy = 6L (Z[N/z] (L ® F[N/4])) P{(}(\)}I/ez)]

(Iz ® (Z[N/Z] (12 ® F[N/4])>) (12 ® P[(f(‘)/‘/?])

= (L®Znyg) (14 ® Fina) (12 ® P&%)

Continuing the recursion we obtain, with F;; =1, N =27,

Fin) = G P (L.9)
where,
Zin (L ® Zingy) (1s © Zingay) - (In2 ® Zpy)

(ole) (ole) (ole) (ole)
(1N/2 ® P ) (14 ®P[N/4]> (12 ®P[N/21) Piny

Gin

bitreverse
P

It can be shown that the effect of P%t]’everse on x is to rearrange the elements of
x by reversing the bits of the binary number equivalent of the indices. To illustrate,
let N = 8, then

X1
X5
X3
X7
X2
X6
X4
Xs

bitreversey, __
P[S] X =

S oo RO O oo
=N NelelleoNoRele]
[N e =] ool o]
—_ O O oo o oo
[sReNeNoNoNeNol B
S OO R OO oo
ecNeoBeoBoNoNel "
SO, OO OO O
[eNeNeNoNel ==
=N NelololcRel=)
SO OO LR OO O
—_— O OO0 o o oo

[eNeNeNolloNoNal
S oo oo OO
[eNeNelel ol "
[N eNeNell =N lNow)
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Instead of building the permutations, we could look at the bit reversal of the binary
equivalents of the indices of x (beginning with index 0),

000
001
010
011
100
101
110
111

—_— >
reverse bits

000
100
010
110
001
101
011
111

_—
decimal

N W OaR,r NN RO
0O~ AN WL

In summary, we have the following algorithm:

FFT Algorithm:
Given: x[=]2" x 1
y < Reverse Bits(x)

Forr=1,...,m
y < (Isz,v ® Z[Zr]) y
End

Remark: The MATLAB command for the FFT function is y=fft (

EXAMPLE L.1. Let

g(t) =

approximation given by

X).

5 ifr <20
¢ 2

7 €0 (2—703) i£20 <7 < 80
28— L if 1> 20

Now apply the Fourier series to approximate g(¢) for 0 < ¢ <200 with T = 200
and sampling N = 2!° + 1 uniformly distributed data points for g(z).
Using x as defined in (L.3) and y = FFT (x), we can obtain a finite series

L L
8FFT.L = Z W = % (y1 + ZZReal (yk+1Wk’>>
k=L

k=1

Note that only the first N/2 = 2"~! terms of y are useful for the purpose of
approximation, i.e. L < N/2.
Figure L.1 shows the quality of approximation for L. = 10 and L = 25.
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L=25
20 |
10}
& |
_10}
20}
0 50 100 150 200 0 50 100 150 200

t t

Figure L.1. Fourier series approximation of g(¢) using L = 10 and L = 25.

L.2 Integration of Complex Functions

In this appendix, we briefly describe the notations, definitions, and results from com-
plex function theory. Specifically, we focus on the methods for contour integrations
of complex functions.

L.2.1 Analytic Functions and Singular Points

Definition L.1. Let 7 = zi. + izim be a complex variable, with Z;, Zim € R. Then
a complex function f(2) = fre (Zre, Zim) + i fim (Zre» Zim) is analytic (or holomor-
phic) in a domain D, that is, a connected open set, if for every circle centered
at z = z* inside D, f(z) can be represented by a Taylor series expanded around

=25
f@ =) a(z—2) (L.10)
k=0
where,
1 dkf
= — — L.11
TR (L11)

Implicit in the preceding definition is the existence of derivatives, d* f/dz*, for k > 1.
One necessary and sufficient condition for analyticity of f(z) is given by the following
theorem:

THEOREM L.1. A complex function f(z) = fre (Zres Zim) + i fim (Zres Zim) is analytic in
D if and only if both real functions fie(zre, Zim) and fim(Zee, Zim) are continuously
differentiable and

8fre afim

= L.12
0Zre 0Zim ( )
ad re Gl im

Jre _ 9 (L.13)
BZIm 8Zre

forall z = zie + izim in D.
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The pair of equations (L.12) and (L.13) are known as the Cauchy-Riemann
conditions.

Some Important Properties of Analytic Functions:
Let f(2), f1(z) and f»(z) be analytic in the same domain D, then

1. Linear combinations of analytic functions are analytic; that is, fum(z) =
o1f1(z) + a2 f2(z) is analytic.

2. Products of analytic functions are analytic; that is, fproa(z) = f1(2)f2(z) is ana-
lytic.

3. Division of analytic functions are analytic except at the zeros of the denominator;
that is, faiv(z) = f1(z)/f2(z) is analytic except at the zeros of f>(z).

4. Composition of analytic functions are analytic; that is, feomp(z) = f1 (f2(2)) is
analytic.

5. The inverse function, f~! (f(z)) = z, is analytic if df/dz # 0 in D and f(z1) #
f(z2) when z1 # 2.

6. The chain rule is given by

d _dfydf
= [f2 (f1(2)] = af dz (L.14)

Definition L.2. A point z, in domain D is called a singularity or singular point of
a complex function f(z) if it is not analytic at 7 = z,. If f(z) is analytic at z = z,,
then z, is called a regular point.

The singular points can further be classified as follows:

1. A point z, is a removable singular point if f(z) can be made analytic by
defining it at z,,.

(If lim,_, , f(z) is bounded, it can be included in the definition of f(z).
Then f(z) can be expanded as a Taylor series around z,. For example, with
f(z) = (z—1)(3z/(z — 1)), the point z = 1 is a removable singularity.)

2. A point z, is an isolated singular point if for some p > 0, f(z) is analytic for
0 < |z — zo| < p but not analytic at 7 = z.

3. A point z, is a pole of order k, where k is a positive integer,
if (81(z) =(z—2,)"f(z)) has a removable singularity at z =z, but
(82(2) = (z — 20)*"'f(2)) does not have a removable singularity at z = z,.
If k = 1, then we call it a simple pole.

4. A point z,, is an essential singular point if it is an isolated singularity that is
not a pole or removable.

L.2.2 Contour Integration of Complex Functions

In calculating the closed contour integration of f(z), denoted by

Ie(f) = fc f(2)dz (L.15)

we are assuming that C is a simple-closed curve; that is, C is a curve that begins
and ends at the same point without intersecting itself midway. Furthermore, the line
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integral will be calculated by traversing the curve Cin the counterclockwise manner
(or equivalently, the interior of the simple-closed curve is to the left of C during the
path of integration). The interior of curve C defines a domain D(C), which is of the
type simply connected, as defined next.

Definition L.3. A 2D domain D is called a simply-connected domain if the inte-
rior points of every simple-closed curve C in D are also in D. Otherwise, the
domain is called a multiply connected domain.

In short, a simply connected domain is one that does not contain any holes.!

Because of the presence of several theorems that follow later, we start with a
brief outline of the development of techniques for contour integration in the complex
plane.

1. We start with Cauchy’s theorem to handle the special case when f(z) is analytic
on and inside the closed curve C.

2. In Theorem L.3, we show that even though C is the original contour, a smaller
curve C inside C can yield the same contour integral values, as long as f(z)
remains analytic on C, C’ and the annular region between C and C'.

3. Having established that the contour used for integration is not unique, we shift
the focus instead on specific points and construct small circular contours around
these points. This leads to the definition of residues. Theorem L.4 then gives a
formula to calculate the residues of poles.

4. Using residues, we can then generalize Cauchy’s theorem, Theorem L.2, to
handle cases when curve C encloses n isolated singularities. The result is the
residue theorem.

THEOREM L.2. Cauchy’s Theorem. Let f(z) be analytic on and inside a simple closed
curve C, then

f f(@)dz=0 (L.16)
C

PROOF. With z traversing along the curve C,

dzre . dZim
dz= ( s “W)ds

or in terms of the components of the unit outward normal vector, n = #nye + I Aim,
dz = (—Nim +ing) ds

because

dzre _ A dzim —n
ds s ~—

1 For higher dimensional regions, if any simple closed path in D can be shrunk to a point, then D is
simply connected.
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C H

a) curves C and C’ b) curve H
Figure L.2. The curves C, C', and H used for proof of Theorem L.3.

Thus
% f(Z)dZ = f (fre + ifim) (_nim + i nre) ds
C

= - f (fimnre + frenim) ds + l% (frenre - fimnim) ds
c c
Using the divergence theorem,

ad im ad re . bl re d im
ff(z)a&://( fim | 07 )dzredZim+l//( Jro 0J )dzredam
C 0Zre 0Zim 0Zre 0Zim

Because analytic functions satisfy the Cauchy-Riemann conditions, the inte-
grands are both zero.

THEOREM L.3. Let C and C' be two simple closed curves where C' is strictly inside C.
Let f(z) be analytic on curves C and C' and in the annular region between C and C'.
Then

?{ f(z)dz = 7€ f(2)dz (L.17)
c c
PROOF. Based on Figure L.2, we see that the integral based on curve H is given by

yif(z)dz= ﬁf(z)dz—i—[abf(z)dz+/baf(z)dz— ﬁ/f(z)dz

However, the path integral from a to b satisfies

/abf(z)dz =— /ba f(z)dz

Furthermore, because f(z) is analytic in the interior of H (i.e., the annular region
between C and C'), Theorem L.2 implies that §,, f(z)dz = 0. Thus

?gcf(z)dz = '(fc f(2)dz

Theorem L.3 does not constrain how the shrinking of curve C to C' occurs
except for the conditions given in the theorem. For instance, if f(z) is analytic
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throughout the interior of C, then the smaller curve C' can be located anywhere
inside C.
We now shift our focus on point z, and the contours surrounding it.

Definition L.4. For a given point z, and function f(z), let C be a simple closed
curve that encircles z, such that z, is the only possible singularity of f(z) inside
C; then the residue of f(z) at z, is defined as

Res, () = 5 § )z (L18)

Note that if f(z) is analytic at the point z,, Res;, = 0. If z, is a singular point of
f(z), the residue at z, will be nonzero.2 Using Theorem L.3, we can evaluate residues
at the poles of f(z) by choosing C to be a small circle centered around z,.

THEOREM L.4. Cauchy Integral Representation.’> Let z, be a pole of order k > 1 of
f(2), then

k-1

Res. () = gy fim s (12— 21 ) (L.19)

PROOF. First, consider the function h(z) = (z — z,)", where ¢ is an integer. Let O, :
|z — zo| = p, where p > 0. The points on the circle O, is given by

7=z, + pe? for0 <6 <2x
and
(z—2z0) = ple? dz = ipedp
Thus
2 2mi ifl = -1
yg (z— 20)'dz = ip"™ / e 0dp = (L.20)
O 0 0 ife#-1

where p > 0 is bounded.

2 A result known as Morera’s theorem guarantees that if Res,, (f) = 0, then f(z) is analytic at a small
neighborhood around z,.

3 Note that Theorems L.2 and L.4 are both associated with Cauchy’s name, but the two theorems are
not the same. Strictly speaking, Cauchy’s integral representation actually refers only to the case of
a simple pole, thatis, k = 1.
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Because z, is a pole of order k of f(z), there exists a curve C such that the function

8(2) = (z— 2.)"f(2)

is analytic inside and on a curve C, which includes z, as an interior point; that is, it
could be expanded into a Taylor series around z,,,

(z-2)f(2) = g@=) alz—2)"
n=0

f@ = D an(z—z)"* (L21)
n=0

where

=i 1dng—l' L &
On = an;U n! dz" - an;) n! dz"

(le==1"1@) (L22)

Based on the definition of the residue, choose the curve C to be a small circle O,
centered at z, such that f(z) is analytic on and inside the circle O, except at z,,. This
means that the radius of the circle, p, must be chosen to be small enough such that,
inside O,, z, is the only singular point of f(z). Taking the contour integral of (L.21),
with substitutions of (L.20) and (L.22),

f f(xdz = Zan?é (z—z,)" *dz
0, = 0,
= 2mi Of—1
27 dk1

=1 o <[z — 2] f (Z))

Thus
k-1

d
Res. () = gy lim 7 (1= 21 )

We now state a generalization of Theorem L.3. This theorem is very useful for
the evaluation of contour integrals in the complex plane.

THEOREM L.5. Residue Theorem. Let f(z) be analytic on and inside the closed curve
Cexcept for isolated singularities: z,, £ = 1,2, ..., n. Then the contour integral of f(z)
along C is given by

7§ F(2)dz = 2ni Z Res,, () (L.23)
¢ =1

PROOF. We prove the theorem only for n = 2, but the same arguments can be gen-
eralized easily for n > 2.

Let C; and C, be nonintersecting closed curves inside C such that the pole z; is
inside C; only and the pole z, is inside C, only. As shown in Figure L.3, f(z) will be
analytic in the curve H as well as in the interior points of H.
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H

a) curves C, C, and C, b) curve H
Figure L.3. Curves C, Cy, C;, and H used in Theorem L.5.

Thus

72 f(2)dz=0= fc F(2)dz — fc @z ?gc RCE

or

fcf(Z)dz = fq f(z)dz + 7§c2 f(z)dz

Using the results of Theorem L.4,

f f(2)dz = 2mi [ Res., (z) + Res.,(2) |
C

Generalizing the approach ton > 1,

?g f(z)dz = 2ni Z Res,, (2)
¢ =1

Note that Theorem L.5 is true whether the isolated singularities are poles or
essential singularities. However, we limit our applications only to singularities involv-
ing poles. As such, the formula for calculating residues when singularities are poles
(cf. Theorem L.4) is used when invoking the method of residues.

L.2.3 Path Integrals with Infinite Limits

The method of residues can be applied to calculating path integrals in the complex
plane,

/ f(2)dz (L.24)
P
where path P is a curve parameterized by a < ¢ < b, that is,

Pz =2:e(t) + izim(?) (L.25)
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Figure L.4. The circular arcs T'*", and I'"¢" |
R-PR R:OR
including the case where
|z(t = a)| = o0 and |z(t = b)| = o0 (L.26)

We refer to these paths as infinite paths.

Some Technical Issues:

1. Parameterization. Path P will be parameterized usinga < ¢t < b. We assume that
P does not intersect itself and that the path is bounded, with possible exceptions
at the end points.

2. Connecting Arcs. Let ar and by, with a < ar < bg < b, be values of ¢ such that
|P(ag)| = |P(bg)| = R. Then one can connect both P(ag) and P(bg) by a circular
arc of radius R. (We assume the arc does not to intersect P except at t = ag and
t = bg). We denote the arc by Ff;f"bR if the arc starting from ay, is to the left of

Zif}],;R if the arc starting from ag, is to the

path P. Likewise, we denote the arc by I’
right of path P (see Figure L.4).

The main idea is to combine either the left or right arc with the subpath,
P(ag, br), to obtain a simple closed curve from which we can apply the method

of residues.

3. Convergence Assumptions. In handling the path integration along the left cir-
cular arcs, we assume the following condition:

lim R max |[f(z)|=0 (L.27)

R—o0 zel‘(aR,bR)lef‘

We refer to (L.27) as the convergence condition in the left arc. Together with
the following inequality (also known as Darboux’s inequality),

/ f(z)dz
l“(aR,bR)‘f‘-“

we obtain

< / F()|1del <27R  max  |f()| (L28)
[(ag,bg)k!t z

Er(ﬂR,bR)leﬂ

lim
R—o0

=0 (L.29)

/ f(2)dz
l“(aR,bR)‘f‘-f‘

Similarly, we assume the convergence condition in the right arc given by

lim R max |[f(z)|=0 (L.30)

R—o00  zeT(ag,bg)rieht
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and obtain

lim
R—o00

=0 (L31)

/ f(z)dz
F(GR’bR)righl

4. Cauchy Principal Value. With finite limits, the following identity is true:

[, f@e=] @i [ e

However, the integral [, f(2)dz or the integral [}, ., f(2)dz, or both, may
diverge as ar, bg — 00, even though the integral

PV(f)= lim f(2)dz (L.32)

ag.br=00 J p(ap,br)

converges. In our calculations of [, fdz that follow, we mean the limit calculation
of (L.32). The integral in (L.32) is known as the Cauchy principal value of f(z).

We now state a theorem that shows how the method of residues can be applied
to complex integrations along infinite paths.

THEOREM L.6. Let P(t) be an infinite path that does not pass through any singular
points of f(2).

1. Letzi, 2o, ..., z, be the singularities in the region to the left of path P(t), and f(z)
satisfies the absolute convergence in the left arc condition given in (L.27), then

/P f()dz=") Res. (f) (L.33)
=1

2. Let %1, %, ..., 2 be the singularities in the region to the right of path P(t), and
f(z) satisfies the absolute convergence in the right arc condition given in (L.30),
then

fP F(2)dz = -3 Ress (f) (L34)
=1

PROOF. Based on Figure L.5, where R is chosen large enough such that the contour
formed by the subpath P(ag, bg) and -T'(ag, bg)"" will contain all the singular points
of f(z) that are to the left of P. Then using the theorem of residues,

/P(aR,bR) f(Z)dZ - /T(aR,hR)lefl f(Z)dZ = Zl: ResZz, (f)

As R — oo, (L.29) then implies

[ £z = 3" Res. (1)
p =1
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Figure L.5. The contour used to prove (L.33) in Theorem L.6.

Likewise, based on Figure L.6, where R is chosen large enough such that the contour
formed by the subpath —P(ag, bg) and I'(ag, bg)"#" will contain all the singular
points of f(z) that are to the right of P. Then using the theorem of residues,

- /P(“R’bR) FRdz+ /F(aR.bR)rigln f(2)dz = 52:1: Res:, (f)

As R — oo, (L.31) then implies

/ f(2)dz = -3 Res, (f)
P =1

Note that the convergence conditions, (L.27) and (L.30), are sufficient conditions
that may sometimes be too conservative. In some cases, they could be relaxed.
In particular, we have the result known as Jordan’s lemma, which is useful when
calculating Fourier transforms and Fourier-Sine/Fourier-Cosine transforms.

THEOREM L.7. Let f(z) = g(2)e’?, where w > 0, with T'(ag, bg)*" and T'(ag, bg)"#"
as the semicircle in the upper half and lower half, respectively, of the complex plane,

1. If
li =0 L.35
Jim <Z€Fa§é)m Ig(Z)I> (L35)
then
lim / f(z)dz| =0 (L.36)
R—o0 F(aR,bR)leﬂ

Figure L.6. The contour used to prove (L.34) in Theorem L.6.

F(aR,b,\,)””’"
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2. If
li =0 L.37
Jim (zerg,ﬁf,i)ngm Ig(Z)I) (L.37)
then
lim / f(2)dz| =0 (L.38)
R—>0 l—*(aR’bR)righl

PROOF. We show the theorem only for the left arc, that is, upper half of the complex
plane,
On the semicircle, we have z = Re®. Thus

dz = Ré®d0 —> |dz| = R|df)
and
0z _ ein(cos 0+isin 6)

—wRsin 6 jiwR cos O

= € e —> |€

iz ‘ — e—wR sin 6

Also, note that with0 <6 < 7,

. 20
sinf > —
T

Using these identities and inequality,

[ r@d = [ @l
r‘(aR’bR)]erl ]"(aR bR)Iefl
< max ez dz)
(zeF(aR bR)lett g( )|> </fl~(ak,bR)1en | | ldz
< ( max g(z)|> <2R / wRSin"dG)
zel(ag,br)*t 0
< ( lg(z )|> <2R / ‘2“’R0/”d9)
zel(ag, bR)leﬂ
T
N1 —wR
= (ZGF((IR bR)leﬂ g(Z)|) (a) [ € ])
b
ma —
= (zel"(aR,li)leﬂ |g(z)|> (a))

Using condition (L.35), we have

/ f(2)dz| =0
F(aR,bR)lc"‘

lim
R—o0

Theorem L.7 assumed w > 0 and w8 > 0. For w < 0, we need to traverse the
path in the opposite directions; that is, we need to replace 6 by —6.
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z
Im Zn

A A
T (aR’ b R)A»//
R [ 'P(awbﬁ) bR
E E - < »zp,
ay by ZRe R
P(all’bR) \/\
[(agby)™
Y Y
a) <0 b)w>0

Figure L.7. The contours used for evaluating a Fourier integral.

EXAMPLE L.2. Consider the Fourier integral,

x3 oo x3 )
— | = —hexd L.39
]:|:1+x4} /,oo1+x4e g (L-39)

Here, the path is P = t, with —co <t < oo, that is, the real line. The poles of
g(x) = x3/(1 4+ x*) are: (=1 +0)//2, (1 £i)/v/2.
With the situation of w < 0, we can use the closed-contour in the upper
complex plane, that is, zin > 0, see Figure (L.7).
)

Because
3
we could use the residue theorem and Theorem L.7 to compute the integral

. z
lim max |———
R—00 \|zl=R,zm>0 | 1 + 2

00 3
[ et = 2t (Respgy 43 () + ReS_p.y,3(F) - (L40)

o 1+ x
where
3
X —lwX
= 1 +x4e
Forw < 0,
. 141 oy
Resjanyvg)(f) = lim ﬁ[< Y )f( )} 2 et1-de
1 —14i 1+i) /N2
Res|_11y,5)(f) = z_><—h1Ti)/ﬁ [(Z V2 )f( )} e

00 x3 )
—iwx /2
[m 1_’_x4e dx |:cos<\/§> ]

For @ > 0, we can use the closed-contour in the lower region of the complex
plane. Doing so, we have

[ e = <2 (Resp_y 5 + Resp 1y (1) (L4D)
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and
ReS[(l—i)/ﬁ](f) = z_)(llml;/[ |:< )f(z):| — _e( 1-i)w/v2
ReS[(*l—i)/ﬁ](f ) = z—>(_li1r5>/ [( ) (z):| e( 1+i)w/v2

00 3
[\ st = ale ()=

Combining both cases,

}'|: x3 ] _ /oo ieiwxcix = —i[sgn(w)] 7 cos (ﬁ) [~1ol/v2]

14 x4 N

Special Applications and Extensions:

1. Functions Involving Sines and Cosines. Let P(f) = t, with —oo <t < co. When
the integrand contains cos(x) or sin(x) in the numerator, the method of residues
cannot be used directly because the arc conditions given in (L.27) or (L.30) are
no longer satisfied. (For instance, lim;, —, 1 | c0s(z)| = lim,,, 1 | 8iN(2)| = 00).

An alternative approach is to use Jordan’s lemma.
Because

g(x) cos(ax) = Re [g(x)e™] (L.42)

we could apply the method of residues on the integral in the right hand side of
the following equation:

/_ : g(x)cos(ax)dx = Re /_ Z g(x)ei“xdx:| (L.43)

Similarly, we have

/ Z ¢(x)sin(or)dx = Tm | / ) g(x)ei“"dx:| (L.44)

o0

Based on Jordan’s lemma, that is, Theorem L.7, with w = « > 0, we need to
satisfy only the condition given in (L.35) and apply it to the contour in the upper
region of the complex plane,

lirn< max Ig(Z)I) =0 (L.45)

R—00 \ |z|=R,zin>0

EXAMPLE L.3. Consider the following integral

® x2cosx
/ —4dx
oo 1+ x
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Using a semicircle in the upper region of the complex plane as the contour of
integration, we apply Theorem L.7 to obtain

R
lim [ (e = 2 (Resa () + Resi_11a()

R—o00
where,
2 iz
e
1@ = 1+
with
2(1 —1i .
Res;;,,5(f) = %e(—m)/ﬁ
—v2(1 +i) —1-i)/2
Res_galf) = ot Do
Then,
® x2cosx % x2eix
- d = R —d
/_oo T+t e[/_oolJrX“ x}

S S Y

. Rectangular Contours. Sometimes the limits involve a line that is shifted parallel

to the real axis or the imaginary axis. In these cases, it may often be convenient
to use evaluations already determined for the real line or imaginary axis. To do
so, we need a rectangular contour. This is best illustrated by an example.

EXAMPLE L.4. Let us evaluate the Fourier transform of a Gaussian function,
o0 o0
F [87‘”2] — / efozxz e O gy — / efaxzfiwxdx
—0oQ —0oQ0

where o > 0.
First, consider w > 0. We could simplify the integral by first completing the

squares,
. . \2 . \2
2 . , lw iw iw
—ax” —ilwx = —al|x+—x+ — ] — | =
( o |:<2a) (2a> ])
n o\’ o
= —alx+—) ——
200 da
thus
oo 3 . 2 o0 i 5
/ e X g oW /(4a) / e—Ol[X+la)/(20l)] dx
—o0 —o0
oco+iw/(2e)
e—wz/(4a)/ ! e_azldz
—oo+iw/(2a)

Now consider the rectangular contour shown in Figure L.8.



Figure L.9. (a) Pole z, lies on path P. (b) Path P’ avoids z,,. Z
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“Zm
Figure L.8. A rectangular contour used in Example L.4. 2%
R Rk
Y
Because the function e~ is analytic throughout the region,
R 5 R+tiw/(2a) 5 —R+iw/(2a) 5
/ e " dz ~|—/ e ““dz+ / e dz
-R R Rtio/(2q)
—R 5
+ / e *dz=0
—R+iw/(2a)
Two of the integrals reduces to zero,
R+tio/(2a) 5
lim e dz=0
R— Jr
and
—R 5
lim e *dz=0
R—00 —R+iw/(2a)
resulting with
+iw/(2 =
/oo iw/(2a) e*azzdz _ fw efotzzdz _ 7
—oo+iw/(2a) —00 o
Using a rectangular contour in the lower region, a similar approach can be used
to handle w < 0. Combining all the results, we obtain
]:I:e—(xzx] — z e 2/(401)
Vo
This says that the Fourier transform of a Gaussian function is another Gaussian
function.

. Path P Contains a Finite Number of Simple Poles. When the path of integra-
tion contains simple poles, the path is often modified to avoid the poles using a
semicircular indentation having a small radius, € as shown in Figure L.9. Assum-
ing convergence, the calculation for the integral proceeds by taking the limit as
€ — 0.

P e, P
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Figure L.10. The contour used to solve [ [sin(x)/x]dx.

ZR

EXAMPLE L.5. Let us determine the integral

f " sinG) 4 (L.46)
0

X

First, we evaluate the integrals with limits from —oo to co. Using the techniques
for solving integrals with sinusoids as given in (L.44),

/ s1n(x)dx — Im |:/ e—dx]
oo X oo X

Using the path in the real line, z = 0 is a pole in the real line. Thus, modifying
the path to avoid the origin, we obtain the closed contour shown in Figure L.10
givenas C=Ty+ T+ T )+

The integral along I'. can be evaluated by setting z = €e”. As a consequence,

d
Y _ iap

and

eiz 0 )
/ —dz = / exp (iee)ido
I Z T

and taking the limit as € — 0,

iz

. e .
lim —dz = —in
e—0 r. z
Conversely, we have
_ i
lim —dz=0
R—00 rg %
Thus
00 ix
e .
/ —dx =im
oo X
or

/ h sinx(x) dx=Im[inr] =n

o0

Because the function sin(x)/x is an even function, we could just divide the value
by 2 to obtain the integral with limits from 0 to oo, that is,

/ TS T (L.47)
0 X 2




Appendix L: Additional Details and Fortification for Chapter 12

Zim

_FR

ZH
Figure L.11. The contour used to solve ffzo[(x2 +4) :
cosh(x)] dx. 2,-\%2;

Z/

815

-1y

4. Regions Containing Infinite Number of Poles. In case there is an infinite num-
ber of poles in the region inside the contour, we simply extend the summation of
the residues to contain all the poles in that region. If the infinite sum of residues
converge, then the method of residues will still be valid, that is,

fcf(z)dz = i Res;, (f) (L.48)
=1

EXAMPLE L.6. Let us evaluate the following integral:

[e.¢] o0 1

From the roots of (z*> 4+ 4) and the roots of cosh(z) = cos(iz), the singularities
are all simple poles given by:
20 -1

20 =20, Z¢= > mi, £=1,2,...,00

and their complex conjugates.
Using the usual semicircular contour to cover the upper region of the complex
plane as shown in Figure L.11, the method of residues yields,

Jim [ / F(2)dz — / f(z)dz:| p <Res(2,) +2Res(m f]) (L.50)

Along the path of I'g, we have z = Re®. We find that
1
R—>oo (R2e29 4 4) cosh (Re'?)

Thus we have limg—, [, f(2)dz = 0.
As for the residues,

< lim R ?|exp (—Re")| =0

1 1
z—>21 (z+ 2i) cosh(z) T4 cos(2)
and with z, = i(2¢ — 1)7r/2, together with the application of L’Hospital’s rule,

Res(z«) [f ] =

Res;)[f] =

lim Z2— 2
2 (z2 + 4) COSh(Z)
1 -1
z%ﬁ isin(izy)
4
i(42 (2t —1) n2>

=

ZRe
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Figure L.12. Geometric interpretation of r,, ry, 6,, and 6, given in (L.53).

Zpe

Combining all these results, we have

o 1 w °° . 1
dx = 8 1y
/m (2 + ) cosh() "~ 2cos(2) " ”;( ) 42— (20 —1)* 22

(L.51)

5. Integrals along Branch Cuts. When the integrand involves multivalued complex
functions, a branch cut is necessary to evaluate the integral. This means that a
Riemann sheet* has to be specified by selecting the range of the arguments of
complex variable z. Usually, the ranges for the argument are either 0 < arg(z) <
27, —7 < arg(z) < 7, (7w/2) < arg(z) < (57/2) or —x/2 < arg(z) < (37/2) for
branch cuts along the positive real line, negative real line, positive imaginary
line, or negative real line, respectively. In other cases, the range of arg(z) may
be a finite segment in the complex plane.

Once the particular Riemann sheet has been selected, the method of residues
can proceed as before.

EXAMPLE L.7. Consider the integral

/ 1 dx (L.52)
1 (2 + 1)V —x2 .
This is a finite integral in which the integrand contains a square root in the
denominator. One can check that the points z = 1 and z = —1 are branch points’
of f(z) where
1) 1
)=
(Z+1)V22 -1

(Note that we used z*> — 1. The form 1 — x? will show up from the calculations
later.)

We could be rewrite the square root terms as
Z2-1 = Jz-D(+1)
(raei(i,) (rbeieb)

— M ei(6“+9")/2

where,
z—1=re% and z+1=rpe® (L.53)
(see Figure L..12.)

By Riemann sheet, we simply mean a subdomain that is single-valued.
A point z, is branch point of a function f(z) if there exists a closed curve that encircles z, that would
yield different evaluations of f(z) after one encirclement.
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Figure L.13. Contour used for solving the integral in Example L.7.

We can then specify the branch cut by fixing the ranges on 6, and 6, to be
0<6,<2r and 0 <6, <2m

Aside from being branch points, the points z = %1 are also singular points.

We can then choose the contour shown in Figure L..13 and implement the method
of residues. The closed-contour C'is given by

C = Tr+Tr1+ Fs(l)lower + T 1+ Ty + Topg + Teayorer + T g
= (Tr+Tey+Tecny) + (Tra+Tir) + (M o1 +T-11)

Following earlier methods, we can evaluate the integrals along the three circular
paths: the outer circle I'g and the pair of inner circles (1) ['¢(—1), to yield zero
values as the limits of R — oo and € — 0 are approached, respectively. Thus
we need to evaluate only the four remaining straight paths. Because f(z) is
multivalued, the path along a common segment, but in opposite directions, may
not necessarily cancel. We now show that the integrals along I' g and 'z ; will
cancel, whereas the integrals along I'y _; and I'_; ; will not.

Along the path I'g 1, we have zim = 0,1 < ze < R, 6, = 27 and 6, = 27, thus

1 1
(LX) rars € (14 2)/a2 — 1

Similarly, along path I' g, we have zim = 0,1 < ze < R, 6, =0and 6, =0,

f @,

1 1
T+ rn (1422 1

The sum of integrals along both I'y g and I'g; is then given by

f(z)|r1_R = (

R 1
| szt [ s = /1 e

1
1
+ / 1 &
R (1+x2)v/x2 -1
= 0
Along the path I' 1, we have zin =0, =1 < z. < 1,6, = 7w and 6, = 2, thus
1 -1

T U+ e T (14 2)idI— 2

f@ly,
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Similarly, along path I'_; ;, we have zin =0, -1 < z;¢ < 1,6, = wrand 6, = 0,

1 1

T A+ e T 142/l -2

f@lr

Note that we used 7,7, = (1 — x?) because |x| < 1.
Thus the sum of integrals along both I'; _; and I'_; ; is given by

f(z)dz+/ f(xdz =

1 ]
/ B —
i 1 (1+x2)iv1—x2
! 1
+ / S
1 (1 +x2)iv/1 — 2
2 /1 1
- ————dx
IJo (14 x2)v/1 — x2

Next, we need to calculate the residues at the poles z = +i. Note that because
the function is multivalued, we need to be careful when taking the limits of the

square root. First, consider the pole z = —i. At this point, we have
i—1l=—i—1 = 2™
tHl=—14i = 27
Thus
Res_;[f] = Ilim R
=\ +2)(z =1z +1)
_ 1 1
o —Di V2 372
1
- 2V2
For the other pole, z =i,
z-1=i-1 = 27
2+l=i+1 = 2ei*

and

. i
Res;[f] = IZIE}<(1+ZZ) (z—l)(Z+1)>

- () ()

-1

V2
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Finally, we combine all the previous calculations to obtain

/C f()dz = 2xi(Res i[f] + Resi[f])

3/1 m);md = 2’”’(3—%)

! 1 T
/_1 (1 +x2)v/x% — 1dx N V2

L.3 Dirichlet Conditions and the Fourier Integral Theorem

Definition L.5. A function f(x) is said to satisfy the Dirichlet conditions in the
interval (a, b), if the interval (a, b) can be partitioned into a finite number of subin-
tervals such that f(x) is bounded and monotonic in each of these subintervals.
This means:

1. There are a finite number of maxima and minima for f(x) in (a, b).
2. f(x) has no infinite discontinuities, but it can have a finite number of bounded
discontinuities.

Then we have the following theorem, known as the Fourier integral theorem.

THEOREM L.8. Let f(x) be such that [*_|f(x)|dx < oo, and let f(x) satisfy Dirichlet’s
conditions given in definition L.5 for (a, b) = (—o0, 00), then

% [f6D)+f(x)] = %/OOO /Z f(#)cos (w(x — 1)) dt dw (L.54)
where

fG) = lim fGe+nl) - and — f(x7) = Tim £ (x = Inl)

PROOF. As opposed to the prior approach of taking limits on the Fourier series
(cf. (12.5)), equation (L.54) given in Theorem L.8 can be more correctly derived
from another important result known as Dirichlet’s integral theorem,

sin (977)

[f(x+)+f(x )] = hm / fx+n———== (L.55)

as long as f(x) satisfy Dirichlet’s conditions. The proof of (L.55) is given in sec-
tion L.6.1 (page 836).
Lett = x + n. Also, we use the fact that

sin (6n) = /0 cos (nw) dw (L.56)
n 0

Substituting (L.56) into (L.55) with x held fixed, we get

% [fG&H)+ f(x)] = Olingo % /_Z f(@) /09 cos ((x — Hw) dw dt (L.57)

819
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The last important detail deals with the validity of interchanging the sequence of
integration in (L.57). With the assumption in Theorem L.8 that (/| f(r)|dr < 00),
we can show that (see Section L.6.2),

glinolo /_: f@ /09 cos ((x — Hw) dw dt = el_i)ngo /09 /_Z f(@) cos ((x — t)w) dt dw
(L.58)

So with (L.58) substituted to (L.57), we obtain the Fourier integral equation given
in (L.54)

L.4 Brief Introduction to Distribution Theory and Delta Distributions

In this appendix, we introduce some of the basic theory and tools to generalize the
concept of functions, with special attention to the construction of delta distribu-
tions. We also include a brief discussion of a very important class of distributions,
called tempered distributions, that generalizes the theory of Fourier transforms for
functions that may not be absolutely integrable.

L.4.1 The Delta Distribution (Delta Function)

The delta distribution, denoted by § (¢) and often known as the delta function, is
an important operation in applied mathematics. However, it does not satisfy the
classical requirements of functions; for example, it is not defined at ¢t = 0. Instead,
a new concept known as distributions (also known as generalized functions) had to
be constructed to give the necessary mathematical rigor to & (¢). Once the theory for
distribution was built, the constructs allow for the definition of other distributions,
including the derivatives of § (¢) and & (g(¢)), where g(t) is a continuous function.
Consider the Heaviside step function, H (¢), defined as

0 if t<0

H(t):{ L i =0 (L.59)

The delta distribution is often defined as the “derivative” of the Heaviside step
function. Unfortunately, because of the discontinuity at ¢ = 0, the derivative is not
defined there. However, the integral

b
(H (t),g(t))mb] = f H (1) g(t)dt (L.60)

with g(¢) at least piecewise continuous, does not present any computational or con-
ceptual problems. We can use this fact to explore the action of § (¢) by studying the
integral,

[e.¢]

(8@, g()= [ §(t)g(t)dt (L.61)

o0

where g(r) is a bounded differentiable function with bounded derivatives.
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By having 3 (¢) be the derivative of H (¢), (L.61) can be integrated by parts,

/_oo 5(1) g(0)de /_oo i7-{(t)g(t)dt

% o dt
—/_ZH(r)%dr

+ H (00) g (00) — H (—00) g (—0o0)
= —/Ooo%dt-i-g(oo)

— 40 (L.62)

Thus 3 (¢) can be defined based on the associated action on g(¢), resulting with a
number g(0). If g(¢) =1,

/oo S(r)ydt=1 (L.63)

The operational definition of 3 (¢) given in (L.62) may suffice for some applica-
tions. Other applications, however, require extensions of this operation to accom-
modate algebraic operations and calculus involving § (¢). To do so, the theory of
distributions was developed by L. Schwarz as a framework to define mathemati-
cal objects called distributions and their operations, of which § (¢) is one particular
example.

L.4.2 Theory of Distributions

Consider the following collection of continuous functions that are used to define
distributions:

Definition L.6. A continuous bounded function ¢(t) is a test function if

1. ¢(t) € C®, i.e. d*¢/dt* is continuous for all integer k
2. @(t) has compact support [a,b], ie ¢()=0 for (—oco <t<a) and
(b<t<o0)

An example of a test function is the smooth-pulse function given by

0 if t<a
o (1) = 1 exp [1 - m] if a<t<b (L.64)
0 it t>b

A plot of ¢, (¢) is shown in Figure L.14.

Definition L.7. A distribution, Dist (¢), is a mapping from the set of test func-
tions, Qiest, to the set of real (or complex) numbers given by

(Dist (1), (1)) = foo Dist (¢) (t)dt (L.65)

for ¢ € ®eg, such that the map is

821
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1 9

Pup(t)

0 T 1

t
Figure L.14. A plot of the smooth pulse function defined by (L.64).

1. Linear: For ¢, Y € ®wg and a, B constants,

(Dist (1), ag(r) + By (1)) = a (Dist (1), (1)) + B(Dist (1), ¥ (¢)) (L.66)

and
2. Continuous: For any convergent sequence of test functions ¢, — 0 then
(Dist (1), @u(1)) — 0, where the convergence of sequence of test functions sat-
isfies.
(a) All the test functions in the sequence have the same compact support.
(b) For each k, the kth derivatives of the test functions converges uniformly
fo zero.

Note that although we denote a distribution by Dist (¢), (L.65) shows that the
argument ¢ is an integration variable. Distributions are also known as generalized
functions because functions can also act as distributions. Moreover, using a very
narrow smooth-pulse function, for example, ¢,(¢) in (L.64) centered around ¢, with
a — bandunder appropriate normalization, the distribution based on a function f(z)
reduces to the same evaluation operation of f(¢) at ¢t = t,. However, the important
difference is that distributions are mappings from test functions to real (or complex)
numbers, whereas functions are mappings from real (or complex) numbers to real
(or complex) numbers, as shown in Figure L.15.

1 ‘

RI RI

(Dist®),¢(z)

Figure L.15. A comparison of the map-

“ pings of distributions and functions.

() RI

test

a) Distributions b) Functions
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Based on the conventional rules of integration, the following operation on dis-
tributions also yield distributions:

1. Linear Combination of Distributions. Let g1(¢), g2(¢) € C*, that is, infinitely dif-
ferentiable functions, then

DiSTeomb (t) = [g1(¢)DisTy (¢) + g2(¢#)DisT, (¢)]

is a distribution and

([81()Disty (1) + g2()Dista ()], ¢(1)) =
(Disty (1), g1 (e(0)) + (Dist> (1), g2(00(t)  (L.67)
In particular, if g1(f) = @ and g,(f) = B are constants,
([aDisty (1) + BDisT: (1)], (1)) =
a(Disty (t), ¢(1)) + B(Dist (1), ¢(1)) (L.68)

To prove (L.67), we simply evaluate the integral,

{[g1()D1sty (1) 4 g2(1)Dist ()], (1))

-/ " [g1(ODisty (1) + g2()Dists ()] (o)

[ee]

o0

= [ si@pmst @ plar+ [ gDt 0 w0 a

= (Dristy (1), g1(t)e(t)) + (Di1sT2 (1), g2(1)e(1))

2. Invertible Monotonic Transformation of Argument. Let 9(¢) be an invertible
and monotonic transformation of argument ¢, that is, (d¢/dt # 0), then

Disty (f) = Dist (9(¢))

is also a distribution, and

-1
(Dist (9(1)) , ¢(1)) = <DIST (2), %> (L.69)
where
z = (@)
v = |2 (L70)

o) = ¢('()
In particular, we have for translation, 9(f) = ¢ — «, then
(Dist(t—a), o)) = (Dist(z),9(z+ a))
= (Dist(1), ¢ (1 +a)) (L.71)

where we replaced z by ¢ again because these can be considered dummy variables
during the integration process.

823
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Another particular example is for scaling of the argument, 9(¢) = «t, then

(Dist (ar), (1)) = » |<DIST(Z) €0( >>

= % <DIST ), (é>> (L.72)

To prove (L.69), evaluate the integral,

(Dist (9(0)) . (1)) f ~ Dist (9(0) g()de (L.73)

#(o0)
1
/; o Dist (2) (97 (2)) dz?/ o dz (L.74)
Recall that #(¢) is an invertible monotonic transformation of ¢. Suppose ¥(t)
is strictly monotonically increasing. Then z — co as t — co and dv/dt > 0.
However, if 9(t) is strictly monotonically decreasing, z — —oo as t — oo and
dv/dt > 0. For the latter case, the lower limit of integration will be +o0o0 and the
upper limit is —oo. Thus, for either case, by fixing the upper limit to be +oo and
the lower limit to be —oo, we take the absolute value of d¥/dt when defining ¢(¢)
in (L.70).

3. Derivatives of Distributions. The derivative of distribution Disrt (¢), denoted by
Dist’ (¢), is also a distribution. After applying integration by parts, the operation
of Dist (¢) is given by

(Dist' (1), (1))

<%DIST ), (p(t)>

B dDisr (1)
= f_ N — Y p(Hdt

—/ Disr (¢) %dt

<DIST (0). ‘”( )4 > (L.75)

Using the preceding operations of distributions, we have the following theorem
that describes the calculus available for distributions.

THEOREM L.9. Let Dist (t), Disty (¢), and Dist; () be distributions, g(t) be a C* func-
tion, and a be a constant, then

1. The derivative of sums of distributions are given by
d d d
— (Disty (2) + Dist, (1)) = — (Disty (¢)) + — (Dist; (2)) (L.76)
dt dt dt

2. The derivative of a scalar product of a distribution with g(t) is given by

d dg d
7 [g(t)Dist ()] = EDIST ®+g@ EDIST ) (L.77)
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For the special case of g(t) = a,
d d
7 [aDist ()] = (xEDIST ) (L.78)

3. The derivative of a distribution under argument transformation 9(t), where ¥(t)
is an invertible monotonic function, is given by
dv

% [Dist (v(2))] = [E] diﬂ [Dist (v)] (L.79)

PROOF. See Section L.8.

L.4.3 Properties and Identities of Delta Distribution

As a consequence of distribution theory, some of the properties and identities of
delta distribution are given by:

1. Sifting property.

/_Oo S(t—a) f(r)dt

[ s@ra+a
f(@) (L.80)

2. Rescaling property. Let o # 0,

[ h 8 (at) f(t)dt

1 [o.¢]
ol [ oo<S(t) f(t/a)dt
= |i—| f(0) (L.81)

A special case is when o« = —1, then 8 (—t) = § (¢).

3. Identities Involving Derivatives.

d" & 4=k dk
<ﬁ8(t) ’ f([)> = (Dm0, 22 f(O))  0<k=n (L8
dm 0 if 0 <m<n
vt = ml den . (L.83)
(1) Gydead (@ i 0<n<m

(See Section L.8 for the proof of (L.83).)

Special cases include the following:

d
IEB H=-8() (L.84)
d
z2E5 (=0 (L.85)

d d
(=0 =——8(1) (L.86)

825
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4. Identities under Argument Transformation. Let g(¢) have a finite number
of isolated and distinct roots, ry # ry # - -+ # ry, and |dg/dt|—,) # 0 for k =
1,2,...,n

n

1
8@0) = 0
(g( )) k; |dg/dt|(z:rk)

(See Section L.8 for the proof of (L.87).)

A special case is when g(t) = > — a?,

8t —ry) (L.87)

_ S(t—a)+8(t+a)

) (t2 - az) Sial

(L.88)

L.4.4 Limit Identities for Delta Distribution

In the previous section, although we have shown several properties and identities
of the delta distribution, it may sometimes be advantageous to base calculations on
functions whose limits become the delta distribution. Surprisingly, the approximate
functions do not even need to be positive definite, nor do they need to be symmetric
with respect to the ¢ = 0 axis.

THEOREM L.10. Let f(t) have the following properties:

1. f(2) is piecewise continuous
2. |/ f(0)dt] < oo and limy o f(£) =0

35 fde=1

Then extending this function with a parameter « as follows,

F (o, 1) = of (1) (L.89)
we have the following identity,
lim F (o, 1) =5() (L.90)

PROOF. See Section L.8

This theorem unifies different approaches used in different fields of applied
mathematics to define the delta distribution. Some of the most common examples
of functions used are:

1. Gaussian Function.

1 .
f(= —me*x /2 (L91)
and
F(a,0) = %e*wz/z (L.92)

A plot of F («, t) based on the gaussian function is shown in Figure L.16.
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Figure L.16. A plot of F(«,t) based on
the Gaussian function.

2
Flo,t)=o(2m) Pe=@ X 2

0
-5

2. Rectangular Pulse. Let 7 (¢) be the unit Heaviside step function; then the unit
rectangular pulse function is given by

ﬂﬂ:HQ+%>—HG—%) (L.93)

F(a,t)=« <H (at + %) -H (at - %)) (L.94)

A plotof F («, t) based on the rectangular pulse function is shown in Figure L.17.
3. Sinc Function

and

ﬂﬂ=§%9 (L.95)
and
F(at)= % (L.96)

A plot of F (e, t) based on the sinc function is shown in Figure L.18.

[¢)]

I

Figure L.17. A plot of F(«, t) based on the
rectangular pulse function.
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0.7
0.6
0.5f
0.4
0.3
0.2r

0.1

Flo,t)=sin(o. /(n 1)

o,

-0.1f

-0.2 : : :
220 -10 0 10 20

Figure L.18. A plot of F(«, f) based on the sinc function.

L.4.5 Delta Distribution for Higher Dimensions

Definition L.8. For the Cartesian space of independent variables, x € R",

X1
X2
X = . (L.97)
Xn
the delta distribution of X is given by
8 (x) =8 (x1)8(x2) -8 (xn) (L.98)

Under this definition, the properties of § (¢) can be used while integrating along
each dimension. For instance, the sifting property for g(x) with p € R” becomes

Note, however, that when dealing with the general curvilinear coordinates, nor-
malization is needed to provide consistency.

Definition L.9. Let p = (u1, 2, ..., iy) be a set of n curvilinear coordinates,
mr = g (X, X, X)
ma = pa(x1,x2, ..., %)
(L.100)

/“l’n = Ml (x17x27~',xn)
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that is invertible with the Cartesian coordinates x = (x1, ..., X,), that is, the Jaco-
bian matrix,

opr/0xy -+ Ou1/0x,
_8(M11~-~aun)_

Joo, = = L.101
Cou 3(x1, ..., %) ( )

Opn/0xy -+ Ofn/0Xy

is nonsingular.
Then, the delta distribution under the new coordinates of j is given by

_ ()8 (p2) -8 (un)

5 = L.102
) |det (J—c)| (L1
where J ,_,c is the inverse of Jc_, ,
(X1, ..., x,)
J,oc|l=|——m—mm = L.103
el = [ (1109

The inclusion of the denominator term in (L.102) is to maintain consistency, that

/ s(x)dv. = / s(p)dv
|4 |4
= /xn'hi . /mﬂ (@) - 'S(M”))dxl codx
Xulo XLlo |det (‘]M—>C)| !
Hon i H1,hi (8 (l/«l) 8 (Mn))
= det(] ﬁc) dyq'--d,un
‘//;n.lo v/m.lo |d'et (JM%C)} | g |
Mon hi M1,hi
= [ [ 6w s dun - d
Mn,lo M1,lo
1 = 1

where we used the relationship of multidimensional volumes in curvilinear coordi-
nates, that is,

dV =dx; - -dx, = |det (J,.c)|dp - - - dpy

and x is an interior point in region V.

829
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EXAMPLE L.8. Consider the spherical coordinate system, fpere = (7, 6, ¢). With

x = rsin(0)cos(¢)
y = rsin(6)sin(¢)
z = rcos(h)

the Jacobian determinant, |J/sphere—cl, is given by

d(x,y,2)
spherec| = 900, )
ox/dr 0x/d0 0x/d¢
= dy/or dy/00 dy/d¢
d0z/or 0z/00 0z/0¢
sin (0) cos (¢) rcos(0)cos(¢p) —rsin(0)sin (¢p)
= sin (0)sin (¢) rcos(0)sin(¢)  rsin(6)cos (o)
cos (6) —rsin (0) 0
= r*sin(6)
Thus
_3(s®)s(¢)
5(r.6.9) = r2 sin (6)

L.5 Tempered Distributions and Fourier Transforms

The set of test functions defined in Definition L.6 contains infinitely differentiable
continuous functions with compact support. If we relax some of these specifications
and replace them with functions that are rapidly decreasing functions or Schwartz
functions (to be defined next), we can generate a subset of distributions, called tem-
pered distributions. Tempered distributions can then be used to define generalized
Fourier transforms that can be applied on functions such as unit step functions, sines,
and cosines and on distributions such as the delta distribution.

Definition L.10. A continuous function f(t) belongs to the Schwartz class,
denoted by S, if f(t) is:

1. Infinitely differentiable, that is, f € C*
and
2. Rapidly decreasing, that is, there is a constant Cy, such that

‘ ay

am <Cuyn, ast— oo forn,m=0,1,2,...

A classic example of a Schwartz function that does not have compact support is
given by

f@)y=e" (L.104)
A plot of (L.104) is shown in Figure L.19.
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o
©

o
)
:

Figure L.19. A plot of f(¢) = exp (—|t|?).

o
N

exp(—|1°)

0.2r

If we now replace test functions defined in Definition L.6 by Schwartz functions,
we have the following definition for tempered distributions.

Definition L.11. A tempered distribution, denoted TDist (), is a mapping from
the set of Schwartz test functions, S, to the set of real (or complex) numbers given
by

o0

(TDist (1), ¢(1)) = / TDist (¢) p(t)dt (L.105)

for ¢ € S, such that the map is

1. Linear: For ¢,y € S and o, 8 constants,

(TDist (1), agp(t) + By (1)) = o (TDi1st (1), (1)) + B(TDist (¢) , ¥ (¢)) (L.106)

and
2. Continuous: For any convergent sequence of Schwartz test functions ¢, —
0 then (TD1st (1) , ¢ (1)) — 0O

Because the set of test functions (with compact support), @, are already
Schwartz test functions, the set of tempered distributions is automatically included
in the set of regular distributions, that is, {TDist (1)} C {Dist(¢)}, which says that
the class of regular distributions is much larger. This means that some distributions
are not tempered distributions. The major issue is integrability, because Schwartz
functions only decay to zero at t = 00, whereas regular test functions with compact
support are zero outside the support. Fortunately, the delta distribution can be shown
to be also a tempered distribution.

L.5.1 Generalized Fourier Transforms

Even though the space of tempered distributions is smaller than that of regular
distributions, one of the main applications of tempered distributions is the gener-
alization of Fourier transforms. This begins with the fact that Fourier or inverse
Fourier transforms of Schwartz functions are again Schwartz functions.
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THEOREM L.11. Let f € S then F[f] € S, where S is the class of Schwartz functions

and F is the Fourier transform operator.

PROOF. First, we note an upper bound on Fourier transforms,

Eaul

IA

F| o |

- L.

' 1 Z e f(r)dt
o

Next, we need two derivative formulas. The first formula is given by,

-

e (—it)" f(t)dt

o0

(% (ei“”)) f(oadt

dm oo -
= — ()t
d ] ¢ (@
dm
~ o (F10)
The second derivative formula is given by,
arf o tdnf
110 _dt
F [ dr } f_oo ¢ ar
= (i)' F[f]

(after integration by parts )

Combining (L.108) and (L.109),

(i (o) - £ (v

After some rearranging and taking absolute values,

dm
w W(f[f]) ‘=

AL ()

Applying the upper bound given by (L.107),

/ am t’”f) dt

(L.107)

(L.108)

(L.109)

(L.110)

(L.111)

(L.112)

Because f is a Schwartz function, the term on the right-hand side can be replaced

by a constant C,,,. This means that F [f] is also a Schwartz function.

With this fact, we can define the Fourier transform of tempered distributions.
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Definition L.12. Let TDist (¢) be a tempered distribution and ¢(t) a Schwartz
function. Then the generalized Fourier transform of TDist (¢), denoted by
F [TDist (t)], is a tempered distribution defined by the following operation

(J—' [TDist (£)], go(a))> - <TDIST (), F [w(z)]> (L.113)

Note that (L.113) is acceptable because TDisT (w) was already assumed to be
a tempered distribution and F [¢(¢)] is guaranteed to be a Schwartz function (via
Theorem L.11). Also, note the change of independent variable from 7 to o, because
the Fourier transform yields a function in w. The tempered distribution TDist () will
be based on w.

With this definition, we are able to define Fourier transforms of functions such
as cosines and sines and distributions such as delta distributions. Moreover, the
Fourier transforms of distributions will yield the same Fourier transform operation
if the distribution is a function that allow the classical Fourier transform.

EXAMPLE L.9. Fourier transform of delta distribution. Let ¢(w) be a Schwartz
function.

(Fie-al.v@) = [ so-aFold

o0

= /_ Z 8(w — a) ( /_ Z e‘iwlw(t)dz> dw

= f e p(t)dt

oo

S a0)

= (e v()

where we used the sifting property of delta distribution. Also, in the last line,
we substituted w for ¢ by considering ¢ can as a dummy integration variable.
Comparing both sides, we conclude that

F8(t —a)] = e (L.114)
and for the special case of a = 0,
Flé(] =1 (L.115)

with “1” treated as a tempered distribution.

EXAMPLE L.10. Fourier transform of ¢/, cosines, and sines. First consider the
Fourier transform of e,

o0

<]—' [¢“], go(w)> = / ¢ F [o(1)] de (L.116)

—0Q
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where the right-hand side can be seen as 27 times the inverse Fourier transform
att = qa, that is,

/:X) e F [¢(t)] dow 271}"’1.7-"[g0(t)]

[ee]

t=a

= 2 go(t)|[:a = 2ngp(a)

= Zn/m 8(t — a)p(t)dt

o0

- 271< 5(t — a), (p(t)>

- 2;1( 5(w — a), p(w) > (L.117)
Comparing (L.116) and (L.117), we conclude that
F ] = 2n8(w — a) (L.118)
In particular, we have for a = 0,
F 1] =2n8(w) (L.119)

Using (L.118), Euler’s identity, and the linearity property of tempered distribu-
tions, we have

Fleos(a)] = F [—emt J;e_m}
1 . )
~ L Fe )

- n(a(w—a)+3(w+a)) (L.120)
Similarly for sine, we obtain

F[sin (at)] = in ( 5(w+a) — 8 (v — a) ) (L.121)

Suppose f(t) already possesses a classical Fourier transform; for example, it
satisfies Dirichlet conditions and it is integrable; then we end up with the same
evaluation. To see this, we have:

(FIFO1. o)

[ r@ [ e oo

[ o0 |~ e oo

_ [ Z () [ : e £ (1)t deo

< [ e o) >

where we exchanged the roles of w and ¢ in the last two lines. Thus we have

Firo = | e e

—0Q



Appendix L: Additional Details and Fortification for Chapter 12

This shows that we indeed obtained a generalization of the classic Fourier transform.

L.5.2 Generalized Fourier Transform of Integrals

All the properties of the classic Fourier transforms carry over to the generalized
Fourier transforms. One additional property, however, that takes advantage of tem-
pered distribution is the property for generalized Fourier transform of integrals.

THEOREM L.12. Let f(t) have a generalized Fourier transform. Then

r [ /_ ; f(n)dn:| — 78(w) (]—'[f(t)]‘ 0) + %f [£ ()]

(L.122)

w=

PROOF. First, we apply the operation of tempered distributions on the generalized

Fourier transforms as follows:

(#] [ _rovn]. otw)

f_: (/_: / (")d”) /_ : e~ p(t)dt dov
[ o [ ([ runan)do

[ : (1) [Scos(t) + &in(1) + ;(t)] dt  (L.123)

where the terms £.(?), &in(¢) and ¢(¢) are obtained after integration by parts® to be

SCOS (t)

Esin (t)

&)

cos(wt)

J— /_ Z F(@)do (L.124)
i =2 [ oo

w50 (FIF@)] ) (L.125)
i e

LFIf ()] (L.126)

Next, expand (L.123) to obtain the three additive terms evaluated as,

[ " el =

/_ N e(DEin(D)dt =

/ " (02

o0

0 (treated as a principal value integral) (L.127)
<[ o) (701 ) |- ¢<w>>
<[ Lo | ,w(w>>

(L.128)

(L.129)

6 Let (u= [ f(n)dn) and (dv = exp(—iwt) ). Then, v = —[1/(it)] exp(—iwt). And using Leibnitz

rule, du = f(w)dw.
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We again switched the roles of # and w in (L.128) and (L.129). Adding these three
terms together and then comparing with the right-hand side of (L.123), we obtain
(L.122).

EXAMPLE L.11. Fourier transform of the unit step function and signum function.
The (dual) definition of the unit step function is that it is the integral to the delta
distribution. Using (L.122) and the fact that F [§(¢)] = 1 (cf. (L.115)), we have

o[ o)

wo) (FBOI| )+ = F 130

FH®)]

1
= nd(w)+ — (L.130)
iw
Furthermore, with the relationship between H (¢) and sgn(¢) given by,
sgn(t) =2H (1) — 1 (L.131)

we can proceed as before, while using (L.119)

(Flsen0] 9(@) = 2(FHO. (@) - (1 ¢(w))

2|+ 70 000) - 1300). o1

2<% w(w)>

Thus

F[sgn(n)] = % (L.132)

L.6 Supplemental Lemmas, Theorems, and Proofs

L.6.1 Dirichlet Integral Theorem
Part of this theorem is used for the proof of Fourier’s integral theorem (Theo-
rem L.8).

THEOREM L.13. Let f(x + n) satisfy Dirichlet’s conditions in the interval (a, b), where
a> —ooandb < oo, then

[f)+f(x)] if a<0<b
: feh) if 0=a<b
2 b
elirglo ;/a f(x+n) Sln)(7977) dn = £x) if a<b=0 (L.133)
! d oro <aa<<bb< 0
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PROOF. We start with the fact that

* sin(q) 7
D dg =12 L.134
= . (L134)
and for ¢; > qi,
(7P
lim / sin(@) 4. =0 (L.135)
D=0 Jg q

Assume that f(x + n) is monotonic in a subinterval («, ) of (a, b) for the case a > 0,
the mean value theorem says there exists a < & < b such that, with g = 0n,

f e Sm(e”) i = fle+a®) f@dnwmﬂ) /fsmff”)d

% sin(q) _. [%#sin(q)
f(x+0‘+)f9a Td61+f(x+ﬁ )/95 Td

and with (L.135),

s1n(0n)

hm/ fx+n)———=dn=0 (L.136)

Note that so far, (L.136) has been shown to apply to a subinterval where f(x + n) is
monotonic. However, because f(x + n) satisfies Dirichlet’s conditions, the interval
(a, b) can be partitioned into n subintervals (a;, a;11), with

O<a=ay<ay<---<a,=>b

such that f(x) is monotonic inside each subinterval (e.g., with a; occurring either at
a discontinuity, minima, or maxima of f(x)). Thus

) b in(o ) n—l nay in(o
lim f(x+n)w dnzelggoZ/ f(x—i—n)y dn=0 (L.137)
i=0 V%

6— o0 (a>0)

Similarly with b < 0, the same approach can be used to show

(b<0) in(e
lim / Fe mEROD 4 (L.138)
— 00 a )’]

Next, for the case when a = 0, we need to focus only on the first interval, (0, a1), in
which f(x) is monotonic because (L.137) says the integral in the interval (ay, b) is
zero. Using the mean value theorem again, there exists 0 < £ < a; such that

/m Pl 22O g f(x+)f§M dn+f(x+a1‘)/al sin(®n)
’ " °o 7 g M

0 by o
=f(x+)/(‘) Slnq(q) dq-i—f(x-i-a]_)/o:é smq(q) d

837
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Applying (L.134) and (L.135),

im [ e ™ 4y = o)
orwithO=a < b,
tim 2 ff( D dy = £y (L.139)

Likewise, for a < b = 0, the same approach will yield

lim 2 /O fx+ n)@ dn=f(x") (L.140)

0—00 TT

For the last case, that is, a < 0 < b, we simply add (L..139) and (L.140) to obtain

tim 2 [ pe s Snn (9”)

0—00 TT (a<0) dT] - f(x+) + f(x ) (L141)

L.6.2 A Technical Lemma for Fourier Integral Theorem

LEMMA L.1. Let f(x) be absolutely convergent, that is,

[ 1r@iax <o

then

9151010 /Z f@ /: cos ((x — Hw) dw dt = 912130 /09 [Z f(@)cos ((x — tw) dt dw

(L.142)

PROOF. First, we look at the integrals of (L.142)

/(;oo f(@ /00 cos ((x — o) dw dt /Otf(t) /06 cos ((x — t)w) dw dt

+/Toof(t)foecos((x—t)w) dw dt
(L.143)

and

0 poo 0 pt
/0 /0 f()cos((x — Hw) dt dw /(; /0 f(@®)cos((x — t)w) dt dw

—i—/;/roof(t)cos((x—t)w) dt do
(L.144)

where 0 < 7 < o0.
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With 7 < oo and 6 < oo, the sequence of integrals with finite limits can be inter-
changed, that is,

/Otf(t) /(;9 cos ((x — Hw) dw dt = /00 /Orf(t) cos ((x — H)w) dt dw (L.145)

With the assumption of absolute convergence, there exist 7" such that

/ T if@r

€
<_

6
withe >0andt> T,

/ " =) dt‘

Sln(nw) ‘

Oof(t) /gcos (x — t)w) dw dt
0

f(+)

1 o0 €
d N
T/T Lf(x + )l n‘<2r9

A

and

'/Oefroof(t)cos((x—t)w)dtda)’ < /ngroolf(t)ldtdw

Combining both results,

0 0 0 poo
f(t)/(; cos ((x — Hw) dw dt — /(; /; f()cos ((x — t)w) dt dw‘

1
2<1+T9><e

Thus

/ S0 /0 " cos ((x — 1)) deo it = /0 ' / PO cos (x— ) dido  (L.146)

Taking the difference between (L.143) and (L.144), and then substituting (L..145)
and (L.146),

0 0 0 poo
/0 f(t)/o cos ((x — Hw) dw dt = /0 /0 f®)cos((x —t)w) dtdw  (L.147)

Using a similar approach, we can show

0 0 0 0
[ f(t)/O cos ((x — Hw) dw dt = /o /_ f®)cos((x — o) dt do  (L.148)
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Adding (L.147) and (L.148), and then take the limit as w — oo,

/:f(t)/ooocos((X—t)w) do dt = /OOO /:f(t)cos((x—t)w) dt dew

L.7 More Examples of Laplace Transform Solutions

In this section, we solve the partial differential equations using the Laplace trans-
forms. The first example shows the solution for the diffusion equation under bound-
ary conditions that are different from Example 12.13. The second example shows the
Laplace transform solution for the diffusion equation that includes a linear source
term.

EXAMPLE L.12. Here we extend the results of Example 12.13 to handle a different
set of boundary conditions. Thus with

2 u  du

A — = —

ox2 ot

under a constant initial condition, u(x,0) = C;. In Example 12.13, we have

already partially found the solution in the Laplace domain to be given by (12.83);

this was found to be

(L.149)

U = Ae™* + Be ™ + % (L.150)
where A; = /s/a. Now we investigate the solutions for a different set of bound-
ary conditions.

1. Finite Domain. Let the boundary conditions be
u(0,1) = Gy and u(L,t) =Cg
Applying these to (L.150),

~ 1 C;
UQO,s)=-C = A+B+—
N N
~ 1 G
U(L,s) = ;CL = Ael 4+ Be Mt 4 "
or
—AL _C) _ _C _prL _C —C
A= € (CO Cl) (CL Cz) and B = € (CO Cz) + (CL Cl)

s(e 'L — ¢L) s(e 'L — L)
Substituting back to (12.83),
C

ﬁ=(co—c,-)ﬁa+(cL—c,-)6b+;"

where
=~ Isinh(AM(L —x)) ~  1sinh(hx)
“~ 5 sinh(AL) P~ §sinh (AL)
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To evaluate the inverse Laplace transform, we can use the residue theorem for
an infinite number of simple poles (cf. Section L.2.3).” Fortunately, the poles of
both U, and U, are all simple poles. They are given by®

k 2
s=0 and AL:ikn—>sk=—<%T>,k:1,2,...

Note that sy =0 is a removable singularity of both (sinh(A(L —x))/
sinh(AL)) and (sinh(Ax)/sinh(AL)). Thus sy is not included in the sequence

of sx poles, leaving s = 0 to be a simple pole of U, and U,.
Then with y > 0,

£1[D4] = " oD ds = Y Res. (¢70)
a = A alX, S)ds = € a
2mi Sy <
Z=0.Sk
- ) sinh(A(L—x)) L—x
R eSt Ua - 1 egt =
es o (¢"U) ) sinh(AL) L

~ st L— _
Res g, (e” Ua) - sinh M lim &
Sk o s=si \ sinh(L+/s/c)

e oh (L —x)/sk 1 20/5k
N ;sm < o )cosh(L\/s_k/a) L

_ (_1)"% sin <knLZx) exp <— [%’T:)

Similarly, for f];,,

~ y+oo ~ -~
U] = %/y e Up(x, s)ds = Z Res; (¢ Up)
- 7=0,5%
Res 0 (ESlﬁb) = %
2
Res,, (¢"U;) = (—1)"% sin (kn%) exp (— [%T} t)

Combining all the results, we have the solution for u(x, ¢):

U = Usteady—state T Utransient

7 The following identities are also useful for the calculations in this example:
sinh(i|z|) = isin(|z]) , cosh(i|z|) = cos(|z|)
and

diz sinh(z) = cosh(z) , diz cosh(z) = sinh(z)

8 With f(x = i|z|]) = sinh(i|z|) = isin(|z]), the roots of f(x) are then given by x = i arcsin(0).
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u(x,t)

u transient(x Y -
<O 100

50

0
50
_50 0
0 0

X 10 x 10

Figure L.20. Plots of ttyansient and u(x, t) for example 12.13.

where

X X
tpegysae = G+ (G=C)(1-7) + (-G

Utransient = Z ﬂk(t) ((CO - Cl) Ck (L - x) + (CL - Cl) Ck (x)>

k=1
with

Bu(t) = (_1)1«% exp <_ [%T t) and  (y) = sin (kn%)

Plots of transient (X, £) and u(x, t) are shown in Figure L.20, for « = 0.1, L =1,
Cp =0, C; =50, and C;, = 100, where the summation for tansiens Was truncated
after k = 250.

1. Dirichlet Conditions and Neumann Conditions, in Finite Domain. Let

9
u(0,1) = Cp ; %(L, H=0 and  u(x,0)=0
Then (L.150) becomes
U= Ac™ + Be™

where A = /s/a. Using the Laplace transform of the boundary conditions,

G
Y —A+B  and 0= Al — Bt
S

or
oL el
A= oL + gL and B= oL + gL
Thus
. CO e—A(L—x) 4 eA(L—x) CO e—A(ZL—x) 4 oM 151
s et e s 14 e 2L ( )

Let ¢ = e~?*. Then using the fact that

1 00
=§ —1)'ag"
1+q n:O( )q
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Figure L.21. A plot of the solution given by
equation (L.152).

equation (L.151) becomes

~ © 1 x 1
U =C 1)t ZeP0Vs I Rt A1 CONA]
(S teror s St

n=0 n=0
where,

2L(n+1)—x 2Ln +x

Bn (x) = and Vn(x) =

Finally, the solution is given by

= Bn(x) ¥ (X)
(x,t)=C (=D | erfc| —= ) +erfc| —= (L.152)
aea=R 2:(; ( 24 ) ( 24 )

A plot of (L.152) with Cy =1, L = 10, and « = 4 is shown in Figure L.21.
Note that, although the plot qualitatively looks similar to Figure 12.3, the
main difference is that profiles of u(x, ) at fixed t have a zero slope atx = L.

EXAMPLE L.13. Laplace transform solution of diffusion equation with linear
source term in a semi-infinite domain.

Consider the equation
u  du
2
— = L.153
T (L153)

with a constant initial condition u(x, 0) = C; and boundary conditions
u(0,1) = f() and lim |u(x,1)| < o0
X—>00
Taking the Laplace transform, we obtain
P20 -
ZW =sU — Ci +o U

whose solution is given by

U=Ae"” +Be™™ + =
s
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where A = ({/s + 0)/a. Applying the boundary conditions, we get
G
A=0 and B:E[f]+?

l]lllS
7«/54’0’){0{ Cl

N

Using the convolution theorem, we have
t
u(x, 1) = / (ft—1)— C) L™ [e-MTU)x/“] dr + G;
0

To obtain the required inverse Laplace transform of the exponential term, we
can start from item 7 in Table 12.4 and apply the derivative theorem,

] - o[ ey ()]

d erfc( ! ) :Le_l/(‘")
de 23/t 24/ a3

Next, applying both shifting and scaling,

- - S+a 1 1
L 1[e Vst )/b] =7 P <—E—at>

Thus with a = o and b = (a/x)?,

u(x,t) =

Zaf_/ f@ —\/fl exp (-% —U‘L’) dr + C; (L.154)

The integral in equation (L.154) is difficult to evaluate both analytically and
numerically. If the boundary condition f(¢) is constant, then a closed-form
solution is available. For the more general case, numerical integration is needed
to evaluate the solution.

Case 1. f(t) = Cy where Cj is constant. In this situation, (L.154) becomes

X (C() i)
20/7

u(x,t) = ———=7I(x,1) + G

where,

t 1 x2
I(x, t) :[) r—ﬁexp —m — 0T dr

To evaluate Z(x, t), we introduce some auxiliary variables. Let ¢; and ¢, be
defined by

qi(7) = % +byT  and q(1) = 7 — byt
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Figure L.22. A plot of the solution given by
(L.155).

then

1 a b 1 a b
dpy=-|—-——=+—=)d d dp==(-—%-—)d
¢ 2< tﬁ+ﬁ)r an & 2( /T ﬁ)r
2
— + VPt =q} —2ab=q; +2ab
T

With a = x/(2«) and b = /o and after some algebraic manipulations, we get

2 () )
I(x,t) = - ez"b/ e dq; — bg(x, 1)
[e.¢]
2 @@
I(x,t) = —— e’zab/ e % dg, + bg(x, 1)
a [o¢]

where

1 x2
glx, 1) = /0 TT exp (—m — J‘L’) dt
The integral g(x, t) is just as difficult to integrate as Z(x, ). Fortunately, we avoid
this by adding the two forms of Z(x, t) based on ¢; and ¢, to obtain

I(x,y) = O‘Xﬁ |:e2“berfc( al + aﬁ) + e‘z"berfc< * aﬁ):|

2a4/T 204/7T
or
u(x,y) = %[exﬁ/“erfc<zax ﬁ+d&>
—xJo/a X
+ erfc —at) [+ G L.155
¢ (201«/5 \/;)} ( )

A plot of (L.155) with Cy = 1, C; = 0, « = 1, and ¢ = 2 is shown in Figure L.22.

Case 2. f(¢) not constant. In the general case that f(¢) is not constant, numerical

integration is more appropriate. However, because of the presence of /73 in the
denominator of the integrand in (L.154), a removable singularity occurs at t = 0.
The neighborhood around this singularity remains difficult to evaluate with
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Figure L.23. A plot of the solution given by (L.156) in two perspectives.

acceptable precision. As in the previous case, an auxiliary variable is needed.
This time, we introduce p where

1
p(r) = 71
whose differential is
1
dp = — d
P 2t/T ‘

Then (L.154) becomes

u(x, t) = —% fp: |:f (t - I%) — Ci] exp (— (%)2 — I%> dp + C; (L.156)

Take as an example, f(¢) as a Gaussian function given by
f(t) — e—200(t—042)2

With C; =0, « =1 and o = 2, a plot of (L.156) can be obtained via numerical
integration and is shown in Figure L.23.

L.8 Proofs of Theorems Used in Distribution Theory

PROOF OF THEOREM L.9. The first result, (L.76), comes from direct application of the
formula for derivatives of distributions, (L.75), on the linear combination operation
given in (L.67).

For (L.77),

(5001510000

(G510, 50000

= - <DIST (GF % (g(f)¢(f))>

- <DIST 0. g(t)%> - <DIST ), ¢(t)6;_g;>

<dit [g()DisT (1], <p(t)> - <[%] Dist (1), w(t)>



Appendix L: Additional Details and Fortification for Chapter 12

After rearranging the equation, we arrive at (L.77).
To obtain (L.79),

(G st oON.00) = - [ Disro) Far
f Dist (9) ¢ [j;‘;ﬂ

_ f e Dist (¥9) ——= q)(t)
¥(—00)

/1:(: <d%DIST (”)> o(t)d?
/_Z (d%D‘ST(l’)) ‘P(f)cfi—l?dt

- <<Z_lj> % [Dist (9)], <P([)>

PROOF OF EQUATION (L.83). First, we prove the case when n = m. Using integration
by parts,

<t %S(t) w(f)>
= (—1)" /_Za(z) [g}( ’Z ) (jt(;__l,))t”) (%w)} dt
- (—1)"n!/z«3(f) w(z)dt+(—1)”/ 5() [2( ) (7_"[> <%¢)} ;

= ((=1)"n's (1), (1))
Thus

t”%&(z) = (—=1)"n!s (¢)
Let £ > 0 then
(1 3@ 00) = (C1m (5. 600)
= 0
Thus

847
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Finally, for the case n < m, we apply the induction process. Letm =n + k
; d(n+k)
e LIONAY;
" [ dk n n d(n—i) ; d
= (=1) /m 78 {X{;( ; ) (Wx (E(p) dt
oo N n d
=(-1)" . s(t dt
205 () (o) (o)

(using induction at this point)

min(n,k) .
n [7 (=1)/(n!)*k! d®=0 di
-y / ;0 (i)2(n — )k — i)} (dt(k ) ()) (dﬂ )df
= an s Z!k) ( 5(0) p(t)dt

o[ (n+ k) dk

FIORT0)

Thus

dm—n)

0=

PROOF OF EQUATION (L.87). In (L.69), we required that the argument transformation
#(¢) be monotonic and invertible; thus we cannot immediately apply that result for
the more general requirements for g(7). Nonetheless, we can take advantage of the
fact that the delta distribution is mostly zero except at the roots of it arguments, that
is, 8 (g(¢)) = 0 when g(¢) # 0. This allows us to partition the path of integration to
smaller segments surrounding the roots of g(¢),

(8(g(0).¢()

/ " 5 (g(0) p(o)dr

rgte

Z / 5 (8(1)) p(0)dt

k—€

where € > 0 is small enough such that g(¢) is monotonic and invertible in the range
(rx —€) <t < (rg+e¢)forall k.
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We can now apply an equation similar to (L.69) for each integral term,

rg+e (ri+e) -1
/ 5(e(t) o()dt = / %) '@
7] g

—€ (ri—e) |dg/df|(g—1(z))
_ @ (rk)
|dg/dt|t:fk
L (56— ). (o)
= — —r
\dg/dtl,_, k)» @

Combining both results,

N
2 g7, |dg/dr|, —, =)o)

N
<Z i, . (=) "”(t)>

k=1

(8(g(®). (1)

PROOF OF THEOREM L.10. Using (L.72),

(F(a,0), 0(t) =« <f(t)’ ¢ <é>>

then
Fan=50.00) = (r016 (L))o
(then with /Z f(dt = 1)
_ /Z F(O)® (é) d
where

®(1) = (1) — 9(0)
Taking absolute values of both sides, we obtain the following inequality,

(Fa,t) = 8(t), 0(1)) <A+ B

‘/ f(t)cD( )dr+/qwf(t)<1> (é) dt‘
B = ‘/qf(t)d> (é) dt

Now choose ¥ > 0, ¢ > 0 and o > g/« such that

where,

A

1. |®()| < efor || <«

2 [L1F@lde+ [ If @)l < ¢

849
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then

N
A

26 - max [p(1)|

/_ Z f(t)dt

(P —50).00)] < ¢ (2maxioon +| [~ s0ar)

Because all the terms on the right-hand side of the inequality is fixed except for ¢,
we can choose ¢ arbitrarily small. Hence

lim F (o, 1) =5()

oo
IA

& .

or




APPENDIX M

Additional Details and Fortification
for Chapter 13

M.1 Method of Undetermined Coefficients for Finite Difference
Approximation of Mixed Partial Derivative

For the case of mixed partial derivatives, we use the general formula of the Taylor
series of u(x, t) expanded around (xy, t,):

+
' = Z Z fne 705 (M.1)
m=0 ¢=0
where
am+£ . )
-~m,l
fne = Py » )AfmAX and Yej = Vej Ymi
Xieslg

and y, ; has been defined in (13.11).

The computation for the general case involves high-order tensorial sums. A
2

simple example is the approximation of X0

EXAMPLE M.1. Approximation of Mixed Partial Derivatives. Let Dy , 1, be the
approximation of the mixed derivative defined as a linear combination of the
values at neighboring points,

11
1 3%u
Dixiy= Z Z Uktintj Qij = + Error  (M.2)
AxAy P — dxdy (k)
Applying (M.1), we obtain
2 2 1
Z Z Jme Z Z Azn]l aij | —fin = AtAx(Error)

(=3 m=0 i=—1j=-1

oo 00 1 1

E E fm,K E Vej %ij
=0 m=3 i=—1j=-1
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Setting the left-hand side (M.3) equal to O results in a set of nine independent
linear equations:

~mi 0 i@ ) # 1)
Yej % —{ 1 if@Gj)=(,1)

Solving these equations, we obtain

i

ai’i:Z l,jZ—l,O,l
which yields the following finite difference approximation of the mixed partial
derivative:
Fu 1 (k) _ (kD) (=) (k1)
- AN — M.4
X0y |(y)  4AXAY (u”+1 Unt” Uy Tty ) (M.4)

To determine the order of truncation error, note that the coefficients of the
lower order terms of f, ; are

0 if =0, orm=0
1 1 1
~m,i - _1\ym+1 : —
3 Do = g g (D) 1=
i=—1j=—1 1
+1 : —
zz'<1+( 1) ) it m=1
yielding

E AP < a4 )‘ +Ax2 ( a4 )’ N
Iror = — | ————u |\ =u e
3t \asax! /|, 30 \afaxd /|,

or Error = O (A2, Ax?).

M.2 Finite Difference Formulas for 3D Cases

For the 3D, time-invariant case, a general second-order linear differential equation
is given by

2
Mxx(xvy’z) +Nyy( y,z) +Mzz( yZ)

2
+Mxy(x y,z) +Hyz( » Y. Z )_+sz( sz)a 9z

+ Be(x, y, Z) +ﬂy(x ¥, Z) +ﬁz(x ¥, Z)—

+C(x,y,2)u+n(x,y,z) = 0 (MS5)

Let the superscript “(3b)” denote matrix augmentation that will flatten the 3D
tensor into a matrix representation. For instance,fork =1,...,K,n =1,..., N,and
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m=1,..., M, we have the following K x NM matrix for uy,,:
Uil ot UILNI uiimM o ULNM
U(3b) .
Ug11 0 UKNI Ugim - UKNM
111 o QN Gam 0 GNM
5(3») . . )
ki1 - CkNA SkamM - CKNM
etc.

where uy . = u(kAx, nAy, mAz), Len.m = ((kAx, nAy, mAz), etc. Likewise, let the
superscripts “(2b, x)” and “(2b, y)” denote column augmentation, as the indices are
incremented along the x and y directions, respectively. For instance,
(2b,x)
bz = ( b(1$Z)|k:1 | T | b(1s1)|k=K )

The partial derivatives can then be approximated by finite difference approxi-
mations in matrix forms as follows:

Ny 3 o 32u 3 (30)
5 N D(l,x) U( b) + B(l.x) ; @ — D(g_x) U( b) + B(2,x)
o (3b) 9%u &)
—_ (3v) T T C (30) & o
i N (IM 2 D(l,y)) i (B(l,y)) b a2 - U (IM ® D(Z.y)) + (B(z,y)>
W U (D01 +Ban ¢ e — U (Db, @ Iy) +
- hs N 1.2 3 Py (2,2) N (2.2)
0’u
30 T (3)
gy~ PawU (w@Df,) + B
0%u B,
@) (pT r
dydz - v (D(M) ® D(LY)) +Bayg
2
“u > DuyU® (DT1 ®IN) + 1/3\(1 x1,2)
oxdz ’ - o

where D1 x), D(1,y), D(1,2), P2.x)» D(2,y), and Dz ;) are matrices that can take forms such
as those given in Section 13.2.2 depending on order of approximation and boundary
conditions. The matrices B ), Bx), - - - » and so forth contain the boundary data.
The new matrices B\l . and I/S'\z . are given by a sequence of transformations as

@@
reshape (b(l,;) ) , K, NM (M.6)

@@
reshape (5(2,%) ) , K, NM M.7)

(The matrices Bi x1; and By, 1 ; are left as exercises.)

B,z

B,

853
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Just as in the previous section, we can use the properties of matrix vectorizations
to obtain the following linear equation problem corresponding to (M.5):

9{3]3 vec (U(Sb)) = f3D (M8)

where,

Rip = I:Mxx(%):l Iy ®IN® Doy + [Myy( ):| Iy ® D,y ® I

+ [Mzz( )] D(2,z) ®Iy® Ik

dv dv
+ [Mxy(3b)] Iy ®Da,y) @ Dy + [Myz( )} Da,y) ®Day) Ik

dv
+ [@(%)] Dq,7) ® In ® D15
dv dv
+ [&@b)] Iy ®In® Dy + [@“”} Iy ® D,y Q I

dv
+ [52] Puseiveix

N [§3b)]dv

fap = [g“”] vec (BEZ ))) + [QGMTVVGC <(B(2,y)1‘)(3b))
+ [g(%)]dvvec (1’3\(2,2))

dv dv
3b =
[ny(Sb)] A (B((l ; 1 y)) + [@Bb)} vee (B(l,y,l.z))

+

dv —~
1 [@ (Sb)] vee (Biir1.o)

) ve12) o+ [ vee((25)”)

dv ~
+ [&(%)] VGC(B(LZ))

+

+ vec (g(%))

EXAMPLE M.2. Consider the 3D Poisson equation

Viu=n(x,y,2) O0<ux,y,z=1 (M.9)
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where,
4 2
n(x,y,z) = exp (—2[z—x]2—5[1 — gz_y} )

122 4 2 52 2
x —?+16(x—z)2+100(1—§z—y) +<8—?z—8y+4x>

subject to the following six Dirichlet boundary conditions:

4 2
exp (—2z2 -5 |:1 - gz—y] )

<_2[z —1P -5 [1 - gz —y]2>
(

u(0,y,2) = ap(y, 2)

u(l,y,z) =a1(y.z) = exp

w1 =pind) = exp(-2f-af - 57)
u(x,y,0)=wlx,y) = exp (—2x2 -5[1 - y]2)

1 2
ulx,y,1)=ypyi(x,y) = exp <—2 [1- x]2 -5 |:§ — y:| ) (M.10)

The exact solution is given by

2
u(x,y,z) =exp (—2 [z—x]* -5 [1 - gz - yi| ) (M.11)

Using Ax = Ay = Az = 0.05, and central difference formulas for D ), De2,),
D.y), Bax), Be,y), and B\(z, 2, the linear equation (M.8) can be solved for
vec (U®). The results are shown in Figure M.1 at different values of z, where
the approximations are shown as points, whereas the exact solutions are shown
as surface plots. (A MATLAB file poisson_3d.m is available on the book’s
webpage that implements the finite difference solution and obtains the plots
shown in this example.) The errors from the exact solution (M.11) are shown in
Figure M.2 at different fixed values of z. The errors are in the range 1.7 x 1073,

M.3 Finite Difference Solutions of Linear Hyperbolic Equations

Consider the following linear hyperbolic equations

=t (M.12)
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z=0.1 z=0.2

0.5

. : . : 0.5
00 00 00

Figure M.1. The finite difference solution to (M.9) at different values of z, subject to conditions
(M.10). The approximations are shown as points, whereas the exact solutions, (M.11), at the
corresponding z values are shown as surface plots.

whereu = (1, ... ,ﬁ,)T and A is a constantJ x J matrix. If A is diagonalizable, that
is, there exist a nonsingular matrix V and a diagonal matrix A such that A = VAV 1,
then with

u=V'a c=V'e
we can decouple (M.12) into J equations

au,‘ '8u,‘
ot

Thus in the discussion that follows, we consider

d d
Mo, (M.13)
ot 0x

as a representative system for handling a system of first-order hyperbolic equations.
However, in our discussion of the scalar case, we allow for ¢ = c(x, t).

M.3.1 Upwind Schemes

We can use either forward, backward, or central difference approximations for
ou/dx toward a semi-discrete approach. Time marching can then be implemented
by a forward Euler or backward Euler. This will yield six types of schemes, namely
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z=0.1

Figure M.2. The error distribution between the finite difference approximation (using central
difference formulas) and the exact solutions, (M.11), at different z values.

forward-time-forward-space (FTFS), forward-time-central-space (FTCS), forward-
time-backward-space (FTBS), backward-time-forward-space (BTFS), backward-
time-central-space (BTCS), and backward-time-backward-space (BTBS). Each
scheme will have different stability ranges for Atinrelation to Ax and A. In Table M.1,
we summarize the different upwind schemes and their stability based on another
parameter 7

e M.14
n=Ao ( )

which is known as the Courant number. The stability conditions included in the table
are obtained using the von Neumann method and are given as Exercise in E13.15.
We can make the following observations:

1. The forward-time schemes: FTFS, FTCS, and FTBS are explicit schemes,
whereas the backward-time schemes: BTFS, BTCS and BTBS are implicit
schemes.

2. The central-space schemes are given by FTCS and BTCS, with the explicit FTCS
being unstable and the implicit BTCS being unconditionally stable.

3. The noncentral space schemes have their stability dependent on the sign of 7, or
equivalently on the sign of A. Both forward-space schemes, FTFS and BTFS, are

857
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Table M.1. Basic finite difference schemes for scalar hyperbolic equations

Scheme Approximation equation Stability region
FTFS uf = 1+ ul® - qu?, + Arc? —1<n<0
FTCS u,(:ﬁ'l) = ugf') g ( ul? — u(q) ) + AZC,(:') None

FTBS W = (1= ) u® + A 0<n=<l1
BTFS A=) D ¢ Al = @ <0

BTCS w0 2 (5 = ) + A = Al

BTBS (1+1n) ugﬁ—l) (q+1) + Ate (fﬁ—l) ;(l/) n=>0
Leapfrog u,((q“) = u,((qfl) nufﬂl + Wf,q)l + 2Atc(q) nl <1

1- 1
Lax-Friedrichs u,(cqﬂ) = (J) ”521 + <ﬂ> u,((q)l + Al‘C(q) Il <1

2 2
1
i = =)+ g ()
Lax-Wendroff +1 (P +n) uy (q) <1
9 9 (9)
FPart (Z-225) a2
ot ox /.
N (qg+1) (g+1) _ 1M (q+1) _
Zukil +u! 2 o =
Crank-Nicholson All
— )+ + Zul®, 4+ Arr

stable only for negative n values, whereas both backward-space schemes, FTBS
and BTBS, are stable only for positive 7, values.!

From the last observation, we can still recover the use of noncentral schemes
by switching between forward-space and backward-space schemes depending on the
sign of A. This combination is called the upwind schemes, because the direction of
space difference is adjusted to be opposite to the wave speed A. Specifically, with

y) = 77+2|n| and g0 =1 —2|n| (M.15)

1 Note that even though BTFS and BTBS are both implicit schemes, neither are unconditionally
stable.
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we have the explicit upwind scheme, which combines both FTFS and FTBS in one
equation,
1 _ _
W = (1 ) = ,7<+>) W 4y Ou® U, (M.16)

and whose stability range is given by 0 < |n| < 1. Likewise, we have the implicit
upwind scheme, which combines both BTFS and BTBS in one equation,

(1 ECO I n(+)) ugcq+1) _ 77(+)”1(cqjl) + 7’/(7)”1&%:1) = u]((q) (M.17)

whose stability range is given by 0 < |n|.

M.3.2 Other Finite Difference Schemes

There are four more important schemes: the leapfrog (or CTCS) scheme, the Lax-
Friedrichs scheme, the Lax-Wendroff scheme, and Crank-Nicholson scheme. The
first three are explicit, whereas the last one is an implicit scheme.

The leapfrog and the Lax-Friedrichs schemes are improvements to the FTCS
scheme to overcome its unconditional instability. The leapfrog scheme uses the
central difference approximation for du/dt. Thus we have

R O G
2Ax 2At

=9 (M.18)

Note that the leapfrog scheme needs values at both #, and #,_; to obtain values
at t;41. Thus the leapfrog schemes often require other one-step marching, such as
Lax-Friedrich or Lax-Wendroff to provide it with values at #;, and then continue
with the leapfrog for ,, g > 2.

The Lax-Friedrichs scheme approximates the time derivative as a forward time

difference, but between uiqﬂ) and the average at the current point, % (”521 + uiq_)1>.

['hus the scheme is given by
(g+1) 1 ( (@) (@)
”5:1)1 - ”5:4)1 Uy 2 (”k+1 ”k71>

(@)
= M.19
2Ax At “ ( )

Note that the leapfrog scheme used the values at 7,_1, whereas the Lax-Friedrichs
continues to stay within ¢,.

The third explicit finite difference scheme uses the Taylor series approximation
for u,

ad 1 92
o Aty - 28 AP+ O (AP) (M.20)

+1
l/l,(cq ) = uf:l) +
ot t=qAt,x=kAx 2 ot t=qAt,x=kAx

and then substitutes the following identities obtained from the given differential
equation

into (M.20). Afterward, the central difference approximation is used for du/dx and
d%u/dx*. After truncation of O (Af’) terms, the following scheme, known as the
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Lax-Wendroff scheme, results

@y _ @ A @ @Y LA e @ @
Uy = W - )LZAx (”k+1 - ”k71> TN AR (uk+1 —ay + uk71)
9 9 (@)
+cDAr (—C = A—C> AP
ot ox /),
or
1 1 1
G = (=) 5 (8 = m w4 5 (7 ) e+ 6P a
9 9 (@)
+ (—C - A—C> AP (M.21)
at ox /,

Using the von Neumann method, one can show that the stability range of
the three explicit schemes, namely the leapfrog, Lax-Friedrichs, and Lax-Wendroff
schemes, given in (M.18), (M.19), and (M.21), respectively, are all given by |n| < 1.
The approximation errors for these methods are O(sz, Atz), O (Ax, At), and
O (Ax?, Ar?) for leapfrog, Lax-Friedrichs, and Lax-Wendroff schemes, respectively.

The Crank-Nicholson scheme is an implicit scheme that could be seen as an
attempt to improve the accuracy of the BTCS scheme, which may be uncondition-
ally stable but only has approximation errors of O (Ax?, Ar). However, unlike the
leapfrog scheme, where values at #,_; are introduced, this method tries to avoid
this from occurring by using a central difference approximation at a point between
tq+1 and t,, that is, at t = #,41,», with a time increment At/2. However, by doing so,
the spatial derivative at ¢ = t,,1,» must be estimated by averages. Thus the Crank-
Nicholson scheme uses the following approximation for the time derivative:

(g+1) (9) (g+1) (9) +1
A |:”k(11 +ul _ L +”kq—1:| (”gcq - “(kq)) — a+1/2)

2Ax 2 2 2(At2) )k

or
ﬂu(q+1)+u(q+1) _ e+ _ 1@ RO n, @ T A/ (M.22)
2 et k 21 = T e T 21 k .

The approximation error of the Crank-Nicholson scheme is O (Ax?, Ar?). Using the
von Neumann method, we can show that the Crank-Nicholson scheme, like the
BTCS scheme, is unconditionally stable.

EXAMPLE M.3. For the scalar hyperbolic partial differential equation given by

ou ou

— 4+05— =0 M.23

ot + ox ( )
we consider both a continuous initial condition and a discontinuous initial

condition.

1. Continuous initial condition. Let initial condition be a Gaussian function
given by

u(0,1) = e 817 (M.24)
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Figure M.3. Numerical solutions for con-
tinuous initial condition using the various

schemes.

tions.

given by

UPWIND (Explicit)

S 05 /N
0 =7 N

Leapfrog

u(0,1) = [ 0

> 0.5

UPWIND (Explicit)

1 if02<x<04
otherwise

UPWIND (Implicit)

o
o
wn
-

Lax-Wendroff

0 0.5

—_

X
Crank-Nicholson

UPWIND (Implicit)

Using the various stable schemes, the finite-difference solutions with Ax =
At = 0.01 are shown in Figures M.3 and M.4. It appears that the leapfrog,
Lax-Wendroff, and Crank-Nicholson schemes yielded good approxima-

2. Discontinuous initial condition. Let the initial condition be a square pulse

(M.25)

Figure M.4. Comparison with exact solutions for different schemes at¢# = 1. The exact solution

is given as dashed lines.



862 Appendix M: Additional Details and Fortification for Chapter 13

UPWIND (Explicit)

UPWIND (Implicit)

el 4
1 s i b

E R0 I— Figure M.5. Numerical solutions for dis-
g s S5 4 1 z continuous initial condition using the var-
e aadoadd o .

ious schemes.

t
0 0 X !

Crank-Nicholson

Using the various stable schemes, the finite-difference solutions with
Ax = At = 0.01 are shown in Figures M.5 and M.6. As one can observe
from the plots, none of the schemes match the exact solution very well.
This is due to numerical dissipation introduce by the schemes. Dissipa-
tion was instrumental for stability, but it also smoothed the discontinuity.
However, the other schemes had growing amount of oscillations. These are
due to the spurious roots of the schemes. Significant amounts of oscillation
throughout the spatial domain can be observed in both the leapfrog and
Crank-Nicholson schemes. The Lax-Wendroff appears to perform the best;
however, a smaller mesh size should improve the approximations.

More importantly, however, is that if one had chosen |n| = 1, both the
Lax-Wendroff and Lax-Friedrich schemes reduce to yield an exact solution
as shown in Figure M.7 because the discontinuity will travel along the char-

acteristic; that is, with ¢(x, ) = O and At = Ax ;

(or |n| = 1), both schemes

reduce to

u® ity =1

(g+1) _
I PN
w ifn=+1

The example shows that the Lax-Wendroff performed quite well, especially
when At was chosen carefully so that || = 1. Note that the case in which it yielded
an exact solution (at the grid points) is limited primarily to a constant n and zero
homogeneous case, that is, c(x, f) = 0. The other issue remains that Lax-Wendroff
and Lax-Friedrich are still explicit time-marching methods.
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UPWIND (Explicit)

5 05

X
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Figure M.6. Comparison with exact solutions for different schemes at r = 1.

M.4 Alternating Direction Implicit (ADI) Schemes

Let matrix G be a multidiagonal, banded matrix of width w, that is, G;; = 0 for
li — j| > w. In general, the LU factorization of G will result in L and U matrices
that are banded with the same width. Unfortunately, the matrices generated during
finite-difference methods of two or three spatial-dimensional systems are likely to
have very wide bands, even though the matrices are very sparse. For instance, matrix
R in Example 13.9 will have a band of width N. Yet in any row of R, there are only
at most five-nonzero entries. This means that using a full LU factorization of sparse,
multidiagonal matrices with large bandwidths may still end up with large amounts
of storage and computations.

One group of schemes, known as the Alternating Direction Implicit (ADI)
schemes, replaces a multidiagonal matrix by a product of two or more tri-diagonal
matrices. More importantly, these schemes maintain the same levels of consistency

Figure M.7. Numerical solutions for discontinuous
initial condition using the Lax-Wendroff with || = 1.
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and convergence, as well as the same range of stability as the original schemes.
Because the computations are now reduced to solving two or more sequences of
tri-diagonal systems, via the Thomas algorithm, the improvements in computational
efficiency, in terms of both storage and number of computations, become very sig-
nificant compared with the direct LU factorizations.

The original ADIschemes were developed by Douglas, Peaceman, and Rachford
to improve the Crank-Nicholson schemes for parabolic equations. For a simple
illustration of the ADI approach, we take the linear second-order diffusion equation
for 2D space, without any mixed partial derivatives, given by

2

u 0°u ou
2T tyy (L, X, Y)ﬁ + Bu(t, x, Y)a

du d 2
X tvxa
My ( y)a y

ot
ou
+By(t, x, y)g + &(t, x, y)u +n(t, x, y) (M.26)
together with Dirichlet boundary conditions,
u(t,0,y) =vo(t,y) :  u(t,x,0) =wo(t,y)
ut,Ly)=uy) ; ultx,l)=w(y)
Letu, n, ¢, fixx, My, Bx, and B, be represented in matrix forms,

uig - UIN Sin 0 GQIN
U =
Ui -+ UKN k1 o+ CkN

where uy, = u(kAx, nAy), &k, = t(kAx, nAy), etc.
Following the results of (13.39), the semi-discrete approach yields

d
5 V=FOv + B@) (M27)
where
= vec(U)
F = o +m,
r dv dv 1
e = “:)‘] In®Dey + [ﬁ_] IN® D + 3¢
r dv dv .
Ty = m:| Poy @Ik + [&} Day @Ik + Egdv
r dv dv
B = || vec(Bey) + [@} vec (B(szy))

+ [ﬂ:,;ldv vec (B(l,x)) + [&]dv vec (B(quy)) — vec ([n])

and the superscript “dv” is the notation for diagonal-vectorization operation.
Applying the Crank-Nicholson scheme, we have

(1 _ %Fwn) VD) (1 4 %Fm) v 4 % (B 1+ B9 (M28)
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By subtracting the term, (I — (At/2)AF+D) v@, from both sides of (M.28),

(1 _ %an) (v —yo) = % (( FOD 4 F9 )y 4 (B 4 B9 ))

(M.29)
Let

AVD = yath) _ y@

then with F@+D) = 9n¥@*™) 4 {7+ (see (M.28)),

At At At
<1 _ 7F<q+1>> (av0) = (1 ~ Zlanen 7§m§q+l)> (av®)

At At
— (1 _ 7m§q+l)> <1 _ 79:11;‘1“)) (am)

AL D)) (A ()
— S I (8 )

GrIGIAND — 0 (Ar)
where
At At
@ —7_ Z“on@ . @ — 7 _ Zonla@)
G? =1 > i ; qu =1 > im;f (M.30)

The last term is O (At4) because of the fact that the Crank-Nicholson scheme guar-
antees that A, v(@ = v+ — v(@ = O (AF). By neglecting terms of order O (Ar*),
(M.29) can then be replaced by

GG (A,[u](q)> - % ( (F<q+1> + F@) [u]? + (B<q+” + B@) ) (M.31)

However, G, and G, are block tri-diagonal matrices whose nonzero submatrices are
diagonal in which the main blocks in the diagonal are also tri-diagonal, thus allowing
easy implementation of the Thomas and block-Thomas algorithms. Equation (M.31)
is known as the delta-form of the ADI scheme.”? The values of UU@*D are them
obtained from

U(CH—I) — (At U((I)) + u([l) (M32)

It can be shown by direct application of the von Neumann analysis that the ADI
scheme given in (M.31) will not change the stability conditions; that is, if the Crank-
Nicholson scheme is unconditionally stable, then the corresponding ADI schemes
will also be unconditionally stable. Furthermore, because the only change from the
original Crank-Nicholson scheme was the removal of terms that are fourth order
in At, the ADI scheme is also consistent. The application of the Lax equivalence
theorem then implies that the ADI schemes will be convergent. The extension of
the ADI approach to 3D space is straightforward and is given as an exercise.

2 The scheme is named Alternating Direction Implicit (ADI) based on the fact that the factors G)(Cq)
and Ggq) deal separately along the x and y directions, respectively. Also, the term Implicit (the “I” in
ADI) is areminder that ADI schemes are developed to improve the computation of implicit schemes
such as the backward-Euler or Crank-Nicholson, where matrix inversions or LU factorizations are
required.
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An important issue with ADI schemes is that for accurate time-marching pro-
files, a small time step is still needed. Recall that the removal of the O (At*) terms will
introduce errors to the original schemes. This additional error is negligible as long
as At is chosen small enough. However, time-marching approaches are sometimes
used primarily to find steady-state solution. In those cases, accuracy only matters at
large time values. Because of stability properties, the errors should then have asymp-
totically settled out toward zero. The ADI schemes are very often used to obtain
steady-state solutions because they handle the complexity and size requirements of
2D and 3D systems efficiently.?

3 Other approaches to steady-state solutions include relaxation methods for solving large sparse linear
equations such as Jacobi, Gauss-Seidel, SOR. Currently, various Krylov subspace approaches such
as conjugate gradient and GMRES (see Sections 2.7 and 2.8) are used for very large sparse problems.
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Additional Details and Fortification
for Chapter 14

N.1 Convex Hull Algorithm

In this section, we describe an algorithm to find a polygonal convex hull of a set
of 3D points. The algorithm is a simplified variant of the QuickHull algorithm.!
Furthermore, we restrict the algorithm only to points in three dimensions where all
the points are boundary points of the convex hull. This case applies to points that all
come from a paraboloid surface.

We begin by introducing some terms and operators to be used in the algorithm.

1. Outside sets and visible sets. For a given facet F, let Hyp(F') be the hyperplane
that includes F. Then a point p is outside of F if it is located on the side of
Hyp(F') along with the outward unit normal vector (see Figure N.1). Also, the
outside set of /', denoted by Out(F) = {p1, ..., p}, is the set of all points that
are outside of F.

Switching perspectives, for a given point p, a facet F is visible to p if p is
outside of F. The visible set of p, denoted by Vis(p) = {F1, ..., F,}, is the set
of all facets that are visible to p.

2. Ridgesets. Let ® = {Fy, ..., F,,} be a set of facets that collectively forms a
simply connected region D. Then each boundary edge of D, denoted by R;, is
called a ridge of ®, and the collection R(®) = {R1, Rz, ..., R} is referred to
as the ridge set of facets in .

For example, from the group of facets shown in Figure N.2, let

& = {Fy, Fg, F9, F19, F13F14F 15}

I Barber, C. B., Dobkin, D. B., and Huhdanpaa, H. The QuickHull Algorithm for Convex Hulls.
ACM Trans. on Math. Software, 1995.
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Figure N.1. Points a and ¢ are outside points of facet F', whereas b
and d are not. Hyp(F) is the hyperplane containing F and n is the
outward unit normal vector.

oC
/

then

(Pas Pb)
(pbv pc)
(pCa pd)
R(®)=| (pa-pe)
(pe’ pf)
(Pr.pPg)
(pgv Da)

Note that it will be beneficial for our purposes to specify the sequence of each
edge such that they follow a counter-clockwise traversal, for example (p,, pp)
instead of (pp, p4), and so forth.

3. Extend operation. Let p be an outside point to a set of connected facets, ®.
Then the operation Extend(p, ®) will take p and attach it to each ridge in
R(®) to form m new facets, where m is the number of ridges of @, that is,

Fy
= Extend(p, ®) (N.1)

FM+m

M is the number of facets before the operation, and

Fyii=@,Pia Dib)

Figure N.2. The set of facets & = {F;, Fg, F9, F10, F13
F14F15} forms a simply connected region whose edges form
the ridge set of ®.
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For example, using the same set ® shown in Figure N.2, suppose pj, is an outside
point to the facets in @, then we have

Fi7 = (Ph.Pas Pb)
Fig = (pn. P Pe)
Fi9=(ph.Pe:Pa)
Extend(p, ®) = | Fa = (pr. Pa. Pe)
Fy1 =(Pn.Pe-Dy)
Fy = (pn.ps,Pg)
Fa3 = (Pns Pgs Pa)

Note that each new facet generated will also have a sequence that goes coun-
terclockwise.

Simplified-QuickHull Algorithm:

Let P = {pi, ..., pn} be the set of available points.

1. Initialization.
(a) Create a tetrahedron as the initial convex hull (e.g., using the points in P
corresponding to the three largest z-components and connect them to the
point with the smallest z-component):

F ={F, Fy, F3, F4)

(b) Remove, from P, the points that were assigned to F.
(c) Obtain the collection of current visible sets:

V = {Vis(p;), pi € P}

2. Expand the convex hull using unassigned point p;.

(a) Obtain the ridge set of the visible set of p;:
R =R (Vis(pi))

(b) Update the facets of the hull:
i. Generate new facets: Faga = EXTEND(p;, R).
ii. Combine with F: F <« F |J Fada-
iii. Remove Vis(p;) from F: F <« F —Vis(p;).
(c) Update the collection of visibility sets:
i. Remove, from each set in V, any reference to the facets in Vis(p;) (thus
also removing Vis(p;) from V).
ii. Add facet Fy € Faqq to Vis(p;) if point p; is outside of facet of Fy.
(d) Remove p; from the set of available points.

This version is a simplification of the QuickHull algorithm. We have assumed
that all the points are boundary points; that is, each point will end up as vertices of
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the triangular patches forming the convex hull. Because of this, the algorithm steps
through each unassigned point and modifies the visibility sets of these points as the
convex hull grows in size.?

N.2 Stabilization via Streamline-Upwind Petrov-Galerkin (SUPG)

The finite element method discussed in Sections 14.2 through 14.5 used a specific
choice for the weights du, which was defined using the same shape functions for
u. As mentioned before, this is known as the Galerkin method. Unfortunately, we
expect that as the norm of M decreases relative to the norm of b, we approach what
is known as the convection-dominated case, and we expect the Galerkin method
to start becoming inaccurate, because the Galerkin method is optimal only for the
other extreme case in which b = 0.

For the convection-dominated case, an alternative method known as the
Streamline-Upwind Petrov-Galerkin (SUPG) method can improve the accuracy.
It uses a different set of weights given by

Su=du+ b -V (Su) (N.2)

where 7 is known as the stabilization parameter that depends on the ratio of |b||
over ||M|| and a characteristic length ¢ of the finite element. The label “streamline-
upwind" indicates the presence of b, which is a vector usually known as the advection
coefficient or velocity.

With our choice of using triangular linear elements, we can again use the same
approach of applying the same shape functions used for u, that is, with

81~ Yriduy + Yadus + Yadus (N.3)

Doing so, the modifications will simply end up with the addition of one term each
for K,, and T, as defined in (14.43) and (14.44), respectively; that is, we now instead
use

D
T T T T T
K, = {(T M T — bl T — gytt” — A — 7T b(p*)b(p*)T> 5} (N.4)

r, = {(h(p*>§ +0+ 0 ¢ fTTb(p*>h<p*>> ?} (N.5)
n
When 7 = 0, we get back the Galerkin method.

The last detail is the evaluation of the stabilization parameter t. Although several
studies have found an optimal value for 7 in the one-dimensional case, the formula-
tion for the optimal values for 2D and 3D cases remain to be largely heuristic. For
simplicity, we can choose the rule we refer to as the Shakib formula,

o (AR RS R

2 1In the original QuickHull algorithm of Barber and co-workers, the procedure steps through each
facet that have non-empty outside sets and then builds the visible set of the farthest outside point.
This will involve checking whether the chosen point is outside of the adjacent facets. In case there
are points that eventually reside inside the convex hull, the original version will likely be more
efficient. Nonetheless, we opted to describe the revised approach because of its relative simplicity.
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Figure N.3. The characteristic length ¢ based on the direction of b.

where ¢ is the characteristic length of the triangle, b = |bpy ||, & = |Mp|, and
o = g(p+)- The length ¢ is the distance of the segment from one vertex of the triangle
to the opposite edge in the direction of b(,-) as shown in Figure N.3. (Note that only
one of the vertices can satisfy this condition.) The length ¢ can be found as follows:
Let v = b/ ||b||. Find node i such that solving

1

( ) )Z( | @em) )_ (Pk—l’f> (N.7)

will yield 0 < A < 1. Then £ = |s| is the length of the segment from node i to the edge
containing nodes j and k.

EXAMPLE N.1. To test the SUPG method, consider the differential equation
[V-M(x,y)- V)] + [b(x.y)-Vu] + g(x,y)u + h(x,y) = 0
with

0.001 0 -2

0 0.001 3

and

h=—-1.50x —2y) — (0.32 (x + y?) — 80 (1.5y — x +0.001) e—4(x2+y2))

0.5f

_0.5,

-1
-1 -0.5 0 0.5 1
X

Figure N.4. The triangulation mesh is shown in the left plot, whereas the SUPG solution
(dots) is shown together with exact solution (surface) in the right plot.
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Errors

Figure N.5. The errors obtained using the Galerkin method are shown in the left plot, whereas
the errors obtained using the SUPG method are shown in the right plot.

Let the domain to be a square of width 2, centered at the origin. Also, let all the
boundary conditions be Dirichlet, with

_ —4(e2) x=1 , -l=sy=<l
u=15xy+5e for -1<x<1 y=-1
-1<x<1 , y=1

The exact solution of this problem is known (which was in fact used to set 4 and
the boundary conditions) and given by

1 = 1.5xy + 5~ *(+7)

After applying the SUPG methods based on a Delaunay mesh shown in the left
plot of Figure N.4, we obtain the solution shown in the right plot of Figure N.4.
The improvements of the SUPG method over the Galerkin method are shown
Figure N.5. The errors for the Galerkin and the SUPG are +1.2 and +0.3,
respectively.

Of course, as the mesh sizes are decreased, the accuracy will also increase.
Furthermore, note that from (N.6), the stabilization parameter t for each ele-
ment will approach 0 as £ — 0, reducing the SUPG method to a simple Galerkin
method.

Remarks: The results for this example were generated by the MATLAB func-
tion fem_sq_test2.m, which uses the function 1inear_2d_supg.m-agen-
eral SUPG finite element solver for the linear second-order partial differential
equation. Both of these files are available on the book’s webpage.
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