
APPENDIX A

Additional Details and Fortification
for Chapter 1

A.1 Matrix Classes and Special Matrices

The matrices can be grouped into several classes based on their operational prop-
erties. A short list of various classes of matrices is given in Tables A.1 and A.2.
Some of these have already been described earlier, for example, elementary, sym-
metric, hermitian, othogonal, unitary, positive definite/semidefinite, negative defi-
nite/semidefinite, real, imaginary, and reducible/irreducible.

Some of the matrix classes are defined based on the existence of associated matri-
ces. For instance, A is a diagonalizable matrix if there exists nonsingular matrices T
such that TAT −1 = D results in a diagonal matrix D. Connected with diagonalizable
matrices are normal matrices. A matrix B is a normal matrix if BB∗ = B∗B. Normal
matrices are guaranteed to be diagonalizable matrices. However, defective matri-
ces are not diagonalizable. Once a matrix has been identified to be diagonalizable,
then the following fact can be used for easier computation of integral powers of the
matrix:

A = T −1DT → Ak = (T −1DT
) (

T −1DT
) · · · (T −1DT

) = T −1DkT

and then take advantage of the fact that

DK =

⎛⎜⎝ dk
1 0

. . .
0 dK

N

⎞⎟⎠
Another set of related classes of matrices are the idempotent, projection, invo-

lutory, nilpotent, and convergent matrices. These classes are based on the results of
integral powers. Matrix A is idempotent if A2 = A, and if, in addition, A is hermitian,
then A is known as a projection matrix. Projection matrices are used to partition an
N-dimensional space into two subspaces that are orthogonal to each other. A matrix
B is involutory if it is its own inverse, that is, if B2 = I. For example, a reflection
matrix such as the Householder matrix is given by

H = I − 2
v∗v

vv∗

where v is a nonzero vector, and then H = H−1. A convergent matrix (also known as
stable matrix) C is a matrix for which limk→∞ Ck = 0. These matrices are important
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Table A.1. Matrix classes (based on operational properties)

Class Definition Remarks

Convergent (Stable) lim
k→∞

Ak = 0

Defective (Deficient)

r∑
k=0

αkAk = 0

αr �= 0 ; r < N

Diagonalizable
T −1AT is diagonal
for some nonsingular T

Elementary

Any matrix that scales,
interchanges, or adds
multiples of rows or
columns of another
matrix B

• Used in Gaussian elimination

Gram A = B∗B for some B • Are Hermitian

Hermitian A∗ = A
• (B + B∗) /2 is the hermitian

part of B.
• B∗B and BB∗ are hermitian

Idempotent A2 = A • det(A) = 1 or det(A) = 0

Involutory A2 = I, i.e. A = A−1
• Examples: identity matrix

reverse unit matrices,
symmetric orthogonal matrices

Negative definite x∗Ax < 0 x �= 0

Negative semidefinite x∗Ax ≤ 0 x �= 0

Nilpotent (of degree k) Ak = 0 ; k > 0 • det(A) = 0

Normal AA∗ = A∗A • Are diagonalizable

Nonsingular (Invertible) |A| �= 0

for procedures that implement iterative computations. If, in addition, k < ∞ for
Ck = 0, then the stable matrix will belong to the subclass of nilpotent matrices.

Aside from the classifications given in Tables A.1 and A.2, we also list some spe-
cial matrices based on the structure and composition of the matrices. These are given
in Table A.3. Some of the items in this table serve as a glossary of terms for the special
matrices already described in this chapter. Some of the matrices refer to matrix struc-
tures based on the positions of zero and nonzero elements such as banded, sparse,
triangular, tridiagonal, diagonal, bidiagonal, anti-diagonal, and Hessenberg. Some
involve additional specifications on the elements themselves. These include iden-
tity, reverse identity, shift, real, complex, polynomial, rational, positive/negative, or
nonpositive/nonnegative matrices. For instance, positive (or nonnegative) matrices
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Table A.2. Matrix classes (based on operations)

Class Definition Remarks

Orthogonal AT = A−1

Positive definite x∗Ax > 0 ; x �= 0

Positive semidefinite x∗Ax ≥ 0 ; x �= 0

Projection Idempotent and Hermitian

Reducible
There exists permutation P
such that Â = PAPT

is block triangular

Skew-symmetric AT = −A

• det(A) = 0 if N is odd
• aii = 0, thus trace(A) = 0
• (B − BT )/2 is the

skew-symmetric part of B

Skew-hermitian A∗ = −A
• aii = 0 or pure imaginary
• (B − B∗)/2 is the

skew-hermitian part of B

Symmetric A = AT

• BT B and BBT are both symmetric
but generally not equal

• (B + BT )/2 is the
symmetric part of B

Unitary A∗ = A−1

are matrices having only positive (or nonnegative) elements.1 Some special matrices
depend on specifications on the pattern of the nonzero elements. For instance, we
have Jordan, Toeplitz, Shift, Hankel, and circulant matrices, as well as their block
matrix versions, that is, block-Jordan, block-Toeplitz, and so forth. There are also
special matrices that depend on collective properties of the rows or columns. For
instance, stochastic matrices are positive matrices in which the sum of the elements
within each row should sum up to unity. Another example are diagonally dominant
matrices, where for the elements of any fixed row, the sum of the magnitudes of
off-diagonal elements should be less than the magnitude of the diagonal element in
that row. Finally, there are matrices whose entries depend on their row and column
indices, such as Fourier, Haddamard, Hilbert, and Cauchy matrices. Fourier and
Haddamard matrices are used in signal-processing applications.

As can be expected, these tables are not exhaustive. Instead, the collection
shows that there are several classes and special matrices found in the literature.
They often contain interesting patterns and properties such as analytical formulas
for determinants, trace, inverses, and so forth, that could be taken advantage of
during analysis and computations.

1 Note that positive matrices are not the same as positive definite matrices. For instance, with

A =
(

1 5
5 1

)
B =

(
1 −2
0 2

)
A is positive but not positive definite, whereas B is positive definite but not positive.
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Table A.3. Matrices classes (based on structure and composition)

Name Definition Remarks

Antidiagonal A =
⎛⎝ 0 α1

. . .

αN 0

⎞⎠
• AB (or BA) will reverse

sequence of rows (columns)
of B, scaled by αi

• det(A) = (−1)N∏αi

• MATLAB:
A=flipud(diag(alpha))
where alpha=(α1, . . . , αN)

Band (or banded) aij = 0 if

⎧⎨⎩
i > j + p
or
j > i + q

• p is the right-bandwidth
• q is the left-bandwidth

Bidiagonal
(Stieltjes)

A =

⎛⎜⎜⎜⎜⎝
α1 0
β1 α2

. . .
. . .

0 βN−1 αN

⎞⎟⎟⎟⎟⎠

• det(A) =∏N
i=1 αi

• Let B = A−1 then
if j > i, bij = 0

if j = i, bii = 1
αi

if i > j , bij = 1
αi

i−1∏
k=j

(
−βk

αk

)
• MATLAB:
A=diag(v)+diag(w,-1)
where v= (α1, . . . , αN)

w= (β1, . . . , βN−1)

Binary aij = 0 or 1
• Often used to indicate

incidence relationship
between i and j

Cauchy

For given x and y

aij = 1
xi + yj

; xi + yj �= 0

and elements of x and y
are distinct

• Are nonsingular (but often
ill-conditioned for large N)

• det(A) =∏N
i=2

∏i−1
j=1 fij∏N

i=1

∏N
j=1(xi + yj )

where fij = (xi − xj )(yi − yj )
• MATLAB:
A=gallery(‘cauchy’,x,y)

Circulant A =

⎛⎜⎜⎝
α1 α2 · · · αN

αN α1 · · · αN−1

· · ·
α2 α3 · · · α1

⎞⎟⎟⎠
• Are normal matrices
• Are special case of Toeplitz
• MATLAB:
A=gallery(‘circul’,alpha)
where alpha= (α1, · · · , αN)

Companion A =

⎛⎜⎜⎜⎜⎜⎜⎝

−pn−1 · · · −p1 −p0

1 0 0
. . .

...
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
• pk are coefficients of a

polynomial:
sN + pN−1sn−1 + p1s + p0

• MATLAB: A=compan(p)
where p= (1, pn−1, . . . , p1, p0)

Complex aij are complex-valued
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Name Definition Remarks

Diagonal A =

⎛⎜⎜⎝
α1 0

. . .
0 αN

⎞⎟⎟⎠ • det(A) =∏i αi

• MATLAB: A=diag(alpha)
where alpha= (α1, . . . , αN)

Diagonally dominant
|aii| >

∑
i�=j

∣∣aij
∣∣

i = 1, 2, . . . ,N

• Nonsingular (based on
Gersgorin’s theorem)

Fourier
aij = (1/

√
N)W (i−1)(j−1)

W = exp
(

−√−1
2π
N

)
• Are orthogonal
• Used in Fourier transforms
• MATLAB:
h=ones(N,1)*[0:N-1];
W=exp(-2*pi/N*1i);
A=W.̂(h.*h’)/sqrt(N)

Givens (Rotation)

Identity matrix with 4
elements replaced based on
given p and q:
app = aqq = cos(θ)
apq = −aqp = sin(θ)

• Used to rotate points
in hyperplane

• Useful in matrix reduction
to Hessenberg form

• Are orthogonal

Hadamard

Hk[=]2k × 2k

Hk =
(

1 1
1 −1

)
⊗ Hk−1

H0 = 1

• Elements either 1 or −1
• Are orthogonal
• MATLAB: A=hadamard(2̂k)

Hankel A =

⎛⎜⎜⎝
· · · β α

· · · · · · γ

β · · · · · ·
α γ · · ·

⎞⎟⎟⎠
• Each anti-diagonal has the

same value
• MATLAB: A=hankel([v,w])

where v= (. . . , β, α)
w= (α, γ, . . .)

Hessenberg
aj+k,j = 0
2 ≤ k ≤ (N − j)

• Useful in finding eigenvalues
• For square B, there is unitary

Q such that A = Q∗BQ is
upper hessenberg

• MATLAB:
[Q,A]=hess(B);
where A=(Q’)(B)(Q)

Hilbert aij = 1
i + j − 1

• Symmetric and positive definite
• MATLAB:
h=[1:N];
A=gallery(‘cauchy’,h,h-1)

Identity A =

⎛⎜⎜⎝
1 0

. . .
0 1

⎞⎟⎟⎠
• Often denoted by IN

• det(A) = 1
• AB = BA = B
• MATLAB: A=eye(N)

(continued)
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Table A.3 (continued)

Name Definition Remarks

Imaginary
A = iB
where B is real
and i = √−1

Jordan block A =

⎛⎜⎜⎜⎜⎜⎝
s 1 0

. . .
. . .
. . . 1

0 s

⎞⎟⎟⎟⎟⎟⎠
• Are bidiagonal
• det(A) = sN

• MATLAB:
A=gallery(’jordbloc’,N,s)

Lower Triangular ai,j = 0 ; j > i

• det(A) =
N∏

i=1

aii

• Let D = diag(A) and K = D − A

A−1 = D−1

[
I +

N−1∑
�=1

(
KD−1)�]

• MATLAB: A=tril(B)
extracts the lower triangle of B

Negative aij < 0

Non-negative aij ≥ 0

Non-positive aij ≤ 0

Permutation
P =

(
ek1 · · · ekN

)T

k1 �= · · · �= kN

ej is the j th unit vector

• PA (or APT ) rearranges
columns (or rows) of A based
on sequence K

• MATLAB: B=eye(N);P=B(K,:)

Persymmetric
A[=]N × N
ai,j = a(N+1−j),(N+1−i)

A = RH for reverse identity R
and symmetric H

Positive aij > 0

Polynomial
aij are
polynomial functions

Real aij are real valued

Rational
aij are
rational functions

Rectangular
(non-square)

A[=]N × M; N �= M
• if N > M then A is tall
• if N < M then A is wide

Reverse identity A =
⎛⎝ 0 1

· · ·
1 0

⎞⎠
• AB ( or BA ) will reverse the

order of the rows ( or columns)
of B

• det(A) = (−1)(N/2) if N is even
det(A) = (−1)(N−1)/2 if N is odd

• MATLAB: A=flipud(eye(N))

Sparse
Significant number of
elements are zero

(see Section 1.6)
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Name Definition Remarks

Stochastic
(Probability,
transition)

A is real, nonnegative
and
∑N

j=1 aij = 1
for i = 1, 2, . . .N

• aka Right-Stochastic
• Left-Stochastic if∑N

i=1 aij = 1,∀j
• Doubly-Stochastic if

both right- and left- stochastic

Shift A =

⎛⎜⎜⎜⎜⎜⎝
0 1 0
...

. . .
0 0 1

1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠
• Are circulant, permuation and

Toeplitz
• AN = IN

• MATLAB:
A=circshift(eye(N),-1)

Toeplitz A =

⎛⎜⎜⎜⎜⎜⎝
α β · · ·
γ α

. . .
. . .

. . . β

· · · γ α

⎞⎟⎟⎟⎟⎟⎠

• Each diagonal has the
same value

• A = BH with reverse
identity B and hankel H

• MATLAB: A=toeplitz(v,w)
where v= (α, γ, · · ·)

w= (α, β, · · ·)

Tridiagonal A =

⎛⎜⎜⎜⎜⎜⎝
α1 β1 0

γ1 α2
. . .

. . .
. . . βN−1

0 γN−1 αN

⎞⎟⎟⎟⎟⎟⎠

• Are Hessenberg matrices
• Solution of Ax = b can be

solved using the Thomas
algorithm

• MATLAB:
A=diag(v)+diag(w,1)...
+ diag(z,-1)

where v= (α1, · · · , αN)
w= (β1, · · · , βN−1)
z= (γ1, · · · , γN−1)

Unit aij = 1 • MATLAB: A=ones(N,M)

Unitriangular
A is (lower or upper)
triangular and aii = 1

det(A) = 1

Upper Triangular ai,j = 0 ; j < i

• det(A) =
N∏

i=1

aii

• Let D = diag(A) and
K = D − A

A−1 = D−1

[
I +

N−1∑
�=1

(
KD−1)�]

• MATLAB: A=triu(B)
extracts the upper triangle
portion of B

Vandermonde A =

⎛⎜⎜⎜⎜⎝
αM−1

1 α1 1
... · · ·

...
...

αM−1
N αN 1

⎞⎟⎟⎟⎟⎠
• If square, det(A) =∏i<j (αi − αj )
• Becomes ill-conditioned for

large N
• MATLAB: A=vander(v)

where v= (α1, . . . , αN)

Zero aij = 0 • MATLAB: A=zeros(N,M)
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A.2 Motivation for Matrix Operations from Solution of Equations

Instead of simply taking the various matrix operations at face value with fixed
rules, it might be instructive to motivate the development of the matrix algebraic
operations through the use of matrix representation of equations’ origination from
using indexed variables. The aim of this exposition is to illustrate how the various
operations, such as matrix products, determinants, adjugates, and inverses, appear
to be natural consequences of the operations involved in linear equations.

A.2.1 Matrix Sums, Scalar Products, and Matrix Products

We facilitate the definition of matrix operations by framing it in terms of equations
that contain indexed variables. We start with the representation of a set of N linear
equations relating M variables x1, x2, . . . , xM to N variables y1, y2, . . . , yN given by

y1 = a11x1 + · · · + a1MxM

...

yN = aN1x1 + · · · + aNMxM

The indexed notation for these equations are given by

yi =
M∑

j=1

aij xj i = 1, 2, . . . ,N (A.1)

By collecting the variables to form matrices:

y =

⎛⎜⎝ y1
...

yN

⎞⎟⎠ x =

⎛⎜⎝ x1
...

xM

⎞⎟⎠ A =

⎛⎜⎝ a11 · · · a1M
...

. . .
...

aN1 · · · aNM

⎞⎟⎠
we postulate the matrix representation of (A.1) as

y = Ax (A.2)

For instance, consider the set of equations

y1 = x1 + 3x2

y2 = −x1 − 2x2

then

y = Ax where A =
(

1 3
−1 −2

)
; y =

(
y1

y2

)
; x =

(
x1

x2

)
As we proceed from here, we show that the postulated form in (A.2) to represent

(A.1) will ultimately result in a definition of matrix products C = AB, which is a
generalization of (A.2), that is, with y = C and x = B.

Now let y1, . . . , yN and z1, . . . , zN be related to x1, . . . , xM as follows:

yi =
M∑

j=1

akj xj and zi =
M∑

j=1

bkj xj i = 1, . . . ,N

where aij and bij are elements of matrix A and B, respectively.
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Let ui = yi + zi, i = 1, . . . ,N, then

ui =
M∑

j=1

aij xj +
M∑

j=1

bij xj =
M∑

j=1

(aki + bki) xj =
M∑

j=1

gij xj

where gij are the elements of a matrix G. From the rightmost equality, we can then
define the matrix sum by the following operation:

G = A + B ←→ gij = aij + bij
i = 1, . . . ,N
j = 1, . . . ,M

(A.3)

Next, let vi = αyi, i = 1, . . . ,N, and yi =∑M
j=1 akj xj , whereα is a scalar multiplier,

then

vi = α

M∑
j=1

aij xj =
M∑

j=1

αaij xj =
M∑

j=1

hij xj

where hij are the elements of a matrix H. From the rightmost equality, we can then
define the scalar product by the following operation:

H = αA ←→ hij = αaij
i = 1, . . . ,N
j = 1, . . . ,M

(A.4)

Next, let wk =∑N
i=1 ckiyi, k = 1, . . . ,K, and yi =∑M

j=1 aij xj , i = 1, . . . ,N, where
cki and aij are elements of matrices C and A, respectively, then

wk =
N∑

i=1

cki

⎛⎝ M∑
j=1

aij xj

⎞⎠ =
M∑

j=1

(
N∑

i=1

ckiaij

)
xj =

M∑
j=1

fkj xj

where fkj are the elements of a matrix F . From the rightmost equality, we can then
define the matrix product by the following operation:

F = CA ←→ fkj =
N∑

i=1

ckiaij
k = 1, . . . ,K
j = 1, . . . ,M

(A.5)

A.2.2 Determinants, Cofactors, and Adjugates

Let us begin with the case involving two linear equation with two unknowns,

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2
(A.6)

One of the unknowns (e.g., x2) can be eliminated by multiplying the first equation
by a22 and the second equation by −a12, and then adding adding both results. Doing
so, we obtain

(a11a22 − a12a21) x1 = a22b1 − a12b2 (A.7)

We could also eliminate x1 using a similar procedure. Alternatively, we could simply
exchange indices 1 and 2 in (A.7) to obtain

(a22a11 − a21a12) x2 = a11b2 − a21b1 (A.8)
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The coefficients of x1 and x2 in (A.7) and (A.8) are essentially the same, which we
now define the determinant function of a 2 × 2 matrix,

det (M) = det
(

m11 m12

m21 m22

)
= m11m22 − m12m21 (A.9)

Equations (A.7) and (A.8) can be then be combined to yield a matrix equation,(
det(A)

)( x1

x2

)
=
(

a22 −a12

−a21 a11

)(
b1

b2

)
(A.10)

If det (A) �= 0, then we have(
x1

x2

)
= 1

det (A)

(
a22 −a12

−a21 a11

)(
b1

b2

)
and find that the inverse matrix of a 2 × 2 matrix is given by

A−1 = 1
det (A)

(
a22 −a12

−a21 a11

)
Next, we look at the case of three equations with three unknowns,

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

(A.11)

We can rearrange the first two equations in (A.11) and move terms with x3 to the
other side to mimic (A.6), that is,

a11x1 + a12x2 = b1 − a13x3

a21x1 + a22x2 = b2 − a23x3

then using (A.10), we obtain

α〈3〉

(
x1

x2

)
=
(

a22 −a12

−a21 a11

)(
b1 − a13x3

b2 − a23x3

)
(A.12)

where

α〈3〉 = det
(

a11 a12

a21 a22

)
Returning to the third equation in (A.11), we could multiply it by the scalar α〈3〉

to obtain (
a31 a32

)
α〈3〉

(
x1

x2

)
= α〈3〉b3 − a33α〈3〉x3 (A.13)

We can then substitute (A.12) into (A.13) to obtain(
a31 a32

) ( a22 −a12

−a21 a11

)(
b1 − a13x3

b2 − a23x3

)
= α〈3〉b3 − a33α〈3〉x3 (A.14)

Next, we note that(
a31 a32

) ( a22 −a12

−a21 a11

)
=
(

(a31a22 − a32a21) (−a31a12 + a32a11)
)

= ( −β〈3〉 γ〈3〉
)

(A.15)
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where

β〈3〉 = det
(

a21 a22

a31 a32

)
and γ〈3〉 = det

(
a11 a31

a12 a32

)
Substituting (A.15) into (A.14) and rearranging to solve for unknown x3, we obtain(

a13β〈3〉 − a23γ〈3〉 + a33α〈3〉
)

x3 = β〈3〉b1 − γ〈3〉b2 + α〈3〉b3 (A.16)

Looking closer at β〈3〉, γ〈3〉, and α〈3〉, they are just determinants of three matrix redacts
A13↓, A23↓, and A33↓, respectively (where Aij↓ are the matrices obtained by removing
the ith row and j th column, cf. (1.5)). The determinants of Aij↓ are also known as the
ij th minor of A. We can further incorporate the positive or negative signs appearing
in (A.16) with the minors and define them as the cofactor of aij , denoted by cof (aij ),
and given by

cof(aij ) = (−1)i+j det (Aij↓) (A.17)

Then we can rewrite (A.16) as

(
3∑

i=1

ai3 cof (ai3)

)
x3 =

(
cof (a13) cof (a23) cof (a33)

)⎛⎝ b1

b2

b3

⎞⎠ (A.18)

Instead of applying the same sequence of steps to solve for x1 and x2, we just
switch indices. Thus to find the equation for x1, we can exchange the roles of indices
1 and 3 in (A.18). Likewise, for x2, we can exchange the roles of indices 2 and 3 in
(A.18). Doing so, we obtain

(
3∑

i=1

ai1 cof (ai1)

)
x1 =

(
cof (a11) cof (a21) cof (a31)

)⎛⎝ b1

b2

b3

⎞⎠ (A.19)

(
3∑

i=1

ai2 cof (ai2)

)
x2 =

(
cof (a12) cof (a22) cof (a32)

)⎛⎝ b1

b2

b3

⎞⎠ (A.20)

If we expand the calculations of the coefficients of x3, x1 and x2 in (A.18), (A.19)
and (A.20), respectively, they all yield the same sum of six terms, that is,

3∑
i=1

ai1 cof (ai1) =
3∑

i=1

ai2 cof (ai2) =
3∑

i=1

ai3 cof (ai3)

= a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31 (A.21)

The sum of the six terms in (A.21) can now be defined as the determinant of a
3 × 3 matrix. By comparing it with the determinant of a 2 × 2 matrix given in (A.9),
we can inductively define the determinants and cofactors for any size matrix as given
in Definitions 1.4 and 1.5, respectively.
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Based on the definition of determinants and cofactors, we can rewrite (A.10)
that was needed for the solution of the size 2 problem as

det(A)
(

x1

x2

)
=

⎛⎜⎜⎝ cof (a11) cof (a21)

cof (a12) cof (a22)

⎞⎟⎟⎠( b1

b2

)
(A.22)

Likewise, if we combine (A.18), (A.20), and (A.19) for a size 3 problem, we obtain

det(A)

⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝
cof (a11) cof (a21) cof (a31)

cof (a12) cof (a22) cof (a32)

cof (a13) cof (a23) cof (a33)

⎞⎟⎟⎟⎟⎟⎠
⎛⎝ b1

b2

b3

⎞⎠ (A.23)

We see that the solution of either case is guaranteed if det(A) �= 0. From (A.22)
and (A.23), we can take the matrix at the right-hand side that premultiplies vector
b in each equation and define them as adjugates. They can then be induced to yield
definition 1.6 for matrix adjugates.

A.3 Taylor Series Expansion

One key tool in numerical computations is the application of matrix calculus in
providing approximations based on the process of linearization. The approximation
process starts with the Taylor series expansion of a multivariable function.

Definition A.1. Let f (x) be a multivariable function that is sufficiently differen-
tiable; then the Taylor series expansion of f around a fixed vector x̂, denoted by
Taylor ( f, x, x̂), is given by

Taylor (f, x, x̂) = f (̂x) +
∞∑

K=1

FK ( f, x, x̂) (A.24)

where

FK ( f, x, x̂) =
∑

k1,...,kN≥0︸ ︷︷ ︸∑N
i ki=K

1
k1! · · · kN!

⎛⎜⎝ ∂K f

∂xk1
1 · · · ∂xkN

N

⎞⎟⎠
∣∣∣∣∣∣∣∣
(x=̂x)

N∏
i=1

(xi − x̂i)
ki (A.25)

For K = 1, 2, F1 and F2 are given by

F1 =
(

df
dx

∣∣∣∣
x=̂x

)
(x − x̂)

F2 = (x − x̂)T
(

1
2

d2 f
dx2

∣∣∣∣
x=̂x

)
(x − x̂)

THEOREM A.1. If the series Taylor ( f, x, x̂) converges for a given x and x̂ then

f (x) = Taylor ( f, x, x̂) (A.26)
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PROOF. (See Section A.4.8)

If the series Taylor ( f, x, x̂) is convergent inside a region R = {x | |x − x̂| < r}, where
r is called the radius of convergence, then f (x) is said to be analytic in R.

When x is equal to x̂, the Taylor series yields the identity f (x) = f (̂x). We expect
that as we perturb x away from x̂, the terms with (xi − x̂i)

ki will become increasingly
significant. However, if we keep (xi − x̂i) sufficiently small, then the terms involving
(xi − x̂i)

ki can be made negligible for larger values of ki > 0. Thus a multivariable
function can be approximated “locally” by keeping only a finite number of lower
order terms of the Taylor series, as long as x is close to x̂. We measure “closeness”
of two vectors x and x̂ by the Euclidean norm ρ (x − x̂), where

ρ (x − x̂) =
√√√√ N∑

i=1

(xi − x̂i)
2

The first-order approximation of a function f (x) around a small neighborhood
of x̂, that is, ρ (x − x̂) < ε, is given by

[fLin,̂x (x)] = [ f (̂x)] + d
dx

f

∣∣∣∣
x=̂x

(x − x̂) (A.27)

Because the right-hand side is a linear function of xi, the first-order approximation is
usually called the linearized approximation of f (x), and the approximation process
is called the linearization of f (x).

The second-order approximation of f (x) is given by

[fQuad,̂x (x)] = [f (̂x)] + d
dx

f

∣∣∣∣
x=̂x

(x − x̂) + 1
2

(x − x̂)T
(

d2

dx2
f
)∣∣∣∣

x=̂x
(x − x̂) (A.28)

where the right-hand side is a quadratic form for xi. Higher-order approximations
are of course possible, but the matrix representations of orders > 2 are much more
difficult.

EXAMPLE A.1. Consider the function

f (x1, x2) = 1 − eg(x1,x2)

where,

g (x1, x2) = −4
(

(x1 − 0.5)2 + (x2 + 0.5)2
)

A plot of f (x1, x2) is shown in Figure A.1.
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Figure A.1. A plot of f (x) for Example
A.1.

The partial derivatives are given by

∂f
∂x1

= 8eg (x1 − 0.5)
∂f
∂x2

= 8eg (x2 + 0.5)

∂2 f
∂x1

2
= eg

(
8 − 64 (x1 − 0.5)2

) ∂2 f
∂x2

2
= eg

(
8 − 64 (x2 + 0.5)2

)

∂2 f
∂x1∂x2

= ∂2 f
∂x2∂x1

= −64eg (x1 − 0.5) (x2 + 0.5)

Choosing x̂ = (0, 0), we have the first-order approximation given by[
fLin,(0,0)T (x)

] = [1 − e−2]+ 4e−2 ( −1 1
) ( x1

x2

)
or

fLin,(0,0)T (x) =
(

1 − e−2
)

+ 4e−2
(
−x1 + x2

)
and the second-order approximation given by[

fQuad,(0,0)T (x)
] = [

1 − e−2]+ 4e−2 ( −1 1
) ( x1

x2

)
+ 4e−2 ( x1 x2

) ( −1 2
2 −1

)(
x1

x2

)
or

fQuad,(0,0)T (x) =
(

1 − e−2
)

+ 4e−2
(
−x1 + x2 − x2

1 + 4x1x2 − x2
2

)
The first-order approximation is a 2D plane that has the same value as f at x = x̂.
Conversely, the second-order approximation is a curved surface, which also has
the same value as f at x = x̂. A plot of the errors resulting from the first-order
and second-order approximations are shown in Figure A.2 in a circular region
centered at x̂ = (0, 0). As shown in the plots, the errors present in the second-
order approximation are much smaller than the errors present in the first-order
approximation.
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Figure A.2. The errors from f of the first-order approximation (left) and the second-order
approximation (right) at x̂ = (0, 0)T .

From Figure A.1, we can see that minimum value of f (x) occurs at x1 = 0.5
and x2 = −0.5. If we had chosen to expand the Taylor series around the point
x̂ = (0.5,−0.5)T , the gradient will be df/dx = (0, 0). The Hessian will be given
by

d2

dx2
f =
(

8 0
0 8

)
and the second-order approximation is

fQuad,(0.5,−0.5)T (x) = 4
(

(x1 − 0.5)2 + (x2 + 0.5)2
)

A plot of fQuad,(0.5,−0.5)T (x) for a region centered at x̂ = (0.5,−0.5)T is shown
in Figure A.3. Second-order approximations are useful in locating the value of
x that would yield a local minimum for a given scalar function. At the local
minimum, the gradient must be a row vector of zeros. Second, if the shape of the
curve is strictly concave at a small neighborhood around the minimum point,
then a minimum is present. The concavity will depend on whether the Hessian,
d2 f/dx2, are positive or negative definite.
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Figure A.3. The second-order approxima-
tion at x̂ = (0.5,−0.5)T .
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A.4 Proofs for Lemma and Theorems of Chapter 1

A.4.1 Proof of Properties of Matrix Operations

1. Associative and Distributive Properties.

The proofs are based on the operations given in Table 1.3 plus the associativity
of the elements under multiplication or addition. For example,

(A + (B + C))ij = aij + (bij + cij )

= (aij + bij ) + cij = ((A + B) + C)ij

−→ A + (B + C) = (A + B) + C

For the identity (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D), let A[=]m × p and B[=]p × n
and then expand the right-hand side,

(A ⊗ C)(B ⊗ D) =

⎛⎜⎜⎜⎜⎜⎝
a11C . . . a1p C

...
. . .

...

am1C . . . amp C

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
b11D . . . b1nD

...
. . .

...

bp1D . . . bpnD

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
∑p

i=1 a1ibi1CD . . .
∑p

i=1 a1ibinCD

...
. . .

...∑p
i=1 amibi1CD . . .

∑p
i=1 amibinCD

⎞⎟⎟⎟⎟⎟⎠
= (AB) ⊗ (CD)

2. Transposes of Products.

Let A[=]N × M, B[=]M × L, then(
(AB)T

)
ij

=
M∑

m=1

ajmbmi =
M∑

m=1

bmiajm = (BT AT )
ij

−→ (AB)T = BT AT

Let A[=]N × M, B[=]L × P, then(
(A ◦ B)T

)
ij

= ajibji = (AT ◦ BT )
ij

−→ (A ◦ B)T = AT ◦ BT

(A ⊗ B)T =

⎛⎜⎜⎜⎜⎜⎝
a11B · · · a1MB

...
. . .

...

aN1B · · · aNMB

⎞⎟⎟⎟⎟⎟⎠
T

=

⎛⎜⎜⎜⎜⎜⎝
a11BT · · · aN1BT

...
. . .

...

a1MBT · · · aMNBT

⎞⎟⎟⎟⎟⎟⎠
= AT ⊗ BT
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3. Inverse of Matrix Products and Kronecker Products.

Let C = B−1A−1, then

C (AB) = (
B−1A−1) (AB) = B−1B = I

(AB) C = (AB)
(
B−1A−1) = BB−1 = I

Thus C = B−1A−1 is the inverse of AB.

For the inverse of Kronecker products use the associativity property,

(A ⊗ C)(B ⊗ D) = (AB) ⊗ (CD)

then,

(A ⊗ B)(A−1 ⊗ B−1) = AA−1 ⊗ BB−1 = I

(A−1 ⊗ B−1)(A ⊗ B) = A−1A ⊗ B−1B = I

Thus

(A ⊗ B)−1 = A−1 ⊗ B−1

4. Vectorization of Sums and Products.

Let A,B,C[=]N × M and C = A + B

vec (C)(j−1)N+i = cij = aij + bij = vec (A)(j−1)N+i + vec (B)(j−1)N+i

−→ vec (A + B) = vec (A) + vec (B)

Let M(•,j) denote the j th column of any matrix M, then

(XC)(•,j) = (X)C(•,j) = ( X(•,1) · · · X(•,r)
)⎛⎜⎝ c1j

...
crj

⎞⎟⎠ =
r∑

i=1

cij X(•,i)

Extending this to BXC,

(BXC)(•,j) = (BX)C(•,j) = B
(
XC(•,j)

) =
r∑

i=1

cij BX(•,i)

= (
c1j B c2j B · · · crj B

)
⎛⎜⎜⎜⎝

X(•,1)

X(•,2)
...

X(•,r)

⎞⎟⎟⎟⎠
= (

c1j B c2j B · · · crj B
)

vec (X)

Collecting these into a column,

vec (BXC) =

⎛⎜⎜⎜⎝
(BXC)(•,1)

(BXC)(•,2)
...

(BXC)(•,s)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
c11B c21B · · · cr1B
c12B c22B · · · cr2B

...
...

. . .
...

c1sB c21B · · · crsB

⎞⎟⎟⎟⎠ vec (X)

= (
CT ⊗ B

)
vec (X)
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5. Reversible Operations.

(
(AT )T )

ij = Aij

−→ (
AT )T = A

Let C = (A−1
)−1, then

CA−1 = A−1C = I

−→ C = (A−1)−1 = A

A.4.2 Proof of Properties of Determinants

1. Determinant of Products.

Let C = AB, then ciki =∑n
�i=1 ai�i b�iki . Using (1.10),

det(C) =
∑

k1 �=k2 �=···�=kn

ε
(

k1, . . . ,kn

) n∏
i=1

ci,ki

=
∑

k1 �=k2 �=···�=kn

ε
(

k1, . . . ,kn

)⎛⎝ n∑
�1=1

a1�1 b�1k1

⎞⎠ · · ·
⎛⎝ n∑
�n=1

an�n b�nkn

⎞⎠
=

∑
k1 �=k2 �=···�=kn

n∑
�1=1

· · ·
n∑

�n=1

ε
(

k1, . . . ,kn

) n∏
i=1

ai�i

n∏
j=1

b�iki

=
n∑

�1=1

· · ·
n∑

�n=1

(a1�1 · · · an�n )
∑

k1 �=k2 �=···�=kn

ε
(

k1, . . . ,kn

)
(b�1k1 · · · b�nkn )

but ∑
k1 �=k2 �=···�=kn

ε
(

k1, . . . ,kn

)
(b�1k1 · · · b�nkn ) = 0 if �i = �j

so

det(C) =
∑

�1 �=�2 �=···�=�n

(a1�1 · · · an�n )
∑

k1 �=k2 �=···�=kn

ε
(

k1, . . . ,kn

)
(b�1k1 · · · b�nkn )

The inner summation can be further reindexed as∑
k1 �=k2 �=···�=kn

ε
(

k1, . . . ,kn

)
ε
(
�1, . . . , �n

)
(b1k1 · · · bnkn )

and the determinant of C then becomes

det(C) =
⎛⎝ ∑
�1 �=�2 �=···�=�n

ε
(
�1, . . . , �n

) n∏
i=1

ai�i

⎞⎠
×
⎛⎝ ∑

k1 �=k2 �=···�=kn

ε
(

k1, . . . ,kn

)∏
j=1

bjkj

⎞⎠
= det(A) det(B)
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2. Determinant of Triangular Matrices.

For 2 × 2 triangular matrices,

det
(

u11 u12

0 u22

)
= u11u22 ; det

(
�11 0
�21 �22

)
= �11�22

det
(

d11 0
0 d22

)
= d11d22

Then using induction and row expansion formula (1.12), the result can be proved
for any size N.

3. Determinant of Transposes.

For a 2 × 2 matrix, that is,

det
(

a11 a12

a21 a22

)
= a11a22 − a12a21 = det

(
a11 a21

a12 a22

)
By induction, and using (1.12), the result can be shown to be true for matrices
of size N.

4. Determinant of Inverses.

Because A−1A = I, we can take the determinant of both sides, and use the
property of determinant of products. Thus

det
(

A−1A
)

= det
(

A−1
)

det
(

A
)

= 1 → det
(

A−1
)

= 1

det
(

A
)

5. Determinant of Matrices with Permuted Columns.

Let

AK =
(

A•,k1 · · · A•,kN

)
= A
(

ek1 · · · ekN

)
Using (1.10),

det
(

ek1 · · · ekN

)
= ε
(

K
)

Then using the property of determinant of products,

det
(

AK

)
= det

(
A
)

det
(

ek1 · · · ekN

)
= ε
(

K
)

det
(

A
)

6. Determinant of Scaled Columns.

⎛⎜⎝ β1 a11 βN a1N
... · · · ...

β1 aN1 βN aNN

⎞⎟⎠ =

⎛⎜⎝ a11 a1N
... · · · ...

aN1 aNN

⎞⎟⎠
⎛⎜⎝ β1 0

. . .
0 βN

⎞⎟⎠
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Using the properties of determinant of products and determinant of diagonal
matrices,

det

⎛⎜⎝ β1 a11 βN a1N
... · · · ...

β1 aN1 βN aNN

⎞⎟⎠ =
(

N∏
i=1

βi

)
det

⎛⎜⎝ a11 a1N
... · · · ...

aN1 aNN

⎞⎟⎠
7. Multilinearity Property.

Let aij = vij = wij , j �= k and vik − xi, wik = yi, aik = xi + yi for i, j = 1, 2, . . . ,n,
By expanding along the kth column,

det
(

A
)

=
n∑

i=1

(xi + yi) cof (aik)

=
n∑

i=1

xi cof (vik) +
n∑

i=1

yi cof (wik)

= det
(

V
)

+ det
(

W
)

8. Determinant when
∑n

i=1 γiAi,• = 0, for some γk �= 0.

Let the elements of matrix V (k, γ) be the same as the identity matrix I except
for the kth row replaced by γ1, . . . γN, that is,

V (k, γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 γ1 0
. . .

...
1 γk−1

γk

γk+1 1

0
...

. . .
γN 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where γk �= 0. Then evaluating the determinant by expanding along the kth row,

det
(

V (k, γ)
)

= γk

Postmultiplying A by V (k, γ), we have

A V (k, γ) =
(

A•,1 · · · A•,(k−1)

(∑N
j=1 γiA•,j

)
A•,(k+1) · · · A•,N

)
= (

A•,1 · · · A•,(k−1) 0 A•,(k+1) · · · A•,N
)

Taking the determinant of both sides, we get det(A)γk = 0. Because γk �= 0, it
must be that det(A) = 0.

A.4.3 Proof of Matrix Inverse Formula (1.16)

Let B = A adj(A), then

bij =
N∑
�=1

ai� cof(aj�)
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Using (1.13), bij is the determinant of a matrix formed from A except that the j th

row is replaced by the ith row of A, that is,

bij = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 · · · a1N
...

ai1 · · · aiN
...

ai1 · · · aiN
...

aN1 · · · aNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ←− j th row

We can use the property of determinant of matrices with linearly dependent rows to
conclude that bij = 0 when i �= j , and bii = det (A), that is,

A adj(A) = B =

⎛⎜⎜⎜⎝
det
(

A
)

0
. . .

0 det
(

A
)
⎞⎟⎟⎟⎠ = det

(
A
)

I

or

A

⎛⎝ 1

det
(

A
) adj(A)

⎞⎠ = I

Using a similar approach, one can show that⎛⎝ 1

det
(

A
) adj(A)

⎞⎠ A = I

Thus

A−1 = 1

det
(

A
) adj(A)

A.4.4 Proof of Cramer’s Rule

Using A−1 = adj(A)/det(A) ,⎛⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎠ = 1
det(A)

⎛⎜⎝ cof(a11) · · · cof(aN1)
...

. . .
...

cof(a1N) · · · cof(aNN)

⎞⎟⎠
⎛⎜⎜⎜⎝

b1

b2
...

bN

⎞⎟⎟⎟⎠
Thus, for the kth entry in x,

xk =
∑n

j=1 bj cof(akj )

det(A)

The numerator is just the determinant of a matrix, A[k,b], which is obtained from A
with kth column replaced by b.
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A.4.5 Proof of Block Matrix Properties

1. Block Matrix Multiplication (Equation (1.30)).

The result can be shown directly by using the definition of matrix multiplication
as given in (A.5).

2. Block Matrix Determinants (Equations (1.31), (1.32) and (1.33)).

(a) Proof of (1.31): ⎡⎢⎣ det
(

A 0
C D

)
= det(A)det(D)

⎤⎥⎦
Equation (1.31) is true for A = (a) [=]1 × 1, that is,

det
(

a 0
C B

)
= a det(B)

Next, assume that (1.31) is true for A[=](n − 1) × (n − 1). Let

Z =
(

G 0
C B

)
with G[=]n × n. By expanding along the first row,

det
(

Z
)

=
n+m∑
j=1

z1j cof(z1j )

where

z1j =
{

g1j if j ≤ n
0 j > n

cof(z1j ) = (−1)1+j det
(

G1j↓ 0
C•j↓ B

)
, j ≤ n

then

det
(

Z
)

=
n∑

j=1

g1j cof(g1j )det
(

B
)

= det
(

G
)

det
(

B
)

Then (1.31) is proved by induction.

(b) Proof of (1.32): (assuming A nonsingular)

Using (1.30), with A nonsingular,(
A B
C D

)(
I −A−1B
0 I

)
=
(

A 0
C D − CA−1B

)
Applying property of determinant of products and (1.31),

det
(

A B
C D

)
det
(

I
)

= det(A)det
(

D − CA−1B
)



Appendix A: Additional Details and Fortification for Chapter 1 583

(c) Proof of (1.33): (assuming D nonsingular)
Using (1.30), with D nonsingular,(

A B
C D

)(
I 0

−D−1C I

)
=
(

A − BD−1C B
0 D

)
Applying property of determinants of products and transposes and (1.31),

det
(

A B
C D

)
det(I) = detD det

(
A − BD−1C

)
3. Block Matrix Inverse (Equation (1.34)).

AW + BY = AA−1 (I + B�−1CA−1)+ B
(−�−1CA−1)

= I + B
(
�−1CA−1)− B

(
�−1CA−1) = I

AX + BZ = −AA−1B�−1 + B�−1 = 0

CW + DY = CA−1 (I + B�−1CA−1)+ D
(−�−1CA−1)

= CA−1 + CA−1B�−1CA−1 − D�−1CA−1

= CA−1 + (CA−1B − D
)
�−1CA−1

= CA−1 − ��−1CA−1 = 0

CX + DZ = −CA−1B�−1 + D�−1

= (
D − CA−1B

)
�−1

= ��−1 = I

A.4.6 Proof of Derivative of Determinants

To show the formula for the derivative of a determinant, we can use the definition
of a determinant (1.10),

d
dt

(
det (A)

)
= d

dt

∑
k1 �=k2 �=···�=kN

ε
(

k1, . . . ,kN

)
a1,k1 a2,k2 . . . aN,kN

=
∑

k1 �=k2 �=···�=kN

ε
(

k1, . . . ,kN

)( d
dt

a1,k1

)
a2,k2 . . . aN,kN

+ . . .+
∑

k1 �=k2 �=···�=kN

ε
(

k1, . . . ,kN

)
a1,k1 a2,k2 . . .

(
d
dt

aN,kN

)

=
N∑

n=1

det
(

Â〈n〉
)

where

det
(

Â〈n〉
)

=
∑

k1 �=k2 �=···�=kN

ε
(

k1, . . . ,kN

)
a1,k1 . . .

(
d
dt

an,kn

)
. . . aN,kN
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A.4.7 Proofs of Matrix Derivative Formulas (Lemma 1.6)

1. Proof of (1.49): [ d(Ax)/dx = A ]

Let N = 1. Then with x = (x1) and A = (a11, . . . , aM1)T ,

d
dx

Ax =

⎛⎜⎝ d(a11x1)/dx1
...

d(am1x1)/dx1

⎞⎟⎠ = A

Assume (1.49) is true for Â[=]M × (N − 1) and x̂[=](N − 1) × 1. Let

A = ( Â v
)

and x =
(

x̂
α

)
where v[=]N × 1 and α is a scalar. Then

d
dx

Ax = d
dx

(
Â v

) ( x̂
α

)
= d

dx

(
Â̂x + vα

)
= (

d
d̂x

(
Â̂x + vα

)
∂
∂α

(
Â̂x + vα

) )
= (

Â v
) = A

Thus equation (1.49) can be shown to be true for any N by induction.

2. Proof of (1.50):
[

d(xT Ax)/dx = xT
(
AT + A

) ]
Let N = 1, then with x = (x1) and A = (a11),

d
dx

xT Ax = 2x1a11 = xT (AT + A
)

Assume that (1.50) is true for Â[=](N − 1) × (N − 1) and x̂[=](N − 1) × 1. Let

A =
(

Â v

wT β

)
and x =

(
x̂
α

)
where v[=](N − 1) × 1, w[=](N − 1) × 1, and α, β are scalars. Then

d
dx

xT Ax = d
dx

(
x̂T Â̂x + α (w + v)T x̂ + α2β

)
=
(

x̂T
(
ÂT + Â

)+ α(wT + vT ) x̂T (w + v) + 2αβ

)

=
(

x̂T α

)⎛⎝ ÂT + Â w + v

wT + vT 2β

⎞⎠

= xT

⎛⎜⎝ ( ÂT w

vT β

)
+
(

Â v
wT β

) ⎞⎟⎠
= xT

(
AT + A

)
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where we used the fact that xT v and xT w are symmetric. Thus equation (1.50)
can be shown to be true for any N by induction.

3. Proof of (1.51):
[

d2(xT Ax)/dx2 = A + AT
]

d2

dx2

(
xT Ax

) = d
dx

[
d

dx
xT Ax

]T

= d
dx

[
xT (AT + A

)]T
= A + AT

A.4.8 Proof of Taylor Series Expansion (theorem A.1)

Let f (x) be set equal to a power series given by

f (x) = a0 +
∞∑

K=1

SK ( f, x, x̂)

where

SK ( f, x, x̂) =
∑
k1≥0

· · ·
∑
kN≥0︸ ︷︷ ︸∑N

i ki=K

ak1,···,kN

N∏
i=1

(xi − x̂i)
ki

At x = x̂, we see that SK (f, x̂, x̂) = 0 for K > 0, or

f (̂x) = a0

Then, for a fixed value of k1, . . . ,kN,

∂K f

∂xk1
1 · · · ∂xkN

N

= (k1! · · · kN!) ak1,···,kN

+ terms involving
N∏

i=1

(xi − x̂i)
βi

∣∣∣∣∣∣∣∑N
i=1 βi>0

After setting x = x̂ and rearranging, we have

ak1,···,kN = 1
k1! · · · kN!

(
∂K f

∂xk1
1 · · · ∂xkN

N

)∣∣∣∣∣∣∣∣
(x=̂x)

Thus we find that

SK ( f, x, x̂) = FK ( f, x, x̂)

with FK given in (A.25)

A.4.9 Proof of Sufficient Conditions for Local Minimum (Theorem 1.1)

Let df/dx = 0 at x = x∗. Then using the second-order Taylor approximation around
a perturbation point (x∗ +�x),

f (x∗ +�x) = f (x∗) + d
dx

f

∣∣∣∣
x=x∗

(x − x̂) + 1
2

(�x)T
(

d2

dx2
f
)∣∣∣∣

x=x∗
(�x)
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becomes

f (x∗ +�x) − f (x∗) = 1
2

(�x)T
(

d2

dx2
f
)∣∣∣∣

x=x∗
(�x)

With the additional condition that the Hessian is positive definite, that is,

(�x)T
(

d2

dx2
f
)∣∣∣∣

x=x∗
(�x) > 0 �x �= 0

then

f (x∗ +�x) > f (x∗) for all �x �= 0

which means that x∗ satisfying both (1.43) and (1.44) are sufficient conditions for x∗

to be a local minimum.

A.5 Positive Definite Matrices

We have seen in Section 1.5.2 that the Hessian of a multivariable function is crucial
to the determination of the presence of a local minima or maxima. In this section,
we establish an important property of square matrices called positive definiteness.

Definition A.2. Let f (x) be a real-valued multivariable function such that
f (0) = 0. Then f (x) is positive definite if

f (x) > 0 for all x �= 0 (A.29)

and f (x) is positive semi-definite if

f (x) ≥ 0 for all x (A.30)

For the special case in which f (x) is a real-valued function given by

f (x) =
N∑

i=1

N∑
j=1

aij xixj (A.31)

where xi is the complex conjugate of xi, (A.31) can be represented by

[f (x)] = x∗Ax (A.32)

or

[ f (x)] = x∗Qx (A.33)

where Q is the Hermitian component of A, that is, Q = (A + A∗) /2. To see that
(A.32) and (A.33) are equivalent, note that [ f ] is a real-valued 1 × 1 matrix that is
equal to its conjugate transpose, that is,

x∗Ax = (x∗Ax)∗

= x∗A∗x

Then adding x∗Ax to both sides and dividing by two,

x∗Ax = 1
2

x∗ (A + A∗) x = x∗Qx
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Definition A.3. An N × N matrix A is positive definite, denoted (A > 0), if

x∗Ax > 0 for all x �= 0 (A.34)

and A is positive semi-definite if

x∗Ax ≥ 0 for all x (A.35)

EXAMPLE A.2. Let N = 2, and

[f (x)] = x∗Qx

where Q = Q∗ = (A + A∗) /2: Expanding the quadratic form in terms of Q and
complete the squares,

x∗Qx = (
x1 x2

) ( q11 q12

q12 q22

)(
x1

x2

)
= q11x1x1 + q12x2x1 + q12x1x2 + q22x2x2

= q11

(
x1x1 + q12

q11
x2x1 + q12

q11
x1x2 + q12q12

q2
11

x2x2

)
− q12q12

q2
11

x2x2 + q22x2x2

= q11

(
x1 + q12

q11
x2

)(
x1 + q12

q11
x2

)
+ q11q22 − q12q12

q11
x2x2

= q11yy + det(Q)
q11

x2x2

where

y = x1 + q12

q11
x2

Because ( yy ) and ( x2x2 ) are positive real values, a set of sufficient conditions
for x∗Qx > 0 is to have q11 > 0 and det(Q) > 0. These conditions turn out to
also be necessary conditions for A to be positive definite.

For instance, consider

A =
(

5 0
1 3

)
→ Q =

(
5 1/2

1/2 3

)
Because q11 = 5 and det(Q) = 14.75, the quadratic form is given by

x∗Ax = 5
(

x1 + 1
10

x2

)(
x1 + 1

10
x2

)
+ 14.75

5
x2x2

which we can see will always have a positive value if x �= 0. Thus A is positive
definite.

Note that A does not have to be symmetric or Hermitian to be positive definite.
However, for the purpose of determining positive definiteness of a square matrix A,
one can simply analyze the Hermitian component Q = (A + A∗) /2, which is what
the theorem below will be focused on. We can generalize the procedure shown in
Example A.2 to N > 2. The same process of completing the square will produce
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the following theorem, known as Sylvester’s criterion for establishing whether a
Hermitian matrix is positive definite.

THEOREM A.2. An N × N Hermitian matrix H is positive definite if and only if the
determinants dk, k = 1, . . . ,N, are all positive, where

dk = det

⎛⎜⎜⎜⎝
h11 h12 · · · h1k

h21 h22 · · · h2k
...

...
. . .

...
hk1 hk2 · · · hkk

⎞⎟⎟⎟⎠ (A.36)

EXAMPLE A.3. Let H be a symmetric matrix given by

H =
⎛⎝ 2 3 3

3 6 0.1
3 0.1 2

⎞⎠
Using Sylvester’s criterion, we take the determinants of the principal sub-

matrices of increasing size starting from the upper left corner:

det (2) = 2 , det
(

2 3
3 6

)
= 3 , det

⎛⎝ 2 3 3
3 6 0.1
3 0.1 2

⎞⎠ = −40.52

Because one of the determinants is not positive, we conclude that H is not
positive definite.

Now consider matrix Q given by

Q =
⎛⎝ 3 −1 0.1

−1 4 2
0.1 2 3

⎞⎠
Using Sylvester’s criterion on Q, the determinants are:

det (3) = 3, det
(

3 −1
−1 4

)
= 11, det

⎛⎝ 3 −1 0.1
−1 4 2
0.1 2 3

⎞⎠ = 20.56

Because all the determinants are positive, we conclude that Q is positive definite.
Note that matrices that contain only positive elements are known as positive
matrices. Thus H given previously is a positive matrix. However, as we just
showed, H is not positive definite. Conversely, Q given previously is not a
positive matrix because it contains some negative elements. However, Q is
positive definite. Therefore, it is crucial to distinguish between the definitions
of positive definite matrices and positive matrices.
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B.1 Gauss Jordan Elimination Algorithm

To obtain Q and W , we use a sequence of elementary row and column matrices to
obtain (2.3). Each step has the objective of “eliminating” nonzero terms in the off-
diagonal positions. This method is generally known as the Gauss-Jordan elimination
method.

We begin with the pivoting step. This step is to find two permutation matrices
that would move a chosen element of matrix A[=]N × M, known as the pivot, to
the upper-left corner, or the (1, 1)-position. A practical choice for the pivot is to
select, among the elements of A, the element that has the largest absolute value.
Suppose the pivot element is located at the ξth row and ηth column; then the required
permutation matrices are P(ξ) and P(η), where P(ξ) is obtained by taking an N × N
identity matrix and interchanging the first row and the ξth row, and P(η) is obtained
by taking an M × M identity matrix and interchanging the first row and the ηth row.
Applying these matrices on A will yield

P(ξ)APT
(η) = B

where B is a matrix that contains the pivot element in the upper-left corner.
By choosing the element with the largest absolute value as the pivot, the pivot is

0 only when A = 0. This can then be used as a stopping criterion for the elimination
process. Thus if A �= 0, matrix B will have a nonzero value in the upper-left corner,
yielding the following partitioned matrix:

P(ξ)APT
(η) = B =

(
b11 wT

v �

)
(B.1)

The elimination process takes the values of b11, v and wT to form an elemen-
tary row operator matrix GL[=]N × N and a column elementary operator matrix
GR[=]M × M given by

GL =

⎛⎜⎜⎜⎜⎜⎜⎝

1
b11

0 · · · 0

1 0

− 1
b11

v
. . .

0 1

⎞⎟⎟⎟⎟⎟⎟⎠ and GR =

⎛⎜⎜⎜⎜⎜⎝
1 − 1

b11
wT

0 1 0
...

. . .
0 0 1

⎞⎟⎟⎟⎟⎟⎠ (B.2)

589
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These matrices can now eliminate, or “zero-out”, the nondiagonal elements in the
first row and first column, while normalizing the (1, 1)th element, that is,

GLBGR =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
b11

0 · · · 0

1 0

− 1
b11

v
. . .

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(

b11 wT

v �

)
⎛⎜⎜⎜⎜⎜⎜⎝

1 − 1
b11

wT

0 1 0
...

. . .
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0

0
... �− 1

b11
vwT

0

⎞⎟⎟⎟⎟⎟⎠
Letα = aξ,η be the pivot of A. For computational convenience, we could combine

the required matrices, that is, let EL = GLP(ξ) and ER = PT
(η)GR, then

If ξ = 1,

EL =

⎛⎜⎜⎜⎝
1/α 0 · · · 0

−a2,η/α 1 0
...

. . .
−am,η/α 0 1

⎞⎟⎟⎟⎠ (B.3)

otherwise, if ξ > 1,

EL =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1/α 0 · · · 0
0 1 0 −a2,η/α 0 · · · 0
...

. . .
...

...
...

0 0 1 −aξ−1,η/α 0 · · · 0

1 0 · · · 0 −a1,η/α 0 · · · 0

0 0 · · · 0 −aξ+1,η/α 1 0
...

...
...

...
. . .

0 0 · · · 0 −am,η/α 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← ξth row

↑
ξth column

(B.4)

If η = 1

ER =

⎛⎜⎜⎜⎝
1 −aξ,2/α · · · −aξ,n/α
0 1 0
...

. . .
0 0 1

⎞⎟⎟⎟⎠ (B.5)
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otherwise, if η > 1

ER =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1 0 · · · 0
0 1 0 0 0 · · · 0
...

. . .
...

...
...

0 0 1 0 0 · · · 0

1 −aξ,2
α

· · · −aξ,η−1

α
−aξ,1

α
−aξ,η+1

α
· · · −aξ,n

α

0 0 · · · 0 0 1 0
...

...
...

...
. . .

0 0 · · · 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← ηth row

↑
ηth column

(B.6)

EXAMPLE B.1. Let A be given by

A =
⎛⎝ 1 1 1

−1 2 3
2 4 3

⎞⎠
The pivot is α = a3,2 = 4; thus ξ = 3 and η = 2. Using (B.4) and (B.6),

EL =
⎛⎝ 0 0 1/4

0 1 −1/2
1 0 −1/4

⎞⎠ ER =
⎛⎝ 0 1 0

1 −1/2 −3/4
0 0 1

⎞⎠
from which we get

ELAER =
⎛⎝ 1 0 0

0 −2 3/2
0 1/2 1/4

⎞⎠

The complete Gauss-Jordan elimination method proceeds by applying the same
elimination process on the lower-right block matrix to eliminate the off-diagonal
elements in the second row and second column, and so on. To summarize, we have
the following Gauss-Jordan elimination algorithm:

Gauss-Jordan Elimination Algorithm:

Objective: Given A[=]N × M, find Q and W such that QAW satisfies (2.3) and the
rank r.

Initialize: r ← 0, Q ← IM, W ← IN and � ← A.
Iteration: While r < min (N,M) and � �= 0,
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1. Determine the pivot α = max
i,j

(∣∣�ij
∣∣). If α = 0, then stop; otherwise, continue.

2. Construct EL and ER using (B.3)-(B.6) and extract �

EL�ER =

⎛⎜⎜⎜⎝
1 0 · · · 0
0
...
0

�

⎞⎟⎟⎟⎠
3. Update Q, W , and � as follows:

Q ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
EL if r = 0(

Ir 0[r×(M−r)]

0[(N−r)×r] EL

)
Q otherwise

W ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ER if r = 0

W

(
Ir 0[r×(M−r)]

0[(N−r)×r] ER

)
otherwise

� ← �

4. Increment r by 1.

EXAMPLE B.2. For the matrix A given by

A =
⎛⎝ 1 1 1

−1 2 3
2 4 3

⎞⎠
the algorithm will yield the following calculations:

Iteration � α ξ η EL ER

1

⎛⎝ 1 1 1
−1 2 3

2 4 3

⎞⎠ 4 3 2

⎛⎝0 0 1/4
0 1 −1/2
1 0 −1/4

⎞⎠ ⎛⎝0 1 0
1 −1/2 −3/4
0 0 1

⎞⎠

2
(−2 3/2

1/2 1/4

)
−2 1 1

(−1/2 0
1/4 1

) (
1 3/4
0 1

)

3
(

5/8
) 5

8
1 1

(
8/5
) (

1
)
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from which Q and W can be obtained as

Q =
⎛⎝ 1 0 0

0 1 0
0 0 8/5

⎞⎠⎛⎝ 1 0 0
0 −1/2 0
0 1/4 1

⎞⎠⎛⎝ 0 0 1/4
0 1 −1/2
1 0 −1/4

⎞⎠

=
⎛⎝ 0 0 1/4

0 −1/2 1/4
8/5 2/5 −3/5

⎞⎠

W =
⎛⎝ 0 1 0

1 −1/2 −3/4
0 0 1

⎞⎠⎛⎝ 1 0 0
0 1 3/4
0 0 1

⎞⎠⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠

=
⎛⎝ 0 1 3/4

1 −1/2 −9/8
0 0 1

⎞⎠
and the rank r = 3

Remarks:

1. By choosing the pivot α to be the element having the largest absolute value,
accuracy is also improved because division by small values can lead to larger
roundoff errors.

2. The value of rank r is an important property of a matrix. If the matrix is square,
r = M = N implies a nonsingular matrix; otherwise it is singular. For a non-
square M × N matrix, if r = min(M,N), then the matrix is called a matrix of full
rank; otherwise we refer to them as partial rank matrices.1

3. Because roundoff errors resulting from the divisions by the pivot tend to propa-
gate with each iteration, the Gauss-Jordan elimination method is often used for
medium-sized problems only. This means that in some cases, the value of zero
may need to be relaxed to within a specified tolerance.

4. The Gauss-Jordan elimination algorithm can also be used to find the determinant
of A. Assuming r = M = N, the determinant can be found by taking the products
of the pivots and (−1) raised to the number of instances where ξ �= 1 plus the
number of instances where η �= 1. For example, using the calculations performed
in Example B.2, there is one instance of ξ �= 1 and one instance of η �= 1 while
the pivots are 4, −2, and 5/8. Thus the determinant is given by

det
(

A
)

= (−1)1+1 (4) (−2)
(

5
8

)
= −5

5. A MATLAB file gauss_jordan.m is available on the book’s webpage that
finds the matrices Q and W , as well as inverses Q−1 and W−1. The program allows
one to prescribe the tolerance level while taking advantage of the sparsity of EL

and ER.

1 As discussed later, the rank r determines how many columns or rows are linearly independent.
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B.2 SVD to Determine Gauss-Jordan Matrices Q and W

In this section, we show an alternative approach to find matrices Q and W . The
Gauss-Jordan elimination procedure is known to propagate roundoff errors through
each iteration; thus it may be inappropriate to use for large systems. An approach
based on a method known as the singular value decomposition can be used to find
matrices nonsingular Q and W to satisfy (2.3) with improved accuracy but often at
some additional computational costs. For any matrix A, there exist unitary matrices
U and V (i.e., U∗ = U−1 and V ∗ = V −1) and a matrix � such that

U�V ∗ = A (B.7)

where � contains r non-negative real values in the diagonal arranged in decreasing
values and where r is the rank of A, that is,

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . .

σr

0
. . .

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where σi > 0, i = 1, . . . , r (B.8)

The details for obtaining U, V , and � can be found in Section 3.9. Based on (B.7),
Q and W can be found as follows:

Q = �〈−1〉U∗ and W = V (B.9)

where,

�〈−1〉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ−1
1 0

. . .
σ−1

r
1

. . .
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Alternatively, we can have Q = U∗ and W = V�〈−1〉.

For non-square A[=]N × M, let k = min(N,M); then we can set �〈−1〉[=]k × k.
If N > M, we can then have Q = U∗ and W = V�〈−1〉. Otherwise, we can set Q =
�〈−1〉U∗ and W = V .

Remarks: In MATLAB, one can find the matrices U, V , and S = � using the state-
ment: [U,S,V] = svd(A). A function gauss_svd.m is available on the book’s
webpage that obtains Q and W using the SVD approach.

EXAMPLE B.3. Let A be given by

A =

⎛⎜⎜⎝
12 −32 28
0 −4 2

10 −24 22
3 −8 7

⎞⎟⎟⎠
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Then the singular value decomposition can be obtained using MATLAB’s svd
command to be

U =

⎛⎜⎜⎝
−0.7749 0.2179 0.0626 −0.5900
−0.0728 0.8848 −0.2314 0.3978
−0.5972 −0.4083 −0.3471 0.5968
−0.1937 0.0545 0.9066 0.3708

⎞⎟⎟⎠

V =
⎛⎝ −0.2781 −0.6916 0.6667

0.7186 −0.6103 −0.3333
−0.6374 −0.3864 −0.6667

⎞⎠

� =

⎛⎜⎜⎝
57.0127 0 0

0 1.8855 0
0 0 0
0 0 0

⎞⎟⎟⎠ −→ �〈−1〉 =
⎛⎝ 0.0175 0 0

0 0.5304 0
0 0 1.0000

⎞⎠
Finally,

Q = U∗ and W = V�〈−1〉 =
⎛⎝ −0.0049 −0.3668 0.6667

0.0126 −0.3237 −0.3333
−0.0112 −0.2049 −0.6667

⎞⎠

B.3 Boolean Matrices and Reducible Matrices

Boolean matrices are matrices whose elements are boolean types, that is, TRUE and
FALSE, which are often represented by the integers 1 and 0, respectively. They are
strongly associated with graph theory. Because the elements of these matrices are
boolean, the operations will involve logical disjunction (“or”) and logical conjunc-
tion (“and”). One important application of boolean matrices is to represent the
structure of a directed graph ( or digraph for short).

A digraph is a collection of vertices vi connected to each other by directed arcs
denoted by (vi, vj ) to represent an arc from vi to vj . A symbolic representation of
a digraph is often obtained by drawing open circles for vertices vi and connecting
vertices vi and vj by an arrow for arcs (vi, vj ). For instance, a graph

G =
(

{v1, v2, v3}
∣∣∣∣ {(v1, v2) , (v3, v1) , (v3, v2)

})
(B.10)

is shown in Figure B.1.
A boolean matrix representation of a digraph is given by a square matrix, say

GB, whose elements gji = 1 (TRUE) if an arc (vi, vj ) exists. Thus the boolean matrix
for digraph G specified in (B.10) is given by

GB =
⎛⎝ 0 0 1

1 0 1
0 0 0

⎞⎠
B

(We use the subscript B to indicate that the elements are boolean.)

2 31Figure B.1. The digraph G given in (B.10).
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2 3 4 5 61 7
Figure B.2. The influence digraph correspond-
ing to (B.11).

One particular application of boolean matrices (and the corresponding digraphs)
is to find a partitioning (and reordering) of simultaneous equations that could
improve the efficiency of solving for the unknowns. For a given nonlinear equa-
tion such as x3 = f (x1, x5), we say that x1 and x5 will influence the value of x3. Thus
we can build an influence digraph that will contain vertices v1, v3, and v5, among
others, plus the directed arcs (v1, v3) and (v5, v3).

EXAMPLE B.4. Consider the following set of simultaneous equations:

x1 = f1 (x5, x6)
x2 = f2 (x2, x5, x7)
x3 = f3 (x2, x7)
x4 = f4 (x1, x2)

x5 = f5 (x2, x3)
x6 = f6 (x4, x7)
x7 = f7 (x3, x5)

(B.11)

The influence digraph of (B.11) is shown in Figure B.2.
The boolean matrix representation of digraph G is given by

GB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0
0 1 0 0 1 0 1
0 1 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
B

(B.12)

The vertices of Figure B.2 can be moved around to show a clearer structure
and a partitioning into two subgraphs G1 and G2, as shown in Figure B.3, where
G1 = {x2, x3, x5, x7} and G2 = {x1, x4, x6}. Under this partitioning, any of the
vertices in G1 can link to vertices in G2, but none of the vertices of G2 can
reach the nodes of G1. This decomposition implies that functions { f2, f3, f5, f7}
in (B.11) can be used first to solve for {x2, x3, x5, x7} as a group because they are
not influenced by either x1, x4, or x6. Afterward, the results can be substituted
to functions { f1, f4, f6} to solve for {x1, x4, x6}.2

The sub-digraphs G1 and G2 in Figure B.3 are described as strongly connected.
We say that a collection of vertices together with their arcs (only among the vertices
in the same collection) are strongly connected if any vertex can reach any other

2 The process in which a set of nonlinear equations are sequenced prior to actual solving of the
unknowns is known as precedence ordering.
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2 3 7

4 61

5

G1

G2

Figure B.3. The influence digraph corresponding to
(B.11) after repositioning and partitioning.

vertex in the same collection. Obviously, as the number of vertices increases, the
complexity will likely increase such that the decomposition to strongly connected
subgraphs will be very difficult to ascertain by simple inspection alone. Instead, we
can use the boolean matrix representation of the influence digraph to find the desired
partitions.

Because the elements of the boolean matrices are boolean (or logic) variables,
the logical “OR ” and logical “AND ” operations will replace the product (“·”) and sum
(“+”) operations, respectively, during the matrix product operations. This means
that we have the following rules3:

(0 + 0)B = 0

(0 + 1)B = (1 + 0)B = (1 + 1)B = 1

(0 · 0)B = (1 · 0)B = (0 · 0)B = 0

(1 · 1)B = 1

(A · B)B = C ←→ cij =
(

(ai1 · b1j )B + · · · + (aiK · bKj )B

)
B(

Ak
)
B = (A · A · · · A)B (B.13)

For instance, we have⎛⎜⎜⎝
⎛⎝ 1 0 1

0 0 1
1 0 1

⎞⎠ ·
⎛⎝ 0 0 1

1 1 0
1 0 1

⎞⎠
⎞⎟⎟⎠

B

=
⎛⎝ 1 0 1

1 0 1
1 0 1

⎞⎠
B

Using the rules in (B.13), we note that for a digraph A[=]N × N, the result of(
Ak
)
B with k ≤ N will be to add new arcs (vi, vj ) to the original digraph if there exists

a path consisting of at most k arcs that would link vi to vj . Thus to find the strongly
connected components, we could simply perform the boolean matrix conjunctions
enough times until the resulting digraph has settled to a fixed boolean matrix, that
is, find k ≤ N such that

(
Ak
)
B = (Ak+1

)
B.

3 For clarity, we include a subscript B to denote boolean operation.
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EXAMPLE B.5. Using the boolean matrix representation of digraph (B.11) given
by (B.12), we can show that

(
G3)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0
0 1 0 0 1 0 1
0 1 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

3

B

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
0 1 1 0 1 0 1
0 1 1 0 1 0 1
1 1 1 1 1 1 1
0 1 1 0 1 0 1
1 1 1 1 1 1 1
0 1 1 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
B

= (G4)
B

From the result of
(
G3
)
B, we see that columns {2, 3, 5, 7} have the same entries,

whereas columns {1, 4, 6} have the same entries. These two groups of indices
determine the subgraphs G1 and G2 obtained in Example B.4.

For the special case of linear equations, we could use the results just obtained
to determine whether a matrix is reducible or not, and if it is, we could also find the
required permutation matrix P that is needed to find the reduced form.

Definition B.1. A square matrix A is a reducible matrix if there exists a permuta-
tion matrix P such that

PAPT = B =
(

B11 0
B12 B22

)
A matrix that is not reducible is simply known as an irreducible matrix.

Algorithm for Determination of Reducible Matrices

Given matrix A[=]N × N

1. Replace A by a boolean matrix G, where gij = 1B if aij �= 0 and gij = 0B
otherwise.

2. Perform matrix conjunctions
(
Gk
)
B until

(
Gk
)
B = (Gk−1

)
B, k ≤ N.

3. Let κ(�) be the number of logical TRUE entries in column �. Sort the columns
of
(
Gk
)
B in descending sequence, {j1, . . . , jN}, where j i ∈ {1, . . . ,N} and b > a

if κ(jb) ≤ κ(ja).
4. Set the permutation matrix to be

P = ( ej1 · · · ejN
)T

5. Evaluate the reduced block triangular matrix B = PAPT given by

B =

⎛⎜⎜⎜⎝
B11 0
B21 B22

...
...

. . .
BM1 BM2 · · · BMM

⎞⎟⎟⎟⎠
where the block matrices are Bii[=]�1 × �i and

∑
i=1 M�i = N.
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Remarks: A MATLAB code that implements the algorithm for finding the reduced
form is available on the book’s webpage as matrixreduce.m.

EXAMPLE B.6. Consider the matrix given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2 −1 0
0 1 0 0 −1 0 1
0 3 0 0 0 0 1

−2 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 4 0 0 1
0 0 1 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
then the influence graph is given by the same boolean matrix GB given in exam-
ple B.5. The algorithm then suggests the following sequence: [2, 3, 5, 7, 1, 4, 6]
for P, that is,

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
which then reduces A to a lower block triangular matrix according to the fol-
lowing transformation:

PAPT = Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 1 0 0 0
3 0 0 1 0 0 0
1 1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 2 0 0 0 −1
1 0 0 0 −2 0 0
0 0 0 1 0 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Which means that A is reducible.

Once the block triangular structure has been achieved, a special case of (1.34)
can be used, that is,⎛⎜⎝ B11 0

B21 B22

⎞⎟⎠
−1

=

⎛⎜⎝ B−1
11 0

− B−1
22 B21B−1

11 B−1
22

⎞⎟⎠
assuming both B11 and B22 are nonsingular.

There are several classes of matrices that are known to be irreducible and do
not need to be processed by boolean matrices. One example of a class of irreducible
matrices is the tri-diagonal matrices with nonzeros entries above and below the main
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diagonal. Tri-diagonal matrices are a particular example of sparse matrices, which
are matrices that contain a large number of zero entries. For sparse matrices, instead
of the search for reduced forms, it is often more useful to find transformations that
would reduce the “bandwidth” of the matrices. These issues are discussed in the next
section.

B.4 Reduction of Matrix Bandwidth

One of the most often used methods for finding the reordering permutation P to
reduce matrix bandwidth is the Cuthill-Mckee algorithm. This algorithm does not
guarantee a minimal bandwidth, but it often yields an acceptable bandwidth while
implementing a reasonable amount of computation. (To simplify the discussion, we
assume that the matrix under consideration will already be irreducible. Otherwise,
the techniques found in Section B.3 can be used to separate the matrix into strongly
connected components, i.e., irreducible submatrices.)

We first introduce a few terms with their corresponding notations:4

1. Available nodes: U = {u1,u2, . . .}. This is a set of indices that has not been
processed. It is initialized to contain all the indices, that is, U = {1, 2, . . . ,N}.
The members are removed after each iteration of the algorithm. The algorithm
ends once U becomes empty.

2. Current sequence: V = [v1, v2, . . .]. This is the set of indices that indicates the
current sequence of the permutation P taken from collection U but arranged
according to the algorithm.

3. Degree function: ρ(k) = number of nonzero off-diagonal entries in column k. It
determines the number of neighbors of index k.

4. Neighbors of index k: Ne(k) = {ne1,ne2, . . .} where nei are the row indices of
column k in A that are nonzero. We could also arrange the elements of Ne(k) as
the ordered neighbors Ne∗(k) = [ne∗

1,ne∗
2, . . .

]
sequenced in increasing orders,

that is, ρ(ne∗
i+1) > ρ(ne∗

i ).
5. Entering nodes: Ent(k,V ) = [Ne∗(k) \ V ] where k ∈ V . This is the set of ordered

neighbors of index k that has not yet been processed, that is, excluding indices
that are already in V .

For instance, consider the matrix

A =

⎛⎜⎜⎜⎜⎝
1 −1 0 0 2

−1 2 0 0 0
0 0 3 −1 0
0 0 −1 4 1
2 0 0 1 5

⎞⎟⎟⎟⎟⎠
The degrees of each index are given by

(
ρ(1), ρ(2), ρ(3), ρ(4), ρ(5)

)
= (2, 1, 1, 2, 2).

Suppose that the current sequences U and V are given by

U = {3, 4, 5} and V = [2, 1]

4 We use a pair of curly brackets to indicate a collection in which the order is not relevant and a pair
of square brackets to indicate that the order sequence is important.
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then

Ne(1) = {2, 5} Ne∗(1) = [2, 5] and Ent (1, {2, 1}) = [5]

For a given initial index s, the Cuthill-McKee sequencing algorithm is given by
the following algorithm:

Cuthill-McKee Sequencing Algorithm:

Given matrix A[=]N × N and starting index s,

1. Evaluate the degrees ρ (i), i = 1, . . . ,N.

2. Initialize U =
{
{1, 2, . . . ,N} \ s

}
, V = [s] and k = 1.

3. While U is not empty,
(a) Determine entering indices, Q = Ent (vk,V ).

(If Q is empty, then skip the next two steps and continue the loop
iteration.)

(b) Update U and V : U ← {U \ Q} and V ← [V,Q].
(c) Increment, k ← k + 1.

Different choices of the starting index s will yield different sequences V and
could result in different bandwidths. One choice is to start with the index hav-
ing the lowest degree ρ(s), but this may not necessarily yield the minimal band-
width. However, exploring all the indices as starting indices is not desirable either,
especially for large matrices. Different methods have been developed to choose
the appropriate starting index that would yield a sequence that produces close
to, if not the exactly, the minimum bandwidth. We discuss one approach that is
iterative.

Using a starting index s (e.g., initially try the index with the lowest order), the
Cuthill-McKee algorithm will yield the sequence Vs and its corresponding permu-
tation matrix Ps. This should generate a transformed matrix Bs = PsAPT

s that will
have a block tri-diagonal structure known as the level structure rooted at s, in which
the first block is the 1 × 1 block containing s:

Bs =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s R1 0

F1 D1
. . .

. . .
. . .

. . .
. . .

. . . Rm

0 Fm Dm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and where the diagonal blocks Di are square. The value m is the maximal value that
attains a block tri-diagonal structure for Bs and is known as the depth of Bs. Let �
be the size of the last diagonal block, Dm. Then we can test the indices determined
by the last � entries of Vs as starting indices and apply the Cuthill-McKee algorithm
to each of these indices. If any of these test indices, say index w, yield a smaller



602 Appendix B: Additional Details and Fortification for Chapter 2

Figure B.4. A graphical representation of the C60 molecule.

bandwidth, then we update s with w and the whole process is repeated.5 Otherwise,
V = Vs is chosen to be the desired sequence.

Remarks:

1. Often, especially in the solution of finite element methods, the reversed ordering
has shown a slight computational improvement. Thus a slight modification yields
the more popular version known as the Reverse Cuthill-McKee reordering,
which is to simply reverse the final sequence in V found by the Cuthill-McKee
algorithm.

2. The MATLAB command that implements the reverse Cuthill-McKee reorder-
ing algorithm of matrix A is: p=symrcm(A), and the permuted matrix can be
obtained as: B=A(p,p).

3. A MATLAB function p=CuthillMcKee(A) is available on the book’s web-
page that implements the Cuthill-McKee algorithm.

EXAMPLE B.7. Consider the C60 molecule (or geodesic dome popularized by
Buckminster Fuller), which is a form of pure carbon with 60 atoms in a nearly
spherical configuration. A graphical figure is shown in Figure B.4. An adjacency
(boolean) matrix describing the linkage among the atoms is shown in Figure B.5
in which the dots are TRUE and the unmarked positions are FALSE. The band-
width of the original indexing is 34. Note that each node is connected to three
other nodes; thus the degrees of each node is 3 for this case. After applying
the Cuthill-McKee reordering algorithm, the atoms are relabeled and yield the
adjacency matrix shown in Figure B.6. The bandwidth of the reordered matrix
is 10.

B.5 Block LU Decomposition

When matrix A is large, taking advantage of inherent block partitions can yield effi-
cient methods for the solution of Ax = b. The block structure could come directly

5 The method of choosing new starting indices based on the last block of the level structure is based
partially on the method developed of Gibbs, Poole and Stockmeyer (1976) for choosing the initial
index. Unlike their method, the one discussed here continues with using the Cuthill-McKee algorithm
to generate the rest of the permutation.
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Figure B.5. The initial adjacency matrix
for the C60 molecule.

from modular units of connected subsystems, for example, from physical processes
composed of different parts. In some cases, it results from the geometry of the
problem (e.g., from the finite difference solutions of elliptic partial differential equa-
tions). In other cases, the block structure results from reordering of equations and
re-indexing of the variables.
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Figure B.6. The adjacency matrix for the
C60 molecule based on Cuthill-McKee
reordering.
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One of the simplest case is when A is lower block triangular.

A =

⎛⎜⎝ L11 0
...

. . .
Ln1 · · · Lnn

⎞⎟⎠ (B.14)

where Li,j [=]Ni × Nj , i ≥ j . This induces a partitioning of vectors x and b as follows

x =

⎛⎜⎝ x1
...

xn

⎞⎟⎠ and b =

⎛⎜⎝ b1
...

bn

⎞⎟⎠ (B.15)

where xk and bk are column vectors of length Nk.
It is possible that even though the original matrix A does not have the lower

block triangular structure of (B.14), one might still be able to find permutation
matrices P such that Â = PAPT attains a lower block triangular structure. If so, then
A is known as reducible. One could use boolean matrices to find the required P,
and details of this method are given in Section B.3 as an appendix. Furthermore,
a MATLAB code that implements the algorithm for finding the reduced form is
available on the book’s webpage as matrixreduce.m.

Assuming that the block diagonal matrices Lkk are square and nonsingular, the
solution can be obtained by the block matrix version of forward substitution, that is,

x1 = L−1
11 b1 and xk = L−1

kk

(
bk −

k−1∑
�=1

Lk,� x�

)
; k = 2, . . . ,n (B.16)

Likewise, when A is upper block triangular, that is,

A =

⎛⎜⎝ U11 · · · U1n

. . .
...

0 Unn

⎞⎟⎠ (B.17)

where Ui,j [=]Ni × Nj , i ≤ j , and assuming that the block diagonal matrices Ukk are
square and nonsingular, the solution can be obtained by the block matrix version of
backward substitution, that is,

xn = U−1
nn bn and xk = U−1

kk

(
bk −

n∑
�=k+1

Uk,� x�

)
; k = n − 1, . . . , 1 (B.18)

Let A be partitioned as

A =

⎛⎜⎝ A11 · · · A1n
...

. . .
...

An1 · · · Ann

⎞⎟⎠ (B.19)

where Aij [=]Ni × Nj with Akk square. Then block matrix computation can be
extended to yield block LU decompositions. The block-Crout’s method and the
block-Doolittle’s method are given in Table B.1. Note that Lij and Uij are matrices
of size Ni × Nj and are not triangular in general. Furthermore, when A is block
tri-diagonal, a block version of the Thomas algorithm becomes another natural
extension. (See Exercise E2.16 for the block-Thomas algorithm ).
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Table B.1. Block matrix LU decompositions

Name Algorithm (For p = 1, . . . ,N )

Block Crout’s Method

Upp = INP

Lip =
(

Aip −
p−1∑
k=1

LikUkp

)
for i = p, . . . ,n

Upj = L−1
pp

(
Apj −

p−1∑
k=1

LpkUkj

)
for j = p + 1, . . . ,n

Block Doolittle’s Method

Lpp = INp

Upj =
(

Apj −
p−1∑
k=1

LpkUkj

)
for j = p, . . . ,n

Lip =

(
Aip −

p−1∑
k=1

LikUkp

)
U−1

pp for i = p + 1, . . . ,n

B.6 Matrix Splitting: Diakoptic Method and Schur Complement Method

B.6.1 Diakoptic Method

Let PR and PC be row permutation and column permutation matrices, respectively,
that will move nonzero elements of S = A − M to the top rows and left columns,
leaving a partitioned matrix that has a large zero matrix in the lower-right corner.

Ŝ = PRSPT
C =

⎛⎜⎜⎝ Ŝ11 Ŝ12

Ŝ21 0

⎞⎟⎟⎠ (B.20)

Assume that the size of Ŝ11 is significantly smaller than the full matrix. If either
Ŝ12 = 0 or Ŝ21 = 0, then an efficient solution method known as the Diakoptic method
is available.

Case 1. Ŝ12 = 0

In this case, PR = I. With S = A − M and Ŝ = SPT
C , the problem Ax = b can be recast

as follows:

Ax = (M + S) x = b → (
I + HŜ

)
y = z

where H = PCM−1, y = PCx and z = PCM−1b. Let Ŝ11[=]r × r. With Ŝ12 = Ŝ22 = 0,
L = (I + HS) will be block lower triangular matrix, that is,⎡⎢⎣( Ir 0

0 IN−r

)
+
(

H11 H12

H21 H22

)(
Ŝ11 0
Ŝ21 0

)⎤⎥⎦( yr

yN−r

)
=
(

zr

zN−r

)
(

L11 0
L21 L22

)(
yr

yN−r

)
=
(

zr

zN−r

)
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where L11 = Ir + H11Ŝ11 + H12Ŝ21, L21 = H21Ŝ11 + H22Ŝ21 and L22 = IN−r. Note that
the blocks of L are obrained by just partitioning

(
I + HŜ

)
.

Assuming L11 is nonsingular,

yr = L−1
11 zr

yN−r = zN−r − L21yr
→ x = PT

C

(
yr

yN−r

)
(B.21)

EXAMPLE B.8. For the equation Ax = b, let

A =

⎛⎜⎜⎜⎜⎜⎜⎝

5 0 1 0 1 0
1 4 −1 0 0 0
0 1 4 0 2 0
1 0 1 4 0 0
1 2 0 1 5 0

−1 0 2 −1 1 5

⎞⎟⎟⎟⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎜⎜⎜⎝

9
6

16
0
9

−3

⎞⎟⎟⎟⎟⎟⎟⎠
Choosing M to be lower triangular portion of A, we have

M =

⎛⎜⎜⎜⎜⎜⎜⎝

5 0 0 0 0 0
1 4 0 0 0 0
0 1 4 0 0 0
1 0 1 4 0 0
1 2 0 1 5 0

−1 0 2 −1 1 5

⎞⎟⎟⎟⎟⎟⎟⎠ and S =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 0
0 0 −1 0 0 0
0 0 0 0 2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
Let PC be

PC =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
then we obtain

(
I + HŜ

) =

⎛⎜⎜⎜⎜⎜⎜⎝

1.075 0.513 0 0 0 0
0.094 1.016 0 0 0 0

0.2 0.2 1 0 0 0
−0.3 −0.05 0 1 0 0

−0.069 −0.178 0 0 1 0
−0.023 −0.204 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ and z =

⎛⎜⎜⎜⎜⎜⎜⎝

3.737
1.297
1.8
1.05

−1.384
−2.271

⎞⎟⎟⎟⎟⎟⎟⎠
Finally, we get

yr =
(

3
1

)
; yN−r =

⎛⎜⎜⎝
1
2

−1
−2

⎞⎟⎟⎠ and x =

⎛⎜⎜⎜⎜⎜⎜⎝

1
2
3

−1
1

−2

⎞⎟⎟⎟⎟⎟⎟⎠
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Case 2. Ŝ21 = 0

For this case, PC = I. With matrices S = A − M and Ŝ = PRSPT
C , the problem Ax = b

can be recast as follows:

Ax = (M + S) x = b → (
I + ŜĤ

)
ŷ = ẑ

where Ĥ = M−1PT
R , ŷ = PRMx and ẑ = PRb. Let Ŝ11[=]r × r. With Ŝ21 = Ŝ22 = 0,

⎡⎢⎣( Ir 0
0 IN−r

)
+
(

Ŝ11 Ŝ12

0 0

)(
Ĥ11 Ĥ12

Ĥ21 Ĥ22

)⎤⎥⎦( ŷr

ŷN−r

)
=
(

ẑr

ẑN−r

)
(

U11 U12

0 U22

)(
ŷr

ŷN−r

)
=
(

ẑr

ẑN−r

)

where U11 = Ir + Ŝ11Ĥ11+Ŝ12Ĥ21,U12 = Ŝ11Ĥ12+Ŝ12Ĥ22 and U22 = IN−r. Theblocks
of U are obtained by simple partitioning of

(
I + ŜĤ

)
. Assuming U11 is non-

singular,

ŷN−r = ẑN−r

ŷr = U−1
11 (̂zr − U12̂yN−r)

→ x = M−1PT
R

(
ŷr

ŷN−r

)
(B.22)

EXAMPLE B.9. For the equation Ax = b, let

A =

⎛⎜⎜⎜⎜⎜⎜⎝

5 1 0 1 1 −1
0 4 1 0 2 0
1 −1 4 1 0 2
0 0 0 4 1 −1
1 0 2 0 5 1
0 0 0 0 0 5

⎞⎟⎟⎟⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎜⎜⎜⎝

9
13
6

−1
10

−10

⎞⎟⎟⎟⎟⎟⎟⎠
Choosing M to be upper triangular portion of A, we have

M =

⎛⎜⎜⎜⎜⎜⎜⎝

5 1 0 1 1 −1
0 4 1 0 2 0
0 0 4 1 0 2
0 0 0 4 1 −1
0 0 0 0 5 1
0 0 0 0 0 5

⎞⎟⎟⎟⎟⎟⎟⎠ and S =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
1 −1 0 0 0 0
0 0 0 0 0 0
1 0 2 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
Let PR be given by

PR =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
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then

(
I + ŜĤ

) =

⎛⎜⎜⎜⎜⎜⎜⎝

1.075 0.094 0.2 −0.3 −0.069 −0.023
0.513 1.016 0.2 −0.05 −0.178 0.204

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ; ẑ =

⎛⎜⎜⎜⎜⎜⎜⎝

6
10
9
13
−1
−10

⎞⎟⎟⎟⎟⎟⎟⎠
Finally, we obtain

ŷN−r =

⎛⎜⎜⎝
9

13
−1
10

⎞⎟⎟⎠ ; ŷr =
(

7
3

)
and x =

⎛⎜⎜⎜⎜⎜⎜⎝

1
2
3

−1
1

−2

⎞⎟⎟⎟⎟⎟⎟⎠

B.6.2 Schur Complements

In solving partial differential equations, the problem can sometimes be partitioned
into subdomains. The boundaries of each subdomain will either be specified by
boundary conditions or interfaced with other subdomains. In these approaches,
known as domain decomposition, the matrix A can end up with the following block
structure:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 0 A1n

. . .
...

0 An−1,n−1 An−1,n

An,1 · · · An,n−1 An,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.23)

EXAMPLE B.10. Consider the domain given in Figure B.7 in which a larger rectan-
gular region (Subdomain I) is attached to a smaller rectangular region (Subdo-
main II). We identify points {1, 2, 3, . . . , 10} and {11, 12, 13, 14} to be the interior
points of Subdomain I and Subdomain II, respectively. The remaining interior
points {15, 16} are the interface points that link both subdomains.

The partial differential equation that models the steady-state temperature
distribution is given by

∂2u
∂x2

+ ∂2u
∂y2

= 0

subject to values that are fixed for u at the boundaries. Let the boundary points
described by the various points shown in Figure B.7 have the following values:

(ua,ub,uc,ud,ue,uf ,ug) = (100, 90, 80, 70, 60, 50, 40)
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a a a a a a a

1 3 5 7 9 bb

2 4 6 8 10 cc

15 16

d d d d
d

11 13
ee
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g

}
}

Figure B.7. The labeling of various points for Example B.10.

Using finite difference approximations (cf. Example 1.3) with �x = �y = 1, the
linear equation will be:⎛⎝ A11 0 A13

0 A22 A23

A31 A32 A33

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =
⎛⎝ b1

b2

b3

⎞⎠
where,

A11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 1 1 0 0 0 0 0 0 0
1 −4 0 1 0 0 0 0 0 0
1 0 −4 1 1 0 0 0 0 0
0 1 1 −4 0 1 0 0 0 0
0 0 1 0 −4 1 1 0 0 0
0 0 0 1 1 −4 0 1 0 0
0 0 0 0 1 0 −4 1 1 0
0 0 0 0 0 1 1 −4 0 1
0 0 0 0 0 0 1 0 −4 1
0 0 0 0 0 0 0 1 1 −4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; A13 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 0
0 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A22 =

⎛⎜⎜⎝
−4 1 1 0

1 −4 0 1
1 0 −4 1
0 1 1 −4

⎞⎟⎟⎠ ; A23 =

⎛⎜⎜⎝
1 0
0 0
0 1
0 0

⎞⎟⎟⎠
A31 =

(
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

)
A32 =

(
1 0 0 0
0 0 1 0

)
; A33 =

( −4 1
1 −4

)
bT

1 =
(

190 80 100 70 100 70 100 70 190 150
)

bT
2 = (

60 90 60 90
)

bT
3 = (

70 70
)
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xT
1 =

(
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

)
xT

2 = (
u11 u12 u13 u14

)
xT

3 = (
u15 u16

)
Note that the structures of A11, A22, and A33 are block tri-diagonal, whose inverse
can be obtained using the block LU methods (or more specifically, using the
block-Thomas algorithm; see Exercise E2.16).

Let us now focus on the solution of Ax = b. With A = M + S,

Ax = (M + S) x = b → (I + H) x = z

where H = M−1S and z = M−1b. Choosing M to be

M =

⎛⎜⎜⎜⎜⎜⎝
A11 0

. . .

0 Ann

⎞⎟⎟⎟⎟⎟⎠
we have

H = M−1S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A−1
11 0

A−1
22

. . .

0 A−1
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A1,n

. . .
...

0 An−1,n

An,1 · · · An,n−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A−1
11 A1,n

. . .
...

0 A−1
n−1,n−1An−1,n

A−1
nn An,1 · · · A−1

nn An,n−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Let Bk = A−1

kk Akn and � =
(

Ann −∑n−1
k=1 An,kBk

)−1
. Note that the product �Ann is

the inverse of the Schur complement of Ann. Using the block matrix inverse formula
given in (1.36), we obtain

x = (I + H)−1 z =

⎛⎜⎜⎝ W X

Y Z

⎞⎟⎟⎠ z (B.24)
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where,

Z = �Ann ; Y = −�
(

An1 · · · An,n−1
)

X = −

⎛⎜⎝ B1
...

Bn−1

⎞⎟⎠�Ann ; W = I +

⎛⎜⎝ B1
...

Bn−1

⎞⎟⎠� ( An1 · · · An,n−1
)

EXAMPLE B.11. We can implement the Schur complement method to the problem
in Example B.10. The value of � and z can be found to be

� =
( −0.3331 −0.1161

−0.1161 −0.3362

)

zT =
(

80.357, 52.698, 78.731, 50.436, 84.131, 70.313, 87.481, 76.686,

89.107, 78.948, 33.75, 41.25, 33.75, 41.25, 23.333, 23.333
)

and with (B.24), the solution is

uT =
(

90, 80, 90, 80, 90, 80, 90, 80, 90, 80, 60, 50, 60, 50, 70, 70
)

which is expected because the given boundary conditions in B.10 show a linear
temperature distribution.

B.7 Linear Vector Algebra: Fundamental Concepts

In this section, we give some of the fundamental concepts of linear algebra of vectors.
Matrices are treated as collections of column vectors, and thus the product Ax is the
process of linearly combining the columns of A scaled by the entries in x.

Let F be a field of scalars, for example, the fields of real numbers or field of
complex numbers. The abstract definition of a linear vector space L (over F) is a
collection of objects called vectors such that a sum operation is closed; that is, if v
and w are in L, then so is their sum v + w. Furthermore, the vector sum operations
and the scalar product operations need to obey the conditions given in Table B.2.
Some useful definitions and concepts connected with linear vector spaces are given
in Table B.3.

To illustrate the idea of span, consider the two vectors

v1 =
⎛⎝ 1

1
0

⎞⎠ and v2 =
⎛⎝ 2

1
−1

⎞⎠
Based on the definition given in Table B.3, the span of v1 and v2 is the collection of
all vectors obtained by a linear combination of these two vectors. A representative
vector is then given by

v = av1 + bv2
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Table B.2. Conditions for a linear vector space

Conditions for Vector Sums

1 Associative v + (w + y) = (v + w) + y
2 Commutative v + w = w + v
3 Identity is 0 0 + v = v
4 Inverse exist and unique v + (−v) = 0

Conditions for Scalar Products

1 Associative α (βv) = (αβ) v
2 Identity is 1 1v = v
3 Vector is distributive (α+ β) v = αv + βv

over scalar sums
4 Scalar is distributive α (v + w) = αv + αw

over vector sums

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 2b

a + b
a − b

⎞⎠
or with x and y as independent variables,

z = y − x

which is the equation of a 2D plane. Next, consider another point

v3 =
⎛⎝ 1

1
1

⎞⎠
This point is no longer in the span of v1 and v2 because the three elements of v3 do
not satisfy z = y − x.

Table B.3. Some important definitions for linear vector spaces

Terms and concepts Conditions

1 w is a linear combination
of {v1, . . . , vK} w =∑K

i=1 αivi

based on {α1, . . . , αK}
2 Span of {v1, . . . , vK} Span (v1, . . . , vK) =

{
w
}

is the space of possible such that w =∑K
i=1 αivi

linear combinations for αi ∈ F
3 {v1, . . . , vK} are

∑k
i=1 αivi = 0

linearly independent only if αi = 0 for all i

4 {v1, . . . , vK} are
∑k

i=1 αivi = 0
linearly dependent for some αi �= 0

5 {v1, . . . , vK} {v1, . . . , vK} is linearly independent,
is the basis of subspace S and Span (v1, . . . , vK) = S

6 An integer d = dim (S) is the There exist {v1, . . . , vd}
dimension of subspace S that is a basis of S
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Table B.4. Conditions for vector norms

1 Positivity ‖v‖ ≥ 0
2 Scaling ‖αv‖ = |α| ‖v‖
3 Triangle Inequality ‖v + w‖ ≤ ‖v‖ + ‖w‖
4 Unique Zero ‖v‖ = 0 only if v = 0

The space of column vectors, using the matrix algebra operations discussed in
Section 1.2, satisfy the conditions in Table B.2. Vectors v1, . . . , vM (each of length
N) can then be linearly combined using scalars xi, that is,

M∑
i=1

xivi

or Ax, where

A =
(

v1 · · · vM

)
Let A[=]N × M; then an exact solution to Ax = b written out as

x1A•,1 + . . .+ xMA•,M = b

means that b has to be linearly dependent on the columns of A; that is, b has to
reside in the span of the columns of A. The dimension of the span of the columns of
A is also the rank of A. This means that the rank of A simply determines how many
columns of A are linearly independent. Thus if we augment the columns of A with
b and find an increase in rank, this could only mean that b is independent of the
columns of A.

The evaluation of exact solutions has already been discussed in Chapter 1 and 2.
However, if the columns of A and b have lengths larger than the number of columns
in A, that is, N > M, then an exact match will not be likely. Instead, the problem
becomes the search for a linear combination of the columns of A that match b as
close as possible, based on some chosen measure.

Thus one needs to equip the linear vector space with a measure called the
norm. Returning to the abstract linear vector space L, a norm is a function that
assigns a positive real number to the vectors of L. We denote the norm of v by ‖v‖.
Furthermore, this function needs to satisfy the conditions given in Table B.4.

Based on a chosen norm, a vector v �= 0 can always be normalized by scaling v
by the scalar α = ‖v‖−1, that is,∥∥∥∥ 1

‖v‖v
∥∥∥∥ = 1

‖v‖ ‖v‖ = 1 (B.25)

Among the various possible norms for matrix vectors, we have the Euclidean
norm, denoted ‖v‖2 defined by

‖v‖2 = √
v∗v =

√√√√ N∑
i=1

vivi (B.26)

In most cases, we default to the Euclidean norms and drop the subscript ‘2’, unless
the discussion involves other types of norms. One can show that this definition
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satisfies the conditions given in Table B.4 (we include the proof that (B.26) is a
norm in Section B.10.1 as an appendix.) If the vectors are represented by points in
a N-hyperspace, then the norm is simply the distance of the points from the origin.
Note also that only the zero vector will have a zero norm.

B.8 Determination of Linear Independence of Functions

Given a set of multivariable functions,
{

f1 (v) , . . . , fM (v)
}
, where v = (v1, . . . , vK)

are independent variables. The functions are linearly independent if and only if the
only α1 = · · · = αM = 0 is the unique solution of

α1 f1 (v) + . . .+ αM fM (v) = 0 (B.27)

One method to determine whether functions {f1, . . . , fM} are linearly indepen-
dent is the Wronskian approach, extended to multivariable functions. First, take the
linear combination

α1 f1 (x) + . . .+ αM fM (x) = 0 (B.28)

Next, generate several partial derivatives of this equation, that is,⎛⎜⎜⎜⎝
f1 · · · fM

∂f1/∂v1 · · · ∂fM/∂v1

∂f1/∂v2 · · · ∂fM/∂v2
...

⎞⎟⎟⎟⎠
⎛⎜⎝ α1

...
αM

⎞⎟⎠ =

⎛⎜⎜⎜⎝
0
0
0
...

⎞⎟⎟⎟⎠
Enough equations are generated until a nonsingular submatrix can be obtained.
If this occurs, then it would establish that { f1, . . . , fm} are linearly independent.
However, the Wronskian approach requires the evaluation of partial derivatives
and determinants that involve the independent variables. This means that except for
small number of functions, the general case will be cumbersome to solve symbolically.

Another method, called the substitution approach, first chooses different values
for v, say, vi with i = 1, . . . ,M, and then substitutes them into f j (v). Matrix Â can
then be formed as follows:

Â =

⎛⎜⎝ f1 (v1) · · · fM (v1)
...

. . .
...

f1 (vM) · · · fM (vM)

⎞⎟⎠
If Â is nonsingular, we conclude that

{
f1 (v) , . . . , fM (v)

}
are linearly independent.

EXAMPLE B.12. Consider the linear-in-parameter model:

y = a0 + a1v+ · · · + aM−1v
M−1 (B.29)

Here, we have one independent variable v. The functions are fi(v) = vi−1.
Using the Wronskian approach, we have

W

⎛⎜⎝ a0
...

aM−1

⎞⎟⎠ =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠
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where

W =

⎛⎜⎜⎜⎝
1 v · · · vM−1

0 1 · · · (M − 1) vM−2

...
...

...
0 0 · · · (M − 1)!

⎞⎟⎟⎟⎠
The determinant of W is given by

|W | = (M − 1)! (M − 2)! · · · 1 �= 0

This shows that
{
1, v, · · · vM−1

}
form a linearly independent set of functions.

Using the substitution approach, we could set different constants for v, that
is, v = λ1, · · · , λM−1, and substitute each one to obtain Â,

Â =

⎛⎜⎜⎜⎝
1 λ1 · · · λM−1

1
1 λ2 · · · λM−1

2
...

...
. . .

...
1 λM−1 · · · λM−1

M−1

⎞⎟⎟⎟⎠
which is a Vandermonde matrix. The determinant will be nonzero as long as
λ1, · · · , λM−1 are all distinct. Thus using this approach, we obtain the same
conclusion about the linear independence of

{
1, v, · · · vM−1

}
.

The model given by (B.29) is a very popular empirical nonlinear model
known as the polynomial-fitting model.

EXAMPLE B.13. Consider another linear-in-parameter model:

y = a0 + a1v
2
1 + a2 (v1 − v2) v2 + a3v

2
2 (B.30)

Here, we have two independent variables v1 and v2. The functions are f1(v) = 1,
f2(v) = v2

1, f3(v) = (v1 − v2) v2 and f4(v) = v2
2.

Using the extended-Wronskian approach, we have

W =

⎛⎜⎜⎜⎜⎜⎜⎝

1 v2
1 (v1 − v2) v2 v2

2
0 2v2 v2 0
0 0 −2v2 2v2

0 2 0 0
0 0 1 0
0 0 −2 2

⎞⎟⎟⎟⎟⎟⎟⎠
We can take two different tracks. The first is to take the determinant of the
Grammian WT W . This will mean a 4 × 4 determinant involving symbolic manip-
ulations. The other method is to choose rows and determine whether a nonsin-
gular submatrix emerges. We show the second track by choosing rows 1, 4, 5,
and 6. Doing so, we have

W[1,4,5,6] =

⎛⎜⎜⎝
1 v2

1 (v1 − v2) v2 v2
2

0 2 0 0
0 0 1 0
0 0 −2 2

⎞⎟⎟⎠
whose determinant is 4. Thus the functions are linearly independent.
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Using the substitution method, we can choose(
v1

v2

)
=
(

1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1

−1

)
Substituting these values to the various functions, we obtain

Â =

⎛⎜⎜⎝
1 1 0 0
1 0 −1 1
1 1 0 1
1 1 −2 1

⎞⎟⎟⎠
whose determinant is −2. Thus it also shows that the functions are linearly
independent.

B.9 Gram-Schmidt Orthogonalization

Suppose we have a set of linearly independent vectors x1, x2, . . . , xN, each of length
N, which are basis vectors that span an N-dimensional space. In some cases, the
vectors may be too close to each other. The Gram-Schmidt orthogonalization is a
simple procedure to obtain a better set of basis vectors with same span, but are
perpendicular (or orthogonal) to each other. The Gram-Schmidt algorithm is one
procedure to obtain these mutually perpendicular basis vectors.

Definition B.2. Let a and b be two vectors of the same length. The inner product
of a and b, denoted by 〈a,b〉, is given by

〈a,b〉 = a∗b (B.31)

Definition B.3. Let a and b be two vectors of the same length. Then a and b are
orthogonal to each other if 〈a,b〉 = 0. A set of vectors z1, . . . , zN is an orthonor-
mal set if

〈
zi, zj

〉 =
⎧⎨⎩

0 if i �= j

1 if i = j
(B.32)

Gram-Schmidt Algorithm:

Let {a1, . . . , aN} be linearly independent. Set z1 = a1

‖a1‖ For k = 2, . . . ,N,

yk = ak −
k−1∑
i=1

〈ai, zi〉 zi

zk = yk

‖yk‖
Then {z1, . . . , zN} is an orthonormal set.
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EXAMPLE B.14. Given

a1 =
⎛⎝ 1

2
1

⎞⎠ a2 =
⎛⎝ 0

1
2

⎞⎠ a3 =
⎛⎝ 1

1
0

⎞⎠
Using the Gram-Schmidt method, we obtain

z1 =
⎛⎝ 0.408

0.816
0.408

⎞⎠ z2 =
⎛⎝ −0.436

−0.218
0.873

⎞⎠ z3 =
⎛⎝ 0.802

−0.534
0.267

⎞⎠
We can check that 〈z1, z1〉 = 〈z2, z2〉 = 〈z3, z3〉 = 1, and

〈
zi, zj

〉 = 0 for i �= j .

B.10 Proofs for Lemma and Theorems in Chapter 2

B.10.1 Proof That Euclidean Norm Is a Norm

We need to show that the Euclidean norm defined in (B.26)

‖v‖ = √
v∗v =

√√√√ N∑
i=1

vivi

satisfies each of the requirements of Table B.4.

1. Positivity is immediate from the definition, because vv = Re (v)2 + Im (v)2.
2. The scaling property is shown as follows:

‖αv‖ =
√
αα

√√√√ N∑
i=1

vivi

= |α| ‖v‖

3. Because vivi = 0 if and only if vi = 0, the only vector that will yield a zero norm
is v = 0.

4. The triangle inequality is more involved. It requires a relationship known as
Cauchy-Schwarz inequality: ∣∣v∗w

∣∣ ≤ ‖v‖ ‖w‖ (B.33)

The proof of the Cauchy-Schwarz inequality is given later. For now, we apply
(B.33) to prove the triangle inequality of Euclidean norms.

‖v + w‖2 = v∗v + v∗w + w∗v + w∗w

≤ ‖v‖2 + ∣∣v∗w
∣∣+ ∣∣w∗v

∣∣+ ‖w‖2

≤ ‖v‖2 + 2 ‖v‖ ‖w‖ + ‖w‖2 = (‖v‖ + ‖w‖)2

Thus

‖v + w‖ ≤ ‖v‖ + ‖w‖
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PROOF6 of Cauchy-Schwarz inequality, Equation (B.33):
For complex numbers a and b,

|ab| =
∣∣∣∣|a|e−i (arg(a))|b|ei (arg(b))

∣∣∣∣ ≤ |a||b| (B.34)

and

0 ≤ (|a| − |b|)2

0 ≤ |a|2 − 2|a||b| + |b|2

2|a||b| ≤ |a|2 + |b|2

|a||b| ≤ 1
2

(|a|2 + |b|2) (B.35)

Combining (B.34) and (B.35),

|ab| ≤ 1
2

(|a|2 + |b|2) (B.36)

Next let a and b be normalized vectors defined by

a = 1
‖v‖v and a = 1

‖w‖w

Applying (B.36) plus the fact that ‖a‖ = ‖b‖ = 1,

∣∣a∗b
∣∣ =

∣∣∣∣∣
N∑

i=1

aibi

∣∣∣∣∣
≤ 1

2

(
N∑

i=1

|ai|2 +
N∑

i=1

|bi|2
)

= 1

Then ∣∣a∗b
∣∣ ≤ 1

|v∗w|
‖v‖ ‖w‖ ≤ 1∣∣v∗w

∣∣ ≤ ‖v‖ ‖w‖

B.10.2 Proof for Levenberg-Marquardt Update Form (Lemma B.2)

(The proof given here is based on Dennis and Schnabel Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice Hall, 1983.)

Let ϕ
(
�kx
)

be the function to be minimized in (B.109),

ϕ
(
�kx
)

= 1
2

∥∥∥rk + Jk�
kx
∥∥∥2

= 1
2

rT
k rk + rT

k Jk�
kx +

(
�kx
)T

J T
k Jk�

kx

6 We limit the proof only for the case of Euclidean norms, although the Cauchy-Schwarz can be
applied to different norms and inner products.
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If the minimum of ϕ lies inside the trust region, then the problem resembles the
unconstrained problem, whose solution is immediately given by

�kx∗ = − (J T
k Jk
)−1

J T
k rk

that is, μ = 0.
However, if the trust region is smaller, then the minima will be on the boundary of

the trust region, that is,
∥∥�kx∗∥∥ = Mk. This means that the solution to the constrained

minimization problem given in (B.109) will be a step�kx∗ such that when we perturb
it by another vector, say v, the value of ϕ can be decreased only at the expense of
moving it outside the trust region.

A perturbation v will minimize ϕ
(
�kx∗) further only if

0 < ϕ
(
�kx∗ + v

)
− ϕ
(
�kx∗

)
=
(

rT Jk +
(
�kx∗

)T
J T

k Jk

)
v + vT J T

k Jkv

or, because vT J T
k Jkv ≥ 0, (

rT Jk +
(
�kx∗

)T
J T

k Jk

)
v > 0 (B.37)

The other requirement for v is that the perturbed step �kx∗ + v will have a norm
greater than Mk, that is,∥∥∥�kx∗ + v

∥∥∥ > ∥∥∥�kx∗
∥∥∥ →

(
�kx∗

)T
v > 0 (B.38)

The implication is that the vectors premultiplying v in (B.37) and (B.38) must point
in the opposite directions, or

J T
k r + J T

k Jk�
kx∗ = −μ

(
�kx∗

)
for some μ > 0. Thus �kx∗ is given by the form

�kx∗ = − (J T
k Jk + μI

)−1
J T

k rk

To show uniqueness, let

s (μ) = (J T
k Jk + μI

)−1
J T

k r

and let q (μ) be the difference

q (μ) = ∥∥s (μ)
∥∥− Mk

whose derivative is given by

dq
dμ

= − rT Jk
(
J T

k Jk + μI
)−3

J T
k r∥∥s (μ)

∥∥
The derivative dq/dμ is always negative for μ > 0, and equal to zero only when
rT

k Jk = 0 (which occurs only when x[k] is already the minimum of ϕ). This implies
that q (μ) is zero only for a unique value of μ.
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B.11 Conjugate Gradient Algorithm

B.11.1 The Algorithm

We begin with some additional terms and notations. The error vector is the difference
of x(i) from the exact solution x̂, denoted by err(i),

err(i) = x(i) − x̂ (B.39)

The mismatch between b and Ax(i) is called the ith residual vector, denoted by r(i),
that is,

r(i) = b − Ax(i) (B.40)

By taking the gradient of f (x), we can see that the residual vector is the transpose
of the negative gradient of f (x) at x = x(i), that is,

d
dx

f (x)
∣∣∣∣
x=x(i)

= (xT A − bT )∣∣
x=x(i) = −(r(i))T (B.41)

The relationship between the residual vectors and error vectors can be obtained
by adding Âx − b = 0 to (B.40),

r(i) = b − Ax(i) + (Âx − b)

= −A
(

x(i) − x̂
)

= −A err(i) (B.42)

Returning to the main problem, we formulate the following update equation,

x(i+1) = x(i) + α(i)d(i) (B.43)

where d(i) is the ith correction vector and α(i) is a factor that will scale the correction
vector optimally for the ith update. (The choice for d(i) and α(i) is discussed later).
The residual vector is

r(i+1) = b − Ax(i+1) (B.44)

A more efficient calculation for r(i+1) can be used. Taking (B.43), we can subtract x̂
from both sides, multiply by A, and then use (B.42),

x(i+1) − x̂ = x(i) − x̂ + α(i)d(i)

err(i+1) = err(i) + α(i)d(i)

A err(i+1) = A err(i) + α(i)Ad(i)

r(i+1) = r(i) − α(i)Ad(i) (B.45)

Although (B.45) is the preferred update equation, it can sometimes accumulate
round-off errors. For very large problems, most implementations of the conjugate
gradient method include an occasional switch to (B.44) once every K iterations (e.g.,
K ≤ 50) and then switch back to (B.45).

The initial direction vector is usually chosen as the initial residual vector,7 that
is,

d(0) = r(0) = b − Ax(0) (B.46)

7 This means that the conjugate gradient method begins with the same search direction as a gradient
descent method, because r(0) is the negative gradient of f (x) at x(0).
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Afterward, the next correction vector will be a combination of the previous correc-
tion vectors and the most recent residual vector, that is,

d(i+1) = γ(i+1)r(i+1) + β(i+1)d(i) (B.47)

where γ(i+1) and β(i+1) are weighing factors.
All that remains is to choose the three factors: α(i), β(i), and γ(i). These values

are obtained such that:

1. Each ith direction vector d(i) is independent from the previous direction vectors
d(j) with j < i. Specifically, they are chosen to be conjugate (i.e., A-orthogonal)
to previous direction vectors,

(d(i))T Ad(j) = 0 for j < i (B.48)

2. The ith residual vector is orthogonal to previous residual vectors, and it is also
orthogonal to previous direction vectors, that is,

(r(i))T r(j) = 0 ; (r(i))T d(j) = 0 for j < i (B.49)

As is shown later in Lemma B.1, these criteria are achieved by using the following
values for the scaling factors:

γ(i+1) = 1 ; α(i) = (r(i))T r(i)

(d(i))T Ad(i)
; β(i+1) = (r(i+1))T Ad(i)

(d(i))T Ad(i)
(B.50)

Putting all these pieces together, we have the following algorithm:

Algorithm of Conjugate Gradient.

1. Initialize: For a given symmetric matrix A[=]N × N, vector b, and initial guess
x(0), set

d(0) = r(0) = b − Ax(0) (B.51)

2. Update: For a specified maximum number of iterations, imax ≥ N and specified
tolerance ε � 1, perform the following steps:

Although i < imax,
∣∣(d(i))T Ad(i)

∣∣ > 0 and β(i) > ε,

α(i) = (r(i))T r(i)

(d(i))T Ad(i)
(B.52)

x(i+1) = x(i) + α(i)d(i) (B.53)

r(i+1) = r(i) − α(i)Ad(i) (B.54)

β(i+1) = − (r(i+1))T Ad(i)

(d(i))T Ad(i)
(B.55)

d(i+1) = r(i+1) + β(i+1)d(i) (B.56)
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The relationships among the various residual vectors and direction vectors are
outlined in the following lemma:

LEMMA B.1. For i ≥ 1 and j < i, using the conjugate gradient algorithm (B.51) to
(B.56), we have the following identities for r(i) and d(i):

(r(i))T r(j) = 0 (B.57)

(r(i))T d(j) = 0 (B.58)

(r(i))T r(i) = (r(i))T d(i) (B.59)

(d(i))T Ad(j) = 0 (B.60)

(d(i))T Ad(i) = (r(i))T Ad(i) (B.61)

(r(i))T Ad(i−1)

(d(i−1))T Ad(i−1)
= − (r(i))T r(i)

(r(i−1))T r(i−1)
(B.62)

(r(i))T Ar(i−1) = (r(i))T Ad(i−1) (B.63)

(d(i))T Ar(j) = 0 (B.64)

(r(i+1))T Ad(j) = 0 (B.65)

(r(i+1))T Ar(j) = 0 (B.66)

PROOF. (See Section B.11.2.)

The properties given in Lemma B.1 have the following implications:

1. Equation (B.62) show that β(i+1) in (B.55) of the algorithm can be replaced by

β(i+1) = (r(i+1))T r(i+1)

(r(i))T r(i)
(B.67)

Because this equation is simpler to calculate, it is implemented in most conjugate
gradient methods instead of (B.55).

2. Equations (B.57) and (B.58) show that the residual vectors are orthogonal to
past residual vectors and past direction vectors.

3. Equation (B.60) shows that the direction vectors are A-orthogonal to past direc-
tion vectors.

4. Equations (B.64) and (B.66) shows that r(i+1) and d(i) are A-orthogonal to r(j)

with j < i.8

5. Equation (B.65), together with (B.60), (B.64), and (B.65), shows that both r(i+1)

and d(i) are orthogonal to the subspace

S =
{

Ar(0), . . . ,Ar(i−1)
}

=
{

Ad(0), . . . ,Ad(i−1)
}

8 Based on (B.64), we see that the updated direction vectors d(i+1) are chosen to be A-orthogonal, or
conjugate, to current residual vectors, r(i), which is the gradient of f (x) at x(i). This is the reason
why the method is called the conjugate gradient method.
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6. Equation (B.63) underlines the fact that although r(i+1) is A-orthogonal to r(j)

with j < i, r(i+1) is not A-orthogonal to r(i).

One of the more important implications is that if the round-off errors are not
present, the solution can be found in a maximum of N moves, that is,

THEOREM B.1. Let A[=]N × N be symmetric positive-definite. Then, as long as there
are no round-off errors, the conjugate gradient algorithm as given by (B.51) to (B.56)
will have a zero error vector after at most N iterations.

PROOF. (See Section B.11.3.)

We now give a simple example to illustrate the inner workings of the conjugate
gradient method for a 2D case.

EXAMPLE B.15. Consider the problem Ax = b where

A =
(

2 −0.5
−0.5 1.25

)
b =
( −1.25

0.875

)
Using the initial guess,

x(0) =
(

1.5
1.5

)
the conjugate gradient method evaluates the following vectors:

r(0) = d(0) =
( −3.5

−0.25

)
−→ x(1) =

( −0.3181
1.3701

)
; r(1) =

(
0.0712

−0.9967

)
; d(1) =

( −3.5
−0.25

)
−→ r(2) =

(
0
0

)
x(2) =

( −0.5
0.5

)
d(2) =

(
0
0

)
The method terminated after two iterations, and we see that x(2) solves the linear
equation.

To illustrate how the method proceeds, we can plot the three iterations of
x as shown in Figure B.8. Attached to points x(0) and x(1) are concentric ellipses
that are the equipotential contours of f (x), where

[ f (x)] = [xT Ax − xT b
]

Because A is a symmetric positive definite matrix, we could factor A to be equal
to ST S,

S =
(

1.4142 −0.3536
0 1.0607

)
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Figure B.8. A plot of the iterated solutions
using the conjugate gradient method. The
ellipses containing p(0) and p(1) are the con-
tours where f (x) =constant.

Then we could plot the same points x(0), x(1), and x(2) using a new coordinate
system,

y =
(

y1

y2

)
= Sx

which yields,

y(0) =
(

1.5910
1.5910

)
y(1) =

( −0.9342
1.4533

)
y(2) =

( −0.8839
0.5303

)
The scalar function f (x) in terms of y yields

[ f ]
[
xT Ax − xT b

] = [xT ST Sx − xT b
] = [yT y − yT (ST b

)]
We can plot the same iteration points in terms of the new coordinate system
shown in Figure B.9. This time the equipotential contours of f attached to the
iterated points are concentric circles instead of ellipses.

Because the first direction vector was chosen to be the residual vector, that
is, d(0) = r(0), where r(0) is also equal to the gradient of f (x) at x = x(0), we see
from Figure B.8 that the direction vector is perpendicular to the contour f (x) at
x = x(0). Afterward, the succeeding direction vectors are chosen A-orthogonal to
the previous direction vector. We see in Figure B.8 that d(0) is not perpendicular
to d(1). Instead, A-orthogonality between d(0) and d(1)appears as orthogonality
in Figure B.9 because(

Sd(1)
)T (

Sd(0)
)

= (d(1))T ST Sd(0) = (d(1))T Ad(0) = 0

Thus a geometric interpretation of the conjugate gradient method is that
aside from the first direction vector, the next iterations will have, under the
coordinate system Sx, direction vectors that are perpendicular to increas-
ingly smaller concentric, spherical, equipotential-contours of f . However, these
steps are achieved without having to solve for S or transformation to new
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Figure B.9. A plot of the iterated solutions using
the conjugate gradient method but under the
new coordinates y = Sx. The circles containing
p(0) and p(1) are the contours where f (y) =
constant.

coordinates y.9 Instead, the conditions of A-orthogonality of the direction vec-
tors are achieved efficiently by the conjugate gradient method by working only
in the original coordinate system of x.

B.11.2 Proof of Properties of Conjugate Gradient method (Lemma B.1)

Based on the initial value of r0 = d0, we can show that applying (B.52) to (B.56) will
satisfy (B.57) to (B.66), that is,

(r(1))T d0 = 0 (r(1))T r0 = 0 (r(1))T r(1) = (r(1))T d(1)

(d(1))T Ad0 = 0 (d(1))T Ad(1) = (r(1))T Ad(1) (r(1))T Ar0 = (r(1))T Ad0

(d(1))T Ar0 = 0 (r(2))T Ar0 = 0 (r(2))T Ad0 = 0

(r(1))T Ad0

(d0)T Ad0
= − (r(1))T r(1)

(r0)T r0
(B.68)

Assume that the lemma is true for i and j < i. Then

1. Using (B.54) and (B.61),

(r(i+1))T r(i) = (r(i))T r(i) − (r(i))T r(i)

(d(i))T Ad(i)
(d(i))T Ar(i) = (r(i))T r(i) − (r(i))T r(i) = 0

Whereas using (B.54), (B.57), and (B.64),

(r(i+1))T r(j) = (r(i))T r(j) − (r(i))T r(i)

(d(i))T Ad(i)
(d(i))T Ar(j) = 0

Taken together, this shows that

(r(i+1))T r(j+1) = 0 (B.69)

9 In fact, there are several possible values for S such that ST S = A.
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2. Using (B.54) and (B.59)

(r(i+1))T d(i) = (r(i))T d(i) − (r(i))T r(i)

(d(i))T Ad(i)
(d(i))T Ad(i) = (r(i))T d(i) − (r(i))T r(i) = 0

Whereas using (B.54), (B.58), and (B.60)

(r(i+1))T d(j) = (r(i))T d(j) − (r(i))T r(i)

(d(i))T Ad(i)
(d(i))T Ad(j) = 0

Taken together, this shows that

(r(i+1))T d(j+1) = 0 (B.70)

3. Using (B.56) and (B.70),

(r(i+1))T d(i+1) = (r(i+1))T r(i+1) − (r(i+1))T Ad(i)

(d(i))T Ad(i)
(r(i+1))T d(i)

= (r(i+1))T r(i+1) (B.71)

4. Using (B.56),

(d(i+1))T Ad(i) = (r(i+1))T Ad(i) − (r(i+1))T Ad(i)

(d(i))T Ad(i)
(d(i))T Ad(i)

= (r(i+1))T Ad(i) − (r(i+1))T Ad(i) = 0

Whereas using (B.56), (B.60), and (B.65)

(d(i+1))T Ad(j) = (r(i+1))T Ad(j) − (r(i+1))T Ad(i)

(d(i))T Ad(i)
(d(i))T Ad(j) = 0

Taken together, this shows that

(d(i+1))T Ad(j+1) = 0 (B.72)

5. Using (B.56) and (B.72)

(d(i+1))T Ad(i+1) = (r(i+1))T Ad(i+1) − (r(i+1))T Ad(i)

(d(i))T Ad(i)
(d(i))T Ad(i+1)

= (r(i+1))T Ad(i+1) (B.73)

6. Using (B.54) and (B.57),

(r(i+1))T r(i+1) = (r(i+1))T r(i) − (r(i))T r(i)

(d(i))T Ad(i)
(r(i+1))T Ad(i)

= − (r(i))T r(i)

(d(i))T Ad(i)
(r(i+1))T Ad(i)

or rearranging

(r(i+1))T r(i+1)

(r(i))T r(i)
= − (r(i+1))T Ad(i)

(d(i))T Ad(i)
(B.74)



Appendix B: Additional Details and Fortification for Chapter 2 627

7. Using (B.56) and (B.65),

(r(i+1))T Ad(i) = (r(i+1))T Ar(i) − (r(i))T Ad(i−1)

(d(i−1))T Ad(i−1)
(r(i+1))T Ad(i−1)

= (r(i+1))T Ar(i) (B.75)

8. Using (B.56), (B.61), and (B.75),

(d(i+1))T Ar(i) = (r(i+1))T Ar(i) − (r(i+1))T Ad(i)

(d(i))T Ad(i)
(d(i))T Ar(i)

= (r(i+1))T Ar(i) − (r(i+1))T Ad(i) = 0

Whereas using (B.56), (B.64), and (B.66),

(d(i+1))T Ar(j) = (r(i+1))T Ar(j) − (r(i+1))T Ad(i)

(d(i))T Ad(i)
(d(i))T Ar(j) = 0

Taken together, this shows that

(d(i+1))T Ar(j+1) = 0 (B.76)

9. Using (B.54) for rT
i+2, (B.61), (B.62), and (B.76),

(ri+2)T Ad(i) = (r(i+1))T Ad(i) − α(i+1)(d(i+1))T A2d(i)

=
(

− (r(i+1))T r(i+1)

(r(i))T r(i)
(d(i))T Ad(i)

)

+ α(i+1)

α(1)
(d(i+1))T A

(
r(i+1) − r(i)

)
=
(

− (r(i+1))T r(i+1)

(r(i))T r(i)
(d(i))T Ad(i)

)

+
(

(r(i+1))T r(i+1)

(r(i))T r(i)
(d(i))T Ad(i)

)
= 0

Whereas using (B.54) for rT
i+2, multiplying by Ad(j), and then using (B.65) and

(B.76),

(r(i+2))T Ad(j) = (r(i+1))T Ad(j) − α(i+1)(d(i+1))T A2d(j)

= −α(i+1)(d(i+1))T A
(

1
α(j)

(
r(j+1) − r(j)

))
= 0

Taken together, this shows that

(r(i+2))T Ad(j+1) = 0 (B.77)

10. Using (B.56) for d(j+1), multiplying by (r(i+2))T , and then using (B.77)

(r(i+2))T Ar(j+1) = (r(i+2))T A
(

d(j+1) − β(j+1)d(j)
)

= 0 (B.78)

Thus (B.69) through (B.78) show that if (B.57) to (B.66) apply to i with j < i, then
the same equations should also apply to i + 1. The lemma then follows by induction
from i = 1.
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B.11.3 Proof That err(N) = 0 Using CG Method (Theorem B.1)

If the initial guess x(0) was chosen fortuitously such that d(�) = 0 for � < (N − 1), then
the conjugate gradient algorithm would have terminated at less than N iterations
with r(�+1) = 0.

More generally, with an arbitrary initial guess x(0), we expect to have the set
D = (d(0), . . . ,d(N−1)

)
to be a linearly independent set of vectors that, according to

(B.60), is an A-orthogonal set, that is,

(d(i))T Ad(j) j < i

We can then represent err(0) using D as the basis set,

err(0) =
N−1∑
k=0

μkd(k) (B.79)

To identify the coefficients μk, multiply (B.79) by (d(�))T A while using the A-
orthogonal properties of d(�),

(d(�))T A err(0) = μ�(d(�))T Ad(�)

μ� = (d(�))T A err(0)

(d(�))T Ad(�)
= − d(�)r(0)

(d(�))T Ad(�)
(B.80)

From (B.53), we have

x1 = x(0) + α0d(0)

x2 = x1 + α1d1 = x(0) + α0d(0) + α1d(1)

...

x(i) = x(0) +
i−1∑

m=0

αmd(m)

which, when we subtract x∗ on both sides, will yield

err(i) = err(0) +
i−1∑

m=0

αmd(m) (B.81)

or after multiplying both sides by −A,

r(i) = r(0) −
i−1∑

m=0

αmAd(m) (B.82)

Premultiplying (B.82) ( with i = � ) by (d(�))T , we have

(d(�))T r(�) = (d(�))T r(0)

which, after applying (B.59), yields

(d(�))T r(0) = (r(�))T r(�) (B.83)

Applying (B.83) to (B.80) and recalling (B.52), we find that

μ� = − (r(�))T r(�)

(d(�))T Ad(�)
= −α�
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or going back to (B.79),

err(0) = −
N−1∑
k=0

αkd(k) (B.84)

Now take (B.81) and substitute (B.84),

err(i) =
(

−
N−1∑
k=0

αkd(k)

)
+
(

i−1∑
m=0

αmd(m)

)

Thus when i = N,

err(N) =
(

−
N−1∑
k=0

αkd(k)

)
+
(

N−1∑
m=0

αmd(m)

)
= 0

B.12 GMRES Algorithm

B.12.1 Basic Algorithm

To simplify our discussion, we restrict the method to apply only to nonsingular A.
Let x(k) be the kth update for the solution of Ax = b, with x(0) being the initial guess,
and let r(k) = b − Ax(k) be the kth residual error based on these updates. Beginning
with a normalized vector u1,

u1 = r(0)∥∥r(0)
∥∥ (B.85)

a matrix Uk[=]N × k can be constructed using an orthonormal sequence {u1,u2, . . .}
as

Uk =
(

u1 | u2 | · · · | uk

)
(B.86)

that is, U∗
kUk = I, where uk are obtained sequentially using Arnoldi’s method given

by

pk = (I − UkU∗
k) Auk ; uk+1 = pk∥∥pk

∥∥ (B.87)

One can show that Arnoldi’s method will yield the following property of Uk and
Uk+1:

U∗
k+1AUk = Ĥk (B.88)

where Ĥk[=](k + 1) × k has the form of a truncated Hessenberg matrix, that is, a
Hessenberg matrix with the last column removed,

Ĥk =

⎛⎜⎜⎜⎜⎜⎝
× × · · · ×
× × · · · ×

× · · · ×
. . .

...
0 ×

⎞⎟⎟⎟⎟⎟⎠
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Suppose the length of x is N. Using the matrices Uk generated by Arnoldi’s
method, GMRES is able to transform the problem of minimizing the residual r(k) to
an associated least-squares problem

(
U∗

k+1AUk
)

yk = Ĥkyk =lsq

⎛⎜⎜⎜⎝
∥∥r(0)
∥∥

0
...
0

⎞⎟⎟⎟⎠ (B.89)

where yk has a length k, which is presumably much smaller than N. Because of
the special Hessenberg structure of Ĥk, efficient approaches for the least-squares
solution of (B.89) is also available. Thus, with yk, the kth solution update is given by

x(k) = x(0) + Ukyk (B.90)

To show that (B.89) together with update (B.90) is equivalent to minimizing the
kth residual, we simply apply the properties of Uk obtained using Arnoldi’s method
as follows:

min
∥∥∥ r(k)

∥∥∥ = min
∥∥∥ b − A

(
x(0) + Uky

) ∥∥∥
= min

∥∥∥ r(0) − AUky
∥∥∥

= min
∥∥∥ (‖r(0)‖)u1 − Uk+1

(
U∗

k+1AUk
)

y
∥∥∥

= min
∥∥ Uk+1

(
ck − Ĥky

) ∥∥ (B.91)

where ck = (‖r(0)‖, 0, . . . , 0
)T

has a length (k + 1). Because U∗
k+1Uk+1 = I, (B.91)

reduces to (B.89).
If the norm of r(k) is within acceptable bounds, the process can be terminated.

Indeed, GMRES often reaches acceptable solutions of large systems for k much
less than the size N of matrix A. The vectors uk obtained using Arnoldi’s method
introduce updates that are similar to the directions used by conjugate gradient
method.

Further areas of improvement to the basic GMRES approach just described are
usually implemented. These include:

1. Restarting the GMRES method every m � N steps to reduce the storage
requirements.

2. Taking advantage of the structure of ĤK to solve the least-squares problem.
3. Incorporating the evaluation of

∥∥r(k)
∥∥ inside the iteration loops of the Arnoldi

method.

A practical limitation of GMRES is that the size of Uk keeps getting larger as k
increases, and Uk is generally not sparse. However, if k is small, the kth residuals may
not be sufficiently small at that point. One solution is then to “restart” the GMRES
method using the last update after m steps as the new initial guess for another batch
of m iterations of GMRES. These computation batches are performed until the
desired tolerance is achieved. As expected, small values of m would lead to a slower
convergence, whereas a large value of m would mean a larger storage requirement.

Details that address the other two other improvements, that is, special least-
squares solution of Hessenberg matrices and the enhanced Arnoldi steps, are
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included in Section B.12.2, where the GMRES algorithm is also outlined in that
section with the improvements already incorporated.

Note that for both the conjugate gradient method and GMRES method, we
have

r(k) =
k−1∑
i=0

ckAkr(0) (B.92)

where ci are constant coefficients. For the conjugate gradient method, this results
directly from (B.45).

For the GMRES method, we have from Arnoldi’s method,

uj+1 = 1
αj

⎛⎜⎝Auj − ( u1 · · · uj
)⎛⎜⎝ u∗

1Auj
...

u∗
j Auj

⎞⎟⎠
⎞⎟⎠ = bj Auj +

( j∑
i=1

aiui

)

for some coefficients ai, i = 1, . . . , j and bj . When applied to j = 2, 3, . . . ,k, together
with u1 = r(0)/

∥∥r(0)
∥∥, we can recursively reduce the last relationship to

uk =
k−1∑
i=1

qiAi−1r(0)

which when applied to the kth update, x(k) = x(0) + Uky,

A
(

x(k) − x(0)
)

= r(0) − r(k) =
k−1∑
i=1

yiqiAir(0) → r(k) =
k−1∑
i=0

ciAir(0)

When seen in this space, the critical difference between the conjugate gradient
and GMRES methods lies in how each method determines the coefficients ci for the
linear combination of Air(0). Otherwise, they both contain updates that resides in a
subspace known as the Krylov subspace.

Definition B.4. A kth-order Krylov subspace based on square matrix A[=]N × N
and vector v[=]N × 1 is the subspace spanned by vectors Aiv, with i = 1, . . . ,N,
k ≤ N, that is,

Kk(A, v) = Span
(

v,Av, · · · ,Ak−1v
)

There are several other methods that fall under the class known as Krylov
subspace methods including Lanczos, QMR, and BiCG methods. By restricting
the updates to fall within the Krylov subspace, the immediate advantage is that the
components of Krylov subspace involve repeated matrix-vector products of the form
Av. When A is dense, Krylov methods may just be comparable to other methods,
direct or iterative. However, when A is large and sparse, the computations of Av can
be significantly reduced by focusing only on the nonzero components of A.

More importantly, for nonsingular A, it can be shown that the solution of Ax = b
lies in the Krylov subspace, Kk (A,b) for some k ≤ N. Thus as we had noted earlier,
both the conjugate gradient method and the GMRES method are guaranteed to
reach the exact solution in at most N iterations, assuming no round-off errors. In some
cases, the specified tolerance of the error vectors may even be reached at k iterations
that are much fewer than the maximal N iterations. However, the operative word
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here is still “nonsingular.” Thus it is possible that the convergence will still be slow
if A is nearly singular or ill-conditioned. Several methods are available that choose
matrix multipliers C, called preconditioners, such that the new matrix Â = CA has
an improved condition number, but this has to be done without losing much of the
advantages of sparse matrices.

B.12.2 Enhancements

We address the two improvements of the basic GMRES. One improvement centers
on taking advantage of the truncated Hesseberg structure of Ĥk during the least-
squares solution. The other improvement is to enhance the Arnoldi method for
calculating uk by incorporating the values of the residuals r(k).

We begin with an explicit algorithm for Arnoldi’s method:

Arnoldi Method:

Given: A[=]n × n, 1 < k ≤ n, and p1[=]n × 1.
Initialize:

u1 = p1∥∥p1
∥∥ and U1 = ( u1

)
Iterate: Loop for i = 1, . . . ,k,

wi = Aui ; hi = U∗
i wi

pi = wi − Uihi ; αi = ∥∥pi
∥∥

If αi > 0 or i < n

ui+1 = pi

αi
and Ui+1 =

(
Ui ui+1

)
Else

Exit and report the value of i as the maximum number of orthogonal
vectors found.

End If
End Loop

At the termination of the Arnoldi algorithm, we can generate matrices Ĥi =
U∗

i+1AUi or Hi = U∗
i AUi depending on whether αi > 0 or not. Alternatively, we

could set the nonzero elements of Hk and Ĥk directly at each iteration of the method
by using hj and αj as follows:

Hk(i, j) =

⎧⎪⎨⎪⎩
hj (i) for k ≥ j ≥ i,

αj for k ≥ j = i − 1

0 otherwise

and Ĥk =
(

Hk

01×(k−1) αk

)
(B.93)

Using the QR decomposition of Hk = QkRk, where Qk is unitary and Rk is upper
triangular, we can form an orthogonal matrix

Q̂k+1 =
(

Qk 0k×1

01×k 1

)



Appendix B: Additional Details and Fortification for Chapter 2 633

such that

Q̂∗
k+1Ĥk =

(
Rk

01×k αk

)
If αk is nonzero, we can use another orthogonal matrix Gk+1[=](k + 1) × (k + 1)
given by

Gk+1 =
⎛⎝ I[k−1] 0((k−1)×2)

0(2×(k−1))

(
c s

−s c

) ⎞⎠
where c = Rk(k,k)/ρk, s = αk/ρk and ρk =

√
Rk(k,k)2 + α2

k. Then

Gk+1Q̂∗
k+1Ĥk =

(
R̂k

01×(k+1)

)
where R̂k[=]k × k is an upper triangular matrix that is equal to Rk except for the
lower corner element, R̂k(k,k) = ρk.

Let �k+1 = Gk+1Q̂∗
k+1 be the combined orthognal matrix. Premultiplying both

sides of (B.89) by �k+1, the least-squares problem reduces to

R̂ky =
∥∥∥r(0)
∥∥∥
⎛⎜⎝ �k+1(1, 1)

...
�k+1(k, 1)

⎞⎟⎠ (B.94)

Because R̂k is upper triangular, the value of y can be found using the back-substitution
process.

Recursion formulas for �� and Rk are given by

��+1 = G�+1

(
�� 0(�)×1

01×(�) 1

)
(B.95)

R� = (
R̂�−1 ��h�

)
(B.96)

Using �1 = [1] and R0 as a null matrix, the recursions (B.95) and (B.96) can be
incorporated inside the Arnoldi iterations without having to explicitly solve for Qk.

Furthermore, when the equality in (B.94) is satisfied, the norm of the kth residual
is given by ∥∥∥r(k)

∥∥∥ = ∥∥�k+1
(
ck − Ĥky

)∥∥

=

∥∥∥∥∥∥∥
∥∥∥r(0)
∥∥∥
⎛⎜⎝ �k+1(1, 1)

...
�k+1(k + 1, 1)

⎞⎟⎠−
(

R̂ky
0

)∥∥∥∥∥∥∥
=

∥∥∥r(0)
∥∥∥ ∣∣∣∣ �k+1(k + 1, 1)

∣∣∣∣ (B.97)

This means that the norm of the kth residual can be incorporated inside the iterations
of Arnoldi’s method, without having to explicitly solve for x(k).

When �k+1(k + 1, 1) = 0, (B.97) implies that x(k) = x(0) + Uky is an exact solu-
tion. Note that the Arnoldi method will stall at the ith iteration if αi = 0 because
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ui+1 requires a division by αi. However, this does not prevent the formation of Ĥi as
given in (B.93). This implies that (Q̂∗

k+1Ĥk) is already in the form required by R̂k and
that�k+1 = Q̂∗

k+1, or�k+1(k + 1, 1) = 0. Thus when the Arnoldi process in GMRES
stalls at a value i, the update xi at that point is already an exact solution to Ax = b.
This is also the situation when i = n, assuming no roundoff errors.

In summary, we have the GMRES algorithm given below:

GMRES Algorithm:

Given: A[=]n × n, b[=]n × 1, initial guess x(0)[=]n × 1 and tolerance tol.
Initialize:

r(0) = b − A ∗ x(0) ; β =
∥∥∥r(0)
∥∥∥ ; u = r(0)/β

U = ( u
)

; Q = ( 1
)

; R = [ ]

γ = β ; i = 0 ; α = β

Iterate: i ← i + 1

While γ > tol and α > tol

w = Au; h = U∗w; p = w − Uh; r = Qh; α = ∥∥p∥∥
if α > tol

U ←
(

U p
‖p‖

)
ρ =
√

r(i)2 + α2 ; c = r(i)
ρ

; s = α

ρ

ri ← ρ; R ←
(

R
0

r
)

Q ←
⎛⎝ I[i−1] 0

0
(

c s
−s c

) ⎞⎠( Q 0
0 1

)

γ ← Qi+1,1

end if
End While Loop

Solve for y using back-substitution:

Ry = β

⎛⎜⎝ Q1,1
...

Qi,1

⎞⎟⎠
Evaluate the final solution:

x = x(0) + Uy
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xk

local quadratic
model

model trust
region

Figure B.10. The trust region and the local quadratic model based on x(k). The right figure
shows the contour plot and the double-dogleg step.

B.13 Enhanced-Newton Using Double-Dogleg Method

Like the line search approach, the double-dogleg method is used only when a full
Newton update is not acceptable. The method will use a combination of two types
of updates:

1. Gradient Descent Update

δG
k = −J T

k F
(

x(k)
)

(B.98)

2. Newton Update

δN
k = −J −1

k F
(

x(k)
)

(B.99)

Because the Newton update was based on a local model derived from a truncated
Taylor’s series, we could limit the update step to be inside a sphere centered around
x(k) known as the model-trust region approach, that is, with Mk > 0

‖�kx‖ ≤ Mk (B.100)

Assuming the Newton step is the optimum local step, the local problem is that of
minimizing a scalar function ϕk given by

ϕk (�x) = 1
2

(Fk + Jk�x)T (Fk + Jk�x)

= 1
2

FT
k Fk +

(
FT

k Jk

)
�x + 1

2
�xT

(
J T

k Jk

)
�x (B.101)

Note that the minimum of ϕ (�x) occurs at �x = −J −1
k Fk, the Newton step.

The local model is shown in Figure B.10 as a concave surface attached to the
point x(k), whereas the trust region is the circle centered around x(k).

The double-dogleg procedure starts with the direction along the gradient, that
is, a path determined by �x = σδG

k . This will trace a parabola along the surface of
the quadratic model as σ increases from 0:

PG (σ) = ϕ
(
σδG

k

) = 1
2

FT
k Fk − σ

(
FT

k JkJ T
k Fk

)
+ σ2

2

(
FT

k

(
JkJ T

k

)2
Fk

)
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x [k]

x [k]
CP

x [k]
Newtonx [k]

N
x [k+1]

Figure B.11. The double-dogleg method for obtaining the
update xk+1.

The minimum of this parabola occurs at

σ∗ = FT
k JkJ T

k Fk

FT
k

(
JkJ T

k

)2 Fk

This yields the point known as the Cauchy point,

x(k)
CP = x(k) + σ∗δG

k (B.102)

Note that if x(k)
CP is outside the trust region, x(k)

CP will need to be set as the intersection
of the line along the gradient descent with the boundary of the trust region. In
Figure B.10, the contour plot is shown with an arrow originating from x(k) but
terminates at the Cauchy point.

The full Newton step will take x(k) to the point denoted by x(k)
Newton, which is the

minimum point located at the center of the elliptical contours. The Cauchy point,
full-Newton update point, and other relevant points, together with the important
line segments, are blown up and shown in Figure B.11.

One approach is to draw a line segment from x(k)
Newton to the Cauchy point x(k)

CP.
Then the next update can be set as the intersection of this line segment with the
boundary of the trust region. This approach is known as the Powell update, or the
single-dogleg step. However, it has been found that convergence can be further
improved by taking another point along the Newton step direction, which we denote
by x(k)

N . The Dennis-Mei approach suggests that x(k)
N is evaluated as follows:

x(k)
N = x(k) + ηδN

k = x(k) − ηJ −1
k F
(

x(k)
)

(B.103)

where

η = 0.2 + 0.8 σ∗
[

FT
k

(
JkJ T

k

)
Fk

FT
k Fk

]

The double-dogleg update can then be obtained by finding the intersection
between the boundary of the trust region and the line segment from x(k)

N to x(k)
CP as

shown in Figure B.11, that is,

x(k+1) = x(k) + (1 − ρ) x(k)
CP + ρx(k)

N (B.104)



Appendix B: Additional Details and Fortification for Chapter 2 637

where

ρ = −b + √
b2 − ac

a

a =
∥∥∥x(k)

N − x(k)
CP

∥∥∥2

b =
(

x(k)
N − x(k)

CP

)T
x(k)

CP

c =
∥∥∥x(k)

CP

∥∥∥2
− M2

k

and Mk is the radius of the trust region. In case the update does not produce satis-
factory results, then the radius will need to be reduced using an approach similar to
the line search method.

To summarize, we have the following enhanced Newton with double-dogleg
procedure:

Algorithm of the Enhanced Newton’s Method with Double-Dogleg Search.

1. Initialize. Choose an initial guess: x(0)

2. Update. Repeat the following steps until either
∥∥F (x(k)

)∥∥ ≤ ε or the number of
iterations have been exceeded
(a) Calculate Jk.

(If Jk is singular, then stop the method and declare “Singular Jacobian.”)
(b) Calculate the δG

k and δN
k . (cf. (B.98) and (B.99), respectively).

(c) Evaluate points x(k)
CP and x(k)

N : (cf. (B.102) and (B.103))
(d) Evaluate the step change �kx:

�kx = (1 − ρ) x(k)
CP + ρx(k)

N

where ρ is obtained by (B.104).
(e) Check if �kx is acceptable. If∥∥∥F (x(k) +�kx

)∥∥∥2
>
∥∥∥F (x(k)

)∥∥∥2
+ 2αFT

k Jk�kx

with α ∈ (0, 0.5) (typically α = 10−4), then update is unacceptable. Modify
the trust region:

Mk ← max
(

0.1Mk, min ( 0.5Mk, λ ‖�kx‖ )
)

where

λ = − FT
k Jk�kx( ∥∥F (x(k) +�kx

)∥∥2 − ∥∥F (x(k)
)∥∥2 − 2FT

k Jk�kx
)

and repeat from step 2c above.
Otherwise, if acceptable, continue to next step.

(f) Update x(k): x(k+1) = x(k) +�kx
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Figure B.12. A surface plot of f (x1, x2) of (B.105) is shown in the left figure. The right figure
shows the contour plot and the performance of the enhanced Newton with double-dogleg
method with the initial guess at (x1, x2) = (4,−6).

Remarks: A MATLAB code nsolve.m is available on the book’s webpage that
implements the enhanced Newton method, where the line-search method is imple-
mented when the parameter “type” is set to 2. Also, another MATLAB code that
uses the enhanced Newton method for minimization of a scalar function is avail-
able on the book’s webpage as NewtonMin.m, where the line-search method is
implemented when the parameter type is set to 2.

EXAMPLE B.16. Consider the multivariable function

f (x1, x2) = ζ2
1 + ζ2

2 + 2 (B.105)

where

ζ1 (x1, x2) = 5 tanh
(

−x1

3
+ x2

3
− 1

2

)
ζ2 (x1, x2) = 1 − x2

2

A surface plot of f (x1, x2) is shown in Figure B.12. When the enhanced Newton
with double-dogleg method was used to find the minimum of f (x1, x2), we see in
Figure B.12 that starting with (x1, x2)0 = (4,−6), it took only three iterations to
settle at the minimum point of (x1, x2)∗ = (0.5, 2) which yields the value f = 2.
Conversely, applying the line-search method, in this case with the same initial
point, will converge to a different point (x1, x2) = (−432, 2) with f = 27.

A particular property of the function f (x1, x2) in (B.105) is that the min-
imum is located in a narrow trough. When the line-search approach was
used, starting at (x1, x2)0 = (4,−6), the first Newton step pointed away from
(x1, x2)∗ = (0.5, 2). However, the double-dogleg method constrained the search
to a local model-trust region while mixing the gradient search direction with the
Newton direction. This allowed the double-dogleg method a better chance of
locating the minima that is close to the initial guess.
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B.14 Nonlinear Least Squares via Levenberg-Marquardt

There are several cases in which the linear least-squares methods given in Section 2.5
are not applicable. In those cases, Newton’s methods can be used to find the least-
squares solution when the unknown parameters are in nonlinear form. We can
formulate the nonlinear least squares as follows:

min
x

1
2

∥∥r (x)
∥∥2 (B.106)

where r is the vector of residuals

r (x) =

⎛⎜⎝ r1 (x1, . . . , xn)
...

rm (x1, . . . , xn)

⎞⎟⎠
with m ≥ n. For instance, suppose we wish to estimate parameters x = (x1, . . . , xn)T

of a nonlinear equation

f (x,w) = 0

where w are measured variables, for example, from experiments. Assuming we have
m sets of data given by w1, . . . ,wm, the residual functions are

ri (x) = f (x,wi) i = 1, . . . ,m

One could apply Newton’s method directly to (B.106). However, doing so would
involve the calculation of d2r/dx2,

d2

dx2
r =
(

dr
dx

)T ( dr
dx

)
+

m∑
i=1

ri
d2ri

dx2

which is cumbersome when m is large.
Another approach is to first linearize r around x0, that is,

r(x) = r(x0) +
(

d
dx

r
)∣∣∣∣

x=x0

(x − x0) = r(x0) + J(x0) (x − x0)

where J is the Jacobian matrix given by

J(x0) =

⎛⎜⎜⎜⎜⎜⎜⎝

∂r1

∂x1
· · · ∂r1

∂xn

...
. . .

...

∂rm

∂x1
· · · ∂rm

∂xn

⎞⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
x=x0

This transforms the nonlinear least-squares problem (B.106) back to a linear least-
squares problem (cf. Section 2.5), that is,

min
x−x0

1
2

∥∥r(x0) + J(x0) (x − x0)
∥∥2 (B.107)

whose solution is given by the normal equation,

x − x0 = −
(

J T
(x0)J(x0)

)−1
J T

(x0)r(x0)
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We obtain an iterative procedure by letting x(k) = x0 be the current estimate and
letting x(k+1) = x be the next update. This approach is known as the Gauss-Newton
method for nonlinear least-squares problem:

x(k+1) = x(k) − (J T
k Jk
)−1

J T
k rk (B.108)

where

Jk = J
(

x(k)
)

; rk = r
(

x(k)
)

As it was with Newton methods, the convergence of the Gauss-Newton method
may need to be enhanced either by the line-search method or by a model-trust
region method. However, instead of the line search or the double-dogleg approach,
we discuss another model-trust region method known as the Levenberg-Marquardt
method.

Recall, from Section B.13, that the model trust region is a sphere centered
around the current value x(k). The minimization problem can then be modified to be
the constrained form of (B.107):

min
�kx

1
2

∥∥∥rk + Jk�
kx
∥∥∥2

subject to
∥∥∥�kx

∥∥∥ ≤ Mk (B.109)

where �kx = x(k+1) − x(k) is the update step and Mk is the radius of the trust region.
From Figure B.10, we see that there is a unique point in the boundary of the

trust region where the value of function in the convex surface is minimized. This
observation can be formalized by the following lemma:

LEMMA B.2. Levenberg-Marquardt Update Form
The solution to the minimization problem (B.109) is given by

�kx∗ = − (J T
k Jk + μI

)−1
J T

k rk (B.110)

for some unique value μ ≥ 0.

PROOF. (See Section B.10.2.)

Lemma B.2 redirects the minimization problem of (B.109) to the identification
of μ such that

q (μ) = ∥∥sμ∥∥− Mk = 0 (B.111)

where

sμ = − (J T
k Jk + μI

)−1
J T

k rk

Note that we set μ = 0 if ‖s0‖ < Mk. Also, the derivative of q (μ) is given by

q′ (μ) = dq
dμ

= − sT
μ

(
J T

k Jk + μI
)−1

sμ∥∥sμ∥∥ (B.112)

Although the Newton method can be used to solve (B.111), the Moré method
has been shown to have improved convergence. Details of the Moré algorithm are
included in Section B.14.1.
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To summarize, we have the Levenberg-Marquardt method:

Algorithm of Levenberg-Marquardt Method for Nonlinear Least Squares.

1. Initialize. Choose an initial guess: x(0)

2. Update. Repeat the following steps until either
∥∥r (x(k)

)∥∥ ≤ ε or the number of
iterations have been exceeded
(a) Calculate Jk.
(b) Calculate μ and sμ using the Moré algorithm.
(c) Set �kx = sμ and check if �kx is acceptable. If∥∥∥r (x(k) +�kx

)∥∥∥2
>
∥∥∥r (x(k)

)∥∥∥2
+ 2αrT

k Jk�kx

with α ∈ (0, 0.5) (typically α = 10−4), then update is unacceptable. Modify
the trust region:

Mk ← max
(

0.1Mk, min ( 0.5Mk, λ ‖�kx‖ )
)

where

λ = − rT
k Jk�kx( ∥∥r (x(k) +�kx

)∥∥2 − ∥∥r (x(k)
)∥∥2 − 2rT

k Jk�kx
)

and repeat from step 2b above.

Otherwise, if acceptable, continue to next step.

(d) Update x(k): x(k+1) = x(k) +�kx

Remarks: A MATLAB code for the Levenberg-Marquardt method (using the Morè
algorithm) for solving nonlinear least squares is available on the book’s webpage as
levenmarq.m.

EXAMPLE B.17. Suppose we want to estimate the parameters a, b, c, d, and e of
the function:

y = d exp
(
ax2 + bx + c

)+ e

to fit the data given in Table B.5. Applying the Levenberg-Marquardt method
with the initial guess: (a,b, c,d, e) = (0, 0, 0, 0, 0), we obtain the estimates:
(a,b, c,d, e) = (−0.0519, 0.9355,−1.1346, 0.0399, 2.0055). A plot of the model,
together with data points, is shown in Figure B.13. We also show, in the right
plot of same figure, the number of iterations used and the final value of the
residual norm.

B.14.1 Appendix: Moré Method

Algorithm of Moré Method to obtain μ:

1. Generate initial guess.

μ(0) =
⎧⎨⎩ 0 if k = 0(

μ|x=x(k−1)

) Mk−1

Mk
otherwise
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Table B.5. Data for example B.17

x y x y x y

0.1152 2.0224 6.5207 2.6118 12.6037 2.4487
0.7604 2.0303 7.0276 2.7355 13.1106 2.3750
1.2673 2.0408 7.5346 2.7855 13.7097 2.2855
2.7419 2.1197 8.3180 2.8539 14.3548 2.2013
3.4332 2.1803 9.4700 2.8645 15.0461 2.1355
4.3088 2.2776 10.3917 2.7934 16.2442 2.0671
4.8618 2.3645 11.2212 2.6645 17.5806 2.0250
5.3687 2.4382 12.0507 2.5487 19.7465 2.0039
6.4747 2.6303

2. Update.

μ(j) = μ(j−1) −
∥∥sμ(j−1)

∥∥
Mk

(
q
q′

∣∣∣∣
μ=μ(j−1)

)

3. Clip μ between minimum and maximum values

μ(j) ←

⎧⎪⎨⎪⎩
μ(j) if Loj ≤ μ(j) ≤ Hij

max
(√

Loj · Hij , 10−3Hij

)
otherwise

where

Loj ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− q(0)

q′(0)
if j = 0

max

((
μ− q

q′

)∣∣∣∣
μ=μ(j−1)

, Loj−1

)
otherwise
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Figure B.13. The model together with the data given in Table B.5. On the right plot, we have
the number of iterations performed and the corresponding norm of the residuals.
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Hij ←

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∥∥J T
k rk
∥∥

Mk
if j = 0

min
(

Hij−1, μ
(j−1)
)

if q
(
μ(j−1)

)
< 0

Hij−1 otherwise

4. Repeat until: ∥∥sμ(j)

∥∥ ∈
[

0.9Mk , 1.1Mk

]



APPENDIX C

Additional Details and Fortification
for Chapter 3

C.1 Proofs of Lemmas and Theorems of Chapter 3

C.1.1 Proof of Eigenvalue Properties

� Property 1: Eigenvalues of triangular matrices are the diagonal elements.
Let A be triangular then

det (A − λI) =
N∏

i=1

(aii − λ) = 0

Thus the roots are: a11, . . . , aNN.
For diagonal matrices,

Aei = aiiei = λiei

Thus the eigenvectors of diagonal matrices are the columns of the identity matrix.
� Property 2: Eigenvalues of block triangular matrices are the eigenvalues of the

block diagonals.
Let Aii be ith block diagonal of a block triangular matrix A, then

det (A − λI) =
N∏

i=1

(Aii − λI) = 0

or

det (Aii − λI) = 0

� Property 3: Eigenvalues of αA is αλ.

(αA) v = (αλ) v

� Property 4: Eigenvalues of A and AT are the same.
Because det (B) = det

(
BT
)
,

det (A − λI) = det (A − λI)T = det
(
AT − λI

) = 0

Thus the characteristic equation for A and AT is the same, yielding the same
eigenvalues.

644
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� Property 5: Eigenvalues of Ak are λk.
For k = 0, A0 = I and the eigenvalues are all 1’s.
For k > 0,

Akv = Ak−1 (Av) = λAk−1v = · · · = λkv

For k = −1, assuming A is nonsingular,

v = A−1Av = λA−1v → A−1v = 1
λ

v

(Note: Property 7 implies that eigenvalues are nonzero for nonsingular matrices.)
Then for k < −1,

Akv = Ak+1 (A−1v
) = · · · = λkv

� Property 6: Eigenvalues are preserved by similarity transformations.
Using the eigvenvalue equation for T −1AT ,

det
(
T −1AT − λI

) = det
(
T −1)det (A − λI) det (T )

= det (A − λI)

Because the characteristic polynomials for both A and T −1AT are the same, the
eigenvalues will also be the same.

If v is an eigenvector of A corresponding to λ and B = T −1AT then

Av = λv → TBT −1v = λv
B
(
T −1v

) = λ
(
T −1v

)
that is, T −1v is a eigenvector of B.

� Property 7:
∏
λi = |A|.

Using the Schur triangularization,

U∗AU =

⎛⎜⎜⎜⎝
λ1 × · · · ×
0 λ2 · · · ×
...

...
. . .

...
0 0 · · · λN

⎞⎟⎟⎟⎠
where U is unitary and ‘×’ represent possible nonzero entries. After taking the
determinant of both sides, ∣∣U∗∣∣ |A| |U| = |A| =

N∏
i=1

λi

� Property 8:
∑

λi = tr (A).
Using Schur triangularization,

U∗AU =

⎛⎜⎜⎜⎝
λ1 × · · · ×
0 λ2 · · · ×
...

...
. . .

...
0 0 · · · λN

⎞⎟⎟⎟⎠
After taking the trace of both sides.

tr (U∗AU) = tr (AUU∗) = tr(A) =
N∑

i=1

λi
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� Property 9: Eigenvalues of Hermitian matrices are real, and eigenvalues of skew-
Hermitian matrices are pure imaginary.

Let H be Hermitian, then

(v∗Hv)∗ = v∗H∗v = v∗Hv

which means v∗Hv is real. Now let λ be an eigenvalue of H. Then

Hv = λv

v∗Hv = λv∗v

Because v∗v and v∗Hv are real, λ has to be real.
Similarly, let Ĥ be skew-Hermitian, then(̂

v∗Ĥv̂
)∗ = v̂∗Ĥ∗̂v = − (̂v∗Ĥ∗̂v

)
which means v̂∗Ĥv̂ is pure imaginary. Let λ̂ be an eigenvalue of Ĥ, then

Ĥv̂ = λ̂̂v

v̂∗Ĥv̂ = λ̂̂v∗̂v

Because v̂∗̂v is real and v̂∗Ĥv̂ is pure imaginary, λ̂ has to be pure imaginary.
� Property 10: Eigenvalues of positive definite Hermitian matrices are positive.

Because H is positive definite, v∗Hv > 0, where v is an eigenvector of H.
However, v∗Hv = λ |v|2. Because v > 0, we must have λ > 0.

� Property 11: Eigenvectors of Hermitian matrices are orthogonal.
If H is Hermitian, H∗H = H2 = HH∗. Thus, according to Definition 3.5, H

is a normal matrix. Then the orthogonality of the eigenvectors of H follows as a
corollary to Theorem 3.1.

� Property 12: Distinct eigenvalues yield linearly independent eigenvectors.
Let λ1, . . . , λM be a set of distinct eigenvalues of A[=]N × N, with M ≤ N,

and let v1, . . . , vM be the corresponding eigenvectors. Then

Akvi = λiAk−1vi = · · · = λk
i vi

We want to find a linear combination of the eigenvector that would equal the
zero vector,

α1v1 + · · · + αnvn = 0

After premultiplication by A, A2, . . . ,AM−1,

α1λ1v1 + · · · + αMλMvM = 0

...

α1λ
M−1
1 v1 + · · · + αMλ

M−1
M vM = 0

Combining these equations,

(
α1v1 · · · αMvM

)
⎛⎜⎜⎜⎝

1 λ1 · · · λM−1
1

1 λ2 · · · λM−1
2

...
...

. . .
...

1 λM · · · λM−1
M

⎞⎟⎟⎟⎠ = 0[N×M]
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The Vandermonde matrix is nonsingular if λ1 �= · · · �= λM (cf. Exercise E1.14).
Thus

α1v1 = · · · = αnvM = 0

Because none of the eigenvectors are zero vectors, we must have

α1 = · · · = αM = 0

Thus {v1, . . . , vM} is a linearly independent set of eigenvectors.

C.1.2 Proof for Properties of Normal Matrices (Theorem 3.1)

Applying Schur triangularization to A,

U∗AU = B =

⎛⎜⎜⎜⎜⎝
λ1 b12 · · · b1,N

. . .
. . .

...
. . . bN−1,N

0 λN

⎞⎟⎟⎟⎟⎠
If A is normal, then B = U∗AU will also be normal, that is,

B∗B = (U∗AU)∗ (U∗AU) = U∗A∗AU = U∗AA∗U = (U∗AU) (U∗AU)∗ = BB∗

Because B is normal, we can equate the first diagonal element of B∗B to the first
diagonal element of BB∗ as follows:

|λ1|2 = |λ1|2 +
N∑

k=2

|b1k|2

This is possible only if b1k = 0, for k = 2, . . . ,N. Having established this, we can now
equate the second diagonal element of B∗B to the second diagonal element of BB∗

as follows:

|λ2|2 = |λ2|2 +
N∑

k=3

|b2k|2

and conclude that b2k = 0, for k = 3, . . . ,N. We can continue this logic until the
(N − 1)th diagonal of B∗B. At the end of this process, we will have shown that B is
diagonal.

We have just established that as long as A is normal, then U∗AU = �, where �
contains all the eigenvalues of A, including the case of repeated roots. Next, we can
show that the columns of U are the eigenvectors of A,

U∗AU = �

AU = U�(
AU•,1 · · · AU•,N

) = (
λ1U•,1 · · · λNU•,N

)
or

AU•,i = λiU•,i
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Now assume that a given matrix, say C[=]N × N, has orthonormal eigenvectors
{v1, · · · , vN} corresponding to eigenvalues

{̂
λ1, . . . , λ̂N

}
, that is, V ∗CV = �̂, where

�̂ = diag
(̂
λ1, . . . , λ̂N

)
.

�̂∗�̂ = (V ∗CV )∗ (V ∗CV ) = V ∗C∗CV

�̂�̂∗ = (V ∗CV ) (V ∗CV )∗ = V ∗CC∗V

Because �̂∗�̂ = �̂�̂∗, we have

C∗C = CC∗

This means that when all the eigenvectors are orthogonal, the matrix is guaranteed
to be a normal matrix.

C.1.3 Proof That Under Rank Conditions, Matrix Is Diagonalizable
(Theorem 3.2)

Suppose λ1 is repeated k1 times. From the rank assumption,

rank(λ1I − A) = N − k1

means that solving

(λ1I − A) v = 0

for the eigenvectors contain k1 arbitrary constants. Thus there are k1 linearly inde-
pendent eigenvectors that can be obtained for λ1. Likewise, there are k2 linearly
independent eigenvectors that can be obtained for λ2, and so forth. Let the first set
of k1 eigenvectors v1, . . . , vk1 correspond to λ1 while the subsequent set of k2 eigen-
vectors vk1+1, . . . , vk1+k2 correspond to eigenvalue λ2, and so forth. Each eigenvector
from the first set is linearly independent from the other set of eigenvectors. And
the same can be said of the eigenvectors of the other sets. In the end, all the N
eigenvectors obtained will form a linearly independent set.

C.1.4 Proof of Cayley Hamilton Theorem (Theorem 3.3)

Using the Jordan canonical decomposition, A = TJT −1, where T is the modal
matrix, and J is a matrix in Jordan canonical form with M Jordan blocks,

a0I + a1A + · · · + anAN = T (a0I + a1J + · · · + anJ N)T −1

= T

⎛⎜⎜⎜⎝
charpoly(J1) 0 · · · 0

0 charpoly(J2) · · · 0
...

...
. . .

...
0 0 · · · charpoly(JM)

⎞⎟⎟⎟⎠T −1
(C.1)

The elements of charpoly(Ji) are either 0, charpoly(λi), or derivatives of charpoly(λi),
multiplied by finite scalars. Thus charpoly(Ji) are zero matrices, and the right-hand
side of Equation (C.1) is a zero matrix.
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C.2 QR Method for Eigenvalue Calculations

For large systems, the determination of eigenvalues and eigenvectors can become
susceptible to numerical errors, especially because the roots of polynomials are
very sensitive to small perturbations in the polynomial coefficients. A more reliable
method is available that uses the QR decomposition method. First, we have present
the QR algorithm. Then we describe the power method, which is the basis for the
QR method for finding eigenvalues. Finally, we apply the QR method.

C.2.1 QR Algorithm

QR Decomposition Algorithm (using Householder operators):

Given A[=]N × M.

1. Initialize. K = A, Q̂ = IN

2. Iterate.
For j = 1, . . . ,min(N,M) − 1
(a) Extract first column of K: u = K•,1
(b) Construct a Householder matrix:

u1 ← u1 − ‖u‖

H = I − 2
u∗u

uu∗

(c) Update K: K ← HK

(d) Update last (N − j) rows of Q̂: Q̂[j,...,N],• ← HQ̂[j,...,N],•
(e) Remove the first row and first column of K: K ← K1,1↓

3. Trim the last (N − M) rows of Q̂ if N > M: Q̂ ← Q̂[M+1,...,N],•↓
4. Obtain Q and R:

Q = Q̂∗

R = Q̂A

C.2.2 Power Method

Let square matrix A have a dominant eigenvalue, that is, |λ1| >
∣∣λj
∣∣ , j > 1. An

iterative approach known as the power method can be used to find λ1 and its
corresponding eigenvector v1.

Power Method Algorithm:

Given matrix A[=]N × N and tolerance ε > 0.

1. Initialize. Set w = 0 and select a random vector for v
2. Iterate. While ‖v − w‖ > ε

w ← v

v ← Aw

v ← v
‖v‖
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Figure C.1. Convergence of the eigenvector estimation using the power method.

3. Obtain eigenvalue: λ = 1
v∗v

v∗Av

A short proof for the validity of the power method is left as an exercise
(cf. E3.24). The power method is simple but is limited to finding only the dominant
eigenvalue and its eigenvector. Also, if the eigenvalue with the largest magnitude is
close in magnitude to the second largest, then convergence is very slow. This means
that convergence may even suffer for those with complex eigenvalues that happen
to have the largest magnitude. In those cases, there are block versions of the power
method.

EXAMPLE C.1. Let A be given by

A =
⎛⎝ 3 2 1

1 2 3
2 1 3

⎞⎠
the power method found the largest eigenvalue λ = 6 and its correspond-
ing eigenvector v = (0.5774, 0.5774, 0.5774)T in a few iterations. The norm∥∥v(k+1) − v(k)

∥∥ is shown in Figure C.1.

C.2.3 QR Method for Finding Eigenvalues

As discussed in Section 2.6, matrix A can be factored into a product, A = QR where
Q is unitary and R is upper triangular. If we let A[〈1〉] be a similarity transformation
of A based on Q,

A[〈1〉] = Q∗AQ = RQ (C.2)

then A[〈1〉] simply has reversed the order of Q and R. Because the eigenvalues are
preserved under similarity transformations (cf. Section 3.3), A and A[〈1〉] will have
the same set of eigenvalues. One could repeat this process k times and obtain

A[〈k〉] = Q[〈k〉]R[〈k〉]

A[〈k+1〉] = R[〈k〉]Q[〈k〉]
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where the eigenvalues of A[〈k〉] will be the same as those of A. Because R[〈k〉] is upper
triangular, one can show1 that A[〈k〉] will converge to a matrix that can be partitioned
as follows:

lim
k→∞

A[〈k〉] =
(

B C
0 F

)
(C.3)

where F is either a 1 × 1 or a 2 × 2 submatrix. Because the last matrix is block
triangular, the eigenvalues of A will be the union of the eigenvalues of B and the
eigenvalues of F . If F [=]1 × 1, then F is a real eigenvalue of A; otherwise, two
eigenvalues of A can be found using (3.21).

The same process can now be applied on B. The process continues with QR
iterations applied to increasingly smaller matrices until all the eigenvalues of A are
found.

EXAMPLE C.2. Consider the matrix

A =
⎛⎝ −1 1 0

−1 0 1
1 1 0

⎞⎠
After approximately 33 iterations using the QR method described, we obtain

A[〈33〉] =
⎛⎝ −1.3333 1.1785 −0.4083

0.9428 −0.6667 0.5774
0.0000 0.0000 1.0000

⎞⎠
which means one eigenvalue can be found as λ1 = 1. For the remaining two
eigenvalues, we can extract the upper left 2 × 2 submatrix and use (3.21) to
obtain λ2 = 1 + i and λ3 = 1 − i.

Although the QR method will converge to the required eigenvalues, the conver-
gence can also be slow sometimes, as shown in preceding example. Two enhance-
ments significantly help in accelerating the convergence. The first enhancement is
called the shifted QR method. The second enhancement is the Hessenberg formula-
tion. Both of these enhancements combine to form the modified QR method, which
will find the eigenvalues of A with reasonable accuracy. The details of the modified
QR method are included in Section C.2.4.

C.2.4 Modified QR Method

In this section, we discuss the two enhancements that will accelerate the convergence
of the QR methods for evaluation of the eigenvalues. The first enhancement is to
shift the matrix A〈k〉 by a scaled identity matrix. Then second is to use Householder
transformations to achieve a Hesseberg matrix, which is an upper triangular matrix,
but with an additional subdiagonal next to the principal diagonal.

1 For a detailed proof, refer to G. H. Golub and C. Van Loan, Matrix Computations, 3rd Edition,
1996, John Hopkins University Press.
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C.2.5 Shifted QR Method

Instead of taking the QR decomposition of A〈k〉, one can first shift it as follows:

Ã〈k〉 = A〈k〉 − σ〈k〉I (C.4)

where σ〈k〉 is the (N,N)th element of A〈k〉.
We now take the QR decomposition of Ã〈k〉,

Ã〈k〉 = Q̃〈k〉R̃〈k〉 (C.5)

which we use to form A〈k+1〉 by

A〈k+1〉 = R̃〈k〉Q̃〈k〉 + σ〈k〉I (C.6)

Even with the modifications given by (C.4), (C.5), and (C.6), A〈k+1〉 will still be a
similarity transformation of A〈k〉 starting with A〈0〉 = A. To see this,

A〈k+1〉 = R̃〈k〉Q̃〈k〉 + σ〈k〉I

=
(

Q̃〈k〉
)−1 (

A〈k〉 − σ〈k〉I
)

Q̃〈k〉 + σ〈k〉I

=
(

Q̃〈k〉
)−1

A〈k〉Q̃〈k〉

Note that these modifications introduce only 2N extra operations: the subtrac-
tion of σ〈k〉I from the diagonal of A〈k〉, and the addition of σ〈k〉I to the diagonal of
R̃〈k〉Q̃〈k〉. Nonetheless, the improvements in convergence toward attaining the form
given in (C.3) will be significant.

C.2.6 Hessenberg Forms

The second enhancement to the QR method is the use of Householder operators
to transform A into an upper Hessenberg form. A matrix is said to have the upper
Hessenberg form if all elements below the first subdiagonal are zero,

H =

⎛⎜⎜⎜⎜⎝
× × · · · ×
× . . .

. . .
...

. . .
. . . ×

0 × ×

⎞⎟⎟⎟⎟⎠ (C.7)

where “×” denotes arbitrary values.
To obtain the upper Hessenberg form, we use the Householder operators Ux−y

given in (3.7),

Ux−y = I − 2
(x − y)∗ (x − y)

(x − y) (x − y)∗

which will transform x to y, as long as ‖x‖ = ∥∥y∥∥. With the aim of introducing zeros,
we will choose y to be

y =

⎛⎜⎜⎜⎝
‖x‖
0
...
0

⎞⎟⎟⎟⎠
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Two properties of Householder operators are noteworthy: they are unitary and
Hermitian. The following algorithm will generate a Householder matrix H such
that HAH will have an upper Hessenberg form. Also, because HAH is a similarity
transformation of A, both A and HAH will have the same set of eigenvalues.

Algorithm for Householder Transformations of A to Upper Hessenberg Form:

Start with G ← A.
For k = 1, . . . , (N − 2)

1. Extract vector w: wi = Gk+i,k ; i = 1, . . . , (N − k)
2. Evaluate H:

H =

⎧⎪⎪⎨⎪⎪⎩
I[N] if

∥∥w − y
∥∥ = 0(

I[k] 0
0 Uw−y

)
otherwise

where, y = ( ‖w‖ 0 · · · 0
)T

Uw−y = I − 2∥∥w − y
∥∥2 (w − y) (w − y)∗

3. Update G: G ← H G H
End loop for k

Because the Householder operators Uv will be applied on matrices, we note the
following improvements:

Let β = 2/ (v∗v), w1 = A∗v, w2 = Av and γ = v∗Av,

1. Instead of multiplication UvA, we use UvA = A − βvw∗
1.

2. Instead of multiplication AUv, we use AUv = A − βw2v.
3. Instead of multiplication UvAUv, we use UvAUv = A − βvw∗

1 + (γv − βw2) v∗.

The improvement comes from matrix-vector products and vector-vector products
replacing the matrix-matrix multiplications.

Remarks: In Matlab, the command H=hess(A) will obtain the Hessenberg matrix
H from A.

EXAMPLE C.3. Let

A =

⎛⎜⎜⎜⎜⎝
3 −4 0 12 12
0 1 0 0 2
0 0 −2 3 3
0 2 0 −5 −6
0 −2 0 6 7

⎞⎟⎟⎟⎟⎠
Using the algorithm, the resulting Hessenberg form is

G = HAH =

⎛⎜⎜⎜⎜⎝
3 −4 0 12 12
0 1 −1.4142 1 1
0 2.8284 1 −8.4853 −8.4853
0 0 0 1.6213 3.6213
0 0 0 −0.6213 −2.6213

⎞⎟⎟⎟⎟⎠
One can check that the eigenvalues of G and A will be the same.
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Note that for this example, the resulting Hessenberg form is already in
the desired block-triangular forms, even before applying the QR or shifted QR
algorithms. In general, this will not be the case. Nonetheless, it does suggest
that starting off with the upper Hessenberg forms will reduce the number of QR
iterations needed for obtaining the eigenvalues of A.

C.2.7 Modified QR Method

We can now combine both enhancements to the QR approach to determine the
eigenvalues of A.

Enhanced QR Algorithm for Evaluating Eigenvalues of A:

� Initialize:

1. Set k = N.
2. Specify tolerance ε.
3. Obtain G, a matrix in upper Hessenberg form that is similar to A.

� Reduce G: While k > 2
Case 1: (

∣∣Gk,k−1
∣∣ ≤ ε).

1. Add Gk,k to the list of eigenvalues.
2. Update G by removing the last row and last column.

Case 2: (
∣∣Gk,k−1

∣∣ > ε) and (
∣∣Gk−1,k−2

∣∣ ≤ ε).

1. Add μ1 and μ2 to the list of eigenvalues, where

μ1 = −b + √
b2 − 4c

2
; μ2 = −b − √

b2 − 4c
2

and b = −(Gk−1,k−1 + Gk,k)

c = Gk−1,k−1Gk,k − Gk,k−1Gk−1,k

2. Update G by removing the last two rows and last two columns.

Case 3: (|Gk,k−1| > ε) and (|Gk−1,k−2| > ε).
Iterate until either Case 2 or Case 3 results:
Let σ = Gk,k,

1. Find Q and R such that: QR = G − σI
2. Update G: G ← RQ + σI

End While-loop
� Termination:

Case 1: G = [λ], then add λ to eigenvalue list.
Case 2: G[=]2 × 2, then add μ1 and μ2 to the list of eigenvalues,
where

μ1 = −b + √
b2 − 4c

2
; μ2 = −b − √

b2 − 4c
2

and

b = −(G11 + G22) ; c = G11G22 − G21G12
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EXAMPLE C.4. Let

A =

⎛⎜⎜⎜⎜⎝
1 2 0 1 1
2 1 0 0 2
1 0 −1 2 −1
2 2 1 0 3
0 0 2 0 1

⎞⎟⎟⎟⎟⎠
After applying Householder transformations H, we obtain G = HAH that has
the upper Hessenberg form

G =

⎛⎜⎜⎜⎜⎝
1 −2 −0.1060 −1.3072 −0.5293

−3 1.8889 −1.1542 2.3544 1.7642
0 −1.0482 0.8190 0.6139 −0.4563
0 0 −1.2738 0.0036 2.9704
0 0 0 −0.8456 −1.7115

⎞⎟⎟⎟⎟⎠
After ten iterations of the shifted-QR method, G is updated to be⎛⎜⎜⎜⎜⎝

4.2768 0.2485 −2.2646 2.2331 −5.7024
0 −1.8547 2.3670 −1.3323 0.2085
0 −1.5436 0.4876 1.0912 −0.0094
0 0 −0.2087 0.3759 −0.0265
0 0 0 0 −1.2856

⎞⎟⎟⎟⎟⎠
and we could extract −1.2856 as one of the eigenvalues. Then the size of G is
reduced by deleting the last row and column, that is,

G ←

⎛⎜⎜⎝
4.2768 0.2485 −2.2646 2.2331

0 −1.8547 2.3670 −1.3323
0 −1.5436 0.4876 1.0912
0 0 −0.2087 0.3759

⎞⎟⎟⎠
Note that along the process, even though G will be modified and shrunk, it will
still have an upper Hessenberg form.

The process is repeated until all the eigenvalues of A are obtained: −1.2856,
0.0716, −0.5314 ± 1.5023i, and 4.2768.

C.3 Calculations for the Jordan Decomposition

In this section, we develop an algorithm for the construction of a modal matrix T
that would obtain the Jordan decomposition of a square matrix A. The canonical
basis, that is, the columns of T , is composed of vectors derived from eigenvector
chains of different orders.

Definition C.1. Given matrix A and eigenvalues λ, then an eigenvector chain
with respect to λ, of order r is

chain(A, λ, r) = (v1, v2, . . . , vr) (C.8)

where

(A − λI)rvr = 0 (A − λI)r−1vr �= 0

vj = (A − λI)vj+1 j = (r − 1), . . . , 1
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Note: If the order of the chain is 1, then the chain is composed of only one eigen-
vector.

Algorithm for Obtaining Chain (A,λ,r).

1. Obtain vector vr to begin the chain.
(a) Construct matrix M,

M(λ, r) =
(

(A − λI)r−1 −I
(A − λI)r 0

)
(b) Use Gauss-Jordan elimination to obtain Q, W , and q such that

QMW =
(

I[q] 0
0 0

)
(c) Construct vector h

hj =
{

0 j = 1, 2, . . . ,q
a randomly generated number j = q + 1, . . . , 2n

(d) Obtain vr by extracting the first N elements of z = Wh.
2. Calculate the rest of the chain.

vj = (A − λI)vj+1 j = (r − 1), . . . , 1

Note that as mentioned in Section B.2, the matrices Q and W can also be found
based on the singular value decomposition. This means that with U�V ∗ = M, we
can replace W above by V of the singular value decomposition. Furthermore, the
rationale for introducing randomly generated numbers in the preceding algorithm
is to find a vector that spans the last (2n − q) columns of W without having to
determine which vectors are independent.

EXAMPLE C.5. Let

A =

⎛⎜⎜⎜⎜⎝
3 0 0 0 1
0 3 0 1 1
1 0 3 0 0
0 0 0 2 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎠
Using the algorithm, we can find the chain of order 3 for λ = 3,

chain(A, 3, 3) = ( v1 v2 v3
) =

⎛⎜⎜⎜⎜⎝
0 −1.2992 0.8892
0 −1.2992 1.1826

−1.2992 0.8892 1.8175
0 0 0
0 0 −1.2992

⎞⎟⎟⎟⎟⎠
we can directly check that

(A − λI)3 v3 = 0 (A − λI)2 v3 �= 0

and

v2 = (A − λI) v3 v1 = (A − λI) v2
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To obtain the canonical basis, we still need to determine the required eigenvector
chains. To do so, we need to calculate the orders of matrix degeneracy with respect
to an eigenvalue λi, to be denoted by Ni,k, which is just the difference in ranks of
succeeding orders, that is,

Ni,k = rank(A − λiI)k−1 − rank(A − λiI)k (C.9)

Using these orders of degeneracy, one can calculate the required orders for
the eigenvector chains. The algorithm that follows describes in more detail the
procedure for obtaining the canonical basis.

Algorithm for Obtaining Canonical Basis.

Given A[=]N × N.
For each distinct λi:
1. Determine multiplicity mi.
2. Calculate order of required eigenvector chains.

Let

pi = arg
(

min
1≤p≤n

[
rank(A − λ1I)p = (N − mi)

])
then obtain ordi = (γi,1, . . . , γi,pi ), where

γi,k =
{

Ni,k if k = pi

max(0, [Ni,k −∑pi

j=k+1 γi,j ]) if k < pi

where,

Ni,k = rank(A − λiI)k−1 − rank(A − λiI)k

3. Obtain the required eigenvector chains.
For each γi,k > 0, find γi,k sets of chain(A, λi,k) and add to the collection of
canonical basis.

One can show that the eigenvector chains found will be linearly independent.
This means that T is nonsingular. The Jordan canonical form can then be obtained
by evaluating T −1AT = J .

Although Jordan decomposition is not reliable for large systems, it remains
very useful for generating theorems that are needed to handle both diagonalizable
and non-diagonalizable matrices. For example, the proof of Cayley-Hamilton the-
orem uses Jordan block decompositions without necessarily having to evaluate the
decompositions.

EXAMPLE C.6. Consider the matrix A,

A =

⎛⎜⎜⎜⎜⎝
3 0 0 0 1
0 3 0 1 1
1 0 3 0 0
0 0 0 2 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎠



658 Appendix C: Additional Details and Fortification for Chapter 3

then

λi mi pi Ni,k ordi

2 1 1 [1] [1]
3 4 3 [2, 1, 1] [1, 0, 1]

Next, calculating the required chains:

chain(A, 2, 1) =

⎛⎜⎜⎜⎜⎝
0

−0.707
0

0.707
0

⎞⎟⎟⎟⎟⎠ chain(A, 3, 1) =

⎛⎜⎜⎜⎜⎝
0

−0.5843
−1.0107

0
0

⎞⎟⎟⎟⎟⎠

chain(A, 3, 3) =

⎛⎜⎜⎜⎜⎝
0 −1.2992 0.8892
0 −1.2992 1.1826

−1.2992 0.8892 1.8175
0 0 0
0 0 −1.2992

⎞⎟⎟⎟⎟⎠
The modal matrix T can then be constructed as,

T =

⎛⎜⎜⎜⎜⎝
0 0 0 −1.2992 0.8892

−0.7071 −0.5843 0 −1.2992 1.1826
0 −1.0107 −1.2992 0.8892 1.8175

0.7071 0 0 0 0
0 0 0 0 −1.2992

⎞⎟⎟⎟⎟⎠
The Jordan canonical form is

J = T −1AT =

⎛⎜⎜⎜⎜⎝
2 0 0 0 0
0 3 0 0 0
0 0 3 1 0
0 0 0 3 1
0 0 0 0 3

⎞⎟⎟⎟⎟⎠

C.4 Schur Triangularization and SVD

C.4.1 Schur Triangularization Algorithm

Given: A[=]N × N
Initialization: Set GN = A.
For m = N,N − 1, . . . , 2

Obtain λ, an eigenvalue of Gm, and its corresponding orthonormal eigen-
vector v.

Using Gram-Schmidt algorithm (cf. Section 2.6), obtain an orthonormal set of
(m − 1) vectors {w1, . . . ,wm−1} that is also orthonormal to v.
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Let Hm = ( v w1 · · · wm−1
)
; then use

H∗
mGmHm =

(
λ bT

0 Gm−1

)
to extract Gm−1 and construct Um as

Um =
(

I[N−m] 0
0 Hm

)
Calculate the product:

U = UNUN−1 · · · U2

C.4.2 SVD Algorithm

1. Apply the QR algorithm on A∗A:
(a) Initialize: D = A∗A, V = I[M], ε

(b) Iterate: While
∥∥∥vec

(
D − diag(D)

)∥∥∥ > ε

i. D = QR via QR algorithm
ii. D ← RQ

iii. V ← VQ
(Note: Re-index D and V such that dk+1 > dk.)

2. Calculate singular values: σi = √
dii, i = 1, . . . ,M.

3. Obtain U:
Let r be the number of nonzero singular values.
(a) Extract Vr as the first r columns of V .
(b) Set �r = diag (σ1, . . . , σr).
(c) Calculate: Ur = AVr�

−1
r .

(d) Find Uq[=]N × (M − r) such that Uq is orthogonal to Ur.
(e) Set U = ( Ur Uq

)
.

4. Form �[=]N × M: �ij =
{

σi if i = j ≤ r
0 otherwise

C.5 Sylvester’s Matrix Theorem

THEOREM C.1. Let A have all distinct eigenvalues. Let vk and w∗
k be the right and left

eigenvectors A, respectively, corresponding to the same kth eigenvalue λk, such that
w∗

kvk = 1. Then any well-defined matrix function f (A) is given by

f (A) =
N∑

k=1

f (λk) vkw∗
k (C.10)

The classic version of Sylvester’s matrix theorem gives equivalent formulations
of (C.10), two of which are the following:

f (A) =
N∑

k=1

f (λk)

∏
� �=k (λ�I − A)∏
� �=k (λ� − λk)

(C.11)



660 Appendix C: Additional Details and Fortification for Chapter 3

and

f (A) =
N∑

k=1

f (λk)
adj (λ�I − A)∏
� �=k (λ� − λk)

(C.12)

The advantage of (C.11) is that it does not require the computation of eigenvectors.
However, there are some disadvantages to both (C.11) and (C.12). One is that all
the eigenvalues have to be distinct; otherwise, a problem arises in the denomina-
tor.

To show that (C.10) can be derived from (3.35), we need to first show that the
rows of V −1 are left eigenvectors of A. Let w∗

k be the kth row of V −1, then

AV = V�

V −1A = �V −1⎛⎜⎝ w∗
1

...
w∗

N

⎞⎟⎠A =

⎛⎜⎝ λ1 0
. . .

0 λN

⎞⎟⎠
⎛⎜⎝ w∗

1
...

w∗
N

⎞⎟⎠
or

w∗
kA = λkw∗

N

Thus w∗
k is a left eigenvector of A. Using this partitioning of V −1, (3.35) becomes

f (A) = (
v1 · · · vN

)⎛⎜⎝ f (λ1) 0
. . .

0 f (λN)

⎞⎟⎠
⎛⎜⎝ w∗

1
...

w∗
N

⎞⎟⎠

= (
v1 · · · vN

) ( N∑
k=1

f (λk) ekeT
k

)⎛⎜⎝ w∗
1

...
w∗

N

⎞⎟⎠
= f (λ1) v1w∗

1 + . . .+ f (λN) vnw∗
N

C.6 Danilevskii Method for Characteristic Polynomial

There are several methods for the evaluation of eigenvalues. For smaller matrices,
the characteristic polynomials are first determined, and then the roots are then
calculated to be the eigenvalues. For larger cases, other methods can be used that
bypass the determination of the characteristic polynomial. Nonetheless, there are
situations in which the determination of characteristic polynomials becomes the
primary goal, such as problems in which the Cayley-Hamilton theorems are used.

One highly effective approach to finding the characteristic polynomial is the
Danilevskii method. The main idea is to find sequences of elementary matrix oper-
ators (e.g., those used in Gaussian elimination) such that a nonsingular matrix S can
be used to transform a square matrix A into a lower block triangular matrix in which
the block diagonal matrices are in the form of companion matrices.
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Definition C.2. A square matrix C is said to be a companion matrix to a monic
polynomial

p(s) = sn + αn−1sn−1 + . . .+ α1s + α0

if it has the form

C =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αn−1

⎞⎟⎟⎟⎟⎟⎠ (C.13)

It is left as an exercise (cf. E3.8) to show that the characteristic equation of C
defined in (C.13) will be

p(s) = sn + αn−1sn−1 + . . .+ α1s + α0 = 0 (C.14)

Furthermore, each distinct eigenvalue λ of C has a corresponding vector given by

v =

⎛⎜⎜⎜⎝
1
λ
...

λn−1

⎞⎟⎟⎟⎠ (C.15)

Thus with a similarity transformation of A based on a similarity transformation
by S

S−1AS =

⎛⎜⎜⎜⎝
C1 · · · 0

Q21 C2
...

. . .
. . .

Qr1 Qr2 · · · Cr

⎞⎟⎟⎟⎠ (C.16)

where Ci are ni × ni companion matrices to polynomials

pi(s) = sni + α
[i]
ni−1sni−1 + · · · + α

[i]
1 s + α

[i]
0

the characteristic polynomial of A is then given by

charpoly(A) =
r∏

i=1

pi(s) (C.17)

To find S, we have the following recursive algorithm:

Danilevski Algorithm:

Let A[=]N × N; then Danilevski(A) should yield matrix S such that (C.16) is satisfied.
Initialize k = 0 and S = IN

While k < N,
k ← k + 1
If N = 1,

S = 1
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else
Let jmax = arg

(
maxj∈{i+1,...,N}

∣∣∣ aij

∣∣∣) and q = ai,jmax

If q �= 0

Interchange rows i + 1 and jmax of A
Interchange columns i + 1 and jmax of A
Interchange columns i + 1 and jmax of S

X = (xi j) ; xij =

⎧⎪⎪⎨⎪⎪⎩
−ak,j/ak,k+1 if i = k + 1, j �= k + 1
−1/ak,k+1 if i = k + 1, j = k + 1
1 if i = j �= k + 1
0 otherwise

Y = (yi j) ; yij =
⎧⎨⎩

ak,j if i = k + 1
1 if i = j �= k + 1
0 otherwise

A ← YAX

S ← SX

else
Extract the submatrix formed by rows and columns i + 1 to N of A as H,
then solve for G = Danilevkii(H)

S ← S
(

Ii 0
0 G

)
k ← N

end If
End while

The Danilevskii algorithm is known to be among one of the more precise meth-
ods for determination of characteristic polynomials and is relatively efficient com-
pared with Leverier’s approach, although the latter is still considered very accurate
but slow.

A MATLAB function charpoly is available on the book’s webpage for the
evaluation of the characteristic polynomial via the Danilevskii method. The program
obtains the matrix S such that S−1AS is in the form of a block triangular matrix
given in (C.16). It also yields a set of polynomial coefficients p [k]

nk saved in a cell
array. Finally, the set of eigenvalues is also available by solving for the roots of the
polynomials. A function poly(A) is also available in MATLAB, which is calculated
in reverse; that is, the eigenvalues are obtained first, and then the characteristic
polynomial is formed.
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EXAMPLE C.7.

Given

A =

⎛⎜⎜⎜⎜⎝
1 2 3 0 0
4 5 0 0 0
1 −2 0 0 0
2 1 0 1 2

−1 −1 1 0 1

⎞⎟⎟⎟⎟⎠
then applying the Danilveskii method, we find

S =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0

−2.75 −0.25 0.25 0 0
1.5 0.5 −0.1667 0 0
0 0 0 1 0
0 0 0 −0.5 0.5

⎞⎟⎟⎟⎟⎠

S−1AS =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0

−39 6 6 0 0
−0.75 −0.25 0.25 0 1
5.75 1.25 −.5833 −1 2

⎞⎟⎟⎟⎟⎠
and the characteristic polynomial is given by

p1(s) = s3 − 6s2 − 6s + 39
p2(s) = s2 − 2s + 1

→ p(s) = p1(s)p2(s)
= s5 − 8s4 + 7s3 + 45s2 − 84s + 39



APPENDIX D

Additional Details and Fortification
for Chapter 4

D.1 Proofs of Identities of Differential Operators

The proofs for the identities of differential operations of orthogonal curvilinear
coordinates are given as follows:

1. Gradient (4.90): apply (4.89) on ψ .
2. Divergence (4.91): Using (4.55),

∇ · (waδa) = δa · ∇wa + wa∇ · δa (D.1)

The first term in (D.1) can be expanded using (4.90)as follows:

δa · ∇wa = δa ·
(

1
αa

δa
∂wa

∂a
+ 1
αb

δb
∂wa

∂b
+ 1
αc

δc
∂wa

∂c

)
= 1
αa

∂wa

∂a
(D.2)

From (4.87) and (4.88),

δa = δb × δc = (αb̂νb) × (αĉνc) = αbαc∇b × ∇c

Then the second term in (D.1) becomes,

wa∇ · δa = wa∇ · (αbαc∇b × ∇c)

= wa (αbαc∇ · (∇b × ∇c)) + wa (∇b × ∇c) · ∇ (αbαc)

= wa
1

αbαc
δa ·
(

1
αa

δa
∂(αbαc)
∂a

+ 1
αb

δb
∂(αbαc)
∂b

+ 1
αc

δc
∂(αbαc)
∂c

)
= wa

1
αaαbαc

∂(αbαc)
∂a

(D.3)

where we used the fact that ∇ · (∇b × ∇c) = 0 (see Exercise E4.17).
Substituting (D.2) and (D.3) into (D.1),

∇ · (waδa) = 1
αa

∂wa

∂a
+ wa

1
αaαbαc

∂(αbαc)
∂a

= 1
αaαbαc

∂(waαbαc)
∂a

Similarly, we can obtain

∇ · (wbδb) = 1
αaαbαc

∂(αawbαc)
∂b

; ∇ · (wcδc) = 1
αaαbαc

∂(αaαbwc)
∂c

664
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Combining,

∇ · w = 1
αaαbαc

(
∂(waαbαc)

∂a
+ ∂(αawbαc)

∂b
+ ∂(αaαbwc)

∂c

)

3. Curl (4.92): Using (4.56) and (4.61), the curl of waδa can be expanded as
follows:

∇ × (waδa) = ∇ × (waαa∇a)

= waαa (∇ × ∇a)︸ ︷︷ ︸
= 0

+ ∇ (waαa) × ∇a

=
(

1
αa

δa
∂(waαa)

∂a
+ 1
αb

δb
∂(waαa)

∂b
+ 1
αc

δc
∂(waαa)

∂c

)(
1
αa

δa

)
= − 1

αaαb
δc
∂(waαa)

∂b
+ 1
αaαc

δb
∂(waαa)

∂c

Similarly,

∇ × (wbδb) = 1
αbαa

δc
∂(wbαb)

∂a
− 1
αbαc

δa
∂(wbαb)

∂c

∇ × (wcδc) = 1
αcαb

δa
∂(wcαc)
∂b

− 1
αcαa

δb
∂(wcαc)
∂a

Combining all three curls,

∇ × w = 1
αaαbαc

⎡⎢⎣ αaδa

(
∂(αcwc)
∂b

− ∂(αbwb)
∂c

)

+αbδb

(
∂(αawa)

∂c
− ∂(αcwc)

∂a

)

+αcδc

(
∂(αbwb)

∂a
− ∂(αawa)

∂b

) ⎤⎥⎦
4. Laplacian of scalar fields (4.93): Substituting

w = ∇ψ = 1
αa

δa
∂ψ

∂a
+ 1
αb

δb
∂ψ

∂b
+ 1
αc

δc
∂ψ

∂c

into (4.91),

∇ · ∇ψ = 1
αaαbαc

(
∂

∂a

[(
αbαc

αa

)
∂ψ

∂a

]
+ ∂

∂b

[(
αaαc

αb

)
∂ψ

∂b

]
+ ∂

∂c

[(
αaαb

αc

)
∂ψ

∂c

])
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5. Gradient-Vector Dyad (4.94):

∇w = ∇
⎛⎝ ∑

k=a,b,c

wkδk

⎞⎠
=

∑
k=a,b,c

(
(∇wk) δk + wk∇δk

)

=
∑

k=a,b,c

∑
m=a,b,c

1
αm

∂wk

∂m
δmδk +

∑
k=a,b,c

∑
m=a,b,c

wk

αm
δm

∂δk

∂m

D.2 Derivation of Formulas in Cylindrical Coordinates

At a point (r, θ, z), the pair of unit vectors δr and δθ is just the pair of unit vectors
δx and δy rotated counter-clockwise by an angle θ, which could be achieved using a
rotation operator,1

Rr→c =
⎛⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞⎠ (D.4)

Because Rr→c is an orthogonal matrix,⎛⎝δr
δθ
δz

⎞⎠ = Rr→c

⎛⎝δx
δy

δz

⎞⎠⇐⇒
⎛⎝δx

δy

δz

⎞⎠ = RT
r→c

⎛⎝δr
δθ
δz

⎞⎠ (D.5)

which is relationship 1 in Table 4.6. We can then apply (D.5) for vector v,

(
vr vθ vz

)⎛⎝δr
δθ
δz

⎞⎠ = v = (vx vy vz
)⎛⎝δx

δy

δz

⎞⎠ = (vx vy vz
)

RT
r→c

⎛⎝δr
δθ
δz

⎞⎠
Comparing both ends of the equations, we have⎛⎝vr

vθ
vz

⎞⎠ = Rr→c

⎛⎝vx

vy

vz

⎞⎠⇐⇒
⎛⎝vx

vy

vz

⎞⎠ = RT
r→c

⎛⎝vr

vθ
vz

⎞⎠ (D.6)

which is relationship 2 in Table 4.6.
For the relationship between the partial differential operators of the rectangular

and the cylindrical coordinate system, the chain rule has to be applied. This yields,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂z

∂y
∂z

∂z
∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ sin θ 0

− r sin θ r cos θ 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1 Note that the operator in (D.4) will rotate an input vector clockwise by an angle θ. However, because

we are rotating the reference axes, the operator would do the reverse; that is, it rotates the axes
counterclockwise.
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Let Dr→c = diag
(

1, r, 1
)

. Then,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Dr→cRr→c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= RT

r→cD−1
r→c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(D.7)

which is relationship 3 in Table 4.6.
To obtain the relationship of the gradient operator ∇ between the rectangular

and the cylindrical coordinates, we can apply both (D.5) and (D.7),

∇ = (
δx δy δz

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
δr δθ δz

)
Rr→c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
RT

r→cD−1
r→c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

δx
1
r
δy δz

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(D.8)

which is relationship 4 in Table 4.6.
To obtain the partial derivatives of unit vectors in the cylindrical coordinate

systems, note that:

1. The direction and magnitude of δr, δθ, and δz will not change if we just modify
the r position. Thus

∂δr

∂r
= ∂δθ

∂r
= ∂δz

∂r
= 0

2. Likewise, the direction and magnitude of δr, δθ, and δz will not change if we just
modify the z position. Thus

∂δr

∂z
= ∂δθ

∂z
= ∂δz

∂z
= 0

3. If we just change the θ position, the direction or magnitude of δz will also not
change. Thus

∂δz

∂θ
= 0
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Figure D.1. Unit vectors along r at different θ positions.

What remains is the behavior of δr and δθ as we change the θ position. In both
cases, the directions do change. Let us first look at how δr changes with θ. The partial
derivative of δr with respect to θ is given by

∂δr

∂θ
= lim

�θ→0

δr (r, θ +�θ, z) − δr (r, θ, z)
�θ

where the subtraction is a vector subtraction. This is shown in (the right side of)
Figure D.1. As �θ → 0, we can see that the vector difference will be pointing per-
pendicular to δr (r, θ, z). Thus

direction
(
∂δr

∂θ

)
= direction (δθ)

For the magnitude,∣∣∣∣ lim
�θ→0

δr(r, θ+�θ) − δr(r, θ)
�θ

∣∣∣∣ = lim
�θ→0

2|δr| sin�θ/2
�θ

= 1

Because the direction and magnitude matches δθ,

∂δr

∂θ
= δθ (D.9)

Using a similar argument for δθ,

∂δθ
∂θ

= lim
�θ→0

δθ (r, θ+�θ, z) − δθ (r, θ, z)
�θ

The vector subtraction is shown in Figure D.2, where the limit yields a vector that is
pointing in opposite direction of δr. The magnitude of the limit is also 1. Thus

∂δθ
∂θ

= − δr (D.10)

Figure D.2. Unit vectors along θ at different θ positions.
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Alternatively, to find the derivatives of the unit vectors of cylindrical coordinates,
we could use the fact that δx, δy, and δz have fixed magnitudes and direction. Then
using (D.4) and (D.5),

∂

∂r

⎛⎝δr
δθ
δz

⎞⎠ =
(
∂

∂r
Rr→c

)
RT

r→c

⎛⎝δr
δθ
δz

⎞⎠ =
⎛⎝0

0
0

⎞⎠
∂

∂θ

⎛⎝δr
δθ
δz

⎞⎠ =
(
∂

∂θ
Rr→c

)
RT

r→c

⎛⎝δr
δθ
δz

⎞⎠

=
⎛⎝− sin θ cos θ 0

− cos θ − sin θ 0
0 0 0

⎞⎠⎛⎝cos θ − sin θ 0
sin θ cos θ 0

0 0 0

⎞⎠⎛⎝δr
δθ
δz

⎞⎠

=
⎛⎝ δθ

−δr
0

⎞⎠
∂

∂z

⎛⎝δr
δθ
δz

⎞⎠ =
(
∂

∂z
Rr→c

)
RT

r→c

⎛⎝δr
δθ
δz

⎞⎠ =
⎛⎝0

0
0

⎞⎠

D.3 Derivation of Formulas in Spherical Coordinates

To transform the unit vectors in rectangular coordinates to spherical coordinates at
a point (x, y, z) ↔ (r, θ, φ), we need the following sequence of operations:

1. A rotation of φ radians counterclockwise along the
(
δx, δy

)
plane using the

rotation operator Rrs1.
2. A rotation of θ radians clockwise along the

(
δx, δz

)
plane using the rotation

operator Rrs2.
3. A reordering of the unit vectors using the permutation operator Ers.

where,

Rrs1 =
⎛⎝ cosφ sinφ 0

− sinφ cosφ 0
0 0 1

⎞⎠ Rrs2 =
⎛⎝cos θ 0 − sin θ

0 1 0
sin θ 0 cosφ

⎞⎠ Ers =
⎛⎝0 0 1

1 0 0
0 1 0

⎞⎠
Combining all three orthogonal operators in the prescribed sequence will yield an

orthogonal operator used to transform
(
δx, δy, δz

)
to
(
δr, δθ, δφ

)
:

Rr→s = ErsRrs2Rrs1 =
⎛⎝sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

⎞⎠ (D.11)
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Then, following the same approach used during transformations between rect-
angular and cylindrical coordinates, we have⎛⎝δr

δθ
δφ

⎞⎠ = Rr→s

⎛⎝δx
δy

δz

⎞⎠ ⇐⇒
⎛⎝δx

δy

δz

⎞⎠ = RT
r→s

⎛⎝δr
δθ
δφ

⎞⎠ (D.12)

⎛⎝vr

vθ
vφ

⎞⎠ = Rr→s

⎛⎝vx

vy

vz

⎞⎠ ⇐⇒
⎛⎝vx

vy

vz

⎞⎠ = RT
r→s

⎛⎝vr

vθ
vφ

⎞⎠ (D.13)

The partial differential operators between the rectangular and spherical coordi-
nate system are obtained by using the chain rule,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂φ

∂y
∂φ

∂z
∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

sθcφ sθsφ cθ

rcθcφ rcθsφ −rsθ

− rsθsφ rsθcφ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Let Dr→s = diag

(
1, r, r sin θ

)
. Then,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Dr→sRr→s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= RT

r→sD
−1
r→s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(D.14)

To obtain the relationship of the gradient operator ∇ between the rectangular
and the spherical coordinates, we can apply both (D.12) and (D.14),

∇ = (
δx δy δz

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
δr δθ δφ

)
Rr→s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
RT

r→sD
−1
r→s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

δx
1
r
δy

1
r sin θ

δz

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(D.15)
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Figure D.3. Unit vectors at fixed r and φ. The
unit vectors are represented by: a = δr (r, θ, φ), b =
δθ (r, θ, φ), c = δr (r, θ+�θ, φ), d = δθ (r, θ+�θ, φ).

To obtain the partial derivatives of unit vectors in the spherical coordinate
systems, note that:

1. The direction and magnitude of δr, δθ, and δφ will not change if we just modify
the r position. Thus

∂δr

∂r
= ∂δθ

∂r
= ∂δφ

∂r
= 0

2. The direction and magnitude of δφ will not change if we just modify the θ

position. Thus

∂δφ

∂θ
= 0

The remaining partial derivatives of unit vectors will change their direction
based on their position in space. For a fixed r and φ, the vector subtractions are
shown in Figure D.3, and the partial derivatives are then given by

∂δr

∂θ
= δθ

∂δθ
∂θ

= − δr (D.16)

For a fixed r and θ, the vector subtractions are shown in Figure D.4. Note that
four of the unit vectors are first projected into the horizontal plane prior to taking
limits. The partial derivatives are then given by:

∂δφ

∂φ
= − cos θδθ − sin θδr ;

∂δr

∂φ
= sin θδφ ;

∂δθ
∂φ

= cos θδφ (D.17)
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Figure D.4. Unit vectors at fixed r and θ. The unit vectors are represented by: a = δr (r, θ, φ),
b = δθ (r, θ, φ), c = δφ (r, φ), d = δr (r, θ, φ+�φ), f = δθ (r, θ, φ+�φ), g = δφ (r, θ, φ+�φ).

The unit vectors projected into the horizontal planes are: ã = δr (r, θ, φ) sin θ, b̃ =
δθ (r, θ, φ) cos θ, d̃ = δr (r, θ, φ+�φ) sin θ, f̃ = δθ (r, θ, φ+�φ) cos θ.

Alternatively, to find the derivatives of the unit vectors of spherical coordinates,
we could use the fact that δx, δy, and δz have fixed magnitudes and direction. Then
using (D.11) and (D.12),

∂

∂r

⎛⎝δr
δθ
δφ

⎞⎠ =
(
∂

∂r
Rr→s

)
RT

r→s

⎛⎝δr
δθ
δφ

⎞⎠ =
⎛⎝0

0
0

⎞⎠
∂

∂θ

⎛⎝δr
δθ
δφ

⎞⎠ =
(
∂

∂θ
Rr→s

)
RT

r→s

⎛⎝δr
δθ
δφ

⎞⎠

=
⎛⎝ cθcφ cθsφ −sθ

−sθcφ −sθsφ −cθ
0 0 0

⎞⎠⎛⎝sθcφ cθcφ −sφ
sθsφ cθsφ cφ
cθ −sθ 0

⎞⎠⎛⎝δr
δθ
δz

⎞⎠

=
⎛⎝ δθ

−δr
0

⎞⎠
∂

∂φ

⎛⎝δr
δθ
δφ

⎞⎠ =
(
∂

∂r
Rr→s

)
RT

r→s

⎛⎝δr
δθ
δφ

⎞⎠

=
⎛⎝−sθsφ sθcφ 0

−cθsφ cθcφ 0
−cφ −sφ 0

⎞⎠⎛⎝sθcφ cθcφ −sφ
sθsφ cθsφ cφ
cθ −sθ 0

⎞⎠⎛⎝δr
δθ
δz

⎞⎠

=
⎛⎝ 0 0 sθ

0 0 cθ
−sθ −cθ 0

⎞⎠⎛⎝δr
δθ
δφ

⎞⎠



APPENDIX E

Additional Details and Fortification
for Chapter 5

E.1 Line Integrals

Line integrals are generalizations of the ordinary integrals of single-variable func-
tions to handle cases in which variations occur along specified curves in two or three
dimensions. The line integrals therefore consists of three components: the path of
integration C(x, y, z), which is a continuous curve; the integrand F (x, y, z), which is
a scalar function; and the differential dλ.

Definition E.1. A line integral of F (x, y, z), with respect to variable λ and path
C(x, y, z), is defined by∫

C
F (x, y, z) dλ = lim

�λi→0,N→∞

N∑
i=0

F (xi, yi, zi)�λi (E.1)

In most applications, the differential dλ is set to either dx, dy, dz or ds, where

ds =
√

dx2 + dy2 + dz2 (E.2)

For the 2D case, F = F (x, y) and the path C = C(x, y). Figure E.1 gives the area
interpretation of the line integrals. The integral

∫
C F (x, y)ds is the area under the

curve F (x, y) as the point travels along curve C. Conversely, the line integral with
respect to x,

∫
C F (x, y)dx is the area projected onto the plane y = 0. The projected

integral
∫

C Fdx is with respect to segments where C(x, y) has to be single-valued with
respect to x. Otherwise, the integration path will have to be partitioned into segments
such that it is single-valued with respect to x. For example, the integration path from
A to B in Figure E.2 will have to be partitioned into segment ADE, segment EF , and
segment FGB. Thus for the integration path shown in Figure E.2, the line integral
with respect to x is given by∫

C
F (x, y)dx =

∫
[ADE]

F (x, y)dx +
∫

[EF ]
F (x, y)dx +

∫
[FGB]

F (x, y)dx (E.3)

For the 3D case, another interpretation is more appropriate. One could visualize
a mining activity that accumulates substance, say, Q, along path C in the ground
containing a concentration distribution of Q. Let F (x, y, z) be the amount of Q

673
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Figure E.1. Area interpretation of line integrals.

gathered per unit length traveled. Then, along the differential path ds, an amount
F (x, y, z)ds will have been accumulated, and the total amount gathered along the
path C becomes

∫
C F (x, y, z)ds. Conversely, the integral

∫
C F (x, y, z)dx is the amount

of Q gathered along the projected path in the x-direction. In this mining scenario, the
line integral

∫
C F (x, y, z)dx does not appear to be as relevant compared with the line

integral with respect to s. However, these line integrals are quite useful during the
computation of surface integrals and volume integrals because differential surfaces
s are often described by dx dy, dx dz, or dy dz, and differential volumes are often
described by the product dx dy dz.1 Another example is when the integral involves
the position vector �r of the form∫

C
f · d�r =

∫
C

(
fxdx + fydy + fzdz

)

E.1.1 The Path of Integration

The path of integration will be assumed to be a continuous and sectionally smooth
curve. The curve can either be open or closed. A path is closed if the starting point
of the path coincides with the end point of the path. Otherwise, the path is said to
be open. In either case, the direction of the path is crucial during integration. If the
path is not self-intersecting at points other than the terminal points, then we say that
the curve is a simple curve. Non-simple curves can be treated as the direct sum of
simple curves, as shown in Figure E.3.

When the path is closed and non-intersecting, we often indicate a closed path
by the following notation:∮

C
Fds C is a closed, sectionally smooth, nonintersecting path

A 3D path can be described generally by C =
(

x(t), y(t), z(t)
)

= �r(t), where �r is

the position vector and t is a parameter going from t = 0 to t = 1.2 In some cases,
the curve can be parameterized by either x = t, y = t or z = t. In these cases, the
other variables are said to possess an explicit form, for example, for x = t, we can
use y = y(x) and z = z(x).3

1 One could then expect that in other coordinate systems, dλ may need involve those coordinates, for
example, dr, dθ, dφ, and so forth.

2 A more general formulation would be to let the parameter start at t = a and end with t = b, where
b > a. Using translation and scaling, this case could be reduced back to a = 0 and b = 1.

3 The parameterizations can also originate from coordinate transformations such as polar, cylindrical,
or spherical coordinates.
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AFigure E.2. A curve in which the projection of C onto x or y is not single
valued.

EXAMPLE E.1. Consider the closed elliptical path described by(
x + 3

2

)2

+ (y + 2)2 = 4 (E.4)

traversed in the counterclockwise direction as shown in Figure E.4. Let the
path start at point a : (−7,−2) and pass through points b : (−3,−4), c : (1,−2),
d : (−3, 0), and then back to a. The path can then be described in three equivalent
ways:

1. Parameterized Form.

Path Cabcda : x = −3 − 4 cos(2πt)

y = −2 − 2 sin(2πt)

from t = 0 to t = 1

2. Explicit function of x.

Path Cabcda = Cabc + Ccda

where

Cabc : y = −2 −
√

4 −
(

x + 3
2

)2

from x = −7 to x = 1

Ccda : y = −2 +
√

4 −
(

x + 3
2

)2

from x = 1 to x = −7

3. Explicit function of y.

Path Cabcda = Cab + Cbcd + Cda

Figure E.3. Separation into simple curves.
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−8 −6 −4 −2 0 2

−5

−4

−3

−2

−1

0

1

x

y a

b

d

c
Figure E.4. A close path of integration in
counterclockwise direction.

where

Cab : x = −3 − 2
√

4 − (y + 2)2 from y = −2 to y = −4

Cbcd : x = −3 + 2
√

4 − (y + 2)2 from y = −4 to y = 0

Cda : x = −3 − 2
√

4 − (y + 2)2 from y = 0 to y = −2

E.1.2 Computation of Line Integrals

With the parameterized form of path C based on t, the integrand also becomes a
function of t, that is,

F
(

x(t), y(t), z(t)
)

= g(t) (E.5)

Using the chain rule, the line integrals become∫
C

F (x, y, z)dx =
∫ 1

0

(
g(t)

dx
dt

)
dt

∫
C

F (x, y, z)dy =
∫ 1

0

(
g(t)

dy
dt

)
dt

∫
C

F (x, y, z)dz =
∫ 1

0

(
g(t)

dz
dt

)
dt

∫
C

F (x, y, z)ds =
∫ 1

0

⎛⎝g(t)

√(
dx
dt

)2

+
(

dy
dt

)2

+
(

dz
dt

)2
⎞⎠dt (E.6)

However, if an explicit form is possible, these should be attempted in case they
yield simpler calculations. For instance, suppose y = y(x) and z = z(x); then setting



Appendix E: Additional Details and Fortification for Chapter 5 677

x = t, (E.6) are modified by replacing dx/dt = 1, dy/dt = dy/dx and dz/dt = dz/dx
with the lower limit xstart and upper limit xend. For example,∫

C
F (x, y, z)dx =

∫ xend

xstart

F (x, y(x), z(x))dx

EXAMPLE E.2. Consider the scalar function given by

F (x, y) = 2x + y + 3

and the counter-clockwise elliptical path of integration given in Example E.1.
Using the parameterized form based on t,

x(t) = −3 − 4 cos (2πt)

y(t) = −2 − 2 sin (2πt)

g(t) = F
(

x(t), y(t)
)

= 2 (−3 − 4 cos (2πt)) + (−2 − 2 sin (2πt)) + 3

and

dx = 8π sin (2πt) dt

dy = −4π cos (2πt) dt

ds = 4π
√

4 sin2 (2πt) + cos2 (2πt)dt

Thus∫
C

F (x, y)dx =
∫ 1

0
g(t) (8π sin (2πt)) dt = −8π∫

C
F (x, y)dy =

∫ 1

0
g(t) (−4π cos (2πt)) dt = 16π∫

C
F (x, y)ds =

∫ 1

0
g(t)
(

4π
√

4 sin2 (2πt) + cos2 (2πt)
)

dt = −96.885

Using the explicit form y = y(x) for the integration path

C = Cabc + Ccda

Cabc : y = yabc = −2 −
√

4 −
(

x + 3
2

)2

from x = −7 to x = 1

Ccda : y = ycda = −2 +
√

4 −
(

x + 3
2

)2

from x = 1 to x = −7

The integrand and differentials for the subpaths are

F (x, y)abc = 2x + 3 +
⎛⎝−2 −

√
4 −
(

x + 3
2

)2
⎞⎠

F (x, y)cda = 2x + 3 +
⎛⎝−2 +

√
4 −
(

x + 3
2

)2
⎞⎠
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(
dy
dx

)
abc

= − x + 3

2
√

(1 − x) (x + 7)(
dy
dx

)
cda

= + x + 3

2
√

(1 − x) (x + 7)(
ds
dx

)
abc

=
√

1 + dy2
abc(

ds
dx

)
cda

= −
√

1 + dy2
cda

Note that ds has a negative sign for the subpath [cda]. This is because the
direction of ds is opposite that of dx in this region.

The line integrals are then given by∫
C

F (x, y)dx =
∫ 1

−7
F (x, y)abcdx +

∫ −7

1
F (x, y)cdadx

= −8π

∫
C

F (x, y)dy =
∫ 1

−7
F (x, y)abc

(
dy
dx

)
abc

dx +
∫ −7

1
F (x, y)cda

(
dy
dx

)
cda

dx

= 16π

∫
C

F (x, y)ds =
∫ 1

−7
F (x, y)abc

(
ds
dx

)
abc

dx +
∫ −7

1
F (x, y)cda

(
ds
dx

)
cda

dx

= −96.885

This shows that either the parameterized form or the explicit form approach
can be used to obtain the same values. The choice is usually determined by the
tradeoffs between the complexity of the parameterization procedure and the
complexity of the resulting integral.

E.2 Surface Integrals

Definition E.2. A surface integral of F (x, y, z), with respect to area A and sur-
face of integration S(x, y, z), is defined by

∫
S

F (x, y, z) dA = lim
�Ai→0,N→∞

N∑
i=0

F (xi, yi, zi)�Ai (E.7)

In most applications, the differential area is specified for either dA = dxdy, dydz,
dxdz, or dS, where dS is the differential area of the surface of integration

To visualize surface integrals, we could go back to the mining scenario for
the substance Q, except now the accumulation is obtained by traversing a surface
instead of a path. Thus the surface integral

∫
S f (x, y, z)dS can be thought of as the

total amount mined by sweeping the total surface area S.
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E.2.1 Surface of Integration

A general parametric description of surface is based on two independent parameters,
u and v,

S :
(

x(u, v), y(u, v), z(u, v)
)

as u and v vary independently in a closed domain.

(E.8)

If the parameterization can be done by letting u = x and v = y, then the surface is
given by the explicit form for z

S : z = z(x, y) as x and y vary independently in a closed domain (E.9)

Other explicit forms are possible, for example, y = y(x, z) and x = x(y, z).
Two important variables are needed during the calculation of surface integrals:

the unit normal vector �n, and the differential area dS at the point (x, y, z). As
discussed in Section 4.6, the unit normal to a surface is given by (4.30), that is,

�n =
�tu ×�tv∥∥∥�tu ×�tv

∥∥∥ (E.10)

where

�tu = ∂�r
∂u

and �tv = ∂�r
∂v

Specifically, we have

�tu ×�tv =
(
∂(y, z)
∂(u, v)

δx + ∂(z, x)
∂(u, v)

δy + ∂(x, y)
∂(u, v)

δz

)
(E.11)

where we used the shorthand notation for the Jacobian determinants given by

∂(a,b)
∂(c,d)

= det

⎛⎜⎜⎝
∂a
∂c

∂a
∂d

∂b
∂c

∂b
∂d

⎞⎟⎟⎠
However, the differential surface area is given by the area of the parallelogram

formed by differential arcs form by movement along constant v and u, respectively,
that is, the area formed by �tu du and �tv dv. Thus

dS =
∥∥∥(�tu du

)× (�tv dv
)∥∥∥ =

∥∥∥�tu ×�tv
∥∥∥ du dv

=
√(

∂(y, z)
∂(u, v)

)2

+
(
∂(z, x)
∂(u, v)

)2

+
(
∂(x, y)
∂(u, v)

)2

dudv (E.12)

If the explicit form z = z(x, y) is possible, that is, with x = u and y = v, the
formulas reduce to the more familiar ones, that is,

n =

(
∂z
∂x

δx − ∂z
∂y

δy + δz

)
√

1 +
(
∂z
∂x

)2

+
(
∂z
∂y

)2
(E.13)
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Figure E.5. The boundary of domain D for
parameter space can either have (a) an indepen-
dent range, or (b) an interdependent range.

dS =
⎛⎝√1 +

(
∂z
∂x

)2

+
(
∂z
∂y

)2
⎞⎠dxdy (E.14)

Note that with the square root, the choice for sign depends on the interpretation
of the surface direction. In most application, for a surface that encloses a region of
3D space, the surface outward of the enclosed region is often given a positive sign.

EXAMPLE E.3. Consider a circular cylinder of radius R of height h with the bottom
base centered at the origin. The differential area at the top and the bottom can be
parameterized in terms of r and θ; that is, x = r cos θ and y = r sin θ. At the top,
we have z = 0 and set u = r and v = θ as the parameterization. At the bottom,
we have z = h but will need to set u = r and v = θ as the parameterization to
obtain the expected outward normal direction. Thus, for the top,

�tu ×�tv = det

⎛⎝ δx δy δz

cos θ sin θ 0
−r sin θ r cos θ 0

⎞⎠ = rδz →
�ntop = δz

dStop = r dr dθ

For the bottom, we have

�tu ×�tv = det

⎛⎝ δx δy δz

−r sin θ r cos θ 0
cos θ sin θ 0

⎞⎠ = −rδz →
�nbottom = −δz

dSbottom = r dr dθ

For the side of the cylinder, we let u = θ and v = z and r = R. Then

�tu ×�tv = det

⎛⎝ δx δy δz

−R sin θ R cos θ 0
0 0 1

⎞⎠ = R
(

cos θδx + sin θδy

)
= Rδr

which the yields

�nside = δr and dSside = Rdθdz

E.2.2 Computation of Surface Integrals

Under the parameterized form of the surface of integration, the domain of the
parameter space is a closed 2D plane in the (u, v) space. The boundary may either
be defined independently by fixed ranges for u and v, or the boundary has to described
by giving explicit dependencies of u on v or vice versa (see Figure E.5).
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Figure E.6. The two possible domain descriptions: (a) boundary is partitioned into two seg-
ments such that v = φ(u), and (b) boundary is partitioned into two segments such that u = ψ(v)
.

If the ranges of u and v are independent, then domain D can, without loss of
generality, be given as

D : 0 ≤ u ≤ 1 ; 0 ≤ v ≤ 1

The surface integral becomes∫
S

F (x, y, z)dS =
∫ 1

0

∫ 1

0
g(u, v)dudv

where

g(u, v) = f (x(u, v), y(u, v), z(u, v))

√(
∂(y, z)
∂(u, v)

)2

+
(
∂(z, x)
∂(u, v)

)2

+
(
∂(x, y)
∂(u, v)

)2

(E.15)

Thus

h(v) =
∫ 1

0
g(u, v)du holding v constant∫

S
F (x, y, z)dS =

∫ 1

0
h(v)dv (E.16)

If u and v are interdependent at the boundary of the parameter space, then two
domain descriptions are possible:

Du : ulower ≤ u ≤ uupper ; φ0(u) ≤ v ≤ φ1(u) (E.17)

or

Dv : vlower ≤ v ≤ vupper ; ψ0(v) ≤ u ≤ ψ1(v) (E.18)

where ulower, uupper, vlower and vupper are constants. Both domain descriptions are
shown in Figure E.6, and both are equally valid.
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With the first description given by (E.17), the surface integral is given by

h(u) =
∫ φ1(u)

φ0(u)
g(u, v)dv holding u constant∫

S
F (x, y, z)dS =

∫ uupper

ulower

h(u)du (E.19)

where g(u, v) is the same function as in (E.15). Similarly, using the second description
given in (E.18),

h(v) =
∫ ψ1(v)

ψ0(v)
g(u, v)du holding u constant∫

S
F (x, y, z)dS =

∫ vupper

vlower

h(v)dv (E.20)

For the special case in which the surface is given by z = z(x, y),

u = x v = y

g(u, v) = g(x, y) = f (x, y, z(x, y))

√
1 +
(
∂z
∂x

)2

+
(
∂z
∂y

)2

ulower = xlower uupper = xupper

φ1(u) = φ1(x) φ0(u) = φ0(x)

vlower = ylower vupper = yupper

ψ1(v) = ψ1(y) ψ0(v) = ψ0(y)

EXAMPLE E.4. Consider the integrand given by

F (x, y, z) = 2x + y − z + 3

and the surface of integration provided by the ellipsoid,

x2 +
(y

2

)2
+ z2 = 1

A parameterized form is given by

x = sin(u) cos(v) ; y = sin(u) sin(v) ; z = cos(u)

where the parameter domain is described by

0 ≤ u ≤ 2π 0 ≤ v ≤ π

The Jacobian determinants can be evaluated as

∂(x, y)
∂(u, v)

= −2 sin(u) cos(u)

∂(y, z)
∂(u, v)

= −2 sin2(u) cos(v)

∂(x, z)
∂(u, v)

= sin2(u) cos(v)



Appendix E: Additional Details and Fortification for Chapter 5 683

which then gives

g(u, v) = F (x, y, z)

√(
∂(y, z)
∂(u, v)

)2

+
(
∂(z, x)
∂(u, v)

)2

+
(
∂(x, y)
∂(u, v)

)2

= α(u, v)β(u, v)

where

α(u, v) = 2 sin(u) cos(v) + 2 sin(u) sin(v) − cos(u) + 3

β(u.v) =
√

3 cos2(v)
(

(cos(u) − 1)2 (cos(u) + 1)2
)

+ (1 + 2 cos2(u) − 3 cos4(u))

The surface integral can then be solved numerically to be∫ π

0

∫ 2π

0
g(u, v)dudv = 64.4

As an alternative, we can partition the elliptical surface into two halves. The
upper half and lower half can be described by zu and z�, respectively, where

zu =
√

1 − x2 −
(

y
2

2
)

z� = −
√

1 − x2 −
(

y
2

2
)

In either half, the (x, y)-domain can be described by

D : − 1 ≤ x ≤ 1 − 2
√

1 − x2 ≤ y ≤ 2
√

1 − x2

For the upper half,

dzu

dx
= −2x√

4 − 4x2 − y2

dzu

dy
= −y/2√

4 − 4x2 − y2

with an integrand

gu(x, y) =
(

2x + y −
√

1 − x2 −
(

y
2

2
)

+ 3

)⎛⎝1
2

√
3y2 − 16

−4 + 4x2 + y2

⎞⎠
For the lower half,

dz�
dx

= 2x√
4 − 4x2 − y2

dz�
dy

= y/2√
4 − 4x2 − y2

with an integrand

g�(x, y) =
(

2x + y +
√

1 − x2 −
(

y
2

2
)

+ 3

)⎛⎝1
2

√
3y2 − 16

−4 + 4x2 + y2

⎞⎠
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Combining everything, we can calculate the surface integral via numerical inte-
gration to be

Iu =
∫ +1

−1

∫ 2
√

1−x2

−2
√

1−x2
gu(x, y)dydx = 26.6

I� =
∫ +1

−1

∫ 2
√

1−x2

−2
√

1−x2
g�(x, y)dydx = 37.8∫

S
fdS = Iu + I� = 64.4

which is the same value as the previous answer using the parameterized descrip-
tion.

Remark: In the example just shown, we have used numerical integration. This is
usually the preferred route when the integrand becomes too complicated to inte-
grate analytically. There are several ways in which the numerical approximation can
be achieved, including the rectangular or trapezoidal approximations or Simpson’s
methods. We have also included another efficient numerical integration technique
called the Gauss-Legendre quadrature method in the appendix as Section E.4.

E.3 Volume Integrals

Definition E.3. A volume integral of F (x, y, z), with respect to W and volume
of integration V (x, y, z), is defined by

∫
V

F (x, y, z) dW = lim
�Wi→0,N→∞

N∑
i=0

F (xi, yi, zi)�Wi (E.21)

In most applications, the differential volume is specified by dW = dxdydz.
To continue the visual interpretation via mining used earlier for both the line

and surface integrals, the mining activity now accumulates substance Q indicated by∫
V F (x, y, z)dV by carving out a volume V specified by the boundary.

E.3.1 Volume of Integration

In most cases, the rectangular coordinate system is sufficient to describe the surface
of the volume, and thus the differential volume is given by dV = dx dy dz. However,
in other cases, another set of coordinates allow for easier computation, for example,
cylindrical or spherical coordinates. Let this set of new coordinates be given by
parameters (u, v, w). Let �r be the position vector. At a point p, we can trace paths
C1, C2, and C3 that pass through point p, each path formed by holding the other two
parameters fixed. This is shown in Figure E.7, where the differential arcs along each
of each curve are given by a, b, and c where

a = ∂�r
∂u

du ; b = ∂�r
∂v

dv ; c = ∂�r
∂w

dw
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Figure E.7. Graphical representation of differential volume, dV , as function of u, v, and w.
Note that the position described by �r can be anywhere on or inside V .

The differential volume is then formed by the absolute value of the triple product
formed by a, b, and c, that is,

dV =
∣∣∣∣ c · (a × b)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
du dv dw (E.22)

EXAMPLE E.5. For the spherical coordinates, using x = r sin θ cosφ, y =
r sin θ sinφ, and z = r cos θ with the parameters u = r, v = θ, and w = φ, we
have

dV = det

⎛⎜⎝sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

⎞⎟⎠dr dθ dφ = r2 sin θ dr dθ dφ

E.3.2 Computation of Volume Integrals

Having determined the differential volume and the integrand, one needs to identify
the limits of integration in each of the variables x, y, and z, or of parameters u, v,
and w.

If the limits are independent,

umin ≤ u ≤ umax ; vmin ≤ v ≤ vmax ; wmin ≤ w ≤ wmax

the volume integral can be integrated in a nested fashion,

∫
V

FdV =
∫ wmax

wmin

⎛⎜⎜⎝∫ vmax

vmin

⎛⎜⎝∫ umax

umin

G (u, v, w)
∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣du

⎞⎟⎠dv

⎞⎟⎟⎠dw (E.23)
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wmin ≤ w ≤ wmax

Figure E.8. A nested description of volume boundaries.

where

G(u, v, w) = F
(

x(u, v, w), y(u, v, w), z(u, v, w)
)

(E.24)

If the surface of the volume space is represented by a set of interdependent
parameters, there are six possible descriptions that can be used based on the sequence
of dependencies. We only describe the sequencew → v → u. As shown in Figure E.8,
we can first identify the maximum and minimum value of w, that is,

wmin ≤ w ≤ wmax

Taking a slice of the volume at a fixed w, a closed region whose boundary can
be identified by

ηmin(w) ≤ v ≤ ηmax(w)

Finally, as shown in Figure E.8, the limits of v for this slice will divide the closed
curve into two segments. Each of these segments can then be described by functions
of v and w, where the value of w was that used to obtain the slice,

ξmin(v,w) ≤ u ≤ ξmax(v,w)

Thus we end up with a slightly different nested integration given by∫
V

FdV =
∫ wmax

wmin

∫ ηmax(w)

ηmin(w)

∫ ξmax(v,w)

ξmin(v,w)
G(u, v, w)

∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣dudvdw (E.25)

where G(u, v, w) is the same function as in (E.24).

EXAMPLE E.6. Consider the integrand given by

F (x, y, z) = 2x + y − z + 3

and the volume of integration given by the ellipsoid

x2 +
(y

2

)2
+ z2 ≤ 1

Using the parameterization

x = u sin(v) cos(w) ; y = 2u sin(v) sin(w) ; z = u cos(v)
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with boundaries,

0 ≤ u ≤ 1 ; 0 ≤ v ≤ 2π ; 0 ≤ w ≤ π

Let sw = sin(w), cw = cos(w), sv = sin(v), and cv = cos(v). Then the differential
volume is

dV =

∣∣∣∣∣∣∣∣∣∣∣
det

⎛⎜⎜⎜⎝
svcw ucvcw −usvsw

2svsw 2ucvsw 2usvcw

cv −usv 0

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣∣
dudvdw

= 2u2 |sv| dudvdw

while the integrand becomes

G = 2usv (cw + sw) − ucv + 3

Combining all the elements together, we can compute the volume integral as∫ π

0

∫ 2π

0

∫ 1

0
G(u, v, w)

(
2u2 |sv| dudvdw

) = 8π

Alternatively, we could use the original variables x, y and z. Doing so, the
differential volume is dV = dxdydz, whereas the boundary of the volume of
integration is given by

Surface boundary: −
√

1 − z2 −
(y

2

)2
≤ x ≤

√
1 − z2 −

(y
2

)2

−2
√

1 − z2 ≤ y ≤ 2
√

1 − z2

−1 ≤ z ≤ 1

Thus the volume integral is given by∫ 1

−1

∫ 2
√

1−z2

−2
√

1−z2

∫ √
1−z2−(y/2)2

−
√

1−z2−(y/2)2
(2x + y − z) dxdydz = 8π

which is the same answer obtained by using the parameterized description.

E.4 Gauss-Legendre Quadrature

The n-point Gauss-Legendre quadrature is a numerical approximation of the integral∫ +1
−1 F (x)dx that satisfies two conditions:

1. The integral is approximated by a linear combination of n values of F (x), each
evaluated at −1 ≤ xi ≤ 1, that is,

∫ 1

−1
F (x)dx ≈

n∑
i=1

WiF (xi) (E.26)

and
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2. When F (x) is a (2n − 1)th order polynomial, the approximation becomes an
equality, that is, if F (x) =∑2n−1

m=0 amxm,

∫ 1

−1

(
2n−1∑
m=0

amxm

)
dx =

n∑
i=1

Wi

(
2n−1∑
m=0

amxm
i

)
(E.27)

Approximations having the form given in (E.26) are generally called quadrature
formulas. Other quadrature formulas include Newton-Cotes’ formulas, Simpson’s
formulas, and trapezoidal formulas. The conditions given in (E.27) distinguish the
values found for Wi and xi as being Gauss-Legendre quadrature parameters.

A direct approach to determine Wi and xi is obtained by generating the required
equations using (E.27): ∫ 1

−1

(
2n−1∑
m=0

amxm

)
dx =

n∑
i=1

Wi

(
2n−1∑
m=0

amxm
i

)
2n−1∑
m=0

amxm
∫ 1

−1
xmdx =

2n−1∑
m=0

am

n∑
i=1

Wixm
i

2n−1∑
m=0

am

(∫ 1

−1
xmdx −

n∑
i=1

Wixm
i

)
= 0 (E.28)

Because the condition in (E.27) should be true for any polynomial of order
(2n − 1), (E.28) should be true for arbitrary values of am, m = 0, 1, . . . , (2n − 1).
This yields

n∑
i=1

Wixm
i = γm for m = 0, 1, . . . , (2n − 1) (E.29)

where

γm =
∫ 1

−1
xmdx =

⎧⎨⎩
2/(m + 1) if m is even

0 if m is odd
(E.30)

This means that we have 2n independent equations that can be used to solve the
2n unknowns: xi and Wi. Unfortunately, the equation becomes increasingly difficult
to solve as n gets larger. This is due to the nonlinear terms such as Wixm

i appearing
in (E.29).

An alternative approach is to separate the problem of identifying the xi values
from the problem of identifying the Wi values. To do so, we use Legendre polyno-
mials and take advantage of their orthogonality properties.

We first present some preliminary formulas:

1. Any polynomial of finite order can be represented in terms of Legendre poly-
nomials, that is,

q∑
i=0

cixi =
q∑

j=0

bjPj (x) (E.31)
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where Pj (x) is the Legendre polynomial of order j . (To obtain a Legendre
polynomial, one can either use definition given in (I.31) or use Rodriguez’s
formula given in (9.46).)

2. Let R(2n−1)(x) be a polynomial of order (2n − 1) formed by the product of a
polynomial of order (n − 1) and a Legendre polynomial of order n, that is,

R(2n−1)(x) =
(

n−1∑
i=0

cixi

)
(Pn(x)) (E.32)

With this definition, the integral of R(2n−1)(x), with limits from −1 to 1, is
guaranteed to be zero. To see this, we apply (E.31) to the first polynomial on the
right-hand side of (E.32), integrate both sides, and then apply the orthogonality
properties of Legendre polynomials (cf. (9.48)), that is,∫ 1

−1
R(2n−1)(x)dx =

∫ 1

−1

[(
n−1∑
i=0

biPi(x)

)
(Pn(x))

]
dx

=
n−1∑
i=0

bi

[∫ 1

−1
Pi(x)Pn(x)dx

]
= 0 (E.33)

3. One can always decompose a (2n − 1)th order polynomial, say, ψ(2n−1)(x), into
a sum of two polynomials

ψ(2n−1)(x) = ζ(n−1) (x) + R(2n−1) (x) (E.34)

where ζ(n−1)(x) is an (n − 1)th order polynomial and R(2n−1) (x) is a (2n − 1)th

order polynomial that satisfies the form given in (E.32).
To show this fact constructively, let r1, . . . , rn be the roots of the nth-order

Legendre polynomial, Pn(x). By virtue of the definition given in (E.32), we see
that R(2n−1) (ri) = 0 also. Using this result, we can apply each of the n roots to
(E.34) and obtain

ψ(2n−1)(ri) = ζ(n−1) (ri) i = 1, 2, . . . ,n (E.35)

One can then obtain ζ(n−1)(x) to be the unique (n − 1)th order polynomial that
passes through n points given by

(
ri, ψ(2n−1)(ri)

)
. Subsequently, R(2n−1)(x) can

be found by subtracting ζ(n−1)(x) from ψ(2n−1)(x).
4. Using the decomposition given in (E.34) and the integral identity given in

(E.33), an immediate consequence is the following identity:∫ 1

−1
ψ(2n−1)(x)dx =

∫ 1

−1
ζ(n−1)(x)dx (E.36)

This means the integral of an (2n − 1)th order polynomial can always be
replaced by the integral of a corresponding (n − 1)th order polynomial.

We now use the last two results, namely (E.35) and (E.36), to determine the
Gauss-Legendre parameters. Recall (E.27), which is the condition for a Gauss-
Legendre quadrature, and apply it to ψ(2n−1)(x),∫ 1

−1
ψ(2n−1)(x)dx =

n∑
i=1

Wiψ(2n−1)(xi) (E.37)
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Now set xi = ri, that is, the roots of the nth order Legendre polynomial. Next, apply
(E.35) on the right-hand side, and apply (E.36) on the left-hand side of the equation:

∫ 1

−1
ψ(2n−1)(x)dx =

n∑
i=1

Wiψ(2n−1)(ri)

∫ 1

−1
ζ(n−1)(x)dx =

n∑
i=1

Wiζ(n−1)(ri) (E.38)

Let ζ(n−1)(x) =∑n−1
k=0 bkxk. Then (E.38) becomes

∫ 1

−1

n−1∑
k=0

bkxkdx =
n∑

i=1

Wi

(
n−1∑
k=0

bkrk
i

)
n−1∑
k=0

bk

∫ 1

−1
xkdx =

n−1∑
k=0

bk

n∑
i=1

Wi rk
i

n−1∑
k=0

bk

(
n∑

i=1

Wi rk
i − γk

)
= 0 (E.39)

where

γk =
∫ 1

−1
xkdx =

⎧⎨⎩
2/(k + 1) if k is even

0 if k is odd
(E.40)

The bk value should be left arbitrary because it corresponds to a general polynomial
ψ(2n−1), as required by the second condition for a Gauss-Legendre quadrature. This
then yields n equations. In matrix form, we have

⎛⎜⎜⎜⎝
1 1 . . . 1
r1 r2 . . . rn
...

...
. . .

...
rn−1

1 rn−1
2 . . . rn−1

n

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

W1

W2
...

Wn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
γ0

γ1
...

γn−1

⎞⎟⎟⎟⎠ (E.41)

In summary, to obtain the parameters for an n-point Gauss-Legendre quadra-
ture, first solve for the roots ri of the nth-order Legendre polynomial, i = 1, . . . ,n.
After substituting these values into (E.41), we can solve for Wi, i = 1, . . . ,n.4

4 The first equation in (E.41),
∑n

i=1 Wi = 2, can be viewed as a partition of the domain −1 ≤ x ≤ 1
into n segments having widths Wi. As each of these partitions are given the corresponding heights
of F (xi = ri), the integral approximation is seen as a sum of rectangular areas. This means that the
process replaces the original shape of the integration area into a set of quadrilaterals. Hence, the
general term “quadrature.” For integrals of function in two dimensions, a similar process is called
“cubature.”
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EXAMPLE E.7. For n = 3, we have

P3(x) = x
2

(
5x2 − 3

)
whose roots are, arranged in increasing order, r1 = −√

0.6, r2 = 0 and r3 = √
0.6.

Substituting these values in (E.41),⎛⎝ 1 1 1
−√

0.6 0
√

0.6
0.6 0 0.6

⎞⎠⎛⎝ W1

W2

W3

⎞⎠ =
⎛⎝ 2

0
2/3

⎞⎠
whose solution is given by W1 = W3 = 5/9 and W2 = 8/9.

Note that r1 = −r3. This is not a coincidence but a property of Legendre
polynomials. In general, for an nth-order Legendre polynomial: (1) for n odd,
one of the roots will always be zero, and (2) each positive root will have a
corresponding negative root of the same magnitude.

Extending the results to p -dimensional box domains represented by mutually
orthogonal coordinates: {x1, . . . , xp }, the Gauss-Legendre formulas can be applied
one dimension at a time, that is,∫ 1

−1
· · ·
∫ 1

−1
[f (x1, . . . , xn)] dx1 · · · dxp

=
∫ 1

−1
· · ·
∫ 1

−1

⎡⎣ n∑
ip =1

Wip f
(
x1, . . . , xp−1, rip

)⎤⎦dx1 · · · dxp−1

...

=
n∑

i1=1

· · ·
n∑

ip =1

(
Wi1 · · · Wip

)
f (ri1 , . . . , rip ) (E.42)

where Wi and ri are the same values obtained earlier for the one-dimensional case.

E.5 Proofs of Integral Theorems

E.5.1 Proof of Green’s Lemma (Lemma 5.1)

To prove the lemma, we make use of two possible descriptions of the boundary as
given in (E.17) and (E.18).

Recalling (E.17), the domain of the surface of integration S is given by

D : ulower ≤ u ≤ uupper; φ0(u) ≤ v ≤ φ1(u)

where the closed contour C is the sum given by

C = C0,v − C1,v

where C0,v and C1,v, the curves described byφ0(u) andφ1(u), respectively, are positive
with increasing values of u.
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Applying this description to the second surface integral in (5.1),

∫
S

∂F (u, v)
∂v

dudv =
∫ uupper

ulower

(∫ φ1(u)

φ0(u)

∂F (u, v)
∂v

dv

)
du

=
∫ uupper

ulower

(F (u, φ1(u)) − F (u, φ0(u))) du

= −
∮

C
F (u, v)du (E.43)

Likewise, using (E.18), the domain of the surface of integration S is given by

D : vlower ≤ v ≤ vupper; ψ0(v) ≤ u ≤ ψ1(v)

where the closed contour C is now equal to the sum given by

C = C1,u − C0,u

where C0,v and C1,v, the curves described by ψ0(u) and ψ1(u), respectively, are
positive with increasing values of v.

Applying this domain description to the first surface integral in (5.1),

∫
S

∂G(u, v)
∂u

dudv =
∫ vupper

vlower

(∫ ψ1(v)

ψ0(v)

∂G(u, v)
∂u

dv

)
du

=
∫ vupper

vlower

(G(ψ1(v), v) − G(ψ0(v), v)) du

=
∮

C
G(u, v)dv (E.44)

Combining (E.43) and (E.44), we arrive at the formula given in Green’s lemma,

∮
C

G(u, v)dv+
∮

C
F (u, v)du =

∫
S

∂G(u, v)
∂u

dudv−
∫

S

∂F (u, v)
∂v

dudv

E.5.2 Proof of Divergence Theorem (Theorem 5.1)

In rectangular coordinates, let f be given by

f = fx δx + fy δy + fz δz

The volume integral in (5.5) can be expanded to be the sum of three terms

∫
V

∇ · f dV =
∫

V

∂ fx

∂x
dV +

∫
V

∂ fy

∂y
dV +

∫
V

∂ fz

∂z
dV (E.45)
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Figure E.9. The normal vector to the sur-
face x = ξmax(y, z) is given by N1 which
has a magnitude equal to the differential
surface, dS1.

For the first term in (E.45), we can use the following description of the volume of
integration: 5

V : zmin ≤ z ≤ zmax

ηmin(z) ≤ y ≤ ηmax(z)

ξmin(y, z) ≤ x ≤ ξmax(y, z)

to obtain the following triple integral formulation∫
V

∂ fx

∂x
dV =

∫ zmax

zmax

∫ ηmax(z)

ηmin(z)

∫ ξmax(y,z)

ξmin(y,z)

∂ fx

∂x
dxdydz

After performing the inner integration with respect to x, the result is a difference of
two surface integrals∫

V

∂ fx

∂x
dV =

∫ zmax

zmin

∫ ηmax(z)

ηmin(z)
fx(ξmax(y, z), y, z) dydz

−
∫ zmax

zmax

∫ ηmax(z)

ηmin(z)
fx(ξmin(y, z), y, z) dydz (E.46)

The first surface integral in (E.46) is with respect to the surface: S1: x = ξmax(y, z). To
determine the differential area of the surface, dS1 at a point in the surface, we can
use the position vector �r of the point in surface S1. Along the curve in the surface,
in which z is fixed, we have a tangent vector given by (∂�r/∂y) dy. Likewise, along the
curve in the surface, in which y is fixed, we have a tangent vector given by (∂�r/∂z)dz.
This is shown in Figure E.9. By taking the cross product of these two tangent vectors,
we obtain a vector N1 which is normal to surface S1 whose magnitude is the area of
the parallelogram formed by the two tangent vectors, that is,

N1 = dS1 �n1

where �n1 is the unit normal vector.
Thus, with the position vector �r along the surface given by

�r = ξmax(y, z) δx + y δy + z δz

5 This assumes that any line that is parallel to the x axis will intersect the surface boundary of region V
at two points, except at the edges of the boundary, where it touches at one point. If this assumption
is not true for V , it can always be divided into subsections for which this assumption can hold.
After applying the divergence theorem to these smaller regions, they can be added up later, and the
resulting sum can be shown to satisfy the divergence theorem.
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Figure E.10. The normal vector to the sur-
face x = ξmin(y, z) is given by N2 which has
a magnitude equal to the differential sur-
face, dS2.

we have

dS1 �n1 =
(
∂�r
∂y

× ∂�r
∂z

)
dydz

=
(
∂ξmax

∂y
δx + δy

)
×
(
∂ξmax

∂z
δx + δz

)
dydz

=
(

δx − ∂ξmax

∂z
δy − ∂ξmax

∂y
δz

)
dydz

By taking the dot product of both sides with δx,

(�n1 · δx) dS1 = dydz (E.47)

The same arguments can be used for the other surface given by x = ξmin(y, z). The
difference is that, as shown in Figure E.10, the normal vector N2 = (∂�r/∂z) × (∂�r/∂y),
and thus

(�n2 · δx) dS2 = − dydz (E.48)

Returning to equation (E.46), we can now use the results in (E.47) and (E.48) to
obtain, ∫

V

∂ fx

∂x
dV =

∫
S1

fx (�n1 · δx) +
∫

S2

fx (�n2 · δx) =
∫

S
fx δx · �n (E.49)

Following the same procedure, we could show that the other two terms in (E.45) can
be evaluated to be ∫

V

∂ fy

∂y
dV =

∫
S

fy δy · �n (E.50)∫
V

∂ fz

∂z
dV =

∫
S

fz δz · �n (E.51)

Adding the three equations: (E.49), (E.50) and (E.51), we end up with the divergence
theorem, that is,∫

V

(
∂ fx

∂x
+ ∂ fy

∂y
+ ∂ fy

∂z

)
dV =

∫
S

(
fx δx + fy δy + fz δz

)
· �n dS (E.52)
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Figure E.11. A small sphere of radius ρε removed from V , yielding
surface S1 and S2.

E.5.3 Proof of Green’s Theorem (Theorem 5.2)

First, we have

∇ · (φ∇ψ) = (∇φ · ∇ψ) + φ∇2ψ

∇ · (ψ∇φ) = (∇ψ · ∇φ) + ψ∇2φ

Subtracting both equations,

∇ · (φ∇ψ − ψ∇φ) = φ∇2ψ − ψ∇2φ

Then taking the volume integral of both sides, and applying the divergence theorem,∫
S

(φ∇ψ − ψ∇φ) · �n dS =
∫

V

(
φ∇2ψ − ψ∇2φ

)
dV

E.5.4 Proof of Gauss’ Theorem (Theorem 5.3)

Suppose the origin is not in the region bounded by S. Then,

∇ · 1
r2

δr = ∇
(

1
r2

)
· δr + 1

r2
∇ · δr

= − 2
r3

δr · δr + 1
r2

(
2
r

)
= 0

Thus with the divergence theorem,∫
S

(
1
r2

)
δr · �n dS =

∫
V

∇ ·
(

1
r2

)
δr dV = 0

Next, suppose the origin is inside S. We remove a small sphere of radius ρε, which
leaves a region having two surfaces: the original surface S1 and a spherical surface
inside given by S2 (see Figure E.11).

The reduced volume Ṽ is now bounded by S1 and S2. Because the region in Ṽ
satisfies the condition that the origin is not inside, we conclude that∫

Ṽ
∇ · 1

r2
δrdV =

∫
S1

1
r2

δr · �n dS +
∫

S2

1
r2

δr · �n dS = 0

Focusing on S2, the unit normal is given by −δr, and

1
r2

δr · �n = − 1
r2

→
∫

S2

1
r2

δr · �n dS = 4π
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Thus if the origin is inside S = S1,∫
S

1
r2

δr · �n dS = 4π

E.5.5 Proof of Stokes’ Theorem (Theorem 5.4)

Let S be parameterized by u and v, then,∮
C

f · dr =
∮

C
fxdx + fydy + fzdz

=
∮

C
fx

(
∂x
∂u

du + ∂x
∂v

dv
)

+
∮

C
fy

(
∂y
∂u

du + ∂y
∂v

dv
)

+
∮

C
fz

(
∂z
∂u

du + ∂z
∂v

dv
)

=
∮

C
f (u, v)du + g(u, v)dv (E.53)

where,

f (u, v) = fx
∂x
∂u

+ fy
∂y
∂u

+ fz
∂z
∂u

g(u, v) = fx
∂x
∂v

+ fy
∂y
∂v

+ fz
∂z
∂v

Applying Green’s lemma, (5.1), to (E.53)∮
C

( f (u, v)du + g(u, v)dv) =
∫

S

(
∂g
∂u

− ∂f
∂v

)
dudv (E.54)

The integrand of the surface integral in (E.54) can be put in terms of the curl of f as
follows:

∂g
∂u

− ∂f
∂v

=
(
∂ fx

∂u
∂x
∂v

+ fx
∂2x
∂v∂u

+ ∂ fy

∂u
∂y
∂v

+ fy
∂2y
∂v∂u

+ ∂ fz

∂u
∂z
∂v

+ fz
∂2z
∂v∂u

)
−
(
∂ fx

∂v

∂x
∂u

+ fx
∂2x
∂u∂v

+ ∂ fy

∂v

∂y
∂u

+ fy
∂2y
∂u∂v

+ ∂ fz

∂v

∂z
∂u

+ fz
∂2z
∂u∂v

)
=

∑
m=x,y,z

∑
k=x,y,z

∂Fk

∂m
∂m
∂u

∂k
∂v

−
∑

m=x,y,z

∑
k=x,y,z

∂Fk

∂m
∂m
∂v

∂k
∂u

=
(
∂ fx

∂y
∂(y, x)
∂(u, v)

+ ∂ fx

∂z
∂(z, x)
∂(u, v)

)
+
(
∂ fy

∂x
∂(x, y)
∂(u, v)

+ ∂ fy

∂z
∂(z, y)
∂(u, v)

)
+
(
∂ fz

∂x
∂(x, z)
∂(u, v)

+ ∂ fz

∂y
∂(y, z)
∂(u, v)

)
=
(
∂ fy

∂x
− ∂ fx

∂y

)
∂(x, y)
∂(u, v)

+
(
∂ fz

∂y
− ∂ fy

∂z

)
∂(y, z)
∂(u, v)

+
(
∂ fx

∂z
− ∂ fz

∂x

)
∂(z, x)
∂(u, v)

= (∇ × f) ·
(
∂(y, z)
∂(u, v)

δx + ∂(z, x)
∂(u, v)

δy + ∂(x, y)
∂(u, v)

δz

)
(E.55)
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Recall that �n dS is given by

�n dS =
(
∂(y, z)
∂(u, v)

δx + ∂(z, x)
∂(u, v)

δy + ∂(x, y)
∂(u, v)

δz

)
dudv (E.56)

Combining (E.53), (E.54), (E.55) and (E.56), will yield

∮
C

f · dr =
∫

S
(∇ × f) · �n dS

which is Stokes’ theorem.

E.5.6 Proof of Leibnitz formulas

1. One-Dimensional Case (Theorem 5.6). Using the definition of a derivative:

d
dα

(∫ h(α)

g(α)

F (α, x) dx

)
= lim

�α → 0

1
�α

(∫ h(α+�α)

g(α+�α)
F (α+�α, x)dx

−
∫ h(α)

g(α)
F (α, x)dx

)
(E.57)

The first integral in the left-hand side of (E.57) can be divided into three
parts,

∫ h(α+�α)

g(α+�α)

F (α+�α, x) dx =
∫ h(α+�α)

h(α)

F (α+�α, x) dx

+
∫ h(α)

g(α)

F (α+�α, x) dx +
∫ g(α)

g(α+�α)

F (α+�α, x) dx (E.58)

Furthermore, the first integral in the left-hand side of (E.58) can be approxi-
mated by the trapezoidal rule,

∫ h(α+�α)

h(α)

F (α+�α, x) dx ≈ 1
2

[
F
(
α+�α,h(α+�α)

)
+ F

(
α+�α,h(α)

)] (
h(α+�α) − h(α)

)
(E.59)

Likewise, we can also approximate the third integral in the left-hand side of
(E.58) as

∫ g(α)

g(α+�α)

F (α+�α, x) dx ≈ 1
2

[
F
(
α+�α, g(α+�α)

)
+ F

(
α+�α, g(α)

)] (
g(α) − g(α+�α)

)
(E.60)
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Substituting (E.59) and (E.60) into (E.58), and then into (E.57),

d
dα

∫ h(α)

g(α)

F (α, x) dx = lim
�α→0

[∫ h(α)

g(α))

(
F (α+�α, x) − F (α, x)

�α

)
dx

+ F
(
α+�α,h(α+�α)

)+ F
(
α+�α,h(α)

)
2�α

(
h(α+�α) − h(α)

)
+F
(
α+�α, g(α+�α)

)+ F
(
α+�α, g(α)

)
2�α

(
g(α) − g(α+�α)

)]

=
∫ h(α)

g(α))

∂

∂α
F (α, x) dx + F (α,h(α))

dh
dα

− F (α, g(α))
dg
dα

2. Three-Dimensional Case (Theorem 5.7). From the definition of the derivative,

d
dα

∫
V (α)

f (x, y, z, α)dV

= lim
�α→0

[
1
�α

∫
V (α+�α)

f (x, y, z, α+�α)dV −
∫

V (α)
f (x, y, z, α)dV

]
By adding and subtracting the term

∫
V (α) f (x, y, z, α+�α)dV in the right-hand

side,

d
dα

∫
V (α)

f (x, y, z, α)dV

= lim
�α→0

1
�α

[∫
V (α)

f (x, y, z, α+�α)dV −
∫

V (α)
f (x, y, z, α)dV

]
+ lim

�α→0

1
�α

[∫
V (α+�α)

f (x, y, z, α+�α)dV−
∫

V (α)
f (x, y, z, α+�α)dV

]
=
∫

V (α)

∂f
∂α

dV + lim
�α→0

1
�α

[∫
V (α+�α)

f (x, y, z, α+�α)dV

−
∫

V (α)
f (x, y, z, α+�α)dV

]
(E.61)

The last group of terms in the right-hand side (E.61) is the difference of two
volume integrals involving the same integrand. We can combine these integrals
by changing the volume of integration to be the region between V (α+�α) and
V (α).∫

V (α+�α)
f (x, y, z, α+�α)dV −

∫
V (α)

f (x, y, z, α+�α)dV =∫
V (α+�α)−V (α)

f (x, y, z, α+�α)dV (E.62)

We could approximate the differential volume in (E.62) as the parallelepiped
formed by the vectors (∂�r/∂u)du, (∂�r/∂v)dv and (∂�r/∂α)dα, where u and v are
parameters used to describe surface S(α). This is shown in Figure E.12.
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Figure E.12. Graphical representation of differential volume emanating from points in S(α)
towards S(α+�α).

Recall that (
∂�r
∂u

du
)

×
(
∂�r
∂v

dv
)

= �n dS

which then gives a differential volume attached to S(α)

dV |(x,y,z)∈V (α+�α)−V (α) = ∂�r
∂α

·
(
∂�r
∂u

× ∂�r
∂u

)
dαdudv

= ∂�r
∂α

· �n dα dS

The volume integral for points bounded between the surfaces of V (α) and
V (α+�α) can now be approximated as follows:∫

V(α+�α)−V(α)

f (x, y, z, α+�α)dV ≈
∫

S(α)
f (x, y, z, α+�α)

∂�r
∂α

· �n �α dS

(E.63)

Substituting (E.63) into (E.62) and then to (E.61),

d
dα

∫
V (α)

f (x, y, z, α)dV =
∫

V (α)

∂f
∂α

dV

+ lim
�α→0

1
�α

∫
S(α)

f (x, y, z, α+�α)
∂�r
∂α

· �n�αdS

=
∫

V (α)

∂f
∂α

dV +
∫

S(α)
f (x, y, z, α)

∂�r
∂α

· �n dS

which is the Leibnitz rule for differentiation of volume integrals.
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Additional Details and Fortification
for Chapter 6

F.1 Supplemental Methods for Solving First-Order ODEs

F.1.1 General Ricatti Equation

In some cases, the solution of a first-order differential equation is aided by increasing
the order to a second-order differential equation. One such case is the generalized
Ricatti differential equation given by the following general form:

dy
dx

= P(x)y2 + Q(x)y + R(x) (F.1)

Note that when P(x) = 0, we have a first-order linear differential equation, and when
R(x) = 0, we have the Bernouli differential equation.

Using a method known as the Ricatti transformation,

y(x) = − 1
P(x)w

dw
dx

we obtain

dy
dx

= − 1
Pw

d2w

dx2
+ 1

Pw2

(
dw
dx

)2

+ 1
P2w

dP
dx

(
dw
dx

)

Py2 = 1
Pw2

(
dw
dx

)2

Qy = − Q
Pw

dw
dx

which then reduces (F.1) to be

d2w

dx2
−
(

dP(x)/dx
P(x)

+ Q(x)
)

dw
dx

+ P(x)R(x)w = 0 (F.2)

Note that (F.2) is a second-order ordinary differential equation. Nonetheless,
it is a linear differential equation, which is often easier to solve than the original
nonlinear first-order equation.

700
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EXAMPLE F.1. Consider the following differential equation:

dy
dt

= xy2 − 2
x

y − 1
x3

Noting that P(x) = x, Q(x) = −2/x and R(x) = −1/x3, the Ricatti transforma-
tion y = −(dw/dx)/(xw) converts it to a linear second-order differential equa-
tion given by

x2 d2w

dx2
+ x

dw
dx

− w = 0

which is a Euler-Cauchy equation (cf. Section 6.4.3). Thus we need another
transformation z = ln(x), which would transform the differential equation fur-
ther to be

d2w

dz2
= w

whose solution becomes,

w(z) = Ae−z + Bez → w(x) = A
1
x

+ Bx

Putting it back in terms of y,

y = − 1
xw

dw
dx

=
A
x2

− B

x
(

A
x

+ Bx
) = 1

x2

C − x2

C + x2

where C = A/B is an arbitrary constant.

F.1.2 Legendre Transformations

Usually, methods that introduce a change of variables involve only transformations
from the original independent and dependent variables, say, x and y, to new inde-
pendent and dependent variables, say, p and q. In some cases, however, we need to
consider the derivatives as separate variables in the transformations, for example,

p = p
(

x, y,
dy
dx

)
q = q

(
x, y,

dy
dx

)
dq
dp

= dq
dp

(
x, y,

dy
dx

)
(F.3)

These types of transformations are called contact transformations.
One particular type of contact transformation is the Legendre transformation.

This type of transformation is very useful in the field of thermodynamics for obtain-
ing equations in which the roles of intensive and extensive variables need to be
switched in a way that conserves the information content of the original funda-
mental equations. In the case here, the Legendre transformation is used to solve
differential equations.
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(x,y)
p

-q

x

y

Figure F.1. Description of a curve as an envelope of tan-
gent lines used for Legendre transformation rules.

The Legendre transformation takes a curve y = y(x) and obtains an equivalent
description by using an envelope generated by a family of tangent lines to the curve
at the point (x, y), that is,

y = p x + (−q) (F.4)

where p is the slope and −q is the y-intercept. This is illustrated in Figure F.1.
The Legendre transformation uses the following transformations:

p = dy
dx

; q = x
dy
dx

− y and
dq
dp

= x (F.5)

where p is the new independent variable and q is the new dependent variable. The
inverse Legendre transformations are given by

x = dq
dp

; y = p
dq
dp

− q and
dy
dx

= p (F.6)

Now consider the differential equation

f
(

x, y,
dy
dx

)
= 0 (F.7)

In terms of the new variables, we have

f
(

dq
dp

, p
dq
dp

− q, p
)

(F.8)

It is hoped that (F.8) will be easier to solve than (F.7), such as when the derivative
dy/dx appears in nonlinear form while x and y are in linear or affine forms. If this is
the case, one should be able to solve (F.8) to yield a solution of the form given by:
S(p,q) = 0. To return to the original variables, we observe that

∂S
∂p

+
(
∂S
∂q

)
dq
dp

= 0 → g(p, xp − y) + h(p, xp − y)x = 0

where g and h are functions resulting from the partial derivatives. Together with
f (x, y, p) = 0, one needs to remove the presence of p to obtain a general solu-
tion s(x, y) = 0. In some cases, if this is not possible, p would have to be left as
a parameter, and the solution will be given by curves described by x = x(p) and
y = y(p).
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In particular, Legendre transformations can be applied to a differential equa-
tions given by

y = xψ(p) + η(p) (F.9)

where ψ(p) �= p .1 For instance, one may have a situation in which the dependent
variable y is modeled empirically as a function of p = dy/dx in the form given by
(F.9). After using the Legendre transformation, we arrive at

dq
dp

+
(

1
ψ(p) − p

)
q =
(

η(p)
p − ψ(p)

)
which is a linear differential equation in variables p and q.

EXAMPLE F.2. Consider the differential equation given by(
dy
dx

)2

= x
dy
dx

+ y

then after the Legendre transformation, we obtain

dq
dp

− 1
2p

q = p
2

whose solution is given by

q = p 2

3
+ C

√
p

After taking the derivative dq/dp ,

dq
dp

= x = 2
3

p + C
2

√
p

Unfortunately, p(x) is not easily found. Instead, we could treat p as a parameter,
that is, x = x(p), and insert this back to the given equation to obtain

y = −x(α) α+ α2 ; subject to x(α) = 2
3
α+ C

2

√
α

where α is a parameter for the solution (y(α), x(α)), and C is an arbitrary
constant.

F.2 Singular Solutions

For some differential equations, a solution may exist that does not have arbitrary
constants of integration. These solutions are called singular solutions. Singular solu-
tions, if they exist for a differential equation, have a special property that it is the
envelope of the general solutions. Thus their utility is often in the determination of
the bounds of the solution domain.

For a first-order differential equation,

f
(

x, y,
dy
dx

)
= 0 (F.10)

the general solution is given by

φ(x, y,C) = 0 (F.11)

1 If ψ(p) = p , an algebraic equation results, that is, q = −η(p).
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where C is an arbitrary constant. For φ to be a singular solution, it should not be a
function of the arbitrary constant C. Thus

∂φ

∂C
= S(x, y) = 0 (F.12)

where S(x, y) is obtained with the aid of (F.11). To determine whether S(x, y) = 0 is
indeed a singular solution, one needs to check if

∂S
∂x

+ ∂S
∂y

dy
dx

= 0 (F.13)

will satisfy the original differential equation (F.10). If it does, then it is a singular
solution.

EXAMPLE F.3. Clairaut’s equation is given by

y = x
dy
dx

+
(

dy
dx

)2

(F.14)

Using the quadratic equation to find dy/dx as an explicit function of x and y,
this can be rearranged to give

dy
dx

= x
2

(
−1 ±

√
1 + 4

y
x2

)
which is an isobaric equation (cf. (6.13)). By introducing a new variable, u =
y/x2, the original differential equation can be reduced to a separable equation,
that is,

du

4u + 1 ± √
1 + 4u

= − 1
2

dx
x

whose solution is given by

ln(
√

4u + 1 ± 1) = − ln(x) + k → y = Cx + C2

where C is an arbitrary constant.
To search for the singular function, following (F.11) yields

φ(x, y,C) = y − Cx − C2 = 0 (F.15)

then
∂φ

∂C
= −x − 2C = 0 (F.16)

where C can be eliminated from (F.16) using (F.15) to obtain

S(x, y) = ±
√

x2 + 4y = 0 → y = −x2

4
(F.17)

Finally, we can check that (F.17) satisfies (F.14), thus showing that (F.17) is
indeed a singular solution of (F.14).

A simpler alternative approach to solving Clairaut’s equation is to take the
derivative of (F.14) with respect to x while letting p = dy/dx, that is,

p = p + x
dp
dx

+ 2p
dp
dx

0 = dp
dx

(x + 2p)
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Figure F.2. Plot of the general solution y1(x) =
Cx + C2 (dotted lines) and the singular solution
y2(x) = −x2/4 (solid curve).

then
dp
dx

= 0 and p = −x
2

yielding two solutions of different forms

y1 = c1x + c2 and y2 = −x2

4
+ c3

Substituting both solutions into (F.14) will result in c3 = 0 and c2 = c2
1. Thus the

general solution is given by

y1 = cx + c2

while the singular solution is given by

y2 = −x2

4

If we plot the general solution y1(x) = cx + c2 and the singular solution, y2 =
−x2/4, we see in Figure F.2 that the singular solution is an envelope for the
general solution.

F.3 Finite Series Solution of dx/dt = Ax + b(t)

The method shown here solves the linear equation with constant coefficient A given
by

d
dt

x = Ax + b(t)

subject to x(0) = x0. It is applicable also to matrices A that are not diagonalizable.
The steps of the procedure are given as follows:

1. Let the vector of eigenvalues of A[=]n × n be grouped into p distinct sets of
repeated eigenvalues, that is,

λ̂ = (λ1 · · · λp

)
with λi = (λi · · · λi

)
[=] 1 × mi

where λi �= λk when i �= k, and
∑p

i=1 mi = n.
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2. Next, define the matrix Q[=]n × n,

Q =

⎛⎜⎝ Q1
...

Qp

⎞⎟⎠ Qi =

⎛⎜⎝ q0,0 (λi) · · · q0,n−1 (λi)
...

. . .
...

qmi−1,0 (λi) · · · qmi−1,n−1 (λi)

⎞⎟⎠ [=] mi × n (F.18)

where,

qj,� (λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if � < j

�!
(�− j)!

λ(�−j)

and define the vector g(t)[=]n × 1 as

g(t) =

⎛⎜⎝ g1
...

gp

⎞⎟⎠ gi =

⎛⎜⎜⎜⎝
1
t
...

tmi−1

⎞⎟⎟⎟⎠ eλi t [=] mi × 1 (F.19)

3. Combining the results, we have

v(t) =

⎛⎜⎝ c0
...

cn−1tn−1

⎞⎟⎠ = Q−1g(t)

where Q, as given in (F.18), is a matrix of constants. The matrix exponential is
then given by

eAt =
n−1∑
�=0

v�+1(t)A� (F.20)

We can now apply (F.20) to solve the general linear equation,

d
dt

x = Ax + b(t) A is constant

In terms of Q and g(t) given in (F.18) and (F.19), respectively, we have

x(t) = H1 g(t) + H2 w (t) (F.21)

where

H1 = (
x0 Ax0 · · · An−1x0

)
Q−1

H2 = (
I[n] A · · · An−1

) (
Q−1 ⊗ I[n]

)
w (t) =

∫ t

0
g
(

t − τ
)

⊗ b
(
τ
)

dτ [=] n2 × 1

The advantage of (F.21) is the clear separation of constant matrices H1 and H2

from g(t) and w(t), respectively.2 This allows for the evaluation of integrals given in
each element of w(t) one term at a time. For instance, one could use the following

2 The span of the columns of H1 is also known as the Krylov subspace of A based on x0.
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convolution formula for the special case of bi = eσt:

∫ t

0
(t − τ)m eλ(t−τ)eστdτ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m!

(σ − λ)m+1

(
eσt − eλt

m∑
k=0

1
k!

(σ − λ)k tk

)
if λ �= σ

tm+1

m + 1
eλt if λ = σ

(F.22)

Because Q is formed by the eigenvalues of A, both H1 and H2 are completely
determined by Aand x0 alone, that is, they are both independent of b(t). A MATLAB
function linode_mats.m is available on the book’s webpage. This function can be
used to evaluate H1 and H2, with A, x0 as inputs.

EXAMPLE F.4. Consider the linear system

d
dt

x =

⎛⎜⎜⎜⎜⎜⎝
− 2 0 0

− 1
2

−2 −1
2

1 2 0

⎞⎟⎟⎟⎟⎟⎠ x +

⎛⎜⎜⎜⎜⎜⎝
1

2

− e−3t

⎞⎟⎟⎟⎟⎟⎠ ; x(0) =
⎛⎝ 1

0
1

⎞⎠

The eigenvalues of A are {−2,−1,−1}. Then, we can evaluate Q and g as

Q =
⎛⎝1 −2 4

1 −1 1
0 1 −2

⎞⎠ ; g =
⎛⎝ e−2t

e−t

te−t

⎞⎠
Matrices H1 and H2 are

H1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
1
2

−1
2

−1
2

− 1 2 1

⎞⎟⎟⎟⎟⎟⎠ H2 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0 0 0 0
1
2

0 0 −1
2

1 0 0 −1 −1
2

− 1 0 0 1 0 1 0 2 1

⎞⎟⎟⎟⎟⎟⎠
and the integrals can be evaluated to be

w (t) =
∫ t

0
g
(

t − τ
)

⊗ b
(
τ
)

dτ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 − e−2t

)
/2

1 − e−2t

e−3t − e−2t

1 − e−t

2 − 2e−t(
e−3t − e−t

)
/2

1 − (1 + t) e−t

2 − 2 (1 + t) e−t(
−e−3t + (1 − 2t) e−t

)
/4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure F.3. A plot of the solution of the sys-
tem given in Example F.4.

Note that w(0) = 0 as it should, because the initial conditions are contained
only in H1. Furthermore, note that columns 2, 3, and 7 in H2 are all zero, which
implies that the corresponding elements in w(t) are not relevant to the solution
of x(t).

Combining the results using (F.21), a plot of the solutions is shown in
Figure F.3.

F.4 Proof for Lemmas and Theorems in Chapter 6

F.4.1 Proof of Theorem 6.1: Similarity Transformations Yield
Separable-Variables Forms

Using the conditions of symmetry,

λβ−αF (x, y) = F
(
λαx, λβy

)
(F.23)

where F (x, y) = −M(x, y)/N(x, y). Taking the partial derivative of (F.23) with
respect to λ,

(β− α) λβ−α−1F (x, y) = αλα−1x
∂F
(
λαx, λβy

)
∂ (λαx)

+ βλβ−1y
∂F
(
λαx, λβy

)
∂ (λβy)

Next, fix λ = 1 to obtain

αx
∂F
∂x

+ βy
∂F
∂y

= (β− α) F

which is a linear first-order partial differential equation that is solvable using the
method of characteristics.3 The characteristic equations are given by,

dx
αx

= dy
βy

= dF
(β− α) F

3 See Section 10.1 for details on the method of characteristics.
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which yield two invariants, φ1 and φ2, given by

φ1 = yα

xβ
= u and φ2 = F

x(β−α)/α

from which general solution is obtained as

φ2 = G(φ1) → F = dy
dx

= x(β−α)/αG(u)

Taking the derivative of u with respect to x,

du
dx

= d
dx

(
yα

xβ

)
= α

u
y

dy
dx

− β
u
x

= α
u
y

x(β−α)/αG(u) − β
u
x

and with y = u1/αxβ/α,

du
dx

=
(
αu(α−1)/αG(u) − βu

) 1
x

F.4.2 Proof of Similarity Reduction of Second-Order Equations, Theorem 6.2

Using the similarity transformations,

d2̃y
d2̃x

= f
(̃

x, ỹ,
d̃y
d̃x

)
λβ−2 d2y

dx2
= f

(
λx, λβyλβ−1 dy

dx

)
λβ−2 f

(
x, y,

dy
dx

)
= f

(
λx, λβy, λβ−1 dy

dx

)
Next, we take the partial derivative of this equation with respect to λ and then set
λ = 1,

x
∂f
∂x

+ βy
∂f
∂y

+ (β− 1)
(

dy
dx

)
∂f

∂(dy/dx)
= (β− 2) f

which is a linear first-order partial differential equation. The characteristic equations4

are given by

dx
x

= dy
βy

= d(dy/dx)
(β− 1) (dy/dx)

= df
(β− 2) f

which yields three invariants, φ1, φ2, and φ3,

φ1 = y
xβ

= u

φ2 = (dy/dx)
xβ−1

= v

φ3 = f
xβ−2

4 See Section 10.1 for details on the method of characteristics.
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The general solution for the partial differential equation is then given by

φ3 = G (φ1, φ2) → f
xβ−2

= G(u, v)

We can evaluate the derivatives of u and v,

x
du
dx

= v− βu

x
dv
dx

= d2y
dx2

1
xβ−2

+ (1 − β) v = f
xβ−2

+ (1 − β) v

= G(u, v) + (1 − β) v

Dividing the last equation by the one before it,

dv
du

= G(u, v) + (1 − β) v
v− βu

F.4.3 Proof of Properties of Exponentials, Theorem 6.3

Let matrices Gi and Hj be defined as

Gi = ti

i!
Ai, Hj = sj

j !
Aj

then eAt and eAs can be expanded to be

eAt = G0 + G1 + G2 + G3 + · · ·
eAs = H0 + H1 + H2 + H3 + · · ·

taking the matrix product,

eAteAs = (G0 + G1 + G2 + G3 + · · ·) (H0 + H1 + H2 + H3 + · · ·)
= G0H0 + G1H0 + G2H0 + G3H0 + · · ·

+ G0H1 + G1H1 + G2H1 + G3H1 + · · ·
+ G0H2 + G1H2 + G2H2 + G3H2 + · · ·

+ · · ·
= Q0 + Q1 + Q2 + · · ·

where

Qk =
k∑

i=0

GiHk−i

=
k∑

i=0

(
ti

i!
Ai
)(

sk−i

(k − i)!
Ak−i

)

= 1
k!

Ak
k∑

i=0

k!
i! (k − i)!

tisk−i

= 1
k!

Ak(s + t)k
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Thus

eAteAs = I + (s + t)A + (s + t)2

2!
A2 + · · ·

= eA(s+t)

which proves (6.51). Note also that matrices eAt and eAs commute.
By letting s = −t,

eAte−At = e−AteAt = I

Thus e−At is the inverse of eAt

Now let matrices �i and �j be defined as

�i = ti

i!
Ai, �j = tj

j !
Wj

then eAt and eWt can be expanded to be

eAt = �0 +�1 +�2 +�3 + · · ·
eWt = �0 +�1 +�2 +�3 + · · ·

taking the matrix product,

eAteWt = (�0 +�1 +�2 +�3 + · · ·) (�0 +�1 +�2 +�3 + · · ·)
= �0�0 +�1�0 +�2�0 +�3�0 + · · ·

+ �0�1 +�1�1 +�2�1 +�3�1 + · · ·
+ �0�2 +�1�2 +�2�2 +�3�2 + · · ·

+ · · ·
= R0 + R1 + R2 + · · ·

where

Rk =
k∑

i=0

�i�k−i

=
k∑

i=0

(
ti

i!
Ai
)(

tk−i

(k − i)!
Wk−i

)

= 1
k!

tk
k∑

i=0

k!
i! (k − i)!

AiWk−i (F.24)

Suppose A and W commute, then

(A + W)2 = (A + W) (A + W)

= A2 + WA + AW + W2

= A2 + 2AW + W2

(A + W)3 = (A + W)2 (A + W)

= A3 + 2AWA + W2A
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+A2W + 2AW2 + W3

= A3 + 3A2W + 3AW2 + W3

...

(A + W)k =
k∑

i=0

k!
i! (k − i)!

AiWk−i

which will not be true in general unless A and W commute. Thus, if and only if A
and W commutes, (F.24) becomes

Rk = tk

k!
(A + W)k

and

eAteWt = I + t (A + W) + t2

2!
(A + W)2 + · · · (F.25)

= e(A+W)t (F.26)

Lastly, for (6.54),

d
dt

eAt = d
dt

(
I + At + t2

2!
A2 + t3

3!
A3 + · · ·

)
= A + A2t + t2

2!
A3 + t3

3!
A4 + · · ·

= A
(

I + At + t2

2!
A2 + t3

3!
A3 + · · ·

)
= AeAt = eAtA

which implies that A and eAt commutes.

F.4.4 Proof That Matrizants Are Invertible, Theorem 6.4

Using property 9 of Table 1.6,

d
dt

(
det (M)

)
=

n∑
k=1

det
(
M̂k
)

where,

M̂k =
(

m̂(k)
ij

)
; m̂(k)

ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mij if i �= k

dmij

dt
if i = k

Recalling the property of M, (cf. (6.65)),

dM
dt

= AM → dmij

dt
=

n∑
�=1

ai,� m�,j
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where aij and mij are the (i, j)th element of A and M, respectively. Then

M̂k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m11 · · · m1n

...
...(∑n

�=1 ak,� m�,1

)
· · ·

(∑n
�=1 ak,� m�,n

)
...

...
mn1 · · · mnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

det
(
M̂k
) =

n∑
�=1

ak,� det

⎛⎜⎜⎜⎜⎜⎜⎝

m11 · · · m1n
...

...
m�,1 · · · m�,n

...
...

mn1 · · · mnn

⎞⎟⎟⎟⎟⎟⎟⎠
Thus

d
dt

(
det (M)

)
= a11 det(M) + · · · + ann det(M) = trace(A) det(M)

Integrating,

det(M) = e
∫

trace(A)dt

Because the trace of A is bounded, the determinant of M will never be zero, that is,
M−1 exists.

F.4.5 Proof of Instability Theorem, Theorem 6.5.

For the general case, including nondiagonalizable matrices, we use the modal matri-
ces that transforms A to a canonical Jordan block form,

A = TJT −1

where

J =

⎛⎜⎝J1 0
. . .

0 Jm

⎞⎟⎠ ; Jk =

⎛⎜⎜⎜⎜⎝
λk 1 0

. . .
. . .
. . . 1

0 λk

⎞⎟⎟⎟⎟⎠
Let z = T −1x and Q(t) = T −1b(t), then

d
dt

z = J z + Q → d
dt

zk = Jkzk + qk

If a Jordan block is a 1 × 1 matrix, then the corresponding differential equation is
a scalar first-order differential equation. However, for larger sizes, the solution is
given by

zk(t) = eJktzk(0) +
∫ t

0
eJk(t−τ)qk(t)dτ
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where

eJkt =

⎛⎜⎜⎜⎜⎝
eλkt teλkt · · · (t�−1/(�− 1)!)eλkt

0 eλkt · · · (t�−2/(�− 2)!)eλkt

...
...

. . .
...

0 0 · · · eλkt

⎞⎟⎟⎟⎟⎠
If any of the eigenvalues have a positive real part, then some elements of z will grow
unbounded as t increases. Because x = T z, the system will be unstable under this
condition.



APPENDIX G

Additional Details and Fortification
for Chapter 7

G.1 Differential Equation Solvers in MATLAB

G.1.1 IVP Solvers

As a quick example, consider the following system:

dy1

dt
= (

2e−t + 1
)

y2 − 3y1

dy2

dt
= −2y2 (G.1)

with y1(0) = 2 and y2(0) = 1. Then the following steps are needed:

1. Build a file, say derfunc.m, to evaluate derivatives of the state space model:
function dy = derfunc(t,y)

y1 = y(1); y2 = y(2) ;
dy1 = (2*exp(-t)+1)*y2 -3*y1 ;
dy2 = -2*y2 ;
dy = [dy1;dy2] ;

2. Run the initial value solver

>> [t,y]=ode45(@derfunc,[0,2],[2;1]);

where [t,y] are the output time and states, respectively, derfunc is the file
name of the derivative function, [0,2] is the time span, and [2;1] is the vector
of initial values. A partial list of solvers that are possible alternatives to ode45
is given in Table G.1. It is often suggested to first try ode45. If the program
takes too long, then it could be due to the system being stiff. In those cases, one
can attempt to use ode15s.

There are more advanced options available for these solvers in MATLAB.
In addition to the ability to set relative errors or absolute errors, one can also
include “event handling” (e.g., modeling a bouncing ball), allow passing of model
parameters, or solving equations in mass-matrix formulations, that is,

M(t, y)
d
dt

y = f (t, y)

715
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Table G.1. Some initial value solvers for MATLAB

Solver Description Remarks

ode23 (2, 3)th Bogacki-Shampine
Embedded Runge-Kutta

ode45
(4, 5)th Dormand-Prince
Embedded Runge-Kutta

Efficient for most non-stiff problems.

ode113
Adams-Bashforth-Moulton
Predictor-Corrector

Also for non-stiff problems.
Used when state-space model is
more computationally intensive.

ode15s
Variable-order BDF
(Gear’s method)

For stiff problems. May not
be as accurate as ode45.
Allows settings/definition of
Jacobians. Can be used to solve
DAE problems with index-1.

ode23s Order-2 Rosenbrock method
For stiff problems. May solve
problems where ode15s fails.

ode23t Trapezoid method

For stiff problems. Implements
some numerical damping. Used
also to solve DAE problems
with index-1.

ode23tb
Trapezoid method stage
followed by BDF stage

For stiff problems.
May be more efficient than
ode15s at crude tolerances.

where M(t, y) is either singular (as it would be for DAE problems) and/or has
preferable sparsity patterns.

G.1.2 BVP Solver

As a quick example, consider the same system as (G.1), but instead of the initial
conditions, we wish to satisfy the following two-point boundary conditions: y1(1) =
0.3 and y2(0) = 1. Then the following steps are needed to solve this boundary value
problem in MATLAB:

1. Build the model file, say, derfunc.m, as done in the previous section.
2. Let r be the vector of residuals from the boundary conditions; that is, reformulate

the boundary conditions in a form where the the right hand side is made equal
to zero,

r =
(

y1(1) − 0.3
y2(0) − 1

)
Now build another file, say, bconds.m, that generates r,

function r = bconds(yinit,yfinal)
r1 = yfinal(1)-0.3 ;
r2 = yinit(2)-1 ;
r = [r1;r2] ;
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Note that this file does not know that the final point is at t = 1. That information
will have to come from a structured data, trialSoln, that is formed in the next
step.

3. Create a trial solution data, trialSoln,

>> trialSoln.x = linspace(0,1,10);
>> trialSoln.y = [0.5;0.2]*ones(1,10);

The data in trialSoln.x give the initial point t = 0, final point t = 1, and
10 mesh points. One can vary the mesh points so that finer mesh sizes can be
focused around certain regions. The data in trialSoln.y just give the intial
conditions repeated at each mesh point. This could also be altered to be closer
to the final solution. (Another MATLAB command bvpinit is available to
create the same initial data and has other advanced options.)

4. Run the BVP solver,

>> soln = bvp4c(@derfunc,@bconds,trialSoln);

The output, soln, is also a structured data. Thus for plotting or other postpro-
cessing of the output data, one may need to extract the t variable and y variables
as follows:

>> t=soln.x; y=soln.y;

There are several advanced options for bvp4c, including the solution of multi-
point BVPs, some singular BVPs, and BVPs containing unknown parameters. The
solver used in bvp4c is said to be finite difference method coupled with a three-stage
implicit Runge-Kutta method known as Lobatto III-a.

G.1.3 DAE Solver

Consider the van der Pol equation in Lienard coordinates given by
dy1

dt
= −y2

0 = y1 −
(

y3
2

3
− y2

)
which could be put into the mass matrix form as(

0 1
0 0

)
d
dt

(
y1

y2

)
=
( −y2

y1 −
(

y3
2

3 − y2

) )
The following steps are needed to solve this DAE problem using MATLAB.

1. Build the model file, say, daevdpol.m,

function dy = daevdpol( t, y )
y1 = y(1) ;
y2 = y(2) ;
dy1 = -y2 ;
dy2 = y1 - (y2ˆ3/3 - y2) ;
dy = [dy1;dy2] ;

2. Make sure the initial conditions are consistent. For instance, the algebraic con-
dition is satisfied for y = (−0.0997, 0.1)T .
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3. Set the parameter, options, to include the mass matrix information using the
command

>> options=odeset(’Mass’,[1,0;0,0]);

4. Run the DAE solver

>>[t,y]=ode15s(@daevdpol,[0,2],[-0.0997;0.1],options)

where [0,2] is the time span.

G.2 Derivation of Fourth-Order Runge Kutta Method

G.2.1 Fourth-Order Explicit RK Method

To obtain a fourth-order approximation, we truncate the Taylor series expansion as
follows:

yk+1 ≈ yk + h
dy
dx

∣∣∣∣
tk,yk

+ h2

2!
d2y
dx2

∣∣∣∣
tk,yk

+ h3

3!
d3y
dx3

∣∣∣∣
tk,yk

+ h4

4!
d4y
dx4

∣∣∣∣
tk,yk

(G.2)

The coefficient of hi in (G.2) can then be matched with the coefficients of h in
(7.13). This approach is very long and complicated. For instance, by expanding the
derivatives of y in terms of f and its partial derivatives,

dy
dt

= f

d2y
dt2

= ∂f
∂t

+ ∂f
∂y

f

d3y
dt3

= ∂2 f
∂t2

+ 2f
∂2 f
∂t∂y

+ ∂2 f
∂y2

f 2 + ∂f
∂t
∂f
∂y

+
(
∂f
∂y

)2

f

...

The number of terms increases exponentially with increases in the order of
differentiation. These equations, including those for higher orders, can be made
more tractable using an elegant formulation using labeled trees (see, e.g., Hairer
and Wanner [1993]).

As an alternative, we simplify the process by picking specific forms for f (t, y).
The first choice is to let f (t, y) = t3. The analytical solution from yk to yk+1 is given by

d
dt

y = t3

yk+1 − yk = (tk + h)4 − t4
k

4

yk+1 = yk + t3
kh + 3

2
t2
kh2 + tkh3 + 1

4
h4 (G.3)

Applying a four-stage Runge-Kutta method using (7.12) and (7.13),

δk1 = h t3
k

δk2 = h (tk + a2h)3

δk3 = h (tk + a3h)3
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δk4 = h (tk + a4h)3

yk+1 = yk + c1δk1 + c2δk2 + c3δk3 + c4δk4

= yk + (c1 + c2 + c3 + c4) t3
kh

+ 3 (c2a2 + c3a3 + c4a4) t2
kh2

+ 3
(
c2a2

2 + c3a2
3 + c4a2

4

)
tkh3

+ (c2a3
2 + c3a3

3 + c4a3
4

)
tkh4 (G.4)

Comparing (G.3) and (G.4),

c1 + c2 + c3 + c4 = 1

c2a2 + c3a3 + c4a4 = 1
2

c2a2
2 + c3a2

3 + c4a2
4 = 1

3

c2a3
2 + c3a3

3 + c4a3
4 = 1

4
(G.5)

Next, we choose f (t, y) = ty. The analytical solution is given by

d
dt

y = ty

ln
(

yk+1

yk

)
= (tk + h)2 − t2

k

2

yk+1 = yk exp

(
(tk + h)2 − t2

k

2

)
(G.6)

The Taylor series expansion is given by,

yk+1 = yk

[
1 + tkh + 1

2

(
1 + t2

k

)
h2

(
1
2

tk + 1
6

t3
k

)
h3

(
1
8

+ 1
4

t2
k + 1

24
t4
k

)
h4 + O(h5)

]
(G.7)

Applying the four-stage Runge-Kutta method using (7.12) and (7.13),

δk1 = h tkyk

δkj = h (tk + aj h)

⎛⎝yk +
j−1∑
�=1

bj�δk�

⎞⎠ j = 2, 3, 4

yk+1 = yk + c1δk1 + c2δk2 + c3δk3 + c4δk4

= yk
[
1 + σ1,1tkh + (σ2,0 + σ2,2t2

k

)
h2(

σ3,1tk + σ3,3t3
k

)
h3(

σ4,0 + σ4,2t2
k + σ4,4t4

k

)
h4 + O(h5)

]
(G.8)
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where,

σ1,1 =
4∑

i=1

ci

σ2,0 =
4∑

i=2

ciai

σ2,2 =
4∑

i=2

ci

i−1∑
j=1

bij

σ3,1 =
4∑

i=3

ci

i−1∑
�=2

a�bi,� +
4∑

i=2

ciai

i−1∑
j=1

bij

σ3,3 =
4∑

i=3

ci

i−2∑
�=1

i−1∑
j=�+1

bij bj�

σ4,0 =
4∑

i=3

ciai

i−1∑
j=2

bij aj

σ4,2 =
4∑

i=3

ciai

i−2∑
�=1

i−1∑
j=�+1

bij bj� +
4∑

i=3

ci

i−1∑
�=2

bi�a�
�−1∑
j=1

b�j + c4b43b32a2

σ4,4 = c4b43b32b21

Now compare the coefficients of (G.8) and (G.7). Using (7.17) and includ-
ing (G.5), we end up with the eight equations necessary for the fourth-order
approximation:

c1 + c2 + c3 + c4 = 1

c2a2 + c3a3 + c4a4 = 1
2

c2a2
2 + c3a2

3 + c4a2
4 = 1

3

c2a3
2 + c3a3

3 + c4a3
4 = 1

4

c3b32a2 + c4 (b43a3 + b42a2) = 1
6

c3a3b32a2 + c4a4 (b43a3 + b42a2) = 1
8

c3b32a2
2 + c4

(
b43a2

3 + b42a2
2

) = 1
12

c4b43b32a2 = 1
24

(G.9)

After replacing aj with
∑

� bj�, there are ten unknowns (bij and cj , i < j , j = 1, 2, 3, 4)
with only eight equations, yielding two degrees of freedom. One choice is to set
b31 = b41 = 0. This will result in the coefficients given in the tableau shown in (7.14).
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Another set of coefficients that satisfies the eight conditions given in (G.9) is the
Runge-Kutta tableau given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a B

cT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

0 0 0 0 0

1
3

1
3 0 0 0

2
3 − 1

3 1 0 0

1 1 −1 1 0

1
8

3
8

3
8

1
8

(G.10)

G.2.2 Fourth-Order Implicit Runge Kutta (Gauss-Legendre)

Let us now obtain the two-stage implicit Runge Kutta method that yields a fourth-
order approximation.1 We begin by choosing f (t, y) = y from which the full implicit
formulation becomes

δk1 = h (yk + b11δk1 + b12δk2)

δk2 = h (yk + b21δk1 + b22δk2)

or (
δk1

δk2

)
=
(

(1/h) − b11 −b12

−b21 (1/h) − b22

)−1 (
1
1

)
yk

Substituting into (7.13),

yk+1 = yk + ( c1 c2
) ( (1/h) − b11 −b12

−b21 (1/h) − b22

)−1 (
1
1

)
yk

= yk

(
1 + p1h + p2h2

1 + q1h + q2h2

)
(G.11)

where

p1 = c1 + c2 − b11 − b22

p2 = c1 (b12 − b22) + c2 (b21 − b11) + b22b11 − b12b21

q1 = −b11 − b22

q2 = b11b22 − b12b21

The analytical solution of dy/dt = y is yk+1 = ykeh. In light of the rational form
given in (G.11), we can use a fourth-order Pade’ approximation of eh instead of the
Taylor series expansion, that is,

yk+1 = yk

(
1 + (h/2) + (h2/12)
1 − (h/2) + (h2/12)

)
(G.12)

1 The usual development of the Gauss-Legendre method is through the use of collocation theory, in
which a set of interpolating Lagrange polynomials is used to approximate the differential equation
at the collocation points. Then the roots of the s-degree Legendre polynomials are used to provide
the collocation points. See, e.g., Hairer, Norsett and Wanner (1993).
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Matching the coefficients of (G.11) and (G.12), we obtain

1
2

= c1 + c2 − b11 − b22

1
12

= c1 (b12 − b22) + c2 (b21 − b11) + b22b11 − b12b21

−1
2

= −b11 − b22

1
12

= b11b22 − b12b21 (G.13)

which still leaves two degrees of freedom. A standard choice is to use the roots of
the second-degree Legendre polynomial to fix the values of a1 and a2,2 that is,

P2(t) = t2 − t + (1/6)

yielding the roots

a1 = 1
2

−
√

3
6

and a2 = 1
2

+
√

3
6

(G.14)

Also, recall the consistency condition (7.17),

1
2

−
√

3
6

= b11 + b12 and
1
2

+
√

3
6

= b21 + b22 (G.15)

From (G.13) and (G.15), we find that: c1 = c2 = 1/2, b11 = b22 = 1/4, b12 = 1/4 −√
3/6 and b21 = 1/4 + √

3/6.

G.3 Adams-Bashforth Parameters

To determine the values of bj for the Adams-Bashforth method, we choose f (y)
that facilitates the determination of the coefficients. The simplest choice is f (y) = y.
Doing so, the nth- order Adams-Bashforth method becomes

yk+1 = yk + h
m∑

j=0

bj f
(

yk−j

)
= yk + h

m∑
j=0

bj yk−j (G.16)

where m = n − 1. With f (y) = y, the analytical solution of yk+� starting at yk is given
by

yk+� = e�h yk (G.17)

Substituting this relationship to (G.16) results in

eh = 1 + h
m∑

j=0

bj e−jh (G.18)

which when expanded using Taylor’s series will yield

1 + h + h2

2!
+ h3

3!
+ · · · = 1 + h

m∑
j=0

bj

(
1 − jh + (jh)2

2!
− (jh)3

3!
+ · · ·

)

2 See Section 9.2 for a discussion on Legendre polynomials.



Appendix G: Additional Details and Fortification for Chapter 7 723

1 + h
2!

+ h2

3!
+ · · · =

m∑
j=0

bj

(
1 − jh + (jh)2

2!
− (jh)3

3!
+ · · ·

)

=
⎛⎝ m∑

j=0

bj

⎞⎠− h

⎛⎝ m∑
j=0

j bj

⎞⎠+ h2

2!

⎛⎝ m∑
j=0

j2bj

⎞⎠+ · · ·

By comparing the different coefficients of h� on both sides we get

(−1)�

�+ 1
=
{ ∑m

j=1 j � bj if � > 0∑m
j=0 bj if � = 0

or in matrix form,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

0 1 2 · · · m

...
...

...
. . .

...

0 1 2m · · · mm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1

...

bm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

− 1
2
...

(−1)m

m + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(G.19)

G.4 Variable Step Sizes for BDF

For variable step sizes, the coefficients of the multistep methods will no longer be
constant. In this section, we treat only the BDF formulas. The approach should
generally be similar for the other multistep methods.

Let hk be the step size at tk and put the BDF equation (7.38) into an equivalent
form,3

m∑
i=−1

γ(i|k) yk−i = hk f
(

yk+1

)
(G.20)

Using the same technique of finding the necessary conditions by the simple appli-
cation of the approximation to dy/dt = y, that is, f (y) = y and y = ety0, we note
that

yk−j = e(tk−j −tk+1)yk+1

Then (G.20) reduces to

m∑
i=−1

γ(i|k) e(tk−i−tk+1) yk+1 = hk yk+1

m∑
i=−1

γ(i|k)

(
1 + (tk−i − tk+1) + (tk−i − tk+1)2

2!
+ · · ·

)
= hk

3 The form (G.20), in which the derivative function f is kept on one side without unknown coefficients,
is often preferred when solving differential algebraic equations (DAE).
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For the p th-order approximation, we again let m = p − 1, and the equation will
yield⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

0 (tk+1 − tk) (tk+1 − tk−1) . . . (tk+1 − tk−p+1)

0 (tk+1 − tk)2 (tk+1 − tk−1)2
. . . (tk+1 − tk−p+1)2

...
...

...
. . .

...

0 (tk+1 − tk)p (tk+1 − tk−1)p
. . . (tk+1 − tk−p+1)p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ(−1|k)

γ(0|k)

γ(1|k)

...

γ(p−1|k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− hk

0

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(G.21)

Because the right-hand side is just −hke2, this equation can be solved directly using
Cramer’s rule and using the determinant formulas of Vandermonde matrices. The
results are

γ(�|k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p∑
j=0

tk+1 − tk
tk+1 − tk−j

if � = −1

−
(

tk+1 − tk
tk+1 − tk−�

) p∏
j≥0,j �=�

(
tk+1 − tk−j

tk−� − tk−j

)
if � ≥ 0

(G.22)

Note that this formula involves product terms that are the Lagrange formulas used
in polynomial interpolation, which is how most textbooks derive the formulas for
BDF coefficients. The approach taken here, however, has the advantage that it
automatically fixes the order of approximation when we truncated the Taylor series
of the exponential functions based on the chosen order.

When the step sizes are constant, that is, hk = h, then (tk+1 − tk−j ) = (j + 1)h,
and (G.22) can be used to find γ� independent of k. For instance, for the sixth-order
BDF method, that is, p = 6, the coefficient of yk−3 becomes

γ3 = −1
4

(
1

1 − 4
· 2

2 − 4
· 3

3 − 4
· 5

5 − 4
· 6

6 − 4

)
= 15

4

To determine the appropriate value for hk, we can first set hk = hk−1 and then
use either of the error-control methods given in Section G.5 to modify it. The step-
doubling approach might be simpler for the general nonlinear case.

G.5 Error Control by Varying Step Size

To improve accuracy, one could include more terms from the Taylor series expan-
sion. Another way is to decrease the value of h. However, decreasing h will increase
the number of points to be solved, thereby increasing the length of computation and
storage. Thus the step size has to be chosen by balancing accuracy requirements with
computational loads. In addition, the step sizes hk do not need to be uniform at each
step
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G.5.1 Estimation of Local Truncation Error

First, we need to estimate the truncation error at the kth step. Consider two integra-
tion methods: one that obtains an nth order approximation, and another that obtains
an (n + 1)th order approximation. Starting from the same value of yk, let wk+1 and
zk+1 be the update value for yk using the (n + 1)th and the nth order approximation
methods, respectively, that is, for one-step methods

wk+1 = yk + hk�(tk, yk)|(n+1)th order and zk+1 = yk + hk�(tk, yk)|(n)th order

where �(tk, yk) is a transition formula based on the particular method chosen.
Subtracting zk+1 from wk+1, we obtain an estimate of the truncation error of

f (t, y), that is,

τk+1(hk) = |wk+1 − zk+1|
hk

(G.23)

In addition, we expect that the truncation error, τk+1(hk), is of the order of hn
k, that

is, for some constant C,

τk+1(hk) = Chn
k → Chn

k = |wk+1 − zk+1|
hk

(G.24)

We want to find a different step size, hrevised
k = θhk ( θ > 0 ), such that the

truncation error using the revised step size will be less than a prescribed tolerance ε,
that is, τk+1(θhk) ≤ ε. Using (G.24),

τk+1(θhk) = (C) (θhk)n = θnChn
k = θn |wk+1 − zk+1|

hk
≤ ε

Rearranging,

θ ≤
(

εhk

|wk+1 − zk+1|
)1/n

(G.25)

To incorporate (G.25), we can set θ to be equal to the right hand side of (G.25)
with ε divided by 2, that is,

θ̂ =
(

εhk

2|wk+1 − zk+1|
)1/n

(G.26)

This would guarantee a strict inequality in (G.25).
The implementation of (G.26) is shown in the flowchart given in Figure G.1. In

the flowchart, we see that if the truncation error, τk+1, is less than the tolerance ε,
we can set yk+1 to be wk+1. Otherwise, we choose θ to be

θ = min

(
θmax, max

(
θmin, θ̂

) )
(G.27)

If τk+1 happens to be much less than ε, the scaling factor θ will be greater than unity,
which means the previous step size was unnecessarily small. Thus the step size could
be increased. However, if τk+1 is greater than ε, θwill be less than unity, which means
the step size has to be reduced to satisfy the accuracy requirements. As shown in the
flowchart, we also need to constrain the step size hk to be within a preset maximum
bound, hmax, and minimum bound, hmin.
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Figure G.1. Flowchart for error control.

G.5.2 Embedded Runge-Kutta Formulas

The error control procedure shown in the flowsheet given in Figure G.1 requires
two Runge-Kutta computations for the update of yk. One is an nth order method,
whereas the other is an (n + 1)th order method. Normally, this would mean using
two Runge-Kutta tableaus, one for each method. However, to improve efficiency,
one could find a different tableau such that both updates can share some of the
intermediate calculations of δij given in (7.13). This is done usually at a cost of
increasing more terms in (7.13). Conversely, because both tableaus are merged into
one tableau, the net change would usually mean fewer function evaluations. When
two or more tableaus are merged to share the same function evaluations, we refer
to these as embedded Runge-Kutta formulas, and the corresponding tableaus are
called embedded Runge-Kutta tableaus.

Two of the more popular embedded Runge-Kutta methods are the Fehlberg-
4-5 method and the Dormand-Prince-5-4 method. The Fehlberg tableau is given
in (G.28). The row for zk+1 (second from the bottom) is used to determine the
fourth-order update, whereas the row for wk+1 (last row) is used to determine
the fifth-order update. However, the Fehlberg method uses zk+1 (the lower order
result) as the update for yk+1 because the parameter values of the embedded
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tableau were determined to minimize errors in the fourth-order estimates. The
Dormand-Prince tableau is given in (G.29). The Dormand-Prince has a few more
additional terms than the Fehlberg tableau. It was optimized for the fifth-order esti-
mate instead. This means that the last row is the fourth-order estimate, whereas
the second to the last row is the fifth-order estimate. So the Dormand-Prince
tableau shown in (G.29) will use wk+1, a fifth-order result, as the update for yk+1. A
MATLAB code for the Fehlberg 4/5 embedded Runge-Kutta method together with
the error control algorithm shown in Figure G.1 is available on the book’s webpage as
fehlberg45.m.

F45 :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40

zk+1
25

216 0 1408
2565

2197
4104 − 1

5 0

wk+1
16

135 0 6656
12825

28561
56430 − 9

50
2

55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(G.28)

DP54 :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

zk+1
35

384 0 500
1113

125
192 − 2187

6784
11
84 0

wk+1
5179

57600 0 7571
16695

393
640 − 92097

339200
187
2100

1
40

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(G.29)
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Figure G.2. Numerical solution for Example G.1 showing varying step sizes based on error-
control strategy for tolerance ε = 10−8.

EXAMPLE G.1. Consider the following set of differential equations to model the
production of enzyme

dy1

dt
= (μ− D) y1

dy2

dt
= D (y2f − y2) − μy1

Y

μ = μmaxy2

km + y2

where Y = 0.4, D = 0.3, y2f = 4.0, μmax = 0.53, and km = 0.12 are the yield,
dilution rate, feed composition, maximum rate, and Michaelis-Menten parame-
ter, respectively. Assuming an initial condition of y(0) = (0.1, 0)T , we have the
plots shown in Figure G.2 after applying the Fehlberg 4/5 embedded Runge-
Kutta method using error control with tolerance ε = 10−8. We see that the step
sizes are smaller near t = 0 but increased as necessary.

G.5.3 Step Doubling

For implicit methods, such as the fourth-order Gauss-Legendre IRK method given
in Section 7.2.2, there are no embedded methods. One approach is to use a higher
order version and, together with the fourth-order result, obtain an estimate of the
local error to be used for step-size control.

Another method is the step-doubling approach. In this approach, one approx-
imation, zk+2 ≈ yk+2, is obtained by using the chosen implicit method twice with a
step-size of hk. Another approximation, wk+2 ≈ yk+2, is obtained by applying the
chosen implicit method once, but with a step-size of 2hk. Let Err (hk) be the local
error using a step-size of hk, which will be proportional to hn+1

k , where n is the order
of accuracy of the solver, then

Err (hk) = Chn+1
k → Err (2hk) = 2n+1Chn+1

k
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and ∣∣∣wk+2 − zk+2

∣∣∣ = 2n+1Chn+1
k − 2Chn+1

k

= (
2n+1 − 2

)
Err (hk)

or

Err (hk) =

∣∣∣wk+2 − zk+2

∣∣∣
2n+1 − 2

To control the error within a tolerance, ε, we need to change the step-size by a
factor θ, that is,

Err (θhk) ≤ ε

C (θhk)n+1 ≤
θn+1Err (hk) ≤

θn+1

∣∣∣wk+2 − zk+2

∣∣∣
2n+1 − 2

= γε

where γ < 1, for example, γ = 0.9. This yields the formula for θ based on the step-
doubling approach:

θ =
⎛⎝ γε

(
2n+1 − 2

)∣∣∣wk+2 − zk+2

∣∣∣
⎞⎠1/(n+1)

(G.30)

The MATLAB code for the Gauss-Legendre IRK is available on the book’s
webpage as glirk.m, and it incorporates the error control based on the step-
doubling method.

EXAMPLE G.2. Consider the van der Pol oscillator described by the following
equation:

dy1

dt
= y2

dy2

dt
= μ

(
1 − y2

1

)
y2 − y1

subject to the initial condition y = (1, 1)T . When μ = 500, the system becomes
practically stiff. Specifically, for the range t = 0 to t = 800, the Fehlberg 4/5
Runge Kutta will appear to “hang.” Instead, we could apply the Gauss-Legendre
Implicit Runge Kutta, together with error-control based on the step-doubling
approach using tolerance ε = 10−6. This results in the plot shown in Figure G.3,
which shows that small step sizes are needed where the slopes are nearly
vertical.
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1 Figure G.3. The response for a van der Pol oscil-

lator when μ = 500 using Gauss-Legendre IRK
method with error control based on step-doubling
procedure.

G.6 Proof of Solution of Difference Equation, Theorem 7.1

First, we can rewrite the (7.46) in terms of constants βj,� instead of cj,� as follows:

S (j,n) =
⎛⎝ kj −1∑

�=0

cj,� n�

⎞⎠ (σj )
n =
⎛⎝ kj −1∑

�=0

βj,�
n!

(n − �)!

⎞⎠ (σj )
n

=
kj −1∑
�=0

βj,� (σj )
� D�

σj

(
(σj )

n
)

where

(
D�
σj

= d�

d (σj )
�

)
. Next, apply the difference operators of (7.43) on S (j,n) in

place of y, with χ(σj ) =∑p
i=0 αi (σj )

i ,

p∑
i=0

αiQi
(
S (j,n)

)
=

kj −1∑
�=0

βj,� (σj )
� D�

σj

[ p∑
i=0

αi (σj )
n+i

]

=
kj −1∑
�=0

βj,� (σj )
� D�

σj

[
χ(σj ) (σj )

n
]

=
kj −1∑
�=0

βj,� (σj )
�

�∑
m=0

�!
m!(�− m)!

Dm
σj

[
χ(σj )

]
D�−m
σj

[
(σj )

n
]

Because σj is a kj -fold root of χ(σ) = 0,

D�
σj

[
χ(σj )

]
= 0 ; � = 0, 1, . . . ,kj − 1

→
p∑

i=0

αiQi (S (j,n)) = 0

Combining all the results,

p∑
i=0

αiQi (yn) =
M∑

j=1

( p∑
i=0

αiQi
(
S (j,n)

))
= 0
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G.7 Nonlinear Boundary Value Problems

Consider the nonlinear boundary value problems given by

d
dt

x = F (t, x) (G.31)

subject to the nonlinear boundary conditions,

q (x(0), x(T )) = 0 (G.32)

First, let us define the following vectors:

1. Let x0 be any initial value of x for the system given in (G.31).
2. Let xT be the value of x at t = T corresponding to x0. Thus

xT = xT (x0) (G.33)

and these vectors could be evaluated by using any initial value solvers such as
Runge-Kutta method after setting x0 as the initial condition.

The main idea of the shooting method is to find the appropriate value for x0

such that the boundary conditions given in (G.32) are satisfied, that is,

Find x0 such that q (x0, xT (x0)) = 0

For some small problems, a trial-and-error approach may be sufficient. However, as
the number of variables and the level of complexity increase, a systematic method
such as Newton’s method is preferable.4

Newton’s method uses an initial guess, x(0)
0 , and improves the value of x0 itera-

tively using the following update equation:

x(k+1)
0 = x(k)

0 +�x(k)
0 (G.34)

where,

�x(k)
0 = −J −1q

(
x(k)

0 , xT

(
x(k)

0

))
(G.35)

J = dq
dx0

∣∣∣∣
x0=x(k)

0

(G.36)

Once q
(

x(k)
0 , xT

(
x(k)

0

))
is close to zero, we can set x0 = x(k)

0 and solve for x(t) from
t = 0 to t = T . If the number of iterations exceeds a maximum, then either a better
initial guess is required or a different method needs to be explored.

The terms in (G.36) generate a companion set of initial value problem. Specif-
ically, J is the square Jacobian matrix of q. The added complexity stems from the
dependence of q on xT , which in turn depends on x0 through the integration process
of (G.31).

Let the boundary conditions be given as

q (x0, xT ) =

⎛⎜⎝ q1 (x01, . . . , x0n, xT 1, . . . , xTn)
...

qn (x01, . . . , x0n, xT 1, . . . , xTn)

⎞⎟⎠ = 0 (G.37)

4 The Newton-search approach is not guaranteed to converge for all systems. It is a local scheme and
thus requires a good initial guess.
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then

dq
dx0

=
(
∂q (a,b)

∂a
∂a
∂x0

)
a=x0,b=xT

+
(
∂q (a,b)

∂b
db
dx0

)
a=x0,b=xT

= Qa (x0, xT ) + Qb (x0, xT ) M (T ) (G.38)

where,

Qa =

⎛⎜⎝ η11 · · · η1n
...

. . .
...

ηn1 · · · ηnn

⎞⎟⎠ (G.39)

ηij = ∂qi (a1, . . . , an,b1, . . . ,bn)
∂aj

∣∣∣∣
ak=x0k,b�=xT�

(G.40)

Qb =

⎛⎜⎝ ω11 · · · ω1n
...

. . .
...

ωn1 · · · ωnn

⎞⎟⎠ (G.41)

ωij = ∂qi (a1, . . . , an,b1, . . . ,bn)
∂bj

∣∣∣∣
ak=x0k,b�=xT�

(G.42)

M(T ) = dxT

dx0
(G.43)

To determine M(T ), take the derivative of the original differential equation
(G.31) with respect to x0,

d
dx0

(
d
dt

x
)

= d
dx0

F (t, x)

d
dt

(
dx
dx0

)
= ∂F

∂x
dx
dx0

d
dt

M(t) = A (t, x) M(t) (G.44)

where

M(t) = dx
dx0

(G.45)

A(t, x) = ∂F
∂x

(G.46)

and

M(0) = I (G.47)

Note that A(t, x) depends on the x consistent with the x0 used. Thus the following
integration needs to be performed simultaneously:

d
dt

x = F(t, x) x(0) = x0 (G.48)

d
dt

M = A (t, x) M M(0) = I (G.49)
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=
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Figure G.4. A flowchart for nonlinear shooting implemented with Newton’s method.

Having calculated xT = x(T ) and M(T ), we can then substitute these values together
with x0 to determine Qa, Qb and dq/dx0. Thereafter, the update to x0 can be deter-
mined, and the iteration continues until the desired tolerance on ‖q‖ is obtained. A
flowchart showing the calculation sequences is given in Figure G.4.

EXAMPLE G.3. Consider the following set of differential equations:

d
dt

⎛⎝ x1

x2

x3

⎞⎠ =
⎛⎝ −k1e−2tx1x2 + k3

−k1e−2tx1x2 + k2x3

k1e−2tx1x2 − k2x3

⎞⎠
subject to the following boundary conditions:

q (x(0), x(T )) =
⎛⎝ x1(0) − x2(T ) − 0.164

x2(0)x2(T ) − 0.682
x3(0) + x3(T ) − 1.136

⎞⎠ = 0

with T = 2, k1 = 10, k2 = 3 and k3 = 1.



734 Appendix G: Additional Details and Fortification for Chapter 7

0 0.5 1 1.5 2
0

0.5

1.0

1.5

t

x x
1

x
3

x
2

Figure G.5. Solution for boundary value
problem given in Example G.3 .

We can calculate Qa and Qb to be in a form that can be evaluated readily
based on values of x0 and xT ,

Qa =
⎛⎝ 1 0 0

0 x2(T ) 0
0 0 1

⎞⎠

Qb =
⎛⎝ 0 −1 0

0 x2(0) 0
0 0 1

⎞⎠
Similarly, we can calculate A = ∂F/∂x,

A(t, x) =
⎛⎝ (−k1e−2tx2

) (−k1e−2tx1
)

0(−k1e−2tx2
) (−k1e−2tx1

)
k2(

k1e−2tx2
) (

k1e−2tx1
) −k2

⎞⎠
Using an initial guess of x(0)

0 = (1, 1, 1)T and a tolerance of ε = 1 × 10−10, it
took five iterations to converge to the following initial and final conditions:

x0 =
⎛⎝ 1.516

0.504
0.992

⎞⎠ xT =
⎛⎝ 1.083

1.352
0.144

⎞⎠
Plots of the solutions are shown in Figure G.5. (A MATLAB file nbvp.m
is available on the book’s webpage and solves this specific example. The code
contains sections that are customizable to apply to different nonlinear boundary
value problems.)

G.8 Ricatti Equation Method

Consider the linear differential equation,

d
dt

x = A(t)x + b(t) (G.50)
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with separated boundary conditions such that k conditions are specified at t = 0 and
(n − k) conditions are specified at t = T ,

Q0 x(0) = β0 (G.51)

QT x(T ) = βT (G.52)

where Q0 is a k × n matrix of constants and QT is an (n − k) × n matrix of constants.
As an alternative to the shooting method, we look for a transformation of the

original state variable given by

x(t) = S(t)z(t) (G.53)

where S(t) is an n × n transformation matrix and z(t) is the new state vector. The
aim of the transformation is to recast the original problem into a partially decoupled
problem such that the solution of first k values of z can be solved independently of
the last (n − k) values of z, that is,

d
dt

(
z1

z2

)
=
(

H11(t) 0
H21(t) H22(t)

)(
z1

z2

)
+
(

q1(t)
q2(t)

)
(G.54)

where z1(t)[=]k × 1 and z2(t)[=](n − k) × 1. In addition, the transformation will be
done such that the z1(0) can be specified from (G.51), whereas z2(T ) can be specified
from (G.52).

Thus z1 is first solved using initial value solvers to determine z1(t = T ). After-
ward, z1(T ) is combined with z2(T ), after using (G.52), to form z(t = T ). The ter-
minal condition for x(t) at t = T can then be found from (G.53). Having x(T ), the
trajectory of x(t) can be evaluated by integrating backward from t = T to t = 0.

To obtain the form in (G.54), we first apply (G.53) to the original equation,
(G.50), (

d
dt

S
)

z + S
d
dt

z = ASz + b

d
dt

z = S−1(t)
(

A(t)S(t) − d
dt

S
)

z + S−1(t)b(t)

= H(t)z + q(t)

where

S−1(t)
(

A(t)S(t) − d
dt

S
)

= H(t)

d
dt

S = A(t)S(t) − S(t)H(t) (G.55)

and

q(t) = S−1b(t) (G.56)

We can choose S to be an upper triangular matrix given by

S =
(

Ik R(t)
0 In−k

)
(G.57)

whose inverse is given by

S−1 =
(

Ik −R(t)
0 In−k

)
(G.58)
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After substitution of (G.57) into (G.55),(
0 d

dt R
0 0

)
=
(

A11 A12

A21 A22

)(
I R(t)
0 I

)
−
(

I R(t)
0 I

)(
H11 0
H21 H22

)
=
(

A11 − (H11 + RH21) A11R + A12 − RH22

A21 − H21 A21R + A22 − H22

)
By comparing elements on both sides, we have the following equations

H21 = A21

H22 = A21R + A22

H11 = A11 − RH21 = A11 − RA21

d
dt

R = A11R + A12 − RA21R − RA22 (G.59)

where the last equation is a matrix Ricatti equation.
Because H11 depends on R(t), we need to solve for z1 and R using the first k

equations of (G.54) and (G.59) as initial value problems, that is,

d
dt

z1 = (A11 − RA21) z1 + q1

d
dt

R = A11R + A12 − RA21R − RA22 (G.60)

Note that z1 is a vector, whereas R is a matrix. To determine the required initial
conditions, we can find z1(0) in terms of R(0) using (G.53) and (G.58),

z1(0) = ( Ik −R
)

x(0) (G.61)

Assume that the first k columns of Q0 in (G.51) are linearly independent5; that is,
let C be the nonsingular matrix consisting of the first k columns of Q0, then

Q0x(0) = C
(

I C−1D
)

x(0) = β0

Next, choose R(0) = −C−1D and premultiply z1(0) (in (G.61)) by C,

Cz1(0) = C
(

I C−1D
)

x(0) = β0 → z1(0) = C−1β0 (G.62)

In summary, the first phase, known as the forward-sweep phase of the Ricatti
equation method, is to solve for R(t) and z1(t), that is,

d
dt

R = A11R + A12 − RA21R − RA22 ; R(0) = −C−1D (G.63)

where Q0 =
(

C D
)

, followed by

d
dt

z1 = (A11 − RA21) z1 +
(

I −R
)

b ; z1(0) = C−1β0 (G.64)

and integrate until t = T to obtain the values of z1(T ) and R(T ).

5 If the first k columns of Q0 are not invertible, a reordering of x may be required.
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The second phase of the method is to find the conditions for x(T ) by combining
the results from the first phase with the other set of boundary conditions given by
(G.52). By partitioning QT as

QT =
(

F G
)

where F is (n − k) × n and G is (n − k) × (n − k), we get

QT x(T ) =
(

F G
)(

I R(T )
0 I

)(
z1(T )
z2(T )

)
= βT

F z1 + FR(T )z2(T ) + Gz2(T ) = βT

z2(T ) = (FR(T ) + G)−1 (βT − F z1(T )) (G.65)

which can be used to form x(T ), that is,

x(T ) =
(

I R(T )
0 I

) (
z(T )

)
(G.66)

Having evaluated x(T ) means we now have all the information at one boundary.
We could then use the original differential equations given in (G.50) and integrate
backward starting from t = T until t = 0. This second phase is also known as the
backward-sweep phase of the Ricatti equation method.

The Ricatti equation method (which is also sometimes called the invariant
embedding method) is sometimes more stable than the shooting method, espe-
cially when the process (7.55) is unstable. However, there are also situations when
the shooting methods turn out to be more stable. Thus both methods may need to
be explored in case one or the other does not yield good results. Note also that
our development of the Ricatti equation method is limited to cases with separated
boundary conditions.
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H.1 Bifurcation Analysis

The behavior around a non-hyperbolic equilibrium point can change under slight
modifications of the process parameters. Under these conditions, the system is classi-
fied as structurally unstable. By perturbing the parameter slightly, the characteristics
can sometimes yield additional equilibrium points and can change the stability of
equilibrium points. Bifuraction analysis is the study of how the structural behaviors
of the system are affected by variations in the key parameters.

For the one-dimensional case, there are three main types of bifurcations. A
summary of the different types of bifurcations for one-dimensional systems is given
in Table H.1. Included in the table are the normal forms and the corresponding
bifurcation diagram. The bifurcation diagrams show the locus of equilibrium points,
if they exist, at different values of parameter r. We use the convention that represents
the locus of stable equilibrium points by solid curves and the locus of unstable
equilibrium points by dashed curves.

The first type of bifurcation is the saddle-node. Saddle-node bifurcations are
characterized by the absence of equilibrium points to one side of the non-hyperbolic
equilibrium point, and saddle-node bifurcations are also known as blue-sky bifurca-
tions to highlight the sudden appearance of equilibrium points as if they appeared
“out of the sky.” The term “saddle-node” is more appropriate for the 2D case.
The second type of bifurcation is the transcritical bifurctation. Transcritical bifur-
cations are characterized by the intersection of two locus of equilibrium points at a
non-hyperbolic point. After both curves cross each other, their stability switch from
stable to unstable and vice versa. The third type of bifurcation is the pitchfork bifur-
cation. Pitchfork bifurcations are characterized by additional equilibrium points as
they cross the non-hyperbolic equilibrium point from a single locus curve of stable
(supercritical) or unstable (subcritical) equilibrium points. The name of this bifur-
cation comes from the bifurcation diagram (as shown in Table H.1) resembling a
pitchfork.

For cases that are more general than the given normal forms, let ẋ = f (x, r)
where x = 0 is a non-hyperbolic equilibrium point at r = 0. A Taylor series expansion
around (x, r) = (0, 0) is given by

f (x, r) = f (0, 0) + x
∂f
∂x

+ r
∂f
∂r

+ x2

2
∂2 f
∂x2

+ r2

2
∂2 f
∂r2

+ rx
∂2 f
∂r∂x

+ · · ·

738
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Table H.1. Types of bifurcations for one-dimensional systems

Type Normal form Bifurcation diagram

1 Saddle-Node ẋ = r + x2

−1 0 1
−1

0

1

r

x

unstable

stable

2 Transcritical ẋ = rx − x2

−1 0 1
−1

0

1

r

x
unstable

unstable

stable

stable

3 Pitchfork ẋ = rx − x3
(Supercritical)

−1 0 1
−1

0

1

r

x

stable

unstable

stable

stable

ẋ = rx + x3
(Subcritical)

−1 0 1
−1

0

1

r

x

unstable

stable unstable

unstable

where all the various partial derivatives are evaluated at (x, r) = (0, 0). Because
(x, r) = (0, 0) is a non-hyperbolic equilibrium point, the first two terms are zero, that
is, f (0, 0) = 0 and ∂f/∂x(0, 0) = 0.

We will truncate the series after the second-order derivatives to yield bifurcation
analysis of saddle-node bifurcations and transcritical bifurcations. This means that
equilibrium points near (x, r) = (0, 0) will be given by the roots of the second-order
polynomial in x,

α2 (r) x2 + α1 (r) x + α0(r) = 0 (H.1)



740 Appendix H: Additional Details and Fortification for Chapter 8

where

α2 (r) = 1
2
∂2 f
∂x2

α1 (r) = r
∂2 f
∂r∂x

α0 (r) = r
∂f
∂r

+ r2

2
∂2 f
∂r2

which was obtained by setting the right-hand side of the Taylor series expansion
to zero. Solving for the roots of (H.1), we find the neighboring equilibrium points
around (x, r) = (0, 0),

xeq =
−r

∂2 f
∂r∂x

±
√

r2

(
∂2 f
∂r∂x

)2

− 4
(

1
2
∂2 f
∂x2

)(
r
∂f
∂r

+ r2

2
∂2 f
∂r2

)
∂2 f
∂x2

(H.2)

For saddle-node bifurcations, consider |r| � 1. Then (H.2) will reduce to

xeq
∣∣
saddle−node = ±

√
−2r
(
∂f
∂r

)(
∂2 f
∂x2

)−1

(H.3)

which then requires

r
(
∂f
∂r

)(
∂2 f
∂x2

)−1

< 0 (H.4)

for equilibrium points to exist.
For transcritical bifurcations, we set an additional condition that ∂f/∂r(0, 0) = 0.

Then (H.2) reduces to

xeq = r
− ∂2 f
∂r∂x

±
√(

∂2 f
∂r∂x

)2

−
(
∂2 f
∂x2

)(
∂2 f
∂r2

)
∂2 f
∂x2

(H.5)

A pair of equilibrium points will then exist if the value inside the square root is
positive, plus ∂2 f/∂x2 �= 0, that is,(

∂2 f
∂r∂x

)2

−
(
∂2 f
∂x2

)(
∂2 f
∂r2

)
> 0 and

∂2 f
∂x2

�= 0 (H.6)

As r changes sign, the stability of the equilibrium points will switch, thereby giving
the character of transcritical bifurcations.

For both saddle-node and transcritical bifurcations, the stability can be assessed
by regrouping the Taylor series approximation as

ẋ ≈ α0(r) +
(
α1(r) + α2(r)x

)
x = α0(r) + β(x,r)x

where

β(x,r) = α1(r) + α2(r)x
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Figure H.1. Two-parameter bifurcation diagram.

Then applying the formulas for xeq (Equation (H.3) for saddle-node bifurcations and
Equation (H.5) for transcritical bifurcations), we find that

xeq,i is stable if β(xeq,i,r) < 0 for i = 1, 2

For pitchfork bifurcations, the Taylor series will need to include third-order
derivatives such that a third-order polynomial can be obtained for the equilib-
rium points. The computations are lengthier, but with the additional condition that
∂f/∂r(0, 0) = 0 and ∂2 f/∂x2(0, 0) = 0, the conditions simplify to the following condi-
tions

r
∂2 f
∂x∂r

∂3 f
∂x3

⎧⎨⎩
> 0 for single equilibrium points

< 0 for three equilibrium points
(H.7)

It is important to remember that all the partial derivatives given in the conditions
(H.4), (H.6), and (H.7) are evaluated at (x, r) = (0, 0).

Aside from the three type of bifurcations discussed thus far, the introduction of
one more parameter can also make the bifurcations change, including the addition or
removal of non-hyperbolic equilibrium points. This situation is known as codimen-
sion two bifurcations. An example of these types of bifurcation is the catastrophe
model given by

ẋ = f (x, r,h) = x3 − rx − h (H.8)

where r and h are parameters. A surface locus of equilibrium points is shown in
Figure H.1. In the figure, we see that the surface has a continuous fold, and thus,
dependent on the values of r and h, there can be either one, two, or three equilibrium
points. These regions can be separated by two intersecting curves as shown in the
(r,h) plane as shown in Figure H.2. The point where the two separating curves
intersect is known as the cusp point. Many physical phenomenon, such as phase
changes of material, that is, vapor liquid equilibria, are described by these types of
bifurcations or catastrophe models.

Next, consider the bifurcation diagram for xeq at r = 2 as shown in Fig-
ure H.3. When r = 2, there are two non-hyperbolic equilibrium points: one at
(x,h) = (0.816,−1.089) and another at (x,h) = (−0.816, 1.089), both of which yield
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Figure H.2. Phase diagram in the (r,h)-plane.

saddle-node bifurcations. When h > −1.089 and gradually decreased, the equilib-
rium points following the top curve in Figure H.3 will also decrease continuously.
However, as h moves past the critical value h = −1.089, the equilibrium point will
jump to follow the values of the lower curve. The opposite thing happens for the
lower curve; that is, as h gradually increases until it passes the value of 1.089, the
equilibrium point jumps to follow the upper locus of equilibrium points. This char-
acteristic of having the behavior depend on the direction of parameter change is
known as hysteresis.

The bifurcations of second-order systems include all three types of the first-order
cases, namely saddle-node, transcritical, and pitchfork bifurcations. These three
types of bifurcations are extended by means of simply adding one more differential
equation. The canonical forms are given in Table H.2. These types of bifurcations
are centered at non-hyperbolic equilibrium points that have zero eigenvalues.

The Hopf bifurcation is a type of bifurcation that is not available to one-
dimensional systems because it involves pure imaginary eigenvalues. These bifur-
cations yield the appearance or disappearance of limit cycles. A supercritical Hopf
bifurcation occurs when a stable focus can shift to a stable limit cycle. Conversely,
a subcritical Hopf bifurcation occurs when an unstable limit cycle changes to an

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

h

x

stable

stable

unstable

Figure H.3. Bifurcation diagram for (x, h) when r = 2.
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Table H.2. Normal forms for Bifurcations of 2D
Systems

Type Normal form

1 Saddle-Node ẏ = −y
ẋ = r + x2

2 Transcritical ẏ = −y
ẋ = rx − x2

3 Pitchfork Supercritical:
ẏ = −y
ẋ = rx − x3

Subcritical:
ẏ = −y
ẋ = rx + x3

4 Hopf θ̇ = ω

ρ̇ = μρ+ aρ3

Supercritical: a < 0
Subcritical: a > 0

unstable focus. The canonical form of a Hopf bifucation given in terms of polar
coordinates (ρ, θ),

dθ
dt

= ω and
dρ
dt

= μρ+ aρ3

where ρ =
√

x2 + y2 and θ = tan−1 (y/x). It can be shown that when a < 0, the system
exhibits a supercritical Hopf bifurcation. However, when a > 0, the system exhibits
a subcritical Hopf bifurcation. These are shown in Figures H.4.

It turns out that Hopf bifurcations can occur for orders ≥ 2. A general theorem
is available that prescribes a set of sufficient conditions for the existence of a Hopf
bifurcation.

THEOREM H.1. Let λh be a value of parameter λ such that the system dx/dt = f (x; λ)
has an equilibrium point xeq(λh) with the Jacobian matrix J = df/dx at x = xeq(λh)
having a pair of pure imaginary eigenvalues, ±i μ(λh) (i = √−1), whereas the rest of
the eigenvalues have nonzero real parts. In addition, let the real and imaginary parts
of the eigenvalues μ(λ) be smooth functions of parameter λ in which

d
dλ

(
Re(μ(λ))

)
�= 0

in a neighborhood around λh. Under these conditions, the system will have a Hopf
bifurcation at λ = λh.

There are several physical systems that exhibit Hopf bifurcations, such as in
the fields of biomedical science, aeronautics, fluid mechanics, and chemistry.1 In

1 A good elementary treatment of Hopf bifurcations, including several examples and exercises, can
be found in S. Strogatz, Nonlinear Dynamics and Chaos, Perseus Book Publishing, Massachusetts,
1994.
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(a) Supercritical Hopf bifurcations.

(b) Subcritical Hopf bifurcations.

Figure H.4. Phase plane plots showing supercritical and subcritical Hopf bifurcations.
(ω = 0.5).

chemistry, there are several well-known reaction systems, such as the Belousov-
Zhabotinsky (BZ) system, known collectively as oscillating chemical reactions.
Depending on the critical conditions, the systems can oscillate spontaneously. One of
the well-known examples of a Hopf bifurcation is the Brusselator reaction, which is
given in Exercise E8.19. Although it is strictly fictitious, its simplification still allows
one to understand the onset of Hopf bifurcations in real systems.



APPENDIX I

Additional Details and Fortification
for Chapter 9

I.1 Details on Series Solution of Second-Order Systems

For N = 2, the differential equation for which x = 0 is a regular singular point is
given by

x2P̃2(x)
d2y
dx2

+ xP̃1(x)
dy
dx

+ P̃0(x)y = 0 (I.1)

where

P̃2(x) = ρ̃2,0 + ρ̃2,1x + ρ̃2,2x2 + · · ·
P̃1(x) = ρ̃1,0 + ρ̃1,1x + ρ̃1,2x2 + · · ·
P̃0(x) = ρ̃0,0 + ρ̃0,1x + ρ̃0,2x2 + · · · (I.2)

and ρ̃2,0 �= 0.
The indicial equation (9.28) becomes

ρ̃0,0 + ρ̃1,0r + ρ̃2,0(r)(r − 1) = 0

ρ̃2,0r2 + (̃ρ1,0 − ρ̃2,0) r + ρ̃0,0 = 0 (I.3)

and the indicial roots are

r =
(̃ρ2,0 − ρ̃1,0) ±

√
(̃ρ2,0 − ρ̃1,0)2 − 4̃ρ0,0ρ̃2,0

2̃ρ2,0
(I.4)

We denote the larger root (if real) by ra and the other root by rb.
When the roots differ by an integer, say ra − rb = m ≥ 0,

ra + rb = 1 − ρ̃1,0

ρ̃2,0

2ra − m =

ra = 1
2

(
m + 1 − ρ̃1,0

ρ̃2,0

)
(I.5)

When the roots are equal, m = 0,

ra = 1
2

(
1 − ρ̃1,0

ρ̃2,0

)
(I.6)
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Using ra, we are guaranteed one solution, which we will denote by u(x),

u(x) =
∞∑

n=0

φ̃n(ra)xra+n (I.7)

where

φ̃n(ra) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if n = 0

−
∑n−1

k=0 Qn,k(ra)̃φk(ra)
Qn,n(ra)

if n > 0

Qn,k(ra) = ρ̃0,n−k + ρ̃1,n−k(k + ra) + ρ̃2,n−k(k + ra)(k + ra − 1)

If (ra − rb) is not an integer, the second solution, v(x), is immediately given by

v(x) =
∞∑

n=0

φ̃n(rb)xrb+n (I.8)

where

φ̃n(rb) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if n = 0

−
∑n−1

k=0 Qn,k(rb)̃φk(rb)
Qn,n(rb)

if n > 0

Qn,k(rb) = ρ̃0,n−k + ρ̃1,n−k(k + rb) + ρ̃2,n−k(k + rb)(k + rb − 1)

If the indicial roots differ by an integer, that is, m ≥ 0, we can use the d’Alembert
method of order reduction (cf. Lemma I.1 in Section I.2) to find the other solution.
For N = 2, this means the second solution is given by

v(x) = u(x)
∫

z(x)dx (I.9)

where z(x) is an intermediate function that solves a first-order differential equation
resulting from the d’Alembert order reduction method. Using u(x) as obtained in
(I.7), z(x) can be obtained by solving

x2P̃2(x)u
dz
dx

+
(

2x2P̃2(x)
du
dx

+ xP̃1(x)u
)

z = 0

1
z

dz
dx

= −
(

P̃1(x)

xP̃2(x)
+ 2

1
u

du
dx

)
(I.10)

With u, P̃2(x) and P̃1(x) defined by equations (I.7) and (I.2), respectively, the left-
hand side of (I.10) can be replaced by an infinite series,

1
z

dz
dx

= −
∞∑

n=−1

(αn + βn) xn (I.11)
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where the terms αn and βn are defined as

αn =

⎧⎪⎨⎪⎩
2ra if n = −1(
2(ra + n + 1)̃φn+1(ra) −∑n−1

k=−1 αkφ̃n−k(ra)
)

if n ≥ 0
(I.12)

βn =

⎧⎪⎨⎪⎩
ρ̃1,0/̃ρ2,0 if n = −1(̃
ρ1,n+1 −∑n−1

k=−1 βkρ̃2,n−k

)
/̃ρ2,0 if n ≥ 0

(I.13)

For (I.12), we used the fact that φ̃0(ra) = 1.
For indicial roots differing by an integer, we can use (I.5), and the coefficient for

first term involving (1/x) in (I.11) becomes

α−1 + β−1 = ρ̃1,0

ρ̃2,0
+ 2ra = m + 1

Then returning to (I.11), z can be evaluated as follows:

1
z

dz
dx

= −
(

m + 1
x

+
∞∑

n=0

(αn + βn) xn

)

ln(z) = −
(

ln
(
xm+1)+ ∞∑

n=0

(αn + βn)
n + 1

xn+1

)

z = x−(m+1) exp

[
−

∞∑
n=0

(αn + βn)
n + 1

xn+1

]

We can also expand the exponential function as a Taylor series,

exp

[
−

∞∑
n=0

(αn − βn)
n + 1

xn+1

]
= γ0 + γ1x + γ2x2 + · · ·

Due to the complexity of the definitions of γi, i = 1, 2, . . ., we just treat the γi’s as
constants for now. The Taylor series expansion is being used at this point only to
find the form needed for the second independent solution. Once the solution forms
are set, a direct substitution is used later to find the unknown coefficients. Thus we
can rewrite z as

z =

⎧⎪⎪⎨⎪⎪⎩
∑m−1

k=0 γkxk−m−1

+ γmx−1 +∑∞
n=m+1 γnxn−m−1 if m > 0

γ0x−1 +∑∞
n=1 γnxn−1 if m = 0

and

∫
zdx =

⎧⎪⎪⎨⎪⎪⎩
∑m−1

k=0 (γk/(k − m)) xk−m

+ γm ln |x| +∑∞
n=m+1 (γn/n − m) xn−m if m > 0

γ0 ln |x| +∑∞
n=1 (γn/n) xn if m = 0
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This integral can now be combined with u to yield the form for the second
independent solution, that is,

v(x) = u(x)
∫

zdx

=
( ∞∑

n=0

φ̃nxra+n

)∫
zdx

v(x) =
⎧⎨⎩

ηu ln |x| +∑∞
n=0 bnxrb+n if m > 0

u ln |x| +∑∞
n=1 bnxrb+n if m = 0

(I.14)

Note that for m = 0, the infinite series starts at n = 1 and the coefficient of
(u ln |x|) is one. The parameter η is set equal to 1 when m = 0 because η will later
be combined with a constant of integration. However, when m > 0, η should not be
fixed to 1, because η = 0 in some cases. Instead, we will set b0 = 1 in anticipation of
merging with the arbitrary constant of integration.

Having found the necessary forms of the second solution, Theorem 9.2 summa-
rizes the general solution of a second-order linear differential equation that includes
the recurrence formulas needed for the coefficients of the power series based on the
Frobenius method.

I.2 Method of Order Reduction

For an Nth-order homogenous linear differential equation given by

N∑
i=0

�i(x)
diy
dxi

= 0 (I.15)

Suppose we know one solution, say, u(x), that solves (I.15). By introducing another
function, q(x), as a multiplier to u(x), we can obtain

y = q(x)u(x) (I.16)

as another solution to (I.15) that is linearly independent from u. To evaluate q(x),
we will need to solve another linear differential equation of reduced order as given
in the following lemma:

LEMMA I.1. d’Alembert’s Method of Order Reduction
Let q(x) be given by

q(x) =
∫

z(x)dx (I.17)

where z(x) is the solution of an (N − 1)th order differential equation given by

N∑
i=1

Fi(x)
di−1z
dxi−1

= 0 (I.18)

with

Fi(x) =
N∑

k=i

k!
(k − i)!i!

�k(x)
d(k−i)u
dx(k−i)

(I.19)
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and u(x) is a known solution of (I.15). Then y = q(x)u(x) is also a solution
of (I.15).

PROOF. First, applying Leibnitz’s rule (9.6) to the nth derivative of the product y = qu,

diy
dxi

=
i∑

j=0

(
i
j

)
dj q
dxj

d(i−j)u
dx(i−j)

where (
i
j

)
= i!

j !(i − j)!

Substituting these derivatives into (I.15),

N∑
i=0

�i(x)
i∑

j=0

(
i
j

)
dj q
dxj

d(i−j)u
dx(i−j)

= 0

(
q

N∑
i=0

�i(x)
diu
dxi

)
+

N∑
i=1

�i(x)
i∑

j=1

(
i
j

)
dj q
dxj

d(i−j)u
dx(i−j)

= 0

Because u satisfies (I.15), the first group of terms vanishes. The remaining terms can
then be reindexed to yield

N∑
i=1

(
N∑

k=i

(
k
i

)
�k(x)

d(k−i)u
dx(k−i)

)
diq
dxi

= 0

Letting z = dq/dx, we end up with an (N − 1)th order linear differential equation
in z.

This method can be used repeatedly for the reduced order differential equations.
However, in doing so, we require that at least one solution is available at each stage of
the order reductions. Fortunately, from the results of the previous section, it is always
possible to find at least one solution for the differential equations using the Frobenius
method. For instance, with N = 3, the Frobenius series method will generate one
solution, say, u. Then via d’Alembert’s method, another solution given by y = qu
produces a second-order differential equation for z = dq/dt. The Frobenius series
method can generate one solution for this second-order equation, say, v. Applying
the order reduction method one more time for z = wv, we end up with having to
solve a first-order differential equation for w.1

Having solved for w, we can go backward:

z = α1v+ α2wv

q = α1

∫
vdx + α2

∫
wvdx

y = β1u + β2qu

= β1u + β2α1u
∫
vdx + β2α2u

∫
wvdx

1 The resulting first-order differential equation is always of the separable type.



750 Appendix I: Additional Details and Fortification for Chapter 9

with α1, α2, β1, and β2 as arbitrary coefficients. Thus the approach of recursive
order reduction can be used to generate the general solution for homogenous linear
differential equation. One disclaimer to this solution approach is that, although
the general solutions can be found in principle, the evaluation of the integrals via
quadrature may still be difficult. This means that in case another simpler method is
available, such as when all the indicial roots are distinct, those approaches should be
attempted first.

I.3 Examples of Solution of Regular Singular Points

In this section, we have three examples to show how Theorem 9.2, which is
the Frobenius series solution to linear second-order equations, is applied to the
cases where ra − rb is not an integer, ra − rb = 0, and ra − rb = m is a positive
integer.

EXAMPLE I.1. Given the equation

2x2 d2y
dx2

+ x(1 − x)
dy
dx

− y = 0

The terms for ρ̃i,j are ρ̃2,0 = 2, ρ̃1,0 = 1, ρ̃1,1 = −1, and ρ̃0,0 = −1, whereas
the rest are zero. The indicial roots become ra = 1 and rb = −0.5. Because the
difference is not an integer, η = 0 and bn = φ̃n(rb). The only nonzero values of
Qn,k are

Qn,n(r) = n (2n + 4r − 1) and Qn,n−1(r) = − (n − 1 + r)

The recurrence formulas are then given by

φ̃n(r) = n − 1 + r
n (2n + 4r − 1)

φ̃n−1(r) where n > 0

Thus

φ̃n(ra) = 1
2n + 3

φ̃n−1(ra) =
(

1
2n + 3

)(
1

2n + 1

)
· · ·
(

1
5

)
φ̃0

= (2n + 2)(2n) · · · 6 · 4!
(2n + 3)(2n + 2)(2n + 1) · · · 5 · 4!

= 3
2n+1(n + 1)!

(2n + 3)!

φ̃n(rb) = 1
2n

φn−1(rb) =
(

1
2n

)(
1

2(n − 1)

)
· · ·
(

1
2

)
φ̃0(rb) = 1

2nn!

and the complete solution is given by

y(x) = A
∞∑

n=0

3
2n+1(n + 1)!

(2n + 3)!
xn+1 + B

∞∑
n=0

1
2nn!

xn−(1/2)

This can be put in closed form as follows:

y(x) = A

(
−3 + 3

2

√
2π
x

ex/2 erf
(x

2

))
+ B

ex/2

√
x
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EXAMPLE I.2. Given the equation

x2 d2y
dx2

+ x
dy
dx

+ xy = 0

The terms for ρ̃i,j are ρ̃2,0 = 1, ρ̃1,0 = 1, and ρ̃0,1 = 1, whereas the rest are zero.
The indicial roots are ra = rb = 0. Because the difference is an integer with
m = 0, we have η = 1. The only nonzero values of Qn,k are

Qn,n(0) = n2 and Qn,n−1(0) = 1

Thus φ̃0(0) = 1 and for n > 0,

φ̃n(0) = − 1
n2
φ̃n−1(0) =

(−1
n2

)( −1
(n − 1)2

)
· · · (−1) = (−1)n

(n!)2

which yields the first solution u(x)

u(x) =
∞∑

n=0

(−1)n

(n!)2
xn

which could also be cast in terms of the hypergeometric function 1F2 as

u(x) = 1 − x (1F2 [1; 2, 2; −x])

For the second solution, we need σn(0),

σn(0) = (2n) φ̃n(0) = (−1)n2n
(n!)2

Because m = rb − ra = 0, we set b0 = 0, and the other coefficients are given by

bn = − Qn,n−1(0)bn−1 + σn(0)
Qn,n(0)

= − 1
n2

bn−1 − 2
(−1)n

n(n!)2
= (−1)n

(n!)2
b0 − 2

(−1)n

(n!)2
+ · · · − 2

(−1)n

n(n!)2

= −2
(−1)n

(n!)2

(
1 + 1

2
+ · · · + 1

n

)
Thus the second solution is given by

v(x) = u(x) ln(x) − 2
∞∑

n=1

(−x)n

(n!)2

(
n∑

k=1

1
k

)
and the complete solution is y = Au(x) + Bv(x).

EXAMPLE I.3. Given the equation

9x2 d2y
dx2

+ 3x
dy
dx

+ (2x − 8)y = 0

The terms for ρ̃i,j are ρ̃2,0 = 9, ρ̃1,0 = 3, ρ̃0,0 = −8, and ρ̃0,1 = 2. The indicial
roots are ra = 4/3 and rb = −2/3. The difference is an integer; then m = 2.

The only nonzero values of Qn,k are

Qn,n(r) = n
(

9n + 9(2r − 1) + 3
)

and Qn,n−1(r) = 2
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Thus φ̃0(r) = 1 and

φ̃n(r) = − 2
n (9n + 9(2r − 1) + 3)

φ̃n−1(r)

Using the larger root, ra = 4/3,

φ̃n

(
4
3

)
= −2

9n(n + 2)
φ̃n−1

(
4
3

)
=
( −2

9n(n + 2)

)( −2
9(n − 1)(n + 1)

)
· · ·
( −2

9 · 1 · 3

)
φ̃0

(
4
3

)
= (−1)n2n+1

9n(n!)(n + 2)!

The first solution is then given by

u(x) =
∞∑

n=0

(−1)n2n+1

9n(n!)(n + 2)!
xn+(4/3)

or in terms of hypergeometric functions,

u(x) = x4/3
(

1 − 2x
27

(
1F2

[
1; 2, 4; −2x

9

]))
Because m = 2, we only need φ̃1(rb) for the second solution,

φ̃1

(
−2

3

)
= −2

9(−1)
= 2

9

Next, we need σn(ra) and η,

σn(ra) = [9(2ra + 2n − 1) + 3] φ̃n (ra) = (−1)n2n+118(n + 1)
9n(n!)(n + 2)!

η = −Qm,m−1φ̃m−1(rb)
σ0(ra)

= − 2
92

For the coefficients bn, we have b0 = 1, b1 = 2/9, b2 = 0 and the rest are found
by recurrence, that is,

bn = −Qn,n−1(rb)
Qn,n(rb)

bn−1 − η
σn−m(ra)
Qn,n(rb)

= −2
9n(n − 2)

bn−1 +
(

(−1)n2n+1

9n(n − 2)!n!

)(
(n − 1)

n(n − 2)

)
= (−2)n−22

9n−2n!(n − 2)!
b2 +

(
(−1)n2n+1

9n(n − 2)!n!

)(
2

(3)(1)
+ · · · + (n − 1)

(n)(n − 2)

)

=
(

(−1)n2n+1

9n(n − 2)!n!

) n−3∑
k=0

(n − 1 − k)
(n − k)(n − 2 − k)

, for n > 2
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The second solution is then given by

v(x) = x−2/3 + 2
9

x1/3 − 2
81

u ln(x)

+
∞∑

n=3

xn−(2/3)
(

(−1)n2n+1

9n(n − 2)!n!

)(n−3∑
k=0

(n − 1 − k)
(n − k)(n − 2 − k)

)
and the complete solution is y = Au(x) + Bv(x).

I.4 Series Solution of Legendre Equations

I.4.1 Legendre Equations

The Legendre equation of order μ is given by the following equation:(
1 − x2) d2y

dx2
− 2x

dy
dx

+ μ (μ+ 1) y = 0 (I.20)

Using the series solution expanded around the ordinary point x = 0, we seek a
solution of the form

y =
∞∑

n=0

anxn

With N = 2, the coefficients ρi,j are: ρ2,0 = 1, ρ2,2 = −1, ρ1,1 = −2, and ρ0,0 =
μ (μ+ 1). Based on (9.21), the only nonzero values are for n = k, that is,

φn,n = −ρ0,0 + ρ1,1(n) + ρ2,2(n)(n − 1)
ρN,0(n + 1)(n + 2)

= −μ(μ+ 1) − n(n + 1)
(n + 1)(n + 2)

= − (μ+ n + 1)(μ− n)
(n + 1)(n + 2)

which yields the following recurrence equation:

an+2 = − (μ+ n + 1)(μ− n)
(n + 1)(n + 2)

an

When separated according to even or odd subscripts, with n ≥ 1,

a2n = (−1)n

(2n)!

n−1∏
k=0

[μ− 2(n − k)] [μ+ 2(n − k) + 1] a0 (I.21)

a2n+1 = (−1)n

(2n + 1)!

n−1∏
k=0

[μ− 2(n − k) − 1] [μ+ 2(n − k) + 2] a1 (I.22)

where a0 and a1 are arbitrary.
Let functions �2n(μ) and �2n+1(μ) be defined as

�2n(μ) = (−1)n

(2n)!

n−1∏
k=0

(μ− 2(n − k)) (μ+ 2(n − k) + 1) (I.23)

�2n+1(μ) = (−1)n

(2n + 1)!

n−1∏
k=0

(μ− 2(n − k) − 1) (μ+ 2(n − k) + 2) (I.24)
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then the solution to the Legendre equation of order μ is

y = a0

(
1 +

∞∑
n=1

�2n(μ)x2n

)
+ a1

(
x +

∞∑
n=1

�2n+1(μ)x2n+1

)
(I.25)

The two infinite series are called the Legendre functions of the second kind,
namely Leven(x) and Lodd(x), where

Leven(x) = 1 +
∞∑

n=1

�2n(μ)x2n (I.26)

Lodd(x) = x +
∞∑

n=1

�2n+1(μ)x2n+1 (I.27)

For the special case when μ = μeven is an even integer, �μeven+2j (μeven) = 0,
j = 1, . . ., and thus Leven(x) becomes a finite sum. Similarly, when μ = μodd is an
odd integer, �μodd+2j (μodd) = 0, j = 1, . . ., and Lodd(x) becomes a finite sum. In
either case, the finite sums will define a set of important polynomials. By carefully
choosing the values of a0 and a1, either of the finite polynomials can be normalized
to be 1 at x=1. If μ = μeven = 2�, we need

a0 = A(−1)�
(2�)!

2� (�!)2 (I.28)

Conversely, if μ = μodd = 2�+ 1,

a1 = A(−1)�
(2�+ 2)!

2��!(�+ 1)!
(I.29)

where A is arbitrary. Thus with these choices for a0 and a1, we can rewrite (I.25) to
be

y = APn(x) + BQn(x) (I.30)

where n is an integer. Qn is the Legendre function that is an infinite series, whereas
Pn is a finite polynomial referred to as Legendre polynomial of order n and given by

Pn(x) =
Int(n/2)∑

k=0

(−1)k [2n − 2k]!
2nk!(n − k)!(n − 2k)!

xn−2k (I.31)

where

Int(n/2) =
{

n/2 if n even
(n − 1)/2 if n odd

(I.32)

The Legendre functions,Qn(x), has a closed form that can be obtained more con-
veniently by using the method of order reduction. Applying d’Alembert’s method of
order reduction, we can setQn(x) = q(x)Pn(x), where q(x) is obtained via Lemma I.1
given in Section I.2. Applying this approach to (I.20),

0 = (
1 − x2)Pn

dz
dx

+
(

2
(
1 − x2) dPn

dx
− 2xPn

)
z

dz
z

= 2x dx
1 − x2

− 2
dPn

Pn
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z = 1

(Pn)2 exp
∫ (

2x
1 − x2

)
dx

= −1

(1 − x2) (Pn)2

Thus with q = − ∫ zdz,

Qn(x) = Pn(x)
∫ [

1

(1 − x2) (Pn(x))2

]
dx (I.33)

where we included a factor of (−1) to make it consistent with (I.26) and (I.27).

I.4.2 Associated Legendre Equation

A generalization of the Legendre equation (I.20) is the associated Legendre equation
given by

(
1 − x2) d2y

dx2
− 2x

dy
dx

+
(

n(n + 1) − m2

1 − x2

)
y = 0 (I.34)

Note that if m = 0, we get back the Legendre equation.
We now consider the situation in which n and m are nonnegative integers.

Instead of solving (I.34) by series solution, we approach the solution by using a
change of variable, namely let

w = (1 − x2)−m/2y (I.35)

With y = qw, where q = (1 − x2)m/2, the terms on the right-hand side of (I.34) can
each be divided by q and then evaluated to be

1
q

(
n(n + 1) − m2

1 − x2

)
y =

(
n(n + 1) − m2

1 − x2

)
w

−2x
q

dy
dx

= 2mx2

1 − x2
w− 2x

dw
dx

1 − x2

q
d2y
dx2

= m
[
(m − 1)x2 − 1

]
1 − x2

w− 2mx
dw
dx

+ (1 − x2) d2w

dx2

Doing so reduces (I.34) to

(
1 − x2) d2w

dx2
− 2(m + 1)x

dw
dx

+ (n − m)(n + m + 1)w = 0 (I.36)

Now let S be defined by

S(x) = APn(x) + BQn(x) (I.37)

Then S satisfies the Legendre equation given by (I.20). With f (x) = 1 − x2, df/dx =
−2x and a = n(n + 1), (I.20) can be rewritten with S replacing y, as

f
d2S
dx2

+ df
dx

dS
dx

+ aS = 0 (I.38)
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Furthermore, with d2 f/dx2 = −2 and dk f/dxk = 0 for k > 2, the mth derivative of
each term in (I.38) is, using the Leibnitz rule (9.6),

dm

dxm

(
f

d2S
dx2

)
=

m∑
k=0

(
m
k

)(
dk f
dxk

)(
d(2+m−k)S
dx(2+m−k)

)

= f

(
d(2+m)S
dx(2+m)

)
+ m

(
df
dx

)(
d(1+m)S
dx(1+m)

)

+m(m − 1)
2

(
d2 f
dx2

)(
dmS
dxm

)
dm

dxm

(
df
dx

dS
dx

)
=

m∑
k=0

(
m
k

)(
dk+1 f
dxk+1

)(
d(1+m−k)S
dx(1+m−k)

)

= df
dx

(
d(1+m)S
dx(1+m)

)
+ m

(
d2 f
dx2

)(
dmS
dxm

)
dm

dxm
(aS) = a

dmS
dxm

and adding all the terms together, we obtain

(
1 − x2) d2

dx2

(
dmS
dxm

)
− 2(m + 1)x

d
dx

(
dmS
dxm

)
+ (n − m)(n + m + 1)

(
dmS
dxm

)
= 0

(I.39)

Comparing (I.39) with (I.36),

w = dmS
dxm(

1 − x2)−m/2
y = A

dmPn

dxm
+ B

dmQn

dxm

Thus the solution to the associated Legendre equation (I.34) is

y = ÂPn,m(x) + B̂Qn,m(x) (I.40)

where Pn,m and Qn,m are the associated Legendre polynomials and associated
Legendre functions, respectively, of order n and degree m defined by2

Pn,m = (−1)m (1 − x2)m/2 dm

dxm
Pn(x)

Qn,m = (−1)m (1 − x2)m/2 dm

dxm
Qn(x) (I.41)

2 In some references, the factor (−1)m is neglected, but we chose to include it here because MATLAB
happens to use the definition given in (I.41).
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I.5 Series Solution of Bessel Equations

I.5.1

The Bessel equation of order ν is given by the following differential equation:

x2 d2y
dx2

+ x
dy
dx

+ (x2 − ν2) y = 0 (I.42)

Using a series expansion around the regular singular point x = 0, we can identify the
following coefficients: ρ̃2,0 = 1, ρ̃1,0 = 1, ρ̃0,0 = −ν2, and ρ̃0,2 = 1. The indicial roots
using (9.2) are ra = ν and rb = −ν. Applying the Frobenius method summarized in
Theorem 9.2, the only nonzero values of Qn,k are

Qn,n−2(r) = 1 and Qn,n(r) = n(n + 2r)

thus φ̃0(r) = 1, φ̃1(r) = 0, φ̃n(r) = −φ̃n−2(r)/[n(n + 2r)], for n > 1, and σn(r) = (2r +
2n)̃φn(r). Furthermore, because φ̃1(r) = 0, functions corresponding to odd subscripts
will be zero, that is,

φ̃2n+1(r) = 0 for n = 0, 1, . . .

For those with even subscripts,

φ̃2n(r) = −1
4n(n + r)

φ̃2n−2 =
( −1

4n(n + r)

)
· · ·
( −1

4(1)(1 + r)

)
φ̃0

= (−1)n

4nn!
∏n−1

k=0 (n + r − k)

Depending on the value of the order ν, we have the various cases to consider:

� Case 1: 2ν is not an integer. We have a2k+1 = b2k+1 = 0, k = 0, 1, . . ., and for n =
1, 2, . . .

a2n = (−1)n

4nn!
∏n−1

k=0 (n + ν− k)
and b2n = (−1)n

4nn!
∏n−1

k=0 (n − ν− k)

The two independent solutions are then given by

u(x) =
∞∑

n=0

(−1)nx2n+ν

4nn!
∏n−1

k=0 (n + ν− k)
and v(x) =

∞∑
n=0

(−1)nx2n−ν

4nn!
∏n−1

k=0 (n − ν− k)

These results can further be put in terms of Gamma functions (cf. (9.9)), and
after extracting constants out of the summations, we obtain

u(x) = 2ν�(ν+ 1)Jν(x) and v(x) = 2−ν�(−ν+ 1)J−ν(x)

where Jν(x) is known as the Bessel function of the first kind defined by

Jν(x) =
∞∑

n=0

(x
2

)2n+ν (−1)n

n!�(n + ν+ 1)
(I.43)

where the order ν in the definition (I.43) may or may not be an integer. Thus in
terms of Bessel functions, the complete solution, for ν not an integer, is given by

y = AJν(x) + BJ−ν(x) (I.44)
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� Case 2: 2ν is an odd integer. Let m = ra − rb = 2ν be an odd integer �. Because,
φ̃k = 0 when k is odd, the value η in (9.43) will be zero. This means that b2n =
φ̃2n(−ν), and we end up with the same result as that of case 1, that is,

y = AJν(x) + BJ−ν(x) (I.45)

� Case 3: 2ν �= 0 is an even integer. Let ν = � with � an integer. For the first root
ra = �, we have a2n = φ̃2n(�) and the first solution becomes

u(x) = 2��!J�(x) (I.46)

For the second solution, we will separate v(x) into three parts: v1 , v2, and v3,
where v1 contains the terms with b2n(x), n < �, v2 is the term with ln(x) and v3

contains the rest of the terms.

For v1, we take n < �, for which b2n = φ̃2n(−�) = (�− n − 1)!
4nn!(�− 1)!

and obtain

v1(x) =
�−1∑
n=0

x2n−�(�− n − 1)!
4nn!(�− 1)!

=
[

1
2�(�− 1)!

] �−1∑
n=0

(x
2

)2n−� (�− n − 1)!
n!

(I.47)

For v2, with m = 2�, we find that

η = −Q2�,2�−2(−�)̃φ2�−2(−�)
σ0(�)

= − 2
4��!(�− 1)!

and together with u(x) in (I.46), we obtain

v2(x) = ηu(x) ln(x) = −2
[

1
2�(�− 1)!

]
J�(x) ln(x) (I.48)

For v3, one can first show that

b2(n+�) = −Q2(n+�),2(n−1+�)(−�)b2(n−1+�) + ησ2n(�)
Q2(n+�),2(n+�)(−�)

= (−1)n

4nn!(n + �)!
b2�

+
[

1
4�(�− 1)!

] [
(−1)n

4nn!(n + �)!

][n−1∑
k=0

(
1

n − k
+ 1

n − k + �

)]

Because bm = b2� = 0, we obtain v3(x) to be

v3(x) =
[

1
2�(�− 1)!

] ∞∑
n=1

[(x
2

)2n+� (−1)n

n!(n + �)!

n∑
k=1

(
1
k

+ 1
k + �

)]
(I.49)
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Adding up (I.47), (I.48) and (I.49), we have the second solution v(x) as

v(x) = v1(x) + v2(x) + v3(x)

= −
[

1
2�(�− 1)!

]{
2J�(x) ln(x) −

�−1∑
n=0

(x
2

)2n−� (�− n − 1)!
n!

−
∞∑

n=1

(x
2

)2n+� (−1)n

n!(n + �)!

(
n∑

k=1

(
1
k

+ 1
k + �

))}
(I.50)

A more standard solution formulation known as the Weber form is given by

y = AJ�(x) + BY�(x) (I.51)

where the function Y�(x) is known as Bessel function of the second kind (also
known as the Neumann function), defined as

Y�(x) = 2
π

J�(x)
[
ln
(x

2

)
+ γ
]

− 1
π

�−1∑
n=0

(x
2

)2n−� (�− n − 1)!
n!

− 1
π

∞∑
n=0

(x
2

)2n+� (−1)n

n!(n + �)!

[
n+�∑
k=1

1
k

]
(I.52)

where γ is known as Euler’s constant, defined by

γ = lim
n→∞

[ (
1 + 1

2
+ · · · + 1

n

)
− ln(n)

]
= 0.572215664 . . . (I.53)

� Case 4: ν = 0. With η = 1, a similar procedure as in Case 3 above will lead to a
solution of the same Weber form,

y = AJ0(x) + BY0(x) (I.54)

where

Y0(x) = 2
π

J0(x)
(

ln
(x

2

)
+ γ
)

− 2
π

∞∑
n=1

(x
2

)2n (−1)n

(n!)2

(
n∑

k=1

1
k

)
(I.55)

An alternative method for computing the Bessel functions is to define the Bessel
function of the second kind as

Yν(x) = Jν(x) cos(νπ) − J−ν(x)
sin(νπ)

(I.56)

Then for ν = n, an integer, we simply take the limit, that is,

Yn(x) = lim
ν→n

Yν(x) (I.57)

This means we can unify the solutions to both cases of ν being an integer or not, as

y(x) = AJν(x) + BYν(x) (I.58)
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I.5.2 Bessel Equations of Parameter λ

A simple extension to the Bessel equation is to introduce a parameter λ in the Bessel
equation as follows

x2 d2y
dx2

+ x
dy
dx

+ (λ2x2 − ν2) y = 0 (I.59)

Instead of approaching the equation directly with a series solution, we could
simply use a change of variable, namely w = λx. Then

dx = 1
λ

dw ;
dy
dx

= λ
dy
dw

;
d2y
dx2

= λ2 d2y
dw2

Substituting these into (I.59), we get

w2 d2y
dw2

+ w
dy
dw

+ (w2 − ν2) y = 0

whose solution is given by

y = AJν(w) + BYν(w)

or

y = AJν(λx) + BYν(λx) (I.60)

I.5.3 Modified Bessel Equations and Functions

The modified Bessel equations of order ν is given by

x2 d2y
dx2

+ x
dy
dx

− (x2 + ν2) y = 0 (I.61)

which is just the Bessel equation with parameter i = √−1, that is,

x2 d2y
dx2

+ x
dy
dx

+ ((i)2x2 − ν2) y = 0

Then the solution is given by

y = AJν(ix) + BYν(ix)

Another form of the solution is given by

y = AIν(ix) + BKν(ix) (I.62)

where Iν(x) is the modified Bessel equation of the first kind of order ν defined by

Iν(x) = exp
(

−νπi
2

)
Jν(ix) (I.63)

and Kν(x) is the modified Bessel equation of the second kind of order ν defined by

Kν(x) = exp
(

(ν+ 1)πi
2

)
[Jν(ix) + iYν(ix)] (I.64)
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I.6 Proofs for Lemmas and Theorems in Chapter 9

I.6.1 Proof of Series Expansion Formula, Theorem 9.1

Assuming a series solution of the form

y =
∞∑

n=0

anxn (I.65)

the derivatives are given by

dy
dx

=
∞∑

n=1

nanxn−1 =
∞∑

n=0

(n + 1)an+1xn

d2y
dx2

=
∞∑

n=1

(n + 1)(n)an+1xn−1 =
∞∑

n=0

(n + 2)(n + 1)an+2xn

...

dNy
dxN

=
∞∑

n=0

(n + N)!
n!

an+Nxn (I.66)

After substitution of (9.18) and (I.66) into (9.17), while using (9.5),

∞∑
n=0

xn
n∑

k=0

N∑
j=0

(
ak+jρj,n−k

(k + j)!
k!

)
= 0

Because x is not identically zero, we have

n∑
k=0

N∑
j=0

(
ak+jρj,n−k

(k + j)!
k!

)
= 0 for n = 0, 1, . . . ,∞ (I.67)

For a fixed n, let

μj,k = ρj,n−k
(k + j)!

k!
→ μj,m−j =

⎧⎨⎩
ρ0,n−m if j = 0

ρj,n−m+j
∏j−1

i=0 (m − i) if j > 0

We can rearrange the summation in (I.67) to have the following structure:

j = 0 j = 1 · · · j = N
μ0,0 a0

μ0,1 μ1,0 a1

μ0,2 μ1,1
. . .

... μ1,2
. . . μN,0

μ0,n
...

. . . μN,1
...

μ1,n μN,2

. . .
...

μN,n an+N

where the group of terms to the left of am are summed up as the coefficient of
am. Note that μj,� = 0 if � < 0. In addition, we can define ρj,� = 0 for � < 0, and
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obtain μj,m−j = 0 for m − j > n. Thus the coefficients of am for m ≤ (n + N) can be
formulated as

coef (am) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ0,m +

N∑
j=1

μj,m−j if m < n + N

μN,n if m = n + N

Letting a0, a1, . . . , aN−1 be arbitrary, we have for n = 0, 1, . . .,

μN,nan+N +
n+N−1∑

m=0

am

⎛⎝μ0,m +
N∑

j=1

μj,m−j

⎞⎠ = 0

an+N = −

n+N−1∑
m=0

am

⎛⎝μ0,m +
N∑

j=1

μj,m−j

⎞⎠
μN,n

=
n+N−1∑

m=0

φn,mam

where

φn,m = (−1)

ρ0,n−m +
N∑

j=1

ρj,n−m+j

j−1∏
i=0

(m − i)

ρN,0

N∏
i=1

(n + i)

and

ρj,� = 0 � < 0

I.6.2 Proof of Frobenius Series Method, Theorem 9.2

The formula of an has already been discussed (cf. (I.7)). The same is true for when
(rb − ra) is not an integer, where we simply set η = 0 and bn = φ̃n(rb) (cf. (I.8)). Thus
the remaining case to be proved is when ra − rb = m is a positive integer.

Based on the forms given in (I.14), consider the case where m > 0. Then v,
x(dv/dx) and x2(d2v/dx2) becomes

v = ηu ln(x) +
∞∑

n=0

bnxn+rb

x
dv
dx

= η

[
u + x ln(x)

du
dx

]
+

∞∑
n=0

bn(n + rb)xn+rb

x2 d2v

dx2
= η

[
−u + 2x

du
dx

+ x2 ln(x)
d2u
dx2

]
+

∞∑
n=0

bn(n + rb)(n + rb − 1)xn+rb
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Substituting into

x2P̃2(x)
d2v

dx2
+ xP̃1(x)

dv
dx

+ P̃0(x)v = 0

we have

0 = η ln(x)
(

x2P̃2(x)
d2u
dx2

+ xP̃1(x)
du
dx

+ P̃0(x)u
)

+ η

[
P̃2(x)

(
−u + 2x

du
dx

)
+ P̃1(x)u

]

+ P̃2(x)
∞∑

n=0

bn(n + rb)(n + rb − 1)xn+rb

+ P̃1(x)
∞∑

n=0

bn(n + rb)xn+rb

+ P̃0(x)
∞∑

n=0

bnxn+rb

Because u is a solution to the differential equation, the group of terms multiply-
ing ln(x) is equal to zero. After substitution of P̃i(x) =∑∞

n=0 ρ̃i,nxn and u(x) =∑∞
n=0 φ̃n(ra)xn+ra , the equation above becomes

∞∑
n=0

xn+raη

n∑
k=0

φ̃k(ra) (̃ρ1,n−k + (2ra + 2k − 1) ρ̃2,n−k)

+
∞∑

n=0

xn+rb

n∑
k=0

bkQn,k(rb) = 0

With ra = rb + m, the first summation can be reindexed, that is,

∞∑
n=m

xn+rbη

n−m∑
k=0

φ̃k(ra) (̃ρ1,n−m−k + (2ra + 2k − 1) ρ̃2,n−m−k)

+
∞∑

n=0

xn+rb

n∑
k=0

bkQn,k(rb) = 0

Using the definition of σn(r) given in (9.40), we arrive at the working equation,(
m−1∑
n=0

xn+rb

n∑
k=0

bkQn,k(rb)

)

+ xrb+m

(
ησ0(ra) + bmQm,m(rb) +

m−1∑
k=0

bkQm,k(rb)

)

+
( ∞∑

n=m+1

xn+rb

[
ησn−m(ra) +

n∑
k=0

bkQn,k(rb)

])
= 0
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Thus for n < m, the formula for bn becomes those for φ̃n(rb). For n = m, note that
Qm,m(rb) = 0, and we have bm arbitrary, which we can set to zero. Doing so and
making the coefficient of xm+rb be equal to zero,

η = −
∑m−1

k=0 bkQm,k(rb)
σ0(ra)

For n > m > 0, each coefficient of xn+rb can be set to zero, which yields the recurrence
formula for bn,

bn = −ησn−m(ra) +∑n−1
k=0 Qn,k(rb)bk

Qn,n(rb)

Finally, if m = 0, a similar derivation can be followed, except that we can set η = 1
as discussed before. The working equation is now given by

xrb (σ0(ra) + bmQm,m(rb))

+
( ∞∑

n=1

xn+rb

[
σn−m(ra) +

n∑
k=0

bkQn,k(rb)

])
= 0

Note that for this case, ra = rb = (1 − ρ̃1,0/̃ρ2,0)/2, which means σ0 = 0. With
Q0,0(rb) = 0, b0 can be arbitrary and thus can be set to be zero. The remaining
coefficients then become

bn = −σn(ra) +∑n−1
k=0 Qn,k(rb)bk

Qn,n(rb)

I.6.3 Proof of Bessel Function Identities

1. Derivatives of Jν(x). Recall the definition of Jν(x),

Jν(x) =
∞∑

m=0

(−1)m

m!�(m + ν+ 1)

(x
2

)2m+ν

To show (9.63), multiply Jν(x) by xν and then take the derivative with respect
to x,

d
dx

(xνJν(x)) = d
dx

[ ∞∑
m=0

(−1)mx2m+2ν

m!�(m + ν+ 1)22m+ν

]

=
∞∑

m=0

(−1)m(2m + 2ν)x2m+2ν−1

m!�(m + ν+ 1)22m+ν

= xν
∞∑

m=0

(−1)m

m!�(m + ν)

(x
2

)2m+ν−1

= xνJν−1(x)
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To show (9.64), multiply Jν(x) by x−ν and then take the derivative with respect
to x,

d
dx

(
x−νJν(x)

) = d
dx

[ ∞∑
m=0

(−1)mx2m

m!�(m + ν+ 1)22m+ν

]

=
∞∑

m=1

(−1)m(2m)x2m−1

m!�(m + ν+ 1)22m+ν

=
∞∑

m=1

(−1)mx2m−1

(m − 1)!�(m + ν+ 1)22m+ν−1

= −x−ν
∞∑

m=0

(−1)m

m!�(m + ν+ 2)

(x
2

)2m+ν+1

= −x−νJν+1(x)

To show (9.65), expand the derivative operation on xνJν(x)

d
dx

(xνJν(x)) = νxν−1Jν(x) + xν
d
dx

Jν(x)

and equate with (9.63) to obtain

νxν−1Jν(x) + xν
d
dx

Jν(x) = xνJν−1(x)

d
dx

Jν(x) = Jν−1(x) − ν

x
Jν(x)

To show (9.66), expand the derivative operation on x−νJν(x)

d
dx

(
x−νJν(x)

) = −νx−ν−1Jν(x) + x−ν d
dx

Jν(x)

and equate with (9.64) to obtain

−νx−ν−1Jν(x) + x−ν d
dx

Jν(x) = −x−νJν+1(x)

d
dx

Jν(x) = −Jν+1(x) + ν

x
Jν(x)

2. Derivatives of Yν(x). Recall the definition of Yν(x),

Yν(x) = 2
π

[
ln
(x

2

)
+ γ
]

Jν(x) − 1
π

ν−1∑
m=0

(ν− m − 1)!
m!

(x
2

)2m−ν

− 1
π

∞∑
m=1

(−1)m

m!(m + ν)!

(x
2

)2m+ν
[

m∑
k=1

1
k

]

− 1
π

∞∑
m=0

(−1)m

m!(m + ν)!

(x
2

)2m+ν
[

m+ν∑
k=1

1
k

]
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To show (9.67), multiply Yν(x) by xν and then take the derivative with respect
to x, while incorporating (9.63),

d
dx

(xνYν(x)) = 2
π

d
dx

([
ln
(x

2

)
+ γ
]

xνJν(x)
)

− 1
π

d
dx

ν−1∑
m=0

(ν− m − 1)!x2m

m!22m−ν

− 1
π

d
dx

∞∑
m=1

(−1)mx2m+2ν

m!(m + ν)!22m+ν

[
m∑

k=1

1
k

]

− 1
π

d
dx

∞∑
m=0

(−1)mx2m+2ν

m!(m + ν)!22m+ν

[
m+ν∑
k=1

1
k

]

= 2
π

xν−1Jν(x) + 2
π

[
ln
(x

2

)
+ γ
]

xνJν−1(x)

− 1
π

ν−1∑
m=1

(ν− m − 1)!x2m−1

(m − 1)!22m−ν−1

− 1
π

∞∑
m=1

(−1)mx2m+2ν−1

m!(m + ν− 1)!22m+ν−1

[
m∑

k=1

1
k

]

− 1
π

∞∑
m=0

(−1)mx2m+2ν−1

m!(m + ν− 1)!22m+ν−1

[
m+ν−1∑

k=1

1
k

]

− 2
π

xν−1
∞∑

m=0

(−1)m

m!(m + ν)!

(x
2

)2m+ν

= 2
π

[
ln
(x

2

)
+ γ
]

xνJν−1(x)

− 1
π

xν
ν∑

m=0

(ν− m)!
(m)!

(x
2

)2m−ν+1

− 1
π

xν
∞∑

m=1

(−1)m

m!(m + ν− 1)!

(x
2

)2m+ν−1
[

m∑
k=1

1
k

]

− 1
π

xν
∞∑

m=0

(−1)m

m!(m + ν− 1)!

(x
2

)2m+ν−1
[

m+ν−1∑
k=1

1
k

]

= xνYν−1(x)
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To show (9.68), multiply Yν(x) by x−ν and then take the derivative with respect
to x, while incorporating (9.64),

d
dx

(
x−νYν(x)

) = 2
π

d
dx

([
ln
(x

2

)
+ γ
]

x−νJν(x)
)

− 1
π

d
dx

ν−1∑
m=0

(ν− m − 1)!x2m−2ν

m!22m−ν

− 1
π

d
dx

∞∑
m=1

(−1)mx2m

m!(m + ν)!22m+ν

[
m∑

k=1

1
k

]

− 1
π

d
dx

∞∑
m=0

(−1)mx2m

m!(m + ν)!22m+ν

[
m+ν∑
k=1

1
k

]

= 2
π

x−ν−1Jν(x) − 2
π

[
ln
(x

2

)
+ γ
]

x−νJν+1(x)

+ 1
π

ν−1∑
m=0

(ν− m)!x2m−2ν−1

m!22m−ν−1

− 1
π

∞∑
m=1

(−1)mx2m−1

(m − 1)!(m + ν)!22m+ν−1

[
m∑

k=1

1
k

]

− 1
π

∞∑
m=1

(−1)mx2m−1

(m − 1)!(m + ν)!22m+ν−1

[
m+ν∑
k=1

1
k

]

= − 2
π

[
ln
(x

2

)
+ γ
]

x−νJν+1(x)

+ 1
π

x−ν
ν∑

m=0

(ν− m)!
(m)!

(x
2

)2m−ν−1

+ 1
π

x−ν
∞∑

m=1

(−1)m

m!(m + ν+ 1)!

(x
2

)2m+ν+1
[

m∑
k=1

1
k

]

+ 1
π

x−ν
∞∑

m=0

(−1)m

m!(m + ν+ 1)!

(x
2

)2m+ν+1
[

m+ν+1∑
k=1

1
k

]
= −x−νYν−1(x)

To show (9.69), expand the derivative operation on xνYν(x)

d
dx

(xνYν(x)) = νxν−1Yν(x) + xν
d
dx

Yν(x)

and equate with (9.67) to obtain

νxν−1Yν(x) + xν
d
dx

Yν(x) = xνYν−1(x)

d
dx

Yν(x) = Yν−1(x) − ν

x
Yν(x)
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To show (9.70), expand the derivative operation on x−νYν(x)

d
dx

(
x−νYν(x)

) = −νx−ν−1Yν(x) + x−ν d
dx

Yν(x)

and equate with (9.68) to obtain

−νx−ν−1Yν(x) + x−ν d
dx

Yν(x) = −x−νYν+1(x)

d
dx

Yν(x) = −Yν+1(x) + ν

x
Yν(x)

3. Derivatives of Iν(x). Recall the definition of Iν(x),

Iν(x) = exp
(
−νπ

2
i
)

Jν(ix)

To show (9.71), multiply Iν(x) by xν and then take the derivative with respect
to x, while using (9.65),

d
dx

xνIν(x) = exp
(
−νπ

2
i
) [

νxν−1Jν(ix) + xν
(

iJν−1(ix) − ν

x
Jν(ix)

)]
= xν exp

(
− (ν− 1)π

2
i
)

Jν−1(ix)

= xνIν−1(x)

To show (9.72), multiply Iν(x) by xν and then take the derivative with respect
to x, while using (9.66),

d
dx

x−νIν(x) = exp
(
−νπ

2
i
) [

−νx−ν−1Jν(ix) + xν
(
−iJν+1(ix) + ν

x
Jν(ix)

)]
= x−ν exp

(
− (ν+ 1)π

2
i
)

Jν+1(ix)

= x−νIν+1(x)

To show (9.73), expand the derivative operation on xνIν(x)

d
dx

(xνIν(x)) = νxν−1Iν(x) + xν
d
dx

Iν(x)

and equate with (9.71) to obtain

νxν−1Iν(x) + xν
d
dx

Iν(x) = xνIν−1(x)

d
dx

Iν(x) = Iν−1(x) − ν

x
Iν(x)

To show (9.74), expand the derivative operation on x−νIν(x)

d
dx

(
x−νIν(x)

) = −νx−ν−1Iν(x) + x−ν d
dx

Iν(x)
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and equate with (9.72) to obtain

−νx−ν−1Iν(x) + x−ν d
dx

Iν(x) = x−νIν+1(x)

d
dx

Iν(x) = Iν+1(x) + ν

x
Iν(x)

4. Derivatives of Kν(x). Recall the definition of Iν(x),

Kν(x) = exp
(

(ν+ 1)π
2

i
)

(Jν(ix) + iYν(ix))

To show (9.75), multiply Kν(x) by xν and then take the derivative with respect
to x, while using (9.65) and (9.69),

d
dx

xνKν(x) = exp
(

(ν+ 1)π
2

i
) [

νxν−1 (Jν(ix) + iYν(ix))

+ xν
(

iJν−1(ix) − ν

x
Jν(ix) − Yν−1(ix) − i

ν

x
Yν(ix)

)]
= − xν exp

(
(ν)π

2
i
)

(Jν−1(ix) + iYν−1(ix))

= xνKν−1(x)

To show (9.72), multiply Iν(x) by xν and then take the derivative with respect
to x, while using (9.66) and (9.70),

d
dx

x−νKν(x) = exp
(

(ν+ 1)π
2

i
) [−νx−ν−1 (Jν(ix) + iYν(ix))

+ x−ν
(
−iJν+1(ix) + ν

x
Jν(ix) + Yν+1(ix) + i

ν

x
Yν(ix)

)]
= − x−ν exp

(
(ν+ 2)π

2
i
)

(Jν+1(ix) + iYν+1(ix))

= − x−νKν+1(x)

To show (9.77), expand the derivative operation on xνKν(x)

d
dx

(xνKν(x)) = νxν−1Kν(x) + xν
d
dx

Kν(x)

and equate with (9.75) to obtain

νxν−1Kν(x) + xν
d
dx

Kν(x) = −xνKν−1(x)

d
dx

Kν(x) = −Kν−1(x) − ν

x
Iν(x)

To show (9.78), expand the derivative operation on x−νKν(x)

d
dx

(
x−νKν(x)

) = −νx−ν−1Kν(x) + x−ν d
dx

Kν(x)



770 Appendix I: Additional Details and Fortification for Chapter 9

and equate with (9.72) to obtain

−νx−ν−1Kν(x) + x−ν d
dx

Kν(x) = −x−νKν+1(x)

d
dx

Kν(x) = −Kν+1(x) + ν

x
Kν(x)

5. Bessel functions of negative integral orders. We use induction to prove the
identity.

The recurrence formula yields the following two relationships,

J−n−1(x) = −2n
x

J−n(x) − J−n+1(x)

Jn−1(x) = 2n
x

Jn(x) − Jn+1(x)

Adding and subtracting these equations,

J−n−1(x) = −2n
x

(J−n(x) − Jn(x))

− (J−n+1(x) + Jn−1(x)) − Jn+1(x) (I.68)

J−n−1(x) = −2n
x

(J−n(x) + Jn(x))

− (J−n+1(x) − Jn−1(x)) + Jn+1(x) (I.69)

If n is even, while using the inductive hypothesis, that is, supposing that Jn(x) =
J−n(x) and Jn−1(x) = −J−n+1(x), we can then use (I.68) and see that

J−(n+1)(x) = −Jn+1(x)

If n is odd, while using the inductive hypothesis, that is, supposing that Jn(x) =
−J−n(x) and Jn−1(x) = J−n+1(x), we can then use (I.69) and see that

J−(n+1)(x) = Jn+1(x)

To complete the proof, we note that

J0(x) = (−1)0J0(x)

and with the recurrence formula,

J−1(x) = −J1(x)

We can then continue the induction process to show that the identity is satisfied
for n = 2, 3, . . . and conclude that

J−n(x) = (−1)nJn(x)

Similar approaches can be used to show the identities for Y−n(x), I−n(x) and
K−n(x).



APPENDIX J

Additional Details and Fortification
for Chapter 10

J.1 Shocks and Rarefaction

For the general quasilinear first-order PDEs, it is possible that the solutions of
the characteristic equations will yield a surface that contains folds – resulting in
multiple values of u for each point in some region of the space of independent
variables. When this occurs, the classic solution (i.e., completely smooth solution)
is not possible. Instead, a discontinuous solution that splits the domain into two or
more regions with continuous surface solutions will have to suffice. A solution that
covers both the classic solution and solutions with discontinuities are called weak
solutions or generalized solutions. The discontinuities are known as shocks, and their
paths can be traced as curves in the domain of the independent variables known as
shock paths.

We limit our discussion to PDEs whose independent variables are time 0 ≤ t <
∞ and a space dimension −∞ < x < ∞, given by the form

∂u
∂t

+ b(x, t,u)
∂u
∂x

= c(x, t,u) (J.1)

subject to a Cauchy condition

u(x, t = 0) = u0(x) (J.2)

The method of characteristics immediately yields the following characteristic
equations

dt
ds

= 1 ;
dx
ds

= b(x, t,u) ;
du
ds

= c(x, t,u) (J.3)

subject to initial conditions, t(a, s = 0) = 0, x(a, s = 0) = a, u(a, s = 0) = u0(a). The
solution for t is immediately given by t = s. This reduces the problem to

dx
ds

= b(x, s,u) ;
du
ds

= c(x, s,u) (J.4)

which can be solved either analytically or numerically for fixed values of a, where
a is the parameter along the Cauchy condition. Because of the coupling of the
equations in (J.4), the solution for x and u is a curve C(x,u) that is parameterized by
a and s. Unfortunately, these curves can contain folds, that is, several u values may
correspond to a point (x, t).

771
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To illustrate, consider the inviscid Burger equation given by

∂u
∂t

+ u
∂u
∂x

= 0 (J.5)

with the Cauchy initial condition (J.2). Then the solution of (J.4) with b(x, s,u) = u,
c(x, s,u) = 0, u(a, s = 0) = u0(a), and x(a, s = 0) = a, is given by

u(a, s) = u0(a) and x(a, s) = u0(a)s + a

Furthermore, let u0(x) be given by

u0(x) = 3
2

[
1

1 + eq(x)
− 1

2.5 + q(x)
+ 1

2

]
with q(x) =

(
x − 10

10

)2

(J.6)

We can plot u(a, s) versus x(a, s) at different fixed values of s with −80 ≤ a ≤ 100 as
shown in Figure J.1.

From the plots in Figure J.1, we see that as s increases, the initial shape moves
to the right and slants more and more to the right. At s = 29.1, portions of the curve
near x = 41.0 will have a vertical slope, and a fold is starting to form. When s = 80,
three values of u correspond to values in the neighborhood of x = 78. At s = 120,
portions of the curve near x = 54.8 will again have a vertical slope. Then at s = 300,
we see that around x = 165 and x = 235, three values of u correspond to each of these
x values. Finally, we see that at s = 600, there are five values of u that correspond to
x = 370.

J.1.1 Break Times

We refer to the values of s(= t) in which portions of the curves just begin to fold
as the break times, denoted by sbreak. From the plots given in Figure J.1, we see
that several shocks are possible, each with their respective break times. Assuming
that the initial data u0(a) are continuous, the shock that starts to form at the break
time is along a characteristic that starts at a, which intersects with a neighboring
characteristic that starts at a + ε. This means

∂x
∂a

= 0 at s = sbreak (J.7)

Suppose the shock at the break time will belong to a characteristic starting from
a that belongs to a range [aleft, aright]. For instance, one could plot the characteristics
based on a uniform distribution of a and then determine adjacent values of a whose
characteristics intersect, as shown in Figure J.2. The values of aleft and aright can then
be chosen to cover this pair of adjacent values of a. The break time sbreak and the
critical point acritical can then be determined by solving the following minimization
problem

min
a∈[aleft, aright]

{s} such that
(
∂x
∂a

≤ 0
)

(J.8)

The values of x at sbreak along the characteristic corresponding to acritical will be the
break position, denoted by xbreak,

xbreak = x (acritical, sbreak) (J.9)
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Figure J.1. Plots of u versus x for different values of s, with −80 ≤ a ≤ 100.
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Figure J.2. Determination of aleft and aright.
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−50 0 50 100 150 200
0

50

100

150

x

t Figure J.3. The characteristics corresponding to uni-
formly distributed values of a. Also included are two
characteristics along acritical. The circles are the break
points (xbreak, sbreak).

In particular, the characteristics (x, t) for the inviscid Burger equation (J.5) are
given by straight lines

t = x − a
u0(a)

if u0(a) �= 0 (J.10)

(If u0(a) = 0, the characteristics are vertical lines at a.) For the initial data u0(x) of
(J.6), a set of characteristics corresponding to a set of uniformly distributed a values is
shown in Figure J.3. From this figure, we could set [aleft, aright] = [0, 50] to determine
the break time of the first shock point. We could also set [aleft, aright] = [−50, 0] to
determine the break time of the other shock point. Solving the minimization problem
of (J.8) for each of these intervals yields the following results:

sbreak,1 = 29.1 ; acritical,1 = 19.84 ; xbreak,1 = 41.0
sbreak,2 = 120 ; acritical,2 = −15.25 ; xbreak,2 = 54.8

In Figure J.3, this information is indicated by two darker lines starting at (t, x) =
(0, acritical) and ending at the points (t, x) = (sbreak, xbreak). These break times and
break positions are also shown in Figure J.1 for s = 29.1 and s = 120 to be the
correct values where portions of the curves are starting to fold.

J.1.2 Weak Solutions

Once the break times and positions have been determined, a discontinuity in solution
will commence as t = s increases and a weak solution has to be used. A function ũ(x, t)
is a weak solution of a partial differential equation, such as (J.1),

∂u
∂t

+ b(x, t,u)
∂u
∂x

= c(x, t,u)

if ∫ ∞

0

∫ ∞

−∞

(
ϑ(x, t)

[
∂ũ
∂t

+ b(x, t,u)
∂ũ
∂x

− c(x, t, ũ)
])

dx dt = 0 (J.11)

for all smooth functions ϑ (x, t), which has the property that ϑ = 0 for x outside of
some closed interval

[
xleft, xright

]
and for t outside of some closed interval

[
tlow, thigh

]
(with −∞ < xleft < ∞ and 0 ≤ tlow < thigh < ∞). The main idea of (J.11) is that
via integration by parts, partial derivatives of discontinuous ũ(x, t) can be avoided
by transferring the derivative operations instead on continuous functions ϑ(x, t).
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u

xxshock

1Area

2Area

1Area 2Area=
Figure J.4. The location of xshock based on equal area rule.

Another important point is that the function ϑ(x, t) is kept arbitrary; that is, there is
no need to specify this function nor the domain given by xright, xleft, tlow, or thigh. This
will keep the number of discontinuities to a minimum. For instance, if a continuous
ũ can satisfy (J.11) for arbitrary ϑ, then no discontinuity need to be introduced, and
ũ = u, a classic solution.

For the special case in which c(x, t, ũ) = c(x, t) is continuous, let the desired
discontinuity that satisfies (J.11) occur at (t = s, xshock(s)). The value of xshock will
occur when two characteristics, one initiated at a = a(−) and another initiated at
a = a(+), intersected to yield xshock. The condition (J.11) implies that xshock is located
at a position where the area of the chopped region to right of xshock is equal to the
area of the chopped region to the left of xshock, as shown in Figure J.4.

J.1.3 Shock Fitting

Based on the equal area rule, a shock path xshock(s) with s ≥ sbreak can be determined
by solving the following integral:

∫ a(+)

a(−)

[
u(a, s)

∂x
∂a

]
da = 0 (J.12)

such that x
(
a(−), s

) = x
(
a(+), s

) = xshock (s).
Generally, the location of the shock path, especially one that is based on the

equal area rule, will require numerical solutions. We outline a scheme to determine
the shock path in a region where the folds yield triple values u for some x (i.e., the
case shown in Figure J.4). This scheme depends on the following operations that
require nonlinear solvers:

1. Detection of Fold Edges. Let acritical be the value found at the break time of the
shock, then

(
aedge,1

aedge,2

)
= EDGE (acritical) (J.13)

where

∂x
∂a

∣∣∣∣
aedge,1

= 0 = ∂x
∂a

∣∣∣∣
aedge,2

and aedge,1 < acritical < aedge,2
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2. Root Finding for a. Let xg be in a region where three different values of u
correspond to one value of x and s.⎛⎝ â1

â2

â3

⎞⎠ = FINDa (xg, s) (J.14)

where

a1 > a2 > a3 and x(a1, s) = x(a2, s) = x(a3, s) = xg

3. Evaluation of Net Area.

I(y) =
∫ a3(y)

a1(y)

[
u(s, a)

∂x
∂a

]
da (J.15)

where a1(y) and a3(y) are found using the operation FINDa(y).

Shock-Fitting Scheme:

� Given: sbreak, �s and acritical
� For s = sbreak +�s, sbreak + 2�s, . . .

1. Calculate xg as the average of the edge values,

xg = 1
2

[
x
(
s, aedge,1

)+ x
(
s, aedge,2

) ]
where aedge,1 and aedge,2 are found using EDGE (acritical).

2. Using xg as the initial guess, find x̂ such that

I ( x̂ ) = 0

3. xshock(s) ← x̂

Using the shock-fitting scheme on the Burger equation (J.5) subject to the initial
condition (J.6), we find two shocks paths, one starting at (t, x) = (29.1, 41) and the
other one starting at (t, x) = (120, 54.8), as shown in Figure J.5. One can see that the
shock paths for this example are approximately straight lines. Furthermore, we also
note that the two shock paths do not intersect with each other. Thus even though the
curves shown in Figure J.1 for the case of s = 600 may contain portions in which u has
more that three values corresponding to a specific value of x, it does not immediately
imply that the two shocks path would intersect. In the next section, we show that
the shock paths will need to satisfy jump conditions and that the path being linear is
not due to the initial condition but rather due to the coefficient b(x, t,u) = u for the
inviscid Burger equation.
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tFigure J.5. Two shock paths for the Burger equa-
tion under the conditions given by (J.6) using
the shock-fitting scheme based on the equal-area
principle.

J.1.4 Jump Conditions

We further limit our discussion to the case where b(x, t,u) = b(u) in (J.1). Under
this condition, the differential equation (J.1) results from (or can be recast as) a
conservation equation given by

∂

∂t

∫ β

α

u (x, t) dx =
(

flux
(
u(α,t)

)− flux
(
u(β,t)

))+
∫ β

α

c (x, t,u) dt (J.16)

where flux(u) = ∫ b(u)du and c(x, t,u) is the volumetric rate of generation for u.
Now suppose at t, α < β is chosen so that the shock discontinuity is at x = xs

located between α and β. Let x−
s and x+

s be the locations slightly to left of and right
of xs, respectively. Then

∂

∂t

(∫ x−
s

α

u (x, t) dx +
∫ β

x+
s

u (x, t) dx

)
=
(

flux
(
u(α,t)

)− flux
(
u(β,t)

))+
∫ β

α

c (t, x) dt

(J.17)

Applying the Leibnitz rule (5.52) to (J.17), we obtain∫ x−
s

α

∂u
∂t

dx + u
(
x−

s , t
) dx−

s

dt
+
∫ β

x+
s

∂u
∂t

dx − u
(
x+

s , t
) dx+

s

dt

=
(

flux
(
u(α,t)

)− flux
(
u(β,t)

))+
∫ β

α

c (t, x) dt

Next, we take the limit as α → x−
s and β → x+

s . This yields

u
(
x−

s , t
) dx−

s

dt
− u
(
x+

s , t
) dx+

s

dt
=
(

flux
(
u(x−

s ,t)
)− flux

(
u(x+

s ,t)
))

where
∫ x+

s

x−
s

cdx = 0 if we assume that c(x, t,u) is piecewise continuous.1 As the
previous section showed, the shock propagation is continuous and implies that

1 A more complete assumption for c is that it does contain any Dirac delta distribution (i.e., delta
impulses).
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dx+
s /dt = dx−

s /dt = dxs/dt. Using the jump notation, � ξ � = ξ|u(x−
s ,t) − ξ|u(x+

s ,t), we
arrive at

dxs

dt
=
⌊

flux(u)
⌉

� u � (J.18)

which is known as the Rankine-Hugoniot jump conditions.2 This condition equates
the shock speed dxs/dt to the ratio of jump values of the flux(u) and u. This can be
used to help find the next position of the discontinuity for some simple cases; that
is, the shock path can be found using (J.18) without using the equal area approach
discussed in the previous section. Furthermore, the jump condition can be used to
eliminate some shock solutions that satisfy the partial differential equations on the
piecewise continuous region, but nonetheless would violate the Rankine-Hugoniot
conditions.

EXAMPLE J.1. Consider the inviscid Burger’s equation

∂u
∂t

+ u
∂u
∂x

= 0

subject to the discontinuous condition

u(x, 0) =
{

1 if x ≤ a
0 if x > a

For this problem, b(u) = u, and the flux is

flux(u) =
∫

u du = u2

2

Because the initial condition is immediately discontinuous, the break time in
this case is at t = 0. Using the Rankine-Hugoniot jump condition (J.18),

dxs

dt
=

⌊
u2

2

⌉
⌊

u
⌉ = u+ + u−

2

Because u = constant along the characteristics, u− = 1 and u+ = 0, yielding

dxs

dt
= 1

2
→ xs = t

2
+ a

Thus the solution is given by

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ≤ t

2
+ a

0 if x >
t
2

+ a

2 If the conservation equation (J.16) is given in a more general form by

∂

∂t

∫ β

α

φ (x, t,u) dx =
(

flux
(
α, t, u(α,t)

)− flux
(
β, t, u(β,t)

))+
∫ β

α

c (x, t, u) dt

the Rankine-Hugoniot condition (J.18) should be replaced instead by

dxs

dt
=
⌊

flux (x, t, u)
⌉⌊

φ (x, t, u)
⌉
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The jump conditions given in (J.18) will generally not guarantee a unique solu-
tion. Instead, additional conditions known as admissibility conditions, more popu-
larly known as Lax entropy conditions, are needed to achieve physical significance
and uniqueness. We now state without proof the following condition known as
the Lax entropy conditions applicable to the case where flux(u) is convex, that is,
d2 flux/du2 > 0:

d flux
du

∣∣∣∣
u=u−

≥ dxs

dt
≥ d flux

du

∣∣∣∣
u=u+

(J.19)

Thus these conditions put the necessary bounds on the shock speed, at least for the
case of convex fluxes.3 This condition simply implies that if the characteristics appear
to be intersecting in the direction of decreasing t (time reversal), then this solution
is not admissible.

EXAMPLE J.2. For the inviscid Burger equation and initial condition given by

∂u
∂t

+ u
∂u
∂x

= 0 u(x, 0) =
{

A for x ≤ 0
B for x > 0

where A < B. Let 0 < m < 1, then a solution that contains two shock paths given
by

u(x, t) =
⎧⎨⎩

A for x ≤ (A + m)t/2
m for (A + m)t/2 < x ≤ (m + B)t/2
B for x > (m + B)/2

(J.20)

will satisfy the Rankine-Hugoniot jump conditions at both regions of disconti-
nuities. This means there are an infinite number of possible solutions that will
satisfy the differential equation and jump discontinuity conditions.

However, using the entropy conditions given in (J.19), we obtain

A >
dxs

dt
> B

which is not true (because it was a given in the initial condition that A < B).
This means that the discontinuous solutions in (J.20) are inadmissible based on
the entropy conditions. We see in the next section that the rarefaction solution
turns out to be the required solution.

J.1.5 Rarefaction

When a first-order quasilinear PDE is coupled with a discontinuous initial condition,
we call this problem a Riemann problem. We already met these types of problems in
previous sections. In Example J.1, we saw that the Riemann problem there resulted in
a shock propagated solution for the inviscid Burger equation, where u(x ≤ a, 0) = 1
and u(x > a, 0) = 0. However, if the conditions were switched, that is, with u(x ≤
a, 0) = 0 and u(x > a, 0) = 1, the method of characteristics will leave a domain in the
(x, t) plane without specific characteristic curves, as shown in Figure J.6.4 In contrast

3 A set of more general conditions are given by Oleinik entropy conditions, which are derived using
the approach known as the vanishing viscosity methods.

4 If the initial condition were not discontinuous, this would have been filled in without any problem,
especially because the characteristics would not even intersect and no shocks would occur.
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0
x

t
u(x,t)=?

a

Figure J.6. Rarefaction in a Riemann problem.

to the shock-fitting problem, this case is called the rarefaction, a term that originates
from the phenomenon involving wave expansion of gases.

We limit our discussion to the case of (J.1), where b(x, t,u) = b(u) and c(x, t,u) =
0 with the additional assumption that the inverse function b−1(·) can be obtained.
Consider

∂u
∂t

+ b(u)
∂u
∂x

= 0 (J.21)

subject to

u(x, 0) =
{

uleft if x ≤ a

uright if x > a
(J.22)

where b
(
uleft
)
< b
(
uright

)
. Let the initial data be parameterized by ξ, that is, at s = 0,

t(s = 0) = 0, x(s = 0) = ξ and u(ξ, 0) = uleft or u(ξ, 0) = uright when ξ ≤ a or ξ > a,
respectively. Then the characteristics are given by

x = b(u(ξ, 0)) t + ξ → x =
⎧⎨⎩

b
(
uleft
)

t + ξ if ξ ≤ a

b
(
uright

)
t + ξ if ξ > a

Rarefaction will start at x = a when t = 0. The characteristics at this point can be
rearranged to be

u(a, 0) = lim
(x,t)→(a,0)

b−1
(

x − a
t

)
We could pose that the solution in the rarefaction domain to be of the form

u(x, t) = b−1
(

x − a
t

)
and see that this will satisfy the differential equation, that is,

∂u
∂t

+ b(u)
∂u
∂x

= 0 → 1
t

(
−x − a

t
+ x − a

t

)(
d

d ((x − a)/t)
b−1
(

x − a
t

))
= 0

The solution of (J.21) subject to (J.22) is then given by

u(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uleft if x ≤ b

(
uleft
)

t + a

b−1
(

x − a
t

)
if b
(
uleft
)

t + a < x ≤ b
(
uright

)
t + a

uright if x > b
(
uright

)
t + a

(J.23)

It is left as an exercise (E10.20) to show that (J.23) is piecewise continuous.
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EXAMPLE J.3. For the inviscid Burger equation and initial conditions given by,

∂u
∂t

+ u
∂u
∂x

= 0 subject to u(x, 0) =
{

0.5 if x ≤ 2
1.5 if x > 2

the rarefaction solution becomes

u(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5 if x ≤ 0.5t + 2

x − 2
t

if 0.5t + 2 < x ≤ 1.5t + 2

1.5 if x > 1.5t + 2

J.2 Classification of Second-Order Semilinear Equations: n > 2

When the number of independent variables is more than two, the principal part of
the semilinear equation is given by the following general form:

Fprin =
n∑

i=1

n∑
j=1

αi,j (x)μi,j (J.24)

Just as we did in the previous section, we look for a new set of independent
variables {ξ1, . . . , ξn}, such that under the new coordinates,

F̂prin (ξ1, . . . , ξn) =
n∑

i=1

εiμ
(ξ)
i,i where ε = 0, − 1 or + 1 (J.25)

where we use the following notation:

μ
(ξ)
i = ∂u

∂ξi

μ
(ξ)
i,j = ∂2u

∂ξi∂ξj
, 1 ≤ i, j ≤ n

μ
(ξ)
i,j,k = ∂3u

∂ξi∂ξj∂ξk
, 1 ≤ i, j,k ≤ n

... (J.26)

The classification of these forms is then given in the following definition:

Definition J.1. The canonical forms of second-order semilinear equations given
by

n∑
i=1

εiμ
(ξ)
i,i = f

(
ξ1, . . . , ξn,u, μ(ξ)

1 , . . . , μ(ξ)
n

)
(J.27)

are classified to be elliptic, parabolic, hyperbolic, and ultrahyperbolic according
to the following conditions:

Elliptic: if εi �= 0 all have the same sign
Parabolic: if εi = 0 for some 1 ≤ i ≤ n

Hyperbolic: if εi �= 0 all have the same sign except for one
Ultra-Hyperbolic: if εi �= 0 and εa ≥ εb > 0 , εc ≤ εd < 0 for a �= b �= c �= d
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Unfortunately, finding a change in coordinates,

ξi = ξi (x1, x2, . . . , xn) i = 1, 2, . . . ,n (J.28)

that would yield the canonical forms (J.27) may not be always be possible. However,
when the coefficients in the principal parts are constants, then the equation can be
transformed into the canonical forms given in Definition J.1.

THEOREM J.1. Consider the second-order semilinear equation given by

n∑
i=1

n∑
j=1

Ai,jμi,j = f (x,u, μ1, . . . , μn) (J.29)

where Ai,j = Aj,i are constants. Let (ξ1, ξ2, . . . , ξn) be a set of new independent vari-
ables defined by ⎛⎜⎜⎜⎝

ξ1

ξ2
...
ξn

⎞⎟⎟⎟⎠ = DU

⎛⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎠ (J.30)

where, U is an orthogonal matrix such that UAUT = �, where � = diag(λ1,

λ2, . . . , λn) is the diagonal matrix of eigenvalues of A and D = diag (d1,d2, . . . ,dn),
where

di =
⎧⎨⎩

1/
√|λi| if λ1 �= 0

0 if λi = 0

and λi is the ith eigenvalue of A. Then under the change of coordinates given by (J.30),
the partial differential equation (J.29) becomes

n∑
i=1

εiμ
(ξ)
i,i = f̂

(
ξ1, . . . , ξn,u, μ(ξ)

1 , . . . , μ(ξ)
n

)
, εi = 0, − 1 or 1 (J.31)

PROOF. With (J.30), the partial differential operators ∂/∂xi are⎛⎜⎜⎜⎝
∂/∂x1

∂/∂x2
...

∂/∂xn

⎞⎟⎟⎟⎠ = UT D

⎛⎜⎜⎜⎝
∂/∂ξ1

∂/∂ξ2
...

∂/∂ξn

⎞⎟⎟⎟⎠
Using the partial differential operators, the partial differential equation (J.29) can
written as

(
∂/∂x1 ∂/∂x2 · · · ∂/∂xn

)
A

⎛⎜⎜⎜⎝
∂/∂x1

∂/∂x2
...

∂/∂xn

⎞⎟⎟⎟⎠u = f (x,u, μ1, . . . , μn)
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or

(
∂/∂ξ1 · · · ∂/∂ξn

)
DUAUT D

⎛⎜⎝ ∂/∂ξ1
...

∂/∂ξn

⎞⎟⎠u = f (x,u, μ1, . . . , μn)

which can then be simplified to be

n∑
i=1

sign (λi)μ
(ξ)
i,i = f̂

(
ξ1, . . . , ξn,u, μ(ξ)

1 , . . . , μ(ξ)
n

)
where

sign(λi) =
⎧⎨⎩

+1 if λi > 0
0 if λi = 0

−1 if λi < 0

EXAMPLE J.4. Consider the second-order differential equation with three inde-
pendent variables x, y, and z,

3
∂2u
∂x2

+ 5
∂2u
∂x∂y

− 2
∂2u
∂x∂z

+ ∂2u
∂y2

+ 2
∂2u
∂y∂z

+ 3
∂2u
∂z2

= ku (J.32)

We now look for new coordinates ξ1, ξ2, and ξ3 that would transform (J.32) into
the canonical form given in (J.27) for purposes of classification.

Extracting the coefficients into matrix A,

A =
⎛⎝ 3 2.5 −1

2.5 1 1
−1 1 3

⎞⎠
Using Schur triangularization, we can obtain the orthogonal matrix U

U =
⎛⎝ 0.5436 −0.7770 0.3176

−0.0153 0.3692 0.9292
0.8392 0.5099 −0.1888

⎞⎠
and the diagonal normalizing matrix D,

D = diag (0.9294, 0.5412, 0.4591)

The new coordinates are obtained as follows⎛⎝ ξ1

ξ2

ξ3

⎞⎠ = DU

⎛⎝ x
y
z

⎞⎠ =
⎛⎝ 0.5252x − 0.7221y + 0.5029z

−0.0083x + 0.1998y + 9.5029z
0.3853x + 0.2341y − 0.0867z

⎞⎠
As a check, we can apply the change of coordinates while noting that the second-
order derivatives of ξi, e.g., ∂2ξi/ (∂x∂y), are zero. Thus

∂2u
∂p∂q

=
3∑

i=1

3∑
j=1

(
∂ξi

∂p
∂ξj

∂q

)
∂2u
∂ξi∂ξj

; for p,q = x, y, z
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When substituted into (J.32), we obtain

3∑
i=1

3∑
j=1

εij
∂2u
∂ξi∂ξj

= ku

where

εij = a11
∂2ξi

∂x2
+ a12

∂2ξi

∂x∂y
+ · · · + a33

∂2ξj

∂z2

For instance,

ε12 = (3)(0.5052)(−0.083) + (2.5)(0.5052)(0.1998)

+(−1)(0.5052)(0.5029) + · · · + (3)(0.2952)(0.5029)

After performing the computations, we find ε11 = −1, ε22 = ε33 = 1 and for i �= j ,
εij = 0, i.e.

− ∂2u
∂ξ1∂ξ1

+ ∂2u
∂ξ2∂ξ2

+ ∂2u
∂ξ3∂ξ3

= ku

Thus we can classify (J.32) to be hyperbolic.

J.3 Classification of High-Order Semilinear Equations

For partial differential equations that have orders higher than two, the canonical
forms are more difficult to fix. Instead, the classification is to indicate whether
a solution by characteristics is possible or not. We limit our discussion to cases
involving two independent variables.

Recall that for the second-order equation with two independent variables given
by

A(x, y)uxx + B(x, y)ux,y + C(x, y)uy,y = f (x, y,u,ux,uy) (J.33)

the characteristics were obtained by solving the characteristic form,

Q(ξx, ξy) = A(x, y)ξ2
x + B(x, y)ξxξy + C(x, y)ξ2

y (J.34)

Prior to the determination of whether the equation can be transformed to the hyper-
bolic, elliptic, or parabolic canonical forms, the roots of the characteristic form
became critical. For the hyperbolic equations, the roots were real. For the parabolic
equations, the roots were equal. And for the elliptic equations, the roots were com-
plex. By using the character of the roots, we can then extend the concept of hyper-
bolic, parabolic, and elliptic to higher orders.

Definition J.2. For an mth-order semilinear partial differential equation in two
independent variables x and y,

m∑
i=0

Ai(x, y)
∂mu

∂ix∂m−iy
= f
(
x, y,u, μ[1], . . . , μ[m−1]

)
(J.35)
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the characteristic form is given by

Q
(
ξx, ξy

) =
m∑

i=0

Ai(x, y)ξi
xξ

m−i
y =

m∏
i=0

(
ξx − ri(x, y)ξy

)
(J.36)

where ri(x, y), i = 1, 2, . . . ,m are the roots of the polynomial
m∑

i=0

Ai (x, y) ri = 0 (J.37)

Then at a fixed point (x, y), equation (J.35) is classified as

Hyperbolic: if all the roots ri are real and distinct
Parabolic: if all the roots ri are equal
Elliptic: if all the roots ri are complex
Mixed: otherwise

Thus for the hyperbolic case, we can determine m characteristics ξ(i)(x, y) by
solving the m characteristic equations given by

ξ(i),x − ri(x, y)ξ(i),y = 0 i = 1, 2, . . . ,m (J.38)

that is, solving

dx
1

= − dy
ri(x, y)

ξ(i)(x, y) = constant (J.39)

Furthermore, note that if m is an odd number, then the partial differential
equation can not be elliptic.
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K.1 d’Alembert Solutions

Having the general solution for the one-dimensional wave equation as given in
(11.17), we can start fitting them to initial and boundary conditions. We first consider
the case with an infinite x domain and only the initial conditions are specified. The
solution for this type of problem is given by a form known as the d’Alembert
solution. Next, we consider the case of semi-infinite domain, that is, x ≥ 0, where
we extend the applicability of d’Alembert solutions for systems with additional
boundary conditions. Finally, we consider the case where the spatial domain is a
finite segment, for example, 0 ≤ x ≤ L.

K.1.1 Infinite-Domain Wave Equation with Only Initial Conditions

The system is described by

∂2u
∂x2

− 1
c2

∂2u
∂t2

= 0 − ∞ ≤ x ≤ ∞

subect to u (x, 0) = f (x) and
∂u
∂t

(x, 0) = g(x)

Applying the initial conditions to the general solution for u given in (11.17),

u(x, 0) = f (x) = φ (x) + ψ (x)

∂u
∂t

(x, 0) = g(x) = c
dφ
dx

− c
dψ
dx

(K.1)

because at t = 0, φ(x + ct) = φ(x) and ψ(x − ct) = ψ(x). Taking the derivative of
f (x),

df
dx

= dφ
dx

+ dψ
dx

(K.2)

Solving (K.1) and (K.2) simultaneously for dφ/dx and dψ/dx,

dφ
dx

= 1
2

df
dx

+ 1
2c

g(x) and
dψ
dx

= 1
2

df
dx

− 1
2c

g(x)

786
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Figure K.1. A surface plot of the trajectories of ua (left) and a set of four snapshots of ua at
different time instants (right) for the d’Alembert’s solution based on zero initial velocity.

and

φ(x) = 1
2

f (x) + 1
2c

∫ x

0
g(τ)dτ + κ1

ψ(x) = 1
2

f (x) − 1
2c

∫ x

0
g(τ)dτ + κ2

However, κ1 = −κ2 because f (0) = φ(0) + ψ(0). Returning to (11.17),

u(x, t) = 1
2

[ f (x − ct) + f (x + ct)] + 1
2c

∫ x+ct

x−ct
g(τ)dτ (K.3)

Equation (K.3) is known as the d’Alembert’s solution of the initial value problem.

EXAMPLE K.1. Let c = 3, g(x) = sech(x), and f (x) =
4∑

i=1

ζ (αi, βi, γi, x), where

ζ (α, β, γ, x) = γ

2

[
1 + tanh (αx + β)

]
and

i αi βi γi

1 1 4 1
2 1 −4 −1
3 1 4 −0.5
4 1 10 0.5

Let ua(x, t) = 1
2

(f (x + ct) + f (x − ct)) and ub(x, t) = 1
2c

∫ x+ct

x−ct
g(s)ds.

From Figures K.1, we see that the initial distribution given by f (x) is grad-
ually split into two shapes that are both half the height of the original dis-
tribution. Both shapes move at constant speed equal to c but travel in the
opposite directions. However, for ub, we see from Figures K.2 that the influ-
ence of the initial velocities is propagated within a triangular area deter-
mined by speed c. Combining both effects, the solution u = ua + ub is shown in
Figures K.3.
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Figure K.2. A surface plot of the trajectories of ub (left) and a set of four snapshots of ub at
different time instants (right) for the d’Alembert’s solution based on zero initial distribution.

K.1.2 Semi-Infinite Domain Wave Equation with Dirichlet
Boundary Conditions

The equations are given by

∂2u
∂x2

− 1
c2

∂2u
∂t2

= 0 for x ≥ 0

u (x, 0) = f (x)
∂u
∂t

(x, 0) = g(x)

⎫⎬⎭ for x ≥ 0 ; u(0, t) = ς(t) t ≥ 0

(K.4)

where, for continuity, ς(0) = f (0) and dς/dt(0) = g(0). We can first find a solution,
v(x, t), whose domain is −∞ < x < ∞. The desired solution, u(x, t), will be obtained
by restricting v(x, t) values at 0 ≤ x ≤ ∞, that is,

u(x, t) = v(x, t)
∣∣
x≥0 (K.5)

−50 0 50
0

1 TIme = 0.0u

−50 0 50
0

1 Time = 1.0

−50 0 50
0

1 Time = 3.0

−50 0 50
0

1 Time = 8.0

x

u
2
1
0

10

8

6

4

2

00

00

50

–50

x

Time

Figure K.3. A surface plot of the trajectories (left) and four snapshots of the distribution at
different time instants for u = ua + ub.
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Thus let v be the solution of the extended problem given by

∂2v

∂x2
− 1

c2

∂2v

∂t2
= 0 − ∞ ≤ x ≤ ∞

v (x, 0) = fe(x)
∂v

∂t
(x, 0) = ge(x)

; v(0, t) = ς(t) t ≥ 0

where,

fe(x) = f (x) and ge(x) = g(x) for x ≥ 0

Note that fe and ge have not been defined completely. The solution for v(x, t) is the
d’Alembert’s solution, given by v = φe(x + ct) + ψe(x − ct), where

φe(s) = 1
2

fe(s) + 1
2c

∫ s

0
ge(τ)dτ and ψe(s) = 1

2
fe(s) − 1

2c

∫ s

0
ge(τ)dτ

For x ≥ 0, we have (x + ct) > 0 and so φe(x + ct) is immediately given by

φe(x + ct) = 1
2

f (x + ct) + 1
2c

∫ x+ct

0
g(τ)dτ

However, because (x − ct) < 0 when x < ct, ψe(x − ct) has to be handled differently
because fe (s < 0) and ge (s < 0) has not been defined. At x = 0, we have

v(0, t) = φe(ct) + ψe(−ct) = ς(t)

or

ψe(s) = ς
(
− s

c

)
− φe(−s) → ψe(x − ct) = ς

(
t − x

c

)
− φe(ct − x)

Combining the results, and restricting the domain to x ≥ 0,

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

[
f (ct + x) − f (ct − x)

]
+ 1

2c

∫ ct+x

ct−x
g(τ)dτ

+ ς
(

t − x
c

)
for 0 ≤ x < ct

1
2

[
f (x − ct) + f (x + ct)

]
+ 1

2c

∫ x+ct

x−ct
g(τ)dτ for x ≥ ct

(K.6)

K.1.3 Semi-Infinite Wave Equation with Nonhomogeneous
Neumann Conditions

The equations are given by

∂2u
∂x2

− 1
c2

∂2u
∂t2

= 0 x ≥ 0

u (x, 0) = f (x)
∂u
∂t

(x, 0) = g(x)

⎫⎬⎭ for x ≥ 0 ; u(0, t) = ς(t) t ≥ 0 (K.7)
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where, for continuity,ϑ(0) = df
dx

(0). Again, we solve the following extended problem

but this time with the Neumann boundary condition,

∂2v

∂x2
− 1

c2

∂2v

∂t2
= 0 − ∞ ≤ x ≤ ∞

v (x, 0) = fe(x)
∂v

∂t
(x, 0) = ge(x)

;
∂v

∂x
(0, t) = ϑ(t)

with fe (x ≥ 0) = f (x) and ge (x ≥ 0) = g(x). As before, we have v = φe(x + ct) +
ψe(x − ct), where

φe(s) = 1
2

fe(s) + 1
2c

∫ s

0
ge(τ)dτ and ψe(s) = 1

2
fe(s) − 1

2c

∫ s

0
ge(τ)dτ

Because (x + ct) > 0,

φe(x + ct) = 1
2

f (x + ct) + 1
2c

∫ x+ct

0
g(τ)dτ

However, for ψe(x − ct), we can use the Neumann condition to handle the range
0 ≤ x < ct,

∂v

∂x
(0, t) = ϑ(t) = φ′

e (ct) + ψ ′
e (−ct)

from which

ψ ′
e(s) = ϑ

(
− s

c

)
− φ′

e(−s) →
ψe(s) = − c

∫ −s/c

0
ϑ(τ)dτ − φ′

e(−s)

ψe(x − ct) = − c
∫ t−(x/c)

0
ϑ(τ)dτ − φ′

e(ct − x)

Combining the results, while restricting the solution to x ≥ 0,

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

[
f (ct + x) − f (ct − x)

]
+ 1

2c

∫ x+ct

ct−x
g(τ)dτ

−c
∫ t−(x/c)

0
ϑ(τ)dτ for 0 ≤ x ≤ ct

1
2

[
f (x − ct) + f (x + ct)

]
+ 1

2c

∫ x+ct

x−ct
g(τ)dτ for x ≥ ct

(K.8)

K.1.4 Wave Equation in Finite Domain

We consider only the special homogeneous Dirichlet condition for 0 ≤ x ≤ L < ∞.
The equations are given by

∂2u
∂x2

− 1
c2

∂2u
∂t2

= 0 for 0 ≤ x ≤ L

u (x, 0) = f (x)
∂u
∂t

(x, 0) = g(x)

⎫⎬⎭ for 0 ≤ x ≤ L ; u(0, t) = 0 t ≥ 0 (K.9)
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where, for continuity, we need f (0) = 0 = f (L). For this case, we use the method of
reflection given by the following extension,

∂2v

∂x2
− 1

c2

∂2v

∂t2
= 0 −∞ ≤ x ≤ ∞

v (x, 0) = fe(x)
∂v

∂t
(x, 0) = ge(x)

v(0, t) = 0

with fe and ge both extended to be odd periodic functions, that is,

fe(x) =
⎧⎨⎩

f (x) for 0 ≤ x ≤ L
−f (−x) for − L ≤ x ≤ 0

fe(x − 2L) |x| > L

The solution can then given by

u(x, t) = v(x, t)
∣∣∣
x≥0

(K.10)

where

v(x, t) = 1
2

( fe(x + ct) + fe(x − ct)) + 1
2c

∫ x+ct

x−ct
ge(τ)dτ

K.2 Proofs of Lemmas and Theorems in Chapter 11

K.2.1 Proof for Solution of Reducible Linear PDE, Theorem 11.1

First, let m = 2. Substituting (11.12), while using the commutativity between L1 and
L2 given in (11.11),

Lu = L1L2 (α1u1 + α2u2) = L1 (α1L2u1 + α2L2u2)

= α1L1L2u1 = α1L2 (L1u1) = 0

Next, assume the theorem is true for m = �− 1. Then with L = LAL� = L�LA where
LA =∏�−1

i=1 Li whose solution is given by uA =∑�−1
i=1 αiui, and with u = uA + α�u�,

we have

Lu = LAL� (uA + α�u�) = LA (L�uA + α�L�u�)

= LAL�uA = L� (LAuA) = 0

Then, by induction we have proven that (11.12) is a solution for the case when
Li �= Lj for i �= j , i, j = 1, . . . ,m.

For the case where Li is repeated k times, note that

Lk
i (gj ui) =

k∑
�=0

k!
(k − �)!�!

L�
i g j Lk−�

i ui

= ui Lk
i g j = 0

Thus

Lk
i

⎡⎣⎛⎝ k∑
j=1

gj

⎞⎠ui

⎤⎦ = 0
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K.2.2 Proof of Sturm-Liouville Theorem, Theorem 11.2

We begin with the following identity, where φn �= φm:

d
dx

(
p(x)

[
φm

dφn

dx
− φn

dφm

dx

])
= φm

d
dx

[
p(x)

dφn

dx

]
− φn

d
dx

[
p(x)

dφm

dx

]
Using (11.51) to substitute for terms on the right-hand side, we get

dz(x)
dx

= (λn − λm) r(x)φnφm

where,

z(x) = p(x)
[
φm

dφn

dx
− φn

dφm

dx

]
Integrating both sides,

z(B) − z(A)
λn − λm

=
∫ B

A
r(x)φnφmdx

Functions φn and φm both satisfy the boundary condition at x = B, which we could
write in matrix form as

B
(

βB

γB

)
=
(

0
0

)
(K.11)

where

B =
(

φm(B) dφm/dx(B)

φn(B) dφn/dx(B)

)
Because, in a Sturm-Liouville system, βB and γB are not allowed to both be zero,
(K.11) has a solution only if the determinant of matrix B is zero. This implies

z(B) = p(B)
[
φm(B)

dφn

dx
(B) − φn(B)

dφm

dx

]
(B) = p(B)det (B) = 0

The same argument follows through with the boundary condition at x = A, which
implies z(A) = 0. Thus we have for λm �= λn,∫ B

A
r(x)φn(x)φm(x)dx = 0 for m �= n

K.2.3 Proof of Similarity Transformation Method, Theorem 11.3

Assuming symmetry is admitted based on the similarity transformations t̃ = λ−αt,
x̃ = λ−βx and ũ = λ−γu, we have

F
(
λβx, λαt, λγu, . . . , λγ−κα−(m−κ)βμ[κ,m−κ] . . . ,

)
= 0 (K.12)

where

μ[κ,m−κ] = ∂mũ
(∂κ̃t) (∂m−κ̃x)
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After taking the derivative with respect to λ and then setting λ = 1, we obtain a
quasilinear differential equation given by

β̃x
∂F
∂̃x

+ α̃t
∂F
∂̃t

+ γũ
∂F
∂ũ

+ · · · +
(
γ − κα− (m − κ)β

)
μ[κ,m−κ] ∂F

∂μ[κ,m−κ]
+ · · · = 0

where the other terms include the partial derivatives of F with respect to the par-
tial derivatives ∂ũ/∂̃t, ∂ũ/∂x, etc. Method of characteristics yields the following
equations:

d̃x
β̃x

= d̃t
α̃t

= dũ
γũ

= · · · dμ[κ,m−κ](
γ − κα− (m − κ)β

)
μ[κ,m−κ]

= · · · = dF
0

At this point, we assume that α = 1 for brevity.1 Solving the first equations excluding
the last term will yield the following invariants

d̃t
t̃

= d̃x
β̃x

→ ζ = x̃
t̃β

d̃t
t̃

= dũ
γũ

→ ψ = ũ
t̃γ

...

d̃t
t̃

= dμ[κ,m−κ](
γ − κ− (m − κ)β

)
μ[κ,m−κ]

→ φκ,m = μ[κ,m−κ]

t̃(γ−κ−(m−κ)β)

...

plus F , which is another invariant. We also can now use x, t, and u instead of x̃, t̃, and
ũ because the invariants also satisfy the symmetry conditions. The general solution
of the quasilinear equation can now be given by

F = g (ζ, ψ, . . . , φκ,m, . . .) = 0

For the invariants with κ = 0, that is, the partial derivatives with respect to x only,
we have

μ[0,m] = ∂mu
∂xm

= (tγ−mβ) dmψ

dζm
→ φ0,m = dmψ

dζm

With

μ[κ,m−κ] = ∂κ

∂tκ

(
μ[0,m−κ]

)
one can show by induction that

μ[κ,m−κ] = tγ−κ−(m−κ)β
κ∑

j=0

cj ζ
j dm−κ+jψ

dζm−κ+j
→ φκ,m =

κ∑
j=0

cj ζ
j dm−κ+jψ

dζm−κ+j

1 If α = 0, then we could set β = 1 and proceed with the role of t replaced by x.
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where cj are simply constants that depend on j , m, κ, β, and γ whose complicated
forms are not needed for the purpose of this proof. Thus we conclude that because
the invariants φκ,m are just functions hκ,m of ζ, ψ and derivatives of ψ(ζ), we have
shown that

g
(
ζ, ψ, . . . , φκ,m, . . .

)
= g
(
ζ, ψ, . . . ,hκ,m

(
ζ, ψ,

dψ
dζ

, . . .

)
, . . .

)
= 0

is a nonlinear ordinary differential equation for ψ(ζ).



APPENDIX L

Additional Details and Fortification
for Chapter 12

L.1 The Fast Fourier Transform

In this appendix, we obtain matrix representations of the discrete Fourier transforms,
which is often used to find the Fourier series through the use of numerical integration
methods.

For a periodic function g(t) with period T , we have the complex form of the
Fourier series defined by

gFS(t) =
∞∑

k=−∞
Ck exp

(
2πikt

T

)
(L.1)

where i = √−1. The Fourier coefficients C� can be evaluated by first setting gFS(t) =
g(t) and then multiplying (L.1) by exp(−2πi�/T ), followed by an integration with
respect to t from 0 to T ,∫ T

0
g(t) exp

(
−2πi�t

T

)
dt =

∞∑
k=−∞

Ck

∫ T

0
exp
(

2πi(k − �)t
T

)
dt

Because

e2mπi = cos (2mπ) + i sin (2mπ) = 1 with m an integer

we have∫ T

0
exp
(

2πi(k − �)t
T

)
dt = T

2πi (k − �)

(
e2πi(k−�) − 1

)
=
{

T if k = �

0 if k �= �

Thus

C� = 1
T

∫ T

0
g(t) exp

(
−2πi�

T
t
)

dt (L.2)

Now suppose the function g(t), t ∈ [0,T ], is represented by (N + 1) uniformly
distributed points, that is, g0, . . . , gN, with gk = g(k�t),�t = tk+1 − tk, and T = N�t.
Using the trapezoidal approximation of the integral in (L.2), we have the discretized
version given by

C� = 1
N�t

(
g0 + gN

2
�t +

N−1∑
k=1

gk exp
(

−2π�k
N

i
)
�t

)

795
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Now let y� = NC� and

xk =
⎧⎨⎩

g0 + gN

2
for k = 1

gk−1 for k = 2, . . . ,N
(L.3)

then we obtain

y� =
N∑

k=1

xk W (k−1)(�−1)
[N] k = �, . . . ,N (L.4)

where W[N] = e(−2π/N)i. Equation (L.4) is known as the discrete Fourier transform
of vector x = (x1, . . . , xN)T . For the determination of y�, � = 1, . . . ,N, a matrix
representation of (L.4) is given by

y = F [N]x (L.5)

where

F [N] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
1 W[N] · · · WN−1

[N]

1 W2
[N] · · · W2(N−1)

[N]
...

...
. . .

...
1 WN−1

[N] · · · W (N−1)(N−1)
[N]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(L.6)

For the special case of N = 2m for some integer m ≥ 1, we can obtain the classic
algorithm known as the Radix-2 Fast Fourier Transform, or often simply called Fast
Fourier Transform FFT. The FFT algorithm significantly reduces the number of
operations in the evaluation of (L.5).

First, note from (L.6) that F [1] = 1. For N = 2m, m ≥ 1, we can separate the odd
and even indices and use the fact that W2

[N] = W[N/2] to obtain a rearrangement of
(L.4) as follows:

y� =
N/2∑
k=1

(
x2k−1W (2k−2)(�−1)

[N]

)
+
(

x2kW (2k−1)(�−1)
[N]

)

=
N/2∑
k=1

x2k−1

(
W2

[N]

)(k−1)(�−1)
+

N/2∑
k=1

x2k

(
W2

[N]

)(k−1/2)(�−1)

=
N/2∑
k=1

x2k−1W (k−1)(�−1)
[N/2] + W�−1

[N]

N/2∑
k=1

x2kW (k−1)(�−1)
[N/2] (L.7)

Equation (L.7) is known as the Danielson-Lanczos equation. Let y = ( yT
A yT

B

)T
where yA = (y1, . . . , yN/2)T and yB = (y(N/2)+1, . . . , yN

)T . Because WN
[N] = 1 and

WN/2
[N] = −1, for � = 1, . . . ,N/2,

yA = F [N/2]Podd
[N] x +�[N/2]F [N/2]Peven

[N] x

yB = F [N/2]Podd
[N] x −�[N/2]F [N/2]Peven

[N] x
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where

Podd
[N] = ( e1 e3 . . . eN−1

)T
; Peven

[N] = ( e2 e4 . . . eN
)T

�[N/2] =

⎛⎜⎜⎜⎜⎝
1 0

W[N]
. . .

0 W (N/2)−1
[N]

⎞⎟⎟⎟⎟⎠
Comparing with (L.5), we have

F [N] =

⎛⎜⎜⎝ F [N/2] �[N/2]F [N/2]

F [N/2] −�[N/2]F [N/2]

⎞⎟⎟⎠P(o|e)
[N] = Z[N]

(
I2 ⊗ F [N/2]

)
P(o|e)

[N] (L.8)

where

P(o|e)
[N] =

⎛⎜⎜⎝ Podd
[N]

Peven
[N]

⎞⎟⎟⎠ and Z[N] =

⎛⎜⎜⎝ IN/2 �[N/2]

IN/2 −�[N/2]

⎞⎟⎟⎠
Using the identities AC ⊗ BD = (A ⊗ B)(C ⊗ D) and A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C,
we have

I2 ⊗ F [N/2] = I2 ⊗
(

Z[N/2](I2 ⊗ F [N/4])
)

P(o|e)
[N/2]

=
(

I2 ⊗
(

Z[N/2]
(
I2 ⊗ F [N/4]

))) (
I2 ⊗ P(o|e)

[N/2]

)
= (

I2 ⊗ Z[N/2]
) (

I4 ⊗ F [N/4]
) (

I2 ⊗ P(o|e)
[N/2]

)
Continuing the recursion we obtain, with F [1] = 1, N = 2m,

F [N] = G[N]Pbitreverse
[N] (L.9)

where,

G[N] = Z[N]
(
I2 ⊗ Z[N/2]

) (
I4 ⊗ Z[N/4]

) · · · (IN/2 ⊗ Z[2]
)

Pbitreverse
[N] =

(
IN/2 ⊗ P(o|e)

[2]

)
· · ·
(

I4 ⊗ P(o|e)
[N/4]

) (
I2 ⊗ P(o|e)

[N/2]

)
P(o|e)

[N]

It can be shown that the effect of Pbitreverse
[N] on x is to rearrange the elements of

x by reversing the bits of the binary number equivalent of the indices. To illustrate,
let N = 8, then

Pbitreverse
[8] x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x5

x3

x7

x2

x6

x4

x8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Instead of building the permutations, we could look at the bit reversal of the binary
equivalents of the indices of x (beginning with index 0),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000
001
010
011
100
101
110
111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−−−−−−−→
reverse bits

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000
100
010
110
001
101
011
111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−−−−−→
decimal

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
4
2
6
1
5
3
7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−−−→
add 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
5
3
7
2
6
4
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In summary, we have the following algorithm:

FFT Algorithm:
Given: x[=]2m × 1
y ← Reverse Bits(x)
For r = 1, . . . ,m
y ←

(
I2m−r ⊗ Z[2r]

)
y

End

Remark: The MATLAB command for the FFT function is y=fft(x).

EXAMPLE L.1. Let

g(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

5 if t < 20

t
4

cos
(

2π
20

t
)

if 20 ≤ t < 80

28 − t
10

if t ≥ 20

Now apply the Fourier series to approximate g(t) for 0 ≤ t ≤ 200 with T = 200
and sampling N = 210 + 1 uniformly distributed data points for g(t).

Using x as defined in (L.3) and y = FFT (x), we can obtain a finite series
approximation given by

gFFT,L =
L∑

k=−L

CkW−kt = 1
N

(
y1 + 2

L∑
k=1

Real
(

yk+1W−kt
))

Note that only the first N/2 = 2m−1 terms of y are useful for the purpose of
approximation, i.e. L ≤ N/2.

Figure L.1 shows the quality of approximation for L = 10 and L = 25.



Appendix L: Additional Details and Fortification for Chapter 12 799

0 50 100 150 200

−20

−10

0

10

20

t

g(t)

L=10

0 50 100 150 200

−20

−10

0

10

20

L=25

t

g(t)

Figure L.1. Fourier series approximation of g(t) using L = 10 and L = 25.

L.2 Integration of Complex Functions

In this appendix, we briefly describe the notations, definitions, and results from com-
plex function theory. Specifically, we focus on the methods for contour integrations
of complex functions.

L.2.1 Analytic Functions and Singular Points

Definition L.1. Let z = zre + izim be a complex variable, with zre, zim ∈ R. Then
a complex function f (z) = fre (zre, zim) + i f im (zre, zim) is analytic (or holomor-
phic) in a domain D, that is, a connected open set, if for every circle centered
at z = z∗ inside D, f (z) can be represented by a Taylor series expanded around
z = z∗,

f (z) =
∞∑

k=0

αk (z − z∗)k (L.10)

where,

αk = 1
k!

dk f
dzk

∣∣∣∣
z=z∗

(L.11)

Implicit in the preceding definition is the existence of derivatives, dk f/dzk, for k ≥ 1.
One necessary and sufficient condition for analyticity of f (z) is given by the following
theorem:

THEOREM L.1. A complex function f (z) = fre (zre, zim) + i f im (zre, zim) is analytic in
D if and only if both real functions fre(zre, zim) and f im(zre, zim) are continuously
differentiable and

∂ fre

∂zre
= ∂ f im

∂zim
(L.12)

∂ fre

∂zim
= −∂ f im

∂zre
(L.13)

for all z = zre + izim in D.



800 Appendix L: Additional Details and Fortification for Chapter 12

The pair of equations (L.12) and (L.13) are known as the Cauchy-Riemann
conditions.

Some Important Properties of Analytic Functions:
Let f (z), f1(z) and f2(z) be analytic in the same domain D, then

1. Linear combinations of analytic functions are analytic; that is, fsum(z) =
α1 f1(z) + α2 f2(z) is analytic.

2. Products of analytic functions are analytic; that is, fprod(z) = f1(z) f2(z) is ana-
lytic.

3. Division of analytic functions are analytic except at the zeros of the denominator;
that is, fdiv(z) = f1(z)/ f2(z) is analytic except at the zeros of f2(z).

4. Composition of analytic functions are analytic; that is, fcomp(z) = f1 ( f2(z)) is
analytic.

5. The inverse function, f −1 ( f (z)) = z, is analytic if df/dz �= 0 in D and f (z1) �=
f (z2) when z1 �= z2.

6. The chain rule is given by

d
dz

[ f2 (f1(z))] = df2

df1

df1

dz
(L.14)

Definition L.2. A point zo in domain D is called a singularity or singular point of
a complex function f (z) if it is not analytic at z = zo. If f (z) is analytic at z = zo,
then zo is called a regular point.

The singular points can further be classified as follows:

1. A point zo is a removable singular point if f (z) can be made analytic by
defining it at zo.

(If limz→zo f (z) is bounded, it can be included in the definition of f (z).
Then f (z) can be expanded as a Taylor series around zo. For example, with
f (z) = (z − 1)(3z/(z − 1)), the point z = 1 is a removable singularity.)

2. A point zo is an isolated singular point if for some ρ > 0, f (z) is analytic for
0 < |z − zo| < ρ but not analytic at z = z0.

3. A point zo is a pole of order k, where k is a positive integer,
if
(
g1(z) = (z − zo)k f (z)

)
has a removable singularity at z = zo, but(

g2(z) = (z − zo)k−1 f (z)
)

does not have a removable singularity at z = zo.
If k = 1, then we call it a simple pole.

4. A point zo is an essential singular point if it is an isolated singularity that is
not a pole or removable.

L.2.2 Contour Integration of Complex Functions

In calculating the closed contour integration of f (z), denoted by

IC ( f ) =
∮

C
f (z)dz (L.15)

we are assuming that C is a simple-closed curve; that is, C is a curve that begins
and ends at the same point without intersecting itself midway. Furthermore, the line
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integral will be calculated by traversing the curve C in the counterclockwise manner
(or equivalently, the interior of the simple-closed curve is to the left of C during the
path of integration). The interior of curve C defines a domain D(C), which is of the
type simply connected, as defined next.

Definition L.3. A 2D domain D is called a simply-connected domain if the inte-
rior points of every simple-closed curve C in D are also in D. Otherwise, the
domain is called a multiply connected domain.

In short, a simply connected domain is one that does not contain any holes.1

Because of the presence of several theorems that follow later, we start with a
brief outline of the development of techniques for contour integration in the complex
plane.

1. We start with Cauchy’s theorem to handle the special case when f (z) is analytic
on and inside the closed curve C.

2. In Theorem L.3, we show that even though C is the original contour, a smaller
curve C′ inside C can yield the same contour integral values, as long as f (z)
remains analytic on C, C′ and the annular region between C and C′.

3. Having established that the contour used for integration is not unique, we shift
the focus instead on specific points and construct small circular contours around
these points. This leads to the definition of residues. Theorem L.4 then gives a
formula to calculate the residues of poles.

4. Using residues, we can then generalize Cauchy’s theorem, Theorem L.2, to
handle cases when curve C encloses n isolated singularities. The result is the
residue theorem.

THEOREM L.2. Cauchy’s Theorem. Let f (z) be analytic on and inside a simple closed
curve C, then ∮

C
f (z)dz = 0 (L.16)

PROOF. With z traversing along the curve C,

dz =
(

dzre

ds
+ i

dzim

ds

)
ds

or in terms of the components of the unit outward normal vector, n = nre + i nim,

dz = (−nim + i nre) ds

because

dzre

ds
= −nim ;

dzim

ds
= nre

1 For higher dimensional regions, if any simple closed path in D can be shrunk to a point, then D is
simply connected.
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H

a

b

C’

C

C’

Figure L.2. The curves C, C′, and H used for proof of Theorem L.3.

Thus ∮
C

f (z)dz =
∮

( fre + if im) (−nim + i nre) ds

= −
∮

C
(f imnre + frenim) ds + i

∮
C

( frenre − f imnim) ds

Using the divergence theorem,∮
C

f (z)dz =
∫ ∫ (

∂ f im

∂zre
+ ∂ fre

∂zim

)
dzredzim + i

∫ ∫ (
∂ fre

∂zre
− ∂ f im

∂zim

)
dzredzim

Because analytic functions satisfy the Cauchy-Riemann conditions, the inte-
grands are both zero.

THEOREM L.3. Let C and C′ be two simple closed curves where C′ is strictly inside C.
Let f (z) be analytic on curves C and C′ and in the annular region between C and C′.
Then ∮

C
f (z)dz =

∮
C′

f (z)dz (L.17)

PROOF. Based on Figure L.2, we see that the integral based on curve H is given by∮
H

f (z)dz =
∮

C
f (z)dz +

∫ b

a
f (z)dz +

∫ a

b
f (z)dz −

∮
C′

f (z)dz

However, the path integral from a to b satisfies∫ b

a
f (z)dz = −

∫ a

b
f (z)dz

Furthermore, because f (z) is analytic in the interior of H (i.e., the annular region
between C and C′), Theorem L.2 implies that

∮
H f (z)dz = 0. Thus∮

C
f (z)dz =

∮
C′

f (z)dz

Theorem L.3 does not constrain how the shrinking of curve C to C′ occurs
except for the conditions given in the theorem. For instance, if f (z) is analytic
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throughout the interior of C, then the smaller curve C′ can be located anywhere
inside C.

We now shift our focus on point zo and the contours surrounding it.

Definition L.4. For a given point zo and function f (z), let C be a simple closed
curve that encircles zo such that zo is the only possible singularity of f (z) inside
C; then the residue of f (z) at zo is defined as

Reszo (f ) = 1
2πi

∮
C

f (z)dz (L.18)

Note that if f (z) is analytic at the point zo, Reszo = 0. If zo is a singular point of
f (z), the residue at zo will be nonzero.2 Using Theorem L.3, we can evaluate residues
at the poles of f (z) by choosing C to be a small circle centered around zo.

THEOREM L.4. Cauchy Integral Representation.3 Let zo be a pole of order k ≥ 1 of
f (z), then

Reszo ( f ) = 1
(k − 1)!

lim
z→zo

dk−1

dzk−1

(
[z − zo]k f (z)

)
(L.19)

PROOF. First, consider the function h(z) = (z − zo)�, where � is an integer. Let Oρ :
|z − zo| = ρ, where ρ > 0. The points on the circle Oρ is given by

z = zo + ρeiθ for 0 ≤ θ ≤ 2π

and

(z − zo)� = ρ�ei� θ ; dz = iρeiθdθ

Thus

∮
Oρ

(z − zo)�dz = iρ�+1
∫ 2π

0
ei(�+1)θdθ =

⎧⎨⎩
2πi if � = −1

0 if � �= −1
(L.20)

where ρ > 0 is bounded.

2 A result known as Morera’s theorem guarantees that if Reszo (f ) = 0, then f (z) is analytic at a small
neighborhood around zo.

3 Note that Theorems L.2 and L.4 are both associated with Cauchy’s name, but the two theorems are
not the same. Strictly speaking, Cauchy’s integral representation actually refers only to the case of
a simple pole, that is, k = 1.
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Because zo is a pole of order k of f (z), there exists a curve C such that the function

g(z) = (z − zo)k f (z)

is analytic inside and on a curve C, which includes zo as an interior point; that is, it
could be expanded into a Taylor series around zo,

(z − zo)k f (z) = g(z) =
∞∑

n=0

αn(z − zo)n

f (z) =
∞∑

n=0

αn(z − zo)n−k (L.21)

where

αn = lim
z→zo

1
n!

dng
dzn

= lim
z→zo

1
n!

dn

dzn

(
[z − zo]k f (z)

)
(L.22)

Based on the definition of the residue, choose the curve C to be a small circle Oρ

centered at zo such that f (z) is analytic on and inside the circle Oρ except at zo. This
means that the radius of the circle, ρ, must be chosen to be small enough such that,
inside Oρ, zo is the only singular point of f (z). Taking the contour integral of (L.21),
with substitutions of (L.20) and (L.22),

∮
Oρ

f (z)dz =
∞∑

n=0

αn

∮
Oρ

(z − zo)n−kdz

= 2πi αk−1

= 2πi
(k − 1)!

lim
z→zo

dk−1

dzk−1

(
[z − zo]k f (z)

)
Thus

Reszo ( f ) = 1
(k − 1)!

lim
z→zo

dk−1

dzk−1

(
[z − zo]k f (z)

)

We now state a generalization of Theorem L.3. This theorem is very useful for
the evaluation of contour integrals in the complex plane.

THEOREM L.5. Residue Theorem. Let f (z) be analytic on and inside the closed curve
C except for isolated singularities: z�, � = 1, 2, . . . ,n. Then the contour integral of f (z)
along C is given by ∮

C
f (z)dz = 2πi

n∑
�=1

Resz�( f ) (L.23)

PROOF. We prove the theorem only for n = 2, but the same arguments can be gen-
eralized easily for n > 2.

Let C1 and C2 be nonintersecting closed curves inside C such that the pole z1 is
inside C1 only and the pole z2 is inside C2 only. As shown in Figure L.3, f (z) will be
analytic in the curve H as well as in the interior points of H.
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1 2

C H

C1

C2
z1

z2 z1

z2

Figure L.3. Curves C, C1, C2, and H used in Theorem L.5.

Thus ∮
H

f (z)dz = 0 =
∮

C
f (z)dz −

∮
C1

f (z)dz −
∮

C2

f (z)dz

or ∮
C

f (z)dz =
∮

C1

f (z)dz +
∮

C2

f (z)dz

Using the results of Theorem L.4,∮
C

f (z)dz = 2πi [ Resz1 (z) + Resz2 (z) ]

Generalizing the approach to n ≥ 1,∮
C

f (z)dz = 2πi
n∑
�=1

Resz�(z)

Note that Theorem L.5 is true whether the isolated singularities are poles or
essential singularities. However, we limit our applications only to singularities involv-
ing poles. As such, the formula for calculating residues when singularities are poles
(cf. Theorem L.4) is used when invoking the method of residues.

L.2.3 Path Integrals with Infinite Limits

The method of residues can be applied to calculating path integrals in the complex
plane, ∫

P
f (z)dz (L.24)

where path P is a curve parameterized by a ≤ t ≤ b, that is,

P : z = zre(t) + izim(t) (L.25)
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(a ,b )R R
left

(a ,b )R R
right

R

aR

bR

P

Figure L.4. The circular arcs �left
aR,bR

and �
right
aR,bR

.

including the case where

|z(t = a)| = ∞ and |z(t = b)| = ∞ (L.26)

We refer to these paths as infinite paths.

Some Technical Issues:

1. Parameterization. Path P will be parameterized using a ≤ t ≤ b. We assume that
P does not intersect itself and that the path is bounded, with possible exceptions
at the end points.

2. Connecting Arcs. Let aR and bR, with a ≤ aR < bR ≤ b, be values of t such that
|P(aR)| = |P(bR)| = R. Then one can connect both P(aR) and P(bR) by a circular
arc of radius R. (We assume the arc does not to intersect P except at t = aR and
t = bR). We denote the arc by �left

aR,bR
if the arc starting from aR is to the left of

path P. Likewise, we denote the arc by �right
aR,bR

if the arc starting from aR is to the
right of path P (see Figure L.4).

The main idea is to combine either the left or right arc with the subpath,
P(aR,bR), to obtain a simple closed curve from which we can apply the method
of residues.

3. Convergence Assumptions. In handling the path integration along the left cir-
cular arcs, we assume the following condition:

lim
R→∞

R max
z∈�(aR,bR)left

| f (z)| = 0 (L.27)

We refer to (L.27) as the convergence condition in the left arc. Together with
the following inequality (also known as Darboux’s inequality),∣∣∣∣∫

�(aR,bR)left
f (z)dz

∣∣∣∣ ≤ ∫
�(aR,bR)left

∣∣ f (z)
∣∣ |dz| < 2πR max

z∈�(aR,bR)left
| f (z)| (L.28)

we obtain

lim
R→∞

∣∣∣∣∫
�(aR,bR)left

f (z)dz

∣∣∣∣ = 0 (L.29)

Similarly, we assume the convergence condition in the right arc given by

lim
R→∞

R max
z∈�(aR,bR)right

| f (z)| = 0 (L.30)
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and obtain

lim
R→∞

∣∣∣∣∫
�(aR,bR)right

f (z)dz

∣∣∣∣ = 0 (L.31)

4. Cauchy Principal Value. With finite limits, the following identity is true:∫
P(aR,br)

f (z)dz =
∫

P(aR,0)
f (z)dz +

∫
P(0,br)

f (z)dz

However, the integral
∫

P(aR,0) f (z)dz or the integral
∫

P(0,bR) f (z)dz, or both, may
diverge as aR,bR → ∞, even though the integral

PV ( f ) = lim
aR,bR→∞

∫
P(aR,bR)

f (z)dz (L.32)

converges. In our calculations of
∫

P fdz that follow, we mean the limit calculation
of (L.32). The integral in (L.32) is known as the Cauchy principal value of f (z).

We now state a theorem that shows how the method of residues can be applied
to complex integrations along infinite paths.

THEOREM L.6. Let P(t) be an infinite path that does not pass through any singular
points of f (z).

1. Let z1, z2, . . . , zn be the singularities in the region to the left of path P(t), and f (z)
satisfies the absolute convergence in the left arc condition given in (L.27), then∫

P
f (z)dz =

n∑
�=1

Resz�( f ) (L.33)

2. Let ẑ1, ẑ2, . . . , ẑm be the singularities in the region to the right of path P(t), and
f (z) satisfies the absolute convergence in the right arc condition given in (L.30),
then ∫

P
f (z)dz = −

m∑
�=1

Resẑ�( f ) (L.34)

PROOF. Based on Figure L.5, where R is chosen large enough such that the contour
formed by the subpath P(aR,bR) and -�(aR,bR)left will contain all the singular points
of f (z) that are to the left of P. Then using the theorem of residues,∫

P(aR,bR)
f (z)dz −

∫
�(aR,bR)left

f (z)dz =
n∑
�=1

Resz�( f )

As R → ∞, (L.29) then implies∫
P

f (z)dz =
n∑
�=1

Resz�( f )
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(a ,b )R R
left

P(a ,b )R R

R

aR

z1

z2
zn bR

Figure L.5. The contour used to prove (L.33) in Theorem L.6.

Likewise, based on Figure L.6, where R is chosen large enough such that the contour
formed by the subpath −P(aR,bR) and �(aR,bR)right will contain all the singular
points of f (z) that are to the right of P. Then using the theorem of residues,

−
∫

P(aR,bR)
f (z)dz +

∫
�(aR,bR)right

f (z)dz =
m∑
�=1

Resẑ�( f )

As R → ∞, (L.31) then implies∫
P

f (z)dz = −
n∑
�=1

Resz�( f )

Note that the convergence conditions, (L.27) and (L.30), are sufficient conditions
that may sometimes be too conservative. In some cases, they could be relaxed.
In particular, we have the result known as Jordan’s lemma, which is useful when
calculating Fourier transforms and Fourier-Sine/Fourier-Cosine transforms.

THEOREM L.7. Let f (z) = g(z)eiωz, where ω > 0, with �(aR,bR)left and �(aR,bR)right

as the semicircle in the upper half and lower half, respectively, of the complex plane,

1. If

lim
R→∞

(
max

z∈�(aR,bR)left
|g(z)|

)
= 0 (L.35)

then

lim
R→∞

∣∣∣∣∫
�(aR,bR)left

f (z)dz

∣∣∣∣ = 0 (L.36)

(a ,b )R R
right

-P(a ,b )R R

aR
z1

z2
zm

bR

Figure L.6. The contour used to prove (L.34) in Theorem L.6.
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2. If

lim
R→∞

(
max

z∈�(aR,bR)right
|g(z)|

)
= 0 (L.37)

then

lim
R→∞

∣∣∣∣∫
�(aR,bR)right

f (z)dz

∣∣∣∣ = 0 (L.38)

PROOF. We show the theorem only for the left arc, that is, upper half of the complex
plane,

On the semicircle, we have z = Reiθ. Thus

dz = Reiθdθ −→ |dz| = R|dθ|
and

eiωz = eiωR(cos θ+i sin θ)

= e−ωR sin θeiωR cos θ −→ ∣∣eiωz
∣∣ = e−ωR sin θ

Also, note that with 0 ≤ θ ≤ π
2 ,

sin θ ≥ 2θ
π

Using these identities and inequality,∣∣∣∣∫
�(aR,bR)left

f (z)dz

∣∣∣∣ ≤
∫
�(aR,bR)left

∣∣g(z)
∣∣ ∣∣eiwz

∣∣ |dz|

≤
(

max
z∈�(aR,bR)left

|g(z)|
)(∫

�(aR,bR)left

∣∣eiwz
∣∣ |dz|

)

<

(
max

z∈�(aR,bR)left
|g(z)|

)(
2R
∫ π/2

0
e−ωR sin θdθ

)

<

(
max

z∈�(aR,bR)left
|g(z)|

)(
2R
∫ π/2

0
e−2ωRθ/πdθ

)

<

(
max

z∈�(aR,bR)left
|g(z)|

)(π
ω

[
1 − e−ωR])

<

(
max

z∈�(aR,bR)left
|g(z)|

)(π
ω

)
Using condition (L.35), we have

lim
R→∞

∣∣∣∣∫
�(aR,bR)left

f (z)dz

∣∣∣∣ = 0

Theorem L.7 assumed ω > 0 and ωθ > 0. For ω < 0, we need to traverse the
path in the opposite directions; that is, we need to replace θ by −θ.
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(a ,b )R R
left

R

aR bR

zRe

zIm

P(a ,b )R R

(a ,b )R R
right

aR bR zRe

zIm

-P(a ,b )R R

R

Figure L.7. The contours used for evaluating a Fourier integral.

EXAMPLE L.2. Consider the Fourier integral,

F
[

x3

1 + x4

]
=
∫ ∞

−∞

x3

1 + x4
e−iωxdx (L.39)

Here, the path is P = t, with −∞ ≤ t ≤ ∞, that is, the real line. The poles of
g(x) = x3/(1 + x4) are: (−1 ± i)/

√
2, (1 ± i)/

√
2.

With the situation of ω < 0, we can use the closed-contour in the upper
complex plane, that is, zim ≥ 0, see Figure (L.7).

Because

lim
R→∞

(
max

|z|=R,zim>0

∣∣∣∣ z3

1 + z4

∣∣∣∣) = 0

we could use the residue theorem and Theorem L.7 to compute the integral∫ ∞

−∞

x3

1 + x4
e−iωxdx = 2πi

(
Res[(1+i)/

√
2]( f ) + Res[(−1+i)/

√
2]( f )

)
(L.40)

where

f = x3

1 + x4
e−iωx

For ω < 0,

Res[(1+i)/
√

2]( f ) = lim
z→(1+i)/

√
2

[(
z − 1 + i√

2

)
f (z)
]

= 1
4

e(1−i)ω/
√

2

Res[(−1+i)/
√

2]( f ) = lim
z→(−1+i)/

√
2

[(
z − −1 + i√

2

)
f (z)
]

= 1
4

e(1+i)ω/
√

2

∫ ∞

−∞

x3

1 + x4
e−iωxdx = πi

[
cos
(
ω√

2

)
eω/

√
2
]

For ω > 0, we can use the closed-contour in the lower region of the complex
plane. Doing so, we have∫ ∞

−∞

x3

1 + x4
e−iωxdx = −2πi

(
Res[(1−i)/

√
2]( f ) + Res[(−1−i)/

√
2]( f )

)
(L.41)
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and

Res[(1−i)/
√

2]( f ) = lim
z→(1−i)/

√
2

[(
z − 1 − i√

2

)
f (z)
]

= 1
4

e(−1−i)ω/
√

2

Res[(−1−i)/
√

2]( f ) = lim
z→(−1−i)/

√
2

[(
z − −1 − i√

2

)
f (z)
]

= 1
4

e(−1+i)ω/
√

2

∫ ∞

−∞

x3

1 + x4
eiωxdx = −πi

[
cos
(
ω√

2

)
e−ω/√2

]
Combining both cases,

F
[

x3

1 + x4

]
=
∫ ∞

−∞

x3

1 + x4
eiωxdx = −i [sgn(ω)]π cos

(
ω√

2

)
e[−|ω|/√2]

Special Applications and Extensions:

1. Functions Involving Sines and Cosines. Let P(t) = t, with −∞ ≤ t ≤ ∞. When
the integrand contains cos(x) or sin(x) in the numerator, the method of residues
cannot be used directly because the arc conditions given in (L.27) or (L.30) are
no longer satisfied. (For instance, limzim→±∞ | cos(z)| = limzim→±∞ | sin(z)| = ∞).

An alternative approach is to use Jordan’s lemma.
Because

g(x) cos(αx) = Re
[
g(x)eix] (L.42)

we could apply the method of residues on the integral in the right hand side of
the following equation:∫ ∞

−∞
g(x) cos(αx)dx = Re

[∫ ∞

−∞
g(x)eiαxdx

]
(L.43)

Similarly, we have∫ ∞

−∞
g(x) sin(αx)dx = Im

[∫ ∞

−∞
g(x)eiαxdx

]
(L.44)

Based on Jordan’s lemma, that is, Theorem L.7, with ω = α > 0, we need to
satisfy only the condition given in (L.35) and apply it to the contour in the upper
region of the complex plane,

lim
R→∞

(
max

|z|=R,zim≥0
|g(z)|

)
= 0 (L.45)

EXAMPLE L.3. Consider the following integral∫ ∞

−∞

x2 cos x
1 + x4

dx
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Using a semicircle in the upper region of the complex plane as the contour of
integration, we apply Theorem L.7 to obtain

lim
R→∞

∫ R

−R
f (zre)dzre = 2πi

(
Res[1+i]( f ) + Res[−1+i]( f )

)
where,

f (z) = z2eiz

1 + z4

with

Res[1+i]/
√

2( f ) =
√

2(1 − i)
8

e(−1+i)/
√

2

Res[−1+i]
√

2( f ) = −√
2(1 + i)

8
e(−1−i)/

√
2

Then, ∫ ∞

−∞

x2 cos x
1 + x4

dx = Re
[∫ ∞

−∞

x2eix

1 + x4
dx
]

= π√
2

[
cos
(

1√
2

)
− sin

(
1√
2

)]
e(−1/

√
2)

2. Rectangular Contours. Sometimes the limits involve a line that is shifted parallel
to the real axis or the imaginary axis. In these cases, it may often be convenient
to use evaluations already determined for the real line or imaginary axis. To do
so, we need a rectangular contour. This is best illustrated by an example.

EXAMPLE L.4. Let us evaluate the Fourier transform of a Gaussian function,

F
[
e−αx2

]
=
∫ ∞

−∞
e−αx2

e−iωxdx =
∫ ∞

−∞
e−αx2−iωxdx

where α > 0.
First, consider ω > 0. We could simplify the integral by first completing the

squares,

−αx2 − iωx = −α
(

x2 + iω
α

x +
[(

iω
2α

)2

−
(

iω
2α

)2
])

= −α
(

x + iω
2α

)2

− ω2

4α

thus ∫ ∞

−∞
e−αx2−iωxdx = e−ω2/(4α)

∫ ∞

−∞
e−α[x+iω/(2α)]2

dx

= e−ω2/(4α)
∫ ∞+iω/(2α)

−∞+iω/(2α)
e−αz2

dz

Now consider the rectangular contour shown in Figure L.8.
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R
zRe

zIm

2Figure L.8. A rectangular contour used in Example L.4.

Because the function e−αz2
is analytic throughout the region,∫ R

−R
e−αz2

dz +
∫ R+iω/(2α)

R
e−αz2

dz +
∫ −R+iω/(2α)

R+iω/(2α)
e−αz2

dz

+
∫ −R

−R+iω/(2α)
e−αz2

dz = 0

Two of the integrals reduces to zero,

lim
R→∞

∫ R+iω/(2α)

R
e−αz2

dz = 0

and

lim
R→∞

∫ −R

−R+iω/(2α)
e−αz2

dz = 0

resulting with ∫ ∞+iω/(2α)

−∞+iω/(2α)
e−αz2

dz =
∫ ∞

−∞
e−αz2

dz =
√
π

α

Using a rectangular contour in the lower region, a similar approach can be used
to handle ω < 0. Combining all the results, we obtain

F
[
e−α2x

]
=
√
π

α
e−ω2/(4α)

This says that the Fourier transform of a Gaussian function is another Gaussian
function.

3. Path P Contains a Finite Number of Simple Poles. When the path of integra-
tion contains simple poles, the path is often modified to avoid the poles using a
semicircular indentation having a small radius, ε as shown in Figure L.9. Assum-
ing convergence, the calculation for the integral proceeds by taking the limit as
ε → 0.

(a) (b)

P

z0

P’

z0
Figure L.9. (a) Pole zo lies on path P. (b) Path P′ avoids zo.
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zRe

zIm

R

(-) (+)

Figure L.10. The contour used to solve
∫∞

−∞[sin(x)/x]dx.

EXAMPLE L.5. Let us determine the integral∫ ∞

0

sin(x)
x

dx (L.46)

First, we evaluate the integrals with limits from −∞ to ∞. Using the techniques
for solving integrals with sinusoids as given in (L.44),∫ ∞

−∞

sin(x)
x

dx = Im
[∫ ∞

−∞

eix

x
dx
]

Using the path in the real line, z = 0 is a pole in the real line. Thus, modifying
the path to avoid the origin, we obtain the closed contour shown in Figure L.10
given as C = �(−) + �ε + �(+) + �R.

The integral along �ε can be evaluated by setting z = εeiθ. As a consequence,

dz
z

= idθ

and ∫
�ε

eiz

z
dz =

∫ 0

π

exp
(
iεeiθ)idθ

and taking the limit as ε → 0,

lim
ε→0

∫
�ε

eiz

z
dz = −iπ

Conversely, we have

lim
R→∞

∫
�R

eiz

z
dz = 0

Thus ∫ ∞

−∞

eix

x
dx = iπ

or ∫ ∞

−∞

sin(x)
x

dx = Im [iπ] = π

Because the function sin(x)/x is an even function, we could just divide the value
by 2 to obtain the integral with limits from 0 to ∞, that is,∫ ∞

0

sin(x)
x

dx = π

2
(L.47)
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zRe

zIm

R

P

z1

2i z2

z3

zn

Figure L.11. The contour used to solve
∫∞

−∞[(x2 + 4)
cosh(x)]−1dx.

4. Regions Containing Infinite Number of Poles. In case there is an infinite num-
ber of poles in the region inside the contour, we simply extend the summation of
the residues to contain all the poles in that region. If the infinite sum of residues
converge, then the method of residues will still be valid, that is,∮

C
f (z)dz =

∞∑
�=1

Resz�( f ) (L.48)

EXAMPLE L.6. Let us evaluate the following integral:∫ ∞

−∞
f (x)dx =

∫ ∞

−∞

1
(x2 + 4) cosh(x)

dx (L.49)

From the roots of (z2 + 4) and the roots of cosh(z) = cos(iz), the singularities
are all simple poles given by:

z0 = 2i, z� = 2�− 1
2

πi, � = 1, 2, . . . ,∞
and their complex conjugates.

Using the usual semicircular contour to cover the upper region of the complex
plane as shown in Figure L.11, the method of residues yields,

lim
R→∞

[∫
�P

f (z)dz −
∫
�R

f (z)dz
]

= 2πi

(
Res(2i)[ f ] +

∞∑
�=1

Res(z�)[ f ]

)
(L.50)

Along the path of �R, we have z = Reiθ. We find that

lim
R→∞

∣∣∣∣ 1
(R2ei2θ + 4) cosh (Reiθ)

∣∣∣∣ < lim
R→∞

R−2
∣∣exp

(−Reiθ)∣∣ = 0

Thus we have limR→∞
∫
�R

f (z)dz = 0.
As for the residues,

Res(2i)[ f ] = lim
z→2i

1
(z + 2i) cosh(z)

= 1
4i cos(2)

and with z� = i(2�− 1)π/2, together with the application of L’Hospital’s rule,

Res(z�)[ f ] = lim
z→z�

z − z�
(z2 + 4) cosh(z)

= 1

z2
� + 4

−1
i sin(iz�)

= (−1)�
4

i
(

42 − (2�− 1)2
π2
)
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b a

ra

rb

zRe

z

1-1

Figure L.12. Geometric interpretation of ra, rb, θa, and θb given in (L.53).

Combining all these results, we have∫ ∞

−∞

1
(x2 + 4) cosh(x)

dx = π

2 cos(2)
+ 8π

∞∑
�=1

(−1)�
1

42 − (2�− 1)2
π2

(L.51)

5. Integrals along Branch Cuts. When the integrand involves multivalued complex
functions, a branch cut is necessary to evaluate the integral. This means that a
Riemann sheet4 has to be specified by selecting the range of the arguments of
complex variable z. Usually, the ranges for the argument are either 0 < arg(z) <
2π, −π < arg(z) < π, (π/2) < arg(z) < (5π/2) or −π/2 < arg(z) < (3π/2) for
branch cuts along the positive real line, negative real line, positive imaginary
line, or negative real line, respectively. In other cases, the range of arg(z) may
be a finite segment in the complex plane.

Once the particular Riemann sheet has been selected, the method of residues
can proceed as before.

EXAMPLE L.7. Consider the integral∫ 1

−1

dx

(x2 + 1)
√

1 − x2
(L.52)

This is a finite integral in which the integrand contains a square root in the
denominator. One can check that the points z = 1 and z = −1 are branch points5

of f (z) where

f (z) = 1

(z2 + 1)
√

z2 − 1

(Note that we used z2 − 1. The form 1 − x2 will show up from the calculations
later.)

We could be rewrite the square root terms as√
z2 − 1 =

√
(z − 1)(z + 1)

=
√

(raeiθa ) (rbeiθb)

= √
rarb ei(θa+θb)/2

where,

z − 1 = raeiθa and z + 1 = rbeiθb (L.53)

(see Figure L.12.)

4 By Riemann sheet, we simply mean a subdomain that is single-valued.
5 A point zo is branch point of a function f (z) if there exists a closed curve that encircles zo that would

yield different evaluations of f (z) after one encirclement.
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zRe

zIm

R

1,-1 R,1

-1,1 1,R

-1 1
Figure L.13. Contour used for solving the integral in Example L.7.

We can then specify the branch cut by fixing the ranges on θa and θb to be

0 < θa < 2π and 0 < θb < 2π

Aside from being branch points, the points z = ±1 are also singular points.

We can then choose the contour shown in Figure L.13 and implement the method
of residues. The closed-contour C is given by

C = �R + �R,1 + �ε(1)lower + �1,−1 + �ε(−1) + �−1,1 + �ε(1)upper + �1,R

= (
�R + �ε(1) + �ε(−1)

)+ (�R,1 + �1,R) + (�1,−1 + �−1,1)

Following earlier methods, we can evaluate the integrals along the three circular
paths: the outer circle �R and the pair of inner circles �ε(1) �ε(−1), to yield zero
values as the limits of R → ∞ and ε → 0 are approached, respectively. Thus
we need to evaluate only the four remaining straight paths. Because f (z) is
multivalued, the path along a common segment, but in opposite directions, may
not necessarily cancel. We now show that the integrals along �1,R and �R,1 will
cancel, whereas the integrals along �1,−1 and �−1,1 will not.

Along the path �R,1, we have zim = 0, 1 < zre ≤ R, θa = 2π and θb = 2π, thus

f (z)
∣∣
�R,1

= 1
(1 + x2)

√
rarb e2πi

= 1

(1 + x2)
√

x2 − 1

Similarly, along path �1,R, we have zim = 0, 1 < zre < R, θa = 0 and θb = 0,

f (z)
∣∣
�1,R

= 1
(1 + x2)

√
rarb

= 1

(1 + x2)
√

x2 − 1

The sum of integrals along both �1,R and �R,1 is then given by∫
�1,R

f (z)dz +
∫
�R,1

f (z)dz =
∫ R

1

1

(1 + x2)
√

x2 − 1
dx

+
∫ 1

R

1

(1 + x2)
√

x2 − 1
dx

= 0

Along the path �1,−1, we have zim = 0, −1 < zre ≤ 1, θa = π and θb = 2π, thus

f (z)
∣∣
�1,−1

= 1
(1 + x2)

√
rarb e3πi/2

= −1

(1 + x2)i
√

1 − x2
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Similarly, along path �−1,1, we have zim = 0, −1 < zre < 1, θa = π and θb = 0,

f (z)
∣∣
�−1,1

= 1
(1 + x2)

√
rarb eπi/2

= 1

(1 + x2)i
√

1 − x2

Note that we used rarb = (1 − x2) because |x| < 1.
Thus the sum of integrals along both �1,−1 and �−1,1 is given by∫

�1,−1

f (z)dz +
∫
�−1,1

f (z)dz =
∫ −1

1

−1

(1 + x2)i
√

1 − x2
dx

+
∫ 1

−1

1

(1 + x2)i
√

1 − x2
dx

= 2
i

∫ 1

−1

1

(1 + x2)
√

1 − x2
dx

Next, we need to calculate the residues at the poles z = ±i. Note that because
the function is multivalued, we need to be careful when taking the limits of the
square root. First, consider the pole z = −i. At this point, we have

z − 1 = −i − 1 =
√

2 e5πi/4

z + 1 = −1 + i =
√

2 e7πi/4

Thus

Res−i[ f ] = lim
z→−i

(
z + i

(1 + z2)
√

(z − 1)(z + 1)

)

=
(

1
−2i

)(
1√

2 e3πi/2

)
= −1

2
√

2

For the other pole, z = i,

z − 1 = i − 1 =
√

2 e3πi/4

z + 1 = i + 1 =
√

2 eπi/4

and

Resi[ f ] = lim
z→i

(
z − i

(1 + z2)
√

(z − 1)(z + 1)

)

=
(

1
2i

)(
1√

2 eπi/2

)
= −1

2
√

2
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Finally, we combine all the previous calculations to obtain

∫
C

f (z)dz = 2πi (Res−i[ f ] + Resi[ f ])

2
i

∫ 1

−1

1

(1 + x2)
√

x2 − 1
dx = 2πi

(−1√
2

)
∫ 1

−1

1

(1 + x2)
√

x2 − 1
dx = π√

2

L.3 Dirichlet Conditions and the Fourier Integral Theorem

Definition L.5. A function f (x) is said to satisfy the Dirichlet conditions in the
interval (a,b), if the interval (a,b) can be partitioned into a finite number of subin-
tervals such that f (x) is bounded and monotonic in each of these subintervals.
This means:

1. There are a finite number of maxima and minima for f (x) in (a,b).
2. f (x) has no infinite discontinuities, but it can have a finite number of bounded

discontinuities.

Then we have the following theorem, known as the Fourier integral theorem.

THEOREM L.8. Let f (x) be such that
∫∞
−∞ | f (x)|dx < ∞, and let f (x) satisfy Dirichlet’s

conditions given in definition L.5 for (a,b) = (−∞,∞), then

1
2

[
f (x+) + f (x−)

] = 1
π

∫ ∞

0

∫ ∞

−∞
f (t) cos (ω(x − t)) dt dω (L.54)

where

f (x+) = lim
η→0

f (x + |η|) and f (x−) = lim
η→0

f (x − |η|)

PROOF. As opposed to the prior approach of taking limits on the Fourier series
(cf. (12.5)), equation (L.54) given in Theorem L.8 can be more correctly derived
from another important result known as Dirichlet’s integral theorem,

1
2

[
f (x+) + f (x−)

] = lim
θ→∞

1
π

∫ ∞

−∞
f (x + η)

sin (θη)
η

dη (L.55)

as long as f (x) satisfy Dirichlet’s conditions. The proof of (L.55) is given in sec-
tion L.6.1 (page 836).

Let t = x + η. Also, we use the fact that

sin (θη)
η

=
∫ θ

0
cos (ηω) dω (L.56)

Substituting (L.56) into (L.55) with x held fixed, we get

1
2

[
f (x+) + f (x−)

] = lim
θ→∞

1
π

∫ ∞

−∞
f (t)
∫ θ

0
cos ((x − t)ω) dω dt (L.57)
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The last important detail deals with the validity of interchanging the sequence of
integration in (L.57). With the assumption in Theorem L.8 that (

∫∞
−∞ | f (t)|dt < ∞),

we can show that (see Section L.6.2),

lim
θ→∞

∫ ∞

−∞
f (t)
∫ θ

0
cos ((x − t)ω) dω dt = lim

θ→∞

∫ θ

0

∫ ∞

−∞
f (t) cos ((x − t)ω) dt dω

(L.58)

So with (L.58) substituted to (L.57), we obtain the Fourier integral equation given
in (L.54)

L.4 Brief Introduction to Distribution Theory and Delta Distributions

In this appendix, we introduce some of the basic theory and tools to generalize the
concept of functions, with special attention to the construction of delta distribu-
tions. We also include a brief discussion of a very important class of distributions,
called tempered distributions, that generalizes the theory of Fourier transforms for
functions that may not be absolutely integrable.

L.4.1 The Delta Distribution (Delta Function)

The delta distribution, denoted by δ (t) and often known as the delta function, is
an important operation in applied mathematics. However, it does not satisfy the
classical requirements of functions; for example, it is not defined at t = 0. Instead,
a new concept known as distributions (also known as generalized functions) had to
be constructed to give the necessary mathematical rigor to δ (t). Once the theory for
distribution was built, the constructs allow for the definition of other distributions,
including the derivatives of δ (t) and δ (g(t)), where g(t) is a continuous function.

Consider the Heaviside step function, H (t), defined as

H (t) =
{

0 if t < 0
1 if t ≥ 0

(L.59)

The delta distribution is often defined as the “derivative” of the Heaviside step
function. Unfortunately, because of the discontinuity at t = 0, the derivative is not
defined there. However, the integral

〈H (t) , g(t)
〉
[a,b] =

∫ b

a
H (t) g(t)dt (L.60)

with g(t) at least piecewise continuous, does not present any computational or con-
ceptual problems. We can use this fact to explore the action of δ (t) by studying the
integral,

〈
δ (t) , g(t)

〉 = ∫ ∞

−∞
δ (t) g(t)dt (L.61)

where g(t) is a bounded differentiable function with bounded derivatives.
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By having δ (t) be the derivative of H (t), (L.61) can be integrated by parts,∫ ∞

−∞
δ (t) g(t)dt =

∫ ∞

−∞

d
dt
H (t) g(t)dt

= −
∫ ∞

−∞
H (t)

dg
dt

dt

+ H (∞) g (∞) − H (−∞) g (−∞)

= −
∫ ∞

0

dg
dt

dt + g (∞)

= g(0) (L.62)

Thus δ (t) can be defined based on the associated action on g(t), resulting with a
number g(0). If g(t) = 1, ∫ ∞

−∞
δ (t) dt = 1 (L.63)

The operational definition of δ (t) given in (L.62) may suffice for some applica-
tions. Other applications, however, require extensions of this operation to accom-
modate algebraic operations and calculus involving δ (t). To do so, the theory of
distributions was developed by L. Schwarz as a framework to define mathemati-
cal objects called distributions and their operations, of which δ (t) is one particular
example.

L.4.2 Theory of Distributions

Consider the following collection of continuous functions that are used to define
distributions:

Definition L.6. A continuous bounded function ϕ(t) is a test function if

1. ϕ(t) ∈ C∞, i.e. dkϕ/dtk is continuous for all integer k
2. ϕ(t) has compact support [a,b], i.e. ϕ(t) = 0 for (−∞ ≤ t < a) and

(b < t ≤ ∞)

An example of a test function is the smooth-pulse function given by

ϕab (t) =

⎧⎪⎨⎪⎩
0 if t ≤ a

exp
[
1 − ab

(t−a)(t−b)

]
if a < t < b

0 if t ≥ b

(L.64)

A plot of ϕab (t) is shown in Figure L.14.

Definition L.7. A distribution, Dist (t), is a mapping from the set of test func-
tions, �test, to the set of real (or complex) numbers given by〈

Dist (t) , ϕ(t)
〉 = ∫ ∞

−∞
Dist (t)ϕ(t)dt (L.65)

for ϕ ∈ �test, such that the map is
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1

0
ba

t

ab(t)

Figure L.14. A plot of the smooth pulse function defined by (L.64).

1. Linear: For ϕ,ψ ∈ �test and α, β constants,〈
Dist (t) , αϕ(t) + βψ(t)

〉 = α
〈
Dist (t) , ϕ(t)

〉+ β
〈
Dist (t) , ψ(t)

〉
(L.66)

and
2. Continuous: For any convergent sequence of test functions ϕn → 0 then〈

Dist (t) , ϕn(t)
〉→ 0, where the convergence of sequence of test functions sat-

isfies.
(a) All the test functions in the sequence have the same compact support.
(b) For each k, the kth derivatives of the test functions converges uniformly

to zero.

Note that although we denote a distribution by Dist (t), (L.65) shows that the
argument t is an integration variable. Distributions are also known as generalized
functions because functions can also act as distributions. Moreover, using a very
narrow smooth-pulse function, for example, ϕab(t) in (L.64) centered around to with
a → band under appropriate normalization, the distribution based on a function f (t)
reduces to the same evaluation operation of f (t) at t = to. However, the important
difference is that distributions are mappings from test functions to real (or complex)
numbers, whereas functions are mappings from real (or complex) numbers to real
(or complex) numbers, as shown in Figure L.15.

RIRI

RI
test

f(t)Dist(t), (t)< <

(t) t

Figure L.15. A comparison of the map-
pings of distributions and functions.
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Based on the conventional rules of integration, the following operation on dis-
tributions also yield distributions:

1. Linear Combination of Distributions. Let g1(t), g2(t) ∈ C∞, that is, infinitely dif-
ferentiable functions, then

Distcomb (t) = [g1(t)Dist1 (t) + g2(t)Dist2 (t)]

is a distribution and〈
[g1(t)Dist1 (t) + g2(t)Dist2 (t)] , ϕ(t)

〉 =〈
Dist1 (t) , g1(t)ϕ(t)

〉 + 〈
Dist2 (t) , g2(t)ϕ(t)

〉
(L.67)

In particular, if g1(t) = α and g2(t) = β are constants,〈
[αDist1 (t) + βDist2 (t)] , ϕ(t)

〉 =
α
〈
Dist1 (t) , ϕ(t)

〉 + β
〈
Dist2 (t) , ϕ(t)

〉
(L.68)

To prove (L.67), we simply evaluate the integral,〈
[g1(t)Dist1 (t) + g2(t)Dist2 (t)] , ϕ(t)

〉
=
∫ ∞

−∞
[g1(t)Dist1 (t) + g2(t)Dist2 (t)]ϕ(t)dt

=
∫ ∞

−∞
[g1(t)Dist1 (t)ϕ(t)] dt +

∫ ∞

−∞
[g2(t)Dist2 (t)ϕ(t)] dt

= 〈Dist1 (t) , g1(t)ϕ(t)
〉+ 〈Dist2 (t) , g2(t)ϕ(t)

〉
2. Invertible Monotonic Transformation of Argument. Let ϑ(t) be an invertible

and monotonic transformation of argument t, that is, (dϑ/dt �= 0), then

Distϑ (t) = Dist (ϑ(t))

is also a distribution, and

〈
Dist (ϑ(t)) , ϕ(t)

〉 = 〈Dist (z) ,
ϕ
(
ϑ−1(z)

)
"(z)

〉
(L.69)

where

z = ϑ(t)

ζ(t) =
∣∣∣∣dϑdt

∣∣∣∣ (L.70)

"(z) = ζ
(
ϑ−1(z)

)
In particular, we have for translation, ϑ(t) = t − α, then〈

Dist (t − α) , ϕ(t)
〉 = 〈

Dist (z) , ϕ (z + a)
〉

= 〈
Dist (t) , ϕ (t + a)

〉
(L.71)

where we replaced zby t again because these can be considered dummy variables
during the integration process.
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Another particular example is for scaling of the argument, ϑ(t) = αt, then〈
Dist (αt) , ϕ(t)

〉 = 1
|α|
〈
Dist (z) , ϕ

( z
α

)〉
= 1

|α|
〈
Dist (t) , ϕ

(
t
α

)〉
(L.72)

To prove (L.69), evaluate the integral,〈
Dist (ϑ(t)) , ϕ(t)

〉 =
∫ ∞

−∞
Dist (ϑ(t))ϕ(t)dt (L.73)

=
∫ ϑ(∞)

ϑ(−∞)
Dist (z)ϕ(ϑ−1(z))

1
dϑ/dt

dz (L.74)

Recall that ϑ(t) is an invertible monotonic transformation of t. Suppose ϑ(t)
is strictly monotonically increasing. Then z → ∞ as t → ∞ and dϑ/dt > 0.
However, if ϑ(t) is strictly monotonically decreasing, z → −∞ as t → ∞ and
dϑ/dt > 0. For the latter case, the lower limit of integration will be +∞ and the
upper limit is −∞. Thus, for either case, by fixing the upper limit to be +∞ and
the lower limit to be −∞, we take the absolute value of dϑ/dt when defining ζ(t)
in (L.70).

3. Derivatives of Distributions. The derivative of distribution Dist (t), denoted by
Dist′ (t), is also a distribution. After applying integration by parts, the operation
of Dist′ (t) is given by〈

Dist′ (t) , ϕ(t)
〉 =

〈
d
dt

Dist (t) , ϕ(t)
〉

=
∫ ∞

−∞

dDist (t)
dt

ϕ(t)dt

= −
∫ ∞

−∞
Dist (t)

dϕ
dt

dt

= −
〈
Dist (t) ,

dϕ(t)
dt

dt
〉

(L.75)

Using the preceding operations of distributions, we have the following theorem
that describes the calculus available for distributions.

THEOREM L.9. Let Dist (t), Dist1 (t), and Dist2 (t) be distributions, g(t) be a C∞ func-
tion, and α be a constant, then

1. The derivative of sums of distributions are given by

d
dt

(Dist1 (t) + Dist2 (t)) = d
dt

(Dist1 (t)) + d
dt

(Dist2 (t)) (L.76)

2. The derivative of a scalar product of a distribution with g(t) is given by

d
dt

[g(t)Dist (t)] = dg
dt

Dist (t) + g(t)
d
dt

Dist (t) (L.77)
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For the special case of g(t) = α,

d
dt

[αDist (t)] = α
d
dt

Dist (t) (L.78)

3. The derivative of a distribution under argument transformation ϑ(t), where ϑ(t)
is an invertible monotonic function, is given by

d
dt

[Dist (ϑ(t))] =
[

dϑ
dt

]
d

dϑ
[Dist (ϑ)] (L.79)

PROOF. See Section L.8.

L.4.3 Properties and Identities of Delta Distribution

As a consequence of distribution theory, some of the properties and identities of
delta distribution are given by:

1. Sifting property. ∫ ∞

−∞
δ (t − α) f (t)dt =

∫ ∞

−∞
δ (t) f (t + α)dt

= f (α) (L.80)

2. Rescaling property. Let α �= 0,∫ ∞

−∞
δ (αt) f (t)dt = 1

|α|
∫ ∞

−∞
δ (t) f (t/α)dt

= 1
|α| f (0) (L.81)

A special case is when α = −1, then δ (−t) = δ (t).

3. Identities Involving Derivatives.〈
dn

dtn
δ (t) , f (t)

〉
= (−1)k

〈
d(n−k)

dt(n−k)
δ (t) ,

dk

dtk
f (t)

〉
, 0 ≤ k ≤ n (L.82)

tn dm

dtm
δ (t) =

⎧⎨⎩ 0 if 0 ≤ m < n

(−1)n m!
(m−n)!

d(m−n)

dt(m−n) δ (t) if 0 ≤ n ≤ m
(L.83)

(See Section L.8 for the proof of (L.83).)

Special cases include the following:

t
d
dt
δ (t) = −δ (t) (L.84)

t2 d
dt
δ (t) = 0 (L.85)

d
dt
δ (−t) = − d

dt
δ (t) (L.86)
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4. Identities under Argument Transformation. Let g(t) have a finite number
of isolated and distinct roots, r1 �= r2 �= · · · �= rn, and |dg/dt|(t=rk) �= 0 for k =
1, 2, . . . ,n

δ (g(t)) =
n∑

k=1

1
|dg/dt|(t=rk)

δ (t − rk) (L.87)

(See Section L.8 for the proof of (L.87).)
A special case is when g(t) = t2 − a2,

δ
(
t2 − a2) = δ (t − a) + δ (t + a)

2|a| (L.88)

L.4.4 Limit Identities for Delta Distribution

In the previous section, although we have shown several properties and identities
of the delta distribution, it may sometimes be advantageous to base calculations on
functions whose limits become the delta distribution. Surprisingly, the approximate
functions do not even need to be positive definite, nor do they need to be symmetric
with respect to the t = 0 axis.

THEOREM L.10. Let f (t) have the following properties:

1. f (t) is piecewise continuous
2.
∣∣∫∞

−∞ f (t)dt
∣∣ < ∞ and lim|t|→∞ f (t) = 0

3.
∫∞
−∞ f (t)dt = 1

Then extending this function with a parameter α as follows,

F (α, t) = αf (αt) (L.89)

we have the following identity,

lim
α→∞ F (α, t) = δ (t) (L.90)

PROOF. See Section L.8

This theorem unifies different approaches used in different fields of applied
mathematics to define the delta distribution. Some of the most common examples
of functions used are:

1. Gaussian Function.

f (t) = 1√
2π

e−x2/2 (L.91)

and

F (α, t) = α√
2π

e−(αx)2
/2 (L.92)

A plot of F (α, t) based on the gaussian function is shown in Figure L.16.
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Figure L.16. A plot of F (α, t) based on
the Gaussian function.

2. Rectangular Pulse. Let H (t) be the unit Heaviside step function; then the unit
rectangular pulse function is given by

f (t) = H
(

t + 1
2

)
− H

(
t − 1

2

)
(L.93)

and

F (α, t) = α

(
H
(
αt + 1

2

)
− H

(
αt − 1

2

))
(L.94)

A plot of F (α, t) based on the rectangular pulse function is shown in Figure L.17.
3. Sinc Function

f (t) = sin (x)
πx

(L.95)

and

F (α, t) = sin (αx)
πx

(L.96)

A plot of F (α, t) based on the sinc function is shown in Figure L.18.
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Figure L.17. A plot of F (α, t) based on the
rectangular pulse function.
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Figure L.18. A plot of F (α, t) based on the sinc function.

L.4.5 Delta Distribution for Higher Dimensions

Definition L.8. For the Cartesian space of independent variables, x ∈ R
n,

x =

⎛⎜⎜⎜⎝
x1

x2
...

xn

⎞⎟⎟⎟⎠ (L.97)

the delta distribution of x is given by

δ (x) = δ (x1) δ (x2) · · · δ (xn) (L.98)

Under this definition, the properties of δ (t) can be used while integrating along
each dimension. For instance, the sifting property for g(x) with p ∈ R

n becomes∫ ∞

−∞
· · ·
∫ ∞

−∞
δ (x − p) g(x) dx1 · · · dxn = g(p) (L.99)

Note, however, that when dealing with the general curvilinear coordinates, nor-
malization is needed to provide consistency.

Definition L.9. Let μ = (μ1, μ2, . . . , μn) be a set of n curvilinear coordinates,

μ1 = μ1 (x1, x2, . . . , xn)

μ2 = μ2 (x1, x2, . . . , xn)

... (L.100)

μn = μ1 (x1, x2, . . . , xn)
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that is invertible with the Cartesian coordinates x = (x1, . . . , xn), that is, the Jaco-
bian matrix,

JC→μ = ∂ (μ1, . . . , μn)
∂ (x1, . . . , xn)

=

⎛⎜⎜⎜⎝
∂μ1/∂x1 · · · ∂μ1/∂xn

...
. . .

...

∂μn/∂x1 · · · ∂μn/∂xn

⎞⎟⎟⎟⎠ (L.101)

is nonsingular.
Then, the delta distribution under the new coordinates of μ is given by

δ (μ) = δ (μ1) δ (μ2) · · · δ (μn)∣∣det (Jμ→C)
∣∣ (L.102)

where Jμ→C is the inverse of JC→μ,

|Jμ→C| =
∣∣∣∣ ∂ (x1, . . . , xn)
∂ (μ1, . . . , μn)

∣∣∣∣ (L.103)

The inclusion of the denominator term in (L.102) is to maintain consistency, that
is,

∫
V
δ (x) dV =

∫
V
δ (μ) dV

=
∫ xn,hi

xn,lo

· · ·
∫ x1,hi

x1,lo

(δ (μ1) · · · δ (μn))∣∣det (Jμ→C)
∣∣ dx1 · · · dxn

=
∫ μn,hi

μn,lo

· · ·
∫ μ1,hi

μ1,lo

(δ (μ1) · · · δ (μn))∣∣det (Jμ→C)
∣∣ ∣∣det (Jμ→C)

∣∣ dμ1 · · · dμn

=
∫ μn,hi

μn,lo

· · ·
∫ μ1,hi

μ1,lo

(δ (μ1) · · · δ (μn)) dμ1 · · · dμn

1 = 1

where we used the relationship of multidimensional volumes in curvilinear coordi-
nates, that is,

dV = dx1 · · · dxn = ∣∣det (Jμ→C)
∣∣dμ1 · · · dμn

and x is an interior point in region V .
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EXAMPLE L.8. Consider the spherical coordinate system, μsphere = (r, θ, φ). With

x = r sin (θ) cos (φ)

y = r sin (θ) sin (φ)

z = r cos (θ)

the Jacobian determinant, |JSphere→C|, is given by

|JSphere→C| =
∣∣∣∣∂ (x, y, z)
∂ (r, θ, φ)

∣∣∣∣
=
∣∣∣∣∣∣
⎛⎝ ∂x/∂r ∂x/∂θ ∂x/∂φ

∂y/∂r ∂y/∂θ ∂y/∂φ
∂z/∂r ∂z/∂θ ∂z/∂φ

⎞⎠∣∣∣∣∣∣
=
∣∣∣∣∣∣
⎛⎝ sin (θ) cos (φ) r cos (θ) cos (φ) −r sin (θ) sin (φ)

sin (θ) sin (φ) r cos (θ) sin (φ) r sin (θ) cos (φ)
cos (θ) −r sin (θ) 0

⎞⎠∣∣∣∣∣∣
= r2 sin (θ)

Thus

δ (r, θ, φ) = δ (r) δ (θ) δ (φ)
r2 sin (θ)

L.5 Tempered Distributions and Fourier Transforms

The set of test functions defined in Definition L.6 contains infinitely differentiable
continuous functions with compact support. If we relax some of these specifications
and replace them with functions that are rapidly decreasing functions or Schwartz
functions (to be defined next), we can generate a subset of distributions, called tem-
pered distributions. Tempered distributions can then be used to define generalized
Fourier transforms that can be applied on functions such as unit step functions, sines,
and cosines and on distributions such as the delta distribution.

Definition L.10. A continuous function f (t) belongs to the Schwartz class,
denoted by S, if f (t) is:

1. Infinitely differentiable, that is, f ∈ C∞

and
2. Rapidly decreasing, that is, there is a constant Cnm, such that∣∣∣∣tn dm f

dtm

∣∣∣∣ < Cnm , as t → ±∞ for n,m = 0, 1, 2, . . .

A classic example of a Schwartz function that does not have compact support is
given by

f (t) = e−|t|2 (L.104)

A plot of (L.104) is shown in Figure L.19.
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Figure L.19. A plot of f (t) = exp(−|t|2).

If we now replace test functions defined in Definition L.6 by Schwartz functions,
we have the following definition for tempered distributions.

Definition L.11. A tempered distribution, denoted TDist (t), is a mapping from
the set of Schwartz test functions, S, to the set of real (or complex) numbers given
by 〈

TDist (t) , ϕ(t)
〉 = ∫ ∞

−∞
TDist (t)ϕ(t)dt (L.105)

for ϕ ∈ S, such that the map is

1. Linear: For ϕ,ψ ∈ S and α, β constants,〈
TDist (t) , αϕ(t) + βψ(t)

〉 = α
〈
TDist (t) , ϕ(t)

〉+ β
〈
TDist (t) , ψ(t)

〉
(L.106)

and
2. Continuous: For any convergent sequence of Schwartz test functions ϕn →

0 then
〈
TDist (t) , ϕn(t)

〉→ 0

Because the set of test functions (with compact support), �test, are already
Schwartz test functions, the set of tempered distributions is automatically included
in the set of regular distributions, that is,

{
TDist (t)

} ⊂ {Dist (t)
}
, which says that

the class of regular distributions is much larger. This means that some distributions
are not tempered distributions. The major issue is integrability, because Schwartz
functions only decay to zero at t = ±∞, whereas regular test functions with compact
support are zero outside the support. Fortunately, the delta distribution can be shown
to be also a tempered distribution.

L.5.1 Generalized Fourier Transforms

Even though the space of tempered distributions is smaller than that of regular
distributions, one of the main applications of tempered distributions is the gener-
alization of Fourier transforms. This begins with the fact that Fourier or inverse
Fourier transforms of Schwartz functions are again Schwartz functions.



832 Appendix L: Additional Details and Fortification for Chapter 12

THEOREM L.11. Let f ∈ S then F [f ] ∈ S, where S is the class of Schwartz functions
and F is the Fourier transform operator.

PROOF. First, we note an upper bound on Fourier transforms,∣∣∣∣ F [ f ]
∣∣∣∣ =

∣∣∣∣∫ ∞

−∞
e−iωt f (t)dt

∣∣∣∣
≤
∣∣∣∣∫ ∞

−∞
f (t)dt

∣∣∣∣ (L.107)

Next, we need two derivative formulas. The first formula is given by,

F
[

(−it)m f (t)
]

=
∫ ∞

−∞
e−iωt(−it)m f (t)dt

=
∫ ∞

−∞

(
dm

dωm

(
e−iωt)) f (t)dt

= dm

dωm

∫ ∞

−∞
e−iωt f (t)dt

= dm

dωm

(
F [f ]

)
(L.108)

The second derivative formula is given by,

F
[

dn f
dtn

]
=
∫ ∞

−∞
e−iωt dn f

dtn
dt

= (iω)n F [ f ] (L.109)

( after integration by parts )

Combining (L.108) and (L.109),

F
[

dn

dtn

(
(−it)m f

) ]
= (iω)n dm

dωm

(
F [f ]

)
(L.110)

After some rearranging and taking absolute values,∣∣∣∣∣ ωn dm

dωm
(F [ f ])

∣∣∣∣∣ =
∣∣∣∣∣ F
[

dn

dtn

(
(−it)m f

) ] ∣∣∣∣∣ (L.111)

Applying the upper bound given by (L.107),∣∣∣∣∣ ωn dm

dωm
(F [ f ])

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ ∞

−∞

dn

dtn

(
tm f
)

dt

∣∣∣∣∣ (L.112)

Because f is a Schwartz function, the term on the right-hand side can be replaced
by a constant Cnm. This means that F [ f ] is also a Schwartz function.

With this fact, we can define the Fourier transform of tempered distributions.
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Definition L.12. Let TDist (t) be a tempered distribution and ϕ(t) a Schwartz
function. Then the generalized Fourier transform of TDist (t), denoted by
F [TDist (t)], is a tempered distribution defined by the following operation〈

F [TDist (t)] , ϕ(ω)
〉
=
〈
TDist (ω) ,F [ϕ(t)]

〉
(L.113)

Note that (L.113) is acceptable because TDist (ω) was already assumed to be
a tempered distribution and F [ϕ(t)] is guaranteed to be a Schwartz function (via
Theorem L.11). Also, note the change of independent variable from t to ω, because
the Fourier transform yields a function in ω. The tempered distribution TDist () will
be based on ω.

With this definition, we are able to define Fourier transforms of functions such
as cosines and sines and distributions such as delta distributions. Moreover, the
Fourier transforms of distributions will yield the same Fourier transform operation
if the distribution is a function that allow the classical Fourier transform.

EXAMPLE L.9. Fourier transform of delta distribution. Let ϕ(ω) be a Schwartz
function.〈

F [δ(t − a)] , ϕ(ω)
〉

=
∫ ∞

−∞
δ(ω− a)F [ϕ(t)] dω

=
∫ ∞

−∞
δ(ω− a)

(∫ ∞

−∞
e−iωtϕ(t)dt

)
dω

=
∫ ∞

−∞
e−iatϕ(t)dt

=
〈
e−iat, ϕ(t)

〉
=
〈
e−iaω, ϕ(ω)

〉
where we used the sifting property of delta distribution. Also, in the last line,
we substituted ω for t by considering t can as a dummy integration variable.

Comparing both sides, we conclude that

F [δ(t − a)] = e−iaω (L.114)

and for the special case of a = 0,

F [δ(t)] = 1 (L.115)

with “1” treated as a tempered distribution.

EXAMPLE L.10. Fourier transform of eiat, cosines, and sines. First consider the
Fourier transform of eiat,〈

F [eiat] , ϕ(ω)
〉
=
∫ ∞

−∞
eiaωF [ϕ(t)] dω (L.116)
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where the right-hand side can be seen as 2π times the inverse Fourier transform
at t = a, that is,∫ ∞

−∞
eiaωF [ϕ(t)] dω = 2πF−1F [ϕ(t)]

∣∣∣∣
t=a

= 2π ϕ(t)
∣∣
t=a = 2πϕ(a)

= 2π
∫ ∞

−∞
δ(t − a)ϕ(t)dt

= 2π
〈
δ(t − a), ϕ(t)

〉
= 2π

〈
δ(ω− a), ϕ(ω)

〉
(L.117)

Comparing (L.116) and (L.117), we conclude that

F [eiat] = 2πδ(ω− a) (L.118)

In particular, we have for a = 0,

F [1] = 2πδ(ω) (L.119)

Using (L.118), Euler’s identity, and the linearity property of tempered distribu-
tions, we have

F [cos (at)] = F
[

eiat + e−iat

2

]
= 1

2

(F [eiat]+ F [e−iat])
= π

(
δ (ω− a) + δ (ω+ a)

)
(L.120)

Similarly for sine, we obtain

F [sin (at)] = iπ
(
δ (ω+ a) − δ (ω− a)

)
(L.121)

Suppose f (t) already possesses a classical Fourier transform; for example, it
satisfies Dirichlet conditions and it is integrable; then we end up with the same
evaluation. To see this, we have:〈

F [f (t)] , ϕ(ω)
〉

=
∫ ∞

−∞
f (ω)

∫ ∞

−∞
e−iωtϕ(t)dtdω

=
∫ ∞

−∞
ϕ(t)
∫ ∞

−∞
e−iωt f (ω)dωdt

=
∫ ∞

−∞
ϕ(ω)

∫ ∞

−∞
e−iωt f (t)dt dω

=
〈 [∫ ∞

−∞
e−iωt f (t)dt

]
, ϕ(ω)

〉
where we exchanged the roles of ω and t in the last two lines. Thus we have

F [ f (t)] =
∫ ∞

−∞
e−iωt f (t)dt
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This shows that we indeed obtained a generalization of the classic Fourier transform.

L.5.2 Generalized Fourier Transform of Integrals

All the properties of the classic Fourier transforms carry over to the generalized
Fourier transforms. One additional property, however, that takes advantage of tem-
pered distribution is the property for generalized Fourier transform of integrals.

THEOREM L.12. Let f (t) have a generalized Fourier transform. Then

F
[∫ t

−∞
f (η)dη

]
= πδ(ω)

(
F [ f (t)]

∣∣∣
ω=0

)
+ 1

iω
F [f (t)] (L.122)

PROOF. First, we apply the operation of tempered distributions on the generalized
Fourier transforms as follows:〈

F
[∫ t

−∞
f (η)dη

]
, ϕ(ω)

〉
=
∫ ∞

−∞

(∫ ω

−∞
f (η)dη

)∫ ∞

−∞
e−iωtϕ(t)dt dω

=
∫ ∞

−∞
ϕ(t)
∫ ∞

−∞
e−iωt

(∫ ω

−∞
f (η)dη

)
dω dt

=
∫ ∞

−∞
ϕ(t)
[
ξcos(t) + ξsin(t) + ζ(t)

]
dt (L.123)

where the terms ξcos(t), ξsin(t) and ζ(t) are obtained after integration by parts6 to be

ξcos(t) = lim
ω→∞ −cos(ωt)

it

∫ ∞

−∞
f (ω)dω (L.124)

ξsin(t) = lim
ω→∞

sin(ωt)
it

∫ ∞

−∞
f (ω)dω

= πδ(t)
(
F [ f (ω)]

∣∣∣
t=0

)
(L.125)

ζ(t) = 1
it

∫ ∞

−∞
e−iωt f (ω)dω

= 1
it
F [f (ω)] (L.126)

Next, expand (L.123) to obtain the three additive terms evaluated as,∫ ∞

−∞
ϕ(t)ξcos(t)dt = 0 (treated as a principal value integral) (L.127)

∫ ∞

−∞
ϕ(t)ξsin(t)dt =

〈[
πδ(ω)

(
F [ f (t)]

∣∣∣
ω=0

) ]
, ϕ(ω)

〉
(L.128)

∫ ∞

−∞
ϕ(t)ζ(t)dt =

〈[
1
iω

F [ f (t)]
]
, ϕ(ω)

〉
(L.129)

6 Let
(

u = ∫ ω−∞ f (η)dη
)

and ( dv = exp(−iωt) ). Then, v = −[1/(it)] exp(−iωt). And using Leibnitz
rule, du = f (ω)dω.
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We again switched the roles of t and ω in (L.128) and (L.129). Adding these three
terms together and then comparing with the right-hand side of (L.123), we obtain
(L.122).

EXAMPLE L.11. Fourier transform of the unit step function and signum function.
The (dual) definition of the unit step function is that it is the integral to the delta
distribution. Using (L.122) and the fact that F [δ(t)] = 1 (cf. (L.115)), we have

F [H (t)] = F
[∫ t

−∞
H (η) dη

]
= πδ(ω)

(
F [δ(t)]

∣∣∣
ω=0

)
+ 1

iω
F [δ(t)]

= πδ(ω) + 1
iω

(L.130)

Furthermore, with the relationship between H (t) and sgn(t) given by,

sgn(t) = 2H (t) − 1 (L.131)

we can proceed as before, while using (L.119)〈
F [sgn(t)] , ϕ(ω)

〉
= 2

〈
F [H (t)] , ϕ(ω)

〉
−
〈
1, ϕ(ω)

〉
= 2

〈[
1
iω

+ πδ(ω)
]
, ϕ(ω)

〉
−
〈
2πδ(ω), ϕ(ω)

〉
= 2

〈
1
iω
, ϕ(ω)

〉
Thus

F [sgn(t)] = 2
iω

(L.132)

L.6 Supplemental Lemmas, Theorems, and Proofs

L.6.1 Dirichlet Integral Theorem

Part of this theorem is used for the proof of Fourier’s integral theorem (Theo-
rem L.8).

THEOREM L.13. Let f (x + η) satisfy Dirichlet’s conditions in the interval (a,b), where
a ≥ −∞ and b ≤ ∞, then

lim
θ→∞

2
π

∫ b

a
f (x + η)

sin (θη)
η

dη =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ f (x+) + f (x−)] if a < 0 < b

f (x+) if 0 = a < b

f (x−) if a < b = 0

0 if 0 < a < b
or a < b < 0

(L.133)
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PROOF. We start with the fact that∫ ∞

0

sin(q)
q

dq = π

2
(L.134)

and for q2 > q1,

lim
q1→∞

∫ q2

q1

sin(q)
q

dq = 0 (L.135)

Assume that f (x + η) is monotonic in a subinterval (α, β) of (a,b) for the case a > 0,
the mean value theorem says there exists a < ξ < b such that, with q = θη,∫ β

α

f (x + η)
sin(θη)

η
dη = f (x + α+)

∫ ξ

α

sin(θη)
η

dη+ f (x + β−)
∫ β

ξ

sin(θη)
η

dη

= f (x + α+)
∫ θξ

θα

sin(q)
q

dq + f (x + β−)
∫ θβ

θξ

sin(q)
q

dq

and with (L.135),

lim
θ→∞

∫ β

α

f (x + η)
sin(θη)

η
dη = 0 (L.136)

Note that so far, (L.136) has been shown to apply to a subinterval where f (x + η) is
monotonic. However, because f (x + η) satisfies Dirichlet’s conditions, the interval
(a,b) can be partitioned into n subintervals (ai, ai+1), with

0 < a = a0 < a1 < · · · < an = b

such that f (x) is monotonic inside each subinterval (e.g., with ai occurring either at
a discontinuity, minima, or maxima of f (x)). Thus

lim
θ→∞

∫ b

(a>0)
f (x + η)

sin(θη)
η

dη = lim
θ→∞

n−1∑
i=0

∫ ai+1

ai

f (x + η)
sin(θη)

η
dη = 0 (L.137)

Similarly with b < 0, the same approach can be used to show

lim
θ→∞

∫ (b<0)

a
f (x + η)

sin(θη)
η

dη = 0 (L.138)

Next, for the case when a = 0, we need to focus only on the first interval, (0, a1), in
which f (x) is monotonic because (L.137) says the integral in the interval (a1,b) is
zero. Using the mean value theorem again, there exists 0 < ξ < a1 such that∫ a1

0
f (x + η)

sin(θη)
η

dη = f (x+)
∫ ξ

0

sin(θη)
η

dη+ f (x + a1
−)
∫ a1

ξ

sin(θη)
η

dη

= f (x+)
∫ θξ

0

sin(q)
q

dq + f (x + a1
−)
∫ θa1

θξ

sin(q)
q

dq
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Applying (L.134) and (L.135),

lim
θ→∞

∫ a1

0
f (x + η)

sin(θη)
η

dη = f (x+)
π

2

or with 0 = a < b,

lim
θ→∞

2
π

∫ b

0
f (x + η)

sin(θη)
η

dη = f (x+) (L.139)

Likewise, for a < b = 0, the same approach will yield

lim
θ→∞

2
π

∫ 0

a
f (x + η)

sin(θη)
η

dη = f (x−) (L.140)

For the last case, that is, a < 0 < b, we simply add (L.139) and (L.140) to obtain

lim
θ→∞

2
π

∫ (b>0)

(a<0)
f (x + η)

sin(θη)
η

dη = f (x+) + f (x−) (L.141)

L.6.2 A Technical Lemma for Fourier Integral Theorem

LEMMA L.1. Let f (x) be absolutely convergent, that is,∫ ∞

−∞
| f (x)|dx < ∞

then

lim
θ→∞

∫ ∞

−∞
f (t)
∫ θ

0
cos ((x − t)ω) dω dt = lim

θ→∞

∫ θ

0

∫ ∞

−∞
f (t) cos ((x − t)ω) dt dω

(L.142)

PROOF. First, we look at the integrals of (L.142)∫ ∞

0
f (t)
∫ θ

0
cos ((x − t)ω) dω dt =

∫ τ

0
f (t)
∫ θ

0
cos ((x − t)ω) dω dt

+
∫ ∞

τ

f (t)
∫ θ

0
cos ((x − t)ω) dω dt

(L.143)

and∫ θ

0

∫ ∞

0
f (t) cos ((x − t)ω) dt dω =

∫ θ

0

∫ τ

0
f (t) cos ((x − t)ω) dt dω

+
∫ θ

0

∫ ∞

τ

f (t) cos ((x − t)ω) dt dω

(L.144)

where 0 ≤ τ < ∞.
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With τ < ∞ and θ < ∞, the sequence of integrals with finite limits can be inter-
changed, that is,∫ τ

0
f (t)
∫ θ

0
cos ((x − t)ω) dω dt =

∫ θ

0

∫ τ

0
f (t) cos ((x − t)ω) dt dω (L.145)

With the assumption of absolute convergence, there exist T such that∣∣∣∣∫ ∞

τ

| f (t)|dt

∣∣∣∣ < ε

θ

with ε > 0 and τ > T ,∣∣∣∣∫ ∞

τ

f (t)
∫ θ

0
cos ((x − t)ω) dω dt

∣∣∣∣ =
∣∣∣∣∫ ∞

τ

f (t)
sin((x − t)ω)

x − t
dt

∣∣∣∣
=
∣∣∣∣∫ ∞

x+τ
f (x + η)

sin(ηω)
η

dη

∣∣∣∣
<

1
τ

∣∣∣∣∫ ∞

τ

| f (x + η)| dη

∣∣∣∣ < ε

2τθ

and ∣∣∣∣∫ θ

0

∫ ∞

τ

f (t) cos ((x − t)ω) dt dω

∣∣∣∣ <

∫ θ

0

∫ ∞

τ

| f (t)| dt dω

<
ε

2θ

∫ θ

0
dω = ε

2

Combining both results,∣∣∣∣∫ ∞

τ

f (t)
∫ θ

0
cos ((x − t)ω) dω dt −

∫ θ

0

∫ ∞

τ

f (t) cos ((x − t)ω) dt dω

∣∣∣∣
<

ε

2

(
1 + 1

τθ

)
< ε

Thus ∫ ∞

τ

f (t)
∫ θ

0
cos ((x − t)ω) dω dt =

∫ θ

0

∫ ∞

τ

f (t) cos ((x − t)ω) dt dω (L.146)

Taking the difference between (L.143) and (L.144), and then substituting (L.145)
and (L.146),∫ ∞

0
f (t)
∫ θ

0
cos ((x − t)ω) dω dt =

∫ θ

0

∫ ∞

0
f (t) cos ((x − t)ω) dt dω (L.147)

Using a similar approach, we can show∫ 0

−∞
f (t)
∫ θ

0
cos ((x − t)ω) dω dt =

∫ θ

0

∫ 0

−∞
f (t) cos ((x − t)ω) dt dω (L.148)
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Adding (L.147) and (L.148), and then take the limit as ω → ∞,∫ ∞

−∞
f (t)
∫ ∞

0
cos ((x − t)ω) dω dt =

∫ ∞

0

∫ ∞

−∞
f (t) cos ((x − t)ω) dt dω

L.7 More Examples of Laplace Transform Solutions

In this section, we solve the partial differential equations using the Laplace trans-
forms. The first example shows the solution for the diffusion equation under bound-
ary conditions that are different from Example 12.13. The second example shows the
Laplace transform solution for the diffusion equation that includes a linear source
term.

EXAMPLE L.12. Here we extend the results of Example 12.13 to handle a different
set of boundary conditions. Thus with

α2 ∂
2u
∂x2

= ∂u
∂t

(L.149)

under a constant initial condition, u(x, 0) = Ci. In Example 12.13, we have
already partially found the solution in the Laplace domain to be given by (12.83);
this was found to be

Û = Aeλx + Be−λx + Ci

s
(L.150)

where λi = √
s/α. Now we investigate the solutions for a different set of bound-

ary conditions.

1. Finite Domain. Let the boundary conditions be

u(0, t) = C0 and u(L, t) = CL

Applying these to (L.150),

Û(0, s) = 1
s

C0 = A + B + Ci

s

Û(L, s) = 1
s

CL = AeλL + Be−λL + Ci

s
or

A = e−λL(C0 − Ci) − (CL − Ci)
s (e−λL − eλL)

and B = −eλL(C0 − Ci) + (CL − Ci)
s (e−λL − eλL)

Substituting back to (12.83),

Û = (C0 − Ci) Ûa + (CL − Ci) Ûb + Ci

s
where

Ûa = 1
s

sinh (λ(L − x))
sinh (λL)

Ûb = 1
s

sinh (λx)
sinh (λL)
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To evaluate the inverse Laplace transform, we can use the residue theorem for
an infinite number of simple poles (cf. Section L.2.3).7 Fortunately, the poles of
both Ûa and Ûb are all simple poles. They are given by8

s = 0 and λL = ikπ → sk = −
(
αkπ

L

)2

, k = 1, 2, . . .

Note that sk = 0 is a removable singularity of both (sinh(λ(L − x))/
sinh(λL)) and (sinh(λx)/ sinh(λL)). Thus s0 is not included in the sequence
of sk poles, leaving s = 0 to be a simple pole of Ûa and Ûb.

Then with γ > 0,

L−1 [Ûa
] = 1

2πi

∫ γ+∞

γ−∞
estÛa(x, s)ds =

∑
z=0,sk

Res z
(
estÛa

)

Res 0
(
estÛa

) = lim
s→0

est sinh(λ(L − x))
sinh(λL)

= L − x
L

Res sk

(
estÛa

) = eskt

sk
sinh
(

(L − x)
√

sk

α

)
lim
s→sk

(
s − sk

sinh(L
√

s/α)

)

= eskt

sk
sinh
(

(L − x)
√

sk

α

)
1

cosh (L
√

sk/α)
2α

√
sk

L

= (−1)k 2
kπ

sin
(

kπ
L − x

L

)
exp

(
−
[
αkπ

L

]2

t

)
Similarly, for Ûb,

L−1 [Ûb
] = 1

2πi

∫ γ+∞

γ−∞
estÛb(x, s)ds =

∑
z=0,sk

Resz
(
estÛb

)
Res 0

(
estÛb

) = x
L

Res sk

(
estÛb

) = (−1)k 2
kπ

sin
(

kπ
x
L

)
exp

(
−
[
αkπ

L

]2

t

)
Combining all the results, we have the solution for u(x, t):

u = usteady−state + utransient

7 The following identities are also useful for the calculations in this example:

sinh(i|z|) = i sin(|z|) , cosh(i|z|) = cos(|z|)

and
d
dz

sinh(z) = cosh(z) ,
d
dz

cosh(z) = sinh(z)

8 With f (x = i|z|) = sinh(i|z|) = i sin(|z|), the roots of f (x) are then given by x = i arcsin(0).
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utransient(x,t)

50 100

–50

0

1 0 1 0

5 t

10

0
05 t

xx

50

50

0
0.5 0.5

u(x,t)

Figure L.20. Plots of utransient and u(x, t) for example 12.13.

where

usteady−state = Ci + (C0 − Ci)
(

1 − x
L

)
+ (CL − Ci)

x
L

utransient =
∞∑

k=1

βk(t)
(

(C0 − Ci) ζk (L − x) + (CL − Ci) ζk (x)
)

with

βk(t) = (−1)k 2
kπ

exp

(
−
[
αkπ

L

]2

t

)
and ζk(y) = sin

(
kπ

y
L

)
Plots of utransient(x, t) and u(x, t) are shown in Figure L.20, for α = 0.1, L = 1,
C0 = 0, Ci = 50, and CL = 100, where the summation for utransient was truncated
after k = 250.

1. Dirichlet Conditions and Neumann Conditions, in Finite Domain. Let

u(0, t) = C0 ;
∂u
∂x

(L, t) = 0 and u(x, 0) = 0

Then (L.150) becomes

Û = Aeλx + Be−λx

where λ = √
s/α. Using the Laplace transform of the boundary conditions,

C0

s
= A + B and 0 = AeλL − BeλL

or

A = e−λL

eλL + e−λL
and B = e+λL

eλL + e−λL

Thus

Û = C0

s
e−λ(L−x) + eλ(L−x)

eλL + e−λL
= C0

s
e−λ(2L−x) + e−λx

1 + e−2λL
(L.151)

Let q = e−2λL. Then using the fact that

1
1 + q

=
∞∑

n=0

(−1)nqn
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x
t

1

0.5

0.5
0
0

5

10 0

1

u(x,t)

Figure L.21. A plot of the solution given by
equation (L.152).

equation (L.151) becomes

Û = C0

( ∞∑
n=0

(−1)n 1
s

e−βn(x)
√

s +
∞∑

n=0

(−1)n 1
s

e−γn(x)
√

s

)
where,

βn(x) = 2L(n + 1) − x
α

and γn(x) = 2Ln + x
α

Finally, the solution is given by

u(x, t) = C0

∞∑
n=0

(−1)n

⎛⎝ erfc
(
βn(x)

2
√

t

)
+ erfc

(
γn(x)

2
√

t

) ⎞⎠ (L.152)

A plot of (L.152) with C0 = 1, L = 10, and α = 4 is shown in Figure L.21.
Note that, although the plot qualitatively looks similar to Figure 12.3, the
main difference is that profiles of u(x, t) at fixed t have a zero slope at x = L.

EXAMPLE L.13. Laplace transform solution of diffusion equation with linear
source term in a semi-infinite domain.

Consider the equation

α2 ∂
2u
∂x2

= ∂u
∂t

+ σu (L.153)

with a constant initial condition u(x, 0) = Ci and boundary conditions

u (0, t) = f (t) and lim
x→∞ |u (x, t) | < ∞

Taking the Laplace transform, we obtain

α2 d2Û
dx2

= sÛ − Ci + σÛ

whose solution is given by

Û = Aeλx + Be−λx + Ci

s
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where λ = (
√

s + σ)/α. Applying the boundary conditions, we get

A = 0 and B = L [ f ] + Ci

s
Thus

Û =
(
L [ f ] − Ci

s

)
e−(

√
s+σ)x/α + Ci

s

Using the convolution theorem, we have

u(x, t) =
∫ t

0
( f (t − τ) − Ci)L−1

[
e−(

√
s+σ)x/α

]
dτ + Ci

To obtain the required inverse Laplace transform of the exponential term, we
can start from item 7 in Table 12.4 and apply the derivative theorem,

L−1
[
e−√

s
]

= L−1

[
s
(

1
s

e−√
s
)

− lim
t→0

(
erfc
(

1

2
√

t

)) ]

= d
dt

⎛⎝ erfc
(

1

2
√

t

) ⎞⎠ = 1

2
√
πt3

e−1/(4t)

Next, applying both shifting and scaling,

L−1
[
e−

√
(s+a)/b

]
= 1

2
√
πbt3

exp
(

− 1
4bt

− at
)

Thus with a = σ and b = (α/x)2,

u(x, t) = x
2α

√
π

∫ t

0

⎡⎣ f (t − τ) − Ci√
τ3

exp
(

− x2

4α2τ
− στ

)⎤⎦dτ + Ci (L.154)

The integral in equation (L.154) is difficult to evaluate both analytically and
numerically. If the boundary condition f (t) is constant, then a closed-form
solution is available. For the more general case, numerical integration is needed
to evaluate the solution.

Case 1. f (t) = C0 where C0 is constant. In this situation, (L.154) becomes

u(x, t) = x (C0 − Ci)
2α

√
π

I(x, t) + Ci

where,

I(x, t) =
∫ t

0

⎡⎣ 1
τ
√
τ

exp
(

− x2

4α2τ
− στ

)⎤⎦ dτ

To evaluate I(x, t), we introduce some auxiliary variables. Let q1 and q2 be
defined by

q1(τ) = a√
τ

+ b
√
τ and q2(τ) = a√

τ
− b

√
τ
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Figure L.22. A plot of the solution given by
(L.155).

then

dq1 = 1
2

(
− a
τ
√
τ

+ b√
τ

)
dτ and dq2 = 1

2

(
− a
τ
√
τ

− b√
τ

)
dτ

a2

τ
+ b2τ = q2

1 − 2ab = q2
2 + 2ab

With a = x/(2α) and b = √
σ and after some algebraic manipulations, we get

I(x, t) = − 2
a

e2ab
∫ q1(t)

∞
e−q2

1 dq1 − bg(x, t)

I(x, t) = − 2
a

e−2ab
∫ q2(t)

∞
e−q2

2 dq2 + bg(x, t)

where

g(x, t) =
∫ t

0

1√
τ

exp
(

− x2

4α2τ
− στ

)
dτ

The integral g(x, t) is just as difficult to integrate as I(x, t). Fortunately, we avoid
this by adding the two forms of I(x, t) based on q1 and q2 to obtain

I(x, y) = α
√
π

x

[
e2aberfc

(
x

2α
√
τ

+ σ
√
τ

)
+ e−2aberfc

(
x

2α
√
τ

− σ
√
τ

)]
or

u(x, y) = C0 − Ci

2

[
ex

√
σ/αerfc

(
x

2α
√

t
+ √

σt
)

+ e−x
√
σ/αerfc

(
x

2α
√

t
− √

σt
)]

+ Ci (L.155)

A plot of (L.155) with C0 = 1, Ci = 0, α = 1, and σ = 2 is shown in Figure L.22.

Case 2. f (t) not constant. In the general case that f (t) is not constant, numerical

integration is more appropriate. However, because of the presence of
√
τ3 in the

denominator of the integrand in (L.154), a removable singularity occurs at τ = 0.
The neighborhood around this singularity remains difficult to evaluate with
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Figure L.23. A plot of the solution given by (L.156) in two perspectives.

acceptable precision. As in the previous case, an auxiliary variable is needed.
This time, we introduce p where

p(τ) = 1√
τ

whose differential is

dp = − 1
2τ

√
τ

dτ

Then (L.154) becomes

u(x, t) = − x√
πα

∫ ∞

p(t)

[
f
(

t − 1
p 2

)
− Ci

]
exp
(

−
(xp

2α

)2
− σ

p 2

)
dp + Ci (L.156)

Take as an example, f (t) as a Gaussian function given by

f (t) = e−200(t−0.2)2

With Ci = 0, α = 1 and σ = 2, a plot of (L.156) can be obtained via numerical
integration and is shown in Figure L.23.

L.8 Proofs of Theorems Used in Distribution Theory

PROOF OF THEOREM L.9. The first result, (L.76), comes from direct application of the
formula for derivatives of distributions, (L.75), on the linear combination operation
given in (L.67).

For (L.77),〈
g(t)

d
dt

Dist (t) , ϕ(t)
〉

=
〈

d
dt

Dist (t) , g(t)ϕ(t)
〉

= −
〈
Dist (t) ,

d
dt

(g(t)ϕ(t))
〉

= −
〈
Dist (t) , g(t)

dϕ
dt

〉
−
〈
Dist (t) , ϕ(t)

dg
dt

〉
=
〈

d
dt

[g(t)Dist (t)] , ϕ(t)
〉
−
〈[

dg
dt

]
Dist (t) , ϕ(t)

〉
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After rearranging the equation, we arrive at (L.77).
To obtain (L.79),〈

d
dt

[Dist (ϑ(t))] , ϕ(t)
〉

= −
∫ ∞

−∞
Dist (ϑ)

dϕ
dt

dt

= −
∫ ∞

−∞
Dist (ϑ)

dϕ
dt

[
dt
dϑ

dϑ
dt

]
dt

= −
∫ ϑ(∞)

ϑ(−∞)
Dist (ϑ)

dϕ(t)
dϑ

dϑ

=
∫ ϑ(∞)

ϑ(−∞)

(
d

dϑ
Dist (ϑ)

)
ϕ(t)dϑ

=
∫ ∞

−∞

(
d

dϑ
Dist (ϑ)

)
ϕ(t)

dϑ
dt

dt

=
〈(

dϑ
dt

)
d

dϑ
[Dist (ϑ)] , ϕ(t)

〉

PROOF OF EQUATION (L.83). First, we prove the case when n = m. Using integration
by parts,〈

tn dn

dtn
δ (t) , ϕ(t)

〉

= (−1)n
∫ ∞

−∞
δ (t)

[
n∑

i=0

(
n
i

)(
d(n−i)

dt(n−i)
tn

)(
di

dti
ϕ

)]
dt

= (−1)nn!
∫ ∞

−∞
δ (t)ϕ(t)dt + (−1)n

∫ ∞

−∞
δ (t)

[
n∑

i=1

(
n
i

)(
n!
i!

ti
)(

di

dti
ϕ

)]
dt

= 〈(−1)nn!δ (t) , ϕ(t)
〉

Thus

tn dn

dtn
δ (t) = (−1)nn!δ (t)

Let � > 0 then〈
t�tn dn

dtn
δ (t) , ϕ(t)

〉
= (−1)nn!

〈
δ (t) , t�ϕ(t)

〉
= 0

Thus

tn dm

dtm
δ (t) = 0 if 0 ≤ m < n
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Finally, for the case n ≤ m, we apply the induction process. Let m = n + k

〈
tn d(n+k)

dt(n+k)
δ (t) , ϕ(t)

〉

= (−1)n
∫ ∞

−∞

dk

dtk
δ (t)

[
n∑

i=0

(
n
i

)(
d(n−i)

dt(n−i)
xn

)(
di

dti
ϕ

)]
dt

= (−1)n
∫ ∞

−∞

n∑
i=0

(
n
i

)(
n!
i!

ti
)(

dk

dtk
δ (t)
)(

di

dti
ϕ

)
dt

(using induction at this point)

= (−1)n
∫ ∞

−∞

min(n,k)∑
i=0

(−1)i(n!)2k!
(i!)2(n − i)!(k − i)!

(
d(k−i)

dt(k−i)
δ (t)

)(
di

dti
ϕ

)
dt

= (−1)n
∫ ∞

−∞

(n + k)!
k!

(
dk

dtk
δ (t)
)
ϕ(t)dt

= (−1)n
〈

(n + k)!
k!

dk

dtk
δ (t) , ϕ(t)

〉

Thus

tn dm

dtm
δ (t) = (−1)n m!

(m − n)!
d(m−n)

dt(m−n)
δ (t) if 0 ≤ n ≤ m

PROOF OF EQUATION (L.87). In (L.69), we required that the argument transformation
ϑ(t) be monotonic and invertible; thus we cannot immediately apply that result for
the more general requirements for g(t). Nonetheless, we can take advantage of the
fact that the delta distribution is mostly zero except at the roots of it arguments, that
is, δ (g(t)) = 0 when g(t) �= 0. This allows us to partition the path of integration to
smaller segments surrounding the roots of g(t),

〈
δ (g(t)) , ϕ(t)

〉 =
∫ ∞

−∞
δ (g(t))ϕ(t)dt

=
N∑

k=1

∫ rk+ε

rk−ε
δ (g(t))ϕ(t)dt

where ε > 0 is small enough such that g(t) is monotonic and invertible in the range
(rk − ε) ≤ t ≤ (rk + ε) for all k.
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We can now apply an equation similar to (L.69) for each integral term,∫ rk+ε

rk−ε
δ (g(t))ϕ(t)dt =

∫ g(rk+ε)

g(rk−ε)
δ (z)

ϕ
(
g−1(z)

)
|dg/dt|(g−1(z))

dz

= ϕ (rk)
|dg/dt|t=rk

= 1
|dg/dt|t=rk

〈
δ (t − rk) , ϕ(t)

〉
Combining both results,

〈
δ (g(t)) , ϕ(t)

〉 =
N∑

k=1

1
|dg/dt|t=rk

〈
δ (t − rk) , ϕ(t)

〉

=
〈

N∑
k=1

[
1

|dg/dt|t=rk

δ (t − rk)
]
, ϕ(t)

〉

PROOF OF THEOREM L.10. Using (L.72),〈
F (α, t), ϕ(t)

〉 = α

〈
f (t), ϕ

(
t
α

)〉
then 〈

F (α, t) − δ (t) , ϕ(t)
〉 =

〈
f (t), ϕ

(
t
α

)〉
− ϕ(0)(

then with
∫ ∞

−∞
f (t)dt = 1

)
=
∫ ∞

−∞
f (t)�

(
t
α

)
dt

where

�(t) = ϕ(t) − ϕ(0)

Taking absolute values of both sides, we obtain the following inequality,∣∣〈F (α, t) − δ (t) , ϕ(t)
〉∣∣ ≤ A + B

where,

A =
∣∣∣∣∫ −q

−∞
f (t)�

(
t
α

)
dt +

∫ ∞

q
f (t)�

(
t
α

)
dt

∣∣∣∣
B =

∣∣∣∣∫ q

−q
f (t)�

(
t
α

)
dt

∣∣∣∣
Now choose κ > 0, q > 0 and α > q/κ such that

1. |�(t)| < ε for |t| < κ

2.
∫ −q
−∞ | f (t)|dt + ∫∞

q | f (t)|dt < ε
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then

A ≤ 2ε · max
t

|ϕ(t)|

B ≤ ε ·
∣∣∣∣∫ ∞

−∞
f (t)dt

∣∣∣∣
or ∣∣〈F (α, t) − δ (t) , ϕ(t)

〉∣∣ ≤ ε

(
2 max

t
|ϕ(t)| +

∣∣∣∣∫ ∞

−∞
f (t)dt

∣∣∣∣)
Because all the terms on the right-hand side of the inequality is fixed except for ε,
we can choose ε arbitrarily small. Hence

lim
α→∞ F (α, t) = δ (t)



APPENDIX M

Additional Details and Fortification
for Chapter 13

M.1 Method of Undetermined Coefficients for Finite Difference
Approximation of Mixed Partial Derivative

For the case of mixed partial derivatives, we use the general formula of the Taylor
series of u(x, t) expanded around (xk, tq):

u(q+i)
k+j =

∞∑
m=0

∞∑
�=0

fm,� γ̂
m,i
�,j (M.1)

where

fm,� = ∂m+�

∂tm∂x�
u

∣∣∣∣
(xk,tq)

�tm�x� and γ̂
m,i
�,j = γ�,j γm,i

and γ�,j has been defined in (13.11).
The computation for the general case involves high-order tensorial sums. A

simple example is the approximation of
∂2u
∂x∂t

.

EXAMPLE M.1. Approximation of Mixed Partial Derivatives. Let D1,x,1,y be the
approximation of the mixed derivative defined as a linear combination of the
values at neighboring points,

D1,x,1,y = 1
�x�y

1∑
i=−1

1∑
j=−1

uk+i,n+j αi,j = ∂2u
∂x∂y

∣∣∣∣
(xk,yn)

+ Error (M.2)

Applying (M.1), we obtain⎛⎝ 2∑
�=0

2∑
m=0

fm,�

1∑
i=−1

1∑
j=−1

γ̂
m,i
�,j αi,j

⎞⎠− f1,1 = �t�x (Error)

−
⎛⎝ ∞∑

�=3

∞∑
m=0

fm,�

1∑
i=−1

1∑
j=−1

γ̂
m,i
�,j αi,j

⎞⎠
−
⎛⎝ ∞∑

�=0

∞∑
m=3

fm,�

1∑
i=−1

1∑
j=−1

γ̂
m,i
�,j αi,j

⎞⎠
(M.3)

851
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Setting the left-hand side (M.3) equal to 0 results in a set of nine independent
linear equations:

γ̂
m,i
�,j αi,j =

{
0 if (i, j) �= (1, 1)
1 if (i, j) = (1, 1)

Solving these equations, we obtain

αi,j = ij
4

i, j = −1, 0, 1

which yields the following finite difference approximation of the mixed partial
derivative:

∂2u
∂x∂y

∣∣∣∣
(xk,yn)

≈ 1
4�x�y

(
u(k+1)

n+1 − u(k+1)
n−1 − u(k−1)

n+1 + u(k−1)
n−1

)
(M.4)

To determine the order of truncation error, note that the coefficients of the
lower order terms of fm,� are

1∑
i=−1

1∑
j=−1

γ̂
m,i
�,j αi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if l = 0, or m = 0

1
2m!

(
1 + (−1)m+1

)
if l = 1

1
2�!

(
1 + (−1)�+1

)
if m = 1

yielding

Error = �t2

3!

(
∂4

∂t3∂x1
u
)∣∣∣∣

(x,t)
+ �x2

3!

(
∂4

∂t1∂x3
u
)∣∣∣∣

(x,t)
+ · · ·

or Error = O (�t2,�x2
)
.

M.2 Finite Difference Formulas for 3D Cases

For the 3D, time-invariant case, a general second-order linear differential equation
is given by

μxx(x, y, z)
∂2u
∂x2

+ μyy(x, y, z)
∂2u
∂y2

+ μzz(x, y, z)
∂2u
∂z2

+μxy(x, y, z)
∂2u
∂x∂y

+ μyz(x, y, z)
∂2u
∂y∂z

+ μxz(x, y, z)
∂2u
∂x∂z

+βx(x, y, z)
∂u
∂x

+ βy(x, y, z)
∂u
∂y

+ βz(x, y, z)
∂u
∂z

+ ζ(x, y, z)u + η(x, y, z) = 0 (M.5)

Let the superscript “(3$)” denote matrix augmentation that will flatten the 3D
tensor into a matrix representation. For instance, for k = 1, . . . ,K, n = 1, . . . ,N, and
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m = 1, . . . ,M, we have the following K × NM matrix for uknm:

U(3$) =

⎛⎜⎝ u1,1,1 · · · u1,N,1 u1,1,M · · · u1,N,M
...

. . .
... · · · ...

. . .
...

uK,1,1 · · · uK,N,1 uK,1,M · · · uK,N,M

⎞⎟⎠

ζ(3$) =

⎛⎜⎝ ζ1,1,1 · · · ζ1,N,1 ζ1,1,M · · · ζ1,N,M
...

. . .
... · · · ...

. . .
...

ζK,1,1 · · · ζK,N,1 ζK,1,M · · · ζK,N,M

⎞⎟⎠
etc.

where uk,n,m = u(k�x,n�y,m�z), ζk,n,m = ζ(k�x,n�y,m�z), etc. Likewise, let the
superscripts “(2$, x)” and “(2$, y)” denote column augmentation, as the indices are
incremented along the x and y directions, respectively. For instance,

b
(2$,x)
(1,z) = ( b(1,z)

∣∣
k=1 · · · b(1,z)

∣∣
k=K

)
The partial derivatives can then be approximated by finite difference approxi-

mations in matrix forms as follows:

∂u
∂x

→ D(1,x)U(3$) + B(3$)
(1,x) ;

∂2u
∂x2

→ D(2,x)U(3$) + B(3$)
(2,x)

∂u
∂y

→ U(3$)
(

IM ⊗ DT
(1,y)

)
+
(
BT

(1,y)

)(3$)
;

∂2u
∂y2

→ U(3$)
(

IM ⊗ DT
(2,y)

)
+
(
BT

(2,y)

)(3$)

∂u
∂z

→ U(3$)
(
DT

(1,z) ⊗ IN

)
+ B̂(1,z) ;

∂2u
∂z2

→ U(3$)
(
DT

(2,z) ⊗ IN

)
+ B̂(2,z)

∂2u
∂x∂y

→ D(1,x)U(3$)
(

IM ⊗ DT
(1,y)

)
+ B(3$)

(1,x,1,y)

∂2u
∂y∂z

→ U(3$)
(
DT

(1,z) ⊗ DT
(1,y)

)
+ B̂(1,y,1,z)

∂2u
∂x∂z

→ D(1,x)U(3$)
(
DT

(1,z) ⊗ IN

)
+ B̂(1,x,1,z)

whereD(1,x),D(1,y),D(1,z),D(2,x),D(2,y), andD(2,z) are matrices that can take forms such
as those given in Section 13.2.2 depending on order of approximation and boundary
conditions. The matrices B(1,x), B(2,x), . . . , and so forth contain the boundary data.
The new matrices B̂1,z and B̂2,z are given by a sequence of transformations as

B̂(1,z) = reshape

([(
b

(2$,x)
(1,z)

)(2$,y)
]T

, K, NM

)
(M.6)

B̂(2,z) = reshape

([(
b

(2$,x)
(2,z)

)(2$,y)
]T

, K, NM

)
(M.7)

(The matrices B̂1,x,1,z and B̂1,y,1,z are left as exercises.)
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Just as in the previous section, we can use the properties of matrix vectorizations
to obtain the following linear equation problem corresponding to (M.5):

R3D vec
(

U(3$)
)

= f3D (M.8)

where,

R3D =
[
μxx

(3$)
]dv

IM ⊗ IN ⊗ D(2,x) +
[
μyy

(3$)
]dv

IM ⊗ D(2,y) ⊗ IK

+
[
μzz

(3$)
]dv

D(2,z) ⊗ IN ⊗ IK

+
[
μxy

(3$)
]dv

IM ⊗ D(1,y) ⊗ D(1,x) +
[
μyz

(3$)
]dv

D(1,z) ⊗ D(1,y) ⊗ IK

+
[
μxz

(3$)
]dv

D(1,z) ⊗ IN ⊗ D(1,x)

+
[
βx

(3$)
]dv

IM ⊗ IN ⊗ D(1,x) +
[
βy

(3$)
]dv

IM ⊗ D(1,y) ⊗ IK

+
[
βz

(3$)
]dv

D(1,z) ⊗ IN ⊗ IK

+
[
ζ(3$)
]dv

f3D =
[
μxx

(3$)
]dv

vec
(
B(3$)

(2,x)

)
+
[
μyy

(3$)
]dv

vec
((B(2,y)T

)(3$)
)

+
[
μzz

(3$)
]dv

vec
(B̂(2,z)

)
+
[
μxy

(3$)
]dv

vec
(
B(3$)

(1,x,1,y)

)
+
[
μyz

(3$)
]dv

vec
(B̂(1,y,1,z)

)
+
[
μxz

(3$)
]dv

vec
(B̂(1,x,1,z)

)
+
[
βx

(3$)
]dv

vec
(
B(3$)

(1,x)

)
+
[
βy

(3$)
]dv

vec
((

BT
(1,y)

)(3$)
)

+
[
βz

(3$)
]dv

vec
(B̂(1,z)

)
+ vec

(
η(3$)
)

EXAMPLE M.2. Consider the 3D Poisson equation

∇2u = η(x, y, z) 0 ≤ x, y, z ≤ 1 (M.9)
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where,

η(x, y, z) = exp

(
−2 [z − x]2 − 5

[
1 − 4

5
z − y

]2
)

×

⎡⎢⎣−122
5

+ 16 (x − z)2 + 100
(

1 − 4
5

z − y
)2

+
(

8 − 52
5

z − 8y + 4x
)2

⎤⎥⎦
subject to the following six Dirichlet boundary conditions:

u (0, y, z) = α0(y, z) = exp

(
−2z2 − 5

[
1 − 4

5
z − y

]2
)

u (1, y, z) = α1(y, z) = exp

(
−2 [z − 1]2 − 5

[
1 − 4

5
z − y

]2
)

u (x, 0, z) = β0(x, z) = exp

(
−2 [z − x]2 − 5

[
1 − 4

5
z
]2
)

u (x, 1, z) = β1(x, z) = exp
(

−2 [z − x]2 − 16
5

z2
)

u (x, y, 0) = γ0(x, y) = exp
(
−2x2 − 5 [1 − y]2

)
u (x, y, 1) = γ1(x, y) = exp

(
−2 [1 − x]2 − 5

[
1
5

− y
]2
)

(M.10)

The exact solution is given by

u (x, y, z) = exp

(
−2 [z − x]2 − 5

[
1 − 4

5
z − y

]2
)

(M.11)

Using �x = �y = �z = 0.05, and central difference formulas for D(2,x), D(2,y),
D(2,y), B(2,x), B(2,y), and B̂(2,z), the linear equation (M.8) can be solved for
vec
(
U(3$)

)
. The results are shown in Figure M.1 at different values of z, where

the approximations are shown as points, whereas the exact solutions are shown
as surface plots. (A MATLAB file poisson_3d.m is available on the book’s
webpage that implements the finite difference solution and obtains the plots
shown in this example.) The errors from the exact solution (M.11) are shown in
Figure M.2 at different fixed values of z. The errors are in the range ±1.7 × 10−3.

M.3 Finite Difference Solutions of Linear Hyperbolic Equations

Consider the following linear hyperbolic equations

∂

∂t
û + A

∂

∂x
û = ĉ (M.12)



856 Appendix M: Additional Details and Fortification for Chapter 13

0

1

0

1
0

1

x

z= 0.1

y

u

0
0.5

1

0
0.5

1
0

0.5

1

z= 0.2

0
0.5

1

0
0.5

1
0

0.5

1

z= 0.3

0
0.5

1

0
0.5

1
0

0.5

1

z= 0.4

0
0.5

1

0
0.5

1
0

0.5

1

z= 0.5

0
0.5

1

0
0.5

1
0

0.5

1

z= 0.6

0
0.5

1

0
0.5

1
0

0.5

1

z= 0.7

0
0.5

1

0
0.5

1
0

0.5

1

z= 0.8

0
0.5

1

0
0.5

1
0

0.5

1

z= 0.9

Figure M.1. The finite difference solution to (M.9) at different values of z, subject to conditions
(M.10). The approximations are shown as points, whereas the exact solutions, (M.11), at the
corresponding z values are shown as surface plots.

where û = (̂u1, . . . , ûJ )T and A is a constant J × J matrix. If A is diagonalizable, that
is, there exist a nonsingular matrix V and a diagonal matrix� such that A = V�V −1,
then with

u = V −1û c = V −1̂c

we can decouple (M.12) into J equations

∂ui

∂t
+ λi

∂ui

∂x
= ci

Thus in the discussion that follows, we consider

∂u
∂t

+ λ
∂u
∂x

= c (M.13)

as a representative system for handling a system of first-order hyperbolic equations.
However, in our discussion of the scalar case, we allow for c = c(x, t).

M.3.1 Upwind Schemes

We can use either forward, backward, or central difference approximations for
∂u/∂x toward a semi-discrete approach. Time marching can then be implemented
by a forward Euler or backward Euler. This will yield six types of schemes, namely
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Figure M.2. The error distribution between the finite difference approximation (using central
difference formulas) and the exact solutions, (M.11), at different z values.

forward-time-forward-space (FTFS), forward-time-central-space (FTCS), forward-
time-backward-space (FTBS), backward-time-forward-space (BTFS), backward-
time-central-space (BTCS), and backward-time-backward-space (BTBS). Each
scheme will have different stability ranges for�t in relation to�x andλ. In Table M.1,
we summarize the different upwind schemes and their stability based on another
parameter η

η = λ
�t
�x

(M.14)

which is known as the Courant number. The stability conditions included in the table
are obtained using the von Neumann method and are given as Exercise in E13.15.

We can make the following observations:

1. The forward-time schemes: FTFS, FTCS, and FTBS are explicit schemes,
whereas the backward-time schemes: BTFS, BTCS and BTBS are implicit
schemes.

2. The central-space schemes are given by FTCS and BTCS, with the explicit FTCS
being unstable and the implicit BTCS being unconditionally stable.

3. The noncentral space schemes have their stability dependent on the sign of η, or
equivalently on the sign of λ. Both forward-space schemes, FTFS and BTFS, are
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Table M.1. Basic finite difference schemes for scalar hyperbolic equations

Scheme Approximation equation Stability region

FTFS u(q+1)
k = (1 + η) u(q)

k − ηu(q)
k+1 +�tc(q)

k −1 ≤ η ≤ 0

FTCS u(q+1)
k = u(q)

k − η

2

(
u(q)

k+1 − u(q)
k−1

)
+�tc(q)

k None

FTBS u(q+1)
k = ηu(q)

k−1 + (1 − η) u(q)
k +�tc(q)

k 0 ≤ η ≤ 1

BTFS (1 − η) u(q+1)
k + ηu(q+1)

k+1 +�tc(q+1)
k = u(q)

k η ≤ 0

BTCS u(q+1)
k + η

2

(
u(q+1)

k+1 − u(q+1)
k−1

)
+�tc(q+1)

k = u(q)
k All

BTBS (1 + η) u(q+1)
k − ηu(q+1)

k−1 +�tc(q+1)
k = u(q)

k η ≥ 0

Leapfrog u(q+1)
k = u(q−1)

k − ηu(q)
n+1 + ηu(q)

n−1 + 2�tc(q)
k |η| ≤ 1

Lax-Friedrichs u(q+1)
k =

(
1 − η

2

)
u(q)

k+1 +
(

1 + η

2

)
u(q)

k−1 +�tc(q)
k |η| ≤ 1

Lax-Wendroff

u(q+1)
k = (

1 − η2
)

u(q)
k + 1

2

(
η2 − η

)
u(q)

k+1

+ 1
2

(
η2 + η

)
u(q)

k−1

+ c(q)
k �t +

(
∂c
∂t

− λ
∂c
∂x

)(q)

k
�t2

|η| ≤ 1

Crank-Nicholson

η

4
u(q+1)

k+1 + u(q+1)
k − η

4
u(q+1)

k−1 =

−η

4
u(q)

k+1 + u(q)
k + η

4
u(q)

k−1 +�tc(q+1/2)
k

All

stable only for negative η values, whereas both backward-space schemes, FTBS
and BTBS, are stable only for positive η values.1

From the last observation, we can still recover the use of noncentral schemes
by switching between forward-space and backward-space schemes depending on the
sign of λ. This combination is called the upwind schemes, because the direction of
space difference is adjusted to be opposite to the wave speed λ. Specifically, with

η(+) = η+ |η|
2

and η(−) = η− |η|
2

(M.15)

1 Note that even though BTFS and BTBS are both implicit schemes, neither are unconditionally
stable.
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we have the explicit upwind scheme, which combines both FTFS and FTBS in one
equation,

u(q+1)
k =

(
1 + η(−) − η(+)

)
u(q)

k + η(+)u(q)
k−1 − η(−)u(q)

k+1 (M.16)

and whose stability range is given by 0 < |η| < 1. Likewise, we have the implicit
upwind scheme, which combines both BTFS and BTBS in one equation,(

1 − η(−) + η(+)
)

u(q+1)
k − η(+)u(q+1)

k−1 + η(−)u(q+1)
k+1 = u(q)

k (M.17)

whose stability range is given by 0 < |η|.

M.3.2 Other Finite Difference Schemes

There are four more important schemes: the leapfrog (or CTCS) scheme, the Lax-
Friedrichs scheme, the Lax-Wendroff scheme, and Crank-Nicholson scheme. The
first three are explicit, whereas the last one is an implicit scheme.

The leapfrog and the Lax-Friedrichs schemes are improvements to the FTCS
scheme to overcome its unconditional instability. The leapfrog scheme uses the
central difference approximation for ∂u/∂t. Thus we have

λ
u(q)

k+1 − u(q)
k−1

2�x
+ u(q+1)

k − u(q−1)
k

2�t
= c(q)

k (M.18)

Note that the leapfrog scheme needs values at both tq and tq−1 to obtain values
at tq+1. Thus the leapfrog schemes often require other one-step marching, such as
Lax-Friedrich or Lax-Wendroff to provide it with values at t1, and then continue
with the leapfrog for tq, q ≥ 2.

The Lax-Friedrichs scheme approximates the time derivative as a forward time

difference, but between u(q+1)
k and the average at the current point, 1

2

(
u(q)

k+1 + u(q)
k−1

)
.

Thus the scheme is given by

λ
u(q)

k+1 − u(q)
k−1

2�x
+

u(q+1)
k − 1

2

(
u(q)

k+1 + u(q)
k−1

)
�t

= c(q)
k (M.19)

Note that the leapfrog scheme used the values at tq−1, whereas the Lax-Friedrichs
continues to stay within tq.

The third explicit finite difference scheme uses the Taylor series approximation
for u,

u(q+1)
k = u(q)

k + ∂u
∂t

∣∣∣∣
t=q�t,x=k�x

�t + 1
2
∂2u
∂t2

∣∣∣∣
t=q�t,x=k�x

�t2 + O (�t3) (M.20)

and then substitutes the following identities obtained from the given differential
equation

∂u
∂t

= −λ∂u
∂x

+ c and
∂2u
∂t2

= λ2 ∂
2u
∂x2

− λc + ∂c
∂t

into (M.20). Afterward, the central difference approximation is used for ∂u/∂x and
∂2u/∂x2. After truncation of O (�t3

)
terms, the following scheme, known as the
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Lax-Wendroff scheme, results

u(q+1)
k = u(q)

k − λ
�t

2�x

(
u(q)

k+1 − u(q)
k−1

)
+ 1

2
λ2 �t2

�x2

(
u(q)

k+1 − 2u(q)
k + u(q)

k−1

)
+ c(q)

k �t +
(
∂c
∂t

− λ
∂c
∂x

)(q)

k
�t2

or

u(q+1)
k = (

1 − η2)u(q)
k + 1

2

(
η2 − η

)
u(q)

k+1 + 1
2

(
η2 + η

)
u(q)

k−1 + c(q)
k �t

+
(
∂c
∂t

− λ
∂c
∂x

)(q)

k
�t2 (M.21)

Using the von Neumann method, one can show that the stability range of
the three explicit schemes, namely the leapfrog, Lax-Friedrichs, and Lax-Wendroff
schemes, given in (M.18), (M.19), and (M.21), respectively, are all given by |η| ≤ 1.
The approximation errors for these methods are O (�x2,�t2

)
, O (�x,�t), and

O (�x2,�t2
)

for leapfrog, Lax-Friedrichs, and Lax-Wendroff schemes, respectively.
The Crank-Nicholson scheme is an implicit scheme that could be seen as an

attempt to improve the accuracy of the BTCS scheme, which may be uncondition-
ally stable but only has approximation errors of O (�x2,�t

)
. However, unlike the

leapfrog scheme, where values at tq−1 are introduced, this method tries to avoid
this from occurring by using a central difference approximation at a point between
tq+1 and tq, that is, at t = tq+1/2, with a time increment �t/2. However, by doing so,
the spatial derivative at t = tq+1/2 must be estimated by averages. Thus the Crank-
Nicholson scheme uses the following approximation for the time derivative:

λ

2�x

[
u(q+1)

k+1 + u(q)
k+1

2
− u(q+1)

k−1 + u(q)
k−1

2

]
+
(

u(q+1)
k − u(q)

k

2(�t/2)

)
= c(q+1/2)

k

or

η

4
u(q+1)

k+1 + u(q+1)
k − η

4
u(q+1)

k−1 = −η

4
u(q)

k+1 + u(q)
k + η

4
u(q)

k−1 +�tc(q+1/2)
k (M.22)

The approximation error of the Crank-Nicholson scheme is O (�x2,�t2
)
. Using the

von Neumann method, we can show that the Crank-Nicholson scheme, like the
BTCS scheme, is unconditionally stable.

EXAMPLE M.3. For the scalar hyperbolic partial differential equation given by

∂u
∂t

+ 0.5
∂u
∂x

= 0 (M.23)

we consider both a continuous initial condition and a discontinuous initial
condition.

1. Continuous initial condition. Let initial condition be a Gaussian function
given by

u(0, t) = e−8(5x−1)2
(M.24)
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Figure M.3. Numerical solutions for con-
tinuous initial condition using the various
schemes.

Using the various stable schemes, the finite-difference solutions with �x =
�t = 0.01 are shown in Figures M.3 and M.4. It appears that the leapfrog,
Lax-Wendroff, and Crank-Nicholson schemes yielded good approxima-
tions.

2. Discontinuous initial condition. Let the initial condition be a square pulse
given by

u(0, t) =
{

1 if 0.2 ≤ x ≤ 0.4
0 otherwise

(M.25)
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Figure M.4. Comparison with exact solutions for different schemes at t = 1. The exact solution
is given as dashed lines.
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Figure M.5. Numerical solutions for dis-
continuous initial condition using the var-
ious schemes.

Using the various stable schemes, the finite-difference solutions with
�x = �t = 0.01 are shown in Figures M.5 and M.6. As one can observe
from the plots, none of the schemes match the exact solution very well.
This is due to numerical dissipation introduce by the schemes. Dissipa-
tion was instrumental for stability, but it also smoothed the discontinuity.
However, the other schemes had growing amount of oscillations. These are
due to the spurious roots of the schemes. Significant amounts of oscillation
throughout the spatial domain can be observed in both the leapfrog and
Crank-Nicholson schemes. The Lax-Wendroff appears to perform the best;
however, a smaller mesh size should improve the approximations.

More importantly, however, is that if one had chosen |η| = 1, both the
Lax-Wendroff and Lax-Friedrich schemes reduce to yield an exact solution
as shown in Figure M.7 because the discontinuity will travel along the char-

acteristic; that is, with c(x, t) = 0 and�t = �x

∣∣∣∣1λ
∣∣∣∣ (or |η| = 1), both schemes

reduce to

u(q+1)
k =

⎧⎪⎪⎨⎪⎪⎩
u(q)

k+1 if η = −1

u(q)
k−1 if η = +1

The example shows that the Lax-Wendroff performed quite well, especially
when �t was chosen carefully so that |η| = 1. Note that the case in which it yielded
an exact solution (at the grid points) is limited primarily to a constant η and zero
homogeneous case, that is, c(x, t) = 0. The other issue remains that Lax-Wendroff
and Lax-Friedrich are still explicit time-marching methods.
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Figure M.6. Comparison with exact solutions for different schemes at t = 1.

M.4 Alternating Direction Implicit (ADI) Schemes

Let matrix G be a multidiagonal, banded matrix of width ω, that is, Gij = 0 for
|i − j | > ω. In general, the LU factorization of G will result in L and U matrices
that are banded with the same width. Unfortunately, the matrices generated during
finite-difference methods of two or three spatial-dimensional systems are likely to
have very wide bands, even though the matrices are very sparse. For instance, matrix
R in Example 13.9 will have a band of width N. Yet in any row of R, there are only
at most five-nonzero entries. This means that using a full LU factorization of sparse,
multidiagonal matrices with large bandwidths may still end up with large amounts
of storage and computations.

One group of schemes, known as the Alternating Direction Implicit (ADI)
schemes, replaces a multidiagonal matrix by a product of two or more tri-diagonal
matrices. More importantly, these schemes maintain the same levels of consistency

1u
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0.5
0.5

0

0 0

Figure M.7. Numerical solutions for discontinuous
initial condition using the Lax-Wendroff with |η| = 1.



864 Appendix M: Additional Details and Fortification for Chapter 13

and convergence, as well as the same range of stability as the original schemes.
Because the computations are now reduced to solving two or more sequences of
tri-diagonal systems, via the Thomas algorithm, the improvements in computational
efficiency, in terms of both storage and number of computations, become very sig-
nificant compared with the direct LU factorizations.

The original ADI schemes were developed by Douglas, Peaceman, and Rachford
to improve the Crank-Nicholson schemes for parabolic equations. For a simple
illustration of the ADI approach, we take the linear second-order diffusion equation
for 2D space, without any mixed partial derivatives, given by

∂u
∂t

= μxx(t, x, y)
∂2u
∂x2

+ μyy(t, x, y)
∂2u
∂y2

+ βx(t, x, y)
∂u
∂x

+βy(t, x, y)
∂u
∂y

+ ζ(t, x, y)u + η(t, x, y) (M.26)

together with Dirichlet boundary conditions,

u(t, 0, y) = v0(t, y) ; u(t, x, 0) = w0(t, y)

u(t, 1, y) = v1(t, y) ; u(t, x, 1) = w1(t, y)

Let u, η, ζ, μxx, μyy, βx, and βy be represented in matrix forms,

U =

⎛⎜⎝ u11 · · · u1N
...

. . .
...

uK1 · · · uKN

⎞⎟⎠ ; ζ =

⎛⎜⎝ ζ11 · · · ζ1N
...

. . .
...

ζK1 · · · ζKN

⎞⎟⎠ ; etc.

where ukn = u(k�x,n�y), ζkn = ζ(k�x,n�y), etc.
Following the results of (13.39), the semi-discrete approach yields

d
dt

v = F(t) v + B(t) (M.27)

where

v = vec(U)

F = Mx + My

Mx =
[
μxx

]dv
IN ⊗ D(2,x) +

[
βx

]dv
IN ⊗ D(1,x) + 1

2
ζdv

My =
[
μyy

]dv

D(2,y) ⊗ IK +
[
βy

]dv

D(1,y) ⊗ IK + 1
2
ζdv

B =
[
μxx

]dv
vec
(B(2,x)

) +
[
μyy

]dv

vec
(
BT

(2,y)

)
+
[
βx

]dv
vec
(B(1,x)

) +
[
βy

]dv

vec
(
BT

(1,y)

)
− vec

(
[η]
)

and the superscript “dv” is the notation for diagonal-vectorization operation.
Applying the Crank-Nicholson scheme, we have(

I − �t
2

F(q+1)
)

v(q+1) =
(

I + �t
2

F(q)
)

v(q) + �t
2

(
B(q+1) + B(q)

)
(M.28)
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By subtracting the term,
(
I − (�t/2)�tF(q+1)

)
v(q), from both sides of (M.28),

(
I − �t

2
F(q+1)

)(
v(q+1) − v(q)

)
= �t

2

((
F(q+1) + F(q)

)
v(q) +

(
B(q+1) + B(q)

))
(M.29)

Let

�tv(q) = v(q+1) − v(q)

then with F(q+1) = M
(q+1)
x + M

(q+1)
y (see (M.28)),(

I − �t
2

F(q+1)
)(

�tv(q)
)

=
(

I − �t
2

M(q+1)
x − �t

2
M(q+1)

y

)(
�tv(q)

)
=
(

I − �t
2

M(q+1)
x

)(
I − �t

2
M(q+1)

y

)(
�tv(q)

)
− �t2

4
M(q+1)

x M(q+1)
y

(
�tv(q)

)
= G(q+1)

x G(q+1)
y �tv(q) − O (�t4)

where

G(q)
x = I − �t

2
M(q)

x ; G(q)
y = I − �t

2
M(q)

y (M.30)

The last term is O (�t4
)

because of the fact that the Crank-Nicholson scheme guar-
antees that �tv(q) = v(q+1) − v(q) = O (�t2

)
. By neglecting terms of order O (�t4

)
,

(M.29) can then be replaced by

G(q+1)
x G(q+1)

y

(
�t[u](q)

)
= �t

2

( (
F(q+1) + F(q)

)
[u]q +

(
B(q+1) + B(q)

) )
(M.31)

However, Gx and Gy are block tri-diagonal matrices whose nonzero submatrices are
diagonal in which the main blocks in the diagonal are also tri-diagonal, thus allowing
easy implementation of the Thomas and block-Thomas algorithms. Equation (M.31)
is known as the delta-form of the ADI scheme.2 The values of U(q+1) are them
obtained from

U(q+1) =
(
�tU(q)

)
+ u(q) (M.32)

It can be shown by direct application of the von Neumann analysis that the ADI
scheme given in (M.31) will not change the stability conditions; that is, if the Crank-
Nicholson scheme is unconditionally stable, then the corresponding ADI schemes
will also be unconditionally stable. Furthermore, because the only change from the
original Crank-Nicholson scheme was the removal of terms that are fourth order
in �t, the ADI scheme is also consistent. The application of the Lax equivalence
theorem then implies that the ADI schemes will be convergent. The extension of
the ADI approach to 3D space is straightforward and is given as an exercise.

2 The scheme is named Alternating Direction Implicit (ADI) based on the fact that the factors G(q)
x

and G(q)
y deal separately along the x and y directions, respectively. Also, the term Implicit (the “I” in

ADI) is a reminder that ADI schemes are developed to improve the computation of implicit schemes
such as the backward-Euler or Crank-Nicholson, where matrix inversions or LU factorizations are
required.
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An important issue with ADI schemes is that for accurate time-marching pro-
files, a small time step is still needed. Recall that the removal of theO (�t4

)
terms will

introduce errors to the original schemes. This additional error is negligible as long
as �t is chosen small enough. However, time-marching approaches are sometimes
used primarily to find steady-state solution. In those cases, accuracy only matters at
large time values. Because of stability properties, the errors should then have asymp-
totically settled out toward zero. The ADI schemes are very often used to obtain
steady-state solutions because they handle the complexity and size requirements of
2D and 3D systems efficiently.3

3 Other approaches to steady-state solutions include relaxation methods for solving large sparse linear
equations such as Jacobi, Gauss-Seidel, SOR. Currently, various Krylov subspace approaches such
as conjugate gradient and GMRES (see Sections 2.7 and 2.8) are used for very large sparse problems.



APPENDIX N

Additional Details and Fortification
for Chapter 14

N.1 Convex Hull Algorithm

In this section, we describe an algorithm to find a polygonal convex hull of a set
of 3D points. The algorithm is a simplified variant of the QuickHull algorithm.1

Furthermore, we restrict the algorithm only to points in three dimensions where all
the points are boundary points of the convex hull. This case applies to points that all
come from a paraboloid surface.

We begin by introducing some terms and operators to be used in the algorithm.

1. Outside sets and visible sets. For a given facet F , let Hyp(F ) be the hyperplane
that includes F . Then a point p is outside of F if it is located on the side of
Hyp(F ) along with the outward unit normal vector (see Figure N.1). Also, the
outside set of F , denoted by Out(F ) = {p1, . . . , p�}, is the set of all points that
are outside of F .

Switching perspectives, for a given point p , a facet F is visible to p if p is
outside of F . The visible set of p , denoted by Vis(p) = {F1, . . . ,Fq}, is the set
of all facets that are visible to p .

2. Ridge sets. Let � = {F1, . . . ,Fm} be a set of facets that collectively forms a
simply connected region D. Then each boundary edge of D, denoted by Ri, is
called a ridge of �, and the collection R(�) = {R1,R2, . . . ,Rm} is referred to
as the ridge set of facets in �.

For example, from the group of facets shown in Figure N.2, let

� = {F7,F8,F9,F10,F13F14F15}

1 Barber, C. B., Dobkin, D. B., and Huhdanpaa, H. The QuickHull Algorithm for Convex Hulls.
ACM Trans. on Math. Software, 1995.
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n
a

b

c

d

FHyp(F)

Figure N.1. Points a and c are outside points of facet F , whereas b
and d are not. Hyp(F ) is the hyperplane containing F and n is the
outward unit normal vector.

then

R(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(pa, pb)
(pb, pc)
(pc, pd)
(pd, pe)
(pe, p f )
(p f , pg)
(pg, pa)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that it will be beneficial for our purposes to specify the sequence of each
edge such that they follow a counter-clockwise traversal, for example (pa, pb)
instead of (pb, pa), and so forth.

3. Extend operation. Let p be an outside point to a set of connected facets, �.
Then the operation Extend(p,�) will take p and attach it to each ridge in
R(�) to form m new facets, where m is the number of ridges of �, that is,

⎛⎜⎝ FM+1
...

FM+m

⎞⎟⎠ = Extend(p,�) (N.1)

M is the number of facets before the operation, and

FM+i = (p, pi,a, pi,b)

1

2

3
4

5

6

7

8
9

10
11

12

13

14
15

16

a

b

c

d
e

f

g

Figure N.2. The set of facets � = {F7,F8,F9,F10, F13

F14F15} forms a simply connected region whose edges form
the ridge set of �.
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For example, using the same set� shown in Figure N.2, suppose ph is an outside
point to the facets in �, then we have

Extend(p,�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F17 = (ph, pa, pb)
F18 = (ph, pb, pc)
F19 = (ph, pc, pd)
F20 = (ph, pd, pe)
F21 = (ph, pe, p f )
F22 = (ph, p f , pg)
F23 = (ph, pg, pa)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that each new facet generated will also have a sequence that goes coun-
terclockwise.

Simplified-QuickHull Algorithm:

Let P = {p1, . . . , pN} be the set of available points.

1. Initialization.

(a) Create a tetrahedron as the initial convex hull (e.g., using the points in P
corresponding to the three largest z-components and connect them to the
point with the smallest z-component):

F = {F1,F2,F3,F4}

(b) Remove, from P, the points that were assigned to F .
(c) Obtain the collection of current visible sets:

V = {Vis(pi), pi ∈ P}

2. Expand the convex hull using unassigned point pi.

(a) Obtain the ridge set of the visible set of pi:

R = R (Vis(pi))

(b) Update the facets of the hull:
i. Generate new facets: Fadd = EXTEND(pi,R).

ii. Combine with F : F ← F
⋃

Fadd.
iii. Remove Vis(pi) from F : F ← F − Vis(pi).

(c) Update the collection of visibility sets:
i. Remove, from each set in V, any reference to the facets in Vis(pi) (thus

also removing Vis(pi) from V).
ii. Add facet Fk ∈ Fadd to Vis(p j ) if point p j is outside of facet of Fk.

(d) Remove pi from the set of available points.

This version is a simplification of the QuickHull algorithm. We have assumed
that all the points are boundary points; that is, each point will end up as vertices of
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the triangular patches forming the convex hull. Because of this, the algorithm steps
through each unassigned point and modifies the visibility sets of these points as the
convex hull grows in size.2

N.2 Stabilization via Streamline-Upwind Petrov-Galerkin (SUPG)

The finite element method discussed in Sections 14.2 through 14.5 used a specific
choice for the weights δu, which was defined using the same shape functions for
u. As mentioned before, this is known as the Galerkin method. Unfortunately, we
expect that as the norm of M decreases relative to the norm of b, we approach what
is known as the convection-dominated case, and we expect the Galerkin method
to start becoming inaccurate, because the Galerkin method is optimal only for the
other extreme case in which b = 0.

For the convection-dominated case, an alternative method known as the
Streamline-Upwind Petrov-Galerkin (SUPG) method can improve the accuracy.
It uses a different set of weights given by

δu = δ̂u + τb · ∇ (δ̂u) (N.2)

where τ is known as the stabilization parameter that depends on the ratio of ‖b‖
over ‖M‖ and a characteristic length � of the finite element. The label “streamline-
upwind" indicates the presence of b, which is a vector usually known as the advection
coefficient or velocity.

With our choice of using triangular linear elements, we can again use the same
approach of applying the same shape functions used for u, that is, with

δ̂u ≈ ψ1δ̂u1 + ψ2δ̂u2 + ψ3δ̂u3 (N.3)

Doing so, the modifications will simply end up with the addition of one term each
for Kn and �n as defined in (14.43) and (14.44), respectively; that is, we now instead
use

Kn =
{(

TT M(p∗)T − ζbT
(p∗)T − g(p∗)ζζ

T −�− τT T b(p∗)bT
(p∗)T

)
D
2

}
n

(N.4)

�n =
{(

h(p∗)ζ+ Q + Q(rbc) + τT T b(p∗)h(p∗)

)
D
2

}
n

(N.5)

When τ = 0, we get back the Galerkin method.
The last detail is the evaluation of the stabilization parameter τ. Although several

studies have found an optimal value for τ in the one-dimensional case, the formula-
tion for the optimal values for 2D and 3D cases remain to be largely heuristic. For
simplicity, we can choose the rule we refer to as the Shakib formula,

τ =
[(

2b
�

)2

+ 9
(

4μ
�2

)2

+ σ2

]−1/2

(N.6)

2 In the original QuickHull algorithm of Barber and co-workers, the procedure steps through each
facet that have non-empty outside sets and then builds the visible set of the farthest outside point.
This will involve checking whether the chosen point is outside of the adjacent facets. In case there
are points that eventually reside inside the convex hull, the original version will likely be more
efficient. Nonetheless, we opted to describe the revised approach because of its relative simplicity.
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b
l

Figure N.3. The characteristic length � based on the direction of b.

where � is the characteristic length of the triangle, b = ∥∥b(p∗)
∥∥, μ = ∥∥M(p∗)

∥∥, and
σ = g(p∗). The length � is the distance of the segment from one vertex of the triangle
to the opposite edge in the direction of b(p∗) as shown in Figure N.3. (Note that only
one of the vertices can satisfy this condition.) The length � can be found as follows:
Let v = b/ ‖b‖. Find node i such that solving

(
s
λ

)
=
(

v (pk − pi)

)−1 (
pk − pj

)
(N.7)

will yield 0 ≤ λ ≤ 1. Then � = |s| is the length of the segment from node i to the edge
containing nodes j and k.

EXAMPLE N.1. To test the SUPG method, consider the differential equation

[∇ · (M(x, y) · ∇u)] + [b(x, y) · ∇u] + g(x, y)u + h(x, y) = 0

with

M =

⎛⎜⎜⎝ 0.001 0

0 0.001

⎞⎟⎟⎠ ; b =

⎛⎜⎜⎝ − 2

3

⎞⎟⎟⎠ ; g = 0

and

h = −1.5 (3x − 2y) −
(

0.32
(
x2 + y2)− 80 (1.5y − x + 0.001) e−4(x2+y2)

)
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Figure N.4. The triangulation mesh is shown in the left plot, whereas the SUPG solution
(dots) is shown together with exact solution (surface) in the right plot.
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Figure N.5. The errors obtained using the Galerkin method are shown in the left plot, whereas
the errors obtained using the SUPG method are shown in the right plot.

Let the domain to be a square of width 2, centered at the origin. Also, let all the
boundary conditions be Dirichlet, with

u = 1.5xy + 5e−4(x2+y2) for

⎧⎪⎪⎨⎪⎪⎩
x = −1 , −1 ≤ y ≤ 1
x = 1 , −1 ≤ y ≤ 1

−1 ≤ x ≤ 1 , y = −1
−1 ≤ x ≤ 1 , y = 1

The exact solution of this problem is known (which was in fact used to set h and
the boundary conditions) and given by

u = 1.5xy + 5e−4(x2+y2)

After applying the SUPG methods based on a Delaunay mesh shown in the left
plot of Figure N.4, we obtain the solution shown in the right plot of Figure N.4.
The improvements of the SUPG method over the Galerkin method are shown
Figure N.5. The errors for the Galerkin and the SUPG are ±1.2 and ±0.3,
respectively.

Of course, as the mesh sizes are decreased, the accuracy will also increase.
Furthermore, note that from (N.6), the stabilization parameter τ for each ele-
ment will approach 0 as � → 0, reducing the SUPG method to a simple Galerkin
method.

Remarks: The results for this example were generated by the MATLAB func-
tion fem_sq_test2.m, which uses the function linear_2d_supg.m – a gen-
eral SUPG finite element solver for the linear second-order partial differential
equation. Both of these files are available on the book’s webpage.
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