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CHAPTER 4

PROBLEM 4.1. Sound Waves in a Flowing Medium.
Show that sound waves in the presence of a uniform flow v0 obey a wave
equation of the form

(

∂

∂t
+ v0 ·∇

)2

v1 = c2s∇(∇ · v1) (1)

and deduce their dispersion relation.

SOLUTION.
In the absence of a magnetic field, gravity or an angular rotation, the basic
MHD equations (4.1)–4.3) reduce to

dρ

dt
+ ρ∇ · v = 0, (2)

ρ
dv

dt
= −∇p, (3)

d

dt

(

p

ργ

)

= 0, (4)

By writing ρ = ρ0 + ρ1, p = p0 + p1, v = v0 + v1 and linearising, where
ρ0, p0,v0 are uniform, these reduce to

(

∂

∂t
+ v0 ·∇

)

ρ1 + ρ0(∇ · v1) = 0, (5)

ρ0

(

∂

∂t
+ v0 ·∇

)

v1 = −∇p1, (6)

(

∂

∂t
+ (v0 · ∇

)

p1 = c2s

(

∂

∂t
+ (v0 · ∇

)

ρ1, (7)

Eliminating p1 and ρ1 gives
(

∂

∂t
+ v0 ·∇

)2

v1 = c2s∇(∇ · v1), (8)
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as required, where c2s = γp0/ρ0.
Thus, plane wave solutions of the form

v1(r, t) = v1e
i(k·r−ωt),

then yield
ω′2 = k2c2s,

where ω′ ≡ ω − k · v0, which is just a Doppler-shifted frequency.

PROBLEM 4.2 Finite-Amplitude Alfvén Waves.
Show that an Alfvén wave of arbitrary amplitude propagating along a uni-
form background magnetic field (B0ẑ) with∇·v = 0, p+B2/(2µ) = constant,
v = ±b/

√

(µρ) and b = B0f(x, y, z±VAt) satisfies the ideal MHD equations,
where f is an arbitrary vector with ∇ · f = 0.

SOLUTION.
The ideal incompressible MHD equations are

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇P +

1

µ
(B ·∇)B,

∂B

∂t
+ (v ·∇)B− (B ·∇)v = 0,

where P = p+B2/(2µ) and ∇ · v = 0.
Now write B = B0+b, where B0 = B0ẑ is uniform and suppose the total

pressure remains constant (P = constant). Then the equation of motion and
the induction equation reduce to

∂v

∂t
+ (v ·∇)v =

1

µρ
(B0 ·∇)b+

1

µρ
(b ·∇)b,

and
∂b

∂t
+ (v ·∇)b = (B0 ·∇)v + (b ·∇)v.

Then, if v = ±b/
√

(µρ), both of these equations reduce to

∂b

∂t
= ±VA

∂b

∂z
,
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where VA = B0/
√

(µρ), which has solutions

b = B0f(x, y, z ± VAt),

where ∇ ·B = 0 implies ∇ · f = 0.
The corresponding plasma velocity and electric field are from v = ±b/

√

(µρ)
and E = v ×B

v = ±VAf(x, y, z ± VAt),

and
E = ±VAB0 × f(x, y, z ± VAt).

PROBLEM 4.3. Energy Flux in Alfvén Waves.
Find the magnetic and kinetic energy densities and the Poynting flux in a
finite-amplitude Alfvén wave propagating in the positive z-direction.

SOLUTION.
We follow Roberts (1967). Consider an Alfvén wave of the form

b = B0f(x, y, z−VAt), v = −VAf(x, y, z−VAt), E = −VAB0×f(x, y, z−VAt)

propagating in the positive z-direction.
The total magnetic energy density is

(B0 + b)2

2µ
=

B2
0

2µ
+

b2

2µ
,

and so the magnetic energy density associated with the wave is

b2

2µ
=

B2
0

2µ
f 2 = 1

2
ρV 2

a f
2 = 1

2
ρv2,

which is just the kinetic energy density. Thus, we have equipartition between
magnetic and kinetic energy in the wave.

The total energy density is the sum of magnetic and kinetic energy den-
sity, namely,

Ewave =
b2

2µ
+ 1

2
ρv2.

The corresponding Poynting vector is

E×B

µ
=

E× (B0 + b)

µ
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or, after substituting for E and rearranging,

E×B

µ
= ρV 2

Av + VAEwaveẑ.

The first term is a radiation term that vanishes when integrated over a
closed surface or when integrated over time at a fixed position. The second
term represents a flux of energy in the z-direction.

PROBLEM 4.4. Diffusion of Linear Alfvén Waves.
By adding a term of the form η∇2B1 to the right-hand side of

∂B1

∂t
= ∇× (v1 ×B0), (9)

determine the effect of magnetic diffusion on shear Alfvén waves in a uniform
medium. If the magnetic Reynolds number is defined as Rm = vA/(kη), find
the real and imaginary parts of ω and deduce that, when Rm ≫ 1, the effect
of diffusion is to produce a slow decay of the wave and a small reduction in
its frequency of oscillation.

SOLUTION.
Assume ∇.v′ = 0. Then the linearised continuity equation implies ρ′ = 0 as
usual for Alfven waves, while the equations of induction (with diffusion) and
motion become

∂B′

∂t
= ∇× (v′

×B0) + η∇2B′, µρ0
∂v′

∂t
= (∇×B′)×B0 ,

where ∇.B′ = 0. After making the usual wave assumption, they reduce to

−iωB′ = i(B0.k)v
′
− k2ζB′, −µρ0ωv

′ = B′(B0.k)− k(B′.B0) ,

where, as usual, B′.B0 = 0.
These two equations may be combined to yield the dispersion relation

ω2 = k2vA
2
− iω

kvA
Rm

, (10)

where

Rm =
vA
kη

.
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By splitting ω into a real (ωr) and imaginary (ωi) part, Eq.(??) gives

ωi = −k
vA
2Rm

, ωr
2 = k2vA

2

(

1−
1

4Rm
2

)

. (11)

Thus if Rm ≫ 1, the effect of diffusion is to produce a slow decay of the wave
and a small reduction in the frequency ωr.

PROBLEM 4.5. Nonlinear Alfvén Waves with Diffusion.
Consider a finite-amplitude wave obeying the visco-resistive MHD equations
and having a constant total pressure and density and a magnetic field B0+b,
where B0 = B0ẑ is uniform. Show that, if v = −b/

√

(µρ) and η = ν, then
b satisfies a linear equation and solve it if b = b(z, t)x̂.

SOLUTION.
With a constant total pressure, a magnetic field of the form B0 + b with
B0 = B0ẑ uniform, and an incompressible flow (∇ · v = 0), the equations of
induction and motion are

∂b

∂t
= B0

∂v

∂z
+ (b ·∇)v − (v ·∇)b+ η∇2b

and

µρ

(

∂v

∂t
+ (v ·∇)v

)

= B0
∂b

∂z
+ (b ·∇)b+ µρν∇2v.

Then, if we put v = −b/
√

(µρ) and η = ν, both of these equations
reduce to

∂b

∂t
= −vA

∂b

∂z
+ η∇2b,

where vA = B0/
√

(µρ), or, if b = b(z, t)x̂,

∂b

∂t
= −vA

∂b

∂z
+ η

∂2b

∂z2
.

Since this is a linear equation with constant coefficients, we may Fourier
analyse and consider each Fourier component of the form

b = exp[i(ωt− kz)],
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for which the above equation gives the dispersion relation as

ω = kvA + iηk2,

so that
b = eik(vAt−z)e−ηk2t.

Thus, we have a nonlinear Alfvén wave of wavenumber k propagating
along the z-direction and decaying over a time-scale 1/(ηk2).

PROBLEM 4.6. Internal Gravity Waves.
Use

ω2v1 = c2sk(k · v1) + i(γ − 1)gẑ(k · v1) + igkv1z − 2iωΩ× v1. (12)

to establish the dispersion relation ω = N sin θg for internal gravity waves
when g/cs ≪ kcs. Deduce the physical behaviour of the waves and the fact
that an upward propagating wave carries energy downwards.

SOLUTION.
For a plane wave of the form

v1(r, t) = v1e
i(k·r−ωt),

the linearised MHD equations with vanishing magnetic field and no rotation
yield Eq.(??), namely,

ω2v1 = c2sk(k · v1) + i(γ − 1)gẑ(k · v1) + igkv1z.

The intuitive discussion of Sec 4.4 led us to expect the existence of gravity
waves when N2 > 0 due to the tendency for plasma to oscillate slowly with
frequency N . Their dispersion relation can be determined by taking the
scalar product with k and ẑ in turn of the above equation and gathering
together terms in v1z and k · v1, to give

igk2 v1z = (ω2
− c2sk

2
− i(γ − 1)gkz) (k · v1),

(ω2
− igkz) v1z = (c2skz + i(γ − 1)g) (k · v1).

Then an elimination of (k · v1)/v1z between these two yields

(ω2
− igkz) (ω

2
− c2sk

2
− i(γ − 1)gkz) = igk2 (c2skz + 1(γ − 1)g).
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The object is to seek waves with a frequency of the order of the Brunt-
Vaisala frequency (N) and much slower than that of sound waves, so that

ω ≈
g

cs
≪ kcs;

this implies that the wavelength is much smaller than a scale-height and the
above full dispersion relation reduces to

ω2c2s ≈ (γ − 1)g2(1− k2
z/k

2).

In terms of N and the inclination (θg = cos−1(kz/k)) between the direc-
tion of propagation and the z-axis, this may be rewritten

ω = N sin θg

for (internal) gravity waves. The word ‘internal’ is sometimes added to distin-
guish them from surface gravity waves propagating along an interface between
two fluids.

Several properties of this mode are of note. A typical value for N−1 is
50 s, so the gravity mode tends to be rather slow by comparison with the
other waves (except for the inertial wave). Gravity waves do not propagate
in the vertical direction (θg = 0), since that would not allow a horizontal
interaction with elements at the same height. Furthermore, the dispersion
relation implies that ω 6 N , so that the waves cannot propagate faster than
the Brunt-Väisälä frequency.

For a given ω and N , it also means that they propagate along two cones
centred about the z-axis with θg = sin−1(ω/N). For the upward-propagating
wave with

ω = N(1− k2
z/k

2)1/2,

the z-component of the group velocity is

vgz =
∂ω

∂kz
= −

ω kz
k2

,

which is negative. Thus gravity waves have the unusual characteristic that a
group of upward propagating waves carries energy downward and vice versa!
In fact, the group velocity is in a direction normal to the surface of the cone
with angle θg.

PROBLEM 4.7. Entropy Waves.
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Show that, in the absence of gravity, the linearised MHD equations pos-
sess a solution with ω = 0, v1 = p1 = B1 = 0 and an arbitrary ρ1 and
entropy.

SOLUTION.
The linearised MHD equations about a uniform state are

∂ρ1
∂t

+ ρ0(∇ · v1) = 0,

ρ0
∂v1

∂t
+∇p1 − (∇×B1)×B0/µ = 0,

∂p1
∂t

− c2s
∂ρ1
∂t

= 0,

∂B1

∂t
−∇× (v1 ×B0) = 0,

∇ ·B1 = 0.

Plane-wave solutions of the form

v1(r, t) = v1e
i(k·r−ωt)

reduce these equations to

− ωρ1 + ρ0(k · v1) = 0, (13)

− ρ0ωv1 + kp1 − (k×B1)×B0/µ = 0, (14)

ωp1 − c2sωρ1 = 0, (15)

− ωB1 − k× (v1 ×B0) = 0, (16)

k ·B1 = 0. (17)

Then, if ω = 0, Eq.(??) implies v1 = 0, Eq.(??) implies B1 = 0, Eq.(??)
implies p1 = 0, and Eq.(??) implies ρ1 is arbitrary, which implies that the
perturbation s1 = s0(p1 − γρ1) in entropy is arbitrary, as required for an
entropy wave.
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