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CORRIGENDUM TO THE BOOK 

Fundamental Solutions in Elastodynamics: A Compendium 

by  
Eduardo Kausel 

VERSION: June 26, 2018 
 
Since publication in 2006 and as of today, this book has been quoted some 251 times, i.e. some 21 times a 
year. This is a very high rate of quotation, and reflects on the success of the book.   
 
As of today, no serious or “cascading” errors have been found, i.e. none of those listed here affect any of 
the ensuing formulas, results or programs. Thus, they are simply of the editorial type.  

I. Errata 

1) Page 39, footnote, in the title of the paper by Eason et al, replace “…by a variable body” with “…by 
variable body forces”. 
 
2) Page 41, Eq. 3.39, errors in both expressions. Change as indicated below: 
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3) Page 45: Eq. 3.53, first term is missing a parenthesis square: 
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4) Page 71, eq. 5.12: square root missing: 
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2 2
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5) Page 72: The vertical ordinates in the three figures 5.2 are too small by a factor 5. This resulted 
because my program computed the figures at x=5 and thereafter I failed to normalize the figures by r as 
indicated.  
 
Also, the subindices in the ordinate labels of the second and third figures should have been zz  and xz , 
i.e. the last factor in each of the figures should have been , ,xx zz xzu u u , respectively. 
 
6) Page 73, equations 5.18, in both expressions, the   factor of the second term should be deleted, i.e. 
these equations should read: 
 

2 2 2 2cos isinz zq a a         2 21 cos isin 1z zq         
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Page 77, eq. 6.28b: Change the sub-index y  into z , i.e.  ,0,zu x    

7) Page 78, eq. 6.6 is missing a factor 2  in front of the square root; also, the sign is wrong. The correct 
equation is 
 

     222 2 2 2 21 2 4 1R a            (6.6) 

 
8) Page 78, second line below eq. 6.6, modify the equation and delete the fragment “and dividing by 2 ”. 
The whole line should read as follows: 
 

“by   222 2 2 21 2 4 1 a     , and dividing by 2  one  obtains the bicubic (i.e. cubic” 

 
9) Page 79, replace eq. 6.11b by 
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Fortunately, the program Lamb3D.m implementing this formula is correct as written. 
 
10) Page 80, eq. 6.12 
A factor 2 is missing in front of the square root. The correct equation is 
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11) Page 80, second line below eq. 6.12, the equation is missing a factor 2: 
 

 “that    2
2 21 2Q z z z z     satisfies …” 

 
12) Page 106: In equation 8.92, in the diagonal matrix with exponentials, the first three terms should have 
a negative sign, the next three positive (i.e. the signs are reversed). This error did not affect any of the 
later formulas and developments. The correct expression is 
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13) Page 107, two lines above box 8.95, change zrD  into xzD  i.e. change the sub-index r x . Also, in 

box 8.95, middle equation, delete the factor 2 after the equal sign, i.e. 2k k   . 
 
14) Page 114: In eq. 8.151, the subscript on the left hand side should be r, not R: 
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In eq. 8.153, the subscript of the leftmost H function should be  , not  : 
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15) Page 115 In eq. 8.154, the subscript of the first element in the vector on the left hand side should be r, 
not R: 
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16) Page 124, equation 8.208: Some terms in the 11 22,f f  functions do not explicitly indicate the type of 
spherical Hankel (or Bessel) functions that must be used. Here is the corrected form, which can also be 
found in Table 10.7 on page 177: 
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17) Page 132, equation 9.39: The right hand side is missing an identity matrix 
 

 
2π

( ) 0 0 ( )0
(1 ) /n j nj n j nj nd a        IT T I  

 
18) Page 136, eq. 9.63, super-index of second Hankel matrix should be 2, not 1: 
 
   (1) ( )

1 2
2, ,z n nr k   H a H au  

 
19) Page 145, Table 10.1, first line of Note 1: change the first repeated occurrence of Im 0kp   after 

“Riemann sheet” into Re 0kp   
 
20) Page 150, equations 10.32 and 10.33, delete the 1

2  factor in front of the square brackets, i.e. the 

correct expressions are 
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21) Page 152, eq. 10.50, delete the ending zero equality, = 0 
 
22) Page 160, Table 10.2, first line, the left hand side has incorrect arguments, and on both sides of the 
equation remove the tildes, i.e. replace by: 
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The second line is correct as written. 
 
23) Page 164, eq. 10.95, the first factor in the numerator of the integral should be p, not s: 
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24) Page 170, eq. 10.123  1n  : In the center element in the matrix, change the subscript of the 

denominator from b  to  . Also, in the fraction before the opening brace, change the divisor 8  into 

4 .  For the same reason, on page 172 change 8  into 4  in the denominator of the first line of 10.135. 

Also, in the leading fraction of 10.136 change the 16  into 8 , and do this also on page 173, 
unnumbered box, in the denominator of the expression for “Lateral point source”. 
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25) Page 182, eq. 10.168: The right hand side is missing an identity matrix 
 

 
2π

( ) 0 00
(1 )n j nj n jd      T T I  

 
26) On page 182, in the rigid body displacement equations 10.170 and 10.171 it is convenient to replace 
the arbitrary constant c by the amplitudes of the six rigid body displacements and rotations 

, , , , ,x y z x y zu u u    : 

Translations: 
 

(1) 1
1 1 12ˆx xU u  T L e   (2) 1

1 1 12ˆy yU u  T L e   (1) 0
0 1 12ˆzzU u T L e  

 
 
Rotations 
 

(2) 1
1 1 3ˆxx R   T L e   (1) 1

1 1 3ˆy y R  T L e   (2) 0
0 1 3ˆz z R  T L e  

 
Observe the negative signs in , ,x y xu u  , the factor R in the rotations, and the correction in the sub-index 

of z . 
 
27) Page 185:  In equation 11.1, substitute r  in lieu of x , i.e. 
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28) Page 192, table of spheroidal harmonics, third row, first column, replace /   by — 
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ADDENDA to the Book 

Fundamental Solutions in Elastodynamics: A Compendium 

by  
Eduardo Kausel 

VERSION: December 21, 2015 
 

Included here is a list of improvements and additions: 
 
1) On page 48, in the space below the title, annotate the static values of the functions  ,   
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2) Section 10.2.1, page 149, analytic continuation in the half-space: An explicit expression which is 
simpler than eq. 10.31 is as follows: 
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with 2 , zR E  being given by eq. 10.8 (page 143). This gives the displacement within the half-space at 

elevation 1z z  in terms of the displacements in the half-space al elevation 1z , which may coincide with 

the interface of the layers with the half-space. This assumes there are no sources below 1z , and that z  is 

positive up!  In the case of half-space subjected to loads at its surface and the origin of coordinates 0z   
is at the free surface, the solution at depth 0z   is 
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 P ekpze  , S eksze  ,  221
4 1sp s     

 
For static problems, the limit 0   of the above expression is 
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For sources at the surface of a homogeneous half-space 0z  , this reduces to 
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3) In Table 3 on page 165, the following definitions should be added next to the H functions: 
 

 2 2
P zk k k   , 2 2
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 Pk
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4) In section 10.3.2, pages 164-174, add the new supplementary material on cylindrical layers given in 
Appendix 1, which follows the example on a rigid sphere embedded in a full space. This material clarifies 
and simplifies the equations for the solid core and provides the analytic continuation for displacements 
and stresses within that core. Also, it explains the stresses in cylindrical layers and elaborates also on the 
functions to be used (i.e. Hankel or Bessel functions) and how these must be scaled to avoid numerical 
problems.  
 
5) At the end of Chapter 10, page 184, add the example in the pages that follow. Here I evaluate the exact 
response of a rigid sphere with arbitrary mass embedded in a full space, subjected to either torsion or 
translation. I obtain closed-form results in both the frequency domain as well as in the time domain.  
Except for a factor 1

2  in the load, the solution for the sphere in torsion is identical to that of a 
hemispherical, rigid foundation in a half-space subjected to torsion about an axis perpendicular to the 
surface. On the other hand, the translational case may provide a rough approximation to the response of a 
hemispherical foundation in a half-space subjected to either vertical or lateral loads, but it differs from it 
in that the free surface of the half-space acts as a wave guide for surface waves, and thus alters the 
response of the hemispherical foundation in comparison to the full space. For the same reason, the 
torsional solution for rotation about a horizontal axis may exhibit some similarities to the hemispherical 
foundation in a half-space subjected to rocking. 
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5.6 Generalized Garvin problem1 (Alterman-Loewenthal problem) 2 
Consider a lower  0z   or upper  0z   elastic half-plane subjected to an impulsive source in the form 

of a line of pressure at some depth 0h   located directly below (or above) the origin of coordinates on 
the free surface. The receiver is placed at an arbitrary point in the half-plane with coordinates  ,x z . 

Define 
 
Geometry 

 22
1r x z h   ,   22
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Wave travel times: 
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  , tan tanP Sx h z    Reflected S wave (5.30c) 

 
with ,P S   being related by Snell’s law sin sinS P    .  Elimination of the terms in the incidence 

and reflection angles ,P S   between equations 5.30c is cumbersome and leads to a complicated equation. 

Nonetheless, an iterative solution is easily obtained by searching for the point in the interval [ , ]Px x  that 

satisfies Snell’s relationship, where 0Px   is the distance of intersection of the PP ray with the free 

surface. Thus, PSt  can readily be determined to high accuracy, and can thus be assumed to be known.  
 
Dimensionless time 
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           (5.31d) 

Auxiliary variables 

                                                 
1 Sánchez-Sesma, F.J., Iturrarán, U. and Kausel, E. (2013): Garvin’s Generalized Problem Revisited, Soil Dynamics 
and Earthquake Engineering, vol xxx 
2 Alterman, Z.S., and Loewenthal, D. (1969). Algebraic expressions for the impulsive motion of an elastic half-
space, Israel Journal of Technology, 7 (6), 495-504. 
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The solution is expressed in terms of two auxiliary variables    ,aq q    together with their 

derivatives with respect to dimensionless time  . The first of these can be given in closed form: 
 

   2 2
2 2cos i sinq a              (5.32a) 

 Re 0q  , 2 2Re 0q a   , 2Re 1 0q       (5.32b) 

2 22 2
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2 22 2
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      (5.33) 

 
On the other hand, the expression for  q  requires the numerical solution to the quartic equation 

 
 4 3 24i 2 4i 0Aq B q C q D q E             (5.34a) 

 Re 0q  , 2 2Re 0q a   , 2Re 1 0q       (5.34b) 

 
with all real coefficients 
 

    2 22 2 0A H Z X H Z X                 (5.35a) 

  2 2 2 0B X H X Z           (5.35b) 

       2 2 2 2 2 2 2 2 2 2 2 2 23C H X Z X H a Z H Z H a Z             (5.35c) 

  2 2 2 2D X H a Z             (5.35d) 

      2 22 2E Ha Z Ha Z            (5.35e) 

where 

 
2 2 2

, ,
x zh

H X Z
r r r

          (5.35f) 

This quartic equation admits four roots, which can show up as follows: 
a) All roots are complex and appear in negative complex conjugate pairs (this is the norm when 

PS   ): 
* *

1 2 3 1 4 2, , ,q q q q q q     
 

b) There exists one pair of negative complex conjugate roots and two distinct, purely imaginary 
roots: 

*
1 2 1 3 3 4 4, , = i , = iq q q q Q q Q  ,  (with 3 4,Q Q  being real quantities) 

 
c) There are four distinct, purely imaginary roots: 

1 1 2 2 3 3 4 4i , i , i , iq Q q Q q Q q Q    , (All jQ  are real quantities)  

 
d)  No purely real roots can exist. 
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A mathematical analysis of the four solutions reveals that they define four branches, two of which have 
negative real parts and can thus be discarded on account of (5.34b). Of the remaining two roots, at least 
one of these two roots is guaranteed to have a positive imaginary part, and possibly even both roots have 
such a characteristic. Either way, choose the one with the smallest positive imaginary part, which is also 
the sole branch which starts as a purely imaginary, positive root when PS  , i.e. at the arrival of the PS 

waves at the receiver.  Having obtained q  one can proceed to obtain its derivatives as 

 
1

2 2 2
i

1

dq q q
H Z X

d q a q

  

 



  
    
     

     (5.36) 

 
Rayleigh functions 
Assuming that one has obtained ( ), ( )q q    together with their derivatives / , /q q     , one 

proceeds to use these to evaluate the Rayleigh functions 
 

   22 2 2 2 21 2 4 1R q q q a q               (5.37a) 

   22 2 2 2 21 2 4 1R q q q a q               (5.37b) 

 
Displacements: 
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           (5.38b) 
 
where  H  is the Heaviside (unit step) function ; , , ,P PP PS     are defined by equations 5.31a-d; 

 q  is given by 5.32a and  q  by the numerical solution to 5.34a; and the partial derivatives are 

given by 5.33 and 5.36.  Observe that for a lower half-plane,  sgn 1z   . The vertical displacement is 

defined positive up for both a lower and an upper half-plane. 
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Figure 5.5: Generalized Garvin Problem, horizontal (top) and vertical (bottom) response for a source at 
depth 1h   observed at a receiver at location 1, 1x z   for Poisson’s ratio 0.25  . 
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Figure 5.5 shows the horizontal and vertical displacements for a source-receiver combination 
1x z h    and material parameters 1  , 0.25  , which corresponds to Lamé parameters 

1   . For convenience, we have chosen to display the time axis normalized with respect to 1r . The 
three peaks in the horizontal response correspond to the arrivals of the P, PP and PS waves. The vertical 
response shows only two peaks because the direct P wave travels horizontally from the source to the 
receiver, and thus has no vertical components. 
 
Asymptotic(static) behavior 
As time increases, the displacements approach their static values. It can be shown that at long times, the 
response functions approach asymptotically the following exact values: 
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When 0z  , the above equations reduce to the expressions 5.28a and 5.28b in section 5.5. 
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6. Three-dimensional problems in homogeneous half-spaces 

6.1 Lamb’s problem3 
Either a vertical or horizontal point source P  which varies as a step function in time, i.e.  P tH  is 

applied onto the surface of the half-space. Displacements are also observed on the surface at a range r. 
 
Definitions: 

2 2r x y           (6.1) 
2

2 1 2

2(1 )
a
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H  = Heaviside step function    (6.3) 
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2 2 20
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(1 sin ) 1 sin

d
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       (6.5) 

 
K and   are complete elliptical integrals of the first and third kind, respectively.  In the case of complex 

characteristic m , the elliptic   function satisfies the complex conjugate symmetry    * *, ,m n m n  . 

To the best of the author’s knowledge and as of this writing, only Mathematica —but not Maple or 
Matlab— seems to provide the capability of complex characteristic. However, it is not difficult to 
implement effective numerical routines which allow for complex values of these parameters (one such 
routine is available in the Appendix). 
 
Consider the rationalized Rayleigh function 
 
 2 4 2 6 21 8 8 (3 2 ) 16 (1 ) 0a a              (6.6) 
 
which has three roots 2 2 2

1 2 3[ , , ]   , the first two of which are non-physical solutions of the rationalized 

Rayleigh function, while 3 / RC   is the actual true root. When 0 0.2631   , all three roots are 

real and satisfy 2 2 2 2
1 2 30 1a       . The transition value 0 is the root of the discriminant 

3 2( ) 32 16 21 5 0D          in the interval [0 0.5]  . It defines the point beyond which the false 

roots turn complex. When 0   the false roots are repeated, i.e. 1 2  , and thereafter they appear in 
complex conjugate pairs.  The ensuing formulas are valid whatever the value of Poisson’s ratio. 
 
Define the coefficients 

 22 2 21
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, 1, 2
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 22 2 21
3 32

3
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   (6.7a) 

                                                 
3 Kausel, E. (2012): Lamb’s problem at its simplest, Proceedings of the Royal Society, Series A, 20120462  
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  2 21 2 1
, 1,2,3
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   2 2 2 2 ,j j i j kD i j k             (6.7d) 

 
Observe that the coefficients with tilde differ from those without a tilde in the order of the arguments 
within the square root, which are reversed. In general, , ,j j jA B C  may be complex (in which case they 

will appear in complex conjugate pairs) but 3 3 3, ,A B C   are always real. 
 
6.1.1  3-D half-space, suddenly applied vertical point load on its surface (Pekeris-
Mooney problem)3,4,5 
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  (6.9) 

For complex roots, the first two terms in the summations in (6.8a,b) appear in complex conjugate pairs. 
Hence, one could just as well replace their sum by taking twice the real part of first term. 
 
The displacements at depth along the epicentral axis are given later on in section 6.1.3 

                                                 
4 Pekeris, C.L. (1955): The seismic surface pulse, Proceedings of the National Academy of Sciences of the United States of 
America, 41 (7), 469-480, (only for  = ¼). 
5 Mooney, H.M. (1974), Some numerical solutions for Lamb's problem, Bulletin of the Seismological Society of America, 64 (2), 
473-491, (any , but vertical displacement due to vertical load only). 
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6.1.2  3-D half-space, suddenly applied horizontal point load on its surface 
(Chao’s problem)3,6 
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    , , , coszx rzu r u r             (6.10c) 

 
The horizontal displacements along the epicentral axis are given in the next section. 
 
6.1.3  Pekeris-Mooney-Chao problems: Displacements at depth along the 
epicentral axis  0, 0r z  3: 
 
With dimensionless time /t z  , the displacements on the axis at depth z  are 
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1 21 , 1S a S a             (6.12c) 

                                                 
6 Chao, C.C. (1960), Dynamical Response of an elastic half-space to tangential surface loadings, Journal of Applied Mechanics, 
Vol 27, September, pp. 559-567 
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Although simple in appearance, at large times 1   the above representation suffers from severe 
cancellations. The reason is that although the sum of the two functions tends to a constant (static) value, 
individually each function grows without bound with time. This problem can be avoided by means of the 
following fully equivalent formulas when 1  : 
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(6.13b) 
where 

        42 6 4 2 4 6 4 2 2 2
1 16 1 8 6 8 3 8 6 10 6 1 1 2D a a a a a a a               (6.14a) 

      2 6 2 4 2 2
2 16 1 8 3 4 8 1 2 1D a a a              (6.14b) 

 
and the coefficients of the two summations are 
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12 128 1a a   

 2
10

464 1 4 6a a a    

  4 6
8

236 15 4 21 4a a aa            (6.15a) 

 4 6
6

2 216 4 17 10 8a a a aa     

  2 4 62
4 16 1 3 7 6a a a aa     

 4 6 8
2

21 10 40 48 16a a a aa       

 

  2
12 128 1b a   

  2 4
10

264 1 2 2 4a ab a    

  4 6 82
8 16 21 37 4 36 16a a ab a           (6.15b) 

 4 6 8 10
6

216 3 26 78 70 8 8b a a a a a      

  4 6 8 02 1
4 4 15 87 116 24 136 64a a ab a a      

   32 24
2 11 28 16 1 2b a a a    

At large times, the above converge to 
 

  2 6
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12a      1
2 1 / 1jS    

so 
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which are the correct limits predicted by the Cerruti and Boussinesq theories for static tangential and 
vertical loads applied onto the surface of a half-space.  

6.2. Lamb dipoles 
Of the nine possible point dipoles which may act within a continuous space, the explicit formulas for 
Lamb’s problem in section 6.1 allow obtaining a subset of these, namely the solutions for the six dipoles 
acting at the surface of the half-space which do not depend on derivatives of the displacement functions 
with respect to the vertical direction, see Fig. 2.2, left and middle column. In cylindrical coordinates, 
these six dipoles are given by equations 2.22a,b,d,e,g,i, which involve the radial derivatives of the 
Pekeris-Mooney-Chao problems. The terms needed in the dipole formulas are as follows: 
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            (6.16d) 
Also, 
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        (6.17) 

 
The last derivative above is rather cumbersome, inasmuch as it involves derivatives of the elliptical 
functions in which   appears as argument in the modulus k  and 1k  , see eqs. 6.9. Although this could be 
accomplished without much ado, it is a rather lengthy and tedious task, which is thus left to the readers to 
carry out, should it be needed. A simple alternative would be to use numerical differentiation. 
 
As an example of application, consider the torsional dipole (2.23c), i.e. 
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       (6.18) 

 
Substituting the preceding expressions, we obtain 
 

     2

1
1 1u

r   


   


H        (6.19) 

 
which agrees perfectly with the formula obtained by the method of images, see section 6.4, eq. 6.25 
specialized for a source and receiver at the free surface. 
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Example10.14: Rigid sphere in an infinite space subjected to torsion and translation 
Consider a rigid, massless sphere of radius 0R  embedded in an infinite homogeneous space which is 

acted upon at its center by a harmonic torque i tM e   or by a force i tPe  , say both in direction z.  This 

causes the sphere to rotate about the vertical axis by an angle i te  and to displace vertically by i t
zu e  . In 

spherical coordinates, both of these rigid body displacements are of the form 
 
   ( ) 0

0 1, , jR   u T L u    (from 10.169 with 1, 0m n  ) 
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   (from 10.156a, 10.170 and 10.171) 

 (1)
0 1 1 0T diag    (from 10.172a) 
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  12ˆ 1 1 0
Te     (from 10.173a) 
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H    (from table 10.7) 

 
which is assembled with spherical Hankel functions of the second kind 
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On the other hand, the tractions per steradian on the surface of the sphere are 
 

     12 (2) (2)
0 0 1 1R R


 p F H u     (from eq. 10.156) 

 
    ( ) 0

0 0 1 0, , jR R  p T L p    (from eq. 10.164) 

 
with 2j   for torsion and 1j   for translation. This leads to the definition of the stiffness or impedance 
matrix 
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whose elements are (Note: unlike in Table 10.7, here we are defining  (2)
1 ijf F , to avoid having to 

carry the negative sign throughout) 
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At this point we consider separately the two problems of torsion and displacement of the rigid sphere.  
 
a) Torsion: 
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so the tractions per steradian in the space domain are 
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that is 
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The net torsional moment exerted by p  with moment arm 0 sinR   and elementary area sindA d d    
per steradian is 
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The frequency response function is the inverse relationship, namely 
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which is identical to the transfer function due to support motion in a 1-DOF system with resonant 

frequency 3n   and fraction of viscous damping 1
2 3 0.866   , which is less than critical. Hence, 

the impulse response function for a torsional moment  t  is the Fourier transform of this function, 

which can be shown to be 
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Using the formulas 4.50 or 4.51 in chapter 4.6 on the response of a full space to a torsional source with 
vertical axis and deriving from these an expression for the torsional stresses, it can be shown that that the 
above flexibility functions are correct. 
 
b) Translation 
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The tractions in space are then 
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The vertical component of the tractions per steradian is 
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which has a total resultant 
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Evaluation of the previous expressions with Matlab’s symbolic tool yields the total force 
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which can be written as 
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in which   is the shear modulus 
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 = ratio of S to P wave velocity (  = Poisson’s ratio) 
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   = dimensionless frequency 

 
Observe that at zero frequency, 0S  , this simplifies to 
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and for an incompressible solid ( 0a   or 0.5  ),  06 zP R u  , which is finite, as expected. 
 
The flexibility function in the frequency domain is then 
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In the case of an incompressible solid 0a  , we obtain from the expression above 
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z S
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which is identical to the transfer function for a 1-DOF system with undamped natural frequency 3n  , 

that is 03 /n R  , and a fraction of critical damping 3
2  . Thus, the vibration is highly damped and 

not oscillatory. 
 
Time domain: 
For an impulsive load  P t , the response in time is qualitatively similar to that of a 1-DOF system with 

supercritical damping. To obtain this response, it suffices to find the poles of the denominator of the 
flexibility function, i.e. 
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     3 2 2i 1 2 1 9 2 9i 1 9 0a a a a a           

 
and use these in the context of a simple contour integration.  The only difficulty here is that the 
denominator is cubic in the frequency, so finding the poles usually requires a numerical solution (the 
exact cubic solution is too complicated to be practical).  The plot below shows the first complex root 
(blue and red), the imaginary part of the second root (black), and the purely imaginary third root 

(magenta). For Poisson’s ratios less than 0.498  , the second root is the negative complex conjugate of 
the first root, so it is not shown in the plot on left.  
 
Above the 0.498   threshold, all three roots are purely imaginary, and the first one grows as 1a   
as Poisson’s ratio goes to ½ in the neighborhood of an incompressible solid. This can be demonstrated by 
finding the characteristic roots while neglecting terms in 2 0a  : 
 
      3 2i 1 2 1 9 9i 1 9 0a a a a          

 

whose solutions are 1 i / a  ,  3
2,3 2 i 3 5   . These agree with the values in the plot above on the 

right in the close neighborhood of 0.5  . 
 
 
Sphere with mass 
Addition of a mass to the sphere changes these results only slightly.  If s  is the mass density of the 

sphere and   is the mass density of the full space, then 34
03 sm R  , so 
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whose inverse is 
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Expanding the denominator above, we obtain the fourth order polynomial 
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Using contour integration we obtain the response in the time domain as 
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which can readily be evaluated for any mass ratio r. When the sphere has the same density as the 
surrounding soil, i.e. 1r  , the poles of the flexibility function can be found in closed form. Indeed, the 
characteristic equation in this case is  
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Using the above roots for 1r   as well as 34

03 sm R  , we obtain 
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For convenience, we list also the velocity and acceleration: 
 

               3 3 3 33 3
2 2 2 2 2 2

1
exp cos 3 sin 2exp cos 3 sin

3z a a au t
t m

                 
 

 

              
2

3 3 3 33 3
2 2 2 2 2 22

0

1 exp sin 3 cos 2exp sin 3 cosz a a aau t
R mt

                  
 



 25

Observe that the velocity satisfies the condition  0 1zmu  , which demonstrates that the impulse is of 

unit magnitude. 
 
Displacements beyond sphere 
Once  z z Su u   is known as a function of frequency, it can be used to find the frequency response at 

arbitrary points 0R R  beyond the surface of the sphere. The displacements there are simply 
 

      
1(1) 0 (2) (2)

0 1 1 1 0 12ˆ, , zR u R R 


   u T L H H e  

 
where  (2)

1 RH  is of the same form as  (2)
1 0RH , but computed at a different radial distance. This can be 

used to obtain the displacements at points beyond the sphere. 
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Appendix 1: Further details on the theory of cylindrical layers 

Stresses in cylindrical layers 

The book gives only final results for the displacements and stresses in cylindrical layers, most of which is 
not self-evident, so here are some further details. From section 1.4, eq. 1.79, the stresses in cylindrical 
surfaces are 
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We now define the transformation matrix Q  together with its inverse 
 

 

1 0 0

0 1 0

0 0 i

 
   
  

Q   1

1 0 0

0 1 0

0 0 i



 
   
 
 

Q     (3) 

 
with which we can write the transformed displacement and stresses as 
 

  i
T

r zu u u  u Qu        (4a) 

  i
T

r r r r rz    s Qs        (4b) 

 
Why add the imaginary unit? Because it renders the stiffness matrices symmetric and also makes them 
real when the frequency is zero. Pre-multiplying eq. 1 by Q  and expressing u  as 1u Q u , we obtain 
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The sole exception is 
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Now, in section 8.8, eq. 8.155 we found particular solutions to the wave equation of the form 
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in which the    ,n n n nH H z H H z      are any of the Bessel functions of order n  and arguments 
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On the other hand, from 9a, 
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It is also easy to see that  
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Hence, from 8,11,12,13, we obtain the stresses in cylindrical planes as 
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Defining the tractions per unit radian as rrp s , then 
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Finally, we can write 9a and 15 compactly as 
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In addition, from the differential equation for Bessel functions, 
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Hence 
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Furthermore 
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Combining 21 and 23, we obtain 
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            (25a-i) 
 
which agrees with the material in the book on pages 165, 166. 
 
A relevant question might be now, what kind of Bessel functions should one use? We take up this issue 
next. 
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Cylindrical layers: Which functions should one use? 

Consider a cylindrical layer bounded by finite surface with radii 1 2,r r  (outer and inner radii, respectively). 

A general solution valid at any interior point 1 2r r r   is then 
 

     1 2
1 2n nr  H a H au  

 

         1 2
1 2n nr r r r  F a F asp  

 

where     j
n n nH krH H  and     j

n n nH krF F ,with    j
nH kr  being either Hankel functions of the 

first and second  kind and nth order, or alternatively, Bessel and Neumann functions of order n. This 
accounts for waves that propagate both inwards and outwards.  A question is then, how do we decide 
which functions to use?  To answer this question, let us assume that we decided at the outset to use first 
and second Hankel functions, and that we can express these as 
 
 (1) in n n H J Y ,  (2) in n n H J Y  
 
where the matrices ,n nJ Y  have the same structure as the nH , except that Bessel and Neumann functions 
are used in place of Hankel functions. Hence 
 

 

   
   

1 2

1 2 1 2

1 2

i i

i

n n n n

n n

n n

   

   

 

J Y a J Y a

J a a Y a a

J c Y c

u

 

where 
  1 1 2 2 1 2, i   c a a c a a  

 
Thus, as far as displacements is concerned, switching from Hankel functions to Bessel & Neumann 
functions is merely a matter of changing the constants of integration. Let’s examine more carefully what 
effect such a switch has on the stresses.  From the previous developments, a generic expression for the 
tractions per unit radian at some location is 
 

  1rr r z rz r n rr nr n k r
r 
         

D D D D H a D H Z BH ap  

 

where 1r z rz rn k r  B D D D ,  diag z z z  Z , and n nrr 
 H H Z . It follows that 
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Hence, tractions in cylindrical surfaces follow the same combination rule as displacements, and they too 
can be expressed either in terms of Hankel functions, or of Bessel & Neumann functions.  Hence, we have 
shown that at least in principle, the final results of the formulation for the stiffness (impedance) matrix for 
a cylindrical layer does not depend on which pair of Bessel functions is being used. In general, it is best to 
use Hankel functions, even when the arguments ,z z  of these functions should be real. Although Hankel 

functions are complex, final results will still be real, because the stiffness matrices could equally well 
have been obtained with Bessel and Neumann functions, which would have been purely real. However, 
the reason for choosing Hankel functions is that they are more robust and numerically stable when the 
argument is complex, because    ,n nJ z Y z  are nearly proportional when z  is strongly imaginary. But 

this also brings up an important issue, namely the computational strategy in the assembly of the stiffness 
matrix, which we describe in the next section. 
 
Observe that exterior, unbounded regions will always be constructed solely with second Hankel functions, 
because only these will satisfy the radiation conditions at infinity. Conversely, in the case of a solid 
cylindrical region (solid core), one must employ Bessel functions, for only these will avoid the singularity 
at the axis. In the case of sources placed at the axis, where a singularity then develops, one must either use 
the method described in the book (as amended in the section later on “Analytic continuation in cylindrical 
layers”), or simply avoid these problems altogether by replacing the solid core with a solid with a very 
small cylindrical borehole. 

Scaling of Hankel and Bessel functions 

When the arguments are complex or purely imaginary, the Bessel functions can attain very large values. 
To avoid ill-conditioning and a total breakdown in the computations, it behooves to scale these functions 
appropriately.  
 
Matlab offers a very convenient scaling through an optional, additional argument, of which we shall take 
advantage. Indeed, 
 
a) Hankel functions 
 

            1 1besselh n,1,z,1 exp in n
def

H z z H z  


 

            2 2besselh n,2,z,1 exp +in n
def

H z z H z 


 

 
b) Bessel and Neumann functions 
 
      besselj n,z,1 exp abs(Im( )nJ z z   

      bessely n,z,1 exp abs(Im( )nY z z   

 
In the light of the above, we proceed to write the actual Hankel functions as 
 

          1 1 exp in nH z H z z


           2 2 exp in nH z H z z 


 

 
so the Hankel matrices will attain the form 
 

    1 1
n nH H E


,     2 2 1

n n
H H E


,        diag exp i exp i exp iz z z  E  
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Similarly 
 

    1 1
n nr rF F E


,     2 2 1

n nr r F F E


 
 
in which case 
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Defining  1 1rE E ,  2 2rE E , the equations for the layer expressed in terms of these expansions are 
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Eliminating the integration constants between these two, the dynamic stiffness matrix is 
 

 

11 1
1 11 1 12 1 2 11 12 1 2

1 1
2 21 2 1 2 22 21 2 1 22

r r

r r

 

 

       
     

F F E E H H E E
K

F E E F H E E H

   
     

 
which is computationally well behaved. The exponential matrix in the coupling terms is 
 

       1 1
1 2 2 1 1 2 1 2 1 2diag exp i exp i exp ik r r k r r k r r  
                  E E E E  

 

Inasmuch as our computations in elastodynamics satisfy  Im 0k  ,  Im 0k  , each of the 

exponential terms will be of the form 
 

       1 2 1 2 1 2exp i exp i expa ib r r a r r b r r                 

where ik a b   is a generic wavenumber. The absolute value of this expression is less than unity 
because  
 

      
 1 2 1 2 1 2

1 2

1
exp i exp exp 1

exp
a r r b r r b r r

b r r
                    

 

 
Thus, the computations are now well behaved. 
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Observe that in the case of an exterior, unbounded region of inner radius r , the stiffness matrix will be of 
the form 
 

1
ext n nr  K F H

 
 

 
in which ,n nF H

 
 must be assembled with second Hankel functions, to satisfy the radiation conditions at 

infinity. It too is obtained with the aid of scaled matrices.  
 
At the other extreme, in the case of a solid core of radius r  where Bessel functions must used, its 
stiffness matrix will be of the form  
 

1
n nr K F H
 

 
 
in which both ,n nF H

 
 are constructed with scaled Bessel functions. In this case the exponential matrix 

will change into 
 

       diag exp abs Im exp abs Im exp abs Imk r k r k r              E  

 
but this is irrelevant here because the above matrix cancels out and is not needed anywhere. 

Analytic continuation within the solid core 

On page 168 and on, I describe how to extirpate the axis of a solid cylinder to avoid the singularity which 
arises when sources are placed there. However, I do not provide any information as to how to obtain the 
motions within the core after the motions have been obtained on the periphery. Here is a remedy to this 
situation, but before an important comment.  
 
For now unfathomable reasons, in pages 168-173 describing the solid core, I switched the usual external 
and internal radii 1 2,r r , which everywhere else in the book—including the chapter on layered spheres— I 
consistently numbered from the outside to the inside. This introduced confusion not only with respect to 
the appropriate choice of Bessel and Neumann functions, but also in the sign of the tractions acting on the 
inner surface before taking the limit of a vanishingly small radius. Although the final equations in the 
book are still correct, here I re-derive the relevant equations while reverting to the usual convention where 

1r  is the outer radius and 2 0r   is the inner radius. In addition, I dispense entirely with the various 
elements of the global stiffness matrix for the annular region before condensation of the axis (equations 
10.114-10.120), and provide instead a new derivation which is far more transparent. To distinguish the 
equations herein from those in the book, I shall label these with the prefix A, for “added” equations.  
 
From eq. 10.96, 10.97, the displacements and stresses anywhere within a cylinder with external and 
internal radii 1 2,r r  are 
 
   (1) (2)

1 2, , ,z n nr n k   H a H au       (10.97) 

   (1) (2)
1 2, , ,z n nr n k   F a F as       (10.98) 

 
with matrices assembled from tables 10.3, 10.4 with arguments  
 

    (1)
n nr J krH H ,      (2)

n nr Y krH H    (A10.1a) 
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    (1)
n nr J krF F ,      (2)

n nr Y krF F    (A10.1b) 

 
meaning that either Bessel or Neumann functions must be used for the matrices in tables 10.3, 10.4 (but 
observe the difference with 10.110–10.113, and also the fact that r  is a variable). 
 
In particular, the displacements and external tractions per radian at the outer and inner surfaces of the 
cylinder are 
 
    (1) (2)

1 1 1 1 2 11 1 12 2n nr r   H a H a H a H au     (A10.2a) 

    (1) (2)
2 2 1 2 2 21 1 22 2n nr r   H a H a H a H au     (A10.2b) 

 

       (1) (2)
1 1 1 1 1 2 1 11 1 12 2n nr r r r   F a F a F a F ap    (A10.3a) 

       (1) (2)
2 2 2 1 2 2 2 21 1 22 2n nr r r r     F a F a F a F ap    (A10.3b) 

 
In the limit of a solid core when 2 0r  , the elements of 22H  and 22F become infinitely large, but 

2 21r F O  (the null matrix), in which case A10.3b approaches the limit 
 
  

2
2 2 22 2

0
lim
r

r


  F ap        (A10.4) 

 
This leads us to what in page 173 in the text we referred to as axisq : 
 

  
2

1

2 2 22 2
0

lim axis
r

r



   a F p q       (A10.5) 

 
On the other hand, from equations A10.2a, A10.3a, and A10.5 we can write 
 
 1 11 1 12 axis H a Hu q        (A10.6a) 
 

 1 1 11 1 12 axisr F a Fp q        (A10.6b) 

 
that is 

    1

1 1 11 1 1 12 axisr r
 a F Fp q       (A10.7) 

and 

 

   
    

1

1 11 1 11 1 1 12 axis 12 axis

1 1
11 1 11 1 1 12 11 11 12 axis

1
core equiv

r r

r r



 



  

  



H F F H

H F F F H H

K

u p q q

p q

p

    (A10.8) 

 
In summary 
 

  1
equiv 1 1 12 11 11 12 axisr   F F H Hp p q      (A10.9a) 

  1
equiv core 1 1 11 11 1r  K F Hp u u       (A10.9b) 
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The elements of axisq  coincide with those given in the unnumbered table on page 173. Having found both 

1 2,a a in A10.5, A10.7, we can proceed to find the displacements and stresses anywhere within the solid 
core by means of 10.97 and 10.98, which now change into: 
 

        
      

1(1) (2)
1 11 1 1 12 axis axis

(1) 1 (1) 1 (2)
11 1 11 12 axis

, , ,z n n

n n n

r n k r r r r

r r r

 

 

  

  

H F F H

H H H H H H

u p q q

u q
  (A10.10) 

 

         
      

1(1) (2)
1 11 1 1 12 axis axis

(1) 1 (1) 1 (2)
11 1 11 12 axis

, , ,z n n

n n n

r n k r r r r

r r r

 

 

  

  

F F F F

F H F H H F

s p q q

u q
  (A10.11) 

 
These equations provide the analytic continuation into the body of the solid core. 
 
When no external loads are applied at the axis, then axis  0q  and 
 
    (1) 1

11 1, , ,z nr n k r  H Hu u       (A10.12a) 
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(1) 1
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(1) 11
11 equiv
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F H

F F

s u

p
      (A10.12b) 

 
In this case, the displacements and stresses on the axis are well defined and the requisite matrices depend 
on the value of the azimuthal index n : 

0n  : 

 (1)

0 0 0

0 0 0 0

0 1z

n

k
k

 
    
   

H        (A10.13a) 
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1 0

0 0 0 0
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F     (A10.13b) 

1n  : 

  (1) 1
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1 1

0 1 1

0 0 0

z

z

k
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k
n k





 
    
 
  

H        (A10.14a) 
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Limiting matrices, page 170: 

Note: Corrected errors are marked in red, while equivalent forms are in blue. For example, the term in 
square bracket in element 2,3 of the third matrix is 
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Observe that for the same reason, the denominators of these matrices could be replaced by 
 

 
2 2

1 z S
kk
kk



    








 (for 0,1n  ) and  
2 2

211 Sk
k

k
k a
 

       



 



 (for 2n  ) 

 
 
Eq. 10.122 , 0n   
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Eq. 10.123, 1n   
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Eq. 10.124, 2n   
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Stiffness matrix of axis (limit): 

0n   
 

 

1 0 0

2 0 1 0

0 0




 
   
 
 

K   1
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1
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0 0
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