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The Second Fundamental Theorem Integration by Substitution Integration by Parts

Anti-derivatives

A function F is called an anti-derivative of f if F ′ = f .

1 Not every function has an anti-derivative. (Example:
Heaviside step function)

2 The First Fundamental Theorem shows that every continuous
function on an interval has an anti-derivative.

3 A function’s anti-derivative is not unique. For example, both
sin x and 1 + sin x are anti-derivatives of cos x .

4 On the other hand, two anti-derivatives of the same function
over an interval can differ only by a constant.

5 Over non-overlapping intervals, two anti-derivatives of a
function need not differ by the same constant. For example,
the Heaviside step function and the zero function are
anti-derivatives of the zero function over (−∞, 0) ∪ (0,∞).
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Second Fundamental Theorem

Theorem 1

Suppose that f : [a, b] → R is a continuous function and F : [a, b] → R
satisfies F ′ = f . Then ∫ b

a

f (t) dt = F (b)− F (a).

The difference F (b)− F (a) is denoted by F (x)
∣∣b
a
.

Proof. Define G (x) =

∫ x

a

f (t) dt. By the First Fundamental Theorem

we know that G ′(x) = f (x) = F ′(x) on [a, b].
Hence, F (x) = G (x) + c . Therefore,

F (b)− F (a) = G (b)− G (a) =

∫ b

a

f (t) dt −
∫ a

a

f (t) dt =

∫ b

a

f (t) dt.

□
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Examples

Example 2

sin′ x = cos x =⇒
∫ b

a

cos x dx = sin x
∣∣b
a
= sin b − sin a,

cos′ x = − sin x =⇒
∫ b

a

sin x dx = − cos x
∣∣b
a
= cos a− cos b.

Example 3

For any integer n ̸= 0,

(xn)′ = nxn−1 =⇒
(
xn

n

)′

= xn−1 =⇒
∫ b

a

xn−1 dx =
xn

n

∣∣∣b
a
=

bn − an

n
.

We can allow n to be any non-zero real as well, of course restricting the
domain of the integrand to x > 0.
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Examples

Example 4

Consider f (x) = log |x |. For x ̸= 0,

f (x) =

{
log x if x > 0

log(−x) if x < 0
=⇒ f ′(x) =

{
1/x if x > 0

−1/(−x) if x < 0
=

1

x
.

Hence, if a and b have the same sign,∫ b

a

1

x
dx = log |b| − log |a| = log |b/a|.

Task 1

We are given that f satisfies f ′(x) = 1/x for x ̸= 0 and f (1) = 1. Can
we conclude that f (x) = log |x |+ 1?
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Integral Notation for Anti-derivative

We use the notation
∫
f (x) dx for the collection of anti-derivatives

of f (x).

All anti-derivative calculations are over intervals unless stated
otherwise. Hence, the anti-derivatives of a function will only differ
by constants.

We indicate this by writing statements like∫
sin x dx = − cos x + C ,

with the C standing for an arbitrary real number.

The terms ‘integral’ and ‘integration’ are used for both definite
integrals and anti-derivatives.
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Linearity of Anti-derivative

1

∫
c f (x) dx = c

∫
f (x) dx .

2

∫ (
f (x) + g(x)

)
dx =

∫
f (x) dx +

∫
g(x) dx .
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Integral of Log

(x log x)′ = log x + 1 =⇒
∫
(log x + 1) dx = x log x + C

=⇒
∫

log x dx +

∫
1 dx = x log x + C

=⇒
∫

log x dx + x = x log x + C

=⇒
∫

log x dx = x log x − x + C .
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Logarithmic Integration

(log |f (x)|)′ = f ′(x)

f (x)
=⇒

∫
f ′(x)

f (x)
dx = log |f (x)|+ C .

Here are some applications:∫
x

x2 + 1
dx =

1

2

∫
2x

x2 + 1
dx =

1

2
log(x2 + 1) + C ,∫

tan x dx =

∫
sin x

cos x
dx = −

∫
− sin x

cos x
dx = − log | cos x |+ C

= log | sec x |+ C ,∫
cot x dx =

∫
cos x

sin x
dx = log | sin x |+ C = − log | csc x |+ C .
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Logarithmic Integration

Some more applications:∫
sec x dx =

∫
sec x(sec x + tan x)

sec x + tan x
dx =

∫
sec2 x + sec x tan x

sec x + tan x
dx

= log | sec x + tan x |+ C ,∫
csc x dx =

∫
csc x(csc x + cot x)

csc x + cot x
dx =

∫
csc2 x + csc x cot x

csc x + cot x
dx

= − log | csc x + cot x |+ C ,∫
1

x2 − 1
dx =

∫
1

(x + 1)(x − 1)
dx =

1

2

∫ (
1

x − 1
− 1

x + 1

)
dx

=
1

2
(log |x − 1| − log |x + 1|) + C =

1

2
log

∣∣∣∣x − 1

x + 1

∣∣∣∣+ C .

Task 2

Evaluate
∫
arctan x dx. (Hint: Try the technique used to integrate log x)

Amber Habib Calculus



The Second Fundamental Theorem Integration by Substitution Integration by Parts

Table of Contents

1 The Second Fundamental Theorem

2 Integration by Substitution

3 Integration by Parts

Amber Habib Calculus



The Second Fundamental Theorem Integration by Substitution Integration by Parts

Substitution Method

Theorem 5

Suppose f is continuous on an interval I while φ : [a, b] → I is
continuously differentiable. Then∫ b

a
f (φ(x))φ′(x) dx =

∫ φ(b)

φ(a)
f (u) du.

Proof. Since f is continuous it has an anti-derivative. Let f = F ′.
Then f (φ(x))φ′(x) = F ′(φ(x))φ′(x) = (F ◦ φ)′(x). Therefore,∫ b

a
f (φ(x))φ′(x) dx =

∫ b

a
(F ◦ φ)′(x) dx

= F (φ(b))− F (φ(a)) =

∫ φ(b)

φ(a)
f (u) du.

□
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A Mnemonic

Consider the substitution u = φ(x). Then
du

dx
= φ′(x).

In an integration problem we are allowed to substitute u = φ(x)
together with du = φ′(x) dx .

The substitution rule justifies this convention, combined with a
corresponding change of limits.∫ b

a
f (φ(x)︸︷︷︸

u

) φ′(x) dx︸ ︷︷ ︸
du
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Example

Consider

∫ π

0
x sin(x2) dx .

We look for a substitution that would create functions that are
easier to integrate.

For example, substituting u = x2 converts sin(x2) to sin u.

As discussed above, this leads to du = 2x dx and so 1
2 du = x dx .

Further, the limits change as follows: x = 0 =⇒ u = 0,
x = π =⇒ u = π2. Hence∫ π

0
x sin(x2) dx =

∫ π2

0

1

2
sin u du = −1

2
cos u

∣∣∣π2

0
=

1

2
(1− cos(π2)).
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Anti-derivatives
The substitution method can also be used to find anti-derivatives.
If F ′ = f then,∫

f (φ(x))φ′(x) dx =

∫
(F◦φ)′(x) dx = (F◦φ)(x)+C = F (φ(x))+C .

We represent this calculation by the following abbreviation:∫
f (φ(x))φ′(x) dx =

∫
f (u) du, where u = φ(x).

Example 6

To evaluate
∫
sin(2x − π) dx we make the substitution u = 2x − π,

and so du = 2 dx . Then∫
sin(2x−π) dx =

1

2

∫
sin u du = −1

2
cos u+C = −1

2
cos(2x−π)+C .

Amber Habib Calculus



The Second Fundamental Theorem Integration by Substitution Integration by Parts

Anti-derivatives
The substitution method can also be used to find anti-derivatives.
If F ′ = f then,∫

f (φ(x))φ′(x) dx =

∫
(F◦φ)′(x) dx = (F◦φ)(x)+C = F (φ(x))+C .

We represent this calculation by the following abbreviation:∫
f (φ(x))φ′(x) dx =

∫
f (u) du, where u = φ(x).

Example 6

To evaluate
∫
sin(2x − π) dx we make the substitution u = 2x − π,

and so du = 2 dx . Then∫
sin(2x−π) dx =

1

2

∫
sin u du = −1

2
cos u+C = −1

2
cos(2x−π)+C .

Amber Habib Calculus



The Second Fundamental Theorem Integration by Substitution Integration by Parts

Example

To evaluate
∫
sin3 x dx we first rearrange it as follows.∫

sin3 x dx =

∫
sin2 x sin x dx =

∫
(1− cos2 x) sin x dx .

Now we substitute y = cos x , so that dy = − sin x dx .∫
(1−cos2 x) sin x dx = −

∫
(1−y2) dy =

y3

3
−y+C =

cos3 x

3
−cos x+C .

Hence, ∫ π/2

0

sin3 x dx =
(cos3 x

3
− cos x

)∣∣∣π/2
0

=
2

3
.
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Example

To evaluate

∫ π

0
sin2 x dx we first use the half-angle formula to

calculate the anti-derivative:∫
sin2 x dx =

∫
1− cos 2x

2
dx =

x

2
− sin 2x

4
+ C .

Hence ∫ π

0
sin2 x dx =

(x
2
− sin 2x

4

)∣∣∣π
0
=

π

2
.
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Trigonometric Substitution

Trigonometric identities can help in integrating algebraic functions.
For example,
cos2 x = 1− sin2 x when the integrand contains

√
a2 − x2,

sec2 x = 1 + tan2 x when the integrand contains
√
a2 + x2.

We take the given integral as
∫
f (x) dx and then substitute x = φ(u) to

convert it to
∫
f (φ(u))φ′(u) du.

Example 7

To evaluate
∫ 2

0
x3
√
4− x2 dx we substitute x = 2 sin θ. Then

dx = 2 cos θ dθ and we get∫ 2

0

x3
√

4− x2 dx = 32

∫ π/2

0

sin3 θ
√

1− sin2 θ cos θ dθ

= 32

∫ π/2

0

(cos2 θ − cos4 θ) sin θ dθ

= −32

∫ 0

1

(u2 − u4) du = 32
(u3
3

− u5

5

)∣∣∣1
0
=

64

15
.
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convert it to
∫
f (φ(u))φ′(u) du.

Example 7

To evaluate
∫ 2

0
x3
√
4− x2 dx we substitute x = 2 sin θ. Then

dx = 2 cos θ dθ and we get∫ 2

0

x3
√
4− x2 dx = 32

∫ π/2

0

sin3 θ
√

1− sin2 θ cos θ dθ

= 32

∫ π/2

0

(cos2 θ − cos4 θ) sin θ dθ

= −32

∫ 0

1

(u2 − u4) du = 32
(u3
3

− u5

5

)∣∣∣1
0
=

64

15
.
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Trigonometric Substitution

To evaluate

∫ 1

0

1√
1 + x2

dx , substitute x = tan θ.

Then dx = sec2 θ dθ, and∫ 1

0

1√
1 + x2

dx =

∫ π/4

0
sec θ dθ

= log(sec θ + tan θ)
∣∣∣π/4
0

= log(1 +
√
2).
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Integration by Parts

Consider the Product Rule,
(
f (x)g(x)

)′
= f ′(x)g(x) + f (x)g ′(x).

Its anti-derivative version is f (x)g(x) =

∫
(f ′(x)g(x) + f (x)g ′(x)) dx .

Rearrange it to

∫
f (x)g ′(x) dx = f (x)g(x)−

∫
f ′(x)g(x) dx .

This changes the function we have to integrate. We have a version for
definite integrals:

Theorem 8 (Integration by Parts)

If f ′ and g ′ are continuous then∫ b

a

f (x)g ′(x) dx = f (x)g(x)
∣∣∣b
a
−

∫ b

a

f ′(x)g(x) dx .

Proof. The Second Fundamental Theorem gives

f (x)g(x)
∣∣∣b
a
=

∫ b

a

(f (x)g(x))′ dx =

∫ b

a

f (x)g ′(x) dx +

∫ b

a

f ′(x)g(x) dx .

□
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Integration by Parts

A convenient way to remember integration by parts is to use the
differential notation that we introduced for the substitution method.

Writing df (x) = f ′(x) dx and dg(x) = g ′(x) dx , we can express
integration by parts as∫ b

a

f (x) dg(x) = f (x)g(x)
∣∣∣b
a
−
∫ b

a

g(x) df (x).

Or, even more briefly, as∫ b

a

f dg = fg
∣∣∣b
a
−

∫ b

a

g df .
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Examples

Example 9

Consider
∫
x sin x dx . Set f (x) = x and g ′(x) = sin x . Then f ′(x) = 1

and g(x) = − cos x . Hence,∫
x sin x dx = −x cos x +

∫
cos x dx = −x cos x + sin x + C .

Example 10

Consider
∫
xex dx . Set f (x) = x and g ′(x) = ex . Then f ′(x) = 1 and

g(x) = ex . Hence,∫
xex dx = xex −

∫
ex dx = xex − ex + C .
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Examples

Example 11

Consider
∫
x log x dx . Set f (x) = log x and g ′(x) = x . Then

f ′(x) = 1/x and g(x) = x2/2. Hence,∫
x log x dx =

x2

2
log x −

∫
x

2
dx =

x2

2
log x − x2

4
+ C .

Task 3

Use integration by parts twice to evaluate the given integrals.

1

∫
x2ex dx. 2

∫
x2 sin x dx.
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Examples

Integration by parts can be useful even when the integrand is not in the
form of a product. We just introduce a factor of 1.

Example 12

Consider
∫
log x dx . Set f (x) = log x and g ′(x) = 1. Then f ′(x) = 1/x

and g(x) = x . Hence,∫
log x dx = x log x −

∫
1 dx = x log x − x + C .

Example 13

Consider
∫
arctan x dx . Set f (x) = arctan x and g ′(x) = 1. Then

f ′(x) = 1/(1 + x2) and g(x) = x . Hence,∫
arctan x dx = x arctan x −

∫
x

1 + x2
dx

= x arctan x − 1

2
log(1 + x2) + C .
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Example

The integral
∫
sec3 x dx has a habit of cropping up in integrations of

trigonometric functions or in trigonometric substitutions.
We can tackle it by integration by parts as follows.∫

sec3 x dx =

∫
sec x sec2 x dx = sec x tan x −

∫
sec x tan2 x dx

= sec x tan x +

∫
sec x dx −

∫
sec3 x dx .

Hence,

∫
sec3 x dx =

1

2

(
sec x tan x + log | sec x + tan x |

)
+ C

Task 4

Prove the following:∫
ex cos x dx =

1

2
(ex sin x + ex cos x) + C ,∫

ex sin x dx =
1

2
(ex sin x − ex cos x) + C .

Amber Habib Calculus



The Second Fundamental Theorem Integration by Substitution Integration by Parts

Example

The integral
∫
sec3 x dx has a habit of cropping up in integrations of

trigonometric functions or in trigonometric substitutions.
We can tackle it by integration by parts as follows.∫

sec3 x dx =

∫
sec x sec2 x dx = sec x tan x −

∫
sec x tan2 x dx

= sec x tan x +

∫
sec x dx −

∫
sec3 x dx .

Hence,

∫
sec3 x dx =

1

2

(
sec x tan x + log | sec x + tan x |

)
+ C

Task 4

Prove the following:∫
ex cos x dx =

1

2
(ex sin x + ex cos x) + C ,∫

ex sin x dx =
1

2
(ex sin x − ex cos x) + C .

Amber Habib Calculus



The Second Fundamental Theorem Integration by Substitution Integration by Parts

Reduction Formulas

∫
sinn x dx =

∫
sinn−1 x︸ ︷︷ ︸

f

sin x dx︸ ︷︷ ︸
dg

= (sinn−1 x)︸ ︷︷ ︸
f

(− cos x)︸ ︷︷ ︸
g

−
∫

(− cos x)︸ ︷︷ ︸
g

(n − 1) sinn−2 x cos x dx︸ ︷︷ ︸
df

= − cos x sinn−1 x + (n − 1)

∫
cos2 x sinn−2 x dx

= − cos x sinn−1 x + (n − 1)

∫
sinn−2 x dx − (n − 1)

∫
sinn x dx

=⇒ n

∫
sinn x dx = − cos x sinn−1 x + (n − 1)

∫
sinn−2 x dx

=⇒
∫

sinn x dx = −1

n
cos x sinn−1 x +

n − 1

n

∫
sinn−2 x dx .
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Reduction Formulas

The reduction formula on the previous slide allows us to obtain the
integral of any sinn x in terms of the integral of sinn−2 x , then in terms of
sinn−4 x and so on, till we reach a power of 0 or 1.

Example 14

∫
sin4 x dx = −cos x sin3 x

4
+

3

4

∫
sin2 x dx

= −cos x sin3 x

4
+

3

4

[
−cos x sin x

2
+

1

2

∫
1 dx

]
= −cos x sin3 x

4
− 3

8
cos x sin x +

3

8
x + C .
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Reduction Formulas

Let us apply this reduction formula to definite integrals over [0, π/2].∫ π/2

0

sinn x dx = −1

n
cos x sinn−1 x

∣∣∣π/2
0

+
n − 1

n

∫ π/2

0

sinn−2 x dx

=
n − 1

n

∫ π/2

0

sinn−2 x dx .∫ π/2

0

sin2n x dx =
2n − 1

2n
· 2n − 3

2n − 2
· · · 1

2

∫ π/2

0

1 dx

=
(2n − 1)(2n − 3) · · · 1
(2n)(2n − 2) · · · 2

π

2
=

(2n)!

4n(n!)2
π

2
,∫ π/2

0

sin2n+1 x dx =
2n

2n + 1
· 2n − 2

2n − 1
· · · 2

3

∫ π/2

0

sin x dx

=
(2n)(2n − 2) · · · 2

(2n + 1)(2n − 1) · · · 3
=

4n(n!)2

(2n + 1)!
.
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