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Solutions to Exercises

9.1 Solutions to exercises from chapter 1

Exercise 1.1. Let Xj,..., Xy be a sequence of independent random vari-
ables with P(X; =1+ U) = p, P(X; =1+ D) = 1 — p. We shall use the
fact that S (1) has the same distribution as S (0)X;X, ... Xy. Since X; are
independent,

E(S(1) =E(S0)X;X,...Xy)
= S(OE (X)) E(Xy)...E(Xy)
=SO[A+U)p+A+D)(1-p]".

We compute the variance using
Var(S(1) = E(S(1)?) - E(S(1))*.

Since Xi, ..., Xy are independent, so are X7,...,X3. Using the indepen-
dence we compute

E(S(1)?) =E(S0’X]X3...Xy)
= S(0YE(X])E(X3)...E(X})
=S| +vPp+a+DPA-p)
hence
Var (S(1)) = E(S (1) - E(S(1))?

N
=S [(1+U) p+ 1 +D)(1-p)]
—S OP[1+U)p+ (1 +D)(1-p".
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Exercise 1.2. We start by computing E(S (1)?) :

E(S (1)%) = f ) X f(x)dx
0

2
00 1 (ln ﬁv()) -m

= X e 252 dx
[

B viom L2 . 1
= f S(0)°e* +2m\/?e_ 7 dy (taking y = S (ln - m))

o0 T S(0)

0 1 y2—dsy+ds? | 452

= S(0)*e*" f e 2 trdy
—o 271
> 1 0-252

— S(0)2€2m+25 f e 2 dy

—eo 271
— S(O)262m+2S2.

Using the formula for E (S (1)) from Example 1.2, we can now compute
Var (S (1)) = E(S(1)?) - E(S(1))?
= (02225 — (S (O)e"”%)2
= 507%™ (e7 - 1).
Exercise 1.3. We use the formula

E(K):E(S(l))_s(o)

S(0)
For stock from Exercise 1.1 this gives
E(K) = E(S1)-5(0)
S(0)
_SO[A+U)p+1+D)(1-p)]" -5(0)
- S(0)

=[1+p+A+D)A-p]¥ -1
For stock from Example 1.2,
E(S(1)) - S(0)
5(0)
_ S(0)e™T — S(0)
B 5(0)

2
m+5 1.

E(K) =

=e
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Exercise 1.4. Since E(K) = W

Div (1) = S(0) (1 + E(K)) — E(S (1))
1 3 2
= 80(1 +0.2) = (60 + =80 + 290)
= 16.

Exercise 1.5. Let V(0) and V(1) denote the value of the position at time
zero and one, respectively. We have V(0) = wS (0), since this is the amount
of our cash we invest, and

Vi) =S1) -0 -w)1+R)S(O)
=SSO + Kg) = (1 =w)(1 + R)]

The V(¢) can be considered as a security, hence its return follows from the
formula

K - V(1) - V(0)
lev — V(O)
SO +Ks—(1-w)(1+R) —w]
B wS (0)
_ Ks—(1-wR
B w
1
=R+ —(Ks—R).
w

Since R is non-random and w > 0, the standard deviation of the lever-
aged return is oy = ia’s.

Exercise 1.6. We will use the fact that E(K3) = W and o3 =

VVar(K3) = #0) VVar(§3(1)). We have o; > 03 and u3 > y; (fori = 1,2)

when

$3(0) > oi' v Var(S;3(1)), 0.1

EGSsM)

55(0) <
3(0) < T+

The solutions to the three cases are

(i) We have oy > 05 and u3 > u; when

1 ES), 1 100
S(O) € [ War(S (D), T =1 = (7520, 7 7) = [80.90.9091.
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(ii) We have 0, > 03 and y, > pu; when
1 E(S (1)) 1 100
SO — 4/ Var(§ (1)), =[=—=20, ————] = [66.666, 86.957].
O e I VVarS (). 77 1= 15320 70151 = | ]

(iii) No asset will be dominated by another asset for

S(0) € {R; \ [80,90,909]} N {R, \ [66.666, 86.957]}
= (0,66.666) U (90, 909, +00).

Remark: This exercise demonstrates one weakness of considering vari-
ance as the risk measure. Condition (9.1) follows from the fact that when
the price S (0) is low then this creates large deviation of return from the
expected return. Economically, having low prices is good for us, which
means that in this case the constraint (9.1) is artificial.
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9.2 Solutions to exercises from chapter 2

Exercise 2.1. From Example 2.1 we know that

w=10%, o =02,
/12:5%, 0'220.15.

Note that
V(Xl X?)(la U)]) - V(xl xz)(o) 300 — 600
Ky (w1) = —— = = = —50%,
o Vi .0(0) 600 ¢
V(Xl Xz)(l’ wZ) - V(,n xz)(O) 900 — 600
Ky (wp) = — = = 50%,
. Vi ,0)(0) 600 ¢

which since P ({w}) = P ({w»}) = % gives

E(Ky)=0
Var (Ky,) = 0.5.
We see that we have lower expected return and higher risk on the strategy
than on any of the two assets.

The reason behind this is that we take a short position on the asset S,
which has high expected return. This, in our case, reduces the expected
return on the strategy to zero.

Exercise 2.2. From the definition of variance we deduce that (for full
derivation, follow mirror computations to the proof of Theorem 2.4, with
Wi =wy = 1)

Ty = 0% + 0% +2Cov(X, Y)
so that

(ox +0y)’ — 0%,y = 2loxoy — Cov(X, Y)]
= 2[E(X)E(Y,) - B(X.Y,)]
>0

where we apply the Schwarz inequality to X, = X—E(X)and Y, = Y -E(Y)
in the final step. Taking square roots we are done.
Exercise 2.3. Let m = 30%. We need to find w so that

wup + (I =w)uo = m.

We solve for w :
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and substitute the numbers

Y 30% — 20%
T 10% - 20%

This means that the portfolio with the return 30% is w = (w, w,) = (-1, 2).
Exercise 2.4. The attainable set is a horizontal half line that lies on the
set {(o, p) t =y = o}
Exercise 2.5. The portfolio with the smallest risk is (i, , Ow,,) With
Ow,, =0and

02 a1

min: 1+ 2.
Fow O'1+O'2/l O'1+0'2#

The two half lines pass through the points (uy, . ,0. . ) and (u;, o), for
i = 1, 2. The formulae for the half lines are therefore

u=ao+b,
with
o o
b:/'lwmm : + l
o1+ 0> o1+ 0
and
g iz L o0 o
! ag; ag; Hi O']+O'2IJ1 O'|+O'2'u2
Simplifying gives:
1
a; = (1 — p2)
o1+ 0>
1
ay = (llz—ﬂl)-
o1+ 0>

Exercise 2.6. The portfolio with the smallest risk is (i, . Ow,,,) With
Ow,, = 0and
—02 71

#Wmi“: ,u1+ #2'
01— 02 g1 —02

The two half lines pass through the points (uy,, ,0w,,) and (u;, o;), for
i = 1,2. The formulae for the half lines are therefore

u=ao+b,

with
—02 (5]

b = piw,, = M+ TR
01— 02 g1 —02
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and
Hi = Py, 1 o Tl
aj=——"=—|pm+ M= M|
g g g1 — 0 g1 — 0
Simplifying gives:
a, = (,Ul H“2),
(% B
1
ap = ——— (o — 1) -
g1 — 0

Exercise 2.7. When p; = 1 and 0y = 0, then

0'2 = wza'% + W20'2 + 2w wo0 10012

= (W10 + wy0)

=0 % (wy + W2)2

- .
This means that all portfolios have oy, = 01 = 07, regardless of the choice
of w. If y; # u,, then the attainable set is a vertical line. If u; = u,, then

the attainable set is a single point (o1, ;) = (02, 2).
Exercise 2.8. First assume that p;, > 1. Let us take
—0

w = —— and Wy = ——.
g1 —02 g1 —02

(%1

Since exactly one of the weights is negative, w;w, < 0. Thus

0'2 =w? 0'1 + w20'2 + 2w w0 02012

= (W01 + Wa02)” + 2w waor 012 — 1)
=2wiwyooa(pr2 — 1)
<0.

For pj, < —1. Let us take

02
W) = ——— and Wy = ———.
o1+ 0, o1+ 0

(%1

Observe that since both w; and w;, are positive and 1 + p1, <0

0'3‘, Wzo'% + W20'2 + 2w Wo0 102012

(W01 — wa0) + 2w wpomi0 (1 + p1a)

=2wiwy0 10, (1 + p12)
< 0.
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This means that in both cases we can obtain negative variance of a port-
folio. This stands against common sense and the mathematical properties
of variance (which by definition is nonnegative). When using the formulas
from portfolio theory with illegal initial data, we can thus arrive at mis-
leading conclusions. When negative variance emerges from computations,
illegal initial data are a possible source of such errors.

Exercise 2.9. We first investigate for which p;, we will have w; < 0.
This happens when

02— P10 0
a 5 T P120107 <0 ©9.2)

le =
a+b O'§+O'%—2p|20']0'2

Since |p12| < 1, we see that
2 2 2 2 _ 2
05+ 07— 2010107 2 05+ 0] — 2010, = (0] —03)” = 0.
Thus (9.2) is equivalent to
2
05 — P120102 < O,

which gives the condition
02
— < pP12.
a1
Similarly

2
b 0| — P120102

<0

a+b O'%+O'%—2p120'10'2
is equivalent to

01
— <PpP12.
(%)

. o1 02
P12 >miny—, —r,
02 0]

This means that

implies that the minimum variance portfolio requires short selling.
Exercise 2.10. From the calculation leading to Corollary 2.9 we have

ct- | o that, with y = ) we h
T®c| g, 0.% , so that, with p = (u;, u») we have

- 1 o3 —R) = oia(u2 — R) 1 c
C'u-Rl) = — 2 = —

(=R = 5ec [ o - R + 02 ~R) | T detC | d
where c, d are defined in Theorem 2.10. Similarly,

1
detC

1"c'(u—-R1) = (c +d),
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which shows that the two expressions for the coeflicients of the Market
Portfolio are the same.

Exercise 2.11. First we compute m using (2.16). We can then compute
the variance of the return of the market portfolio using (2.10)

2 _
m =

o m'Cm.

Optimal investments lie on the capital market line. The investor needs to
hold a combination of the market portfolio and the risk-free security. We
assume that he spends AV on the market portfolio and invests (1 — 1) V
risk-free. The desired A can be computed from the standard deviation of
the return of the position

/120',2n +(1=2)> O'%e +2cov (Km, R) = .

Since cov (Kp, R) = 0 and og = 0, above gives
Om
A= —.
o

Since the investor spends AV on the market portfolio, the vector

( Vi ): AVm,
V2

gives us the amount v; invested in the first asset, and v, invested in the
second asset. As mentioned above, (1 — A1) V is invested risk-free.
Exercise 2.12. Since 01 =021 = P120102,01] = 0'% and Oy = O'%,

c_| oor o015
~| -0015  0.09

M1 = 10%, o = 01, P12 = —0.5,
o =20%, o, =0.3, R =5%.

We first find m

. C'u-R1) _[075
C1TCY(u—-R1) | 025 |

and compute

Mm =m'p = 0.125,
om = YmTCm=0.075.

From Example 2.13 we know that the optimal investment is a portfolio on
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the capital market line with expected return equal to

1 (pm —R
m=R+—(#
Om

2
) =0.25.
a

We assume that we spend AV on the market portfolio and invests (1 — 1) V
risk-free. As in Example 2.12, the desired A is
m—-—R 8

A= =-.
Un—R 3

Since the investor spends AV on the market portfolio, the vector

w\_ o[ 6000
(vz )‘Nm‘[ 2000 }

gives us the amount v, invested in the first asset, and v, invested in the
second asset. As mentioned above, (1 — 1) V = —=5000 is invested risk-free.
In other words, we borrow 5000 at the risk free interest rate and invest this
together with V = 3000, spending 6000 on the first asset, and 2000 on the
second asset.

Exercise 2.13. We first show that
x—h y—-k
-2 -0
a b

is an asymptote. To show this, consider a point (x, y,) with

—-h
Ya = Ya(X) = bx_ +k,
a

on the asymptote. We need to show that the distance between such points
and the hyperbola converges to zero as |x| goes to infinity. Let (x, y;) be a
point on the hyperbola, meaning that

[ - -

We will show that limy,j_, o [y4(x) = ¥4(x)] = 0 (which implies that
limyy 100 [1Cx, () = (X, ya (X))l = 0).

Let
X=Xx)=——,
a
Ya(x) — k
Y,=Y,(x) = b
Yy =Y(x) = (o) —k k-
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Using the facts that
X -y’ =1,
X-Y,=0,

we compute
Y, - Y,| = '\/XZ— 1 —X‘
(\/X2 - —X)(\/X2 1 +X)

VXT-1+X
_ 1
) ‘\/ﬁ+X|

|X|—>+00
—

Since |X(x)| converges to infinity as |x| converges to infinity, above implies
that

Jim () =y, (0l = Tim_IB1%,06) = Y(0)] = 0.

as required.
Showing that
x—h y—-k
+—=0
a b

is also an asymptote follows from mirror computations.
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9.3 Solutions to exercises from chapter 3

Exercise 3.1. The system

1
2x— =1 =0,
T2
2 1/1 =0
y 2 - >
1 1 1
2ty =0
is equivalent to
Ap = b, 9.3)
for
X 0 2 0 —%
P=|y | b=]0 |, A=|0 2 —%
1 11
A 2 2 2 0
Let
00 -1 2 0 -1 2 00
Ac=|0 2 -1 |, A={0 0 -3 |, A=[02 0|/
11 11 R
) ) 2 2 2
We can compute
1
det(A) =1, det(A,) = 5
1
det(A,) = =, det(A)) = 2.
e( >) 2 et(Ay)
By the Cramer’s rule, the solution to (9.3) is
det(A) 1 det(4,) L det(an
X = = =, = = -, = =
det(d) 20 77 det@d) 2 det (A)
Exercise 3.2. Inserting (3.7) into (3.6) gives:
20’%)6* + 20y = A
o B0n L oi-cn  oid-dh
10’% + o-% 2012 0'% + o-% - 2012 0'% + o-% - 2012

2 2 _ 2 _ _ 2.2 2
0'1(0'2 0'12)+0'12(0'1 0'12) (0'10'2 0'12)

or+ 0 -20,
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200X + 20'%)/* A

o2 -0 ol -0 o202 - o2
_ 2 2 1 192 12
—20’12 ) 3 +20'2 ) ) -2 ) )
oy +o;—201 o;+o;—201 oy +o;—201
2 2( 2 2 2 2
20’12(0'2—0'12)+0'2(0'1—0'12)—(0'10'2—0'12)
ol + 05 -20,
=0,
2 2
« " _ 0'2—0'12 0'1—0'12
X+y —-1= -1

0'% + o-% - 2012 0'% + 0'% - 2012
oi-on+ol—op

= -1
0'% +0'§—20'|2

=0,

as required.
Exercise 3.3. To plot g(x,y) = 1, it is enough to plot the function y =
1 — x. To plot f(x,y) = o> we need to solve

xzo% + yza'g + 2xyp1010; — o =0.

The solution for x, given y, is

=2yp1201072 £ \/(2)’,0120'10'2)2 - 40'% <y20.§ - 0-2)

20'%

x(y) =

The solution for y, given x, is

—2xppo107 = \/(2Xp120'10'2)2 - 40’% (xzo'% - o'2>
203
We can use the above equations for x(y), y(x) to plot f(x,y) = o. This is

done in the file Exercise_3_3.x1sx.
Exercise 3.4. The system of equations

Vf(x,y,z) —AVg(x,y,2) =0

y(x) =

8(x,y,2) =0
leads to
-A2x =0,
A2y =0,
1-12z=0,

xz—y2+z2—1:0,
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which implies

N
Il
H =<
=
>

&

I

H
N —

Hence (x*,y*,ﬁ;) = (0,0,1) and (x*,y*,z;) = (0,0, —1) are the candidates
for a minimum. For these two points we see that

f&5yh ) =1,
f(X*7y*’Z§) = _17

hence (x*, y", ;) remains the only candidate. If we take
(", y",27) = (0,2,-2),
then (x™*, y**, z**) satisfies the constraint g(x**, y**, z"*) = 0 and
FO Y ) = =2 < =1 = £y 20),
and we therefore see that (x*, y*, z*) is not a solution to the problem:

min f (x,y,2),
under the constraints: g(x,y, z) = 0.

Exercise 3.5. The system of equations

Vf(x,y,z) —AVg(x,y,2) =0,

g(x,y,2) =0,
leads to
1-2x=0,
1 -2y =0,
1-22z=0,

x2+y2+z2—1=0,

ERUREE

which implies that
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hence A = i?. Substituting A into the system gives two solutions

(111
woned =\ 5
(-1 -1 -1
]
Since f (x1,y1,21) = V3 > = V3 = f(x2,¥2,22), we see that (x3,2,2) is
the only candidate for a solution to the problem.

Let A = {(x, v,2) €R 1 g(x,y,2) = 0}. With this notation our problem
can be written as: find

min X, V,2).
(x,y,z)eAf( Y )

Since A is compact we know that a solution to this problem exists. The
point (x,, ¥2, 22) is the only candidate hence the solution must be (x,, y2, 22).
Exercise 3.6. Let us consider

f(x.y,2) = xyz
2 2 2
Xy oz
g(x’y’Z)_;"'ﬁ"'c_z_l
We can compute
¥z =
Vf=| xz |, Ve=1| 25 |,
xy 2%

which by the method of Lagrange multipliers leads to the system of equa-
tions

yz=/12a—xz,
m=ﬂ%,
xyz/lZ%,
C
LY.y

From the first equation we get 24 = a”f, which substituted into the second
and third gives

_n Y _ 2)2)
xz—/lZE—a ;ﬁ’
2)2 L

Z
xy=A2— =a"——,
Y c? x c?
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hence

meaning that

x2 y2 2

a> b2 2

Using the constraint we see that

2 2 2 2 2 2
1=x_2+y_+z_= x—:Sy—:3Z—,
a b2 2 a? b? c?
hence
+a +b +C
X=*x—, y=+—, 7=+—.
V3 V3 V3

These parameters describe the eight vertices of the maximal box. Since
it must be centred at the origin, the volume of the maximal box is 8|xyz|,
where x,y, z are as above, hence the maximal volume is %abc.

Exercise 3.7. Consider the following constrained maximisation prob-
lem:

max f(v),
under the constraints: g(v) = 0. ©-4
Assume that g(v) = Av — ¢ and that
wl H(f,v)w < 0. 9.5)
Let i (v) = —f (v). We see that when we solve
min % (v), 9.6)

under the constraints: g(v) = 0,
then max f (v) = —min & (v). Since H(h,v) = —H(f, v), by condition (9.5)
we see that
w H(h, v)w > 0,
which by Theorem 3.4 means that the solution v* of (3.9) is a solution of

the problem (9.6). Since max f (v) = —min & (v) we thus see that v* is also
the solution of problem (9.4).
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9.4 Solutions to exercises from chapter 4

Exercise 4.1. Let Id denote the identity matrix. The following condition
holds:

cc!=1d.
We can compute
T T
d=1d"=(cc™) =(c™) C".
Since CT = C, this means that
T
(c") c=1d,
T, . .
hence (C ‘1) 1s an inverse matrix of C:

c'=(c),

as required.
Exercise 4.2. Since

o = cov (K,-, K,-) = E((K,- — 1) (K,- - uj))
= E((Kj _.Uj) (K; —,Ui)) = cov (Kj»Ki> = 0ji,
we see that C is symmetric.

To prove that C is positive semidefinite we need to prove that for any
X =(x1,...,%,) € R?

x'Cx > 0.

Let X = Y1, x;K;. Using the same argument as for the proof of Theorem
4.1 we have

Var (X) = x'Cx.

Since variance is nonnegative, we obtain x'Cx > 0.

The covariance matrix does not have to be invertible. As an example,
consider two securities, first of which is the risk free asset. Assume that the
second has the variance of the return equal to 0. Then

00
C - [ 2 } '
0 o
which is not invertible.
Exercise 4.3. We saw in the previous Exercise that any covariance ma-
trix C is symmetric. If C is also invertible, there is an orthogonal matrix P
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such that PYCP = diag(A,, A, ..., A,,)) where the eigenvalues A; need not be
distinct. Since

0#detC = /l]/lz.../ln,

the quadratic form Q(x) = x’Cx = is non-negative for each x # 0. The
columns of the orthogonal matrix P form an orthogonal basis {v; : i < n}
of R" and, relative to this basis, Q(x) = X\i_, d,»xi2 for any x. Applying this
with x = v; for each i < n we see that each 4; > 0. Since their product is
non-zero, each must be strictly positive. This shows that Q(x) > 0 for all
x # 0.

Exercise 4.4. Since w; = + we have

1 2 n
crw(m:(;) DT

jk=1
Mathematically, such a limit might not be convergent as n tends to zero. As
an example we can consider
o =28 fork=1,2...
o =0 for j # k.
This example though is artificial and one would not expect this to happen
in real life.

In a situation where assets are independent (which implies o = O for
Jj # k)and when oy, < cfork =1,2,...then

1 2 n 1 2
oy (n) = (—) Z(rkk < (—) nc — 0.
n =1 n
Exercise 4.5. We can compute

1000 0 0
c!= 0 500 O

0 0 250

The matrix M is equal to

yo | HCTm e [ 525 275
gc'1 1Tc "1 275 175 |’

and det(M) = 162.5. For m = 0.25 we have

det(M)) = m1"C™'1 - u"C™'1 = 16.25
det(M,) = p"C'u — mp"C™'1 = —1.625,
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giving

0
C™! (det(M)) pu + det(M>) 1) = [ 0.5 ]

W= det(M) 05

Exercise 4.6. We can compute

100.0 0 0
0 100.0 -50.0 {.
0 -50.0 50.0

c!'=

The matrix M is equal to

u'Cly p'c11 35 20
M= T-1 T-1 = >
pCc'1 1°Cc 1 20 150

giving det(M) = 125.0 and

L - (1"c"1)u - (p"C'1)1) :{ :421:8 }

a= det(M) 6.0
1.2
b= det(M) ¢ (('UTC_I”) 1- (/‘TC_II)'“) - —0068 }

The vector of weights corresponding to m = 0.2 is

0.4
02 |.

0.4

Wp—02 =ma+b=

Exercise 4.7. The minimum variance line on the (w;,w,) plane is a
straight line resulting from a projection of ma + b onto the first two co-

ordinates
wi(m) | a b,
o =Ll

401 [ 12
20 0.6

Its plot is given in Figure 9.1.
For m = 0.1 the portfolio is

-4.0 1.2 0.8
Wp=01 =0.1] =2.0 |+| 06 |=| 04

6.0 -0.8 -0.2
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25 1 -075 05 -0.25 025 05 075 1 12

Figure 9.1 The minimum variance line on the (wy, w,) plane.

0.32
0.28
0.24
0.2
0.16
0.12
0.08

0.04
-0.050 005 01 O 0.2

Figure 9.2 The minimum variance line on the (o, u) plane.

The portfolio for m = 0.2 is computed in the solution to Exercise 4.6. Their
variances are

%o, = 0.008
%, = 0.012.

The covariance can be computed using Proposition 4.2, giving
Cov = 0.004.

By Corollary 4.8, we can compute the risk and expected return of portfolios
on the minimum variance line using

2

ol =ad*o? o, + (1 —a)ol_y, +2a(l —a)Cov

tyw =a0.1 +(1 —a)0.2.
The plot of (oy, ttw) is given in Figure 9.2.
Exercise 4.8. Let oy = 0,-9; and 05 = 0,9, and o, = Cov for

parameters computed in the solution of Exercise 4.7. We look for a for
which

i+ (1 -af o3 +2a(1-a)o; =0 =0.007.
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This is a quadratic equation
a? (oﬁ +05— 20'12) + a2(o’12 - o-%) +05-0=0
with solutions

) (0-12 _ a’%) + \/[2 (0-12 - o—%)]z -4 ((rf +03— 20‘12) (0‘% - 0’2)

a =
2 (o-f +05 - 20'12)
giving
25
a Aan’
"7 30
1
) = E

The corresponding expected returns are

7
= @01+ (1-@)02= o,

Uy = @20.1 + (1 —a,)0.2 =0.15.
Since u, > py, the efficient portfolio with o> = 0.007 is

AWy + (1 — a2) Wy—02

0.8 1 0.4 0.6
04 |+=]102|=|03].
02 ‘ 2[ 0.4 } [ 0.1 ‘

c'1
— T -, T
Hwoin = HWmin = H 37 ~777

2

Exercise 4.9. Since

for r = uy,,, we have

c'1
1"c'(u-r1=1"C"! (,1 —u" 1)

1TC-1
Tc—ll
— ITC—I _ H lTC—ll
B 1en
— ITC_IIJ _”Tc—ll

=0
hence we have a division by zero in

L C'u-1)
S e T
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The geometric reason behind this is that the point (0, R) is the focus
point of the MVL hyperbola. Thus there is no tangency point on MVL
with a straight line emanating from (0, R).

Exercise 4.10. We start by computing m; and m,

0.4 0
m; = 0.2 m; = 0
0.4 1
The expected returns and variances are
Hm, = 0.2, HUm, = 0.3,
og, =0.012, o, =03 =0.04.

(i) Since for o> = 0.003 we have o < op,, the efficient portfolio is
a combination of a risk—free investment at ; and an investment in
the tangency portfolio m;. The corresponding variance of such an
investment is &*op, .

We need to find an « for which

2 2 _ 2
oy, =07,

[c>  [0003
=\ T Voorz =

This means that we need to invest (1 —a)V = 500 risk free at the rate
ry and invest «Vm; amongst the remaining assets. Thus we need to
invest 200 in the first asset, 100 in the second, and 200 in the third
asset.

(ii) Since for o = 0.023 we have o, < 0™ < 07, , the efficient invest-
ment with variance equal to o lies on the minimum variance line.
Any portfolio on the MVL is a linear combination of m; and m,. We
need to find an a for which

which gives

a’og +(1 - ) oy, +2a(1 — @) Cov (K, Km,) =02, (9.7)
Since
Cov (Km,» Km,) = m| Cm, = 0.02,

all the parameters in (9.7) are known, and we can solve the quadratic
equation just as we have done in the solution of Exercise 4.8. The
solution is



(1ii)
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meaning that we need to invest
aVm; + (1 —a) Vm,

amongst the risky securities. Thus we invest 200 in the first asset,
100 in the second, and 700 in the third asset.

Since for 0> = 0.16 we have o> > o7, , the efficient portfolio is a
combination of a risk—free loan at , and an investment in the tan-
gency portfolio m,. The corresponding variance of such an invest-
ment is a’op,

We need to find an a for which

azo'fn2 =07,
which gives
a= \/E = % =2
Tk, 0.04 '
This means that we need to invest (1 — @)V = —1000 at a rate r,

(meaning that we borrow 1000) and invest @Vm, amongst the re-
maining assets. This means that we need to invest 2000 in the third
asset.
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9.5 Solutions to exercises from chapter 5

Exercise 5.1. From the bilinearity of covariance we know that

COV(KW’ Km)
By =
Om
_ COV(W1K1 +...+w,K,, Ky)
= 0_%1
Cov(Ki, Km) Cov(Ky, Km)
L S e— +...+Wn—2
O Om

=wif+...+w,B,.
From (5.1) we know that
Hi = R+ Bi(um — R).
We can now compute

Hw = Wil1 + ...+ Waldy
=wi (R+B1(um —R) + ... + W, (R+ By(m — R))
=R+ WS +...+w,B,) (Um — R)
= R+ Bw(im — R),

as required.
Exercise 5.2. From Chapter 4 we know that the weights of the tangency

portfolios for R, are

1
Vi
for y; = 1TC~'(u — R¢1) and k = 1,2. Let w be any portfolio. Applying
Proposition 4.2,

m; = —C '(u—-Ri1)

Cov(Ky,Km,) W'Cmy _ %WT(H—Rkl)

2 T T 1T :
O, m, Cmy, ;mk(y—Rkl)

Since W'y = py, m{ gt = pim, and w'l = m1 = 1, this gives
Cov(Ky, Kmk) _ Hw— R

2 2
O-mk ﬂmk - Rk

and by rearranging

Cov(Ky, Kn,)
pon = Rt S Ry,

my
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Taking a portfolio where everything is invested in the i-th asset gives

Cov(Ki, Km,)
Hi = Ry + Tnu(l-lmk - Ry),

my
for k = 1,2, as required.
Exercise 5.3. For
d

F@B = (y-a-px).

J=1

we have
of \ ] _
Fyo —2;(yj—a—ﬁxj) =-2d({y -a-px),
of d
% = =23 (y;— @ = Bx;) x; = ~2d (%5 - %a - f¥x),
j=1
The system
of
2 ="
0
or _,
B
is therefore equivalent to
y—a—-Bx=0,

Xy — Xa — fxx = 0.
Multiplying the first equation by ¥ and subtracting the two gives
Xy — Xy — Xa — BXx + Bii = 0,

which leads to

g

ﬂ:

Since y — @ — Bx = 0, it follows that

]

o

a=y-px.

181
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9.6 Solutions to exercises from chapter 6
Exercise 6.1. If X <y Y and Y <y Z then by the definition of <y,
UXx) < Uy and uwy)<u@,
hence U(X) < U(Z), which again from the definition of <, implies that
X <y Z

This finishes the proof of transitivity of < .

For any random variables X, Y we either have U(X) < U(Y) or U(X) >
U(Y), which by definition of <y means that either X <y Y or Y <y X. This
proves completeness of <.

Exercise 6.2. Suppose that there exists a utility U that represents the
lexicographic order. Since a utility is differentiable, it has to be continuous.
Let (xo,yo) € R? and y; > y,. Since U is strictly increasing

U (x0,¥0) < U (x0,y1) - (9.8)

Let x; > x¢. Since U represents <., and (xg, y1) <iex (X1,Y0), we must
have

U (x0,y1) £ U (x1,¥0),
hence

U (x1,y0) £ lim U (x4, y0) 9.9
X1—X0
On the other hand, since U is continuous

xlimx U (x1,y1) = U (x0,y0) - (9.10)

Combining (9.8)-(9.10) gives

lim U (x1,y1) = U (x0,y0) < U (x0,y1) < lim U (x1,y1),
X1 X0 X1—X0

a contradiction. Thus, such U can not exist.

Exercise 6.3. To show that a function is strictly increasing and concave it
is enough to show that the derivative is strictly positive and that the second
derivative is negative.

(i) Fora > 0,

(—e ™) = ae™™ >0,

(—e™)" = —a’e™ < 0.
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(i1) For x > 0,
, 1
(Inx) = ->0,
X
-1
(Inx)" = — <0.
x

(iii) Fora < 1, holds @ — 1 < 0 hence for x > 0

(ax®) = a*x*' >0,

(ax®)" = a’ (a— l)xm2 < 0.

@iv) Forb>0andx<%
1 ’ 1
(x—szz) :1—bx>1—b5:0,

1 144
(x — bez) =-b<0.

Exercise 6.4. Substituting
u=01 m=0, d=-0.1,

into the formulae for 7; from Example 6.15, we obtain

mi(x) = x,
m(x)=1-2x,
m(x) = x.

Since in Example 6.15 we have shown that X*(w;) = % = Lo

i

% for w = wy,
v
X*(w) = ar for w = wy,
v _
oy for w = ws.

For X = (x1, x2) € R%, where x; is invested in the risk free asset and x, is
invested in the risky security, we have

X1 +x50)(1 +u) for w = wy,
Vil (w) =4 x1 + x50) (1 +m) for w = w»,
X1 +x50)(1 +4d) for w = ws.

Since we need to have V(1) = X*

x1+xS0)A+u) = % =x1+x50)(1+d)
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hence

Xou = Xod.

Since u = —d, this means that x, = 0. Since V4(1) = X* and x, =0,

4
X = E’
\%
MT Ay
therefore
4x =2 — 4x,
thus x = 0.25.

Exercise 6.5. For

N
FXiseo Xy) = ) pan(X))
i=1

N
gXi,....,.Xn) = ZﬂiXi—V
o1

equation (3.9) implies that

piu'(Xy) Vgl
; -a| + |=0.
pu' (Xy) N
From the above we see that fori =1,...,N

X = )" (1)

1

In addition, we also have the constraint

N
Zﬂ'iXi -V=0.
i=1

Inserting X; from (9.11) and rearranging gives

N
V= i ’_l(ﬁ).
;JT(M) o

Equations (9.11), (9.12) combined give the claim.

9.11)

9.12)

Exercise 6.6. Let x denote the number of shares of the first asset. Then

V—xSl(O)

Vi) =xS1 (1) + —————=S5, ().

S2(0)
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The problem of finding the maximal expected utility is reduced to max-
imising a function f : R —» R,
V-x§1(0)

N
F@) = uVa() = Y pe e esirse,

i=1

This can easily be done numerically. An example of a solution for V = 100
is given in the file Exercise_6_6.x1sx.
Exercise 6.7. Since the model is complete, using (6.17) we can compute

' =S0)(S(1)™". (9.13)
For our utility
u'(x) = ae™™,
n—1 _ __] f
Wy (== ln(a).

Since

hence

(9.14)

Xl* = u')71 (i) = —1 ln(i) + 1111 . 9.15)

ap;] a
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Finally, the x can be computed from (6.18),
x* = (S(1)~' x". (9.16)

We now carry out the numerical computations, taking V = 100 as an
example. Using (9.13)

1.02 120 180 "
7rT=[l 100 200] 1.02 110 220 =[0.1569 0.3529 0.4706].
1.02 90 200

We now use (9.14)

1
—In(1) =1.02
a

1 0.1569
100 +0.156 95 1n(0‘01 _0.25)

1 (03529
03529557 ln(0.01 -0.5)

1 0.4706
0470655 1I1(0.01 7025 )]

= 572.88.
From (9.15)

X =501 ™ 001025
_1 n( 03529

001 "{0.01-05

1 ( 0.4706

~0.01 "\0.01-025

! ! ( 0.1569 )+572.88= 158.95,

X; =

) +572.88 = 147.21,

X; =

) + 572.88 = 49.108.

Finally, using (9.16) we obtain the strategy

1.02 120 180 B 158.95 -465.13
x=| 1.02 110 220 147.21 | =] 4.1589
1.02 90 200 49.108 0.74622
Exercise 6.8. If u is concave, then ¢ = —u is convex. By Jensen’s in-

equality ¢ (E (X)) < E (¢(X)) , which gives
—u(E X)) = ¢(E(X)) < E(p(X)) = -E (X)),

hence

u(E (X)) > Eu(X)).
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u(x) 4

UEX) = u(x + (1 - ) x) //

E X)) = du(x) + (1= Yux) | X

u(xy) / "

Figure 9.3 Concavity of u and risk aversion.

Conversely, let us assume that an investor is risk averse and consider a
random variable with binomial distribution

x=l with probability A
| ox with probability 1 — A,

for A € [0, 1]. Then since u (E (X)) > E (u(X)) we see that
u(x; + (1= x) =uEX)) > E X)) = w(x)+ (1 - D ulx),

which means that u is concave. A graphical representation for this random
variable is given in Figure 9.3
Exercise 6.9. From the initial data for S(0) and S(1) it follows that

20% for w = w;
K, =2%, K> (w) = 10% for w = w»
-10% for w = ws

10% for w = w,

—-10% for w = w;
K5 =
0% for w = ws

and simple computation leads to

R 20 ﬂ:[7.5%],

2.5%

C= 0.011875  -0.001875
~ | -0.001875 0.006875
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We can compute

m

_ C'(u-R1) [ 0.70455
T ATC-'(u—R1) | 0.29545 |

and

tm =m = 0.060228,
om = VmTCm = 0.075592.

To find a portfolio with the highest certainty equivalent we need to max-
imise

1%
E(X) - y(X) = V [/J - %0’2] +V.
This is equivalent to maximising

aV
u(o,p) =p— 702-

From Example 2.13 we know that the solution is a portfolio with the return

equal to
1 R\’
#=R+—(#m )
aV\ om
and
1 pm —R
o=— .
aV om

Taking a = 0.01, V = 100, as in the solution to Exercise 6.7, we get

u=0.02+

1 0.060228 - 0.02
0.01- 100( 0.075592
B 1 0.060228 — 0.02
©0.01-100 0.075592

Exercise 6.10. We continue the solution of Exercise 6.9. We wish to find
a portfolio on the CML with the return

2
) = 0.30321,

fog =0.53217.

m = 0.30321.

As in Example 2.12 we compute

m—R 0.30321 - 0.02
A= = =7.0401.
um — R 0.060228 — 0.02

We spend (1 — 1) V = —6.0401-100 = —604.01 risk free (since the number
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is negative we take a short position; in other words, borrow 604.01) and
spend

[ Vi }:sz =7.0401 - 100[

0.70455 | | 496.01
V2

0.29545 |~ | 208.00

on the two risky assets. We thus obtain the strategy

(1 -=2DV/S§.100) -604.01
X = v1/8,(0) =] 4.9601
v2/83(0) 1.04

The solution differs from the solution to Exercise 6.7. The reason for
this is that in Exercise 6.7 we find the exact solution which maximises the
expected utility. In this exercise we maximise the certainty equivalent. This
in principle is equivalent to maximising expected utility, but we use

V2w (VI +p) ,
X)) ———F——=0", 9.17
Y0~ = 0 9.17)
for our computation of E(X) — y(X). Since (9.17) is only an approximation
of y (X), the solution we have found is also an approximate solution. It will
usually be different from the true one (found in the solution to Exercise
6.7).
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9.7 Solutions to exercises from chapter 7

Exercise 7.1

Proposition (reformulation of Proposition 7.4 for lower quantiles)
Let X, Y be random variables. Then for any € (0, 1)
(i) X 2 Y implies qg(X) > gg(¥)
(ii) forany b € R, qg(X +b) = qgs(X) + b
(iii) for b > 0, gg(bX) = bgs(X)
(iv) gp(=X) = —¢'P(X)
Proof We begin by proving (iv). By Proposition 7.4 we know that for any
X, ¢*(=X) = —q1-o(X) when 0 < @ < 1, hence also —¢g*(X) = q1_o(—X).
Set 3 =1 - a, then (iv) follows: gz(—X) = —¢' #(X).
For (i), we have —X < -Y, so ¢*(-X) < ¢%(-Y), i.e, —¢*(-X) =
—-q*(-Y). By (iv), with 8 = 1 — @, with —X, —Y instead of X, Y, we then
obtain

4p(X) = =q"(=X) 2 =¢*(=Y) = gp(Y).
For (ii), let b € R, so, applying Proposition 7.4 (ii),
—q"(-(X+ D)) = —q"(-X) + b = qg(X) + b,
using (iv) with X instead of —X.

For (iii), with » > 0 we apply Proposition 7.4 (iii) to b(—X) to obtain
similarly that

qp(bX) = —q"(b(=X)) = —bq"(=X) = bgp(X).

Lemma (reformulation of Lemma 7.5 for lower quantiles)
If Fx(x) is continuous and strictly increasing then q,(X) = F ;(l(a').

Proof We need only replace < by < and the upper by the lower quantile
throughout the proof of Lemma 7.5. O

Lemma (reformulation of Lemma 7.6 for lower quantiles)
Let X be a random variable. If f : R — R is left-continuous and non-
decreasing then

9a(f(X)) = f(qa(X)).

Proof Since f is left-continuous and non decreasing, for any y € R there
exists an x € R such that

S (=e0,y]) = (=00, x].
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We need to show two facts to obtain our result:
1. for any y > f(g.(X)) we have

Frx(y) 2 a,

2. for any y < f(q.(X)) we have

Frx(y) < a.

For the proof of the first fact we take y > f(g,(X)) and an x such that
f 1 ((=00,y]) = (—o0, x]. Note that since y > f(g,(X)) and since f is non-
decreasing we have x > ¢,(X). Therefore

Fron() = P(f(X) <)
=P(X <x)
= Fx(x)
>« (since x > g,(X) and by definition of g,(X)).

We take any y < f(¢,(X)) and x such that f~!((=c0, y]) = (-0, x]. Since
f is non-decreasing and f(x) <y < f(g.(X)), we see that x < g,(X). We
can now compute

Fro() = P(f(X) <y)
=P(X<x)
= Fx(x)
<a (since x < g,(X) and by definition of g,(X)).

Exercise 7.2

All three properties follow immediately from their counterparts in Pro-
postion 7.4, since VaR*(X) = —¢*(X).

Exercise 7.3

We invest wS (0) of our own cash, hence

V(0) = wS (0).

At time one

V() =S(1)—(1+R) (1 -w)S(0).
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The discounted levraged gain Gy, is therefore

_va

Giey = T+ R V(0)
CSM=U+R(I-w)SO)
- 1+R wS (0
_ s
" 1+R 5O
= Gy,

where Gy is the discounted gain from an investment in stock. Hence,

VaR (Giey) = VaR (Gy) .

We need to keep in mind that we invest only wS (0) of our own funds. If w
is small, then the resulting VaR can be very large in comparison to the size
of the investment. This agrees with the intuition that leveraged positions

are more risky.
Exercise 7.4
By Lemma 7.17 we know that

@-%)TW VTN-! @

q" (S(T))) = S(0)e

Using the fact that
N7'(0.05) = —1.644853627,
and substituting the numbers into (9.18) we obtain

(0128 7+0.2VT(-1.644853627)

7% (S(T))) = S(0)e =177.96.
Therefore by (7.16)
VaR™(X) = $(0) — e ¢**(S(T))

=100 — e7%%77.96
= 24.344.

Exercise 7.5

To compute E (X(x,y)) we use the fact that

E(S(T)) =E (S (0) e("‘”z)”"m) =S (0)e.

(9.18)
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0 5 10 15 20 25 30
VaR

Figure 9.4 The plot of VaR" (X(m) against B (X(X,y)).

This gives

E (Xwy) = E (e Viy(T) = Viuy(0))
= ¢ "B (Vin(D) = Vi (0)
= e TE(xS(T) + yA(T)) = Vixy)(0)
=e " TxE(S(T)) + ye ""A(T) — [xS (0) + ]
=e " TxS (0) e +y — [xS (0) + y]
= x§ (0) [e* " - 1].

The graph in Figure 9.4 is produced in the file Exercise_7.5.x1sx.
Exercise 7.6
Using the properties of VaR® from Proposition 7.9 we obtain

VaR® (X(.p)) = VaR" (xe”"S(T) + 6™ (F - S (T)) - x5(0))
(xS (T) + 6™ (S ()" = S(T)) — xS (0))
= VaR" ((x - 0)e”""S(T) + (0 - x) S (0))

=(x-0) e VaR®* (S(T)) + (x— 6) S(0)

= (x=0)[S(0) —e7"g"(S(T))]

= VaR"
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Similarly, from the properties of mathematical expectation
E (X)) = E(xe"S(T) + 67" (F - S(T)) - x5(0))
=E((x-0)e""S(T) +(0-xS(0)
= (x=0) (e TES(T) - S(0)
= (x=0)S(0)(e" " - 1).
The plot is identical to the one from Exercise 7.5. The computations and
the plot are made in the file Exercise_7_6.x1sx.
Exercise 7.7
The smallest VaR® is 20.77455399. This is attainable for K = 87.19709189.
The problem is solved using Excel solver in file Exercise_7_7.x1sx

Exercise 7.8
The problem is solved using Excel in the file Exercise_7_8.x1sx
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9.8 Solutions to exercises from chapter 8

Exercise 8.1

We use the properties of VaR proved in Proposition 7.9: for X < ¥, 1 >0
and m real, we see that

(i) by Proposition 7.9 (i)

1 1 Y
AVaR*(X) = — f VaR?(X)dB > — f VaR?(Y)dB = AVaR®(Y);
a Jo a Jo
(i1) by Proposition 7.9 (ii)

1 Y
AVaR*(X +m) = — f VaRA(X + m)dpB
@ Jo

_ 1 f a[VaR'B(X) — mldp
@ Jo
= AVaR*(X) — m;

(iii) by Proposition 7.9 (iii)
1 Y 1 Y
AVaR*(1X) = — f VaRP(AX)dB = A~ f VaR?(X)dB = AAVaR*(X).
@ Jo @ Jo

Exercise 8.2

The proof of Lemma 8.4 extends without change to any function g :
(0,1) — R satisfying g(Fx(x)-) < x < q(Fx(x)) in place of ¢*(X) (such
functions are known as quantile functions for X; ¢ being the largest and ¢,
the smallest), since such a g can differ from ¢“ in at most countably many
points, i.e., a null set for the uniform distribution (Lebesgue measure on
[0, 1).

Exercise 8.3

Same comment as for Exercise 8.2.

Exercise 8.4

We need only check the claims made for X : if X(w) > ¢.(X) then
14(w) = 0, s0 15 — 1§ > 0 since 15(w) € [0, 1]. If X(w) < ¢,(X) we have
1{(w) = 1, while, again, 15 € [0, 1], so 15 — 1§ < 0.

Set W(a) = éE(Wl‘v”v) = —AVaR*(W) for any W. Applying this to W =
X, Y and Z respectively,

alZ(@) - X(@) - Y(a)]

aB[(X + V)1% - X1§ - Y1§]
EIX(15 - 15) + Y(A5 - 19)]

= BIX(1g - 1] + E[Y(13 - 1)
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The first expectation is decreased if we replace X by ¢,(X): to see this split
Q into the three disjoint events {X = ¢g,(X)},{X > ¢,(X)} and {X < q.(X)}.
The integral over {X = ¢,(X)} obviously stays unchanged; on {X > ¢,(X)}
we have (X — g,(X)(15 — 1%) > 0, since both factors are non-negative,
while on {X < g,(X)}, the factors (X — ¢,(X)) and (15 — 1%) are both non-
positive, so their product is non-negative. The same arguments apply with
X replaced by Y, so we have shown that

alZ(@) - X(@) - Y(@)]
> q.(X)E[(17 — 1)] + q.(Y)E[(17 — 17]
= g(X)(@ - @) + ¢ (Y)(@ — @)
=0.

So Z(e) > X(a) + Y(@), which implies that AVaR*(X + Y) = —Z(a) <
-X(@) - Y(a) = AVaR*(X) + AVaR*(Y).

Exercise 8.5

(i) To show that, if X < Y then TCE*(X) > TCE*(Y) it is enough to
show that

E[XIX < ¢"(X)} < E[Y]Y < ¢"(V)]

By Lemma 8.4, given a uniformly distributed random variable U : (0, 1)
R, the real random variable gx(x) = ¢gY”(X) has the same distribution as
X and, similarly, the real random variable gy(x) = ¢V (Y) has the same
distribution as Y.

The upper quantile ¢g*(X) is right-continuous: given £ > 0 we can find N
such that

0< g™ (X) - ¢"(X)
=inf{x: Fx(x) > a + %} —inf{x: Fx(x) > a}

<é&

whenever n > N, as {x : Fx(x) > a} = Us1{x: Fx(x) > a+ %}.

Also recall that X < Y implies ¢*(X) < ¢°(Y) for any s € (0, 1) (Proposi-
tion 7.4).

So, by construction of gy, gy and the right-continuity of g* we have



9.8 Solutions to exercises from chapter 8 197

E[XIX < ¢* (X} = Elgx(D)l{gx(U) < ¢"(gx(U))}]

= Elgx(Dl{gx(U) < gx(¢" (U]

= Elgx(UDI{U < ¢*(U)}]

< Elgr(UNU < ¢"(U)}]

= Elgr(U)lgr(U) < gr(g" (U}

= Elgy(U)l{gr(U) < ¢"(gy(UN}]

=E[Y{Y < ¢"(N}],

which completes the proof.

(i1) TCE*(X + m) = —E[X + m|{X + m < ¢*(X + m)}] for any real m.
By Proposition 7.4 we know that g*(X + m) = g*(X) + m} so that

{(X+m<g"(X+m}={X <q¢"X)}

and so —E[X + m[{X + m < ¢*(X + m)}] = -E[X{X < ¢°X)}] —m =
TCE®*(X) — m, as required.
(iii) For A > 0 we have ¢*(1X) = 1¢%(X), so that {1X < ¢°(U1X)} = {X <
q“(X)}.Therefore
TCE*(1X) = —AB[X{X < ¢*(X)}] = ATCE*(X).

For A = 0 both sides are 0, since E[0]A) = O for any A.
Exercise 8.6
We use the formula for AVaR given in Proposition 8.5:

1
AVaR*(X) = —;[E(Xl%) + ¢ X)(a — P(X < g¢)].
In Example 8.13 we have ¢*(X) = 0 = ¢*(Y),so that, with @ = 0.05,

AVaR*(X) = {X(w1)P(wy) = 60 = AVaR*(Y).

7 0.05

For Z = X + Y we obtain ¢*(Z) = —100, so that {Z < ¢%(Z)} is empty, and
hence

1
AVaR“(Z) = ——(—100a) = 100.
a
This verifies that in this example we have subadditivity:
AVaR?(X + Y) < AVaR*(X) + AVaR*(Y).

Exercise 8.7
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Using the formula for V/,,,(¢) and property (iii) from Proposition 8.2 we
compute

AVaR? (X.y)) = AVaR" (77 Vi (T) = Vi (0)
= AVaR” (™ [xS(T) + ye'” | = [xS(0) +])
= xAVaR" (e"S(T) - 5(0)).

From Lemma 8.15 we see that
1
AVaR" (X(1y) = x (S 0) = =S(0)e“ "N (¢"(2) - o x/T)) .
a

Suppose now that we invest V(0) in our strategy. For simplicity, let us
consider V(0) = S (0) (to generalise to different V(0) it is enough to rescale
the argument below by a constant). If we consider a strategy with y > 0,
then since V(0) = S(0) = xS(0) + y,

_SO) -y
X = 0 <1

So,

AVaR" (X)) = x(S (0) - éS(O)e(‘H)TN (¢°@ -0 «/T))

1
< 5(0) = =S(0)e" "N (¢"(2) - o NT)
a
= AVaR* (¢S (T) - 5(0)).
We see that AVaR“ (X(x,_\,)) is smaller than the one for investing V(0) = S (0)
in stock.

Exercise 8.8
We compute

AVaR" (X(1) = AVaR" (77 V(. (T) = V(1(0))
= AVaR* (e”7 [S(T) + 6(F - S(T))] - 5(0))
= AVaR* (77 [S(T) + 6(S (0)e’” = S(T)| - S (0))
= AVaR* ((1 - 0) (¢S (T) - 5.(0)))
= (1 - ) AVaR" (7S (T) - 5(0)).

From Lemma 8.15 we see that

AVaR® (X)) = (1 — 6) (S ) - éS(O)e("")TN(q"(Z) — «/T)) .
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Exercise 8.9
If K > ¢*(S(T)) then since

2

qd(S (T)) = S(O) exXp ((ﬂ — 0—7) T+ o \/quz (Z)) ,

we see that

ln$+(,u—§)T > @)
=- 24
o\NT

hence
d*" = max (&, -¢“(2)) = -¢°(2).
If x=zand K > ¢“(S(T)), then
AVaR? (X)) = Vie(0) — :;GQH)T [xS (O)N (¢"(Z) - o NT) + 2P*(K)]
= Vien(0) — Cl—xxe(“_’)T[S (ON (=" = o NT)
+ Ke " N(=d"") = S(O)N (-dy")]
= Vi (0) — éxe(“”')T[S (ON (-a“* — o VT)
Ke " N(=d*") = S(ON (-d"* - o NT)]
= Vien(0) — Cl—yxe("")TKe“‘TN(—d’f”)
= Vi (0) — Cl—yxe(”’r)TKe’”TN(q"(Z))
= Viun(0) - ée(”_’)TxKe_"Ta
= Vien(0) — e xK.
On the other hand, by (7.18) we know that
VaR" (X(x.) = Viey(0) — 7" (xg"(S(T)) + 2 (K — g*(S(T)))").
If x=zand K > ¢g*(S(T)), then

VaR® (X(15) = Vie(0) — e (xg*(S(T)) + x (K = ¢"(S(T))))
= V(x,x)(o) - e_rT-XKa

which concludes the solution.
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Exercise 8.10
E(X(r) = E (67" Vieo(T) = Vi(0))
=E(e™" (xS (T) + zH(T)) = Vix(0))
=eT(xE(S(T)) + zE (H(T))) — Vi(0). (9.19)

Direct computation of

+00 _ﬁ - » 1 2
E(S(T)) = f sl Tt L2,

S \2r
E (H(T)) = [ :O (K _ sl %e‘fdx,
leads to
E(S(T)) = S(0)e'?, (9.20)
and
E(H(T)) = " P(u, T, K, S (0), o). 9.21)

Substituting (9.20) and (9.21) into (9.19) gives the result.
Exercise 8.11
From Exercise 8.7 we know that

AVaR" (X(yy)) = x (S (0) - éS(O)e(’“r)TN (@ -0 x/T)) .

From Exercise 7.5,
E (Xwy) = 28 (0) [T - 1].

We use these to produce the plot from Figure 9.5. From the plot we see
that hedging with puts gives better results.

The computations are done in the file Exercise_8.11.x1sx

Exercise 8.12

We first compute AVaR? for a position in x stocks and 6 forward con-
tracts. The payoff on a forward is F — S(T'), where F = e'7 S (0). We define

Vir)(0) = xS (0),
Vieo(T) = xS(T) + 0 (F = S(T)),
and take
Xi = € Vieo (T) = Virn) 0).
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Figure 9.5 Comparison of hedging with puts (blue) with hedging by invest-
ing in the risk free asset (red)

Using properties of AVaR” together with Lemma 8.15
AVaR? (X(.¢) = AVaR" (e”TxS (T)+e""6(F - S(T)) — xS (0))
= AVaR" (7" xS(T) + e 70 (e""S (0) - S(T)) - x5(0))
= AVaR" ((x - 0) [e""S(T) - S (0)])
= (x - 6) AVaR" (7S (T) - 5(0))

=(x—-0) [s 0) - éS(O)e@*”TN (q"(Z) -0 «/T)] )

The expectation
E (X(p) = (x = 60)S(0) (e - 1)

was computed in Exercise 7.6. We can take x = 1, and 8 € [0, 1] and
compare the plot of

{(AVaR" (X(,.0)) , E (X(x))) : x = 1,0 € [0, 1]} 9.22)
with the plot
{(AVaR" (X)) B (X)) 1 ¥ 2 0,58 (0) +y = S (0) (9.23)

from Exercise 8.11. The graphs (9.22) and (9.23) are identical. The com-
putations and the graphs can be found in the file Exercise 8.12.x1sx.
Exercise 8.13
The proof follows from identical arguments. The only difference is that
instead of taking z (K — S(T))" use X%, z; (K; — S (T))* . All the computa-
tions follow along identical lines to the proof of Proposition 8.19.
Exercise 8.14



202 Solutions to Exercises

The simulation can be found in the file Exercise_8_.14.x1sm.

Exercise 8.15

If p is monotone, then X > Y implies p(X) < p(Y). With ¥ = O this
becomes p(X) < p(0) when X > 0. If p is also positive homogeueous
p(AX) = 2p(X) for A = 0 shows that p(0) = 0. Therefore X > 0 implies
p(X) <0.

Exercise 8.16

Suppose p is coherent. Suppose 0 < @ < 1, and X, Y are bounded. Using
subadditivity and then positive homogeneity gives

plaX + (1 - a)Y) < paX) + p((1 = a)Y) = ap(X) + (1 = a)p(Y)

so that p is convex. If p is convex and positive homogeneous, then for any
bounded X, Y, using (iii) with Z = %(X + Y) and A4 = 2, and the convexity
of p,

1
pPX+Y)=2p(5(X +7))

1 1
< 2[zp(X) + 7p(V)]
= p(X) + p(Y),

so p is subadditive, hence coherent.
Exercise 8.17
To prove that p,(X + m) = p,(X) — m we need the fact that u is a
probability measure on (0, 1), since
1

1 1
fo Po(X+m)du(a) = fo (Pa(X)—m)du(@) = p(X)—m j(; du(a) = pu(X)—m.

The other three requirements for coherence are immediate from the linear-
ity and positivity of the integral.

Exercise 8.18

We use the fact that p,,,x(X) = inf{r e R : X + r > 0 P-a.s.} to check the
four axioms for coherence.

(1) If X < Y then X + r > O implies that Y + r > 0, hence

inf{r: X+r>0P—-as}>inf{r:Y+r>0P—-a.s}.

(ii) For any real m, r we have (X +m) + r = X + (m + r), so that

nf{r : X+m)+r>0P—-as}=inf{r: X+(m+r)>0P—a.s}

=inf{r: X+r>0P—-a.s} —m.
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(iii) For A > 0 we have

inf{r : AX+r>0P—-a.s}=inf{ds : A(X +s5)>0P—a.s}
=Ainf{s: X+s5s>0P —a.s}.

(iv) Write z = X+ Y. For any real r we can write Z+r = (X + s)+ (Y +1¢)
where r = s + t. Now

inf{r : Z+r>0P—as}=inf{s+t: X+s5)+ Y +)>0P -a.s.}
<inf{s: X+s>0P—-a.s}+inf{t : Y+t >0P —a.s}.

Exercise 8.19
In this example there are no non-empty P-null sets and Q = {w;, W, w3}
is finite, so that we can write

WCE“(X) = —inf{E[X|A] : P(A) > a}.

The sets satisfying the condition P(A) > « for X are A; = {w;, w,} and the
four sets involving ws. Since X(w;) = —100 and its other values are 0, it is
clear that the infimum is a minimum and is attained when we take A;. We
have

E[X|A] = {—=100P(w;) + 0} = =50

P(A))

so that WCE*(X) = 50. The same argument holds for Y, with the roles of
w; and w, interchanged.

With Z = X + Y we have Z = —100 on A; and so WCE*(Z) = 100, by a
similar argument.

Therefore WCE? is additive in this case.

In Exercise 8.6 we verified that AVaR%(X) = 60 = AVaR*(Y).

Comparing the results we have obtained for X (here, in Exercise 8.6 and
Example 8.13) we see that

AVaR*(X) = 60
WCE®*(X) = 50
TCE*(X) = 3.
Moreover, VaR*(X) = 0, since P({w;} = 0.03 < 0.05 = «a.

Together, these results verify that the identities proved in Proposition
8.29 hold in this simple example.






