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Solutions to Exercises

9.1 Solutions to exercises from chapter 1

Exercise 1.1. Let X1, . . . , XN be a sequence of independent random vari-
ables with P (Xi = 1 + U) = p, P (Xi = 1 + D) = 1 � p. We shall use the
fact that S (1) has the same distribution as S (0)X1X2 . . . XN . Since Xi are
independent,

E (S (1)) = E (S (0)X1X2 . . . XN)
= S (0)E (X1)E (X2) . . .E (XN)
= S (0)

⇥

(1 + U) p + (1 + D) (1 � p)
⇤N .

We compute the variance using

Var (S (1)) = E
⇣

S (1)2
⌘

� E (S (1))2 .

Since X1, . . . , XN are independent, so are X2
1 , . . . , X

2
N . Using the indepen-

dence we compute

E
⇣

S (1)2
⌘

= E
⇣

S (0)2X2
1 X2

2 . . . X
2
N

⌘

= S (0)2E
⇣

X2
1

⌘

E
⇣

X2
2

⌘

. . .E
⇣

X2
N

⌘

= S (0)2
h

(1 + U)2 p + (1 + D)2 (1 � p)
iN
,

hence

Var (S (1)) = E
⇣

S (1)2
⌘

� E (S (1))2

= S (0)2
h

(1 + U)2 p + (1 + D)2 (1 � p)
iN

�S (0)2 ⇥

(1 + U) p + (1 + D) (1 � p)
⇤2N .
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Exercise 1.2. We start by computing E(S (1)2) :

E(S (1)2) =
Z 1

0
x2 f (x)dx

=

Z 1

0
x

1
s
p

2⇡
e�

(ln x
S (0) �m)2

2s2 dx

=

Z 1

�1
S (0)2e2sy+2m 1p

2⇡
e�

y2
2 dy (taking y =

1
s

 

ln
x

S (0)
� m

!

)

= S (0)2e2m
Z 1

�1

1p
2⇡

e�
y2�4sy+4s2

2 + 4s2
2 dy

= S (0)2e2m+2s2
Z 1

�1

1p
2⇡

e�
(y�2s)2

2 dy

= S (0)2e2m+2s2
.

Using the formula for E (S (1)) from Example 1.2, we can now compute

Var (S (1)) = E
⇣

S (1)2
⌘

� E (S (1))2

= S (0)2e2m+2s2 �
✓

S (0)em+ s2
2

◆2

= S (0)2e2m+s2 ⇣

es2 � 1
⌘

.

Exercise 1.3. We use the formula

E (K) =
E (S (1)) � S (0)

S (0)
.

For stock from Exercise 1.1 this gives

E (K) =
E (S (1)) � S (0)

S (0)

=
S (0)

⇥

(1 + U) p + (1 + D) (1 � p)
⇤N � S (0)

S (0)
=

⇥

(1 + U) p + (1 + D) (1 � p)
⇤N � 1.

For stock from Example 1.2,

E (K) =
E (S (1)) � S (0)

S (0)

=
S (0)em+ s2

2 � S (0)
S (0)

= em+ s2
2 � 1.
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Exercise 1.4. Since E(K) = E(S (1))+Div(1)�S (0)
S (0) ,

Div (1) = S (0) (1 + E(K)) � E(S (1))

= 80(1 + 0.2) � (
1
6

60 +
3
6

80 +
2
6

90)

= 16.

Exercise 1.5. Let V(0) and V(1) denote the value of the position at time
zero and one, respectively. We have V(0) = wS (0), since this is the amount
of our cash we invest, and

V(1) = S (1) � (1 � w)(1 + R)S (0)
= S (0)[(1 + KS ) � (1 � w)(1 + R)]

The V(t) can be considered as a security, hence its return follows from the
formula

Klev =
V(1) � V(0)

V(0)

=
S (0)[1 + KS � (1 � w)(1 + R) � w]

wS (0)

=
KS � (1 � w)R

w

= R +
1
w

(KS � R) .

Since R is non-random and w � 0, the standard deviation of the lever-
aged return is �lev =

1
w�S .

Exercise 1.6. We will use the fact that E(K3) = E(S 3(1))�S 3(0)
S 3(0) and �3 =p

Var(K3) = 1
S 3(0)

p
Var(S 3(1)).We have �i � �3 and µ3 � µi (for i = 1, 2)

when

S 3(0) � 1
�i

p

Var(S 3(1)), (9.1)

S 3(0)  E(S 3(1))
1 + µi

.

The solutions to the three cases are

(i) We have �1 � �3 and µ3 � µ1 when

S (0) 2 [
1
�1

p

Var(S (1)),
E(S (1))
1 + µ1

] = [
1

0.25
20,

100
1 + 0.1

] = [80, 90, 909].



160 Solutions to Exercises

(ii) We have �2 � �3 and µ2 � µ1 when

S (0) 2 [
1
�2

p

Var(S (1)),
E(S (1))
1 + µ2

] = [
1

0.3
20,

100
1 + 0.15

] = [66.666, 86.957].

(iii) No asset will be dominated by another asset for

S (0) 2 {R+ \ [80, 90, 909]} \ {R+ \ [66.666, 86.957]}
= (0, 66.666) [ (90, 909,+1).

Remark: This exercise demonstrates one weakness of considering vari-
ance as the risk measure. Condition (9.1) follows from the fact that when
the price S (0) is low then this creates large deviation of return from the
expected return. Economically, having low prices is good for us, which
means that in this case the constraint (9.1) is artificial.
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9.2 Solutions to exercises from chapter 2

Exercise 2.1. From Example 2.1 we know that

µ1 = 10%, �1 = 0.2,
µ2 = 5%, �2 = 0.15.

Note that

Kw (!1) =
V(x1,x2)(1,!1) � V(x1,x2)(0)

V(x1,x2)(0)
=

300 � 600
600

= �50%,

Kw (!2) =
V(x1,x2)(1,!2) � V(x1,x2)(0)

V(x1,x2)(0)
=

900 � 600
600

= 50%,

which since P ({!1}) = P ({!2}) = 1
2 gives

E (Kw) = 0
p

Var (Kw) = 0.5.

We see that we have lower expected return and higher risk on the strategy
than on any of the two assets.

The reason behind this is that we take a short position on the asset S 1,
which has high expected return. This, in our case, reduces the expected
return on the strategy to zero.

Exercise 2.2. From the definition of variance we deduce that (for full
derivation, follow mirror computations to the proof of Theorem 2.4, with
w1 = w2 = 1)

�2
X+Y = �

2
X + �

2
Y + 2Cov(X,Y)

so that

(�X + �Y)2 � �2
X+Y = 2[�X�Y �Cov(X,Y)]
= 2[E(Xc)E(Yc) � E(XcYc)]
� 0

where we apply the Schwarz inequality to Xc = X�E(X) and Yc = Y�E(Y)
in the final step. Taking square roots we are done.

Exercise 2.3. Let m = 30%.We need to find w so that

wµ1 + (1 � w) µ2 = m.

We solve for w :

w =
m � µ2

µ1 � µ2
,
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and substitute the numbers

w =
30% � 20%
10% � 20%

= �1.

This means that the portfolio with the return 30% is w = (w1,w2) = (�1, 2).
Exercise 2.4. The attainable set is a horizontal half line that lies on the

set {(�, µ) : µ = µ1 = µ2}.
Exercise 2.5. The portfolio with the smallest risk is

�

µwmin ,�wmin

�

with
�wmin = 0 and

µwmin =
�2

�1 + �2
µ1 +

�1

�1 + �2
µ2.

The two half lines pass through the points
�

µwmin ,�wmin

�

and (µi,�i), for
i = 1, 2. The formulae for the half lines are therefore

µ = ai� + b,

with

b = µwmin =
�2

�1 + �2
µ1 +

�1

�1 + �2
µ2

and

ai =
µi � µwmin

�i
=

1
�i

 

µi �
�2

�1 + �2
µ1 �

�1

�1 + �2
µ2

!

.

Simplifying gives:

a1 =
1

�1 + �2
(µ1 � µ2) ,

a2 =
1

�1 + �2
(µ2 � µ1) .

Exercise 2.6. The portfolio with the smallest risk is
�

µwmin ,�wmin

�

with
�wmin = 0 and

µwmin =
��2

�1 � �2
µ1 +

�1

�1 � �2
µ2.

The two half lines pass through the points
�

µwmin ,�wmin

�

and (µi,�i), for
i = 1, 2. The formulae for the half lines are therefore

µ = ai� + b,

with

b = µwmin =
��2

�1 � �2
µ1 +

�1

�1 � �2
µ2,
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and

ai =
µi � µwmin

�i
=

1
�i

 

µi +
�2

�1 � �2
µ1 �

�1

�1 � �2
µ2

!

.

Simplifying gives:

a1 =
1

�1 � �2
(µ1 � µ2) ,

a2 =
1

�1 � �2
(µ2 � µ1) .

Exercise 2.7. When ⇢12 = 1 and �1 = �2 then

�2
w = w2

1�
2
1 + w2

2�
2
2 + 2w1w2�1�2⇢12

= (w1�1 + w2�2)2

= �2
1 (w1 + w2)2

= �2
1.

This means that all portfolios have �w = �1 = �2, regardless of the choice
of w. If µ1 , µ2, then the attainable set is a vertical line. If µ1 = µ2, then
the attainable set is a single point (�1, µ1) = (�2, µ2).

Exercise 2.8. First assume that ⇢12 > 1. Let us take

w1 =
��2

�1 � �2
and w2 =

�1

�1 � �2
.

Since exactly one of the weights is negative, w1w2 < 0. Thus

�2
w = w2

1�
2
1 + w2

2�
2
2 + 2w1w2�1�2⇢12

= (w1�1 + w2�2)2 + 2w1w2�1�2(⇢12 � 1)
= 2w1w2�1�2(⇢12 � 1)
< 0.

For ⇢12 < �1. Let us take

w1 =
�2

�1 + �2
and w2 =

�1

�1 + �2
.

Observe that since both w1 and w2 are positive and 1 + ⇢12 < 0

�2
w = w2

1�
2
1 + w2

2�
2
2 + 2w1w2�1�2⇢12

= (w1�1 � w2�2)2 + 2w1w2�1�2 (1 + ⇢12)
= 2w1w2�1�2 (1 + ⇢12)
< 0.
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This means that in both cases we can obtain negative variance of a port-
folio. This stands against common sense and the mathematical properties
of variance (which by definition is nonnegative). When using the formulas
from portfolio theory with illegal initial data, we can thus arrive at mis-
leading conclusions. When negative variance emerges from computations,
illegal initial data are a possible source of such errors.

Exercise 2.9. We first investigate for which ⇢12 we will have w1 < 0.
This happens when

w1 =
a

a + b
=

�2
2 � ⇢12�1�2

�2
2 + �

2
1 � 2⇢12�1�2

< 0. (9.2)

Since |⇢12|  1, we see that

�2
2 + �

2
1 � 2⇢12�1�2 � �2

2 + �
2
1 � 2�1�2 = (�1 � �2)2 � 0.

Thus (9.2) is equivalent to

�2
2 � ⇢12�1�2 < 0,

which gives the condition
�2

�1
< ⇢12.

Similarly

w1 =
b

a + b
=

�2
1 � ⇢12�1�2

�2
2 + �

2
1 � 2⇢12�1�2

< 0

is equivalent to
�1

�2
< ⇢12.

This means that

⇢12 > min
(

�1

�2
,
�2

�1

)

,

implies that the minimum variance portfolio requires short selling.
Exercise 2.10. From the calculation leading to Corollary 2.9 we have

C�1 = 1
det C

"

�2
2 ��12

��12 �2
1

#

, so that, with µ = (µ1, µ2) we have

C�1(µ � R1) =
1

det C

"

�2
2(µ1 � R) � �12(µ2 � R)
��12(µ1 � R) + �2

1(µ2 � R)

#

=
1

det C

"

c
d

#

where c, d are defined in Theorem 2.10. Similarly,

1TC�1(µ � R1) =
1

det C
(c + d),
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which shows that the two expressions for the coe�cients of the Market
Portfolio are the same.

Exercise 2.11. First we compute m using (2.16). We can then compute
the variance of the return of the market portfolio using (2.10)

�2
m = mTCm.

Optimal investments lie on the capital market line. The investor needs to
hold a combination of the market portfolio and the risk-free security. We
assume that he spends �V on the market portfolio and invests (1 � �) V
risk-free. The desired � can be computed from the standard deviation of
the return of the position

�2�2
m + (1 � �)2 �2

R + 2cov (Km,R) = �2.

Since cov (Km,R) = 0 and �R = 0, above gives

� =
�m

�
.

Since the investor spends �V on the market portfolio, the vector
 

v1

v2

!

= �Vm,

gives us the amount v1 invested in the first asset, and v2 invested in the
second asset. As mentioned above, (1 � �) V is invested risk-free.

Exercise 2.12. Since �12 = �21 = ⇢12�1�2, �11 = �2
1 and �22 = �2

2,

C =
"

0.01 �0.015
�0.015 0.09

#

.

µ1 = 10%, �1 = 0.1, ⇢12 = �0.5,
µ2 = 20%, �2 = 0.3, R = 5%.

We first find m

m =
C�1(µ � R1)

1TC�1(µ � R1)
=

"

0.75
0.25

#

,

and compute

µm = mTµ = 0.125,
�m =

p
mTCm=0.075.

From Example 2.13 we know that the optimal investment is a portfolio on
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the capital market line with expected return equal to

m = R +
1
a

 

µm � R
�m

!2

= 0.25.

We assume that we spend �V on the market portfolio and invests (1 � �) V
risk-free. As in Example 2.12, the desired � is

� =
m � R
µm � R

=
8
3
.

Since the investor spends �V on the market portfolio, the vector
 

v1

v2

!

= �Vm =
"

6000
2000

#

,

gives us the amount v1 invested in the first asset, and v2 invested in the
second asset. As mentioned above, (1 � �) V = �5000 is invested risk-free.
In other words, we borrow 5000 at the risk free interest rate and invest this
together with V = 3000, spending 6000 on the first asset, and 2000 on the
second asset.

Exercise 2.13. We first show that
x � h

a
� y � k

b
= 0

is an asymptote. To show this, consider a point (x, ya) with

ya = ya(x) = b
x � h

a
+ k,

on the asymptote. We need to show that the distance between such points
and the hyperbola converges to zero as |x| goes to infinity. Let (x, yh) be a
point on the hyperbola, meaning that

 

x � h
a

!2

�
 

yh � k
b

!2

= 1.

We will show that lim|x|!+1 |yh(x) � ya(x)| = 0 (which implies that
lim|x|!+1 k(x, yh(x)) � (x, ya(x))k = 0).

Let

X = X(x) =
x � h

a
,

Ya = Ya(x) =
ya(x) � k

b
,

Yh = Yh(x) =
yh(x) � k

b
.
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Using the facts that

X2 � Yh
2 = 1,

X � Ya = 0,

we compute

|Yh � Ya| =
�

�

�

�

p
X2 � 1 � X

�

�

�

�

=

�

�

�

�

�

�

�

�

⇣p
X2 � 1 � X

⌘ ⇣p
X2 � 1 + X

⌘

p
X2 � 1 + X

�

�

�

�

�

�

�

�

=
1

�

�

�

�

p
X2 � 1 + X

�

�

�

�

|X|!+1! 0.

Since |X(x)| converges to infinity as |x| converges to infinity, above implies
that

lim
|x|!+1

|yh(x) � ya(x)| = lim
|x|!+1

|b| |Yh(x) � Ya(x)| = 0,

as required.
Showing that

x � h
a
+

y � k
b
= 0

is also an asymptote follows from mirror computations.
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9.3 Solutions to exercises from chapter 3

Exercise 3.1. The system

2x � 1
2
� = 0,

2y � 1
2
� = 0,

1
2

x +
1
2

y � 1
2
= 0,

is equivalent to

Ap = b, (9.3)

for

p =

2

6

6

6

6

6

6

6

6

4

x
y
�

3

7

7

7

7

7

7

7

7

5

, b =

2

6

6

6

6

6

6

6

6

4

0
0
1
2

3

7

7

7

7

7

7

7

7

5

, A =

2

6

6

6

6

6

6

6

6

4

2 0 � 1
2

0 2 � 1
2

1
2

1
2 0

3

7

7

7

7

7

7

7

7

5

.

Let

Ax =

2

6

6

6

6

6

6

6

6

4

0 0 � 1
2

0 2 � 1
2

1
2

1
2 0

3

7

7

7

7

7

7

7

7

5

, Ay =

2

6

6

6

6

6

6

6

6

4

2 0 � 1
2

0 0 � 1
2

1
2

1
2 0

3

7

7

7

7

7

7

7

7

5

, A� =

2

6

6

6

6

6

6

6

6

4

2 0 0
0 2 0
1
2

1
2

1
2

3

7

7

7

7

7

7

7

7

5

.

We can compute

det (A) = 1, det (Ax) =
1
2
,

det
⇣

Ay

⌘

=
1
2
, det (A�) = 2.

By the Cramer’s rule, the solution to (9.3) is

x =
det (Ax)
det (A)

=
1
2
, y =

det
⇣

Ay

⌘

det (A)
=

1
2
, � =

det (A�)
det (A)

= 2.

Exercise 3.2. Inserting (3.7) into (3.6) gives:

2�2
1x⇤ + 2�12y⇤ � �⇤

= 2�2
1
�2

2 � �12

�2
1 + �

2
2 � 2�12

+ 2�12
�2

1 � �12

�2
1 + �

2
2 � 2�12

� �2
1�

2
2 � �2

12

�2
1 + �

2
2 � 2�12

= 2
�2

1

⇣

�2
2 � �12

⌘

+ �12

⇣

�2
1 � �12

⌘

�
⇣

�2
1�

2
2 � �2

12

⌘

�2
1 + �

2
2 � 2�12

= 0,
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2�12x⇤ + 2�2
2y⇤ � �⇤

= 2�12
�2

2 � �12

�2
1 + �

2
2 � 2�12

+ 2�2
2
�2

1 � �12

�2
1 + �

2
2 � 2�12

� 2
�2

1�
2
2 � �2

12

�2
1 + �

2
2 � 2�12

= 2
�12

⇣

�2
2 � �12

⌘

+ �2
2

⇣

�2
1 � �12

⌘

�
⇣

�2
1�

2
2 � �2

12

⌘

�2
1 + �

2
2 � 2�12

= 0,

x⇤ + y⇤ � 1 =
�2

2 � �12

�2
1 + �

2
2 � 2�12

+
�2

1 � �12

�2
1 + �

2
2 � 2�12

� 1

=
�2

2 � �12 + �2
1 � �12

�2
1 + �

2
2 � 2�12

� 1

= 0,

as required.
Exercise 3.3. To plot g(x, y) = 1, it is enough to plot the function y =

1 � x. To plot f (x, y) = �2 we need to solve

x2�2
1 + y2�2

2 + 2xy⇢12�1�2 � �2 = 0.

The solution for x, given y, is

x(y) =
�2y⇢12�1�2 ±

q

(2y⇢12�1�2)2 � 4�2
1

⇣

y2�2
2 � �2

⌘

2�2
1

.

The solution for y, given x, is

y(x) =
�2x⇢12�1�2 ±

q

(2x⇢12�1�2)2 � 4�2
2

⇣

x2�2
1 � �2

⌘

2�2
2

.

We can use the above equations for x(y), y(x) to plot f (x, y) = �. This is
done in the file Exercise 3 3.xlsx.

Exercise 3.4. The system of equations

r f (x, y, z) � �rg(x, y, z) = 0
g(x, y, z) = 0

leads to

��2x = 0,
�2y = 0,

1 � �2z = 0,
x2 � y2 + z2 � 1 = 0,
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which implies

x = y = 0,
z = ±1,

� = ±1
2
.

Hence
⇣

x⇤, y⇤, z⇤1
⌘

= (0, 0, 1) and
⇣

x⇤, y⇤, z⇤2
⌘

= (0, 0,�1) are the candidates
for a minimum. For these two points we see that

f (x⇤, y⇤, z⇤1) = 1,
f (x⇤, y⇤, z⇤2) = �1,

hence (x⇤, y⇤, z⇤2) remains the only candidate. If we take

(x⇤⇤, y⇤⇤, z⇤⇤) = (0, 2,�2) ,

then (x⇤⇤, y⇤⇤, z⇤⇤) satisfies the constraint g(x⇤⇤, y⇤⇤, z⇤⇤) = 0 and

f (x⇤⇤, y⇤⇤, z⇤⇤) = �2 < �1 = f (x⇤, y⇤, z⇤) ,

and we therefore see that (x⇤, y⇤, z⇤) is not a solution to the problem:

min f (x, y, z) ,
under the constraints: g(x, y, z) = 0.

Exercise 3.5. The system of equations

r f (x, y, z) � �rg(x, y, z) = 0,
g(x, y, z) = 0,

leads to

1 � �2x = 0,
1 � �2y = 0,
1 � �2z = 0,

x2 + y2 + z2 � 1 = 0,

which implies that
 

1
2�

!2

+

 

1
2�

!2

+

 

1
2�

!2

= 1,
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hence � = ±
p

3
2 . Substituting � into the system gives two solutions

(x1, y1, z1) =
 

1p
3
,

1p
3
,

1p
3

!

,

(x2, y2, z2) =
 �1p

3
,
�1p

3
,
�1p

3

!

.

Since f (x1, y1, z1) =
p

3 > �
p

3 = f (x2, y2, z2), we see that (x2, y2, z2) is
the only candidate for a solution to the problem.

Let A =
n

(x, y, z) 2 R3 : g(x, y, z) = 0
o

. With this notation our problem
can be written as: find

min
(x,y,z)2A

f (x, y, z) .

Since A is compact we know that a solution to this problem exists. The
point (x2, y2, z2) is the only candidate hence the solution must be (x2, y2, z2).

Exercise 3.6. Let us consider

f (x, y, z) = xyz

g(x, y, z) =
x2

a2 +
y2

b2 +
z2

c2 � 1

We can compute

r f =

2

6

6

6

6

6

6

6

6

4

yz
xz
xy

3

7

7

7

7

7

7

7

7

5

, rg =

2

6

6

6

6

6

6

6

6

4

2 x
a2

2 y
b2

2 z
c2

3

7

7

7

7

7

7

7

7

5

,

which by the method of Lagrange multipliers leads to the system of equa-
tions

yz = �2
x
a2 ,

xz = �2
y
b2 ,

xy = �2
z
c2 ,

x2

a2 +
y2

b2 +
z2

c2 = 1.

From the first equation we get 2� = a2 yz
x , which substituted into the second

and third gives

xz = �2
y
b2 = a2 yz

x
y
b2 ,

xy = �2
z
c2 = a2 yz

x
z
c2 ,
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hence
x2

a2 =
y2

b2 ,

x2

a2 =
z2

c2 ,

meaning that
x2

a2 =
y2

b2 =
z2

c2

Using the constraint we see that

1 =
x2

a2 +
y2

b2 +
z2

c2 = 3
x2

a2 = 3
y2

b2 = 3
z2

c2 ,

hence

x = ± ap
3
, y = ± bp

3
, z = ± cp

3
.

These parameters describe the eight vertices of the maximal box. Since
it must be centred at the origin, the volume of the maximal box is 8|xyz|,
where x, y, z are as above, hence the maximal volume is 8

3
p

3
abc.

Exercise 3.7. Consider the following constrained maximisation prob-
lem:

max f (v) ,
under the constraints: g(v) = 0. (9.4)

Assume that g(v) = Av � c and that

wTH( f , v)w  0. (9.5)

Let h (v) = � f (v). We see that when we solve

min h (v) ,
under the constraints: g(v) = 0, (9.6)

then max f (v) = �min h (v). Since H(h, v) = �H( f , v), by condition (9.5)
we see that

wTH(h, v)w � 0,

which by Theorem 3.4 means that the solution v⇤ of (3.9) is a solution of
the problem (9.6). Since max f (v) = �min h (v) we thus see that v⇤ is also
the solution of problem (9.4).
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9.4 Solutions to exercises from chapter 4

Exercise 4.1. Let Id denote the identity matrix. The following condition
holds:

CC�1 = Id.

We can compute

Id = IdT =
⇣

CC�1
⌘T
=

⇣

C�1
⌘T

CT.

Since CT = C, this means that
⇣

C�1
⌘T

C = Id,

hence
⇣

C�1
⌘T

is an inverse matrix of C:

C�1 =
⇣

C�1
⌘T
,

as required.
Exercise 4.2. Since

�i j = cov
⇣

Ki,Kj

⌘

= E
⇣

(Ki � µi)
⇣

Kj � µ j

⌘⌘

= E
⇣⇣

Kj � µ j

⌘

(Ki � µi)
⌘

= cov
⇣

Kj,Ki

⌘

= � ji,

we see that C is symmetric.
To prove that C is positive semidefinite we need to prove that for any

x = (x1, . . . , xn) 2 R2

xTCx � 0.

Let X =
Pn

i=1 xiKi. Using the same argument as for the proof of Theorem
4.1 we have

Var (X) = xTCx.

Since variance is nonnegative, we obtain xTCx � 0.
The covariance matrix does not have to be invertible. As an example,

consider two securities, first of which is the risk free asset. Assume that the
second has the variance of the return equal to �2. Then

C =
"

0 0
0 �2

#

,

which is not invertible.
Exercise 4.3. We saw in the previous Exercise that any covariance ma-

trix C is symmetric. If C is also invertible, there is an orthogonal matrix P
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such that PTCP = diag(�1, �2, ..., �n) where the eigenvalues �i need not be
distinct. Since

0 , det C = �1�2...�n,

the quadratic form Q(x) = xTCx = is non-negative for each x , 0. The
columns of the orthogonal matrix P form an orthogonal basis {vi : i  n}
of Rn and, relative to this basis, Q(x) =

Pn
i=1 �ix2

i for any x. Applying this
with x = vi for each i  n we see that each �i � 0. Since their product is
non-zero, each must be strictly positive. This shows that Q(x) > 0 for all
x , 0.

Exercise 4.4. Since wj =
1
n we have

�w (n) =
 

1
n

!2 n
X

j,k=1

� jk.

Mathematically, such a limit might not be convergent as n tends to zero. As
an example we can consider

�kk = 2k for k = 1, 2 . . .
� jk = 0 for j , k.

This example though is artificial and one would not expect this to happen
in real life.

In a situation where assets are independent (which implies � jk = 0 for
j , k) and when �kk  c for k = 1, 2, . . . then

�w (n) =
 

1
n

!2 n
X

k=1

�kk 
 

1
n

!2

nc! 0.

Exercise 4.5. We can compute

C�1 =

2

6

6

6

6

6

6

6

6

4

100.0 0 0
0 50.0 0
0 0 25.0

3

7

7

7

7

7

7

7

7

5

The matrix M is equal to

M =
"

µTC�1µ µTC�11
µTC�11 1TC�11

#

=

"

5.25 27.5
27.5 175

#

,

and det(M) = 162.5. For m = 0.25 we have

det(M1) = m1TC�11 � µTC�11 = 16.25
det (M2) = µTC�1µ � mµTC�11 = �1.625,
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giving

w =
1

det(M)
C�1 (det(M1)µ + det(M2) 1) =

2

6

6

6

6

6

6

6

6

4

0
0.5
0.5

3

7

7

7

7

7

7

7

7

5

.

Exercise 4.6. We can compute

C�1 =

2

6

6

6

6

6

6

6

6

4

100.0 0 0
0 100.0 �50.0
0 �50.0 50.0

3

7

7

7

7

7

7

7

7

5

.

The matrix M is equal to

M =
"

µTC�1µ µTC�11
µTC�11 1TC�11

#

=

"

3.5 20
20 150

#

,

giving det(M) = 125.0 and

a =
1

det(M)
C�1

⇣⇣

1TC�11
⌘

µ �
⇣

µTC�11
⌘

1
⌘

=

2

6

6

6

6

6

6

6

6

4

�4.0
�2.0
6.0

3

7

7

7

7

7

7

7

7

5

,

b =
1

det(M)
C�1

⇣⇣

µTC�1µ
⌘

1 �
⇣

µTC�11
⌘

µ
⌘

=

2

6

6

6

6

6

6

6

6

4

1.2
0.6
�0.8

3

7

7

7

7

7

7

7

7

5

.

The vector of weights corresponding to m = 0.2 is

wm=0.2 = ma + b =

2

6

6

6

6

6

6

6

6

4

0.4
0.2
0.4

3

7

7

7

7

7

7

7

7

5

.

Exercise 4.7. The minimum variance line on the (w1,w2) plane is a
straight line resulting from a projection of ma + b onto the first two co-
ordinates

"

w1(m)
w2(m)

#

= m
"

a1

a2

#

+

"

b1

b2

#

= m
"

�4.0
�2.0

#

+

"

1.2
0.6

#

Its plot is given in Figure 9.1.
For m = 0.1 the portfolio is

wm=0.1 = 0.1

2

6

6

6

6

6

6

6

6

4

�4.0
�2.0
6.0

3

7

7

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

4

1.2
0.6
�0.8

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

0.8
0.4
�0.2

3

7

7

7

7

7

7

7

7

5
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0.25

0.5

0.75

1

Figure 9.1 The minimum variance line on the (w1,w2) plane.

-0.050 0.05 0.1 0.15 0.2
0.04
0.08
0.12
0.16
0.2
0.24
0.28
0.32

Figure 9.2 The minimum variance line on the (�, µ) plane.

The portfolio for m = 0.2 is computed in the solution to Exercise 4.6. Their
variances are

�2
m=0.1 = 0.008
�2

m=0.2 = 0.012.

The covariance can be computed using Proposition 4.2, giving

Cov = 0.004.

By Corollary 4.8, we can compute the risk and expected return of portfolios
on the minimum variance line using

�2
w = ↵

2�2
m=0.1 + (1 � ↵)2 �2

m=0.2 + 2↵ (1 � ↵) Cov
µw = ↵0.1 + (1 � ↵) 0.2.

The plot of (�w, µw) is given in Figure 9.2.
Exercise 4.8. Let �1 = �m=0.1 and �2 = �m=0.2 and �12 = Cov for

parameters computed in the solution of Exercise 4.7. We look for ↵ for
which

↵2�2
1 + (1 � ↵)2 �2

2 + 2↵ (1 � ↵)�12 = �
2 = 0.007.
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This is a quadratic equation

↵2
⇣

�2
1 + �

2
2 � 2�12

⌘

+ ↵2
⇣

�12 � �2
2

⌘

+ �2
2 � �2 = 0

with solutions

↵ =
�2

⇣

�12 � �2
2

⌘

±
q

h

2
⇣

�12 � �2
2

⌘i2 � 4
⇣

�2
1 + �

2
2 � 2�12

⌘ ⇣

�2
2 � �2

⌘

2
⇣

�2
1 + �

2
2 � 2�12

⌘ .

giving

↵1 =
25
30
,

↵2 =
1
2
.

The corresponding expected returns are

µ1 = ↵10.1 + (1 � ↵1) 0.2 =
7
60
,

µ2 = ↵20.1 + (1 � ↵2) 0.2 = 0.15.

Since µ2 > µ1, the e�cient portfolio with �2 = 0.007 is

↵2wm=0.1 + (1 � ↵2) wm=0.2

=
1
2

2

6

6

6

6

6

6

6

6

4

0.8
0.4
�0.2

3

7

7

7

7

7

7

7

7

5

+
1
2

2

6

6

6

6

6

6

6

6

4

0.4
0.2
0.4

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

0.6
0.3
0.1

3

7

7

7

7

7

7

7

7

5

.

Exercise 4.9. Since

µwmin = µ
Twmin = µ

T C�11
1TC�11

,

for r = µwmin we have

1TC�1(µ � r1) = 1TC�1
 

µ � µT C�11
1TC�11

1
!

= 1TC�1µ � µ
TC�11

1TC�11
1TC�11

= 1TC�1µ � µTC�11
= 0

hence we have a division by zero in

m =
C�1(µ � r1)

1TC�1(µ � r1)
.



178 Solutions to Exercises

The geometric reason behind this is that the point (0,R) is the focus
point of the MVL hyperbola. Thus there is no tangency point on MVL
with a straight line emanating from (0,R).

Exercise 4.10. We start by computing m1 and m2

m1 =

2

6

6

6

6

6

6

6

6

4

0.4
0.2
0.4

3

7

7

7

7

7

7

7

7

5

m2 =

2

6

6

6

6

6

6

6

6

4

0
0
1

3

7

7

7

7

7

7

7

7

5

.

The expected returns and variances are

µm1 = 0.2, µm2 = 0.3,
�2

m1
= 0.012, �2

m2
= �2

3 = 0.04.

(i) Since for �2 = 0.003 we have � < �m1 , the e�cient portfolio is
a combination of a risk–free investment at r1 and an investment in
the tangency portfolio m1. The corresponding variance of such an
investment is ↵2�2

m1
.

We need to find an ↵ for which

↵2�2
m1
= �2,

which gives

↵ =

s

�2

�2
m1

=

r

0.003
0.012

= 0.5.

This means that we need to invest (1�↵)V = 500 risk free at the rate
r1 and invest ↵Vm1 amongst the remaining assets. Thus we need to
invest 200 in the first asset, 100 in the second, and 200 in the third
asset.

(ii) Since for �2 = 0.023 we have �2
m1
< �2 < �2

m2
, the e�cient invest-

ment with variance equal to �2 lies on the minimum variance line.
Any portfolio on the MVL is a linear combination of m1 and m2. We
need to find an ↵ for which

↵2�2
m1
+ (1 � ↵)2 �2

m2
+ 2↵ (1 � ↵) Cov

�

Km1 ,Km2

�

= �2. (9.7)

Since
Cov

�

Km1 ,Km2

�

= mT
1Cm2 = 0.02,

all the parameters in (9.7) are known, and we can solve the quadratic
equation just as we have done in the solution of Exercise 4.8. The
solution is

↵ =
1
2
,
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meaning that we need to invest

↵Vm1 + (1 � ↵) Vm2

amongst the risky securities. Thus we invest 200 in the first asset,
100 in the second, and 700 in the third asset.

(iii) Since for �2 = 0.16 we have �2 > �2
m2
, the e�cient portfolio is a

combination of a risk–free loan at r2 and an investment in the tan-
gency portfolio m2. The corresponding variance of such an invest-
ment is ↵2�2

m2
.

We need to find an ↵ for which

↵2�2
m2
= �2,

which gives

↵ =

s

�2

�2
m2

=

r

0.16
0.04

= 2.

This means that we need to invest (1 � ↵)V = �1000 at a rate r2

(meaning that we borrow 1000) and invest ↵Vm2 amongst the re-
maining assets. This means that we need to invest 2000 in the third
asset.
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9.5 Solutions to exercises from chapter 5

Exercise 5.1. From the bilinearity of covariance we know that

�w =
Cov(Kw,Km)
�2

m

=
Cov(w1K1 + . . . + wnKn,Km)

�2
m

= w1
Cov(K1,Km)
�2

m
+ . . . + wn

Cov(Kn,Km)
�2

m
= w1�1 + . . . + wn�n.

From (5.1) we know that

µi = R + �i(µm � R).

We can now compute

µw = w1µ1 + . . . + wnµn

= w1 (R + �1(µm � R)) + . . . + wn (R + �n(µm � R))
= R + (w1�1 + . . . + wn�n) (µm � R)
= R + �w(µm � R),

as required.
Exercise 5.2. From Chapter 4 we know that the weights of the tangency

portfolios for Rk are

mk =
1
�k

C�1(µ � Rk1)

for �k = 1TC�1(µ � Rk1) and k = 1, 2. Let w be any portfolio. Applying
Proposition 4.2,

Cov(Kw,Kmk )
�2

mk

=
wTCmk

mT
k Cmk

=

1
�w

T(µ � Rk1)
1
�m

T
k (µ � Rk1)

.

Since wTµ = µw, mT
kµ = µmk and wT1 = mT

k 1 = 1, this gives

Cov(Kw,Kmk )
�2

mk

=
µw � Rk

µmk � Rk
,

and by rearranging

µw = Rk +
Cov(Kw,Kmk )
�2

mk

�

µmk � Rk
�

.
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Taking a portfolio where everything is invested in the i-th asset gives

µi = Rk +
Cov(Ki,Kmk )
�2

mk

�

µmk � Rk
�

,

for k = 1, 2, as required.
Exercise 5.3. For

f (↵, �) =
d

X

j=1

⇣

y j � ↵ � �x j

⌘2
,

we have

@ f
@↵
= �2

d
X

j=1

⇣

y j � ↵ � �x j

⌘

= �2d (ȳ � ↵ � �x̄) ,

@ f
@�
= �2

d
X

j=1

⇣

y j � ↵ � �x j

⌘

x j = �2d (xy � x̄↵ � �xx) ,

The system

@ f
@↵
= 0,

@ f
@�
= 0,

is therefore equivalent to

ȳ � ↵ � �x̄ = 0,
xy � x̄↵ � �xx = 0.

Multiplying the first equation by x̄ and subtracting the two gives

xy � x̄ȳ � x̄↵ � �xx + �x̄x̄ = 0,

which leads to

� =
x̄ȳ � xy
x̄x̄ � xx

.

Since ȳ � ↵ � �x̄ = 0, it follows that

↵ = ȳ � �x̄.
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9.6 Solutions to exercises from chapter 6

Exercise 6.1. If X �U Y and Y �U Z then by the definition of �U ,

U(X)  U(Y) and U(Y)  U(Z),

hence U(X)  U(Z), which again from the definition of �U implies that

X �U Z.

This finishes the proof of transitivity of �U .
For any random variables X,Y we either have U(X)  U(Y) or U(X) �

U(Y), which by definition of �U means that either X �U Y or Y �U X. This
proves completeness of �U .

Exercise 6.2. Suppose that there exists a utility U that represents the
lexicographic order. Since a utility is di↵erentiable, it has to be continuous.
Let (x0, y0) 2 R2 and y1 > y0. Since U is strictly increasing

U (x0, y0) < U (x0, y1) . (9.8)

Let x1 > x0. Since U represents �lex, and (x0, y1) �lex (x1, y0) , we must
have

U (x0, y1)  U (x1, y0) ,

hence

U (x1, y0)  lim
x1!x0

U (x1, y0) (9.9)

On the other hand, since U is continuous

lim
x1!x0

U (x1, y1) = U (x0, y0) . (9.10)

Combining (9.8)–(9.10) gives

lim
x1!x0

U (x1, y1) = U (x0, y0) < U (x0, y1) < lim
x1!x0

U (x1, y1) ,

a contradiction. Thus, such U can not exist.
Exercise 6.3. To show that a function is strictly increasing and concave it

is enough to show that the derivative is strictly positive and that the second
derivative is negative.

(i) For a > 0,
��e�ax�0 = ae�ax > 0,
��e�ax�00 = �a2e�ax < 0.
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(ii) For x > 0,

(ln x)0 =
1
x
> 0,

(ln x)00 =
�1
x2 < 0.

(iii) For a < 1, holds a � 1 < 0 hence for x > 0

(axa)0 = a2xa�1 > 0,
(axa)00 = a2 (a � 1) xa�2 < 0.

(iv) For b > 0 and x < 1
b

 

x � 1
2

bx2
!0
= 1 � bx > 1 � b

1
b
= 0,

 

x � 1
2

bx2
!00
= �b < 0.

Exercise 6.4. Substituting

u = 0.1, m = 0, d = �0.1,

into the formulae for ⇡i from Example 6.15, we obtain

⇡1(x) = x,

⇡2(x) = 1 � 2x,

⇡3(x) = x.

Since in Example 6.15 we have shown that X⇤(!i) = �pi

⇡i
= V pi

⇡i
,

X⇤(!) =

8

>

>

>

<

>

>

>

:

V
4x for ! = !1,

V
2�4x for ! = !2,
V
4x for ! = !3.

For x = (x1, x2) 2 R2, where x1 is invested in the risk free asset and x2 is
invested in the risky security, we have

Vx(1)(!) =

8

>

>

>

<

>

>

>

:

x1 + x2S (0) (1 + u) for ! = !1,
x1 + x2S (0) (1 + m) for ! = !2,
x1 + x2S (0) (1 + d) for ! = !3.

Since we need to have Vx(1) = X⇤

x1 + x2S (0) (1 + u) =
V
4x
= x1 + x2S (0) (1 + d)
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hence
x2u = x2d.

Since u = �d, this means that x2 = 0. Since Vx(1) = X⇤ and x2 = 0,

x1 =
V
4x
,

x1 =
V

2 � 4x
,

therefore
4x = 2 � 4x,

thus x = 0.25.
Exercise 6.5. For

f (X1, . . . , XN) =
N

X

i=1

piu(Xi)

g(X1, . . . , XN) =
N

X

i=1

⇡iXi � V

equation (3.9) implies that
2

6

6

6

6

6

6

6

6

6

6

4

p1u0(X1)
...

pNu0(XN)

3

7

7

7

7

7

7

7

7

7

7

5

� �

2

6

6

6

6

6

6

6

6

6

6

4

⇡1
...
⇡N

3

7

7

7

7

7

7

7

7

7

7

5

= 0.

From the above we see that for i = 1, . . . ,N

Xi = (u0)�1
 

⇡i

pi

!

. (9.11)

In addition, we also have the constraint
N

X

i=1

⇡iXi � V = 0.

Inserting Xi from (9.11) and rearranging gives

V =
N

X

i=1

⇡i (u0)�1
 

⇡i

pi

!

. (9.12)

Equations (9.11), (9.12) combined give the claim.
Exercise 6.6. Let x denote the number of shares of the first asset. Then

Vx (1) = xS 1 (1) +
V � xS 1 (0)

S 2 (0)
S 2 (1) .
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The problem of finding the maximal expected utility is reduced to max-
imising a function f : R! R,

f (x) = u (Vx (1)) =
N

X

i=1

pie
xS 1(1)(!i)�a V�xS 1(0)

S 2(0) S 2(1)(!i).

This can easily be done numerically. An example of a solution for V = 100
is given in the file Exercise 6 6.xlsx.

Exercise 6.7. Since the model is complete, using (6.17) we can compute

⇡T = S(0) (S(1))�1 . (9.13)

For our utility

u0(x) = ae�ax,

(u0)�1 (x) =
�1
a

ln
✓ x
a

◆

.

Since

(u0)�1
 

⇡i

�pi

!

= �1
a

ln
 

⇡i

a�pi

!

= �1
a

ln
 

⇡i

api

!

+
1
a

ln (�) ,

N
X

i=1

⇡i =
1

1 + R
,

and from (6.13) we can compute

V =
N

X

i=1

⇡i (u0)�1
 

⇡i

�pi

!

= �
N

X

i=1

⇡i
1
a

ln
 

⇡i

api

!

+

N
X

i=1

⇡i
1
a

ln (�)

= �
N

X

i=1

⇡i
1
a

ln
 

⇡i

api

!

+
1

1 + R
1
a

ln (�) ,

hence

1
a

ln (�) = (1 + R)
2

6

6

6

6

6

4

V +
N

X

i=1

⇡i
1
a

ln
 

⇡i

api

!

3

7

7

7

7

7

5

. (9.14)

We can substitute the above into (6.12) to compute

X⇤i = (u0)�1
 

⇡i

�pi

!

= �1
a

ln
 

⇡i

api

!

+
1
a

ln (�) . (9.15)
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Finally, the x can be computed from (6.18),

x⇤ = (S(1))�1 X⇤. (9.16)

We now carry out the numerical computations, taking V = 100 as an
example. Using (9.13)

⇡T =
h

1 100 200
i

2

6

6

6

6

6

6

6

6

4

1.02 120 180
1.02 110 220
1.02 90 200

3

7

7

7

7

7

7

7

7

5

�1

=
h

0.156 9 0.352 9 0.470 6
i

.

We now use (9.14)

1
a

ln (�) = 1.02
"

100 + 0.156 9
1

0.01
ln

 

0.156 9
0.01 · 0.25

!

+0.352 9
1

0.01
ln

 

0.352 9
0.01 · 0.5

!

+0.470 6
1

0.01
ln

 

0.470 6
0.01 · 0.25

!#

= 572. 88.

From (9.15)

X⇤1 = �
1

0.01
ln

 

0.156 9
0.01 · 0.25

!

+ 572. 88 = 158. 95,

X⇤2 = �
1

0.01
ln

 

0.352 9
0.01 · 0.5

!

+ 572. 88 = 147. 21,

X⇤3 = �
1

0.01
ln

 

0.470 6
0.01 · 0.25

!

+ 572. 88 = 49. 108.

Finally, using (9.16) we obtain the strategy

x =

2

6

6

6

6

6

6

6

6

4

1.02 120 180
1.02 110 220
1.02 90 200

3

7

7

7

7

7

7

7

7

5

�1 2

6

6

6

6

6

6

6

6

4

158. 95
147. 21
49. 108

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

�465. 13
4. 158 9
0.746 22

3

7

7

7

7

7

7

7

7

5

.

Exercise 6.8. If u is concave, then ' = �u is convex. By Jensen’s in-
equality ' (E (X))  E ('(X)) , which gives

�u (E (X)) = ' (E (X))  E ('(X)) = �E (u(X)) ,

hence

u (E (X)) � E (u(X)) .
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Figure 9.3 Concavity of u and risk aversion.

Conversely, let us assume that an investor is risk averse and consider a
random variable with binomial distribution

X =
(

x1 with probability �
x2 with probability 1 � �,

for � 2 [0, 1]. Then since u (E (X)) � E (u(X)) we see that

u (�x1 + (1 � �) x2) = u (E (X)) � E (u(X)) = �u (x1) + (1 � �) u(x2),

which means that u is concave. A graphical representation for this random
variable is given in Figure 9.3

Exercise 6.9. From the initial data for S(0) and S(1) it follows that

K1 = 2%, K2 (!) =

8

>

>

>

<

>

>

>

:

20% for ! = !1

10% for ! = !2

�10% for ! = !3

K3 =

8

>

>

>

<

>

>

>

:

�10% for ! = !1

10% for ! = !2

0% for ! = !3

and simple computation leads to

R = 2%, µ =

"

7.5%
2.5%

#

,

C =
"

0.011875 �0.001875
�0.001875 0.006875

#

.
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We can compute

m =
C�1(µ � R1)

1TC�1(µ � R1)
=

"

0.704 55
0.295 45

#

,

and

µm = mTµ = 0.060228,
�m =

p
mTCm = 0.075592.

To find a portfolio with the highest certainty equivalent we need to max-
imise

E(X) � �(X) = V


µ � aV
2
�2

�

+ V.

This is equivalent to maximising

u (�, µ) = µ � aV
2
�2.

From Example 2.13 we know that the solution is a portfolio with the return
equal to

µ = R +
1

aV

 

µm � R
�m

!2

,

and

� =
1

aV
µm � R
�m

.

Taking a = 0.01, V = 100, as in the solution to Exercise 6.7, we get

µ = 0.02 +
1

0.01 · 100

 

0.060228 � 0.02
0.07559 2

!2

= 0.30321,

� =
1

0.01 · 100
0.060228 � 0.02

0.07559 2
= 0.532 17.

Exercise 6.10. We continue the solution of Exercise 6.9. We wish to find
a portfolio on the CML with the return

m = 0.30321.

As in Example 2.12 we compute

� =
m � R
µm � R

=
0.30321 � 0.02
0.060228 � 0.02

= 7. 040 1.

We spend (1 � �) V = �6. 040 1·100 = �604.01 risk free (since the number
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is negative we take a short position; in other words, borrow 604.01) and
spend

"

v1

v2

#

= �Vm =7. 040 1 · 100
"

0.704 55
0.295 45

#

=

"

496. 01
208. 00

#

on the two risky assets. We thus obtain the strategy

x =

2

6

6

6

6

6

6

6

6

4

(1 � �) V/S 1(0)
v1/S 2(0)
v2/S 3(0)

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

�604.01
4. 960 1

1. 04

3

7

7

7

7

7

7

7

7

5

.

The solution di↵ers from the solution to Exercise 6.7. The reason for
this is that in Exercise 6.7 we find the exact solution which maximises the
expected utility. In this exercise we maximise the certainty equivalent. This
in principle is equivalent to maximising expected utility, but we use

�(X) ⇡ �V2

2
u00(V(1 + µ))
u0(V(1 + µ))

�2, (9.17)

for our computation of E(X) � �(X). Since (9.17) is only an approximation
of � (X), the solution we have found is also an approximate solution. It will
usually be di↵erent from the true one (found in the solution to Exercise
6.7).
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9.7 Solutions to exercises from chapter 7

Exercise 7.1

Proposition (reformulation of Proposition 7.4 for lower quantiles)

Let X,Y be random variables. Then for any � 2 (0, 1)
(i) X � Y implies q�(X) � q�(Y)

(ii) for any b 2 R, q�(X + b) = q�(X) + b
(iii) for b > 0, q�(bX) = bq�(X)
(iv) q�(�X) = �q1��(X)

Proof We begin by proving (iv). By Proposition 7.4 we know that for any
X, q↵(�X) = �q1�↵(X) when 0 < ↵ < 1, hence also �q↵(X) = q1�↵(�X).
Set � = 1 � ↵, then (iv) follows: q�(�X) = �q1��(X).

For (i), we have �X  �Y, so q↵(�X)  q↵(�Y), i.e., �q↵(�X) �
�q↵(�Y). By (iv), with � = 1 � ↵, with �X,�Y instead of X,Y, we then
obtain

q�(X) = �q↵(�X) � �q↵(�Y) = q�(Y).

For (ii), let b 2 R, so, applying Proposition 7.4 (ii),

�q↵(�(X + b)) = �q↵(�X) + b = q�(X) + b,

using (iv) with X instead of �X.
For (iii), with b > 0 we apply Proposition 7.4 (iii) to b(�X) to obtain

similarly that

q�(bX) = �q↵(b(�X)) = �bq↵(�X) = bq�(X).

⇤

Lemma (reformulation of Lemma 7.5 for lower quantiles)

If FX(x) is continuous and strictly increasing then q↵(X) = F�1
X (↵).

Proof We need only replace < by  and the upper by the lower quantile
throughout the proof of Lemma 7.5. ⇤

Lemma (reformulation of Lemma 7.6 for lower quantiles)

Let X be a random variable. If f : R! R is left-continuous and non-
decreasing then

q↵( f (X)) = f (q↵(X)).

Proof Since f is left-continuous and non decreasing, for any y 2 R there
exists an x 2 R such that

f �1 ((�1, y]) = (�1, x].
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We need to show two facts to obtain our result:
1. for any y > f (q↵(X)) we have

F f (X)(y) � ↵,

2. for any y < f (q↵(X)) we have

F f (X)(y) < ↵.

For the proof of the first fact we take y > f (q↵(X)) and an x such that
f �1 ((�1, y]) = (�1, x]. Note that since y > f (q↵(X)) and since f is non-
decreasing we have x � q↵(X). Therefore

F f (X)(y) = P( f (X)  y)
= P (X  x)
= FX(x)
� ↵ (since x � q↵(X) and by definition of q↵(X)).

We take any y < f (q↵(X)) and x such that f �1((�1, y]) = (�1, x]. Since
f is non-decreasing and f (x)  y < f (q↵(X)), we see that x < q↵(X). We
can now compute

F f (X)(y) = P( f (X)  y)
= P (X  x)
= FX(x)
< ↵ (since x < q↵(X) and by definition of q↵(X)).

⇤

Exercise 7.2
All three properties follow immediately from their counterparts in Pro-

postion 7.4, since VaR↵(X) = �q↵(X).
Exercise 7.3
We invest wS (0) of our own cash, hence

V(0) = wS (0).

At time one

V(1) = S (1) � (1 + R) (1 � w) S (0).
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The discounted levraged gain Glev is therefore

Glev =
V(1)
1 + R

� V(0)

=
S (1) � (1 + R) (1 � w) S (0)

1 + R
� wS (0)

=
S (1)
1 + R

� S (0)

= GS ,

where GS is the discounted gain from an investment in stock. Hence,

VaR (Glev) = VaR (GS ) .

We need to keep in mind that we invest only wS (0) of our own funds. If w
is small, then the resulting VaR can be very large in comparison to the size
of the investment. This agrees with the intuition that leveraged positions
are more risky.

Exercise 7.4
By Lemma 7.17 we know that

q↵ (S (T ))) = S (0)e
✓

µ� �2
2

◆

T+�
p

T N�1(↵)
. (9.18)

Using the fact that

N�1(0.05) = �1.644853627,

and substituting the numbers into (9.18) we obtain

q5% (S (T ))) = S (0)e
✓

0.1� 0.22
2

◆

T+0.2
p

1(�1.644853627)
= 77. 96.

Therefore by (7.16)

VaR5%(X) = S (0) � e�rT q5%(S (T ))
= 100 � e�0.0377. 96
= 24. 344.

Exercise 7.5
To compute E

⇣

X(x,y)

⌘

we use the fact that

E (S (T )) = E
 

S (0) e
✓

µ� �2
2

◆

T+�
p

TZ
!

= S (0) eµT .
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0"

1"

2"

3"

4"

5"

6"

7"
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E"

VaR"

Figure 9.4 The plot of VaR↵
⇣

X(x,y)

⌘

against E
⇣

X(x,y)

⌘

.

This gives

E
⇣

X(x,y)

⌘

= E
⇣

e�rT V(x,y)(T ) � V(x,y)(0)
⌘

= e�rTE
⇣

V(x,y)(T )
⌘

� V(x,y)(0)

= e�rTE (xS (T ) + yA(T )) � V(x,y)(0)
= e�rT xE (S (T )) + ye�rT A(T ) � ⇥

xS (0) + y
⇤

= e�rT xS (0) eµT+y � ⇥

xS (0) + y
⇤

= xS (0)
h

e(µ�r)T � 1
i

.

The graph in Figure 9.4 is produced in the file Exercise 7 5.xlsx.
Exercise 7.6
Using the properties of VaR↵ from Proposition 7.9 we obtain

VaR↵
�

X(x,✓)
�

= VaR↵
⇣

xe�rT S (T ) + ✓e�rT (F � S (T )) � xS (0)
⌘

= VaR↵
⇣

xe�rT S (T ) + ✓e�rT (S (0)erT � S (T )) � xS (0)
⌘

= VaR↵
⇣

(x � ✓) e�rT S (T ) + (✓ � x) S (0)
⌘

= (x � ✓) e�rT VaR↵ (S (T )) + (x � ✓) S (0)

= (x � ✓)
h

S (0) � e�rT q↵(S (T ))
i
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Similarly, from the properties of mathematical expectation

E
�

X(x,✓)
�

= E
⇣

xe�rT S (T ) + ✓e�rT (F � S (T )) � xS (0)
⌘

= E
⇣

(x � ✓) e�rT S (T ) + (✓ � x) S (0)
⌘

= (x � ✓)
⇣

e�rTE (S (T )) � S (0)
⌘

= (x � ✓) S (0)
⇣

e(µ�r)T � 1
⌘

.

The plot is identical to the one from Exercise 7.5. The computations and
the plot are made in the file Exercise 7 6.xlsx.

Exercise 7.7
The smallest VaR↵ is 20.77455399. This is attainable for K = 87.19709189.

The problem is solved using Excel solver in file Exercise 7 7.xlsx

Exercise 7.8
The problem is solved using Excel in the file Exercise 7 8.xlsx
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9.8 Solutions to exercises from chapter 8

Exercise 8.1
We use the properties of VaR proved in Proposition 7.9: for X  Y, � � 0

and m real, we see that
(i) by Proposition 7.9 (i)

AVaR↵(X) =
1
↵

Z ↵

0
VaR�(X)d� � 1

↵

Z ↵

0
VaR�(Y)d� = AVaR↵(Y);

(ii) by Proposition 7.9 (ii)

AVaR↵(X + m) =
1
↵

Z ↵

0
VaR�(X + m)d�

=
1
↵

Z ↵

0
[VaR�(X) � m]d�

= AVaR↵(X) � m;

(iii) by Proposition 7.9 (iii)

AVaR↵(�X) =
1
↵

Z ↵

0
VaR�(�X)d� = �

1
↵

Z ↵

0
VaR�(X)d� = �AVaR↵(X).

Exercise 8.2
The proof of Lemma 8.4 extends without change to any function q :

(0, 1) ! R satisfying q(FX(x)�)  x  q(FX(x)) in place of q↵(X) (such
functions are known as quantile functions for X; q↵ being the largest and q↵
the smallest), since such a q can di↵er from q↵ in at most countably many
points, i.e., a null set for the uniform distribution (Lebesgue measure on
[0, 1]).

Exercise 8.3
Same comment as for Exercise 8.2.
Exercise 8.4
We need only check the claims made for X : if X(!) > q↵(X) then

1↵X(!) = 0, so 1↵Z � 1↵X � 0 since 1↵Z(!) 2 [0, 1]. If X(!) < q↵(X) we have
1↵X(!) = 1, while, again, 1↵Z 2 [0, 1], so 1↵Z � 1↵X  0.

Set W(↵) = 1
↵E(W1↵W) = �AVaR↵(W) for any W. Applying this to W =

X,Y and Z respectively,

↵[Z(↵) � X(↵) � Y(↵)]
= ↵E[(X + Y)1↵Z � X1↵X � Y1↵Y]
= E[X(1↵Z � 1↵X) + Y(1↵Z � 1↵Y)]
= E[X(1↵Z � 1↵X)] + E[Y(1↵Z � 1↵Y)
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The first expectation is decreased if we replace X by q↵(X): to see this split
⌦ into the three disjoint events {X = q↵(X)},{X > q↵(X)} and {X < q↵(X)}.
The integral over {X = q↵(X)} obviously stays unchanged; on {X > q↵(X)}
we have (X � q↵(X)(1↵Z � 1↵X) � 0, since both factors are non-negative,
while on {X < q↵(X)}, the factors (X � q↵(X)) and (1↵Z � 1↵X) are both non-
positive, so their product is non-negative. The same arguments apply with
X replaced by Y, so we have shown that

↵[Z(↵) � X(↵) � Y(↵)]
� q↵(X)E[(1↵Z � 1↵X)] + q↵(Y)E[(1↵Z � 1↵Y]
= q↵(X)(↵ � ↵) + q↵(Y)(↵ � ↵)
= 0.

So Z(↵) � X(↵) + Y(↵), which implies that AVaR↵(X + Y) = �Z(↵) 
�X(↵) � Y(↵) = AVaR↵(X) + AVaR↵(Y).

Exercise 8.5
(i) To show that, if X  Y then TCE↵(X) � TCE↵(Y) it is enough to

show that

E[X|{X  q↵(X)}]  E[Y |Y  q↵(Y)]

By Lemma 8.4, given a uniformly distributed random variable U : (0, 1) 7!
R, the real random variable gX(x) = qU(x)(X) has the same distribution as
X and, similarly, the real random variable gY(x) = qU(x)(Y) has the same
distribution as Y.

The upper quantile q↵(X) is right-continuous: given " > 0 we can find N
such that

0  q↵+
1
n (X) � q↵(X)

= inf{x : FX(x) > ↵ +
1
n
} � inf{x : FX(x) > ↵}

< "

whenever n > N, as {x : FX(x) > ↵} = [n�1{x : FX(x) > ↵ + 1
n }.

Also recall that X  Y implies qs(X)  qs(Y) for any s 2 (0, 1) (Proposi-
tion 7.4).

So, by construction of gX , gY and the right-continuity of q↵ we have
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E[X|{X  q↵(X)}] = E[gX(U)|{gX(U)  q↵(gX(U))}]
= E[gX(U)|{gX(U)  gX(q↵(U))}]
= E[gX(U)|{U  q↵(U)}]
 E[gY(U)|{U  q↵(U)}]
= E[gY(U)|{gY(U)  gY(q↵(U))}]
= E[gY(U)|{gY(U)  q↵(gY(U))}]
= E[Y |{Y  q↵(Y)}],

which completes the proof.
(ii) TCE↵(X + m) = �E[X + m|{X + m  q↵(X + m)}] for any real m.
By Proposition 7.4 we know that q↵(X + m) = q↵(X) + m} so that

{X + m  q↵(X + m} = {X  q↵(X)}

and so �E[X + m|{X + m  q↵(X + m)}] = �E[X|{X  q↵(X)}] � m =
TCE↵(X) � m, as required.

(iii) For � > 0 we have q↵(�X) = �q↵(X), so that {�X  q↵(�X)} = {X 
q↵(X)}.Therefore

TCE↵(�X) = ��E[X|{X  q↵(X)}] = �TCE↵(X).

For � = 0 both sides are 0, since E[0|A) = 0 for any A.
Exercise 8.6
We use the formula for AVaR given in Proposition 8.5:

AVaR↵(X) = � 1
↵

[E(X1↵X) + q↵(X)(↵ � P(X < q↵X))].

In Example 8.13 we have q↵(X) = 0 = q↵(Y),so that, with ↵ = 0.05,

AVaR↵(X) = � 1
0.05
{X(!1)P(!1) = 60 = AVaR↵(Y).

For Z = X + Y we obtain q↵(Z) = �100, so that {Z < q↵(Z)} is empty, and
hence

AVaR↵(Z) = � 1
↵

(�100↵) = 100.

This verifies that in this example we have subadditivity:

AVaR↵(X + Y)  AVaR↵(X) + AVaR↵(Y).

Exercise 8.7
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Using the formula for V(x,y)(t) and property (iii) from Proposition 8.2 we
compute

AVaR↵
⇣

X(x,y)

⌘

= AVaR↵
⇣

e�rT V(x,y)(T ) � V(x,y)(0)
⌘

= AVaR↵
⇣

e�rT
h

xS (T ) + yerT
i

� ⇥

xS (0) + y
⇤

⌘

= xAVaR↵
⇣

e�rT S (T ) � S (0)
⌘

.

From Lemma 8.15 we see that

AVaR↵
⇣

X(x,y)

⌘

= x
 

S (0) � 1
↵

S (0)e(µ�r)T N
⇣

q↵(Z) � �
p

T
⌘

!

.

Suppose now that we invest V(0) in our strategy. For simplicity, let us
consider V(0) = S (0) (to generalise to di↵erent V(0) it is enough to rescale
the argument below by a constant). If we consider a strategy with y > 0,
then since V(0) = S (0) = xS (0) + y,

x =
S (0) � y

S (0)
< 1.

So,

AVaR↵
⇣

X(x,y)

⌘

= x
 

S (0) � 1
↵

S (0)e(µ�r)T N
⇣

q↵(Z) � �
p

T
⌘

!

< S (0) � 1
↵

S (0)e(µ�r)T N
⇣

q↵(Z) � �
p

T
⌘

= AVaR↵
⇣

e�rT S (T ) � S (0)
⌘

.

We see that AVaR↵
⇣

X(x,y)

⌘

is smaller than the one for investing V(0) = S (0)
in stock.

Exercise 8.8
We compute

AVaR↵
�

X(x,✓)
�

= AVaR↵
⇣

e�rT V(x,✓)(T ) � V(x,✓)(0)
⌘

= AVaR↵
⇣

e�rT [S (T ) + ✓(F � S (T ))] � S (0)
⌘

= AVaR↵
⇣

e�rT
h

S (T ) + ✓(S (0)erT � S (T ))
i

� S (0)
⌘

= AVaR↵
⇣

(1 � ✓)
⇣

e�rT S (T ) � S (0)
⌘⌘

= (1 � ✓) AVaR↵
⇣

e�rT S (T ) � S (0)
⌘

.

From Lemma 8.15 we see that

AVaR↵
�

X(x,✓)
�

= (1 � ✓)
 

S (0) � 1
↵

S (0)e(µ�r)T N
⇣

q↵(Z) � �
p

T
⌘

!

.
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Exercise 8.9
If K � q↵(S (T )) then since

q↵(S (T )) = S (0) exp
  

µ � �
2

2

!

T + �
p

Tq↵ (Z)
!

,

we see that

= �
ln S (0)

K +
⇣

µ � �2

2

⌘

T

�
p

T
� q↵ (Z)

hence

dµ,↵� = max
�

dµ�,�q↵(Z)
�

= �q↵(Z).

If x = z and K � q↵(S (T )), then

AVaR↵
�

X(x,z)
�

= V(x,x)(0) � 1
↵

e(µ�r)T
h

xS (0)N
⇣

q↵(Z) � �
p

T
⌘

+ zP↵(K)
i

= V(x,x)(0) � 1
↵

xe(µ�r)T [S (0)N
⇣

�dµ,↵� � �
p

T
⌘

+ Ke�µT N(�dµ,↵� ) � S (0)N
��dµ,↵+

�

]

= V(x,x)(0) � 1
↵

xe(µ�r)T [S (0)N
⇣

�dµ,↵� � �
p

T
⌘

Ke�µT N(�dµ,↵� ) � S (0)N
⇣

�dµ,↵� � �
p

T
⌘

]

= V(x,x)(0) � 1
↵

xe(µ�r)T Ke�µT N(�dµ,↵� )

= V(x,x)(0) � 1
↵

xe(µ�r)T Ke�µT N(q↵(Z))

= V(x,x)(0) � 1
↵

e(µ�r)T xKe�µT↵

= V(x,x)(0) � e�rT xK.

On the other hand, by (7.18) we know that

VaR↵
�

X(x,z)
�

= V(x,z)(0) � e�rT �

xq↵(S (T )) + z (K � q↵(S (T )))+
�

.

If x = z and K � q↵(S (T )), then

VaR↵
�

X(x,z)
�

= V(x,x)(0) � e�rT (xq↵(S (T )) + x (K � q↵(S (T ))))
= V(x,x)(0) � e�rT xK,

which concludes the solution.
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Exercise 8.10

E(X(x,z)) = E
⇣

e�rT V(x,z)(T ) � V(x,z)(0)
⌘

= E
⇣

e�rT (xS (T ) + zH(T )) � V(x,z)(0)
⌘

= e�rT (xE (S (T )) + zE (H(T ))) � V(x,z)(0). (9.19)

Direct computation of

E (S (T )) =
Z +1

�1
S (0)e

✓

µ� �2
2

◆

T+�
p

T x 1p
2⇡

e�
x2
2 dx,

E (H(T )) =
Z +1

�1

 

K � S (0)e
✓

µ� �2
2

◆

T+�
p

T x
!+ 1p

2⇡
e�

x2
2 dx,

leads to

E (S (T )) = S (0)eµT , (9.20)

and

E (H(T )) = eµT P(µ,T,K, S (0),�). (9.21)

Substituting (9.20) and (9.21) into (9.19) gives the result.
Exercise 8.11
From Exercise 8.7 we know that

AVaR↵
⇣

X(x,y)

⌘

= x
 

S (0) � 1
↵

S (0)e(µ�r)T N
⇣

q↵(Z) � �
p

T
⌘

!

.

From Exercise 7.5,

E
⇣

X(x,y)

⌘

= xS (0)
h

e(µ�r)T � 1
i

.

We use these to produce the plot from Figure 9.5. From the plot we see
that hedging with puts gives better results.

The computations are done in the file Exercise 8 11.xlsx

Exercise 8.12
We first compute AVaR↵ for a position in x stocks and ✓ forward con-

tracts. The payo↵ on a forward is F � S (T ), where F = erT S (0). We define

V(x,✓)(0) = xS (0),
V(x,✓)(T ) = xS (T ) + ✓ (F � S (T )) ,

and take

X(x,✓) = e�rT V(x,✓) (T ) � V(x,✓)(0).
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Figure 9.5 Comparison of hedging with puts (blue) with hedging by invest-
ing in the risk free asset (red)

Using properties of AVaR↵ together with Lemma 8.15

AVaR↵
�

X(x,✓)
�

= AVaR↵
⇣

e�rT xS (T ) + e�rT✓ (F � S (T )) � xS (0)
⌘

= AVaR↵
⇣

e�rT xS (T ) + e�rT✓
⇣

erT S (0) � S (T )
⌘

� xS (0)
⌘

= AVaR↵
⇣

(x � ✓)
h

e�rT S (T ) � S (0)
i⌘

= (x � ✓) AVaR↵
⇣

e�rT S (T ) � S (0)
⌘

= (x � ✓)
"

S (0) � 1
↵

S (0)e(µ�r)T N
⇣

q↵(Z) � �
p

T
⌘

#

.

The expectation

E
�

X(x,✓)
�

= (x � ✓) S (0)
⇣

e(µ�r)T � 1
⌘

was computed in Exercise 7.6. We can take x = 1, and ✓ 2 [0, 1] and
compare the plot of

��

AVaR↵
�

X(x,✓)
�

,E
�

X(x,✓)
��

: x = 1, ✓ 2 [0, 1]
 

(9.22)

with the plot
n⇣

AVaR↵
⇣

X(x,y)

⌘

,E
⇣

X(x,y)

⌘⌘

: y � 0, xS (0) + y = S (0)
o

(9.23)

from Exercise 8.11. The graphs (9.22) and (9.23) are identical. The com-
putations and the graphs can be found in the file Exercise 8 12.xlsx.

Exercise 8.13
The proof follows from identical arguments. The only di↵erence is that

instead of taking z (K � S (T ))+ use
Pn

i=1 zi (Ki � S (T ))+ . All the computa-
tions follow along identical lines to the proof of Proposition 8.19.

Exercise 8.14



202 Solutions to Exercises

The simulation can be found in the file Exercise 8 14.xlsm.
Exercise 8.15
If ⇢ is monotone, then X � Y implies ⇢(X)  ⇢(Y). With Y = 0 this

becomes ⇢(X)  ⇢(0) when X � 0. If ⇢ is also positive homogeueous
⇢(�X) = �⇢(X) for � = 0 shows that ⇢(0) = 0. Therefore X � 0 implies
⇢(X)  0.

Exercise 8.16
Suppose ⇢ is coherent. Suppose 0  ↵  1, and X,Y are bounded. Using

subadditivity and then positive homogeneity gives

⇢(↵X + (1 � ↵)Y)  ⇢(↵X) + ⇢((1 � ↵)Y) = ↵⇢(X) + (1 � ↵)⇢(Y)

so that ⇢ is convex. If ⇢ is convex and positive homogeneous, then for any
bounded X,Y, using (iii) with Z = 1

2 (X + Y) and � = 2, and the convexity
of ⇢,

⇢(X + Y) = 2⇢(
1
2

(X + Y))

 2[
1
2
⇢(X) +

1
2
⇢(Y)]

= ⇢(X) + ⇢(Y),

so ⇢ is subadditive, hence coherent.
Exercise 8.17
To prove that ⇢µ(X + m) = ⇢µ(X) � m we need the fact that µ is a

probability measure on (0, 1), since
Z 1

0
⇢↵(X+m)dµ(↵) =

Z 1

0
(⇢↵(X)�m)dµ(↵) = ⇢µ(X)�m

Z 1

0
dµ(↵) = ⇢µ(X)�m.

The other three requirements for coherence are immediate from the linear-
ity and positivity of the integral.

Exercise 8.18
We use the fact that ⇢max(X) = inf{r 2 R : X + r � 0 P-a.s.} to check the

four axioms for coherence.
(i) If X  Y then X + r � 0 implies that Y + r � 0, hence

inf{r : X + r � 0 P � a.s} � inf{r : Y + r � 0 P � a.s}.
(ii) For any real m, r we have (X + m) + r = X + (m + r), so that

inf{r : (X + m) + r � 0 P � a.s} = inf{r : X + (m + r) � 0 P � a.s}
= inf{r : X + r � 0 P � a.s} � m.
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(iii) For � � 0 we have

inf{r : �X + r � 0 P � a.s} = inf{�s : �(X + s) � 0 P � a.s}
= � inf{s : X + s � 0 P � a.s}.

(iv) Write z = X+Y. For any real r we can write Z+ r = (X+ s)+ (Y + t)
where r = s + t. Now

inf{r : Z + r � 0 P � a.s} = inf{s + t : (X + s) + (Y + t) � 0 P � a.s.}
 inf{s : X + s � 0 P � a.s} + inf{t : Y + t � 0 P � a.s}.

Exercise 8.19
In this example there are no non-empty P-null sets and ⌦ = {!1,!2,!3}

is finite, so that we can write

WCE↵(X) = � inf{E[X|A] : P(A) > ↵}.
The sets satisfying the condition P(A) > ↵ for X are A1 = {!1,!2} and the
four sets involving !3. Since X(!1) = �100 and its other values are 0, it is
clear that the infimum is a minimum and is attained when we take A1. We
have

E[X|A1] =
1

P(A1)
{�100P(!1) + 0} = �50

so that WCE↵(X) = 50. The same argument holds for Y, with the roles of
!1 and !2 interchanged.

With Z = X + Y we have Z = �100 on A1 and so WCE↵(Z) = 100, by a
similar argument.

Therefore WCE↵ is additive in this case.
In Exercise 8.6 we verified that AVaR↵(X) = 60 = AVaR↵(Y).
Comparing the results we have obtained for X (here, in Exercise 8.6 and

Example 8.13) we see that

AVaR↵(X) = 60
WCE↵(X) = 50
TCE↵(X) = 3.

Moreover, VaR↵(X) = 0, since P({!1} = 0.03 < 0.05 = ↵.
Together, these results verify that the identities proved in Proposition

8.29 hold in this simple example.




