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Coupled line components: 
directional couplers and power 
dividers
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Outline

• Coupled lines

• Directional couplers

• Power dividers and combiners



Coupled lines

Two and four-conductor microstrip coupled lines

Coupled two-conductor coplanar lines



Equivalent circuit of lossless symmetric 
coupled lines

• Capacitance matrix

• Inductance matrix

• A line with N

conductors + ground 

carries N quasi-TEM 

propagation modes



Generalized telegraphers’ equation and 
modal solution

• Voltage and current 

vectors on the two lines

• Generalized 

telegraphers’ equations

• Second-order system

• Trial solutions



Solutions in terms of even (p) and odd 
(d) modes

• Two modes, even and 

odd (p, d) with 

different propagation 

constants

• Each mode has a 

progressive and 

regressive wave

• Even mode: both line have the same voltage

• Odd mode: the line voltages are equal but opposite
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Even and odd mode topology in 
coupled lines

Even mode 

Odd mode 



Even (p) and odd (d) mode parameters

• Effective permittivity: • Characteristic impedance:

• Since the odd mode capacitance > than the even mode 

capacitance the odd mode impedance < than the even mode 

impedance (Z0 is the uncoupled line impedance):
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Even and odd mode parameters vs. 
line spacing S
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Coupled microstrip impedances 
(on GaAs, e=13)

Substrate thickness 300 mm

0eZ

0oZ



Effective permittivities (on GaAs, 
e=13)

Substrate thickness 300 mm
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Outline

• Coupled lines

• Directional couplers

• Power dividers and combiners



Directional coupler

• Is a four-port dividing the input power at port 1 into two parts 
(generally not the same  3dB coupler if same) (port 3 and 
2) with 90 or 180 phase difference (90 and 180 hybrids) 
between the two ports; port 4 is isolated and all ports are 
matched. Couplers have twofold symmetry!
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Coupler parameters

Couplers are reactive!
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Directional coupler implementations

• Interference couplers:

– Easy 3 dB couplers

– Difficult low-coupling couplers

– Large area

• Coupled line couplers:

– simple (two coupled lines), achieving 3 dB 

coupling is difficult (equal power division)

– interdigitated (Lange), technologically more 

difficult, 3 dB couplers can be obtained

– Coupled line couplers can easily obtain low 

coupling (what for?)

Size: quarter wavelength at centerband

uniform coupled line coupler

Lange coupler

Branch line coupler Rat race coupler



Coupled line couplers

• The centerband coupler 

length is lambda_g/4

• To have matching (port 1), 

isolation (port 4), coupling 

C (port 2) the following 

conditions should be met:

We start from R0 and C and the design

of coupled lines follows 
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Ideal 3dB coupler response 
(synchronous even and odd modes)

Ideal matching and isolation achieved on the 

whole band!
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Isolation and matching in a real 
coupler

• In real couplers the 

even and odd modes 

do not have the same 

propagation velocity

• As a result, matching

and isolation

deteriorate, coupling

and transmission are 

almost unchanged

Frequency, GHz



Centerband S parameters as a 
function of velocity mismatch

• In several 

applications the loss 

in isolation can be a 

serious problem

• Approximately:
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Compensated couplers

Velocity compensation techniques: shielded directional coupler (a) and with 
dielectric overlay (b); compensation through concentrated capacitances (c) e and 
line wiggle (d).



Integrated 3dB couplers

• 3dB couplers can be in principle implemented with 

two coupled microstrips; however, the slot width in a 

50 Ohm system turns out to be technologically 

impossible to realize (a few microns)

• Unfortunately 3dB couplers with 90 degrees phase 

shift are required in many applications (e.g. balanced 

amplifiers)

• A solution that is technologically manageable is 

given by the multiconductor couplers  Lange 

couplers



Multiconductor microstrip and 
equivalent two-conductor line

• A multiconductor line is equivalent to a two-conductor line if the 

conductors are periodically connected

• The mutual capacitance of the equivalent two lines increases 

coupling increases also for widely spaced lines

• 3 dB couplers can be implemented with 4, 6, 8 conductors (typically 4)

• Increasing the number of conductors the closing impedance decreases



Interdigitated four-conductor 3dB 
Lange couplers

• In principle directional couplers can also be made with two-
conductor coupled microstrips, but for technological limits 
3dB couplers can only be interdigitated

Lange 

“unfolded”

Lange “unfolded” Lange “folded”

Centerband: 

/ 4l 

Centerband: 

/ 4l 



Designing a multiconductor coupler

• Assume we know the centerband coupling C, the closing impedance 

R0 (e.g. 50 Ohm) and the number of lines k.

• It can be shown that:

• where R= Z0o (2) /Z0e (2), r =Z0o (2) Z0e (2); Z0o (2)  and Z0d (2) are the 

odd and even mode impedances of a two-conductor line with the same

geometrical parameters w and G, substrate etc. 

• The two previous equations can be solved in order to find 

– the impedance ratio R= Z0o (2) /Z0e (2)

– the impedance product r =Z0o (2) Z0e (2) 

• From these we obtain Z0o (2)  and Z0e (2), synthesis formulae exist 

giving the slot and line width needed to implement the two 

impedances.

• Of course the same formulae can be exploited for analysis
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Example: 3dB 50 Ohm Lange coupler 
on GaAs

• With k=4 and C=1/sqrt(2) we obtain (from first equation):

• i.e. solving for R and substituting (second equation, closing 

impedance 50 Ohm):

• The two-strip impedance is:

– Odd mode 53 Ohm

– Even mode 177 Ohm

• An idea of the required spacing and strip thickness can be 

obtained from the graph in the next slide; for the 2 conductor 

plain coupler the odd and even mode impedances were 

around 120 and 20 Ohm, much less favourable
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Design chart for the coupler 
(epsilon_r=13)

2 conductors

4 conductors
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Coupling vs. R=Z_odd/Z_even

Coupling, dB

R= Z0o (2) /Z0e (2)



Matching impedance vs. R

R= Z0o (2) /Z0e (2)
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Interference couplers

Rat race or hybrid ring coupler

Branch line coupler

3dB     Generic coupling                                

Centerband: branch coupler side / 4,  hybrid ring periphery 3 / 2 

90 hybrid

180 hybrid



Lumped interference couplers

• Idea: replace at centerband 
a lambda/4 section with a pi 
lumped section

• ~Same behavior around 
centerband

Lumped parameter branch-line coupler: left, implementation from π sections; right, 
practical implementation.



Example: lumped section as 
quarter-wave transformer
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Example: 50200 Ohm 
transformer at 5 GHz

• 50 Ohm load, 100 Ohm line, lambda/4 @5 GHz
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Features of interference couplers

• Large layout size (square or circular layout, side of the 

order of lambda/4 at centerband)

• Lumped implementations possibile in integrated form till 

~25-30 GHz

• Compact implementations based on coupled 

transmission line sections are also possible

• 180 degrees hybrids possible besides 90 degrees 

hybrids

• 3dB couplers easy to implement, low coupling couplers 

almost impossible to implement

• Narrowband couplers anyway.



Branch-line couplers, frequency 
behavior vs. Lange couper



Outline

• Coupled lines

• Directional couplers

• Power dividers and combiners



Power dividers and combiners

• The aim is to divide the input power (dividers) or 

combine several output powers (combiners) 

uniformly, granting impedance matching at all ports.

• Usually narrowband, can be made wideband by 

multisection structures

• Directional couplers can be exploited but ad hoc 

combiners are preferred  several solutions 

available, a classical example is the Wilkinson 

combiner / divider.



Wilkinson divider  – Layout and Y 
matrix



Wilkinson power divider (combiner)

• The two lines are a quarter wavelength at centerband

• The divider is narrowband and splits in two the input 

power

• If the structure is perfecty balanced at the output the 

resistor is redundant



Even-odd proof of R = 2Z0 - I

• We want to check that the parallel resistance 

grants matching in port 2 and 3
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Even-odd proof of R = 2Z0 - II

• Decomposition into even and odd mode excitation: 
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Even-odd proof of R = 2Z0 - III

• Decomposition into even and odd mode excitation: 

odd
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Even-odd proof of R = 2Z0 - IV

• Summing the even and odd mode currents we find 

I=Eg/2R0 the input resistance is R0 at port 2 (same at 

port 3)
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N-branch Wilkinson divider/combiner



Example of n-branch combiner

• Combining more modules is straightforward

but combiner loss will increase
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Lumped parameter Wilkinson

lumped

/4 line 

lumped 

Wilkinson


