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Gains in a loaded two-port



Power (conjugate) match max. power 
transfer – usual approach
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Forward and backward wave 
generators



Power transfer in a loaded one-port
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Analysis of loaded two-port



Solution in terms of power waves

• Solving the system one has:

is the determinant of the S matrix
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Some input port parameters

• Input reflection coefficient:

• Input power:

alternatively:



Input reflection coefficient - proof
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Output equivalent circuit

• It is useful to evaluate the equivalent circuit of the two-

port as seen from the output port:



Output equivalent circuit

• It is useful to evaluate the equivalent circuit of the two-

port as seen from the output port:



Proof

• Load the output with the normalization resistance, 

the input gamma will be by definition S11 thus:

• The output gamma is obtained by superposition 

setting b0 =0 and using the input gamma result.
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 from the input port circuit
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Power on the load

• Equivalent expressions:



Two-port gains

• Having defined:

– The input power at port 1

– The generator (input) available power 

– The power on the load

– The load (output) available power 

we define the following power ratios:

– Operational gain 

– Available power gain 

– Transducer gain 
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A note on gain measurements

• The transducer gain is easy to measure because 

it only require a power measurement on the load 

 the input available power is derived from the 

generator setup (e.g. I set 100 mW available 

power on a 50 Ohm generator)

• The measurement of the available power gain 

further requires to match the output load (a so-

called load-pull measurement)

• The operational power gain requires input and 

output power measurement  setup similar to the 

S-matrix measurement, a network analyzer is 

required (also scalar, only magnitudes of power 

waves, not phases)



What do gains depend on?

• Apart from the S parameters, gains depend on the 

load and generator reflection coefficients as follows:

– Operational gain  on GL 

– Available power gain  GG

– Transducer gain  on GL and GG .

• Why? 
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Why?

• Operational gain  on GL 

– In fact if the generator impedance is changed, this 

changes the input matching and the input power, but the 

power on the load changes of the same amount

• Available power gain on GG

– By definition the available power at the output is the 

power on the load when power transfer on the load is 

maximum (conjugate matching), thus the load 

impedance is related to the generator impedance

• Transducer gain  on GL and GG

– In this case the input available power changes with 

generator gamma while the power on the load changes 

with the generator and load gamma (both independently)



Maximum gain and maximum 
power transfer: same thing?

• The maximum power transfer occurs when the 

generator yields the maximum power, i.e. 

– the input power is the generator (input) available power

– the power on the load is the output available power

• The maximum power transfer implies power 

impedance matching simultaneously at the input 

and output (if this is possible)

• The maximum power transfer implies maximum 

gain (for all gains!), but maximum gain alone

implies maximum power transfer only for 

transducer gain, see later.



Power transfer and gains - I
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Power transfer and gains - II
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Power transfer and gains – III
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Operational gain 

• We start with operational gain – easier to optimize since it 

only depends on the (complex) load gamma [We could 

have started from available power gain as well]

• Doing all the math we obtain:

• or:

• The operational gain is a real function of the complex 

variable “gamma of the load” which is in turn defined in the 

Smith chart  let us have a look at constant gain curves



Operational gain - proof
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Notice that the input and load power depend on the generator 

gamma in the same way  their ratio is independent on the 

generator gamma



Constant operational gain circles

• The constant level curves of 

the operational gain in the 

complex plane  GL  are circles

• The gain is maximum in a 

point  optimum GL; the 

maximum gain is:

• However this maximum exists 

only if             where:

Linville (Rollet) 

stability factor



The Unilateral Case (S12=0)

• Simple if considered as a particular case

• To be dealt with care if derived from the general previous seen 

expressions since K∞ when S120 ......
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The Unilateral case from the general approach 1

From the Rollet formula 
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The Unilateral case from the general approach 2

Instead, when S120  but K-∞ GOPMAX is going to -∞ too. 

That means instability!

The negative sign of GOPMAX means also that one of the two ports 

has the power flowing in reverted direction.

From the expression
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We can see that in a unilateral device condition K+∞ is verified 

when |S11|<1 and |S22|<1 while K-∞ if |S11|>1 or |S22|>1 

[In the case |S11|>1 and |S22|>1 both port powers have reverted sign 

so that the power flow is not going from generator to load, but in the 

opposite direction, and virtually the gain is positive.]
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Max. operational gain & max. power 
transfer

• If K>=1 the operational gain has a maximum; the 
condition on K corresponds to an unconditionally stable 
two-port  i.e. a two port stable for any choice of load 
and generator impedances

• When the operational gain is maximum (condition on 
optimum load gamma) the maximum power transfer
between generator and load occurs when the 
generator is power matched to the two-port input 
(condition on optimum generator gamma)

• The set of two optimum load and generator gammas 
corresponds to simultaneous power matching at the 
two ports (for analytic expressions of optimum gammas 
see text)



Available power gain

• One has:

or:

• The available power gain is defined by its constant level 

curves in the complex plane GG  (circles again!). The gain 

is zero on the Smith chart unit circle (reactive source 

impedance  infinite input available power)  dual 

situation vs. operational gain
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Available power gain - proof

 
 

 

 

*

*

22

11

2 2

2 0

0 ,2 2

2 2 2
2 2

0 21
0 21

,out2 2 2 2

11 11

2 22

,out 0 21

22 2
, 011

22

21

111

1

1 1

1

1 1 1 1

1

1 1

1

1

in G

L out

S G
out

G

in

in av in

G in G

L

L av

L out G out G

av G

av

av in out G

G

S

S

b
P b P

b S b S
P P

S S

P b S
G

P bS

S

S

G G

G G

 G
G 

 G

 G
  

 G G  G

 G
  

 G G  G  G  G

 G
  

 G  G

 G


 G
2 2

22G S GS   G

The input and output 

available power do not 

depend on the load gamma 

 their ratio is independent 

on the load gamma



Gop – Gav duality and maximum values

• Taking into account that the two following formulae are 

obtained by exchanging 12, LG (the determinant ad 

K are invariant with respect to this change):

• we immediately get the two maxima:

• i.e.: 
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Maximum available gain (MAG)

• MAG coincides with maximum operational gain, but 

again a maximum exists only for K >=1 

(unconditionally stable two-port)

• MAG corresponds to an optimum choice of 

generator gamma, to achieve maximum power 

transfer we also have to power match the load to the 

two-port output (optimum load gamma)

• We obtain again that maximum power transfer 

corresponds to conjugate matching at the two ports 

simultaneously  same condition already 

discussed



Transducer gain

• One has the following espression, depending on both 
generator and load gammas:

the optimum condition directly corresponds to maximum 
power transfer, i.e. again to simultaneous conjugate 
matching at ports 1 and 2:

• The optimum transducer gain (obviously) is the same as 
MAG and maximum operational gain.
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Transducer gain - proof
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Unilateral transducer gain

• Transducer gain of a unilateral device where S12=0 (is that 

meaningful and why? “always” unconditionally stable):

the maximum unilateral gain (MUG) is obtained when the 

two ports are power matched, a condition which can now 

be obtained separately at port 1 and 2:



Summary and MSG (Maximum 
Stable Gain)
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Conclusion on simultaneous 
power matching

• Simultaneous power matching leads to maximum 

gain(s) and maximum power transfer  basic design of 

maximum gain amplifier

• Can be implemented only if the stability factor is equal to 

or larger than one  this happens if the device is 

unconditionally stable (unconditional stability implies 

K>=1)

• Names to be remembered: 

– MAG (Maximum Available Gain, the maximum gain); 

– MSG (Maximum Stable Gain, often used as a figure of 

merit as a function of frequency if the device is 

potentially unstable); 

– MUG (Maximum Unilateral Gain, less important)


