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Stability issues in a two-port

• A loaded two-port is here a model for a linear amplifier, 

including an active device  in certain conditions the 

structure can be unstable, i.e. it can oscillate

• Instability and oscillations correspond to nonzero solution 

with zero forcing term, i.e. zero system determinant:

• This condition can be expressed equivalently:



Unconditional & conditional stability - I

• We assume that load and generator are passive (gamma 

with magnitude <1) and that the two-port is stable when 

closed on the normalization impedances (reasonable, 

why?), i.e.:

• it follows that:

• Therefore the instability condition can only derive from:

11 22

11 22

1, 1

1 0, 1 0

G L

G L

S S

S S

    

      

   1 0 1 0G in L out     



Unconditional & conditional stability - II

• Two possibilities (generator and load gamma are 

considered as passive  magnitude <1, within the unit 

circle in Smith chart):

– For every possible L we have |in| < 1 & for every 

possible  G we have |out| < 1  unconditional 

stability

– For some L  |in| ≥ 1 or for some G  |out| ≥ 1 

conditional stability or potential instability



Graphical representation: 
unconditional stability

• Taking into account that in (L ) and out (G ) are  

bilinear transformations of complex variables that turn 

circles into circles in the respective complex planes we 

have the graphical interpretation:

Unconditionally stable



Graphical representation:
conditional stability

Potentially unstable



Stability circles - I

• In practice we prefer to consider the counterimage of 

the interior of the unit circle in the in  (out ) in the 

plane L  (G )  output (input) stability circles, e.g.:

L

in



Stability circles - II

• !!! WARNING !!! The counterimage of the interior of the 

unit circle of the plane in  (out ) in plane L  (G ) can be 

the interior but also the exterior of the output (input) 

stability circle:

in

L



Stability circles - III

• To solve the ambiguity, 

take into account that:

– to L=0 (G =0) a |in| < 

1, |out | < 1 should 

correspond.

– Why? because in this 

case in= S11, out= S22 

and we suppose that 

those have magnitude 

<1

• The center of the Smith 

chart is in the stable 

zone (in light blue)
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Example – output stability circle

Unconditionally stable



Example – input stability circle

Potentially unstable



Other examples 
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Stability and gain - I

• The two sets corresponding to the potential instability 

condition:

are (in the L or G plane) circles (||=1) + their internal 

or external region

• Examples:
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Stability and gain - II

• On the circles corresponding to the limit of potential 

instability condition the related gains  infinity (check, see 

next slide):

• In an unconditionally stable two-port the “unstable” region 

fall outside the Smith chart and the gains have a well 

defined maximum (MAG)

• In a potentially unstable two-port the “unstable” region falls 

in part within the Smith chart and therefore a maximum gain 

does not exist any more, gain becomes infinity on a set of 

points within the Smith chart
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Stability and gain - III
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Example: available gain, unconditionally 
stable

MAG condition

Constant gain

circles

All the Smith chart

is in the stable 

region

Unstable region



Example: available gain, almost 
potentially unstable
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Example: available gain, potentially 
unstable

Constant gain

circles

Part of the 

Smith chart is 
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Gain to infinity
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Stability and amplifier design

• The maximum gain design is possible through 

simultaneous conjugate matching only if the two-port is 

unconditionally stable on the operating bandwidth

• If the two-port is potentially unstable we have to choices:

– Choose a load and generator condition far enough away from the 

unstable region (critical!)

– Stabilize the two-port through resistive networks (safer, our choice 

always)

• Low-frequency (out-of-band) stability is always to be 

checked and made sure of (why? See next slides, the 

problem lies with amplifier saturation due to “self jamming”)

• How do you know that a two-port is unconditionally stable? 

See “stability criteria”



An amplifier (approximate) system model

• The model is nonlinear and is often called “descriptive function 

model”; it goes beyond the small-signal linear approximation

• G is the complex “descriptive function” (of a real variable) relating 

the input and output signal envelopes. 

• Note that the input envelope can be a constant + a sinusoidal 

signal so that the total input is made of two frequencies.

• The model accounts for gain compression and intermodulation 

distortion
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Descriptive function - example
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Effect of out-of-band oscillations

• Suppose the signal input x of the amplifier is affected by a 

large interferer X generated by self-oscillations:

• While the gain for x is large, the gain for X is small:

• The gain for the “good” part of the total signal will be also 

small  the amplifier is desensitized, i.e. dominated by out-

of-band oscillations:
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Stability criteria (classical)

• It can be shown that a necessary and sufficient 

condition for stability is the set made by the following 

two conditions (other equivalent choices exist for the 

second condition):



Example: reactive two-port

a

 For a reactive two-port SS  1 since the S-matrix is symmetrical

 It follows |S |2  1 (determinant of product of two matrices)

 Moreover expanding SS  1 one has:

|S11 |2  |S12 |2  1

|S22 |2  |S12 |2  1

 Thus:

K  1  |S11 |2  |S22 |2  |S |2

2|S12 |2



1  1  |S12 |2  1  |S12 |2  1

2|S12 |2
 1



Single-parameter stability criterion

• More recently a single-parameter, completely 

equivalent stability criterion was introduced, based 

on verifying one of the two following conditions (the 

other one follows):
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Single-frequency stability: examples

degrees degrees degrees degrees



Stable or potentially unstable?

TYPE

degrees degrees
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Stability as a function of frequency

• In general stability changes with frequency, at low 

frequency devices have high gain and are potentially 

more unstable, gain decreases with frequency finally 

leading to an unconditionally stable device

• In the transition from the stable to the potentially 

unstable regions there is a frequency at which K=1 

at that frequency MAG=MSG

• In the potentially unstable frequency range MSG is 

used as a figure of merit

• High-frequency devices typically need low-frequency 

stabilization to prevent out-of-band oscillations
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Stability vs. frequency in a MESFET 
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Gain parameters versus frequency
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