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Scattering parameters



Forward and backward voltages along a line

• In a homogeneous line, the forward and backward voltages 

in a point univoquely determine the voltage and currents on 

the whole line:
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The reflection coefficient

• Defined as the ratio between the backward and forward 

waves:
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Mapping between gamma and zeta planes

• The trasformation gamma  zeta and viceversa defines 

the mapping between the complex planes zeta & gamma

• Straight lines in zeta plane become circles or straight 

lines in gamma plane, and viceversa

• In particular, constant resistance lines in zeta plane 

become circles in gamma plane, constant reactance 

lines in zeta plane become circles in gamma plane

• Particular points (origin, unit circle in gamma plane): 
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Constant resistance (-) and reactance (- -) 
circles



The Smith chart - reminder

• Graphical representation 

of the relationship 

between the reflection 

coefficient and the 

normalized impedance

(R=const. and X=const. 

lines in gamma plane):
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The reflection coefficient on the Smith 
chart & the use of the Smith chart

• Gamma rotates on the gamma 

plane along a line, thus allowing 

for a simple graphical way to 

evaluate the line impedance 

section by section

• Addition of series or parallel 

elements  the Smith chart as 

a design tool for matching 

sections (parallel stub here)

• Using the Smith chart as a graphical 

computer is today (almost) a lost art, 

but the chart still is ubiquitous as a 

representation tool
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Representing a linear n-port

• A linear n-port without internal independent generators in 

sinusoidal steady-state can be described by a matrix 

relationship between current and voltage phasors 
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Why S (scattering) parameters

• Total voltages and currents are difficult to measure at 

RF and microwaves, and even the definition of these 

quantities may be questionable in some cases 

(waveguide).

• In the measurement of conventional (Z,Y…) two-port 

parameters, short and open circuits are required. 

However, they are difficult to realise over a broad 

band of frequencies.

• Most active devices or circuits are not open- or short 

circuit stable

• Solution  measurement of progressive & regressive 

waves made on matched load  SCATTERING 

PARAMETERS



Power wave rationale

• All the black box parameters previously introduced are 

based on the total voltages and currents.

• Note that these total voltages can be considered to be 

composed out of positive and negative going (progressive 

and regressive, forward and backward) waves (as in a TX 

line).

• For higher frequencies it is often more convenient to use a 

two-port description in terms of forward and backward 

waves (called power waves)

• Power waves can be formally defined also in a lumped-

parameter structure



What are power waves

• Voltage and current phasors in a port can be replaced by 

two proper linear combinations of them called power 

waves ak and bk

• Since V and I phasors have different dimensions the 

combination requires (for each port) a parameter (called 

normalization impedance) having the dimension of an 

impedance

The normalization impedance 

for port k, Z0k is arbitrary but 

typically assumed as real 

normalization resistance R0k

 0 0 kZ



The definition of power waves (real 
normalization impedance)

Z0k=R0k real and positive 



Closing a port on its normalization 
resistance

• In a port closed on its normalization resistance the 

backward wave b is identically zero!

• This does not generally imply any “matching” in 

the meaning of maximum power transfer….
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Why “power” waves?

• Power entering the k-th port:

      * * *    k k k k k k kP V I a b a b
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2 2*  k k k k kP V I a b

...

ak forward power wave

bk backward power wave

Power wave dimensions:  W



• Given a section z of a T-line of impedance Z0 power waves are 

connected to progressive and regressive waves:

• Power running on the line:

Power waves and transmission lines I
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Power waves and transmission lines II

• While in a transmission line power waves 
exist from a physical standpoint as forward 
and backward waves, in a n-port their 
definition is “formal”  no propagation 
implied

• The normalization impedance does not have 
a physical meaning as the characteristic 
impedance does



The scattering matrix
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of power waves a linear relationship

is obtained between a and b



S matrix in terms of Z matrix

...

• Take care: matrices functions of the same matrix 

commute (AB=BA, in general false)!

• If normalization impedances are the same for all ports 

(typically 50 Ohm):

 0 0 01/ R G R
0

R I



Other conversion formulae

1/2 1/2 1/2 1/2
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Some S-matrix properties

• Total power dissipated by n-port:

• Lossless (reactive) device:

• Reciprocal device:

• For a passive device the eigenvalues of            
have magnitude <1 
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Example – Does the choice of Z0

change the circuit solution? - I
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Example – Does the choice of Z0

change the circuit solution? - II
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n-port with independent sources

0 ZV I V

Open circuit 

voltages  ≠ 0 

0 YI V I

Short-circuit 

currents ≠ 0

b power waves ≠ 0 when all 

ports are closed on the 

normalization impedances  

( all  a=0, check!)



Forward & backward power wave 
generators

• While in series / parallel representations ideal voltage 

and current sources are introduced, in the power wave 

representation of non-autonomous n-ports we introduce 

forward and backward power wave generators



Why the symbol: forward wave 
generator = voltage + current source
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Equivalent circuit of autonomous 
n-port

b0 can be 
derived from 
open-circuit 
voltages



Example: real voltage generator I
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Example: real voltage generator II

if ZG=R0
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Measuring the S matrix – two port I

• We need  to cancel a2 and measure the response at port 1 

• Port 2 is closed on the normalization resistance, in this 
case we have (check!):

• Therefore scattering parameters are measured on an n-port 
closed on resistive loads (potentially wideband)
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Measuring the S matrix – two port II

• We need  to cancel a1 and measure the response at port 2 

• Port 1 is closed on the normalization resistance, in this 
case we have (check!):

• Therefore scattering parameters are measured on an n-port 
closed on resistive loads (potentially wideband)
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Setup to measure the j-th column of S (n-port)



Further remarks

• To evaluate the S parameters we can conveniently make 

use of a generator with internal impedance equal to the 

normalization resistance, to change column we only need 

to change the generator

• The diagonal of S corresponds to the reflection coefficients 

seen from each port when all others are closed on the 

normalization resistances

• For the out-of-diagonal coefficients (transmission 

coefficients) we have (check!):



Solving a network made of connected n-
ports 

• A network deriving from the connection of several n-

ports can be solved by exploiting as unknowns the 

power waves and as constitutive equations the 

scattering matrices of each n-port

• For example, in a network with m 2-ports we have 

4m unknowns but also 2m constitutive relationships 

(from scattering parameters) and 2m continuity 

relationships derived from the Kirchhoff voltage and 

current laws

• Power waves are not necessarily continuous across 

two connected ports  only if the normalization 

impedance is the same on both sides



Connecting n-ports power wave 
continuity

• If the normalization impedances 

are different the linear relationship 

between power waves is non-

diagonal

• If they are equal the simple 

continuity holds:
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Reference plane shift I

• Suppose we 

connect to all ports 

transmission line 

with characteristic 

impedance equal 

to the port 

nomalization 

impedance, how is 

the S matrix 

transformed?

n-port

port 1

port k

port (k+1)

port n

Zk

Zk+1
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Zn



Reference plane shift II

Port i

Port j



Example: loaded line input impedance
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Scattering matrix of a line section

• We choose R01=R02=Z

• If the normalization resistance is different from Z

• :
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Proof with reference plane shift

• We choose R01=R02=Z

• Start with a two-port made of two short circuits.

• Close on the normalization resistance at port 2 and excite at port 1 

with a real generator having the normalization resistance as the 

internal resistance

• The reflection coefficient is 0 because of matching and furthermore 

(the structure is symmetrical and reciprocal):
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