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Stability issues in a two-port

« A loaded two-port is here a model for a linear amplifier,
Including an active device - in certain conditions the
structure can be unstable, i.e. it can oscillate

* Instability and oscillations correspond to nonzero solution
with zero forcing term, I.e. zero system determinant:
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« This condition can be expressed equivalently:

(1=51Te)1=Tlow) = 0 (1 =80 )(1 =Tely,) = 0



Unconditional & conditional stability - |

« We assume that load and generator are passive (gammf
with magnitude <1) and that the two-port is stable when

closed on the normalization impedances (reasonable,
why?), I.e.:

‘511| <1 ‘SQQ‘ <1
|t follows that:

Suls|<L |S,I|<1-
—1-8,[,|>0, [1-S,I, |>0

« Therefore the instability condition can only derive from:

(1-T,I;,)=0<=~(1-I'T,,)=0



Unconditional & conditional stability - Il

el = 1 Iplowe = 1
S11 — AgT'y, So2 — AsTl'a
1 — SQQTL 1-51Tq

« Two possibilities (generator and load gamma are
considered as passive - magnitude <1, within the unit
circle in Smith chart):

— For every possible I', we have |I';,| <1 & for every
possible T'; we have [, <1 = unconditional
stability
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conditional stability or potential instability



Graphical representation:
unconditional stability

« Taking into account thatI';, (I', ) and ' (I'g) are
bilinear transformations of complex variables that turn

circles into circles in the respective complex planes we
have the graphical interpretation:

Unconditionally stable



Graphical representation:
conditional stability

Potentially unstable



Stability circles - |

 In practice we prefer to consider the counterimage of
the interior of the unit circle in the Ty, (I',,¢) In the
plane I'l (I'g) = output (input) stability circles, e.qg.:

in




Stability circles - |

« IH'WARNING ! The counterimage of the interior of the

unit circle of the plane I, (I'y,;) In plane I', (I'g) can be
the interior but also the exterior of the output (input)

stabllity circle:




Stability circles - |l

* To solve the ambiguity,
take into account that:
—tol =0 (Tg=0)a|l}| <
1, [Ty ] <1 should
correspond.

— Why? because in this
case I'i;= Syg, I'ou™ Sz
and we suppose that
those have magnitude
<1

 The center of the Smith
chart is in the stable
zone (in light blue)




Example — output stability circle

Unconditionally stable




Example — input stability circle

Potentially unstable




Other examples

Unconditionally stable
unstable




Stability and gain - |

* The two sets corresponding to the potential instability

condition:
Fin (FL )| _ S11 B ASFL

1-S,,I',

>1 S22 B ASFG

1_‘out (FG )| =

are (inthe I', or I'; plane) circles (|I'|=1) + their internal
or external region

« Examples:

I




Stability and gain - I

* On the circles corresponding to the limit of potential
Instability condition the related gains = infinity (check, see
next slide):

r,(T)=1-G,, ==

1_*out (FG )‘ :1_) Gav =X

 In an unconditionally stable two-port the “unstable” region
fall outside the Smith chart and the gains have a well
defined maximum (MAG)

* |n a potentially unstable two-port the “unstable” region falls
In part within the Smith chart and therefore a maximum gain
does not exist any more, gain becomes infinity on a set of
points within the Smith chart




Stability and gain - I
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Example: available gain, unconditionally

stable

Constant gain
circles

All the Smith chart
IS In the stable
region




Example: available gain, almost

potentially unstable
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Example: available gain, potentially
unstable

Constant gain
circles

Part of the
Smith chart is
outside the
stable region




Stability and amplifier design

The maximum gain design is possible through
simultaneous conjugate matching only if the two-port is
unconditionally stable on the operating bandwidth

If the two-port is potentially unstable we have to choices:

— Choose a load and generator condition far enough away from the
unstable region (critical!)

— Stabilize the two-port through resistive networks (safer, our choice
always)
Low-frequency (out-of-band) stability is always to be
checked and made sure of (why? See next slides, the
problem lies with amplifier saturation due to “self jamming”)

How do you know that a two-port is unconditionally stable?
See “stability criteria”



An amplifier (approximate) system model

 The model is nonlinear and is often called “descriptive function
model”; it goes beyond the small-signal linear approximation

input — x(t) = Re{X(t)exp(je,t)}
output — y(t) = Re{J(t)exp(ja,t)}

§(t) = G(|X(t)]) R(t)

« G is the complex “descriptive function” (of a real variable) relating
the input and output signal envelopes.

* Note that the input envelope can be a constant + a sinusoidal
signal so that the total input is made of two frequencies.

« The model accounts for gain compression and intermodulation
distortion



Descriptive function - example
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Effect of out-of-band oscillations

+ Suppose the signal input x of the amplifier is affected by a
large interferer X generated by self-oscillations:

)A(tot = X(t) + X (1)
« While the gain for x is large, the gain for X is small:

G(|(t)]) = G.. G(\x (t)\) =G, |g|<]C

SS‘

* The gain for the “good” part of the total signal will be also
small - the amplifier is desensitized, i.e. dominated by out-
of-band oscillations:

d

R+ X

) ~ G, — §~G,R(t)+G,X (1)

negligible dominant
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Stability criteria (classical)

« It can be shown that a necessary and sufficient
condition for stabllity is the set made by the following
two conditions (other equivalent choices exist for the

second condition):

> 1

_ 1S — |Sul* + |As/’

K
2 [591512]

’A3’ < 1




Example: reactive two-port

For a reactive two-port SS* = 1 since the S-matrix is symmetrical
It follows |As|? = 1 (determinant of product of two matrices)
Moreover expanding SS* = 1 one has:

Thus:

K

|811|2 + |812|2 =1

|822|2 + |812|2 =1

1|81l ~[S2|* +|As|® _

2|S 122
1-(1-S1|%) -1 -|Sn|?)+1 4

2|312|2



Single-parameter stability criterion

* More recently a single-parameter, completely
equivalent stability criterion was introduced, based
on verifying one of the two following conditions (the

other one follows):

e ‘Sll‘ >1
| =

‘Szz SllA “"‘812821‘
Hy = ‘822‘ >1

‘811 SzzA “" ‘812821‘



Single-frequency stability: examples

St | ph(Si). | S| | phiSi2) | [Sa1] | phiSs1). | [S%2] | ph(Sas).

degrees degrees degrees degrees
1| 0.2 20 0.05 120 3 30) 0.5 =50
21 0.75 -6(0) 0.3 70) s a0 0.5 60
30 1.05 20 (.05 120} 3 40 0.5 -50
41 0.5 0 0.025 1 %0 2 0 0.1 0
S 0.95 -22 0.04 80 3.5 165 0.61 -13
6| 0.69 -123 0.11 48 1.29 Th 0.52 =77
T 0.1 (0 () 0 (0 0 (.3 0
s 1.2 0 0 () (0 () 0.3 ()
91 0.1 (0 () (0 0 (0 1.3 (0




Stable or potentially unstable?

I Ag| | TYPE | ['gopel | PR gope s | [ Diope| | PRIz 0 | Garax.
degrees degrees dB
I | 2.57 | 0.249 | ST 0.10 -20 0.45 50 10.8
2| 1.34 | 2.156 | UNST | undef. undef. undef. undef. undef.
31 0.34 | 0.673 | UNST | undef. undef. undef. undef. undef.
4 750 0.1 ST 0.50 0 0.07 0 7.3
510,19 | 0.572 | UNST | undef. undef undef. undef. undef.
61 1.12 10254 ST .88 127 .82 86 8.6
71 ¢ | 0.03 ST 0.1 0 0.3 0 ()
8| —n~c | 0.36 | UNST | undef. undef undef. undef. undef.
Y| —oc | 0.13 | UNST | undef. undef. undef. undef. undef.




Stability as a function of frequency

 In general stability changes with frequency, at low
frequency devices have high gain and are potentially
more unstable, gain decreases with frequency finally
leading to an unconditionally stable device

* In the transition from the stable to the potentially
unstable regions there is a frequency at which K=1 -
at that frequency MAG=MSG

* In the potentially unstable frequency range MSG is
used as a figure of merit

« High-frequency devices typically need low-frequency
stabilization to prevent out-of-band oscillations
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Stability vs. frequency in a MESFET
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f-GHz | |Sul| | én Sal | ¢u S1i2| | 12 || [S22| | d22
1.000 0.949 | -29.8 | 4.825 | 151.1 || 0.038 | 72.1 || 0.781 | -14.4
/\K 2.000 0.821 | -59.8 | 4.531 | 123.8 || 0.070 | 56.0 || 0.696 | -28.9
e ——

3.000 0.648 | -94.2 | 4.092 | 97.6 | 0.092 |41.4 | 0.600 | -42.4

/ 4.000 0.512 | -133.0 || 3.516 | 73.9 | 0.102 | 30.5 || 0.518 | -51.8

\\ / 5.000 0.472 | -165.2 || 3.025 | 54.7 | 0.108 | 25.3 || 0.444 | -57.8

/\ 6.000 0.464 | 176.0 || 2.714 | 384 | 0.118 | 23.7| 0.367 | -65.4

/ \ 7.000 0.441 | 158.2 |/ 2.505 | 22.1 | 0.134|20.2 | 0.302 | -80.8
|AS| /’ 8.000 0411 | 127.5 | 2.321 | 4.0 0.151 | 15.0 || 0.281 | -105.9
9.000 0.454 | 914 2.093 | -15.1 || 0.168 | 7.0 | 0.300 | -134.2
10.000 | 0.551 | 66.6 1.836 | -34.5 || 0.181 | -2.8 || 0.328 | -169.8
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Gain parameters versus frequency
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