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Transmission line review

• LC (lossless) line

• Telegraphers’ equation:

• The solution can be 

expressed in terms of 

forward and backward 

propagating waves with 

(phase) velocity:
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Forward and backward waves

• For time-harmonic waves:
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• Therefore a harmonic 

wave in a lossless line has 

time and space periodicity
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More on the characteristic impedance

• It is defined as the ratio between the progressive voltage phasor and 

the progressive current phasor (regressive with a minus sign)

• If the line only support a progressive wave (i.e. it is matched at the 

end) this coincides with the driving point impedance

• The charateristic impedance is also the driving point impedance of a 

infinitely long line provided there are losses

• In the general case of a lossy line the characteristic impedance may 

become complex
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Line with series and shunt losses

• Frequency-domain (phasor) 

solution easier

• The line equations become in 

frequency domain:
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Frequency-domain (phasor) 
solution for lossy lines

• Forward and 

backward line 

voltages

• Complex 

propagation 

constant

• Characteristic 

impedance
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Interpretation of solution for lossy line

• The solution is the superposition of two terms:

– A forward (progressive) wave propagating towards 

right and attenuating in the propagation direction

– A backward (regressive) wave propagating towards left 

and attenuating in the propagation direction

• The characteristic impedance is the voltage/current 

ratio for a forward and backward wave

• The voltage is defined only in the line cross section!!

• Imposing load and generator conditions we can evaluate 

the amplitude of forward and backward waves for voltage 

 also for current; mathematically speaking the problem 

is well posed.



Example of loaded line solution 
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Input impedance of loaded line

• Generic loaded line:
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Particular cases

• ZL=0                                                                            

• ZL=

• ZL=Z

• (Lossy) infinite-length  line, load whatsoever:
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Short lines in short and open
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More on line parameters

• From the propagation constant  the guided wavelength is:

• This describes the spatial periodicity of voltages and 

currents on the transmission line

• The line attenuation can be expressed in natural (Np/m) or 

log (dB/m, dB/cm) units; given ain Np/m one has:
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0 0

ε  effective permittivity

λ λ2π
λ ,   

β ε

n
eff

g

effeff eff
n


   





Parameter dispersion due to losses

• Line losses introduce frequency dependence of the line 

parameters

• Moreover, the p.u.l. resistance depends on frequency

on its own due to skin effect (?) and the same does the 

p.u.l. conductance related to the loss angle (??)

• We can separate:

– the low-frequency (RG) regime  negligible reactive effects, 

the line is a distributed lossy system

– the intermediate frequency (RC)  reactive capacitive effects

prevail over inductive (typically, may be the opposite)

– and the high-frequency (LC) regime  reactive elements

prevail and the behavior is similar to a lossless line



The high-frequency (LC) regime

• The characteristic impedance is (almost) 

real and constant in frequency (non-

dispersive line)

• The phase velocity is contant in 

frequency (again no dispersion)

• Losses can be separated into series 

losses (R) and parallel losses (G) also 

called metal and dielectric losses, 

usually series losses prevail

• Losses are frequency dependent 

because (see later) R and G increase 

with frequency

cconductor attenuation a

ddielectric attenuation a



The high-frequency approximation
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Low frequency regime and 
intermediate frequencies

• For very low frequency the line is 

a distributed attenuator  no 

propagation, just attenuation

• For intermediate 

frequencies capacitive 

effects tipically prevail 

over inductive ones and 

the line is strongly 

dispersive  RC regime 

typical of Si-based 

integrated circuits



The skin effect: frequency behaviour of R 
and skin depth

• The per unit length (p.u.l.) resistance

increases at high frequency owing to 

the skin effect as:

• At high frequency the surface

impedance (see next slide) of the 

conductor becomes complex (resistive 

and inductive):

• Skin depth:

• Skin depth values for good 

conductors  a few 

microns at a few GHz

   0 0/f f f fR R



Surface impedance and p.u.l. 
impedance - I

sZ

• Surface or sheet resistance  impedance of a metal or 

semiconductor layer square patch of thickness t:

• Measured in Ohm/square. In a high frequency conductor:

– The equivalent thickness of the layer is the skin penetration depth

– Reactive effects add an inductive reactance 

• Thus: the skin-effect surface impedance     is the 

impedance of a metal patch of width W and length L=W

(measured in Ohm/square):
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Surface impedance and p.u.l. 
impedance - II

• For example, for a circular wire of 

radius r and for a strip of width w 

and thickness t we have:
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• For a conductor of periphery p and length l=p (the 

conductive surface is a square) the total impedance input 
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Skin depth and R vs. frequency for 
different conductivities



Skin effect p.u.l resistance and 
inductance

Skin effect 

regime

Internal 

inductance

DC regime

External 

inductance



Frequency behaviour of G

• A lossy dielectric has complex permittivity:

• Parallel admittance (Ca is the p.u.l. capacitance in 

air):

• Conductance:

• Substrate examples:

Material    Alumina    Quartz  Teflon      Beryl oxide       GaAs   InP      Si 



Frequency behaviour of line 
attenuation due to R(f ), G(f )
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Non-TEM (Transverse Electro Magnetic), 
TEM, quasi-TEM transmission lines



Non-TEM (Transverse Electro Magnetic), 
TEM, quasi-TEM transmission lines



Non-TEM (Transverse Electro Magnetic), 
TEM, quasi-TEM transmission lines



TEM vs. quasi-TEM lines

• TEM: homogeneous cross 

section, minimum two 

conductors, E and H fields in the 

cross section

• No cutoff for fundamental mode, 

higher-order modes possible

• Frequency-independent 

propagation parameters

• Low-frequency (RC) dispersion 

in lossy lines

• Quasi-TEM: non-homogeneous 

cross section, E and H field 

transversal only at low 

frequency

• No cutoff for fundamental mode, 

higher-order modes possible

• Slightly dispersive propagation 

parameters

• Low-frequency (RC) dispersion 

in lossy lines
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Further on Quasi-TEM lines parameters

• In a quasi-TEM line the 

inductance p.u.l. does not 

depend on dielectrics  same 

as in vacuo inductance

• In vacuo the propagation 

velocity is the same as the light 

velocity, thus:

• Ca is the in vauo (in air) 

capacitance. The effective  

(“average”) permettivity is such 

as:

• The impedance and 

phase velocity can be 

expressed as:

• Or, through the effective 

permittivity:



High and low impedance quasi-TEM lines

• High capacitance, 

low inductance, low 

impedance line

• Low capacitance, 

high inductance, high 

impedance line



Quasi-TEM frequency-dependent 
effective permittivity

• The quasi-TEM mode exhibits a certain amount of 

modal dispersion frequency dependent effective 

permittivity

Quasi-TEM mode

First hybrid higher-

order mode

Useful range



Planar transmission lines: the 
microstrip

Off-the-shelf

models in any CAD

tool!



Microstrip impedance vs. w/h



Microstrip effective refractive index 
vs. w/h

eff effn 
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Microstrip attenuation vs. w/h
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Planar transmission lines: the 
coplanar waveguide (CPW)

• For thick substrate, the impedance does not depend on 

the substrate thickness.

• Impedance depends on w/s  small and large lines 

can have the same impedance.

• Same losses as microstrip, layout less compact owing 

to ground planes; modal dispersion comparable to 

microstrip.

Coplanar waveguide (CPW)

Ground Ground



Characteristic parameters for thick 
substrate

• Impedance

• Effective permittivity

• Aspect ratio k



Z0 vs. a/b for CPW on allumina

Z0

a/b



Attenuation vs. a/b

•t=5 micron

•2b=600 micron

•f=10 GHz

•Loss angle 0.001

a/b

a,
dB/cm


