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Forward and backward voltages along a line

 In a homogeneous line, the forward and backward voltages
In a point univoquely determine the voltage and currents on
the whole line:

V(2) =V (2)+V~(z) =V (0)exp(-jBz) +V ~(0) exp(Bz2)
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7. exp(—JPz) 7.

= 17(0)exp(=JBz)+ 1" (0)exp(jpz) = 1"(2) + 1" () = 1(2)
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The reflection coefficient

 Defined as the ratio between the backward and forward
waves:
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Mapping between gamma and zeta planes

* The trasformation gamma -> zeta and viceversa defines
the mapping between the complex planes zeta & gamma

 Straight lines in zeta plane become circles or straight
lines in gamma plane, and viceversa

* In particular, constant resistance lines in zeta plane
become circles in gamma plane, constant reactance
lines in zeta plane become circles in gamma plane

 Particular points (origin, unit circle in gamma plane):

2=2,->T(z)= Zo=%0 _
L,+Z,
X — X?+Z2
Z = jX > T(z) =32 Z°—>\r(z)\=\/ 0 _1
IX+Z, \/X2+Z()2



Constant resistance (-) and reactance (- -)
circles

r=01/3 1 3
Z plane




The Smith chart - reminder

« Graphical representation
of the relationship
between the reflection
coefficient and the
normalized impedance
(R=const. and X=const.
lines in gamma plane):

— 1
Q=2
z+ 1
Z




The reflection coefficient on the Smith

chart & the use of the Smith chart

Lol “hol « Using the Smith chart as a graphical
Zoys L computer is today (almost) a lost art,
—» —» Z=RA1A put the chart still is ubiquitous as a
representation tool
() 9
Ry Yo ‘201 =Ly, = Ro‘

Gamma rotates on the gamma
plane along a line, thus allowing
for a simple graphical way to
evaluate the line impedance
section by section

Addition of series or parallel
elements - the Smith chart as
a design tool for matching
sections (parallel stub here)




Representing a linear n-port

« A linear n-port without internal independent generators in

sinusoidal steady-state can be described by a matrix
relationship between current and voltage phasors

port k

n-port

[;'.' F1

() -

port (k+1) TVH

E.g. for a two-port:
Series (impedance)

{Vl}{zn Zﬂh}
V2 ZZl Z22 I2

Parallel (admittance)

{ll} :{Yn le}{%}
I 2 Y21 Y22 VZ

Hybrid

|:V1i|:|:Hll H12i||:|1
|2 H21 H22 V2

|




Why S (scattering) parameters

« Total voltages and currents are difficult to measure at
RF and microwaves, and even the definition of these
guantities may be questionable in some cases
(waveguide).

* In the measurement of conventional (Z,Y...) two-port
parameters, short and open circuits are required.
However, they are difficult to realise over a broad
band of frequencies.

« Most active devices or circuits are not open- or short
circuit stable

« Solution - measurement of progressive & regressive
waves made on matched load - SCATTERING
PARAMETERS



Power wave rationale

All the black box parameters previously introduced are
based on the total voltages and currents.

Note that these total voltages can be considered to be
composed out of positive and negative going (progressive
and regressive, forward and backward) waves (asina TX
line).

For higher frequencies it is often more convenient to use a
two-port description in terms of forward and backward
waves (called power waves)

Power waves can be formally defined also in a lumped-
parameter structure



What are power waves

« Voltage and current phasors in a port can be replaced by
two proper linear combinations of them called power
waves a, and b,

« Since V and | phasors have different dimensions the
combination requires (for each port) a parameter (called
normalization impedance) having the dimension of an
Impedance

The normalization impedance

for port k, Z,, is arbitrary but ﬂ%(ZOk) > ()
typically assumed as real -
normalization resistance R,




The definition of power waves (real
normalization impedance)

Z,.=Rg real and positive

( Vi. + Rorlg %

ap = Vi. = + b )V R
Vk — RO]QI]{ I — _
b p— k
L 2V Ror \ VBor




Closing a port on its normalization
resistance

3 I'— L =R, >V =R,
NN V. +R(I, V|
/1 a= = ZQ/Rl
VA I [ o 0'L
d 2 RO RO
o b:VL_ROIL:O

2,/R,

 In a port closed on its normalization resistance the
backward wave b is identically zero!

* This does not generally imply any “matching” in
the meaning of maximum power transfer....



Why “power” waves?

« Power entering the k-th port:

P =€R(Vklk*)=9%(.(ak +bk)-(ak*—bk*))

= :ER(Vka*.):\ak\z b, [

1,
" >0
a, forward a""
orward power wave
k ”_];\“" V. port &
b, backward power wave —l__
O




Power waves and transmission lines |
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* Given a section z of a T-line of impedance Z, power waves are

connected to progressive and regressive waves:

I(Z):I++I‘:V+_V_:a\ﬁ_b\ﬁ: a b
Z, Z, Z, Z, \/Z \/Z

V(2)=V"+V " =aZ, +b\/Z, V*za\ﬁ

« Power running on the line:
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Power waves and transmission lines Il

* While in a transmission line power waves
exist from a physical standpoint as forward
and backward waves, in a n-port their
definition is “formal® - no propagation
Implied

« The normalization impedance does not have

a physical meaning as the characteristic
Impedance does




The scattering matrix

In vector form

R, =diag{Ry;, Ry, Ry, -}

=

V=,V,V,,..T
1

Z-matrix
representation

V=21

Substituting V and | in terms
of power waves a linear relationship
IS obtained between a and b

Scattering
(S) matrix
representation

b=Sa




S matrix in terms of Z matrix

S = Ry PZR;? + 1) Ry ZRV - 1) =

= R, *(Z-Ro)(Z+Ro) 'Ry,

 Take care: matrices functions of the same matrix
commute (AB=BA, in general false)!

* If normalization impedances are the same for all ports
(typically 50 Ohm):

= (GoI = Y)(GoI +Y) !




Other conversion formulae

‘S — (I + RO]./ZYRO]./Z)-]. (I _ RO]./ZYRO]./Z)‘

1Z=R2(1+9)(1-5)"R,”|

Y =R, ™(1-8)(1+5)"R,™|




Some S-matrix properties

Total power dissipated by n-port:

Py :ZNl:(|ai |2 _|bi |2) = (@T -a’-b'

b

)

(b=Sa)

a' (1-S7S")a’

Lossless (reactive) device:

‘ST*S =S'S=1 S hermitian ‘

Reciprocal device:

‘S =S' S symmetric‘

For a passive device the eigenvalues of S'S

have magnitude <1




The S-matrix of a one-port

b b
NS 7 u=h=y
/NS N\A

a

_ I', reflection coefficient
1+T
Z, =7,-"L
L —Z, 1-T',
[ = -
L +Z, y 11T,
|_ —
Z,1+T,




Example — Does the choice of Z,
change the circuit solution? - |

choose Z, =R (real)=T, =0
b=T,a=0
V+Z,I V+RI V

27, aRR
<o - L
RL

E R
Nt —=>
N =

~~o ViR
o]

 The normalization impedance “matches” the load



Example — Does the choice of Z,
change the circuit solution? - Il

R _7
real Z, =R, =T = RL +ZO : « The normalization
L 0] . .
V+Zl V(@+Z,/R,) !‘mPedame IS
a= = mismatched
2./Z, 2.7,
2 2 2
Z /R 1-7 /R
P =l bl =faf (11 )= ML R 1 e
0 |1+ZOIRL|

V| ) )
=5 (L+2Zo /R —1-Z/R[") =

0

VI

(1+|Zo IR +2R(Z, I R)—1—|Zy IR +2R(Z, / RL)) _
0
V[

%
R,

|2

4(Z,IR )=

0




n-port with independent sources

Open circuit
voltages # 0
V=Z1+V,

Short-circuit
currents # 0

1=YV+1,

b power waves # 0 when all
ports are closed on the
normalization impedances
(= all_a=0, check!)

b=

SQ‘|‘Q0

by = (R_l/z

IR, +1) 'R, PV, =

R,/ (Z+Ro) 'V, .




Forward & backward power wave
generators

While in series / parallel representations ideal voltage
and current sources are introduced, in the power wave
representation of non-autonomous n-ports we introduce
forward and backward power wave generators

CI“ b“

/_"\.,7 A‘_'\._./
i 2
O O O O
a, N b, d, N b,
b, a, b, a,
y N . F S .
O O o

J'hl =d, h =da, +b,
1/:5 =da,+a, 1[) =a,




Why the symbol: forward wave
generator = voltage + current source

V,-Rl, V,+Ryl,
2R, 2R,

=V, ~Ryl, =V, +Ryl, =V, =V, = Ryl, + R,
V,~Rl, ViR
2JR,  2yR,

=V, —Ryl, =V, +R |, +2,/R,a, =V, -V, =—R I, - R I, - 2\/R, 3,

b1=a2:>

b,=a,+a,=>




Equivalent circuit of autonomous
n-port

b 01

ey oy
RN N
a, s
t\_/
7 by canbe
A —35 derived from
© ° open-circuit
b, S by | voltages
e .
o—{p) NP
a, a,
/_\7 kk/
b, b,
e~ Ry
O O




Example: real voltage generator |

bo"“\—*y
/AR
be b, 3 =4,
Sl N, =D, +D,
FE\J o 0 = 1'edg
A d, o D, =FGa1+b0
Y I VLY
Ls +R, ’ L. +R, ’




Example: real voltage generator Il

b, 7
N\
R [ Th, o
i g
Gt g Ro[ ] | v, I Ro [] if Zo=R,
V0 A e _
—— T aG alO— bo_le VO
0
3, =0, b =b a, =a
V.R —
V== Ry (@ +h) = 0 =0
c T My b, =D,
V
= Robo_>bo:Z -I(—)R \ﬁ
G 0




Measuring the S matrix — two port |

E.,
o

 We need to cancel a, and measure the response at port 1

 Port 2 is closed on the normalization resistance, in this
case we have (check!):

Vv, a, = Egl
\/Roz 2Ry

* Therefore scattering parameters are measured on an n-port
closed on resistive loads (potentially wideband)

a,=0 Db,=



Check!

o ! . _a-b
b,
Ry — y V=-RI+E
P e a->b
Dk, bo (a+b)ﬁ=—Ro\ﬁ+Eg

(a+b+a-b) R, =E, > a= S

2R,




Measuring the S matrix — two port Il

E
2
o O +Qg b h
b £ _ _ 2
o2 2 la,=0 2 la,=0

 We need to cancel a, and measure the response at port 2

 Port 1 is closed on the normalization resistance, in this
case we have (check!):

v, Ee
ROl 2 ROZ

3,=0 b=

* Therefore scattering parameters are measured on an n-port
closed on resistive loads (potentially wideband)



Setup to measure the j-th column of S (n-port)

b i
Nap=0Vk#£] — —F~———
vy #J ROZ
a,=0 éﬁ_\:{“)/ f
Rm ? 13 V!- Rm
S
V{M _I_ I| _—
O 0
4 a =0
R be | =7 —__
0/ T | h. 5 R,
(Lj = b(; = V()j/Q\/ROj




Further remarks

* To evaluate the S parameters we can conveniently make
use of a generator with internal impedance equal to the
normalization resistance, to change column we only need
to change the generator

« The diagonal of S corresponds to the reflection coefficients
seen from each port when all others are closed on the
normalization resistances

* For the out-of-diagonal coefficients (transmission
coefficients) we have (check!):

a; = ba = Vo;/2\/Ro;.

b;
Sl = —
J| %7 (. Ry
J (ch—(_)VIlL$£J




Solving a network made of connected n-
ports

« A network deriving from the connection of several n-
ports can be solved by exploiting as unknowns the
power waves and as constitutive equations the
scattering matrices of each n-port

« For example, in a network with m 2-ports we have
4m unknowns but also 2m constitutive relationships
(from scattering parameters) and 2m continuity
relationships derived from the Kirchhoff voltage and
current laws

* Power waves are not necessarily continuous across
two connected ports - only if the normalization
Impedance is the same on both sides



Connecting n-ports =>power wave
continuity

\ﬁ(aj "‘bj):\ﬁ(ai +bi)
(a;=b;) /Ry, =—(a b)) /Ry
L

. ‘ « If the normalization impedances

—O0—0O— are different the linear relationship
between power waves is non-
diagonal

* If they are equal the simple
continuity holds:

b; b; a; =b,

V and | V=V, ‘
continuity | =—|.




Reference plane shift |

* Suppose we Z,, Z,
connect to all ports  “T——F p E—
transmission line port 1 port (k+1)
with characteristic ° °
Impedance equal nnort
to the port
nomalization G&_ Zon
Impedance, how is oot k oort n
the S matrix N i

transformed?




Reference plane shift i

bi €«

e e e e e e e e e e e e i = = ——— = — = —— = ———

doi “\> i
; boi €\ Port i i
<« > | |
i [; i i <\ dy,
E i Port J AN < b())
5 i <
; | ose |
; i = 151 = fexo s iSofesm 1) |
| [S] :

|
Sii = Spyze” kil )

exp(£jkl) = diag{ exp{Ejkil1} ... exp{Ejknin} }‘ S, = Soje I kilithit)




Example: loaded line input impedance

|
- [
a - I°) S, L Assume as the reference
: vy=o+]|B . : : Impedance Z, of the line
/. (2 ‘ I I L |
» ol l : S,=I' =—4+—2°
:I =" L +Z,
: |
|

(=

['(z')=T_exp(j2pz'+20z')

| From Tine theory |

S=I(-1)=T,_exp(-j2pl-2al) W
[ Reference plane shift | ‘S =exp(—jpl—al)S, exp(—jpl —ocl)‘

1+S _, 1+S,exp(-2yl) _ Z, +Z,tanh(yl)
1-S  °1-Sjexp(-2yl) " Z,+Z, tanh(l)




Scattering matrix of a line section

* We choose R,;=R;,=Z,,

S:( 0 exp(—JBL)j AVAYA I &/\*/\
exp(—JpL) 0 /Nap c °o &

* If the normalization resistance is different from Z_

TR )

(Re) _ c(R) = 1~(Ro)
S =S8, =0""= To evaluate S,; close the line on R
L (1+ anzw) ) +Ry (1_an2®)) and evaluate %l,n O
14T Then:S,, = F®=(Z, R, )/(Z, +R
ng:sfzm:(1+Sff°’)exp(—jBL)1 F(Lu 0 2 AR
L@
in bl O'I I-g
R,-Z :
[ =2 —= (ref impedance=2,) AN R
: Ry+Z, /\é\/ Zin (L) ’
') =1 exp(-2jpL) (ref.impedance=Z,) - 1o 5




Proof with reference plane shift

* We choose Ry,=Ry,=Z,
« Start with a two-port made of two short circuits.

« Close on the normalization resistance at port 2 and excite at port 1
with a real generator having the normalization resistance as the
Internal resistance

» The reflection coefficient is 0 because of matching and furthermore
(the structure is symmetrical and reciprocal):

\% 1
RO 1 2 SZl:SlZ:Z\iZZXE
£ B _ (01
Vi, <> R, TVZ S :(1 O) with plane shift at port 1:
-0—0

S

e B0 0 1 0 et
[o e”JEl o):(eiBL o]



