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Noise modeling and low-

noise amplifier design



Noise is a stochastic (random) process

• In real world voltages and currents are affected by small-

amplitude random fluctuations  the actual signal can 

be modeled as the ideal signal plus a stochastic process 

called noise

• Stochastic process x(t)  a bundle of random functions 

of time (realizations of the process)



Characterizing noise

• In circuits we decompose “deterministic” voltages and 

currents from their “fluctuations”; fluctuations have by 

definition zero average value.

• V and I fluctuations  noise has zero mean but nonzero 

mean square value and nonzero power spectrum 

power transfer within a circuit.

• Since noise is a (zero average) stochastic process it 

must be characterized statistically through concepts like:

– quadratic mean and mean square value

– correlation and self-correlation

– power and correlation spectra



A reminder on random processes

• A (complex valued) random process x(t) is a set of process 

realizations xk(t); we can define 

– time averages <xk(t)> (random numbers obtained averaging each 

realization in time) 

– ensemble averages E[x(t)] (a function of time obtained taking the 

statistical average of all realizations at a given time)

– for an ergodic & stationary process time and ensemble averages 

coincide  this will be our case

• Mutual (mn)  and self (m=n) correlation:

• Quadratic mean and root mean square (rms) value:
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Power and correlation spectra

• Stationary processes are better characterized in the 

spectral domain  correlation spectrum derived as the 

Fourier transform of the correlation function

• Power spectrum (Fourier transform of self-correlation):

• Spectral formulation of signal power:
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Noise spectral density and white 
noise

• White noise has (theoretically) a constant spectral density

• Coloured noise a low-pass spectral density
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Equivalent circuit of a noisy one-port

• A noisy one-port is a noiseless equivalent plus a random 

noise generator (series  Thevenin, parallel  Norton)

• Available noise power and noise generator spectra (V2/Hz, 

A2/Hz):
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Noisy two-ports

i1, i2 random correlated sources
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The cause of noise

• In a semiconductors noise is caused by velocity 

fluctuations and population fluctuations of carriers, e.g. in 

n-type conductor:

• Velocity fluctuations exist in any conductor  thermal 

noise (diffusion noise out of equilibrium)  white

• Population fluctuations (also connected with surfaces) are 

the main cause of 1/f and flicker noise  coloured

• Noise due to population fluctuations vanishes if no current 

(excess noise)

• In linear RF applications white noise dominates
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Noise models: resistor (Nyquist law)

• In a resistor the power spectrum of (thermal) noise 

generators is given by Nyquist law (T temperature, kB

Boltzmann constant):

• Noise power spectral density and rms values:

• In a passive one-port one has the generalyzed Nyquist law:
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Semiconductor device noise models

• For passive networks the Nyquist law holds

• Junction devices (diodes, bipolar transistors) exhibit 

shot noise, e.g. for a diode the short-circuit noise 

current is:

• In FET devices noise is thermal or diffusion, but no 

exact theoretical model exists relating noise generators 

to small-signal parameters; however, compact noise 

FET models synthesize the noise generators with a low 

number of parameters (e.g. the PRC model)
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FET noise model (PRC)

Thermal 

noise from 

parasitics

Gate induced 

noise

Drain noise

g (~2/3)
Correlation

~b, ~ 0.12



Two-temperature noise model
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Solving circuits with noise generators - I

• Suppose a linear circuit includes a set of (correlated and/or 

uncorrelated) noise generators, how can we compute the 

total noise power on a load or the power spectrum of a 

given voltage or current?

• We have better work in the frequency domain associating to 

each process x(t) its “Fourier transform” or “associated 

phasor” X() and exploiting the symbolic definitions:

• This definition is consistent with the transformation rules of 

the power spectrum of a random process through a linear 

system:
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Solving circuits with noise generators - II

• Procedure:

– Associate to each random voltage or current generator 

a voltage or current phasor

– The circuit is solved in frequency domain with the 

phasor technique

– Power and correlation spectra are evaluated through 

the simbolic definitions as a function of the 

(supposedly known) power and correlation spectra of 

the noise sources

– The average power exchanged are recovered by 

integrating the power densities on the system 

bandwidth (often to be specified separately 

remember the presence of bandpass filters!)
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The two-port noise figure

• From a system standpoint a commonly used amplifier noise figure of 

merit is the noise figure NF:

• In the standard NF definition the input noise is thermal noise at T0 

(conventionally ~290 K, at that temperature kT=25 meV)

• This definition as the ratio of power spectral densities is called the spot 

noise figure; we can also define NF considering power and noise on a 

certain system bandwidth:
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System definition of noise figure

• The noise figure can be also shown to admit the 

alternative system definition involving the input 

and output signal over noise ratios:

• In fact:

( / )
NF=

( / )

in

L

S N

S N

( )

( )

,

,

NF
'

/

/

nav L LL

nav L

L in

in

in av in av

L

in

in

in L

P N SN

P N N S

S

G G

NN S

N S S N

= =

=

 =

=



Spot noise figure in terms of (S/N)
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Noise temperature

• In a noiseless two-port NF=1 (e.g.: reactive two-port)

• If is the noise available power density on the load

because of the effect of the noisy two port only:
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Noise temperature

, , ,

, ,

, ,

, ,

,

, 0 0

' ''
NF

' '

'' '' /
1 1

' ' /

''
1 1 1

'

nav L nav L nav L

nav L nav L

nav L nav L av

nav L nav L av

nav in B n n

nav in B

p p p

p p

p p G

p p G

p k T T

p k T T


= = =

=  =  =

=  =  = 

Noisy

eg

+

Zg ZL

Noiseless 

noise 

referred to 

input

eg
+

Zg ZL

, , ,' ''nav L nav L nav Lp p p= ,'nav inp

, ," "nav L av nav in

av B n

p G p

G k T

= =

=

,"nav inp

@T0

@Tn

Signal generator

Signal generator

Ideal, 

noiseless

eg
+

Zg ZL

, ,

0

' 'nav L av nav in

av B

p G p

G k T

= =

=

,'nav inp

@T0

Signal generator

Noise referred to input Noiseless two-port

Noisy two-port and input



Noise figure in terms of I/V spectra - I
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Noise figure in terms of I/V spectra - I
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Looking for the minimum noise figure

• The noise figure of a two-port is a ratio of available 

powers at port 2  it only depends on the two port SS 

and noise parameters and on the source impedance

• It can be shown that an optimum source impedance

exists which minimizes the noise figure (but of 

course does not maximize the available power gain!)

• The sensitivity of the NF with respect to the minimum 

is a further noise parameter (see later)

• A simplified example of the minimization process is 

presented in the next slides



Example of minimum NF - I
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Example of minimum NF - II
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Example of minimum NF - III

I t  gmv  I2  Ens  E1
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• if the device input is capacitive (FETs) the minimum noise figure 

increases with f, if it has a resistive component (BJT) with f2



Evaluating and minimizing NF: how to do it

• Referring noise generators to the input:

• By imposing the equivalence of the two representations we obtain the 

correlation matrix of the two generators i and e.
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Representation with input uncorrelated 
generators

• It is expedient to 

introduce instead of e and 

i (correlated) a voltage 

generator uncorrelated 

from I

• The equivalence is 

obtained by imposing that 

the short-circuit current 

and open circuit-voltage 

of the two sets is the 

same

• Imposing that enc and i be 

uncorrelated we obtain:
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Power spectra of uncorrelated 
generators

• The power spectra of the two uncorrelated generators can 

be for brevity expressed introducing the series noise 

resistance and conductance; the info on correlation is in Zc

• Starting from a parallel (Norton) two-port representation we 

obtain a dual circuit with uncorrelated generators having as 

parameters the parallel noise resistance and 

conductance and the correlation admittance:
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Noise figure

• Starting from the input referred generators we find the 

noise figure as the ratio of the input open-circuit voltage 

power spectra: full/due to generator noise only:
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• NF does not depend on load

• Minimizing NF vs. RG and XG 

we generally find the 

optimum source impedance 

ZGo

• The minimum noise figure 

results:

Minimum noise figure & ZGo



System characterization of two-port

• The two-port noise is therefore characterized by four real 
parameters, which can be also evaluated directly 
through measurements:

• Minimum noise figure NFmin

• Series noise conductance gn

• Optimum source impedance Zsopt=Rsopt+jXsopt

• Meaning of series noise conductance: sensitivity of NF 
with respect to minimum:

2
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FET noise parameters with PRC model
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• If the contribution of the RG and RS  parasitic resistances is 

dominant, the noise figure can be approximated as (Fukui 

formula)

• For a HEMT K ~0.1,  for a MESFET ~0.3 same gate length

• NF deteriorates with frequency and with resistive parasitics, 

improves by increasing the cutoff frequency

Fukui formula
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Frequency behaviour of noise figure 
and associate gain

NF

Frequency
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One-temperature model, neglecting gate noise:
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Constant noise circles and noise-gain 
tradeoff

• On the GG Smith 
chart constant NF 
curves are again 
circles

• Constant noise 
circles and constant 
available gain 
circles allow for a 
tradeoff between 
gain and noise

Smith chart

 GG

Noise
circles

Constant
available
gain
circles

Associated
gain circle

G
G0



Low-noise active device bias

gm,HEMT

NF, HEMT

VGS

0

NF, MESFET

• Typically the optimum 
low-noise bias 
corresponds to low to 
average currents and 
low drain-to-source 
voltage

• Better compromise in 
some devices (e.g. 
HEMTs) with respect 
to gain
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Low-noise

amplifier

(LNA)

RF high-

gain 

amplifier

Band

selection

filter

IF amplifier

(high gain)

Mixer

Antenna

Channel

selection

filter

Image

reject

filter

~~~

Why LNA comes first?

Noise in a receiver chain

Why does the filter 

come first?



Noise in cascaded two-ports - The Friis 
formula

• From the Friis formula, the first stage should be low noise, 

high gain

• Lossy stages in the first position are usually unavoidable

but should be minimized (for a lossy two-port NF=L where

L is the loss > 1 – why? See next slide)

• A passband filter before the LNA is indispensable because 

it reduces the noise bandwidth of the amplifier (and also 

rejects spurious interferers from outside the system 

bandwidth)
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The noise figure of a lossy two-port
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Proof of Friis formula
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Low noise design and Associated gain

• In LNA design the source impedance is the optimum 

impedance, the load is power matched

• The optimum source impedance for noise does not 

generally yield input power match and therefore the 

corresponding available power gain (“associate gain”) is 

lower than the MAG

ZL

Zg

Zi

Zopt

ZL

• Power match at input: Zg=Zi
*

• Power match at output

• Gain = MAG 

• Noise match at input: Zg=Zopt

• Power match at output

• Associate gain < MAG



Low-noise design does not grant 
input matching!!



The traditional low-noise design strategy

• In traditional low-noise design we have NF=NFmin

• 1st step: choice of device and device optimum working
point

• 2nd step: input matching network so as to obtain from the 
generator impedance (e.g. 50 W) the optimum noise
impedance ZGo

• 3rd step: output matching network implementing output 
power match

• The amplifier has minimum NF, associated gain

• In many cases the classical strategy is unsatisfactory 
because input mismatching is unacceptable  alternative 
input matching strategies allow for improvements in the 
input match without overly deteriorating NF  particularly 
popular in RF



Popular FET LNA topologies

• Common gate (base) stage  input matching through 

bias or periphery design, high noise figure

• Inductive source (emitter) feedback  noise figure 

marginally worse than the minimum, reasonable gain, 

narrowband input matching; can also use a cascade 

stage

• The cascode configuration has advantages in LNAs 

thanks to the better isolation  improved stability 

however in some cases LNAs use potentially unstable 

devices (in-band!)

• The classical design can be input matched by using a 

balanced configuration or through an input circulator



Common gate FET stage

• Noninverting amplifier, can be input matched by proper 

transconductance design ( bias)

• For ideal parameters the noise figure is 2.2 dB 

G

DS

EG

RG=R0

R0

+

Output
Matching
Network 

VSS VDD

VGG

RLvin



Common gate FET stage

• The formulae hold if the input capacitance is negligible

• For ideal parameters the noise figure is 2.2 dB 
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Input impedance and amplification
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Noise figure - I
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Noise figure - II
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Series inductive feedback LNA 

Series inductor on FET 

source

• An example of popular RF LNA design approach, where the input 
matching is obtained through a lossless network and the noise figure 
can be only marginally worse than the minimum one, but with 
reasonable and low input reflection coefficient

• Remember that cascading a stage with reactive networks does not 
change the minimum NF, but a source inductor does (sometimes 
marginally)!



Series Inductive Feedback LNA 

• Input impedance:

can be designed to 50 Ohm

can be cancelled through resonance  LG



LNA design

• Matching corresponds to conditions:

• In input matching conditions the NF can be shown to be:

• where:



“Power optimization”

• The  NF can be now be optimized with respect to the Q 

factor  since the gate noise contribution R is small 

usually this corresponds to large values of Q

• This can be obtained by changing the device periphery 

in order to set the input capacitance  reducing this 

also the power dissipation is reduced

• Optimum (not minimum!) Q & NF:


