
Affinity, Work, and Heat

Introduction1

The fundamental equation of thermodynamics comes in two forms. First, after defining
entropy and limiting the number of ways that a system can exchange energy with its
environment to two—heat and only one form of work (pressure-volume work), the
fundamental equation is derived as

dU = T dS−PdV [4.8]

If there is another way of changing the energy of a system, in addition to heat and
pressure-volume work, another term must appear on the right side to preserve the equal-
ity. In the text, the emphasis is on chemical reactions, so this additional term is called
“chemical work”, and the fundamental equation becomes

dU = T dS−PdV−A dξ [4.14]

where A is the Affinity and ξ is the progress variable. So equation [4.8] is simply a
special case of equation [4.14]. It results when A dξ is zero, i.e., there is no energy
to be accounted for other than heat and the normal PV work done by the expansion or
contraction of the system. A more general form of [4.8] is therefore

dU≤ T dS−PdV [4.19]

which includes the possibility that energy in addition to T dS and PdV might exist,
and we call this “extra” or “useful” energy, which could be used, for example, to lift
a weight. The reason for the < is this extra energy term, not the fact that q < T ∆S
for irreversible processes, as is often stated. These fundamental equations an also be
written in other energy forms, such as the Gibbs energy,

dG =−SdT +VdP (1)
dG =−SdT +VdP−A dξ [4.46]
dG≤−SdT +VdP, (2)

and from [4.46] we get
dGT,P =−A dξ [18.59]

The term “chemical work” for A dξ is meant to suggest that it refers to work that could
be done by a chemical reaction. Equation [18.59] was illustrated in a different way in
§ 4.13.1 by showing that that the change in Gibbs energy is a measure of the maximum
amount of useful or extra work that can be obtained from a chemical reaction. But
chemical reactions can also release/absorb heat, and in fact Prigogine and Defay (1954)
refer to A dξ as “uncompensated heat”. How are these concepts reconciled?

1Equation numbers for equations which appear in the text are given square brackets.
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The Affinity2

It is established in the text (Chapter 4) that the fundamental equation [4.8] is the equa-
tion for the tangent plane to the USV surface if the differential terms are of any arbi-
trary magnitude, but more importantly it is the equation for the USV surface itself. That
means that integration of T dS−PdV between any two points on a USV surface (such
as A′ and B in Figure 1) will give the difference in U, ∆U, between those two points.
The path followed by the integration (not necessarily the path followed by the real sys-
tem) is the line on the USV surface, a reversible process. If there is another surface
representing another equilibrium state of the same system, such as shown in Figure 1a,
equation [4.8] can also be used for this surface, but the functional relations between T
and S and between P and V will be different, so the calculated ∆U will be different.
What is important is that the equation refers only to stable or metastable equilibrium
surfaces, along which changes, either reversible or irreversible, are effected by changes
in the first and/or second constraints, S and V. The same discussion can be applied any
version of the fundamental equation, such as equation (1), so at this point we change
from discussing the USV surface to the GT P surface, because G is the potential we
actually use.3

The Gibbsite Reaction
Chemical reactions, such as equation [2.2],

Al2O3(s)+3H2O(l) = Al2O3 ·3H2O(s) [2.2]

can be represented by two GT P surfaces, one for the reactants (in this case a metastable
equilibrium assemblage) and one for the products (a stable equilibrium phase) as shown
in Figure 1b, as well as the energy difference between them, shown by the arrow A→
A′. The fundamental equation (1) can be applied to changes along to either surface,
such as A′→ B, so the problem now is to incorporate the energy difference represented
by A→ A′ into our equation, so that we can calculate the energy difference between
any two points on different surfaces, such as A and B.

We have chosen a particularly simple system to consider. When the process (chem-
ical reaction) involves only pure phases, as in reaction [2.2], the reactant and product
GT P surfaces remain fixed, because no change takes place in the G of either sur-
face during the reaction. All that happens is that the reactants gradually change into
products, but this change in the amounts of the phases does not affect the position of
the surfaces—none of the phases change composition. A reaction between dissolved
species, during which the concentrations of the species change, does change the G
values and hence the position of the two surfaces.

Reaction [2.2] releases energy as it proceeds, so it represents a third source of
energy, in addition to T dS and PdV—it represents “extra” energy. To calculate Gibbs

2As explained in §18.4, we use the total forms U and G in the relationship between these quantities and
A dξ in order to maintain dimensional consistency. In other words, the relation dU = T dS−PdV −A dξ

is dimensionally incorrect, because ξ is in moles and A is in Jmol−1.
3Also see section 7 in the Additional Materials file for a numerical example using equation [4.46].
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Figure 1: Modified from Figure 4.9 in the text by adding point B. (a). Surfaces rep-
resenting two equilibrium states of the system Al2O3–H2O in USV space, metastable
corundum plus water, and stable gibbsite. The points A, A′, B are referred to in the text.
(b). The same system in GT P space. Note that U and G increase downwards.

energy differences between reactants and products, we must therefore add a third term
to our fundamental equation (1). Looking at Figure 2 (Figure 4.8 in the text) for a clue
as to how to do this, we see that we need to express this energy change as the slope (the
change in G per increment of reaction, i.e., per number of moles reacted) multiplied
by the the number of moles reacted. We call the change in G per mole of reaction the
(negative) Affinity, −A . The number of moles reacted is called ξ , which can vary
from zero to any chosen number, but the range 0→ 1 is usually best. So the term we
need is apparently (∆G/∆ξ ) ·ξ , or−A ·ξ . In this simple case, this would in fact work,
because as the two surfaces are fixed, ∆G does not change during the reaction, and the
slope (∆G/∆ξ ) is a constant. So for one mole of reaction (ξ = 1) this expression gives
∆G, the total energy change for one mole of reaction, and at constant T,P this would
in fact be represented by the arrow A→ A′.

Reactions Between Dissolved Substances
Reaction [2.2] does not normally reach an equilibrium state having all three phases.
The reaction stops when one of the reactants is used up, but the activities of the products
and reactants do not change during the reaction. In other cases the concentrations
(activities) of the products and/or the reactants do change during the reaction, so as
usual we must express the terms in our equation in derivative and differential form so
as to be integrable. We must consider very small changes in ξ and the corresponding
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Figure 2: The tangent surface at a point A on a USV surface, showing how dU is
geometrically related to dS and dV .

small changes in G, so a better definition of the Affinity is

−A =

(
dG
dξ

)
T,P

or

dGT,P =−A dξ [18.59]

Integration then gives

∆GT,P =−
∫

ξ=1

ξ=0
A dξ (3)

= the energy change along the path A→ A′ in Figure 1.

The Affinity is the rate of change of G with reaction progress, and as shown in
Chapter 18, the magnitude of this rate of change is

A =−
s

∑
i

νiµi [18.57]

This means that after each increment of reaction the Affinity or rate of change is equal
to the difference in Gibbs energy between the products and reactants, and therefore be-
comes zero when the reaction achieves equilibrium. This makes sense intuitively, be-
cause the rate at which the reaction proceeds towards equilibrium (the Affinity) should
depend on how big the energy difference is between the reactants and products is, and
will become zero at equilibrium. The rate of change towards the equilibrium state
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we are talking about has nothing to do with the real time kinetics of the reaction. It
has rather to do with the magnitude of the change in reactants and products at each
increment of ξ .

The Third Constraint
Also note in what sense ξ is our third constraint. When ξ = 0, we are at point A, a
metastable state, held there by some third constraint, and when ξ = 1 we have arrived at
point A′, the corresponding stable equilibrium sate. In between, increments of ξ move
us from A towards A′, so that ξ is in fact the constraint, and ”releasing the constraint”
means allowing ξ to move in (irreversible) increments from 0 to 1. This is of course a
fairly mathematical concept, and shows again why we insist on the difference between
our thermodynamic models and the reality they are meant to simulate.

Physical Significance of the Affinity
We can generalize the arrow A → A′ in Figure 1 to the energy difference between
reactants and products of any reaction. This difference is the integral of the Affinity
term

∫ ξ=1
ξ=0 A dξ , as shown in equation (3).

The next question is, what kind of energy is represented by this Affinity term?
Obviously it is Gibbs energy, but changes in Gibbs energy are effected by transfers of
work and/or heat, our only two kinds of energy transfer. As mentioned above, ∆G can
also be shown to be the maximum amount of extra work available from a process, in
our case a chemical reaction. But chemical reactions in nature, such as metamorphic
reactions deep in the crust, generally do not do any extra work.

The Two Kinds of Work
To investigate this further, we first look at an example of a chemical reaction doing
extra work, as well as normal volume change work. To do this we use reaction [18.54]
from Chapter 18,

N2(g)+3H2(g) = 2NH3(g) [18.54]

We are accustomed to using heat (enthalpy) and entropy data for such reactions, but
how can this reaction produce work, that is, work in addition to the work that must
be done because we are expanding (in the reverse direction) from 2 moles of gas to 4
moles against some confining pressure?

As mentioned above, the extra work obtainable from any thermodynamic process is
either equal to or less than the change in Gibbs energy for that process. The maximum
extra work is thus equal to the change in Gibbs energy, and this can only be obtained if
the process or reaction is carried out reversibly. The example demonstrating this in the
text (Chapter 3) is the expansion of a gas from an initial pressure to a lower pressure,
where maximum work is only obtained with a reversible expansion. In the example the
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Figure 3: A Van’t Hoff equilibrium box. 3 moles of H2 and one mole of N2 are pushed
slowly into the reaction chamber at their equilibrium pressures, as 2 moles of NH3 are
simultaneously pulled slowly out, also at its equilibrium pressure. The reaction thus
takes place at equilibrium, a reversible process. The box is enclosed in a thermostat
which keeps the temperature constant at 200◦C.

T P logK ∆G◦ ∆H◦ ∆S◦
◦C bar calmol−1 calmol−1 calmol−1 K−1

200 1.0 −0.406 879 −23702 −51.9

Table 1: Data for reaction [18.54] from SUPCRT92.

work done is not extra work but the normal work of expansion of the system. Never-
theless, the relation between maximum work and reversibility is perfectly general, and
includes chemical reactions.

Data for reaction [18.54] from SUPCRT92 are shown in Table 1. The value of ∆G◦

(or ∆rG◦) at 200◦C is positive, meaning that the reaction is spontaneous (irreversible) in
the opposite direction to that written. In this opposite direction, two moles of reactant
(NH3) become four moles of product gases (N2 and 3H2), and ∆rG◦ =−879calmol−1.
The volume per mole of ideal gas is 22414 cm3 at 1.01325 bar and 273.15 K (Ap-
pendix A), or 39340 cm3 at 473.15 K and 1.0 bar, or 940.2 calbar−1 mol−1, and so the
work of expansion against the constant confining pressure of 1 bar is

w =−P∆V [3.2]
=−1.0×2×940.2
=−2RT

=−2×1.987×473.15 (4)

=−1880calmol−1 (5)

negative, because the system is doing work.4

4In the discussion of reaction [18.54] the term “per mole”, as in Jmol−1, calmol−1, etc., refers to per
mole of N2, because N2 has a stoichiometric coefficient of 1.0. This is discussed on p. 29 of the text.
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In some reactions this P∆V term is physically realizable, but in this case it is not.
The ∆V term is just the difference in volumes of the pure phases, but realistically, if
NH3 reacts irreversibly it does not form pure N2 and pure H2. It forms a mixture of
gases, and only until the equilibrium mixture is achieved, at which point the forward
and reverse reactions become balanced, and the reaction effectively stops. The actual
∆V is the difference between the molar volume of the pure NH3 starting composition
and the molar volume of the equilibrium composition. Here again we see a difference
between what happens in reality and what happens in the thermodynamic model. The
theoretical P∆V work of expansion shown in (5), as well as the additional extra or use-
ful work available only in a reversible process, can be seen by considering the reaction
taking place in a Van’t Hoff equilibrium box.

Van’t Hoff Equilibrium Box5

As shown in Figure 3, for the reaction to proceed reversibly, we must first attach three
piston-cylinders to semi-permeable membranes on the reaction chamber, which allows
us to push the pure reactant(s) in and to allow the pure product(s) to leave the reac-
tion chamber at their equilibrium pressures. Note that “the system” now refers to the
reaction chamber plus the piston-cylinder arrangements.

We start with the reaction chamber having the gas mixture at equilibrium at 200◦C,
and reactant NH3 gas in a cylinder in its pure state at 1 bar and 200◦C, the state for
which we have data (Table 2). We then change the pressure of reactant NH3 reversibly
from 1 bar to its equilibrium pressure in its own cylinder without allowing it to enter the
reaction chamber. Then we push this reactant gas into the chamber at its equilibrium
pressure and allow the two product gases out, also at their equilibrium pressures. No
change of composition or volume of the gas in the reaction chamber occurs, because
equilibrium is maintained. Then we reversibly compress each product gas from their
equilibrium pressures back to 1 bar. The net reaction is therefore reactant gas at 1 bar
→ pure product gases at one bar, and is the (reverse of) reaction [2.2], for which the
data in Table 2 are applicable.

The work done is of two types. In pushing ammonia gas into the reaction chamber,
we do P∆V work, where P is the equilibrium pressure PNH3 and ∆V is the volume of a
mole of ideal gas at 473.15 K and PNH3 . Because P1V1 = P2V2 for ideal gas, the P∆V
work done is identical to what it would be if P was 1 bar, because although the pressure
is greater, the volume change is proportionally smaller. The same reasoning applies to
the product gases. They exit at their smaller equilibrium pressures, but occupy much
greater volumes than they would at 1 bar. The net resulting work done is shown in
equation (5).

In addition to this “normal” PV work, extra work is done in changing the pressures
of the reactants and products of the reaction to and from 1 bar and their equilibrium
pressures. If the reaction is spontaneous, this will be useful work, done by the system.
If the reaction is not spontaneous, as is the case with reaction [18.54] as written, this
work must be done on the system. Let’s calculate this work for the case shown in

5This subject is treated in some detail, though not entirely correctly, by Bazhin and Parmon (2007).
Another (correct) treatment is Steiner (1948), but he does not consider the heat aspect.
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T logK[18.54] nN2 nH2 nNH3 ξ
◦C mol mol mol
200 −0.4061 0.7425 2.2275 0.5150 0.2575

Table 2: Species mole numbers for reaction [18.54] at 1 bar and 200◦C from Table 18.4
in the text.

Figure 3.

The Equilibrium Pressures

First we must determine the equilibrium partial pressure of each gas. The equilibrium
number of moles of each species in the system is shown in Table 2, and the mole
fractions of each times the total pressure gives the equilibrium pressure of each species.
The total moles of species in equilibrium in the box is

Σn = 0.7425+2.2275+0.5150
= 3.485 (6)

so, for example, the equilibrium partial pressure of N2 is

PN2 =
0.7425

Σn
×1.0 [7.3]

= 0.2131bar (as shown in Figure 3.)

The Reversible Work
The reversible work done in changing the pressure of reactant NH3 gas from 1 bar (P1)
to 0.1478 bar (P2) is, with n = 2

w =−nRT ln
P2

P1

=−2RT ln
0.1478

1
The work done in changing the pressure of product gas H2 from 0.6392 bar (P1) to
1 bar (P2)is, with n = 3,

w =−nRT ln
P2

P1

=−3RT ln
1

0.6392
and similarly for N2. This change of pressure on an ideal gas has no heat effect (equa-
tion [5.42] in the text), but does change the entropy and thus the Gibbs energy of the
gases. The entropy effect is6

∆S = R ln
P1

P2
[5.41]

6Equation [5.41] is corrected in the second printing of the text.
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so the Gibbs energy change is

∆rG◦ = ∆rH◦−T ∆rS◦ [6.17]

= 0−T ·R ln
P1

P2

= RT ln
P2

P1

= w [4.57]

The total net work, in addition to the “normal” PV work done is then

w =−2RT ln
0.1478

1
−3RT ln

1
0.6392

−RT ln
1

0.2131

=−1.9872×473.15× ln
(

0.14782

0.63923×0.2131

)
=−879calmol−1

The 0.14782

0.63923×0.2131 term is of course identical to the equilibrium constant for the
reaction, so by considering available work we have shown again that

∆rG◦ =−RT lnK [9.11]

which gives this standard relationship a meaning in terms of work.
The change in Helmholtz energy is the total work done, so

∆A =−879−1880

=−2759calmol−1

The Heat Transfer
Equation [6.17] shows that the Gibbs energy change is related to changes in enthalpy
and entropy. From Table 1, ∆rH◦ = 23702calmol−1 and

473.15×∆rS◦ = 24556calmol−1

for the spontaneous direction. The difference is

∆rH◦−473.15×∆rS◦ =−854calmol−1

This should of course agree with the tabulated value of ∆rG◦ of (−)879 calmol−1,
but such errors are not uncommon in thermodynamic data. Both ∆rH◦ and T ∆rS◦ are
quantities of energy, but T ∆rS◦ is energy available as heat from or to the thermostat to
balance the energy requirements of the reaction. In this case the imbalance, which is

∆rG◦−∆rH◦ =−T ∆rS◦

is negative, so −24556calmol−1 (using the −854 calmol−1 value for ∆rG◦) is trans-
ferred from the system to the thermostat. In other cases, the imbalance between ∆rG◦

and ∆rH◦ is positive, and heat is added to the system from the thermostat.
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Irreversible Work
So 879calmol−1 is an upper limit to the extra work done by reaction [18.54], and so
is in one sense the value of

∫ ξ=1
ξ=0 A dξ . It would be represented by an arrow A→ A′

in Figure 1 if the lower surface was GNH3 and the upper surface was GN2 + 3GH2 .
But although it is an upper limit, this quantity of energy is entirely hypothetical, not
only because it requires a reversible process to be realized, but also because the real,
irreversible, process is entirely different. As mentioned above, the real process is not
between reactants and products as pure gases, but between pure gases and an equilib-
rium mixture of gases. The two surfaces just mentioned, representing the pure gases,
do not stay fixed as the reaction proceeds, but approach one another and become a sin-
gle surface when the reaction reaches equilibrium.7 The Affinity is not constant, as in
reaction [2.2], but changes from a maximum value to zero, as shown in Figure (18.10)
in the text.

Volume Change Work
The number of moles of gas in the reaction chamber at equilibrium is 3.485 (equa-
tion (6)), so the change in moles in the irreversible reaction is

∆n = 3.485−4
=−0.515 from N2 +3H2

and

∆n = 3.485−2
= 1.485 from 2NH3

The resulting volume change is performed at a pressure of 1 bar, so the work done is

w =−P∆V

=−∆nRT

= 0.515×1.987×473.15

= 484calmol−1 from N2 +3H2 to equilibrium,

or

w =−P∆V

=−∆nRT

=−1.485×1.987×473.15

=−1396calmol−1 from 2NH3 to equilibrium.

and of course
−484−1396 =−1880calmol−1

7Here we imagine the pure gases as existing initially together in the reaction chamber, not in separate
cylinders.
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Figure 4: The value of
∫ ξ=1

ξ=0 A dξ

as before. So 484calmol−1 work energy is added to the system when N2 and 3H2 react
to equilibrium, and −1396 calmol−1 work energy is performed by the system when
reacting from 2NH3 to equilibrium. This is the normal work done in a reaction due to
the change in volume.

Extra Work
The maximum extra work from this reaction is 897calmol−1 using a highly hypotheti-
cal situation, but a more realistic estimate is given by the value of

∫ ξ=0.2575
ξ=1 A dξ , that

is, the integrated value of the arrow A→ A′ as the reaction proceeds irreversibly from
pure NH3 to the equilibrium composition at ξ = 0.2575. One might imagine two moles
of pure NH3 pushed into the reaction chamber at 1 bar pressure, then reacting there to
the equilibrium mixture.

This calculation was performed in MATLAB, by first differentiating equation [18.65]
with respect to ξ , obtaining an expression for dG/dξ , then integrating (dG/dξ )dξ .8

The result is shown in Figure 4. The maximum value of
∫

A dξ occurs at the equilib-
rium value of ξ = 0.2575, and is 2455Jmol−1, or 587calmol−1. This represents the
extra work available from this irreversible reaction as it proceeds to equilibrium and is

8The expression for this derivative is shown in the answer to question 3 in the Chapter 18 section of the
Book Problems on the CUP web site.
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clearly less than the hypothetical maximum.

−
∫ 0.2575

1
A dξ =

∫ 0.2575

0
A dξ

= 587calmol−1, and
587 < 897

In this case the extra energy appears as volume change work, but in general it
is simply a quantity of energy available from the system. If the system is arranged
such that no extra work is performed, this energy would be available as heat. Gaseous
systems such as this one are best suited to use the energy represented by the Affinity
term as (additional) volume change work, but other reactions such as those in aqueous
solution can be carried out in galvanic cells, and can use the extra energy in other ways.

Uncompensated Heat
Prigogine and Defay (1954, Chapter 3) introduce the term “uncompensated heat”,
which they attribute to De Donder (1920). This is a quantity of heat generated within
a closed system due to an irreversible process such as a chemical reaction, and be-
cause they explicitly exclude all non-PV work (their equations (2.2) and (2.3)) it is one
interpretation of

∫
A dξ . Thus they write

dQ′ = A dξ ≥ 0 (3.21)

where Q′ is the uncompensated heat. When Q′ (or dQ′) is zero, the system is at stable
equilibrium.

Natural processes generally do no work other than PV work. For example, meta-
morphic reactions will generate or absorb heat (retrograde and prograde reactions re-
spectively) and will do PV work as the rocks change volume, but despite being close to
quasistatic, will do no other kinds of work. In these cases

∫
A dξ represents the heat

generated or absorbed. So if we are interested only in natural processes, then we should
perhaps follow Prigogine and Defay and regard the term A dξ , the energy released in
irreversible processes, as representing heat.
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