Differential geometry, gauge theories, and gravity
M. Gockeler and T. Schiicker

Solutions to the problems

1 Exterior algebra

Problem 1.1
Verify the transformation law (1.4) of the dual basis.

Solution 1.1
It is sufficient to show
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Problem 1.2

Prove the Leibniz rule (1.28) for inner derivatives.

Solution 1.2
Let ¢ € APV ¢ € A1V and vy = v. Then we have:
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Define the permutation p € ., ,_1 by

7(0) =p(1),...,7(i—1) = p(i),7(3) =0,7(i+1) = p(i+1),...,7(p+q¢—1) = p(p+q—1).
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Problem 1.3
Derive the transformation property (1.44) of a density.

Solution 1.3
Ifw=FkB'A---AB* =K B A---AS™ with 7 = 2?21 vijﬁj we must show that k' = det vy~
Indeed:
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2 Differential forms on open subsets of R"

Problem 2.1
Derive the formulas (2.14) and (2.29) for the transformation of frames associated with coor-
dinate systems.

Solution 2.1
By definition (2.9) we have

a%<x>:< ) (Zg;g;> Zaya< (996’) Z@yﬂax’

This proves (2.14).

According to (2.14) and (2.28) we calculate
83/ Oyt Ox* da? oy 97 yi e
— 01’3 ( ) Z O 0y (83:’“) Z i oyt Byl .

This proves (2.29).

Problem 2.2
Prove that pullback and exterior derivative commute (equation (2.63)).

Solution 2.2
Since F™* and d are linear, it suffices to consider ¢ = f(y)dy™ A --- A dy'>. We find
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On the other hand we have
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Consequently
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Problem 2.3
Verify that the function (2.76) satisfies the equation df = ¢.

Solution 2.3
For the function

1 n
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we calculate

Since 9
. . Pi 1 i
O—dgo—%:ayjdy A dy
we have
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where the Cartesian coordinates have been temporarily denoted by #* because of the substi-
tution y* = t2* needed above. Consequently
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t=0

Therefore

df = Z d:cj Zgoj )da! = .

Problem 2.4
Prove Stokes’ theorem (2.118) with p = n = 2 in the special case where K is a rectangle.

Solution 2.4
Write
K= {x € Rﬂal <zl < bl,a2 <2< b2}

and
Y= <p1dx1 —|—g02dx2.
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Then dy is given by (2.119) and therefore
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On the other hand, we have
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whence (2.118) follows.

3 Metric structures

Problem 3.1
Verify the transformation law (3.5) of the matrix describing a metric under a change of basis.

Solution 3.1

Recall .
b=> (v and gy = g(be,b).

j=1

Then
ik _ _ B
gy = 9,0 = (v J00b) =Y (7 ) g (Y, = (7 T gy
Kl Kl

Problem 3.2

Calculate the square of the Hodge star.

Solution 3.2
We use the definition (3.16),

k(€PN NeP) =gy P et Ao e (no summations!)



which has to be understood in the sense that iq,...,%, is a permutation of 1,...,n. By
linearity of the Hodge star, it is sufficient to calculate the Hodge star of the above equation:
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Therefore * x ¢ = (—1)P"~ D+ for any p-form ¢.

Problem 3.3
Derive the expression (3.20) of the Hodge star with respect to an arbitrary basis.

Solution 3.3
Consider the p-form
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Problem 3.4

Verify the expression (3.47) of the Laplace operator applied to a 0-form.

Solution 3.4
We know: g~
in the metric. Therefore (
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Then:
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where we have used equation (%) of Solution 3.3 to replace the underbraced expression
(together with the summations over ji, ..., j,) by (—1)%|g| tekizin

4 Gauge theories

Problem 4.1
Show that Maxwell’s equations in terms of differential forms are given by (4.9) and (4.10).

Solution 4.1
The equation dF' = 0 means:

0=d <2de Ada' + = ZaudexJ/\dx>

=1 z]kl
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“— Ol
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J IB; J
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. OE dB;
_Ek 8_d 2? A dz® Ada® 4 = ”Ek lgwkﬁ Oda: Adz? AdzF =0
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and

3
0B, ,
Z €ijka_;d$l Adxd Ada? =0.
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From the first of these two equations we get successively
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and
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Problem 4.2

Verify the transformation laws (4.63) and (4.69).

Solution 4.2
For the field strength 2-form we write

F'=dA"+ AN A
= (NN AT+ y(dAYy T =y ANdY T (dy) Ady T Ay T Ay Ay
+ YAy AYdY T A (dy ) Ay Ay Ty (dy T Ardy T
= (dNAAY T +y(dAY T —ANdY T = (dy T )Y Ady T AN Ay
FAANdYT = (dy) A ATy (dy Ty Ady T
= Y(dA)y T AN Ay =y Fy
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For the V-valued 0-form ® we have
(D) =d®' + A AP =d(y®) + (yAY ' — (dy)y ") Ay®
=dY)VAP+vdP+YAND — (dyY) AP =7 (dP+ AND)=~DD.

Problem 4.3
Prove the Leibniz rule (4.70).

Solution 4.3

DWA®)=d(WANP)+AANYAD = (dP) AP+ (—1)TWp AdD+ (—1)TY NAND
= ([AY)AD+ (=) A (AP + AN D) = (d)) A D+ (—1)% ADD.

Problem 4.4
Show that the action (4.75) is gauge invariant.

Solution 4.4
Consider the first term:

tr (F' A «F') = tr (YFy ' AsyFy ") = tr (F AxF) .
Recalling that y(x) is unitary, one finds in the case of the second term:
((D@)’)Jr A *(D®) = (yD®)" A xyD® = (DP) Ty 'y A *xD® = (DP)* A DD
Consider finally the third term:
Pt AP = DTAT Axy® = DTy A A %D = OT A xD .

Problem 4.5
Derive the field equations (4.84), (4.85) from the action (4.75).

Solution 4.5
Writing the variation of ® as ® — ® + ¢ one gets

1
S:—Q/tr(F/\*F)+/(D(I>)+A*D<I>—m2/®+A*(I>
g

—>S+/(D<I>)+/\*Dgo—l—/(Dgo)+A*D@—mz/gp+A*<I>—m2/d>+A*gp.

Ignoring boundary terms one finds with the help of Stokes’ theorem the following formula,
where ¢ is a 0-form:

/(Dgp)+/\@:/(dg0+)/\<I>—|—/(A/\<,0)+/\<I>:—/gp+/\d<1>+/<,0+A+/\CI>

:—/90+Ad<1>—/<p+AA<I>:—/g0+AD<I>.
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Consequently we have
/(Dgp)*/\*DCI):—/gﬁ/\D*DCD.

/(IJJ“/\*@:/gpt/\*@.

/(D¢)+A*Dgp:/(Dw/\*wz/(w)w\*m:—/¢+AD*D<I>

:—/got/\D*D(I).

Due to (3.45) we have

and

Therefore the variation of the action can be written as

S—>S—/g0+/\(D*D<I>+m2*CI>)—/got/\(D*D(I)an?*(I))

:S+/g0+/\>k(>kD*D<I>—m2<I>) +/g0t/\*(>x<D*D<I>—m2<I>),
and the field equation (4.85) follows.

Consider now the variation of A, written as A — A + a with a = wT}, where w is a real
valued 1-form. We get

F=dA+ANA—F+da+aNA+AANa,

DO =db+ AAND = DP+and,

and consequently

1 1
S—>S+?/tr((da%—a/\A—l—A/\a)/\*F)—I— /tr(F/\*(da-i—a/\A—l—A/\a))

e
—|—/(a/\(I))+/\>|<D<I>—|—/(D<I>)+/\>k(a/\<1>).

12



With the help of (3.45) and Stokes’ theorem we find
S — S+%/tr((da+aAA+AAa)A*F) +/<I>+/\a+/\>|<Dq>—|—/(D<I>)+/\*(a/\qD)
g
2
=S—|—?/tr((da)/\*F+a/\A/\*F—a/\(*F)/\A)
—/(I>+/\a/\>|<D<I>+/(D(I>)+/\*(a/\<I>)
:S—|—%/tr(a/\d*F—i—a/\A/\*F—a/\(*F)/\A)
9
- /@*a/\ *DP + /(D<I>)jL A *(a A @)
2
:S+g—2 w/\tr(Tb(d*F—i—A/\*F— (*F)/\A))
- /w A T, (+DP) + /(D@)+ A (x)TH®
2
:S—l—; w/\tr(Tb(d*F—i—A/\*F— (*F)/\A))
- /w A OT Ty (xD®) + /w/\ (* (D)7 TP
2
— S+ /w A {Etr(Tb(d « F + [A, +F))) — ®TT,(+D®) + *(D®)+qu>}
2
=S+ /w A * * {—2tr(TbD * F) — ®1T,(xD®) + *(DCD)*T{}I)} :
9
In this way we obtain the field equations
2
(T« F) = +Ty(+xDD) — +(DD) TP,

from which (4.84) follows.

9 Einstein-Cartan theory

Problem 5.1
Derive the metric condition (5.23).

Solution 5.1
Let ¢ be a curve in % with starting point x,

c:[0,1] - %
T = (1), ¢(0)=mx.
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The pull back ¢*I" of the connection 1-form I' reads in coordinates:

dct
c(l,ds")=T, d_cr dr.

Let vy be a tangent vector at xg, vg € T,,% . We define the “parallel transport of vy along
c by means of I'” to be the one-parameter family of tangent vectors v, € T, % whose
components with respect to the frame ¢,

Ua(T) = ﬁalc(T) (UT)7
solve the four linear first-order differential equations

dv®
dr

+ (¢TI 0" =0 with initial conditions v*(0) = 5|4, (vo),

or in matrix-vector notation

d * —
E’U(T) + (¢'T(7))v(1) =0.

Let wy € T,,% be a second tangent vector at zy. The scalar product of the two parallel
transports v, and w;, is preserved if and only if

0= % Je(r) (v, wy) = % [UT<T> g(c(7)) w(T)}
- [di v%ﬂ gle(r)) w(r) +v7(7) [di 9“(7”} () 47 glelr) )

3 d %
() [—<c Do) g(e(r) + - gle(r) — gle(r))e r(r)} w(r).
Since vy, wy and ¢ are arbitrary, this identity is equivalent to

—I'Tg+dg—¢gI' =:Dg =0.

Problem 5.2
Show that the connection (5.51) is metric and torsion-free.
Solution 5.2

I, =1 [Cijk — g7 g C g — gii/gkk’ckli’j] B

+ 19" [(dgjir) (be) + (dgim) (b;) — (dgry) (bi)] B

14



Note the last minus sign which was missing from equation (5.51) in the hard-cover edition.
— Metricity:

(D9)ab = dgat — Tagiv — gail's = 2dgas — T'agin + (o & 3)
= %dgab - % |:Ciak - gﬁigaa’ca/i’k - gﬁigkk’ckli’a] g}éﬁk
— 39" [(dgair) (br) + (dgik) (ba) = (dgia) (bi)] gis B + (0 ¢ 3)

= M % {gbz ak — gaa’Ca,bkz} _gkklck/ba> ﬂk
—Ldgay — 1[(dgw) (ba) — (dgar) (b)) B* + (2 4+ ) = 0,

because the three remaining terms, {...}, C¥4,, [...] are antisymmetric under exchange of
the indices a and b.
— Torsion vanishes:

T'=dp" + T8 A B
=10+ 1 [%— {g“'gjijj'ak + giilgkk’ckli’j}] BEA B
+ 1g" [{(dg;) (be) + (dgun) (b;)} — (dgiy) (bs)] BEA BT = 0

because the three remaining terms, {...}, {...}, dgx; are symmetric under exchange of the
indices k and j.

Problem 5.3

Consider a piece of the pseudosphere, that is an open subset of R? endowed with the metric
whose matrix with respect to a holonomic frame du, dv is

(97) = (eo 2) :

Calculate the Riemannian connection, curvature and curvature scalar.
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Solution 5.3
el =e2du, €2 =dv,
de! = — %e‘”/zdv Adu = %el Ae?, de? =0,

Cliy=—0C% = %, (all other C’s vanish)

i1 [ j k
Wi =3 [Chje — e — CMy]

1 1 1

W21 == 75, Wiy =0,

wly =—w? = —%el = —%e’”/Qdu,

R=dw+ w0, R'YH= ie‘“/de Adu = —%61 A€

Ry =R*151 = —1, R%q = —1.
Problem 5.4
Prove (5.78).
Solution 5.4
To show:
€adr55bkrs = -2 ((Sbadkd — 5ka(5bd) with £0123 — 1.
Our metric has signature + — ——, therefore €% = —1. For @ and d given, the left-hand

side is antisymmetric in b and k, and different from zero if and only if a # d and (b, k) is a
permutation of (a,d). Hence it is sufficient to consider the case b = a and k = d where

§ 5adrs€bkrs -9 E 5adr55bkrs — 25012350123 — _9
r,s

r<s

Problem 5.5
Give explicit expressions of the metric and connection for Cartan’s example, fig. 5.2. Calcu-
late the curvature and the torsion.

Solution 5.5
For notational ease we denote the Cartesian coordinates by both (z!,2? %) and (z,y, 2).
With respect to the frame $* = dz* the metric tensor is

0 0
(gab) =

O O =
= O

1

0

The equation of parallel transport along a curve ¢(7) is (cf. (5.21))
dv® det

e, —
deL b“dTU
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In the z- and y-directions,

To+ T xo
o(r) = Yo and ¢(r)=|vo+71]|,
20 20

the parallel transports are ordinary translations: dv®/dr = 0 and therefore I'y = 0 and
'y, = 0. When transported in the z-direction,

Zo
C<7—) - Yo ;
20+ T

any initial vector vy turns clockwise around the z-direction:

cos(wr) sin(wr) 0\ [vos
v(1) = | —sin(wr) cos(wt) O | wvoy |, w>0,
0 0 1/ \vo.

Inserting these expressions for ¢(7) and v(7) into the equation of parallel transport above we
obtain a vector equation of the form M (7)vy+ N(7)vy = 0 with two explicit matrices M and
N. Since the initial vector vy is arbitrary we have the matrix equation M (7)+ N(7) =0 or

0 —1 0 0 —1 0
's=w(|1l 0 0], andaltogether I'=w |1 0 O0]dz.
0 0 0 0 0 0

This connection is metric,
Dg=dg—TI"g—gl'=0, andflat, R=dl+i[[,I]=0,
and has non-vanishing torsion:

T¢ =ddz® + T% A da® = %3 dz A dab,

0 -1 0 dz dy A dz
T=w|1l 0 0)dzA|dy ] =w|dzAdz
0 0 0 dz 0

As a bonus we indicate the “geodesic coordinates (X,Y,Z) centered at (zo,vo,20)”. In
general they are defined by the unique solution of the geodesic equation

X
d2 “w d v d a 2o d K
dg +T*,, (g_ i =0, with initial conditions Q*(0) = Zﬁ ) %(O) = }Z/ g

and then by setting z#(X,Y, Z) := Q*(1). In our case we have
{Xsin(wZ71) =Y [1 —cos(wZ7)])} /(wZ) + x¢
Q' (1) = | {Ysin(wZ71) + X [1 — cos(wZ7)])} /(wZ) + yo
2T + 20
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and
{Xsin(wZ) =Y [l —cos(wZ)])} /(wZ) + xo

(XY, Z) = | {Vsin(wZ) + X [1 — cos(w2)])} /(wZ) + yo
Z+ZQ

6 The Lie derivative

Problem 6.1
Verify the Jacobi identity (6.20) for the Lie bracket.

Solution 6.1
To show:
[v, [u, w]] = [[v, u], w] + [u, [v, w].

We use the linearity and the Leibniz rule of partial derivatives as well as the short hand
d; == 0/0x" and the summation convention. Let us start with the left-hand side of the
Jacobi identity:
lhs =[v, (u'Ow’ — w'Ou?)d;]
=" (W Ouw’) — v O (W O’ ) — u' (9w )Opr? + wh(9u™) O],
=[*(Opu’) Oy 4 v Ul OO — vF () 0! — VMW OO

rhs :[(Ukakul — ukakvi)ﬁi, U)] + [U, (vkakwj - wkakvj)aj]
=[*(Opu) O’ — uF (") O’ — w'0; (VPO ) + w0 (uF oY)
+ ' 0; (V" O’ ) — w0 (W) — VP (Opw!) Oy + w’“(c?kvi)&uj]@j

=[v* () D! — uF (DO — WO ) — wivF 900

+w' (D)0’ + W PP + (DN + w00
— u (QwF) O’ — u F T — o 8kw o’ +/@UW

Problem 6.2
Prove Cartan’s identity (6.34).

Solution 6.2
Our task is to prove

1,d + di, = L.
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Applied to a O-form f this equation reduces to i,df = L, f, which we have proved in (6.15).
Applied to an exact 1-form df our equation becomes

i,ddf + di,df = dL, f = L,df.

The last equality holds because Lie derivative and exterior derivative commute, (6.14). Ac-
cording to the general rule (6.27), i,d + di, is a derivation because interior and exterior
derivatives are derivations. By (6.13) the Lie derivative itself is a derivation. Therefore
Cartan’s identity is correct for any differential form, since any form can be written as a sum
of products of 0-forms and exact 1-forms.

Problem 6.3
Consider a piece of the 2-sphere with its standard metric (5.55). Show that the following
three vector fields

3 Ccos cosf 0 ~+ sin 6 —sin cosf 0 + cos 8

sin 6 0(,0 sin 6 8(,0

are Killing vectors. What Lie algebra do they generate?

Solution 6.3
A vector field v = v* 9/0x* =: v*0, is a Killing vector if and only if
Lyg(u,w) = g(Lyu, w) + g(u, Lyw)
for any two vector fields v and w. With u = 0, and w = 0, we obtain:
LG = v*0agpw = 9(—(9,0%)0a; ) + (O, —(0,0%)00) = —(0,0%) g — (000*) Gpuar -
Therefore v is a Killing vector if and only if for all x4 and v
000Gy + (0u0) g + (0,0”) gpa = 0. (%)

holds. In our case with 2! = ¢, 22 = 0, the metric tensor is

sin?f 0
G =\ o 1)

The Killing equation (x) then reads for

p=v=1: 2 sinf cosfv* + 2sin*0 J,v' =0,
p=1 v=2: d,v% + sin® § Opv' = 0,

with the following three linearly independent solutions:

oL
(w1 [+ cosp L osf
va) = (”(21)) = (0> =0y, V) = < in 9) +cosg0 0 Oy + sin ¢ Op,

cos 0

— —SIHQDMHH P cos
U(3)_< cos o >_ smg08108 + cos ¢ 0.
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They are a basis of the Lie algebra so(3), cf. (8.54):

UY(a), U(b) Z €abeV(c

Two of these commutation relations are easy and the third is:

[V(2), U(g)] = [cos o — €0 8 + sin @ dyp, — sin p —— €0 8 + cos 39}
sin sin

cos cos 0 cos cos 0 0, + cos cos 0 Sin @) Jp — si si -1 0,
= — —sin — sin ¢ sin ¢ ——
4 sin 0 Y sing sin 0 SO no v) % 14 ? sin?@ 7
i cos 6 . cos 9.+ W —1
sin —sinp —— sin
14 sin @ 14 sin 6 v 2 sin 6 sin’ @

1 2 2 : : 1 —cos?0
_ _ 0 — gin? 29 2 2008, — L0
sin29< cos”  cos sin” ¢ cos” 8 + sin” ¢ + cos” ) 0, zg Qe =
where we have used
5 cos -1
“sing  sin20’

7  Manifolds

Problem 7.1
Show that the definition of differentiability of maps between two manifolds is independent
of the coordinates chosen.

Solution 7.1

Consider a map F': M — N where M and N are manifolds. Let (%', o), (%, «) be charts
for M with z € Z N %', and let (¥',3"), (¥, ) be charts for N with F(z) € ¥ N ¥". The
representation of F' with the help of the primed coordinates, 5’ o F'o o/~!, is related to the
representation of F' in terms of the unprimed coordinates, 5o F o a™!, by

foFodt=pofofoFoatoaoa ™.

As f'oB7 ' and coa’~t are C*°, we see that fo Foa™!is C® at a(z) if and only if /o Foa/~?
is C* at o/(x).

Problem 7.2
Prove the theorem in section 7.4.

Solution 7.2 (see Choquet-Bruhat et al., p.240)
Let zp € N and (%, «) be a chart for M with o € % . Denote the corresponding coordinates
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by z!,..., 2™ Since the mapping z — (f*(z),..., fP(x)) is of rank p at x, it is possible to
label the coordinates such that the p x p-matrix

ofA
Oxt ) A=1,..p

i=n—p+1,....,n

has nonvanishing determinant at xo. Then there exists a neighbourhood U C U with
g € % where the following change of coordinates is admissible:

! , i=1,...,n—p,
= fr=P(z) | i=n—p+1,...,n.

4
yl
Therefore (% , @) with a(x) = (y',...,y") is a chart for M. If z € % N N, one has

Such a chart can be found for each g € N. Hence N is an (n — p)-dimensional submanifold
of M.

Problem 7.3
Show that the differentiable structure of S? as a submanifold of R? coincides with the dif-
ferentiable structure given in section 7.1. Hint: Use polar coordinates in R3.

Solution 7.3
Let

M=R and N:SQZ{xEM‘i(ﬂ)Qzl}.
i=1
Define a chart (%, «) for M by
U =R*—{z cR%z" >0, 2 =0}
and a(z) = (9, p,7), where

! = rsindcos g,

2% = rsindsin g,

3 =rcos?.
For x € % we have r > 0,0 <9 <7, 0 < ¢ < 27. Define
@:%ﬂ52252—{x652‘x1ZO,xQZO}.

Since x € % N S? implies a(x) = (9, ¢, 1), we see that (%, a) with a(z) = (J,¢) is a chart
for S? as a submanifold of R?, and we have to show that (%, @) is compatible with the charts
(%;, cv;) introduced in section 7.1.
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The change of coordinates is given by

(Oz% oa M)V, p) = a%(sin Y cos p, sin ¥ sin p, cos V) = (sin ¥ cos @, sin ¥ sin )

14 cos?

for (9, ¢) € d(?/% N%). On % we have 0 < 9 < m. Hence the above change of coordinates
is C*°. The inverse map is

(ao a;)(yl,yz) =(0,¢) for (y'y°) € (%N ).,

where

~ arccos [ 1= W) = ()
V= (il +(y")?2 + (y2)2> ’

(y1)* + (v2)?

with the branch of the logarithm chosen such that 0 < ¢ < 27. Since a%(x) # (0,0) for

x € U, we see that (@ oa;") is C* as well. Therefore (%, @) is compatible with (%, a;).
2

v = —ilog

In order to cover all of S? we need one more chart. For instance, one can take
%:R3—{x€R3‘x1§O,x3:O}

and a(z) = (¥, ¢, r), where

' = —rsindcos
22 =rcos?,
x

= —rsindsing.

As above one sees that the resulting chart (% , &) for S? is compatible with (%4, ;). Since
the two % s cover S?, we have obtained the desired result.

Problem 7.4
Verify that the Lie bracket of two vector fields on a manifold is represented in terms of
coordinates by (6.18).

Solution 7.4
Represent the vector fields v, w in terms of coordinates:

.0 .0
v:;vlaﬂ. , w:;wlaﬂ..
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According to (7.37) their Lie bracket is given by
9 .0

v.0)() = olw(f)  wlo(f)) = v (Z wi s ) —w (Z @xif)
0 ;0 ;0

_Z da ( o ) _;w dai (“ axif>

Owl af O Joviaf L o
T -l

- oxt Oz 0xt0xI v oxd Oxt wo 0xt0xI
_ Z o ow’ 87}7 0
N - oxt 8xl oxI

This proves (6.18).

Problem 7.5
Prove the coordinate independence of the definition (7.46) of the tangent mapping explicitly.

Solution 7.5

Consider coordinates z!, ..., 2™ and Z!, ..., " on a neighbourhood of z € M and coordinates
y', ...,y and ¢, ..., y? on a neighbourhood of F(x) € N. In terms of these coordinates,
the map F': M — N is represented by

y = Fi(x, ... 2"

and by B
7 =Fi(z', ..., 32",
respectively (7 =1,2,...,p). For v € T, M we have

n Za n y 9
v:;vami(x):;vafi(x),

where according to (7.29)
oz’

—1 m

oxm

m=1

i Z oy’ 8y

Due to (7.28) we have

Therefore we get

~ O - mOF Oy 0
2275 ayﬂ Z T 00" 0 0 0y

Jj=1 =1 l,j=1%,m=1
™ ay 8F98x o)
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l
The expression in parentheses equals ——, because

Oxm’
Fi(a', ) =y (Fz' (.. ),..),..) .

Therefore

" N OFT D P & OF 0
V=22 gy 2 ey

8 Lie groups

Problem 8.1
Show that R? with the multiplication law

1 Y1 1+ Y
T Y2 | = To + Y2
T3 Y3 T3+ Y3 + T1Y2 — T2l

is a Lie group and that its left action is an affine representation. Calculate the structure
constants of the Lie algebra with respect to a convenient basis.

Solution 8.1
For notational convenience, we put all indices upstairs.
First show that we have a group:

0
e necutral element: e= |0
0
e\ 7! —z!
e inverse: x? = [ —2?
3 _ 8
. " 1 2y 1
e associativity: x? y? 2| = 2?2 + 92 22
23 3 3 2+ 2y — a2y 3
2yl 42
_ 24P+ 22
o34y + aly? — 2%yt 4 28+ (2 +yh)2? — (2 4 y?) 2!
ol oyt + 2!
_ 24?4 2 ’

$3+y3+23+l’1y2+l’122+y122—l‘2y1—$221—y221
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which is indeed equal to

! y! 1 ! gLt 2
72 2 2 B 2+ 22
3 % 3 3 P+ 2B 4 yla? — 2!
bt + oyt 4 2
_ 24y 22
o34+ + 22+ gyl — Pt et (y? + 22) — 22 (yt + 2
2yl 42
_ 2?4 o+ 22

23 4P+ 2B ol + ale? +oyle? — alyl — a2zl — g2t

Second, our group is a Lie group, because multiplication and inverse are differentiable.

The left translation or action is affine:

x! g ! g 1 0 0\ [/af
Lyl =2 [2*]=(#]+] 0 1 0] |2?
3 7 \us e 2 gt 1) \u3

zt g'+ ! Fl(z)
Lg | = 92 + T2 = F2($) )

and its tangent map (using the shorthand 9; := 9/0x" and the summation convention),

TL, : T,R® — Tp ,R®

0'0; — v (0;F7)0; = v'0) + 0205 + (v* + g'v* — g*v")0s.
With (a,b, )’ € TyR? we obtain the generic invariant vector field
v(x)=ad + b+ (c+ba' —ax?)0s.
As basis of the Lie algebra g we choose
A:=0, —2%0;, B:=0y+2'05, C:=0s.
There is only one non-vanishing commutator:

[A, B] = [0 — 2°03, O + 2'05] = 05 + 03 = 2C.
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Problem 8.2
Show that the Lie algebra of SO(n) is isomorphic to the Lie algebra of antisymmetric ma-
trices.

Solution 8.2
SO(n) is the submanifold of R"™ defined by the system of equations

MMT =1, detM =1.

In the neighbourhood of 1 the group SO(n) is a surface in R™ in the sense discussed on pages
9 and 10. To calculate 77.SO(n) we consider a curve M(7) in SO(n) starting at 1T =: M(0).
The tangent vectors d/drM(0) for all such curves constitute Ty SO(n). From MM* =1 we
get

d d !

— M(0 — M(0 = 0.

dr (0)+ (dT ( ))

Therefore

0 . .
T150(n) = {Z " Oritiz (1) with " = —a“’“} :

11,22
The invariant vector fields are calculated as in (8.34). Their commutators are again given

by (8.35).

Problem 8.3

Define C' € gl,, by

oC — M AB

with A, B € gl,, and A € R. Consider the expansion of C' in powers of A\ and calculate as
many terms as you wish (Campbell-Hausdorff formula).

Solution 8.3

AA _AB )‘2 2 /\3 3 )‘2 2 /\3 3

2! 3!
A2 A3
=1+ XA+ B)+ §(A2+2AB+BQ)+§(A3+3AZB+3ABQ+B3)+~-
Write
A2 A3
C =X + 502%— 5034-"'
Then
X2 \3 1 \2 S|
C— — —_— o .. —_— —_— D —_— ...3 D
e” =14+ XC + T Cs + a0 Cs + +2! (AClJr 51 Cs + ) +3!()\01+ )+
A2 A3
=1+ M) + 5[02+012]+5[03—!—%0102—!—%0201—!—0?]4-"'
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whence

01:A+B,
Ch= A> 1 2AB + B?— A> — AB— BA— B® = [A, B,

Cy = A%+ 3A2B + 3AB? + B

— A% — A’B— ABA — BA> — AB* — BAB — B*A - B*

— 3A’B + SABA — SABA+ 3BA* — 3BAB + 3B*A - JAB + JBAB

= 1A’B— ABA+ 1BA’ + 1AB> - BAB + iB*A = 1[A- B,[A, B]).

In conclusion:

eAeB — oA+ B+ (1/2AB]+(1/12)[A-B|AB] + -

Problem 8.4
Use the Maurer-Cartan structure equation (8.67) to prove that (8.70) is equivalent to the
Jacobi identity.

Solution 8.4
The Jacobi identity,
[U7 [u7 w]] = HU’ u]’ w] + [u’ [U> w]]7
is often written as a sum of three cyclic permutations,
va u]v w] + [[wv U]> u} + Huv w]v U] =0,

or in a basis {A;} of our Lie algebra and with v = A;;, u = A;, and w = A;;,

Z (firia" fris' + Figin" frin' + Firis” fr") = 0,

k
or using the antisymmetry of the structure constants, f " = — fii, "
: k !
DD SigT fiine friv
k weSs

We write the Maurer-Cartan structure equation (8.67),
d¢t = =13 fu'CF AL,
ki3
and take its exterior derivative:

==Y fui'dCEAC + 5 ' CEAACR = =) fialdCt A CH

ki3 ki3 ki3
_ 1 ke 1 ia i3 _ 1 . k 1\ i ia i3
=3 D fun S CACE AT =5 ) (D0 Y siem fi i ri' | €T ACEACE.
k,i1,i2,i3 i1<ia<is k weds
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The desired equivalence between equation (8.70), d2¢! = 0, and the Jacobi identity follows
because the ¢4 A (2 A (® with i; < iy < i3 are a basis of the invariant 3-forms.

9 Fibre bundles

Problem 9.1
Give a differentiable atlas for the frame bundle F'(M).

Solution 9.1
Let {(%,,a,)} be a C*-atlas for M and denote the coordinates on % by x!,... 2" Then
{(z7 (%), a,)} is a C>®-atlas for F(M), where m : F(M) — M is the projection and
&, 1w (%) — R™" is given by
(2, by, b)) = (2,2l don(by), A2 (by), . .., Azl (b)) = (2, ..., 2, (dzl (b))
for (x,by,...,b,) € 7 Y(%,). Tt remains to be shown that @, o a;! is C*°. We have
Groayt (ah . (Al (B) = (ab ., am, (dad(Be) |

79

where

and

This means

- w . oxl
ayoay (zy,...,22, (¢;) = <xi,...,xr, ( (9xlgli>> .
l S

The coordinates z' are infinitely often differentiable functions of z!,... 2", consequently
J

r

Pl The dependence upon ¢/, is linear and therefore C*
:US

the same holds for the derivatives

as well.

Problem 9.2

Consider SU(2) as the subgroup of SU(3) consisting of all SU(3)-matrices of the form

* % O
* ¥ O

O O = ~

Then, according to the theorem mentioned at the end of section 9.5, SU(3) may be regarded
as an SU(2)-bundle over S°. Find local trivializations of this bundle over S® — {north pole}
and S° — {south pole}. Calculate the corresponding transition function.

28



Solution 9.2
Considering S° as a subset of C?,

5 = {(a,b,0) € Claf* + |bf2 + |ef? = 1} ,

the projection 7 : SU(3) — S° is given by

Un
7T(U) = U21
Usi
To prove this one has to show that
1 0 0
rU)=n(V)eU=V|0 a B
0 -8 &
with |a|? + |B]> = 1. It is trivial to prove “<”. To show “=" note that (VTU);; = 1,

because Uy = Vjp for i = 1,2,3 and U,V € SU(3). Since V*U € SU(3), one can conclude
from this:

(VU)o = (VTU) 3= (VTU)y = (VTU)3 =0.
Consequently

Viu=1 0 with A € SU(2).

A section of (SU(3), 5% m) over S° —{(0,0,+i)} is given by
S% —{(0,0,4+1)} — SU(3)

a
b — Uy (a,b,c)
c

and a section over S° — {(0,0,—i)} is given by

a
b — U_(a,b,c)
c
where
i b
a L (1—ic—|aP) .
1 +1c - ) 1—1c
Uy(a,b,c) = e — (1 —1ic— |b? , CFL
+(a,b,¢) b 1+ic T L e Pl 4
_ —141ic
c —a 1 —
1—ic
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—i . ab
a Tic(l_l—lc_wz) 1+
iab .
U_(a,b,c)= | b s —(1+ic—|b?) , cF i
1—ic 1+ic {—i
c —a —ib _lf
1+ic

with |a]? + |b]*> + |c|* = 1. So we get local trivializations over S® — {(0,0,+i)} and over

S5 —{(0,0,—1)}:

71 (S° = {(0,0,£i)}) — (S° — {(0,0,£i)}) x SU(2)
U ~ (x(U),Ve()),

where Vi (U) € SU(2) is such that
0 0

U= Ui (U117 U217 U31) 0 Vj:(U)

According to (9.8) the transition function
g—+ 85 - {(07 Oa +1)7 (07 07 _1)} - SU(Q)

is determined by
g—+ (Un, Uai, U31)V+(U) = V,(U) .

Therefore
1 0 0 0 0 0 0
U=U_| 0 v =U_1 0 0 v
0 - o I 0 *
Consequently,
1 0 0
U_ 0 - U_|_
0 g-+
This yields
B 2[b|? 2iab
(1+41ie)(1 +ic) 14 ¢c2
g—+(a7bv C) = o 9
2iab 1 Ald
1+¢? (1 —1ic)(1 —ic)
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Problem 9.3
Show that a vector bundle with an m-dimensional fibre is trivial if and only if it admits m
sections linearly independent at each point.

Solution 9.3
If F is a trivial vector bundle over M, we may assume that it is of the form E = M x R™.
Then m sections that are linearly independent at each point are given by

M 3z +—(z,(1,0,0,...,0))
(z,(0,1,0,...,0))

(x,(0,0,d,...,l)).

Conversely, if 0, : M — E (i = 1,2,...,m) are m sections that are everywhere linearly
independent and 7 : E — M denotes the projection, we can express any y € E as

Yy = a;0; (I’) )
i=1
where x = m(y). Consequently, the map

y—(x,a1,...,a,) € M xR™

is a global trivialization of E.

10 Monopoles, instantons, and related fibre bundles

Problem 10.1
Apply the gauge transformation (10.24) to the 't Hooft—Polyakov ansatz (10.17).

Solution 10.1
We have v(z) = R(%(x)) with

S(2) = < cos(9/2) e ¥sin(9/2) >
—e¥sin(9/2)  cos(¥/2) .

Here, R : SU(2) — SO(3) is the map defined in (8.58) where it was called . Therefore

¥ =0 = R7)® = 7 (3@ .
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where

One finds

and consequently

In order to compute the gauge transformed vector potential we make use of the fact that
the Lie algebras of SU(2) and SO(3) are isomorphic. So we work in su(2) and consider the

vector potential

3

+ L—nh(r) G,

A= ———-= E Ta€qij®’ dx

r2
ayi,j=1

with 7, = —(i/2)o, (cf.(8.55)). We want to calculate
A= § A4 4 4d47

One finds .
a1 1 i(1—cosd)dp e ¥(—=dd +isinddyp)
T e (d + isind dy) —i(1 — cos¥)dy
and
13
3 Z Ta€aij@’ Az’ = 3 (11(z%d2® — 2°da®) + m(2'da® — 2°da’) + 73(2’da’ — 2'da?))
a,i,j=1
with
1
— (z*dz?® — 22da®) = sin p d + sin ¥ cos ¥ cos p dy
r
1
—Q(xldx?’ — 2°da') = — cos ¢ dd + sin ) cos ¥ sin p dy
r
1
— (2?dz! — 2'd2?) = —sin® 9 dp.
r
Consequently,
1 i iy i —sin® ¥ dyp e #(idd + sind cos U dy)
— To€aij@’da’ = —= |
r? aijal ’ 2\ e¥(—idV + sind cos ¥ dy) sin® 9 dy

and therefore
0 e ?(1dd + sind dyp)

AAA_lz—il—hr .
et 2( ) ( e’ (—1dd + sind dy) 0
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Thus we obtain

A = 71( — h(r)sind cos p dp — h(r)sinp dd) + 72 ( — h(r) sind sin p dp + h(r) cos ¢ d)
3
+73( = (1 = cosd)dy) = ZTGA'“
a=1
with A" as given in (10.25).

Problem 10.2
Verify (10.31).

Solution 10.2

Since
1 1<
d— = ——=dr = —— x'da’
one finds
Iy — 1/ 2t 4i® 2® +iat dl ot —ixd —2? —ix!
v 7_r 2 +izgt 2t —ig? r\ 22—zt 4z’
1< 1 5 ’
= 2da + 2 <x4 -2 Z xl77> (da:4 +2 Z dexk) .
=1 =1 k=1
Using

1 1
;T = —Z§jl + = Z 5jlm7—m

one arrives at the desired result:

3 3
2
-1 _ m 4 4 m l k
vy = Ele [_ﬁ (x dz® — 2°da™ + g EemT dx )] .

1Lk=1

Problem 10.3
Calculate the field strength belonging to the instanton ansatz (10.29).

Solution 10.3
With

3
(=7¢=) 7
j=1
the ansatz (10.29) reads A = f(r)¢. From (8.73) it follows d{ = —%[5, ¢]. Consequently:
F=ad+ JA A = f@)ar A+ Fr)aE+ 5 A = Foar G+ (2 - G

33



Due to s
(71, 75] = Z EljmTm
m=1
one finds ;
[C? d = Z EljmeCl A Cj
l:jzmzl
and therefore

3 df 5 1 3 - .
F=3 mu |2 dr Al +5( =) D eyml AC|

m=1 l,j=1

Problem 10.4
Show that (10.48) is the Riemannian connection belonging to the metric described by the
ansatz (10.47).

Solution 10.4

Since 7;; = 4;;, the spin connection w must satisfy w” = —w/*. This is trivially fulfilled,
because (10.48) is meant to be completed such that w becomes antisymmetric. Hence w is
metric. It remains to be shown that the torsion vanishes, i.e.,

4
dei—l—Zwij ANel =0.
j=1
In the case ¢ = 1 we have
de! =0

and
4
Zw” ANel =0,
j=1

because w'? o e7.

For the following note that d¢ = —%[5 ,C] (see solution 10.3) implies

WG = ne,
a2 =& ng
d¢® = —¢' A 2.

Then we get for ¢ = 2

1 1 e - | 2
d62:——d7’/\<1——r <—<2/\<3) :_61/\62+_63A€4
2 2 rf rg
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and

2 — g2 1 2
szﬂ/\ejz —e*nel + ge4/\e3 ge3/\e =——e' N2 — e aet.
rf rg r rf rg
For i = 3 we find
3 1 2 2
de:——dr/\C— ( C/\() —elNed+ Zetne
rf g
and
. . 1 2 — g2 1 2
ngj/\ej:—63/\61——964/\62+g62/\64=——61/\63——64/\62.
rf rg r rf rg

Finally, we obtain in the case i = 4

1 . 5oL 1 '
de4:—§gdr/\C3—gg’dr/\C3 < Cl/\<2>:(rf gf>e Aet +2g62/\6

and

4
) ) 1 / 1 /

E w‘“/\ejz(—+g—)64/\61+“(—]€3/\e2—g62/\63:—(——l—g—)el 2962/\6 )
— rf  gf

Problem 10.5
Verify the expression (10.59) for the fundamental vector field AB.

Solution 10.5
The fundamental vector field AB € vect(S?) is defined by (cf.(10.56))

: , 0
(AB) (21, 22) = lelt(zl,m)(B(l)) = T1bit(z) ) (ba_a(1)> .

In terms of coordinates, bit., .,y is given by
a (zleio‘,zgeia) .
Introducing real coordinates y’ according to (10.58) we get for this map the representation
o (yl cosa —y’sina, ytsina+y?cosa, y?cosa — ytsina, y3sina + y4cosa) .
Now (7.46) yields
B = (s 0 s 0 0 )
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Problem 10.6
Repeat the calculations of section 10.6 with the symmetry group SU(2) instead of SO(3).

Solution 10.6
Upon replacing the symmetry group SO(3) by SU(2), the 't Hooft—Polyakov ansatz for the
scalar fields becomes invariant under gauge transformations of the form

~v(z) = exp (—B(x)ijTj) cSU(2) , zeS5?.

As indicated in (10.89) we have to take the following embedding of U(1) in SU(2):
U(l) — SU(2)

3
el — exp (—2a2xj7j> .
j=1

On one side, we have a trivial SU(2) principal bundle over S?,
P=5%xS8U(2),
where gauge transformations are of the form
S% x SU(2) — S? x SU(2)
(z,w) = (z,v(z)w)

with v : §% — SU(2). On the other side, we look for a U(1) principal bundle (P, 5% 7). In
this case, gauge transformations are given by maps

YU —UQ1) , r=12 |,

with v, = v, on % N %, i.e., we have one function 5 : S? — U(1), from which we can
construct a bundle automorphism (f,idy ), idg2):

f:P—P
p— f(p) =pi(n(p)).
We require the existence of a bundle map (fp, ¢,idg2) with
fp P — p,
p:U(1) =» SU(2)

such that

H(x) = elB(@)/2

(gauge transformation in P) corresponds to

v(z) = exp (—ﬁ(m) ij7j>
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(gauge transformation in P). The factor 1/2 in the expression for 4 takes care of the fact

that ;
exp (—QWZJ}jTj> =—1.
j=1

The properties (b), (c¢) in the definition of a bundle map of principal bundles enable us to
write

fe(p) = (7(p),G(p)) , pPEP,
where G : P — SU(2) satisfies

G (pe®) =G(p)p () .

The required correspondence of gauge transformations in P and P means:

G(p) ¢ (€79)/?) = exp (—ﬁ(w) ijrj) Glp) , z=m(p)),

for all p € P. Introducing local trivializations of P we can write for p € 7~ (%)

G(p) - ér(ﬂ-<p>a fr(p)) )

where ér satisfies

G, (:v, eia/+ia> =G, (x,eio‘/> ¢ (),

and we have to fulfill the equation
Gr <x,ei°‘/> % (eiﬂ/2 = exp ( Zx37]>
for r = 1,2. This is possible only if
% (616/2 = exp ( ﬁzan])
)=

with (n)? + (n2)* + (n?)” = 1. Choose n® = 1, i.e., ¢ (¢¥/?) = ¢ 7. Then

Gy (z,6) = ( .COS‘(19/2) e sin(d/2) ) e 2 ford <
e'? sin(1/2) cos(1/2)
and . .
Gy (2,¢) = < ) .COS(ﬁ/Q) y nd/2) > e 2™ for 0 <9
sin(¥/2) e cos(d/2)

do the job. Introducing the abbreviation

cos(9/2)  —e ¥sin(d)/2)
A(ﬁ»@:(ewsmw/m cos(1/2) )
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one has to show for ¥ < 7:
e P = A9, ) exp (— B(sind cos o 1 + sind sin o 7o + cos I 73) ) A(D, ) .
So it suffices to check that
A7, ) (sin ) cos 11 + sin I sin 15 + cos I 73) A, ) = T3

This is easily done. The case 0 < ¥ is treated analogously.

For p € n= (%) N n~ (%) we must have

Ci(m(p), f1(p)) = Ga((p), f2(p)) -
With f.(p) = €' this means
( cos(9/2) —e ¥sin(/2) > ey _ ( e ¥cos(¥/2) —sin(9/2) > .
el sin(19/2) cos(1/2) sin(9/2)  e¥cos(/2)

for 0 < ¥ < m. One finds: fo(p) = €¥fi(p). Hence P is the bundle of the Dirac monopole
with m = 1.

Turning to the connections, we look for the uniquely determined connection o on P
with i
fpd = (Tip) o,

where o7 is the connection on P represented locally by (10.10), (10.11) for m =1 and

Tip:TiU(1) — T.SU(2)
u(l) 3ib— —2b1s € su(2).

As in section 10.6 we find for z € %,
(Typ)Are = Gz, 1) A Go(,1) 4+ Gp(x,1) ' d Gy (2, 1) . (%)

Since Gy (x,1) = #(z)~" with 4 as in solution 10.1, we can conclude from that exercise:

r2

3
G (, 1) (1 —hir) 5 Tagm.jxfdxi> G, 1) + G (2, 1)1 G (2,1)

a,i,j=1
=71( — h(r)sind cos pdp — h(r)sinp dd) + 72 ( — h(r) sin ¥ sin p dp + h(r) cos ¢ d)
—1—7'3( — (1 —cos?) dgo) — 73( — (1 —cos?) dgo) )
r—00

On the other hand, from (10.10) with m = 1 we get
i
(Thp)Ar, = (T1p) (5(1 — cos V) dgo) =T73(— (1 —cos?)dy).
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Hence, () with r = 1 is satisfied if A is the potential of the ’t Hooft-Polyakov ansatz on the
sphere at infinity. As is easily checked, the same holds in the case r = 2.

Problem 10.7
Prove (10.98) in the special case where G is a matrix group and I(F?) = tr(F A F).

Solution 10.7
With the help of the Bianchi identity

dF = —[A,F]=FANA—-AAF
we get
dI(F?) =dtr(FAF) =tr(d(FAF)) =tr((dF) AN F+ FAdAF) =2tr(F AdF)
=2tr(FA(FANA—ANF)) =2t (F/\F/\A FANANF)
=2tr(FAFANA—-FAFANA) =

Problem 10.8
Derive (10.107) from the Chern-Simons formula.

Solution 10.8
The invariant symmetric bilinear form corresponding to

[(F?) = tx(F A F)

is given by
[<A1; AQ) = tI'(AlAQ) , Ah A2 €g.

We want to calculate Q(A, ;1) for two local potentials (g-valued 1-forms) A and fol according
0 (10.102). Defining

Aszl—l—Ta with a:A—;l, 0<r<1
(see (10.99)), we have the corresponding field strength
Fr=dA, + A, NA. =dA+rda+ ANA+TaNA+TANa+ TP a N

:F+T(dCz+OzAA+A/\Oz)+72aAa.
Now we get

o

Q(A, A) = 2/1drtr((A /01) AF)

Q/thr (CY/\dC(—i-Oé/\CE/\A—i—Oé/\A/\C()+T2a/\04/\04)
0

(
(

2
tr 2aAF+aAda+aAaAA+aAAAa+3aAaAa>

tr

2
204/\F—|—04/\d04+204/\A/\04+304/\04/\04)
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Inserting this expression in the Chern-Simons formula (10.101) one arrives at (10.107).

Problem 10.9
Verify (10.114).

Solution 10.9
Since we want to apply Stokes’ theorem, we first have to think about orientations. The
boundaries of S7 can be identified with S™~!:

987 = 08" = {(a,....a") € 8" [2" =0} = 5" € S

S™ and S™~! are oriented according to the rule given on p. 111. S% and S” inherit their orien-
tations from S™, and the orientations of 9S” are as explained in section 7.10. So the orienta-
tions of 95 and JS™ are opposite to each other and we have to find out which one agrees with
the orientation of S"~!. To answer this question it suffices to consider one point in 9S%. Take,

for instance, zy = (1,0,...,0) € S} C R"*'. T, S™ is spanned by %(xo), ce %(mo)
and an outward normal vector is n(xy) = %(Jco). Since %(130), cee W<IO) is an ori-
ented basis of T,,R""!  an oriented basis of T,,S™ is given by @(:po), e %(mo). An
outward normal vector of St C S™ at xg is ny(zo) := —W(xo). So

%(mo), ce %(mo), —ny (x0)

is an oriented basis of T} S, whence

(=1)"ny (o), %(xo), . %(mo)

0 0
m(xo), e a—(aco) is an oriented ba-
T il
sis of T,,05" if n is even. On the other hand, an oriented basis of T,,S"! is given by

0

—(x0),..., =—(x0) as the above considerations show. Therefore the orientations of 95"
oz? xn +

is also an oriented basis of T7,,S5". Consequently,

and S"~! agree for even n. (If n is odd, dS™ and S"~! have the same orientation.)

Starting from (10.113) and using (10.108) we get with the help of Stokes’ theorem:

foe=w ),
542_87T25

1
=g A(tr((d42) A Ag + 345 A Ay A 45) )

d(tr((dAl) ANAr+ 2A1 N AL A A1)>

4
+

1
= — tr((dAl)/\A1+%A1AA1/\A1)

871'2 S3

1
—— [ tr((dAx) A As+ A3 A A AN Ay) .
877'2 S3
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On S® we have
Ay =y Ay ydy

(cf. (10.91)) with v given by (10.30) for » = 1. Writing A instead of A; we obtain
87r2/402 :/3tr{(dA)AA+§A/\AAA— (dy) ANANAyT = (dA) A A
) ) FAN(AYT)AYA = (dY) A (dy ) AyAyT = (dy) AAAdYT!
—Y(dA) Ady ™ AN (dyT) Aydy T = (dy) A (dy ) Aydy
—2JANANA+YANANdY T + AN (dy ) AyA
+ AN (Y D AydYy P (dy ) AYANA+y(dy ) AyAAdy !
(A7) Ay AvA +y(dy ) Ay Avdr )]
= /SB tr [(’y‘ldv) AT A A+ (7Y AdA = (3T Hdy) A (3T Hdy) A (7‘1d’y)} :
(Note that ydy~! = —(dy)y~!.) Since
(M) AA) = =(y T A (v d) A A = (yTHdy) AdA
and 953 = (), we find
372 [ = [ w[=a(@7) A4) = 367 A ) A ()

_ 1 /S (7t AT A G ).

11 Spin

Problem 11.1
Construct an isomorphism between Spin(0,3) and SU(2).

Solution 11.1
Let v :=uvie! +v0e® +v3e®,  with quQ =1,

and  w :=wie! + wqe? + wyed,  with E w? =

Then the Clifford product vw is

vw = (—vywy — vawy — vzws) 1 + (vywy — U2w1)€162

+ (vows — vawg)ee® + (vswy — viws)e’e’.
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Since for any unit vectors ¥, w in R3, we have
(v W) + (0 x w)* =1,

and on the other hand any unit vector in R? can be written as vector product of two unit
vectors, any element of the form

4
11 — zoete? — xge?e® — xyede!  with E x? =1
=1

is element of Spin(0,3). Furthermore any Spin(0,3) element can be written in this form,
because

(211 — e e? — mae?e® — zyedel) (11 — ypete? — yse?e® — yuedel)

= (211 — zpe'e® — z3e?e® — z4edel)

with
21 =T1Y1 — T2Y2 — T3Y3 — T4Ya4,
Zo = X1Y2 + Tl — T3Ys + T4Ys3,

23 =X1Y3 + T3Y1 + TalYs — TalY2,

Z4 = X1Ys + T4l + T3Y2 — ToY3.

()

The fact that 24 2?2 = 1, will follow from the group isomorphism to SU(2), where the

=171

SU(2) elements are written in the form of (8.11):
Ty +ix r3+1izx -
1 2 —I3 4 : Z 2 _
<x3 +izy x —ixe ) with — S
Indeed,

11z —w3Hizg (v +Hiye —ystiys) _ (2 t+izn —ztiz
T3 +1T4 T — 129 yst+iys Y1 — 1y Z3tlzys 21— 129

with the z; satisfying the equations (x).

Problem 11.2
Calculate the square of ;.

Solution 11.2

— (_1)Zi=1 iHniip(]l) _ (_1)(n—1)n/2+5]l‘

=1

42



Problem 11.3
Calculate the square of the Dirac operator in a flat, torsion-free space.

Solution 11.3

Dy =~*0,4, 0, := 0/0z" and summation convention,

]DD¢ = 71/ v ’Y”@ﬂﬂ = fYnyuaua,uw = %(7%7“ + ’Y'uﬂyy)&/auw = ﬁ“yauauﬁb = D¢.

Problem 11.4
Show that (11.72) defines an invariant sesquilinear form.

Solution 11.4
First let us show that for any sesquilinear form (-, -)

(Y4, x) = (¥, v"x) forall i=1,2,....n (%)

implies
(P, pgx) = (¥, x) forall g € Spin(r,s).

It is sufficient to prove this last equation for any generator g of Spin(r, s)¢. The most general
such generator is

g= (,Uiei)<wj€j)7
using the summation convention with real coefficients v;, w; satisfying
Uiniivi = wjnjjwj = =+1.
Then
(Pg¥, X)) = viwjorwy (V' 9, 7*y'X) = vivkwjw (¥, ¥ 7'+*4'x)
= v wywn (Y, ¥ y'x) = (i vs) (wirP?wy) (9, x) = (1, x)-

Now we consider the special case r = 1, s = n — 1 and unitary ~*:

Then we have:
(70)2 =1 and (fyi)2 =—1fori=1,2,...,n.

Therefore
70+ :,YO and ’y” =—7'fori=1,2,...,n,

or ‘ '
Y0 = 0% for i = 0,1,2,...,n.

Now we consider also the special sesquilinear form (¢, x) := ¥™9%y. Then we show:
(V9. x) = (YY) x = T x = Ty = (8,0,
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and our first implication proves the invariance of the last sesquilinear form.

Problem 11.5
Verify the second equation of (11.74).

Solution 11.5

We use again the summation convention. We suppose that the field ¢(x) decreases sufficiently
fast for large = and that we can neglect integrals over an exact form of maximal degree
(‘surface terms’). We also suppose that the sesquilinear form satisfies the property (x) in
the Solution 11.4.

i / (0, DY) = —i / (DY, )

= —i[ (™ o+ Twaney Y0, ¥) detydat A A da”
= /W
/{8 [det v (v 71#1/1(1:1:/\

+ i/detfy (v " (v, 0,b) dat A - Ada”
—i / dety (Y, dwapu (VY Y1, ) dat A - A da”
_— / {Buldety (7)1} (8, 70) dat A -+ - A da”
+ i/detfy (v D" (W, ) dazt A- - Ada”
+ i/dew (7" 3wabn (¥, Y Y ) dat Ao A da” =
In the last summand we substitute
Oyl = innb _ Abopia 4 ~aoyib
and re-arrange x to take the form
w=i [sR @) +i [ 0.p0)

with

F;:=dety ™! Ouldet vy (V_I)Mi] - Wkiu(’)/_l)uk'
We use successively for the square matrix 7(z)
Oudety =detytr(v'0uy), 0y~ = =77 (@)
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and the gauge transformation (5.84),
07"y =70 T = W70
to compute
Fy = dety ™ (9udety) (Y1), + 0 (v ", — iy,
= (v, 0" (7 = (00 (Y = (T,
= ()" % T (7 = (E T AT
— () T (7 (7T w7 ()
— ™
= (0 = T%w) (7"
Finally we develop the torsion:

T =17, da#* Ada” = de” + w A e’ = d(v*, dz") + w*, da* A4°, dz”

= % [a#/yay - aszaM + Wab,u, ’Yby - waby ’Ybu] dI“ A\ dl‘y.

Therefore we have
Ta;w — 8;/7&,/ o ay,yau + wabu 'Yby o Waby ,yb,u
=70 T — w7y — VT + 500 7+ 65T — %07 s
and
Fy= (D —TV0) (v ) =T (v ) (7 = T%,
with

T =1T% e Ae.

The same computation in orthonormal rather then holonomic frames is more compact
and it is instructive to compare the two.

From equation (11.62) we know that D" = 0. We will use the Leibniz rule for the
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exterior covariant derivative:

[ w00 =

l

‘/D e, V) /\el2 A Aen Eiyoin]

aDyY)ANe A Netney

“D@b ) A 2N Aein Eiy.im

+ (n— 1)! /( ", DY) Ae A Aet e,

i 11 12 i3 in
+m/(7 V) NT2NeB N Nemey
--/\ei” 61‘1_“%] +1/*(¢,D¢)

+ m /(7“1/1, V)ALT2 e NS NS A Nemey,
:i/*(WW) + i/*@/}w%)Thaba

where we have used the identity:

EANESNEFN - Neme s o=t A Aem (n—2)1 (67, 6%, — 0%, 074y

12 An algebraic approach to anomalies

Problem 12.1
Prove the properties (12.12) and (12.13) of the Ward operator.

Solution 12.1

W(E)pAp) = [p(e" + 1) A p’(wi + 1) = (") AP ()im

= [plHAT@) + (") A (0" + 1) = P(¢)] + (" + 1) = p(e")] AP (")

+[p(* + ) - p(wi)] AP (@' + 1) = P ()] = AP (@) i

= {[p(e" + ) = p(@)in AP (") + p(") AP (¢ + f1) = P/ (0")]iin }
=(W(E)p)Ap' +p AW (E)Y

fi=—Rpy

fi=—Rp¢®

fi=—Rpy®

and
AW (E)p =d{[p(¢" + ') = p(¢)iin|pie—rpei } = [dp(@" + f*) — dp(&")]iin fiz— Ry
—W(E)dp

46



Problem 12.2
Show that the Adler-Bardeen anomaly (12.33) is of Stora’s type.

Solution 12.2
Let us rewrite equation (12.29) using [(2, A] = —[A4, Q] and the symmetry of I:

1 1
o) =3 [ ArIQFL ) —6 [ dr(e = DA FA)
0 0
(now use the invariance of 1)

1 1
_3 / Ar[(Q, Fo FL) + 6 / dr(r® — 7)I(Q, [A, F.], A)
0 0
1
+ 6/ dr(r? — 7)1(Q, F,, [A, A]) (now use the definition of F)
0
1 1
= 3/ dr 721(Q,dA,dA) + 3/ dr 7*1(Q,dA, [A, A))
0 0
) 1
+3 / dr 74I(9), [A, A, [A, A]) (Jacobi identity |})
0

+6 /1 dr (7 — 7)I(Q, [A,dA], A) + & /1 dr (7 — %) 1(Q, [ALAAT, A)
+6 /1 dr(r® — 73)1(Q,dA, [A, A]) + 8 /1 dr(t* — ) I1(Q,[A, A, [A, A])

=1(Q,dA,dA) + 3 1(Q,dA, [A, A]) + 2 1(QJAAATA])

— 11(Q,[A,dA), A) — L 1(Q,dA, [A, A]) — 2 1(Q, [AALTA A])

2
=1(Q,dA,dA) + 1 1(Q,dA, [A, A]) + 3 1(Q,[dA, A], A),

which is equation (12.32). Note that —[A, dA] = +[dA, A] because under the wedge product
a (real-valued) 1-form commutes with a 2-form.

Consider the particular trilinear symmetric invariant (12.27) that comes from a repre-
sentation p of g, for notational ease we write p(A) instead of pa:

I(Ay, Az, Ag) == % > tr{p(Ar(1)) A Ar2) A Ax() }-

TESS

Then we have
1(Q,dA, dA) = tr{p(Q2)p(dA)p(dA)},
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because all forms are of even degree and the trace is cyclic;

1(,dA, [A, A]) = L tr{g(QF(AA)HA AN} + L ee{a(Q)A(1A, A)p(dA)}
= tr{ QA + tr{A(Q)A(A)A(dA)},
because p([A, A]) = 2 5(A)2% and
1(,[dA, A], A) = § te{p(@)p(1dA, DAY} — § tr{p(Q)A(A)H(dA, A]))
= L {AQ)AAAFAY — L r{A(Q)A(A)H(dA)(A))
— L {Q)AAFAA)HA)) + 3 tr{HQ)B(AB(dA)},

because p([dA, A]) = p(dA)p(A) — p(A)p(dA). Finally we can compute the Adler-Bardeen

anomaly:

a(Q) = 1(2,dA,dA) + L 1(Q,dA, [A, A]) + L I(, [dA, A], A)
=tr{p()p(dA)p(dA)} + § [tr{A(2)p(dA)p(A)*} + tr{p(2)p(A)*p(dA)}]

+ 5[5 r{p(Q)AAA)A)’} = tr{p(Q)p(A)A(dA)F(A)}
+ 3 () p(A) (A}
=t {p(Q)[H(dA)H(dA) + 3 H(dA)H(A)* — § HA)H(AA)H(A) + 3 H(A)*(dA)]}

= tr{p() d[p(A) A dp(A) + 5 p(A)]}.

Problem 12.3
Verify that (12.46) defines a representation of the Lie algebra €.

Solution 12.3

W(Q,0)A = dQ + [A, Q] — LoA + digA + [A, i, Al.
It is sufficient to treat three sub-problems: [(€',0), (€2,0)], [(0,v"), (0,v)] and [(0,v), (£2,0)].

o [V Q]
W, 0)W(Q,0)A = W(,0)(d2 + [A, Q]) = [ + [A4, €], Q)]
= [, Q] + [A, [, 2] + [[A, 9], ],
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[W(Q,0), W(Q,0)]A = [d, Q] + [A, [V, Q]] + [[4, Q], ]
— [dQ, @]—[A, [Q, Q] - [[4,27],9]
=[dY, Q] + Q] + [[A,Q5T — [dQ, @]
—HA«QHXT [ﬂM‘T [A-07 4]
—d[Q, Q] + [A, [, Q)] = W(],Q],0)A.

o [V, 0]

[}

W (0, o')W (0, ) A =W (0,0')(—LyA + diy A + [A, i, A])

(o} (o}

= Ly(—LyA+ dig A+ [A iy A]) + [~ LA + diy A+ [A, i, Al iy Al

(o]

= LoLy A — diydiy A — [LoA, iv Al — [A, iydiyA] — [LuA, i, Al

[e)

4 iy A, iy A] + [A, i Al i Al

o

[W(O, U/), W(O, ’U)]A = (LULU/ — Lv/Lv)A — (divd’ivl — div/div)fcl) — [A, (’ivdiv/ — iv/div>A]

[¢] o

4 [dig A, iy A] — [dip A, iw A] 1 [[A, iy Al iy A] — [[A, iy A], v Al

o

= Ly A + (digdiy — diydig)A + [A, (iydiy — iudiy) Al

(o] (o] [¢] o o

4 iy A, i Al + [A, [iw A, iy Al] + [[ArisAT 0 A] — [AieAT 70 Al

Equation (12.40) tells us that we expect on the right-hand side W (2, [v/,v]) with
0= —?;v/’ivﬁi

W(—iv/ivF, [U,, 'U])A = —divlivF — [A, iv/ivF] — L[U/W]A + di[vlw]A + [A, Z‘[v/ﬂ,}A].

With

[e) o o o

i A, A] = iy [iyA, A = [inA, iy A] = —[in A, iy Al,

and

[¢] (o]

i[v'7U]A = (Lv’iv — iva )A = (Zvldlv —f—,dl/fl/ 1 d’ivl - iviv/d)A,
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we compute the right-hand side:
W (=i B, [0 0]) A = — digiydA — d Liyin[A, A] — [A, iyi,dA] — [A, Liyi,[A, Al
— L[U/W}A + di[vryv]A + [A, i[v’,U]A]

= — digiedA + dliw A, i Al — [A, 65dA] + [A, iv A, i,A]]

Ly A+ d(iydiy, — iy — i) A

~~

(A, (i, — iy — G0 A] = [W(0,0'), W(0,0)] A,

° [v,9)]
W (0, 0)W (€, 0)A = W(0,0)(d + [A,Q]) = [~ LoA + diy A + [A, iy A], Q]

(o]

LA, Q)+ [dig A, Q] + A, [ A, Q)] + [[A, Q) Al
W (S, 0)W (0, 0) A = W (S, 0)(—LoA + diyA + [A, i, A])
= L (dQ 4 [A,Q]) + [dQ + [A, Q)i A]
— L9 — [LoA, Q) — [A, L) + [AQ, i A] + [[A, Q). iu Al
(W (0,v), W(,0)]A = —M+M+ [4, [iyﬁi, Q) + U/A/ﬁhﬁ]
+ L,dQ + [LAST + [A, L,Q] — [d9, @v J/A/fﬂ/

(o}

— AL, + [A, L] + d[iy A, Q] + [A, [iuA, Q)] = *.
On the other hand, by equation (12.41) we have:

o

W([(0,0), (2 0)])A = W (L + [isA, Q] 0)A = .

Problem 12.4
Calculate the square of the operator s defined in (12.56).

Solution 12.4
Let Q € AY(¢,P) and E; € € for i = —1,0,1,...,1. Then,

1 .
(sQ)(Eo, Er,....B) =5 Y sign W(Er0)Q(Erqr), - -, Exqy)

I
7T€,7)l+1

1 .
RYZEERY] Z Sigm Q([Eﬂ'((])a Eﬂ(l)]; ETF(2)7 LRI Eﬂ'(l)))



and

|
(l + 1) 7T€=%+2
1
o > sign (sQ)([Ex-1), Ex@)s Brr)s -+ Bry)
' 7r671+2
I+1 _
- I+ 1) Z sigm W (L 70)Q(Er1ys - - -, Erqpy)
7T€=%+2
(1+ 1)1
2(1+ 1) > sign W(En1)Q([Ex(0)s Exv)s Ex(2)s- - » Exy)
TE€ES 12
1
- ﬁ Z Slgﬂ-W =1), &7 (0) )Q(Eﬂ'(l)7 7E7r(l)>
' TES 12

21!
TES 42
*
~ 2l > sign W(Exw) QUE1Exe] Er@)s Br)s - -+ Br)
.ﬂ'Ezsﬁl+2
*
— g1 D Siem W (Ex)Q(Ex=1Erwrl: [Ba@), Ens)s Entays - - Erv)
’71'6,7[4',2

The last term vanishes because

Z sigm Q([Ex(-1): Ex)): [Er2): Ex)], Z sigm Q([Er2), Er3)], [Er(-1), Ex):-)
TESY TESY
= — Z sigm Q([Ex(-1); Ex))s [Er@2): Ex)l; -)
TES Y

where the first equality holds since () is alternating and the second holds since the

permutation
7:(2,3,-1,0) — (—1,0,2,3)

is even.
The next to last term vanishes due to the Jacobi identity.

The two remaining terms cancel because the permutation
m:(—=1,0,1) — (1,—1,0)

1s even.
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13 Anomalies from graphs

Problem 13.1
Show that in four-dimensional spacetime the invariant (13.16) vanishes identically.

Solution 13.1
In n = 4 dimensions, n = 25 — 2 implies 7 = 3 and we have to show that

2 1
2] =
sinh 1q; '
3

i=1

Now

sinh %CL,L' (%ai)Q i (%ai)4

contains only even powers of a;. Therefore its inverse contains only even powers as well.
Homogeneous polynomials of degree three are consequently absent in the above product.
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