
Fundamentals of Structural Geology 
Exercise: concepts from chapter 5 

October 23, 2012 © David D. Pollard and Raymond C. Fletcher 2005 1 

Exercise: concepts from chapter 5  
 

Reading: Fundamentals of Structural Geology, Ch 5 

 

1) Study the oöids depicted in Figure 1a and 1b.  

 
Figure 1a 

 
Figure 1b 

 

Figure 1. Nearly undeformed (1a) and significantly deformed (1b) oöids with spherulitic 

cores viewed in thin section. Matrix is calcite with some mud. Samples are from near 

Harrisonburg, VA. Reprinted from Cloos (1971, Plates 9 and 11) with permission of The 

John Hopkins University Press. 
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a) Assume that the thin sections of Figure 1 lie in a principal plane of the 

deformation. Measure and record the lengths and orientations of the principal axes 

of several oöids from each thin section.  

 

b) Estimate the un-deformed radius of each oöid assuming no volume change during 

the deformation. Calculate and record the stretch in the two principal directions 

for each oöid. 

 

c) Compare the values of the principal stretches for the different oöids. How uniform 

is the deformation within these thin sections? Point out examples of non-uniform 

deformation within particular oöids? 

 

d) Cloos suggested that some oöids have "growth aprons" developed after the 

deformation. How would you compensate for these aprons when estimating the 

stretch? 

 

2) One way to build intuition about deformation is to witness the deformation of familiar 

objects. Here the objects are brachiopods, which come in many different shapes (Fig. 2). 

 

  
Figure 2. Fossil brachiopods from the Kaibab limestone, Grand Canyon, Arizona. 

Specimens at the Museum of Northern Arizona, Flagstaff. Photograph from Shelton, 

1966, p. 285. 
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Most brachiopods contain two recognizable lines (Fig. 3): the hinge line and the line of 

symmetry or central plication. These lines are perpendicular to each other in the 

undeformed state.  

 
Figure 3. External features of a brachiopod shell. After H. W. Shimer, 1914. From 

Woodford,1965, p. 480. 

 

To model the deformation of brachiopods we idealize their shapes as shown in Figure 4. 
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Figure 4. Idealized brachiopods and a circle lying in a bedding surface that is the (X, Y)-

plane. This configuration of lines and curves is used for the deformation analysis. 
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This exercise provides a visualization of deformation that emphasizes the change in 

orientation of orthogonal material lines: in this case the hinge line and central plication of 

the brachiopod. In other words this exercise will help you build your intuition about 

shearing deformation.  

 

We consider a variety of deformations, some of which you might not expect to be 

associated with shearing, but all of which are two-dimensional, homogeneous, and can be 

described by the following linear transformations: 

 

 
xx xy

yx yy

x F X F Y

y F X F Y

 

 
 (1) 

 

Here (x, y) are the final coordinates of a particle; (X, Y) are the initial coordinates of that 

particle; and the coefficients (Fxx, Fxy, Fyx, Fyy) are constants that determine the style of 

deformation. An example is given in Figure 5 where: 

 

 3/ 2,  1/ 2,  1/ 2,  2 /3xx xy yx yyF F F F     (2) 
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Figure 5. Deformed idealized brachiopods and strain ellipse for the deformation 

described by the constants in (2) and the initial state depicted in Figure 4. 

 

a) Construct a set of brachiopods similar to those in Figure 4, each with a straight 

hinge line, a perpendicular line of symmetry, and a rounded valve perimeter. 
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Avoid overlapping of the brachiopods. Place a circle in the center of the field of 

brachiopods to track the orientations and magnitudes of the principal stretches as 

associated with a strain ellipse. 

 

b) Uniaxial extension is defined as: 

 

 1, 0, 0, 1xx xy yx yyF F F F     (3) 

 

The bedding surface is stretched or shortened along the x-axis only. Does this 

deformation result in shearing? If your answer is yes, describe which orientations 

of originally orthogonal material lines are sheared and which are not. What are the 

orientations and magnitudes of the principal stretches? 

 

c) A general biaxial extension is defined: 

 

 1, 0, 0, 1xx xy yx yyF F F F     (4) 

 

The bedding surface is stretched or shortened along both the x- and y-axis. 

Consider two special cases, so called pure shear: 

 

 1/xx yyF F  (5) 

 

and pure dilation: 

 

 xx yyF F  (6) 

 

Compare and contrast the two special cases in terms of the question: does this 

deformation result in shearing? If your answer is yes, describe which orientations 

of originally orthogonal material lines are sheared and which are not. Also 

compare and contrast the orientations and magnitudes of the principal stretches. 

 

d) Simple shearing is defined: 

 

 1, tan , 0, 1xx xy yx yyF F F F      (7) 

 

Here  is the angle of shearing: the change in orientation of the material line 

originally coincident with the Y-axis. For this exercise choose o45   so 1xyF  . 

Does this material line elongate or shorten? What is the change in orientation of 

the material line originally coincident with the X-axis? Does this material line 

elongate or shorten? Do any material lines shorten during simple shearing? If so, 

how are they oriented in the initial state with respect to the shear planes? What are 

the orientations and magnitudes of the principal stretches? What is simple about 

simple shearing? 
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3) One of the first and most important tasks to perform when embarking on a study of 

deformation is to determine whether one may take advantage of the powerful tools of 

continuum mechanics available in the realm of small strains, for example as used in 

elasticity theory. To make this assessment one needs to understand how the general 

description for an arbitrary deformation is specialized to infinitesimal strain and rotation. 

 

a) Consider the following description of deformation for the material line of particles 

along the infinitesimal vector dX in the initial state that is translated, rotated, and 

stretched to lie along the infinitesimal vector dx in the final state: 

 

 
d d d

d d d

xx xy

yx yy

x F X F Y

y F X F Y

 

 
 (8) 

 

Draw a figure that illustrates and labels the position vectors X and x for the 

particle in the initial state at the tail of dX and in the final state at the tail of dx; 

the displacement vector u for that particle; the vectors dX and dx representing the 

material line in these two states; the components of these vectors (dX, dY) and (dx, 

dy); the lengths (magnitudes) of the material lines, dS and ds; and the orientations, 

 and , of the material lines relative to the (X, x) axis. 

 

b) Using the following trigonometric relations, which should be consistent with your 

illustration, derive the equation for the square of the stretch of the material line, 

that is (ds)
2
/(dS)

2
, in terms of the components of the deformation gradient tensor, 

Fij, and the orientation of the material line in the initial state, . Use double angle 

formulae for the trigonometric relations.  

 

 
d d cos ,   d d sin

d d cos ,   d d sin

X S Y S

x s y s 

   

 
 (9) 

 

c) The normal (longitudinal) strain in the arbitrary direction of the material line is 

defined: 

 

 n

d d

d

s S

S



  (10) 

 

Use this definition to write an approximation for the square of the stretch that 

omits second order terms. Under these conditions show that the normal strain and 

the stretch are related as: 

 

  2

n 1 2S    (11) 

 

d) All of the components of the deformation gradient tensor, Fij, enter the equation for 

the square of the stretch as squares or products. Therefore omitting terms of this 

order would eliminate all terms. Rewrite the equation for the square of the stretch 
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in terms of the displacement gradients, omitting squares or products of the 

displacement gradients to find an approximation for small normal strains.  

 

e) Combine your results from questions 3c) and 3d) to write an equation for the 

normal strain in terms of the displacement gradients for the conditions of small 

displacement gradients and small normal strains. Identify the components of the 

infinitesimal strain in terms of the displacement gradients and write the normal 

strain in terms of the infinitesimal strain components. 

 

f) Suppose Fxx is the only non-zero component of the displacement gradient tensor 

and consider a material line initially oriented such that  = 0. Identify which 

displacement gradient plays a role in the small strain approximation for Fxx and 

determine limits for this gradient that would assure an error of less than 10% in 

the computation of the square of the stretch. 

 

4) In this exercise we consider the small strains and rotations near a model fault using a 

solution from elasticity theory. In later chapters we describe the elastic properties of rock 

and derive the governing equations for linear elasticity. Here we focus only on the 

kinematics. The model fault (Fig. 6) slips in a right-lateral sense driven by the stress drop  
r f

yx yx     , and resisted by the elastic stiffness of the surrounding brittle solid, 

 1G  , where G  is the shear modulus (typically ~1 – 100 GPa for rock) and   is 

Poisson’s ratio (typically ~0.1 – 0.3 for rock).  

  





 
Figure 6. (a) Model fault in an elastic body subject to remote shear stress. (b) 

Displacement field due to slip on model fault. 

 

The displacement components along the surface of the fault, , 0x a y   , are (Pollard 

and Segall, 1987): 
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  
1/2

2 21 1 2
,   

2
x yu a x u x

G G

 
 

    
       

   
  (12) 

The displacement components along the positive y-axis, that is on 0, 0x y  , are 

(Pollard and Segall, 1987): 

    
1/2 1/2

2 2 2 2 21 1
+ ,  0

2
x yu a y y y a y y u

G G


 

                         
  (13) 

 

a) Evaluate the three small strain components at the middle of the model fault where 

0 and 0x y   . Describe each component with reference to material lines at that 

point and oriented in the two coordinate directions. Explain the magnitude and 

sign of each component relating these to slip on the model fault and the elastic 

stiffness of the surrounding rock. 

 

b) Evaluate the small rotation at the middle of the model fault where 

0 and 0x y   . Describe the rotation with reference to material lines at that 

point and oriented in the two coordinate directions. Explain the magnitude and 

sign of the rotation relating this to slip on the model fault and the elastic stiffness 

of the surrounding rock. 

 

c) Use your result from a) and b) to write down the elements of the matrix equation 

for the partial derivatives of displacement in terms of a sum of a shear strain 

matrix and a rotation matrix.  For simplicity let Poisson’s ratio be zero for this 

exercise. 

 

 

x x

y y

u u

x y

u u

x y

  
  
  
  
 
  

  (14) 

 

d) According to the second of (12) the displacement component 
yu  acting 

perpendicular to the fault surfaces is linearly distributed along the fault. This 

indicates that the fault surfaces remain planar as they rotate. Use the second of  

(12) with Poisson’s ratio set to zero to find yu  at the fault tip. Compare this to the 

lower left element of (14) which accounts for the combined strain and rotation at 

the fault middle. Are they consistent?  

 

 

  

 

 


