
Discrete Models of Financial Markets

Solutions to Exercises

Chapter 2

Exercise 2.1.
Show that the option price increases if U increases. Show that it also in-

creases if D goes down.
Solution. Recall: C(0) = xCS(0) + yCA(0) with























xC =
S(0)(1 + U)−K

S(0)(U −D)
,

yC = −
(1 +D)(S(0)(1 + U)−K)

A(0)(U −D)(1 +R)
.

(1)

so inserting these values gives

C(U) =
S(0)(1 + U)−K

U −D
−

(1 +D)(S(0)(1 + U)−K)

(U −D)(1 +R)
(2)

and

C′(U) =
S(0)(U −D)− [S(0)(1 + U)−K]

(U −D)2

−
(1 +D)S(0)(U −D)(1 +R)− (1 +R)(1 +D)[S(0)(1 + U)−K]

(U −D)2(1 +R)2

=
K − S(0)(1 +D)

(U −D)2
−

(1 +D)[K − S(0)(1 +D)]

(U −D)2(1 +R)

=
[K − S(0)(1 +D)](R −D)

(U −D)2(1 +R)
≥ 0

if K ≥ S(0)(1 + D) as assumed to avoid trivial cases. A similar calculation
proves the second part.

Exercise 2.2
Show that the option price does not increase if the ‘spread’ |U −D| increases

by analysing the following examples: for R = 0, S(0) = 1,X = 1, T = 1 consider
two cases: U = 0.05, D = −0, 05 or U = 0.01, D = −0.19.

Solution. From Theorem 2.8 we find C(0) = 0.025 in the first case, and
|U −D| = 0.1, while in the second case we have |U −D| = 0.2, but C(0) =
0.0095. Note that in the first case the spread is symmetrical, while in the second
it is heavily weighted towards the downside risk.

Exercise 2.3
Prove that for Ω = {u, d} we have Var(X) = p(1− p)(X(u)−X(d))2.
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Solution. E[X ] = pX(u) + (1− pX(d), and Var(X) = E[X2]− (E[X ])2 so

Var(X) = pX(u)2 + (1− p)X(d)2 − (pX(u) + (1 − p)X(d))2

= p(1− p)(X(u)2 − 2X(u)X(d) +X(d)2)

= p(1− p)(X(u)−X(d))2

Exercise 2.4
Show that Var(aX) = a2Var(X).
Solution. Var(aX) = E[aX2]−(E[aX ])2 = a2(E[X2]−(E[X ])2) = a2Var(X).
Exercise 2.5
Show that the excess mean returns for a derivative H = h(S(1)) and an

underlying stock S in the single-step binomial model are related by

µKH
−R = βH(µKS

−R).

By considering the risk neutral probabilities, deduce that for a European call
option C we always have βC ≥ 1.

Solution. We compare the excess mean returns. The replicating portfolio
(xH , yH) for H is as given in (1) and we know that for each scenario ω = u, d
we have

xHS(1, ω) + yH(1 +R) = H (ω) ,

while the fair price for H is

H(0) = yH + xHS(0).

So we have
xHSu −Hu = −yH(1 +R) = xHSd −Hd

and each of these quantities equals

(1 +R)[xHS(0)−H(0)].

For any p ∈ (0, 1) we can therefore write

p[xHSu −Hu] + (1− p)[xHSd −Hd]

= (1 +R)[xHS(0)−H(0)].

Grouping terms on the left, we obtain

xH [pSu + (1− p)Sd]− [pHu + (1− p)Hd]

= (1 +R)[xHS(0)−H(0)].

Multiply and divide terms on the left by S(0) (resp. H(0)) and subtract 1 from
each term inside the brackets, so that

xHS(0)[
pSu + (1− p)Sd

S(0)
− 1]−H(0)[

pHu + (1− p)Hd

H(0)
− 1]

= R[xHS(0)−D(0)].
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The terms in the brackets on the left are simply the mean returns µS and µH

on S and H respectively, so we have

xHS(0)µS −H(0)µH = R[xHS(0)−H(0)]

and this can be re-ordered as:

xHS(0)[µS −R] = H(0)[µH −R].

But we saw that βH = xHS(0)
H(0) , so finally

µH −R = βH [µS −R].

For the second part we write the risk-neutral probability in terms of the

stock prices: q = R−D
U−D

= (1+R)S(0)−Sd

Su−Sd and 1− q = Su−(1+R)S(0)
Su−Sd . Now consider

the risk-neutrality condition

H(0) =
1

1 +R
[qHu + (1− q)Hd]

=
1

1 +R

(1 +R)S(0)− Sd

Su − Sd
Hu +

1

1 +R

Su − (1 +R)S(0)

Su − Sd
Hd

which means that

(1 +R)(Su − Sd]H(0)

= (1 +R)S(0)[Hu −Hd] + [SuHd − SdHu].

But if H = C is a European call with strike K ∈ (Sd, Su) then Cd = 0 and
Cu = Su−K > 0, so that the final bracket in the last equation is negative, and
the equation simplifies to the inequality

[Su − Sd]C(0) ≤ S(0)[Cu − Cd]. (3)

But xC = Cu−Cd

Su−Sd . so βC = S(0)
C(0)xC ≥ 1.

If K ≤ Sd the second bracket above reads

Su[Sd −K]− Sd[Su −K]

= K[Sd − Su] < 0,

while if K > Su, both values of C(1) are 0, so xC = 0, i.e. C(0) = yC > 0, so
there is arbitrage. Hence in all non-trivial cases (3) holds.

Exercise 2.6
Verify that for any given p (with P (u) = p)

EP (KH)− EQ(KH) = (p− q)
Hu −Hd

H(0)
.
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Solution. By definition

EP [KH ]− EQ[KH ] =
pHu + (1− p)Hd

H(0)
− 1−

qHu + (1 − q)Hd

H(0)
− 1

=
1

H(0)
[(p− q)Hu + (1− p− (1 − q))Hd]

= (p− q)
Hu −Hd

H(0)
.

Exercise 2.7 (Corrected: in the book a typesetting error produced
σKH , it should read σKH

, as below)
Assuming EP (KH) ≥ R show that

EP (KH)−R = (p− q)
σKH

√

p(1− p)
,

where q is the risk-neutral probability, implying in particular that p ≥ q.

Solution. Since σKH
=

√

p(1− p)H
u−Hd

H(0) and EQ[KH ] = R, the result is

immediate from Exercise 2.6.
Exercise 2.8
Find the relationship between the risk neutral probability and the market

price of risk, defined as

mS =
µKS

−R

σKS

.

Solution. Since q = R−D
U−D

we have

mS =
D −R+ (U −D)
√

p(1− p)(U −D)
=

q − p
√

p(1− p)
.

Exercise 2.9
Show that for any derivative security H on the stock S its market price of

risk mH =
µKH

−R

σKH

is the same as mS . Also give a heuristic explanation of this

result.
Solution. Intuitively this is obvious, as the price of H is determined by

the price of S, and involves not additional source of randomness. To prove
that mH = mS we use the formula for mS in terms of the risk-neutral prob-

ability q given above. Recall that µKH
= pHu+(1−p)H−H(0)d

H(0) and σKH
=
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√

p(1− p)|H
u−Hd

H(0) |, so that

mH =
1

√

p(1− p)
(
pHu + (1− p)Hd − (1 +R)H(0)

Hu −Hd
)

=
1

√

p(1− p)
(
pHu + (1− p)Hd − EQ(H(1))

Hu −Hd
) (Q is risk-neutral)

=
1

√

p(1− p)
(
pHu + (1− p)Hd − (qHu + (1− q)Hd)

Hu −Hd
)

=
q − p

√

p(1− p)
= mS .

Exercise 2.10
Find a random variable G playing the role of a ‘density’ of Q with respect

to P , considered on Ω = {u, d}, i.e., satisfying q = G(u)p, 1− q = G(d)(1 − p).
Prove that EP (G) = 1, so that a sequence G(0) = 1, G(1) = G is a martingale
with respect to P .

Solution The stated requirements imply that G(u) = q
p
and G(d) = 1−q

1−p
,

so that EP (G) = p( q
p
) + (1− p)( 1−q

1−p
) = 1. So G is a martingale for P.

Exercise 2.11
Show that there exist real numbers a 6= 0, and b such that K1 = aK2 + b.
Solution The two equations we need to solve for a and b are

U1 = aU2 + b

D1 = aD2 + b

which gives

a =
U1 −D1

U2 −D2

b =
D1U2 −DdU1

U2 −D2
.

Exercise 2.12
Show that the correlation coefficient for the returns is ρ = 1 if a > 0 and

ρ = −1 otherwise.
Solution. K1 = (U1, D1) and K2 = (U2, D2) are vectors in R

2 and their
correlation coefficient ρ is the cosine of the angle between them. Since K1 =
aK2 + b, the angle is 0 when a > 0 so ρ = 1, while it is π when a < 0, hence
ρ = −1.

Exercise 2.13
Find h using the relation between the returns.
Solution. We need h such that U2 = aU1 + b and D2 = aD1 + b. Now by

Exercise 2.11, U2 = 1
a
(U1 − b) and D2 = 1

a
(D1 − b), so h(z) = 1

a
(z − b) for z in

R.
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Exercise 2.14
Find the replicating portfolio (x, y) such that S2(1) = xS1(1) + yA(1).
Solution The previous Exercise shows that h(z) = z

a
− b

a
, so S2(1) =

h(S1(1) =
1
a
S(1)− b

a
, and the replicating portfolio is (x, y) = ( 1

a
,− b

aA(0)(1+R) )..

Exercise 2.15
Find an arbitrage if S1(0) = 50, U1 = 20%, D1 = −10%, S2(0) = 80,

U2 = 15%, D2 = −5%, A(0) = 1, R = 10%.
Solution First observe that here q1 = 0.1+−0.1

0.2+0.1 = 2
3 and q2 = 0.1+0.05

0.15+0.05 = 3
4

so Q1 6= Q2, hence an arbitrage is possible. To construct one we need to solve
for x, y, z in the following

xS1(0) + yA(0) + zS2(0) = 0

xS1(1) + yA(0)(1 +R) + zS2(1) ≥ 0

and the inequality consists of two parts. For simplicity let A(0) = 10, then the
first equation is 50x + 10y + 80z = 0, which reduces to 5x + y + 8z = 0. Look
for x, y, z making the inequality in the down state at time 1 an equality, i.e.,
45x + 11y + 76z = 0. From these two equations we eliminate y and find that
z = − 5

6x. Taking x = 6, y = 10, z = −5 we see that both equations are satisfied,
while the inequality in the up state reads 60(6)+ 11(10)+ 92(−5) = 10 > 0. So
this choice of x, y, z provides an arbitrage.

Exercise 2.16
Find the form of Sd

2 as a function of the remaining parameters so that there
is no arbitrage.

Solution To avoid arbitrage we need Q1 = Q2, that is,

R−D1

U1 −D1
=

R−D2

U2 −D2
,

which gives

D2 =
(U1 −D1)R− (R−D1)U2

U1 −R

and so

Sd
2 = S2(0)(1 +D2) = S2(0)(1 +

(U1 −D1)R− (R−D1)U2

U1 −R
).

Exercise 2.17
Given a trinomial single-stock model with R = 0, S(0) = 10 and Su = 20,

Sm = 15, Sd = 7.5 show that the derivative security H can be replicated if and
only if 3Hu − 5Hm + 2Hd = 0.

SolutionWe again take A(0) = 10 for ease of calculation. To replicateH we
must have a solution for the system of values at time 1, which is (since R = 0)

20x+ 10y = Hu

15x+ 10y = Hm

7.5x+ 10y = Hd
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This system is consistent iff (subtracting the second equation from the first)
5x = Hu −Hm and 10y = 4Hm − 3Hu fit the third equation, that is,

3

2
(Hu −Hm) + (4Hm − 3Hu) = Hd

which simplifies to 3Hu − 5Hm + 2Hd = 0.
Exercise 2.18
Let S(0) = 100, A(0) = 1, U = 20%, M = 10%, D = −15%, R = 5%,

Hu = 25, Hm = 5. Find Hd such that there is a unique replicating portfolio.
Solution The system to be solved uniquely is

120x+ 10.5y = 25

110x+ 1.05y = 5

85x+ 1.05y = Hd.

We obtain x = 2 from the first two equations, so y = 215
1.05 . The third equation

then forces 85(2) + 215 = Hd, so Hd = −45.
Exercise 2.19
For general Hu, Hm, Hd find a relation between these three numbers so that

there is a unique replicating portfolio with arbitrary S(0), U, M, D, R.
Solution We solve the equations

xSu + yA(0)(1 +R) = Hu

xSd + yA(0)(1 +R) = Hd

for x, y to obtain

x =
Hu −Hd

Su − Sd

y =
1

A(0)(1 +R)
(
HdSu −HuSd

Su − Sd
).

Inserting this solution into the third equation,

xSm + yA(0)(1 +R) = Hm

shows that
Hm(U −D) = Hu(M −D) +Hd(U −M).

Exercise 2.20
Let S(0) = 30, A(0) = 1, U = 20%, M = 10%, D = −10%, R = 5%,

H(1) = (S(1)− 32)+. Find the super-replication price.
Solution We minimise V (0) = 30x+ y subject to the linear constraints

V u(1) = 36x+ 1.05y ≥ 4

V m(1) = 33x+ 1.05y ≥ 1

V d(1) = 27x+ 1.05y ≥ 0
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finding (Solver, Excel) x = 0.1135388, y = −0.0832358 with V (0) = 3.32292886.
Exercise 2.21
Using the data of Exercise 2.20 find a sub-replicating portfolio price.
Solution We maximise V (0) = 30x+ y subject to the linear constraints

V u(1) = 36x+ 1.05y ≤ 4

V m(1) = 33x+ 1.05y ≤ 1

V d(1) = 27x+ 1.05y ≤ 0

finding (Solver, Excel) x = 0.52287589, y = −14.117649with V (0) = 1.56862767.
Exercise 2.22
Given a trinomial single-stock model with R = 10%, S(0) = 10 and Su =

20, Sm = 15, Sd = 7.5 find all risk neutral probabilities.
Solution We need EQ(

1
1.1S(1)) = S(0), so with Q = (q1, q2, q3) we need

qi ∈ (0, 1) for i = 1, 2, 3 and

1

1.1
(20q1 + 15q2 + 7.5(1− q1 − q2)) = 10,

which gives
25q1 + 15q2 = 7.

Set q1 = λ, then q2 = 7
25−

5
3λ, which means that we need λ ∈ (0, 1)∩(− 8

25 ,
7
25 )∩

(− 4
5 ,

7
10 ) = (0, 7

25 ) in order to ensure that all qi ∈ (0, 1).
Exercise 2.23
Show that if Hsub = Hsuper then there exists a replicating portfolio.
Solution In the definition of Hsub, Hsuper we can take min , max since

the sets are closed. So there are portfolios xsub, ysub subreplicating H(1) and
xsuper, ysuper super-replicating H(1) such that

xsubS(0) + ysub = xsuperS(0) + ysuper

and hence
(xzub − xsuper)S(0) = ysuper − ysub

Moreover

xsubS(0)
1 + U

1 +R
+ ysub ≤ xsuperS(0)

1 + U

1 +R
+ ysuper

xsubS(0)
1 +M

1 +R
+ ysub ≤ xsuperS(0)

1 +M

1 +R
+ ysuper

xsubS(0)
1 +D

1 +R
+ ysub ≤ xsuperS(0)

1 +D

1 +R
+ ysuper

and inserting ysuper − ysub into the inequalities we get

(xsub − xsuper)S(0)
1 + U

1 +R
≤ +(xsub − xsuper)S(0)

((xsub − xsuper)S(0)
1 +M

1 +R
≤ +(xsub − xsuper)S(0)

(xsub − xsuper)S(0)
1 +D

1 +R
≤ +(xsub − xsuper)S(0)
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Hence if xsub − xsuper 6= 0

1 + U

1 +R
≤ 1

1 +M

1 +R
≤ 1

1 +D

1 +R
≤ 1

that is U,M,D are less or equal to R, contradicting the NAP. It follows that
the two portfolios are the same, and thus form a replicating portfolio,

Exercise 2.24
Show that the replicating strategy is unique.
Solution Suppose x1, y1 and x2, y2 replicate the claim H :

x1S(1) + y1A(1) = x2S(1) + y2A(1)

Their inital values must be the same

x1S(0) + y1 = x2S(0) + y2

so

(x1 − x2)S(1) = (y2 − y1)A(1)

= (x1 − x2)S(0)A(1)

and as a result either x1 = x2 or S(1) is deterministic.
Exercise 2.25
Show that the existence of replicating strategy implies uniqueness of the risk

neutral probability.
Solution.

EQ(K) = R

EQ(H(1)) = H(0)(1 +R)

Two equations in 2 variables (in the trinomial model, the value of q3 is given by
the first two) have unique solution assuming non-degeneracy of H(1). (Unique-
ness holds if this is assumed for all derivative securities.)

Pedestrian use of the definitions gives

Uqu +Mqm + (1− qu − qm)D = R

qu =
R−D + (D −M)qm

U −D

H(1, u)qu +H(1,m)qm +H(1, d)(1− qu − qm) = H(0)(1 +R)
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H(1, u)
R−D + (D −M)qm

U −D
+H(1,m)qm

+H(1, d)(1−
R−D + (D −M)qm

U −D
− qm)

= H(0)(1 +R)

H(1, u)(R−D + (D −M)qm) +H(1,m)qm(U −D)

+H(1, d)(U −D − (R −D + (D −M)qm)− qm(U −D))

= H(0)(1 +R)(U −D)

So

qm[H(1, u)(D −M) +H(1,m)(U −D) +H(1, d)(D −M)− (U −D)]

= H(0)(1 +R)(U −D)−H(1, u)(R−D)−H(1, d)(U −R)

A problem appears to arise if

H(1, u)(D −M) +H(1,m)(U −D) +H(1, d)(D −M)− (U −D) = 0

H(0)(1 +R)(U −D)−H(1, u)(R−D)−H(1, d)(U −R) = 0

If the RHS is zero, the probability will be degenerate, but then the meaning
of the second line is that H(0) is the price in the binomial model - with the
middle branch ignored - and the first line specifies the middle branch so that
we have degeneracy in the derivative, that is, the value of H(1) on this branch
is determined by the other two branches.

Exercise 2.26 Correction: In the book there is a misprint: C(0) =
255
12 should have read C(0) = 255

22 .
Consider a trinomial model for stock prices with S(0) = 120 and S(1) =

135, 125, 115, respectively. Assume that R = 10%. Consider a call with strike
120 as the second security. Show that C(0) = 120

11 allows arbitrage and that
there is a unique degenerate probability which makes discounted stock and call
prices a martingale. Carry out the same analysis for C(0) = 255

12 and draw a
conclusion about admissible call prices.

Solution For EQ(
1
1.1S(1)) = S(0) and EQ(

1
1.1C(1)) = C(0) we need Q =

(q1, q2, 1− q1 − q2) to solve

135q1 + 125q2 + 115(1− q1 − q2) = 132

15q1 + 5q2 + 0(1− q1 − q2) = 12

which reduces to q1 = 0.7, q2 = 0.3 and so q3 = 1 − q1 − q2 = 0. Thus Q is
the unique degenerate solution. Take sell one option, z = −1, buy one share,
x = −1, and invest 109.09 risk free. At maturity we have the value 0 in U and
M scenarios and 5 in the D case.

For C(0) = 255/11 we have q1 = −5.1 so no risk neutral probability. If
C(0) = 255/22, q1 = 0, q2 = 0.85, q3 = 0.15 and z = −1, x = 0.75, with 78.41
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borrowed risk-free gives 2.5 in the middle scenario, 0 in the other two. We leave
the other cases to the reader.

Exercise 2.27
If the returns on stocks are 5%, 8%,−20% on stock one and −5%, 10%, a% on

stock two, find a so that there exists a risk-neutral probability, where R = 5%.
Solution Write Q = (q1, q2, q3) for the desired risk-neutral probability. We

a solution, with all qi in (0, 1), of the system

5q1 + 8q2 − 20q3 = 5

−5q1 + 10q2 + aq3 = 5

q1 + q2 + q3 = 1.

The coefficient matrix A is invertible iff det(A) 6= 0, i.e. 5(10 − a) − 8(−5 −
a) + (−20)(−5 − 10) 6= 0. So we need a 6= −130 to obtain a solution, and we
must choose a to ensure that the qi lie in (0, 1). Taking a = 0 we find q3 = 1

13 ,
q2 = 25

39 and q1 = 11
39 as a possible solution.

Exercise 2.28
Find the price of a basket option (where the strike is compared with the

sum of two stock prices) with payoff H(1) = max{(S1(1)+S2(1)−X), 0} where
S1(0) = 100, S2(0) = 50, A(0) = 1, X = 150, the returns are 20%, 5%,−20%
for stock one and −10%, 8%, 2% for stock two, and R = 5%. Use replication as
well as a risk-neutral probability and compare the prices obtained.

Solution For replication we must solve the matrix equation





120 45 1.05
105 54 1.05
80 51 1.05









x1

x2

y



 =





15
9
0





which has the solution (x1, x2, y) = (0.3666,−0.0555,−25, 2380) . So the option
price is 8.6508, approximately.

For the risk-neutral probability Q = (q1, q2, q3) we need to solve





0.2 0.05 −0.2
−0.1 0.08 0.02
1 1 1









q1
q2
q3



 =





0.05
0.05
1





which yields Q = (0.1388, 0.7777, 0.0833) and so the option price is EQ((1 +
R)−1H(1)) = 8.6508 as above

Exercise 2.29
Show that S′ < S implies C(S)−C(S′) ≤ S−S′ and P (S′)−P (S) ≤ S−S′.
Solution Suppose the strike is K.By call-put parity C(S) − P (S) = S −

K(1 +R)−N , and C(S′)− P (S′) = S′ −K(1 +R)−N so

[C(S)− C(S′)] + [P (S′)− P (S)] = S − S′

and the result follows since if the sum of two non-negative numbers is less than
S − S′, each of them must be less than S − S′.

11



Exercise 2.30
Prove that the call price C(S) is a convex function of the stock price S:

C(
S′ + S′′

2
) ≤

C(S′) + C(S′′)

2
.

Employing call-put parity, show that the same is true for the put
Solution Suppose the strike is K. Write S′ = x′S, S′′ = x′′S. The function

f(x) = (x−K)+ is convex, so

(
x′ + x′′

2
S(N)−K)+ ≤

1

2
(x′S(N)−K)+ +

1

2
(x′′S(N)−K)+.

This compares the payoffs of two derivatives, with H ′ on the left (a call on x′+x′′

2
shares in S, strike K) and H on the right (the average of two calls on x′ and x′′

shares with strike K), so by Proposition 2.43, H(0) ≥ H ′(0), which yields the
desired inequality of their initial prices.

For the put we have C(S) − P (S) = S − K(1 + R)−N by parity for all

three calls. Adding the right-hand sides for S′ and S′′ provides 2C(S
′+S′′

2 ) −

2P (S
′+S′′

2 ), so the result for the put follows.
Exercise 2.31
Show that if K ′ < K then

C(K ′)− C(K) ≤ (1 +R)−1(K −K ′),

P (K)− P (K ′) ≤ (1 +R)−1(K −K ′).

Solution Call-put parity gives C(K)− P (K) = S −K(1 +R)−N , C(K ′)−
P (K ′) = S −K ′(1 +R)−N and this gives

[C(K ′)− C(K)] + [P (K)− P (K ′)] = (K −K ′)(1 +R)−N .

Both terms on the left are non-negative so each must be smaller than the right-
hand side.

Exercise 2.32
Show that the call price is a convex function of the strike price.
Solution Inequalities of payoffs imply inequalities for prices so the result

follows from

(S(N)−
K ′ +K ′′

2
)+ ≤

1

2
(S(N)−K ′)+ +

1

2
(S(N)−K ′′)+

since f(x) = (S(N)− x)+ is convex.
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Chapter 3

Exercise 3.1
Find the tree of the values of the derivatives with the folllowing payoffs:

H1 = (max{S(n) : n = 0, 1, 2} − 100)
+
,

H2 =

(

S(0) + S(1) + S(3)

3
− 100

)+

.

(Note that these are path-dependent derivatives.)
Solution We have to specify the missing data (using the values from Ex-

ample 3.4) S(0) = 100, U = 20%, D = −10% r = 5%.
The option with payoff H1 :

0 1 2 path
44 UU

30.48
20 UD

16.33
8 DU

3.81
0 DD

The option with payoff H2 :

0 1 2 3 path
30.93 UUU

22.6
16.53 UUD

15.81
16.53 UDU

10.6
5.73 UDD

8.23
6.53 DUU

3.11
0 DUD

1.48
0 DDU

0
0 DDD

Exercise 3.2
Prove that K1,K2,K3 are independent, which by definition means that for

each pair we have condition P ({Ki = xi}∩{Kj = xj}) = P ({Ki = xi})P ({Kj =
xj}) for i 6= j,

13



and also

P (

3
⋂

k=1

{ω : Ki(ω) = xi}) =

3
∏

k=1

P ({ω : Ki(ω) = xi}).

Solution The verification for each pair is the same as for the two-step case.
To verify the above identity, note that by definition both sides are 0 unless each
xi one of the two values U,D. There are 8 possible cases, grouped accoring to
the number of time U occurs: for UUU we have p3 on the left by definition of P,
and this equals the RHS. Similarly of UUD, UDU or DUU we obtain p2(1− p)
on each side, for UDD, DUD, DDU it is p(1 − p)2, and for DDD we obtain
(1− p)3.

Exercise 3.3
Extend the pricing scheme of the previous section to find the option price

and observe that it is not equal to the expectation computed above.
Solution With the data S(0) = 100, U = 20%, D = −10% r = 5%. p = 0.6,

we compute q = 0.5 and then EQ(
1

(1+r)3 (S(3)−K)+ = 17.45.

Exercise 3.4
Illustrate the martingale property of stock prices under the risk-neutral prob-

ability by numerical computations.
Solution With the data S(0) = 100, U = 20%, D = −10% r = 5%. we find

q = 0.5 and the tree of expected discounted stock values

0 1 2
144

120
100 108

90
81

Exercise 3.5
Take N = 3 and let S(0) = 100, U = 20%, D = −10%, R = 5%. Consider a

call with exercise price K = 100 at time 3 and find the process C(n).
Solution The tree of option prices:

0 1 2 3
72.8

48.76
29.93 29.6

17.45 14.1
6.71 0

0
0

Exercise 3.6
Consider the filtration generated by the sequence C(n), n = 0, 1, 2. Find the

parameters so that it is identical to the filtration generated by the stock prices.
Can we have a constant filtration P0 = P1 = P2?

14



Solution For the data S(0) = 100, U = 20%, D = −10%, R = 5% the
filtration of option prices coincides with the filtration generated by stock prices

P0 = {Ω}

P1 = {BU , BD}

P2 = {BUU , BUD, BDU , BDD}

To have the same partitions the random variables C(n) must be constant so
that they are P0-measurable. For this it is sufficient to take K larger that all
stock pricess at time 3, i.e. K ≥ 100 × 1.22 = 144. If for instance K = 130 we
have C(n) of the form

0 1 2
14

6.67
3.18 0

0
0

and

P0 = {Ω}

P1 = {BU , BD}

P2 = {BUU , BUD, BDU ∪BDD}

Exercise 3.7
Find the process of prices of the Asian option with payoff

H(5) = max{
1

6

5
∑

k=0

S(k)−K, 0},

where S(0) = 60, U = 12%, U = −6%, R = 4%, K = 62.

15



Solution

0 1 2 3 4 5 sum
19.15 486.91

17.2 16.32 469.92
14.42 13.79 454.74

12.24 11.41 440.48
11.08 11.53 441.2

10.07 9.16 426.93
7.9 7.03 414.2

5.91 5.04 402.23
7.51 9.52 429.1

8.14 7.14 414.84
6.04 5.02 402.1

3.97 3.02 390.13
3.72 3.12 390.73

2.15 1.13 378.76
1.15 0 368.07

0 0 358.03
4.58 7.72 418.3

6.41 5.34 404.04
4.38 3.22 391.3

2.24 1.22 379.33
2.5 1.32 379.93

0.71 0 367.96
0.38 0 357.27

0 0 347.23
1.34 0 369.78

0 0 357.81
0 0 347.12

0 0 337.08
0 0 337.58

0 0 327.53
0 0 318.56

0 0 310.13

Exercise 3.8
A popular combination of a call and a put is a bottom straddle, which involves

buying both options with the same strike price K and expiry N. Verify that the
payoff function is given by H(N) = |S(N)−K| . With the data from the
previous exercise, compute the prices and values of the hedging strategy for a
straddle with expiry N = 5, that is, consider H(5) = |S(5)−K|. Find the prices
of the security with payoff H(5) = 1 if S(5) ≥ K and H(5) = 0 otherwise.

16



Solution The straddle prices

0 1 2 3 4 5
43.74

34.8
26.97 26.75

20.14 19.62
14.83 13.42 12.48

11.24 9.53 6.88
7.77 5.53 0.51

6.28 4.35
7.78 9.53

12.77
17.97

Hedging:
0 1 2 3 4

x(n) 1
1

1 1
0.88 1

0.65 0.69 1
0.32 0.24

−0.24 −0.9
−0.94

−1

0 1 2 3 4
y(n) −59.61

−57.33
−55.12 −59.62

−44.31 −57.33
−27.76 −34.06 −59.62

−10.28 −8.72
19 54.58

54.62
59.61
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For payoff H(5) = 1 if S(5) ≥ K and H(5) = 0 otherwise, we have the values

0 1 2 3 4 5
1

0.96
0.92 1

0.88 0.96
0.82 0.92 1

0.72 0.81 0.96
0.65 0.74 1

0.51 0.53
0.28 0

0
0

Hedging
0 1 2 3 4

x(n) 0
0

0 0
0.01 0

0.02 0.02 0
0.03 0.04

0.05 0.1
0.06

0

0 1 2 3 4
y(n) 0.96

0.92
0.88 0.96

0.15 0.92
−0.48 −0.45 0.96

−1.04 −1.64
−2.14 −5.05

−2.71
0

Exercise 3.9
A financial advisor selects a stock and receives a bonus of 100 for each up

move of stock prices payable at time 5. Find the process of values of this bonus
regarded as a derivative (use the same parameters as in the previous exercises).
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Solution

0 1 2 3 4 5
500

438.03
380.09 400

325.96 341.88
275.43 287.64 300

228.31 237.06 245.73
189.95 195.18 200

148.16 149.57
102.73 100

53.42
0

Exercise 3.10
Build a modification of the above computations where the shares are not

divisible, that is, the stock position must be an integer, but you have sold and
will hedge a package of 10 options. How will the results influence the initial
price?

Solution We have S(0) = 100, U = 20%, D = −10%, R = 10%, K = 105,
N = 3, the stock positions have to be rounded up, giving xuu(3) = 10, xud(3) =
8, xdd(3), xu(2) = 10, xd(2) = 6, x(1) = 9, with the risk free position chosen for
superhedging the final payoff, with initial value 252.89for 10 options.
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Chapter 4

Exercise 4.1
Show that if M(n) is Pn-measurable, and E(M(n+1)−M(n)|Pn) = 0 then

M is a martingale.
Solution Let 0 ≤ n < m ≤ N, and considerM(m)−M(n) as the telescoping

sum
∑m−1

k=n (M(k + 1)−M(k)), so

E[M(m)|Pn)−M(n] = E[(M(m)−M(n)|Pn]

(as M(n) is Pn-measurable)

= E[

m−1
∑

k=n

(M(k + 1)−M(k))|Pn]

=

m−1
∑

k=n

E[(M(k + 1)−M(k))|Pn]

= 0.

Exercixe 4.2
Give an example showing that the reverse implication does not hold, i.e.

E(M(0)) = E(M(1)) = E(M(2)) does not necessarily mean thatM(0),M(1),M(2)
is a martingale.

Solution For example in a two-step binomial model, take M(0) = 0, so that
we need p(M(u) + (1− p)M(d) = 0, which suggests M(1) = (1− p,−p), and to
obtain E(M(2)) = 0 we then need M(2) = (x, y, z) with p2x+2p(1− p)y+(1−
p)2z = 0. Then px+(1−p)y = 1−p would be required for M to be a martingale.
So we choose (x, y, z.) to satisfy the first identity and not the second. Usin
p = 1

2 , for simplicity, M(0) = 0, M(1) = (12 ,−
1
2 ), M(2) = (43 ,

1
3 ,−2) provides

one possible solution.
Exercise 4.3
Prove a version of the previous proposition, where V (0) and predictable y(n)

are given and x(n) has to be constructed so that the strategy is self-financing.
Solution For (x, y) to be self-financing, we require V(x,y)(n) = x(n+1)S(n)+

y(n+1)A(n). Given V (0) and y we construct x(1) = 1
S(0) (V (0)−y(1)A(0)) and

by induction

x(n+ 1) =
1

S(n)
(V(x,y)(n)− y(n+ 1)A(n))

for 1 ≤ n < N. This defines a predictable sequence x(n) since all terms on the
right above Pn-measurable. Mutliplying both sides by S(n) and rearranging we
see that the self-financing condition holds.

Exercise 4.4
Give an example where the values of a strategy become negative. Find

conditions on the sequence x(n) so that V(x,y)(n) ≥ 0 for all n.
Solution Suppose V (0) = 0, and consider a single-step binomial model

with x(1) = 1, y(1) = −S(0) (with A(0) = 1). If the stock price goes down,
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V (1) = S(0)(1 +D) − S(0)(1 + R) < 0. If V (0) > 0, for x(1) > 0 we consider
the unfavourable case, the down movement, and solve

V (1) = x(1)S(0)(1 +D) + (V (0)− x(1)S(0))(1 +R) ≥ 0

to get

x(1) ≤
V (0)(1 +R)

S(0)(R−D)

with routine extension for further steps.
Exercise 4.5
Find a condition on x(n) so that y(n) ≥ 0 (no risk-free borrowing) and the

strategy is self-financing.
Solution We need

V(x,y)(n) = x(n)S(n) + y(n)A(n) = x(n+ 1)S(n) + y(n+ 1)A(n),

so for all y(n) to be non-negative we need, for 1 ≤ n < N,

max(x(n), x(n + 1)) ≤
V (n)

S(n)
.

Exercise 4.6
Given an Fn-adapted sequence of d-vectors with Zj(n) > 0 for all n =

0, 1, . . . , N, j = 0, 1, . . . , d with (x, y) and (S, A) as above, show that the strat-
egy (x,y) is self-financing for the price process (S, A) if and only if it is self-
financing for the price process (Z1S1, . . . , ZdSd, Z0A).

Solution Write V(x,y)(n) = x(n)·S(n), where, by abuse of notation, we

write S = (S1, ..., Sd, A) and x = (x1, ..., xd, y) as vectors in R
d+1. Dropping the

subscript (x, y) for simplicity, the self-financing condition becomes

∆V (n) = x(n)·(∆S(n))

which is the same as saying

(∆x(n)) · S(n− 1) = 0,

since

∆V (n) = x(n) · S(n)− x(n− 1) · S(n− 1)

= x(n) · (S(n)− S(n− 1)) + (x(n) − x(n− 1)) · S(n− 1)

= x(n)·(∆S(n)) + (∆x(n)) · S(n− 1).

Changing S to ZS = (Z1S1, . . . , ZdSd, Z0A) we obtain

(∆x(n)) · (ZS(n− 1)) = 0,

and conversely.
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Exercise 4.7
Explain why the result of the previous exercise shows that the converse of

Theorem 4.29 also holds.
Solution Exercise 4.6 shows that if the strategy is self-financing for the

discounted prices then it is also self-financing for the original prices, since the
two price processes differ by multiplication by a strictly positive adapted process
(in fact, a deterministic one).

Exercise 4.8
Build a binomial model with S(0) = 100, R = 10% if calls with strikes 100

and 105 have prices 10 and 8, respectively.
Solution Consider a single step model. Then, assuming S(0)(1+D) ≤ K ≤

S(0)(1 + U)

C(0) =
q(S(0)(1 + U)−K)

1 +R

which gives a system

11 =
0.1−D

U −D
(100(1 + U)− 100)

8.8 =
0.1−D

U −D
(100(1 + U)− 105)

with a solution: U = 0.25, D = −0.017857.
Exercise 4.9
Suppose that on you have entered a long forward contract with forward price

F (0, 2) = 124.75. At time 1 you would like to close this position. How much
money would you have to pay (or receive) if S(1) = 120 and R = 9%?

Solution The payoff at time 2 for the holder of the contract is S(2)−F (0, 2)
which can be replicated at time 1 by buying one share and borrowing risk free
the amount F (0, 2). The value of this replicating strategy is 120−114.45 = 5.55,
an amount to be received. In other words, assuming that the risk-free rate was
the same at time 0, we can find S(0) = 124.75 × (1 + 9%)−2 = 105, and the
value of the forward position at time 1 is S(1)− S(0)(1 +R) = 5.55. The value
is positive if the stock goes up more than by the risk-free rate.

Exercise 4.10
Suppose that the stock prices on consecutive days are 100, 100.33, 100.33,

100.15, 99, 101. Find the cash flow of the long futures position if the annual
risk-free rate is 9%. .

Solution With constant rate f(n,N) = F (n,N) = S(0)(1+Rday)
N−n, and

assuming N = 5 days, with Rday = 0.0002361, we have

F (1, 5)− F (0, 5) = 0.3

F (2, 5)− F (1, 5) = −0.02

F (3, 5)− F (2, 5) = −0.2

F (4, 5)− F (3, 5) = −1.18

F (5, 5)− F (4, 5) = 1.98
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Exercise 4.11
Conduct a similar analysis of the protective put, which consists of long

positions (of one unit each) in the underlying stock and a put option on the
stock.

Solution The initial outlay is P (0)+S(0) which equals C(0)+K(1+R)−N

by call-put parity. Our final position depends on which of S(N) and K is larger.
If S(N) ≥ K our put is worthless, and our net position is S(N)− (S(0)+P (0)),
while is S(N) < K it is K − (S(0) + P (0)). While there is a potential loss of
the initial outlay, we are protected by the put without having to forgo the profit
when S(N) is much larger than K. The worst final postion is K− (S(0)+P (0)),
so the choice of strike is significant.
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Chapter 5

Exercise 5.1
Find the price of an American straddle, i.e., the derivative with payoff I(n) =

|S(n) − K| for N = 4, where S(n) follows a binomial tree with S(0) = 50,
U = 12%, D = −6%, R = 5%, K = 50.

Solution Tree of payoffs:

28.68
20.25

12.72 16.03
6 8.96

0 2.64 5.42
3 0.52

5.82 3.49
8.47

10.96

Tree of prices:

28.68
22.63

17.37 16.03
13.17 11.34

10.24 8.25 5.42
6.96 4.45

5.82 3.49
8.47

10.96

Exercise 5.2
Investigate the dependence on the strike K of the difference between the

prices of European and American puts on the same stock.
Solution Consider the first step in the backward computations.

PE(N − 1) =
1

1 +R
(q(K − S(N))+ + (1− q)(K − S(N))+),

PA(N − 1) = max(K − (S(N − 1))+,
1

1 +R
(K − q(S(N))+

+(1− q)(K − S(N))+),

PA(N − 1)− PE(N − 1) = (K − S(N − 1))+ −
1

1 +R
(q(K − S(N))+

+(1− q)(K − S(N))+)

So the difference between the American and European put price increases with
K since if we replace K by K + ε, the first term grows by ε (suppose it is
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positive) while the second term (which is subtracted) increases by no more that
by ε

1+R
. By induction the property is preserved with equality at earlier steps.

Exercise 5.3
Prove that τ : Ω → {1, 2, . . . , N} is a stopping time if and only if {ω : τ (ω) =

n} ∈ Fn for all n.
Solution Suppose the condition holds for τ and fix n ≤ N. As Fk ⊂ Fn for

all k ≤ n, {ω : τ (ω) ≤ n} = ∪n
k=1{ω : τ(ω) = k} is in Fn, so τ is a stopping

time. Conversely, given a stopping time τ and n ≤ N, the set {ω{τ(ω) = n} =
{ω : τ (ω) ≤ n} ∩ (∩k<n{ω : τ (ω) > k} is in Fn since Fk ⊂ Fn for k ≤ n.

Exercise 5.4 In a binomial tree with three steps consider all possible stop-
ping times and find numerically the one that maximises the expected discounted
payoff (expectation with respect to the risk-neutral probability).

Solution There are 48 = 65536 possible random variables with values in
{0, 1, 2, 3] but the measurability condition resticts the number to 22, as shown
below. Note that for instance if τ(ω) = 1 for some path, then this value has to be
taken on all other paths with the same initial movement since {τ = 1} ∈ P1 =
{BU , BD}. (In the case at hand is easier to list the stopping times rather than
write a computer code.) Given all stopping time, computing expected payoffs
and taking the maximal one is straightforward and this returns the theoretical
no-arbitrage option price.

UUU 0 1 2 3 1 1 2 3 3 2 2 2 2 2 2 3 3 3 2 3 3 3
UUD 0 1 2 3 1 1 2 3 3 2 2 2 2 2 2 3 3 3 2 3 3 3
UDU 0 1 2 3 1 1 2 3 2 3 2 2 2 3 3 3 2 2 3 2 3 3
UDD 0 1 2 3 1 1 2 3 2 3 2 2 2 3 3 3 2 2 3 2 3 3
DUU 0 1 2 3 2 3 1 1 2 2 3 2 3 2 3 2 3 2 3 3 2 3
DUD 0 1 2 3 2 3 1 1 2 2 3 2 3 2 3 2 3 2 3 3 2 3
DDU 0 1 2 3 2 3 1 1 2 2 2 3 3 3 2 2 2 3 3 3 3 2
DDD 0 1 2 3 2 3 1 1 2 2 2 3 3 3 2 2 2 3 3 3 3 2

Exercise 5.5
Find the optimal exercise time for the straddle described in Exercise 5.1
Solution For ω ∈ BDD, τopt(ω) = 2, otherwise τopt(ω) = 5 with EQ(H(τ )) =

10.24.
Exercise 5.6
Find the exact form of the compensator and check that A is predictable for

the American put in our 5-step model with S(0) = 100, U = 15%, D = −10%,
K = 100, R = 5%.

Solution
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0 1 2 3 4 5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4.76
0 0

1.08
1.08

1.08
1.08

1.08
1.08

5.84
1.08

5.79
5.79

10.55
5.79

15.32
10.55

15.32

Exercise 5.7
Find the compensator for the straddle with I(n) = |S(n) − 50| for N = 4,

where S(n) follows a binomial tree with S(0) = 50, U = 12%, D = −6%,
R = 5%.

Solution
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0 1 2 3 4
0

0
0

0
0

0
0

0 0
0

0
0

0 0.1
0.1

2.48

Exercise 5.8
Show that for a call option the compensator is zero (use the data from the

previous Exercise or work with a general case) which suggests that it is never
optimal to exercise a call before maturity.

Solution The construction of Snell envelope compares the payoff with the
discounted expected value at the next step, which can be regarded as European
derivative. The first step, defining the option prices at N − 1, returns the
discounted expected payoff at N since in Proposition 5.14 it is shown that the
European option price dominates the payoff. By induction this shows that at
each node the immediate payoff will be dominated and the tree of Snell envelope
will concide with European call option prices.

Exercise 5.9
Show that in a 4-step binomial model with U = 10%, D = −10%, R = 0,

a put with K = S(0) can be optimally exercised at time 4. Find τopt, and
explain why this example does not contradict Remark 5.9, despite the fact that
τopt(ω) < 4 for some ω

Solution Here the optimal time is τopt(ω) = 2 for ω ∈ BUU , τopt(ω) = 3
for ω ∈ BDUD ∪ BUDD and it is 4otherwise. However this is decided on the
basis of payoff being equal to the expected future value, not strictly greater.
hence postponing the exercise does not create a loss. In fact, taking τ = 4 for
all ω gives the same expected payoff, so this constant τ is optimal al well. The
compensator here is identically 0 at all nodes which is a consequence of the
irrelevance of the choice of the exercise time.

Exercise 5.10
Investigate the dependence of American call price on a dividend expressed

as a percentage of the stock price
Solution Within the data of the example (Example 5.1) it can be seen that
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if d is the rate at which the dividend is paid, for d ≥ 7.7% the call price stays
at 14.54, and then increases as d decreases with maximal value 22.91 for d = 0.

Exercise 5.11
Show that European and American derivative securities not paying dividends

have the same prices if the payoff is of the form h(S(n)) for convex h : [0,∞) →
[0,∞) with h(0) = 0. Find a counterexample if the last condition is violated.

Solution To show that the American option price is equal to that of its
European counterpart it is enough to verify that the discounted American option
price process is a martingale under the risk neutral probability. We shall prove
by backward induction that for each n = 0, . . . , T

Z(n) ≥ h(S(n)). (4)

Indeed, for n = N we have Z(N) = h(S(N)). Now suppose that (4) holds for
some n. Then, using the fact that h is a convex function and applying Jensen’s
inequality, we have

1

1 +R
EQ(Z(n)|Fn−1) ≥

1

1 +R
EQ(h(S(n))|Fn−1)

= EQ(
1

1 +R
h(S(n)) +

R

1 +R
h(0)|Fn−1)

(since 0 =
R

1 +R
h(0))

≥ EQ(h(
1

1 + R
S(n))|Fn−1) (convexity of h)

≥ h(EQ(
1

1 + R
S(n)|Fn−1)) (Jensen inequality)

= h(S(n− 1)),

so that

Z(n− 1) = max{h(S(n− 1)),
1

1 +R
EQ(Z(n)|Fn−1)} ≥ h(S(n− 1)),

which completes the proof by induction. It follows that

Z(n) = max{h(S(n)),
1

1 +R
EQ(Z(n+ 1)|Fn)} =

1

1 +R
EQ(Z(n+ 1)|Fn),

so that (1+R)−nZ(n) is indeed a martingale under the risk neutral probability.
As a result,

Z(0) =
1

(1 +R)N
EQ(h(SN )),

which means that the price Z(0) of the American option with expiry time N
and payoff h(S(n)) is equal to that of its European counterpart with expiry
time N and payoff h(S(N)).

An example with h(0) > 0, and where this fails, is the put option.
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Exercise 5.12
Suppose the underlying stock S pays a dividend D at time n < N. Show

that
S(0)−D(1 +R)−n −K ≤ CA − PA ≤ S(0)−K(1 +R)−N .

Solution If S(0)−K(1+R)−N < CA−PA, then write and sell a call, buy a
put, and buy a share, investing (or borrowing, if negative) the balance risk-free.
Then we can write and sell a call, and buy a put and a share, financing the
transactions in the money market. If the holder of the American call chooses to
exercise it at time n ≤ N , then we shall receive K for the share and settle the
money market position, ending up with the put and a positive amount

K + (CA − PA − S(0))(1 +R)n

= (K(1 +R)−n + CA − PA − S(0))(1 +R)n

≥ (K(1 +R)−N + CA − PA − S(0))(1 +R)n > 0.

If the call option is not exercised at all, we can sell the share for K by exercising
the put at time N and close the money market position, also ending up with a
positive amount

K + (CA − PA − S(0))(1 +R)N > 0.

The above argument is for zero dividend, now the arbitrage profit may also
include the dividend if the call is exercised after the dividend becomes due.
(Nevertheless, the dividend cannot be included in this inequality because the
option may be exercised and the share sold before the dividend is due.)

If
CA − PA< S(0)−D(1 +R)−n −K,

then at time 0 sell short a share, write and sell a put, and buy a call option,
investing the balance risk-free. If the put is exercised at time n < N , you will
have to buy a share for K, borrowing the amount at the rate r. As the dividend
becomes due, borrow the amount risk-free and pay it to the owner of the share.
At time N return the share to the owner, closing the short sale. You will be left
with the call option and a positive amount

(S(0) + PA−CA −D(1 +R)−n)(1 +R)N −K(1 +R)N−n

> K(1 +R)N −K(1 +R)(N−n)

≥ 0.

(If the put is exercised before the dividend becomes due, you can increase your
arbitrage profit by closing out the short position in stock immediately, in which
case you would not have to pay the dividend.) If the put is not exercised before
expiry N , then at time 0 sell short a share, write and sell a put, and buy
a call option, investing the balance on the money market. When a dividend
becomes due on the shorted share, borrow the amount and pay it to the owner
of the stock. At time N close the money market position, buy a share for K by
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exercising the call if S(N) > K or settling the put if S(N) ≤ K, and close the
short position in stock. Your arbitrage profit will be

(−CE + PE + S(0)−D(1 +R)−n)(1 +R)N −K > 0.

Exercise 5.13
Show that the following hold for a stock that pays a dividend D at time

n ≤ N :

max{0, S(0)−D(1 +R)−n −K(1 +R)−N , S(0)−K} ≤ CA,

max{0,K(1 +R)−N +D(1 +R)−n − S(0),K − S(0)} ≤ PA.

Solution The lower bounds for European options imply

S(0)−D(1 +R)−n −K(1 +R)−N ≤ CE ≤ CA,

−S(0) +D(1 +R)−n +K(1 +R)−N ≤ PE ≤ PA.

But because the price of an American option cannot be less than its payoff at
any time, we also have S(0) − K ≤ CA and K − S(0) ≤ PA. Moreover, the
upper bounds CA < S(0) and PA < K can be established in a similar manner
as for non-dividend-paying stock. All these inequalities can be summarised as
follows: for dividend-paying stock

max{0, S(0)−D(1 +R)−n −K(1 +R)−N , S(0)−K} ≤ CA < S(0),

max{0,−S(0) +D(1 +R)−n +K(1 +R)−N ,−S(0) +K} ≤ PA < K.

Exercise 5.14
Show that the American put option price PA(S) is a nonincreasing function

of the underlying S.
Solution Suppose that PA(S

′) < PA(S
′′) for some S′ < S′′, where S′ =

x′S(0) and S′′ = x′′S(0). We can write and sell a put on a portfolio with x′′

shares and buy a put on a portfolio with x′ shares, both options having the
same strike price K and expiry time N . The balance PA(S

′′)− PA(S
′) of these

transactions can be invested in the money market. If the written option is
exercised at time n ≤ N , then we can meet the liability by exercising the other
option immediately. Indeed, since x′ < x′′, the payoffs satisfy (K − x′S(n))

+
≥

(K − x′′S(n))
+
. The investment in the money market provides an arbitrage

profit.
Exercise 5.15
Show that American call and put prices are both convex functions of the

underlying.
Solution We claim

CA(αS
′ + (1− α)S′′) ≤ αCA(S

′) + (1− α)CA(S
′′),

PA(αS
′ + (1− α)S′′) ≤ αPA(S

′) + (1− α)PA(S
′′).
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The inequality for calls follows from the fact that American and European
call prices are the same and the convexity of European prices. Let S = αS′ +
(1− α)S′′ and let S′ = x′S(0), S′′ = x′′S(0) and S = xS(0). Suppose that

PA(S) > αPA(S
′) + (1 − α)PA(S

′′).

We can write and sell a put on a portfolio with x shares, and purchase α puts
on a portfolio with x′ shares and 1 − α puts on a portfolio with x′′ shares, all
three options sharing the same strike price K and expiry time N . The positive
balance PA(S)−αPA(S

′)− (1−α)PA(S
′′) of these transactions can be invested

in the money market. If the written option is exercised at time n ≤ N , then
we shall have to pay (K − xS(n))

+
, where x = αx′ + (1− α)x′′. This is an

arbitrage strategy because the other two options cover the liability:

(K − xS(n))
+
≤ α (K − x′S(n))

+
+ (1− α) (K − x′′S(n))

+
.

Exercise 5.16
Provide arbitrage arguments to verify the following inequalities when K ′ <

K ′′ :

CA(K ′)− CA(K ′′) < K ′′ −K ′,

PA(K ′′)− PA(K ′) < K ′′ −K ′.

Solution The inequality for calls follows from the same inequality for Eu-
ropean options. Suppose that K ′ < K ′′, but PA(K

′′) − PA(K
′) > K ′′ − K ′.

Let us write and sell a put with strike K ′′, buy a put with strike K ′ and invest
the balance PA(K

′′) − PA(K
′) in the money market. If the written option is

exercised at time n ≤ T , we will have to pay K ′′ − S(n). To do so, we can
exercise the option with strike K ′, receiving the payoff K ′−S(n). Added to the
amount invested in the money market with interest accumulated up to time n,
it gives

K ′ − S(n) + (PA(K
′′)− PA(K

′)) (1 +R)n > K ′ − S(n) + (K ′′ −K ′) (1 +R)n

≥ K ′′ − S(n).

The positive surplus above K ′′ − S(n) would be our arbitrage profit.
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Chapter 6

Exercise 6.1.
Show that rm < rk if m > k ≥ 1 (taking r1 = r).
Solution (1 +R 1

m

)m = 1+ r with rm = mR 1

m

implies (1 + 1
m
rm)m = 1+ r

so rm = m[(1 + r)
1

m − 1] and with f(x) = x((1 + r)
1

x − 1), we have f ′(x) =

((1 + r)
1

x − 1) + x(1 + r)
1

x ln(1 + r) ln x > 0 for x > 1.
For each particular step we have returns of the form R 1

m

= 1
m
rm, or Rh =

hrm, representing the so called simple interest rule: the annual interest rate
is linearly scaled to the period of length h. This reflects that fact that no
transactions take place between consecutive steps. The total growth is best
described as a product of single step growth factors 1 + R 1

m

since after each

step the interest is added to the account, so that A(n+1) = A(n)(1+R 1

m

), the

interest being A(n)R 1

m

. The increased sum is the basis for the next step.

When we are only concerned with the value of a risk-free investment (or a
loan) at a future instant n, with no cash flows in the meantime then the simple
interest convention is used to annualise the return and the rate which is quoted
for such transactions is given by

r(0, n) =
1

nh

A(n)−A(0)

A(0)

For h = 1
m
. n = m we have r(0,m) = r. Note that above for each step we in

fact employ the simple interest convention as the expression 1 + 1
m
rm for the

single step growth factor shows (h = 1
m
, n = 1).

Exercise 6.2.
Find the formula expressing r(0, n) by means of the interest rate r. Show

that the sequence (r(0, n))n≤N is increasing.
Solution Inserting the form of A(n) we get r(0, n) = 1

nh
[(1 + r)n − 1] , and

with f(x) = 1
xh

[(1 + r)x − 1] , f ′(x) = 1
h
lnx [(1 + r)x − 1] + 1

xh
(1 + r)x ln(1 +

r) > 0.
Exercise 6.3
Find the rates L(0, n) implied by the bond prices of Example 6.1. Compute

the bond prices B(1, n) assuming that the rates stay constant: L(1, n) = L(0, n),
n > 1.
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Solution
n B(0, n) L(0, n)

1 0.9991 1.08%
2 0.9974 1.56%
3 0.9956 1.77%
4 0.9939 1.84%
5 0.9921 1.91%
6 0.9903 1.96%
7 0.9884 2.01%
8 0.9866 2.04%
9 0.9847 2.07%

10 0.9829 2.09%
11 0.9810 2.11%
12 0.9791 2.13%

Clearly B(1, n) = B(0, n− 1), n ≥ 2.
Exercise 6.4.
Using the results of Exercise 6.3 find the rate L(1, 12) required for B(1, 12)

to fall below B(0, 12).
Solution

B(1, 12) =
1

1 + L(1, 12)1112
≤ B(0, 12),

L(1, 12) ≥
12

11
(

1

B(0, 12)
− 1) = 2.33%

Exercise 6.5. (Corrected formulation)
An investor gambles on a decrease in interest rates and wishes to earn a

return K(0, k) higher by 0.1% than the return implied by the current rates.
Sketch the graph of the function k 7→ L(k, n) which would allow one to achieve
this at any 0 < k < n. First try the data from Example 6.1.

Solution Transforming the formula for K(0, k) we get

L(k, 12) =
1

(12− k)/12

(

1 + L(0, 12)

K(0, k) + 1
− 1

)

.
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For the increase of return by 0.1%, the future rates would have to be

k L(k, 12)

1 2.1173%
2 2.1211%
3 2.1121%
4 2.1162%
5 2.1040%
6 2.0877%
7 2.0404%
8 2.0001%
9 1.8921%
10 1.7372%
11 1.1503%

Anyway, a uniform increase is consistent with the fact that the return depends
on the length of the period, so this increase is in fact highly non-uniform.

Exercise 6.6
Find the forward prices B(0,m, 12) for the data from Examplke 6.1
Solution We have

B(0,m, 12) =
B(0, 12)

B(0,m)

so

m B(0,m, 12)

1 0.9800
2 0.9817
3 0.9834
4 0.9851
5 0.9869
6 0.9887
7 0.9906
8 0.9924
9 0.9943

10 0.9961
11 0.9981

Exercise 6.7.
Illustrate this theorem using the data from Example 6.1. Are the rates

F (k,m, n) non-negative?
Solution

F (0,m, n) = −
B(0, n)−B(0,m)

(n−m)hB(0, n)
,
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m F (0,m, 12)

0 2.1346%
1 2.2284%
2 2.2429%
3 2.2470%
4 2.2674%
5 2.2761%
6 2.2878%
7 2.2796%
8 2.2980%
9 2.2878%

10 2.3287%
11 2.3287%

Exercise 6.8.
Is it possible to have F (k,m, n) < 0? Give an example. Formulate a property

which would guarantee F (k,m, n) ≥ 0.
Solution
Condition for positive forward rates

F (0,m, n) > 0 iff B(0, n) < B(0,m).

This may happen in practice if n is close to m, and this indicates the prediction
of decrease of the yields for some future times, a prediction reflected in the bond
prices.

Exercise 6.9
Find the forward rates F (0, n) for the data from Example 6.1.
Solution We use the following formula for n = 0, 1, . . . , 11 :

F (0, n) = −
B(0, n+ 1)−B(0, n)

hB(0, n+ 1)

obtaining
n F (0, n)

0 1.0810%
1 2.0453%
2 2.1695%
3 2.0525%
4 2.1772%
5 2.1812%
6 2.3068%
7 2.1893%
8 2.3154%
9 2.1976%
10 2.3242%
11 2.3287%
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Exercise 6.10.
Assume that for all k ≤ n, B(k, n) = (1 + r)−(n−k) (with h = 1), Compute

all simple forward and spot rates at time k.
Solution

F (k,m, n) = −
B(k, n)−B(k,m)

(n−m)hB(k, n)
= −

(1 + r)−n − (1 + r)−m

(n−m)h(1 + r)−n
= −

1− (1 + r)n−m

(n−m)h
,

F (k, n) = F (k, n, n+ 1) =
r

h
,

with the spot rates r(k) = F (k, k) = r
h
as well.

Exercise 6.11.
Assume that the unit is one month and find the zero-coupon bonds implied

by a 4-month zero-coupon bond trading at 98, and two coupon bonds with
semi-anual coupons of 10, one maturing after 14 months trading at 101, and
one maturing after 12 months trading at 103.

Solution

B(0, 4) = 0.98,

10B(0, 2) + 10B(0, 8) + 110B(0, 14) = 101,

10B(0, 6) + 110B(0, 12) = 103.

We have two equations and 5 variables so some additional assumptions are
needed. First, assume that the rates r2, r4 (monthly compounding, anual rates)
implied by the bonds B(0, 2) and B(0, 4) are the same

B(0, 4) =
1

(1 + 1
12r4)

4
= 0.98,

r2 = r4 = 6.08%

B(0, 2) =
1

(1 + 1
12r2)

2
= 0.9899.

Then assume that (an alternative, to impose linear interpolation for the rates
is better, but more complicated numerically):

B(0, 6) =
1

2
B(0, 8) +

1

2
B(0, 4)

B(0, 8) =
2

3
B(0, 6) +

1

3
B(0, 12)

to get a system with two variables yielding

B(0, 2) = 0.9899

B(0, 4) = 0.98

B(0, 6) = 0.9476

B(0, 8) = 0.9151

B(0, 12) = 0.8502

B(0, 14) = 0.745
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Exercise 6.12.
Let h = 1 and prove that the coupon rate equals the implied interest rate if

and only if P (0) = F.
Solution C = rF,

F =

J
∑

j=1

rFB(0, j) + FB(0, J)

with

B(0, k) =
1

(1 + r)
k

gives a true identity

1 =

J
∑

j=1

r
1

(1 + r)j
+

1

(1 + r)J
.

Exercise 6.13.
Having sold a variable coupon bond with face value F design a hedging

(replicating) strategy.
Solution
(This gives an alternative proof of Theorem 6.11.) We replicate the coupon Ci

by a self-financing strategy:
At time t buy F bonds maturing at Ti−1 and sell F bonds maturing at Ti.

This will cost F (B(t, Ti−1)−B(t, Ti)).
At time Ti−1 the Ti−1-bonds will mature and you will receive the amount F .

Invest this amount in Ti-bonds. This will give
F

B(Ti−1,Ti)
such bonds.

At time Ti the Ti-bonds will mature. Since you are holding F
B(Ti−1,Ti)

− F

of such bonds, you will receive the amount F
B(Ti−1,Ti)

− F , that is, the coupon

value Ci.
We have replicated the cash flow provided by the ith coupon using a self-

financing strategy with initial cost F (B(t, Ti−1)−B(t, Ti)). This, then, must
be the value of the coupon at time t. The time t value of the floating coupon
bond must therefore be

P (t) =

N
∑

i=1

F (B(t, Ti−1)−B(t, Ti)) + FB(t, TN ) = FB(t, T0).

In particular, on its emission date T0 the price of a floating coupon bond is
equal to the face value,

P (T0) = F.

Exercise 6.14
Find the swap rates rswap(0, n) for the data from Example 6.1. Perturb

one of the rates obtained by adding or subtracting x and reconstruct the bond
prices. Analyse the impact of x on the prices obtained.
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Solution We have hcoupon = 1
12 , the formula

rswap =
1−B(0, J)

hcoupon

∑J
j=1 B(0, j)

.

gives the rate rswap(0, J) and so

J rswap(0, J)
1 1.0810%
2 1.5627%
3 1.7646%
4 1.8364%
5 1.9043%
6 1.9503%
7 2.0009%
8 2.0243%
9 2.0564%

10 2.0704%
11 2.0933%
12 2.1127%

Given the swap rates we can reconstruct the bond prices inductively

hcouponrswap(0, J) =
1−B(0, J)

∑J−1
j=1 B(0, j) +B(0, J)

.

so

B(0, J) =
1−

∑J−1
j=1 B(0, j)hcouponrswap(0, J)

1 + hcouponrswap(0, J)

Any perturbation of one swap rate increases the corresponding bond price.
Exercise 6.15.
Find an arbitrage strategy for the above example.
Solution
Consider B(n, 3) as a derivative security with B(n, 2) as the underlying,

n = 0, 1, exercise time N = 1. So computing dicounted expected payoff

EQ2
(B(1, 2)) = B(0, 1)(q2B

u(1, 3)+(1−q2)B
d(1, 3)) = 0.98970997 > 0.9897 = B(0, 3)

so arbitrage requires buying B(0, 3) and selling a portfolio of B(0, 1) and B(0, 2)
replicating the payoff B(1, 3).

Exercise 6.16.
Within the scheme of Example 6.13 show that if B(0, 2)(1+R) = E(B(1, 2)),

B(0, 3)(1+R) = E(B(1, 3)) then q3 = q2 for any p. Formulate a condition linking
the expectations and variances of B(1, 2) and B(1, 3) so that q2 = q3 for all p.
Show that if this condition does not hold, q2 6= q3 for any p ∈ (0, 1).

Solution The conditions
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pBu(1, 2) + (1− p)Bd(1, 2) = B(0, 2)(1 +R),

pBu(1, 3) + (1− p)Bd(1, 3) = B(0, 3)(1 +R),

imply that p is the risk-neutral probability for each bond, so p = q2 = q3.
The condition guaranteeing equality of the risk neutral probabilities is that

the market prices of risk coincide

m2 −R

σ2
=

m3 −R

σ3
.

If this is violated, the risk-neutral probabilities are different (Exercise 2.8).
Exercise 6.17.
Change the value of Bu(1, 2) in Example 6.13 so that q2 = q3 and analyse

the expectations and variances after the change.
Solution
With Bu(1, 2) = 0.996603016we ahve q2 = q3 = 0.92014277 and E(B(1, 2)) =

0.99651,
√

Var(B(1, 2)) = 0.00009.
Exercise 6.18
Build the initial tree for a bond maturing at time 4 with initial priceB(0, 4) =

0.9859, such that the price of 100,000 puts with strike K = 0.9898 is 80 and
find the perturbation ε4to3. Build the complete tree of prices B(k, 4) using the
perturbations found in the previous example.

Solution With ε4to3 = 0.1084% we get

Buuu(3, 4) 0.9972
Buu(2, 4) 0.9942

Buud(3, 4) 0.9966
Bu(1, 4) 0.9903

Budu(3, 4) 0.9961
Bud(2, 4) 0.9925

Budd(3, 4) 0.9955
B(0, 4) 0.9859

Bduu(3, 4) 0.9967
Bdu(2, 4) 0.9927

Bdud(3, 4) 0.9961
Bd(1, 4) 0.9882

Bddu(3, 4) 0.9957
Bdd(2, 4) 0.991

Bddd(3, 4) 0.995

Exercise 6.19
Find the short rates r(3) following Exercise 6.18 and recover the bond prices

B(k, 4) from the short rates.
Solution Using
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r(k) =
1

h
(

1

B(k, k + 1)
− 1)

we get
ω r(3)

UUU 3.32%
UUD 4.08%
UDU 4.62%
UDD 5.38%
DUU 3.87%
DUD 4.63%
DDU 5.17%
DDD 5.92%

Given the rates we can recover B(3, 4) from r(3) but for earlier bond prices we
need risk neutral probabilities and rates r(0), r(1), r(2). With rates as in the
example and q = 0.5 we get the prices as in Exercise 3.18, but the values will
be different if some other q is used.

Exercise 6.20.
Find the tree of bond prices in the above example taking q = 0.5 and then

taking the above values of q(0), q(1). Extend this to the case considered in
Exercise 6.18.

Solution With q = 0.5 we find B(k, 3) for k = 0, 1,

0 1
0.99392

0.98964
0.99256

For q(0) = 0.330928, q(1) = 0.607029 we have

0 1
0.99399

0.9897
0.99263

Taking q = 0.5 and the rates from Exercise 6.19 we get B(k, 4) as below

0 1 2 3
0.9972

0.9943 0.9966
0.9903 0.9962

0.9926 0.9955
0.9861 0.9968

0.9929 0.9962
0.9885 0.9957

0.9912 0.9951
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To fit the inital bond price, taking q(0), q(1) as above, we find q(2) = 0.4378
and get

0 1 2 3
0.9972

0.9942 0.9966
0.9905 0.9962

0.9925 0.9955
0.9859 0.9968

0.9929 0.9962
0.9887 0.9957

0.9912 0.9951

Exercise 6.21.
Consider the above models with h = 1

12 , k = 0, 1, 2 and try to calibrate
them to the initial bond prices B(0, 2) = 0.9932, B(0, 3) = 0.9897 taking the
rate implied by B(0, 1) = 0.9966 as the initial short rate.

Solution
First we find r(0) = 4.0939%. Merton’s model with q = 0.5,

ru(1) = r(0) + a
1

12
− σ

√

1

12
,

ru(1) = r(0) + a
1

12
+ σ

√

1

12

Bu(1, 2) =
1

1 + ru(1)/12

Bd(1, 2) =
1

1 + rd(1)/12

B(0, 2) =
1

1 + r(0)/12
(
1

2
Bu(1, 2) +

1

2
Bd(1, 2)) = 0.9932

gives a = 0.02, σ = 0.07 (with some accuracy: the price obtained is 0.9932006).
These values give the initial price for N = 3 equal to 0.98979365.

Vasicek model in the first step has the form

ru(1) = r(0) + [a− br(0)]
1

12
− σ

√

1

12
,

ru(1) = r(0) + [a− br(0)]
1

12
+ σ

√

1

12

and with the same form for bond prices, for a = 0.004, b = 0.0435, σ = 0.8 we
get better accuracy. For N = 3 the values a = 006556, b = 0.0001, σ = 0.0004
give B(0, 3) = 0.989700005.
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Exercise 6.22.
Let h = 1

12 , let n = 3 and let the short rates and the prices for the bond
with maturity 3 be as in the following tree:

ր Buu(2, 3) = 0.9991
Bu(1, 3) = 0.9962
ru(1) = 2.40%

ր ց Bud(2, 3) = 0.9960
B(0, 3) = 0.9927
r(0) = 4.11%

ց ր Bdu(2, 3) = 0.9986
Bd(1, 3) = 0.9959
rd(1) = 3.00%

ց Bdd(2, 3) = 0.9969

First, compute the risk neutral probabilities q(0), qu(1), qd(1) (of upward move-
ment) using (6.7) and then compute the prices of the remaining bonds.

Solution q(0) = 2
3 , q

u(1) = 0.707225806, qd(1) = 0.876323529, next the
bond prices Bu(1, 2), Bd(1, 2) and B(0, 1) are given directly by the short rates,
and

B(0, 2) = B(0, 1)(q(0)Bu(1, 2) + (1− q(0))Bd(1, 2)) = 0.994432.

Exercise 6.23.
Build a concrete model for N = 3 with initial term structure determined by

the familiar bond prices: B(0, 1) = 0.9966, B(0, 2) = 0.9932, B(0, 3) = 0.9897,
taking q = 1

2 , δ = 0.99923.
Solution

BUU (2, 3) 0.99724
BU (1, 3) 0.99384

BUD(2, 3) 0.99648
BD(1, 3) 0.99231

BDD(2, 3) 0.99571

BU (1, 2) 0.99697
BD(1, 2) 0.9962

Exercise 6.24.
Adjust the δ in the previous exercise so that the pack of 100,000 calls written

on 3-bond with exercise time n = 2 and unit exercise price K = 0.9964 is worth
24.47 today.

Solution δ = 0.99923996008143.
Exercise 6.25.
Find the short rates, and compute the expectations and variances following

Exercise 6.23.
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Solution Short rates

3.32%
3.64%

4.09% 4.24%
4.56%

5.15%

Expected rates E(r(1)) = 4.101%, E(r(2)) = 4.237%, variances: Var(r(1)) =
0.000021.
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