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This document contains solutions to the exercises in Fundamentals of
Seismic Wave Propagation with cross-references to equations and the bibli-
ography in the text. Solutions for the programming exercises are provided
in Matlab (Matlab is a trademark of MathWorks, Inc.). These programs
have been written to be simple, and straightforward to read and under-
stand. They are not necessarily particularly efficient, nor do they contain
all the desirable features that would check parameters and handle special
cases. The plots are simple without cosmetic additions. It would be easy
to include these extras features but often they require a disproportionate
amount of code and complication. For brevity, these extras are omitted.

This version contains errata, addenda and revisions to 3 January 2008.
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Basic wave propagation

2.1

Confirm that the standard, simple algebraic expression (2.5.20) for the travel
time along a circular arc, reduces to the numerically robust expression (2.5.23).
In turn show that this reduces to the vector expression (2.5.34).

The standard results we need are
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confirming expression (2.5.24).
Finally
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as the angle between the ray directions pg and p1 is 1 — ¥y, and ¢ =
R|d|cos® from the linear velocity function (Rcos is the ‘vertical’ dis-
tance from zero velocity at the arc centre). Using expression (2.5.33) in the
numerator

Rpo x Ap =pg X (j x Ax) =] (po - Ax) — Ax(pPo - J),

using the standard expansion for the triple vector cross product. As pg and
j are perpendicular, the final term is zero, and we obtain result (2.5.34).
The expression

2
AT = ‘ /‘ tanh~ly = — ] tanh ™! (

is simpler than most that have appeared in the literature.

| Po - AX)
co+ 1 ’

2.2

Ezxzamples of other two-parameter velocity functions for which algebraic re-
sults are known are c(r) = a — br? (a circular ray) and c(z) = aexp(bz).
Obtain algebraic expressions for the range and travel time for a ray in these
velocity functions.

Show that c(z) = aexp(bz) is equivalent to c(r) = ar® via the Earth
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flattening transformation (this velocity distribution is sometimes known as
the Mohorovicié¢ velocity function).

Further reading: The constant gradient functions in velocity (Section 2.5.2.1)
and slowness-squared (Section 2.5.2.2) can be generalized to constant gradi-
ent functions of ¢=™(z) or In(c(z)). These have been discussed by Cerveny
(2001, Section 3.7).

The velocity function ¢(r) = a — br? in a spherical Earth is discussed by
Bullen (1963, pp. 122-3). We follow a similar approach. We denote the
conserved Bullen parameter (2.3.31) by

inf
o = rgpp = SO)
c(r)

Consider a ray arc between radii r and r + dr (see figure).

A circular ray arc in a spherical model.

Even if the medium were homogeneous and the ray straight, the angle 6
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would decrease by

00 = —tan@é—r.
r

In an inhomogeneous medium, we would have (by differentiating the expres-
sion for p’)

rcos 60 = (p’% - sin9> or,
r

and the extra change in angle

/

50/ — p
T cos 0

%
dr

or,

is the angle subtended by the arc at the centre of curvature (see figure). The
arc length is ds = sec§ or = R0’ so the radius of curvature is

pods _ _rdr
o0’ p' de
If the velocity is ¢(r) = a — br? , this reduces to
L
b’

a constant, so the ray is circular.

Measuring the angular range A from the line joining the centre of the
Earth to the centre of the ray arc, and applying the sine rule to the triangle
formed by the centres and the ray point, we have

sin A cos(§+ A)
R r '

A = tan™! (C0t6>
v )

Rearranging we have

where

v(r) = o)

Knowing the radius r, we can calculate the velocity ¢(r) and v(r), and for

a given ray parameter p’, the angle (r). Hence we can calculate the range,

A.
Comparing expressions (2.3.14), (2.3.27) and (2.3.31), we have that

, dT

p:d_A’
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for the differential of the travel-time function at fixed radius. Thus differ-
entiating the above result for A (v is fixed)

AT = pdA

rsin @ v
= Ry cosec26 do.
¢ v?:4co

Integrating this, we obtain

r v++Vv?2 —1cosf
T = In .

v—+v2—1cosf

It is possible to substitute for cos 8 in terms of A and reduce to a travel-time

cVr? —1

function, T'(A), which is sometimes useful.
If ¢(2) = aexp(bz), then

¢*(p,z) = a e % = p?.

Thus

qdg= —ba 27 dz = —b(¢® +p?) dz.

Thus expression (2.3.7) reduces to
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and expression (2.3.8) to

1 1 1
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Using expressions (2.3.29) and (2.3.30)
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Hence ¢(z) = a exp(bz) and ¢(r) = a/r? are equivalent.
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2.3

Many two-parameter velocity functions are known with algebraic results (see
the previous exercise) which can be used to approrimate a general discretized
velocity function. However, these suffer from the disadvantage that the func-
tion dX/dp has singularities due to each gradient discontinuity (see Fig-
ure 2.24). A three-parameter velocity function, ¢c=2(z) = a+bz+cz?, a par-
abolic layer, has been discussed by Cerveny (2001, Section 3.7) — see also
Kravtsov and Orlov (1990), and references therein. This has the advantage
that, in principle at least, gradient continuity can be obtained. Obtain the
algebraic results for this function.

With ¢=2(2) = a + bz + 22, we have for expression (2.3.15)

T = /(a+bz+cz2—p2)l/2dz

(e o)

Letting
Vor+ =
T =+cz+ ——=
2\/c’
we have
1 9 1/2
7‘—%/(33 —i—A) dx,
where
b2
A=a— — —p°
@ 4c p

If A>0,let 2 = AY2sinh6 and

A A
=2 /cosh20d9 = 1z (inh20 +20)].
Similarly if A < 0, let 2 = (—A)Y2 cosh # and
—_A A
T = u /Slnh29d9 = — (Slnh29 - 29)| .

The range and travel-time functions can then be obtained using expressions
(2.3.16) and (2.3.17).
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2.4

Programming exercise: Figures 2.18 to 2.28 were drawn using a relative sim-
ple Matlab program. Write a program to compute the travel-time functions
in which it is easy to change the velocity function and type of ray.

Hint: The ray can be defined using a structure array (struct) which defines
the sequence of ray segments — the type, depth limits, etc. The integrals
can all be calculated using the function quad where the required integrand
function is passed as an argument. The velocity function — the model —
can be defined by a function whose name is known to the integrand routines.

The model is defined by a function returning the slowness and slowness
gradient, and by defining a global variable with the function name. The
slowness and its gradient can then be computed for the model using the
eval statement. Thus a model with a linear velocity function can be defined
by

function [ u, dudz ] = linear( z )
% LINEAR = slowness and gradient at z values
% for a linear velocity atbz

% For intermal use in tt_integrals for Exercise 2.4

% INPUT: =z = z values

b

% GLOBAL: layer = layer in model

% raytype = ray type flag P or S
% aa = velocity at z=0

% bb = velocity gradient
b

% OUTPUT: u = slownesses

A dudz = slowness gradients
b

% Note:

% model parameters must be in global;
% function name is global variable model;
% z coordinates are measured upwards.

global layer raytype aa bb
b
u = 1./(aa+bb*z);
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dudz = -bb*u.x*u;
return

and the code

global model
model = ’linear’;
eval([ [ u, dudz ] = ? model ’( z );’ 1);

used to define and query the model for the travel-time integrals. In general,
the code for the model function will be more complicated and will need
to discriminate depth range (layer) and ray types (raytype). The model
parameters are global variables. A simple function

function q = verticalslowness( u )
% VERTICALSLOWNESS = vertical slowness (2.3.10) for
% slowness values u

% For internal use in tt_integrals for Exercise 2.4
b

global p % horizontal slowness

b

q = sqrt((u-p) .*(u+p));

return

computes the vertical slowness, ¢(p, z) (2.3.10). The horizontal slowness, p
(2.3.9), is a global variable.

The following are three functions that return the integrands of the range
(2.3.7), time (2.3.8) and intercept-time (2.3.15) integrals. The model name
and horizontal slowness, p, are global variables.

function dx = range( z )
% RANGE = range integrand (2.3.7) at z values

% For internal use in tt_integrals for Exercise 2.4
A

global p model

b

eval([ [ u, dudz ] = ? model ’(C z );’ 1);

dx = p./vertical_slowness( u );

return

function dt = time( z )
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% TIME = time integrand (2.3.8) at z values

% For intermal use in tt_integrals for Exercise 2.4
yA

global model

A

eval([ ’[ u, dudz ] = ’> model ’( z );’ 1);

dt = u."2./ vertical_slowness( u );

return

function dtau = tau( z )
% TAU = time integrand (2.3.15) at z values

% For intermal use in tt_integrals for Exercise 2.4
yA

global model

A

eval([ ’[ u, dudz ] = ’> model ’( z );’ 1);

dtau = vertical_slowness( u );

return

If a turning point exists in the depth range we must detect this, revise the
range of the integral so the lower limit is the turning point, and change the
variable of integration to remove the singularity. To detect a turning point,
we simply compare the slowness with the horizontal slowness. A turning
point must exist if the following function returns a negative value.

function ump = turning( z )
% TURNING = 1/v(z) - p at z value

% For internal use in tt_integrals for Exercise 2.4
)

global p model

)

eval([ [ u, dudz ] = ? model ’(C z );’ 1);

ump = u-p;

return

If a turning point, z(p), exists, we change the variable of integration to

y=(z—20p)"?,
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SO
dz =2ydy =2(z — Z(p))l/2 dy.

The following functions provide the range, time and intercept-time inte-
grands with respect to the variable y (removing the singularity of the range
and time integrals, and making the intercept integrand approximately lin-
ear). The turning point is a global variable.

function dx = turnrange( y )
% TURNRANGE = range integrand (2.3.7) at y values with
% variable change to y=sqrt(z-zp)

% For internal use in ttintegrals for Exercise 2.4
b
global p zp model
b
dx = zeros(size(y));
for i = 1:length(y)
z = zp+y(i)~2;
eval([ [ u, dudz ] = ’> model ’( z );’ 1);

if y(i) > 0.
dx(i) = 2xy(i)*p/verticalslowness( u );
else
dx(i) = sqrt(2*p/dudz ); % 1’Hopital rule at zp
end
end
return

function dt = turntime( y )
% TURNTIME = time integrand (2.3.8) at y values with
yA variable change to y=sqrt(z-zp)

% For internal use in ttintegrals for Exercise 2.4
)
global zp model
b
dt = zeros(size(y));
for i = 1:length(y)
z = zp+y(i)~2;
eval([ [ u, dudz ] =’ model ’(C z );’ 1);
if y(i) > 0.
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dt(i) = 2xy(i)*u~2/verticalslowness( u );
else
dt(i) = uxsqrt(2*u/dudz); 7% 1’Hopital rule at zp
end
end
return

function dtau = turntau( y )
% TURNTAU = tau integrand (2.3.15) at y values with
A variable change to y=sqrt(z-zp)

% For internal use in ttintegrals for Exercise 2.4
b
global zp model

%
z = zpt+y. 2;
eval([ [ u, dudz ] = ? model ’( z );’ 1);

dtau = 2*y.*verticalslowness( u );
return

Using the above functions, the following function integrates the range (2.3.7),
time (2.3.8) and intercept-time (2.3.15) integrals for a ray segment that may
end at a turning point. It is assumed that only one turning point can exist
and that it is at the lower limit of the ray.

function [ dx, dt, dtau ] = ttsegment( z )
% TTSEGMENT = travel-time integrals for segment

% INPUT: z(2) = depths defining segment

b

% OUTPUT: dx = range integral for segment

A dt = time integral for segment

A dtau = intercept time integral for segment
)

% Note:

% for use by tt_integrals;

% z may be larger array but just max and min used;

% segment integrals always positive whatever z order;

% z must be vertically upwards with possible turning point
% at bottom of segment (not top);
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global zp

% depth limits of segment for positive contribution
zmin=min(z) ;

zmax=max (z) ;

% turning point above top of layer so no contribution
if turning( zmax ) < 0.

dx =0.;
dt =0.;
dtau=0.;

% no turning point
elseif turning( zmin ) > 0.

dx = quad( @range, zmin, zmax );
dt = quad( @time, zmin, zmax );
dtau = quad( @tau, zmin, zmax );

% turning point within layer
else
zp = fzero( @turning, z );
y2 = sqrt(zmax-zp);

dx = quad( @turnrange, 0., y2 );
dt = quad( Qturntime, 0., y2 );
dtau = quad( @turntau, 0., y2);
end
return

The following function then combines multiple segments for multiple values
of the horizontal slowness.

function [ x, t, tau ] = ttintegrals( hslow , segment )
% TTINTEGRALS = travel-time integrals for rays defined by
% segment for horizontal slownesses hslow

% INPUT: hslow

horizontal slownesses

yA segment = struct defining ray segments
)

% OUTPUT: x = ranges

b t = times

yA tau = intercept times

b

global p layer raytype

)

x = zeros(size(hslow)); t = x; tau = x;
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% loop over horizontal slownesses
for i = 1:length(hslow)
p = hslow(i);
% loop over ray segments
for j=1:length(segment)
% set layer and raytype which may be used in model

layer segment (j) .layer;

raytype = segment(j).raytype;

% do travel-time integrals for segment
[ dx, dt, dtau ] = ...

ttsegment ( [segment(j).zstart segment(j).zend] );

x(1) = x(1i)+dx;
t(i) = t(i)+dt;
tau(i) = tau(i)+dtau;
end
end
return

Finally, here is a simple main program in the constant gradient model
with reflections and turning rays. For more complicated rays in a more
complicated model, just the model function and the specification of the ray
segments need elaborating.

function Exercise24

% Exercise 2.4

b

% set up model functions and model parameters

global model

% example for linear gradient

model=’linear’;

% simple example with velocity increasing from 1 to 2
global aa bb

aa = 1;
bb = -1;
za = 0;
zb = -1;

% slowness range

eval([ ’[ pa, dudz ] > model ’( za );’ 1);
eval([ ’[ pb, dudz ] = ’> model °( zb );’ 1);
% define sequence of ray segments

% zstart and zend are start and end depth ranges
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% raytype defines velocity to use (P or S), layer defines
% layer in model
% example for reflection from zb, with source and receiver
% at za, or if slowness greater than slowness at zb, a
% turning ray
segment (1) = struct(
’zstart’,za,’zend’,zb, ’raytype’,1,’layer’,1);
segment (2) = struct(
’zstart’,zb,’zend’,za, ’raytype’,1,’layer’,1);
% set of horizontal slownesses
reflections = linspace( 0, 0.9999*pb, 100 );
turnings = linspace( 1.0001*pb, 0.9999%*pa, 100 );
% compute travel-time integrals
[ xr tr taur ] = ttintegrals( reflections, segment );
[ xt tt taut ] = ttintegrals( turnings, segment );
% plot travel times
figure
hold
plot( xr, tr, ’r’ )
plot( xt, tt, ’b’ )
print -depsc2 exercise2_4.eps
return
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This produces the simple travel-time plot:

Travel-time curves for turning rays (blue) and reflections (red) in a layer with
velocity ¢ = 1 — z, where zs = zg = 0 and an interface exists at z = — 1.

These programs have not been written to be efficient — many calculations
are repeated in different integrals, and full advantage of Matlab arrays is
not taken. Using quad to perform the integrals numerically often ignores
efficient analytic methods. However, the program can used for a wide variety
of models and rays.

2.5

FEvaluate the ray integrals (2.3.7), (2.3.8) and (2.53.12) (remaining valid for
(2.3.26)) for a medium with a linear velocity function (see Section 2.5.2).
Show algebraically that the ray path is an arc of a circle.

For algebraic simplicity, we shift the depth origin so it lies where ¢(z) would
be zero, i.e. the velocity-depth function is ¢(z) = ¢’z. The physical medium
exists for z > 0 if ¢ > 0, and for 2 < 0 if ¢ < 0.
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The travel-time integral (2.3.7) is then

-t o (153)
PP=r e~ dz(1— (dp2)2) 2~ 2 8\ 1xeg/|’

where ¢q = (1 — ¢®p?)'/2. Note that the logarithm is negative and decreases
to zero at the turning point z = 1/¢'p (but the definite integral for a positive
z range, is positive, of course).

The range integral (2.3.8) is

P dz c pz dz cq
(1= (dpz)? / cp
We can differentiate this dlrectly to obtain the geometrical spreading (2.3.12)
dx 1
dp — cdp?ql’
The indefinite function for the range function — cq/c’p is zero at the turning
point, i.e. — ¢q/c'p is the range measured from the turning point, so the

turning point does not contribute to this differential, and this expression
for dX/dp remains valid with a turning point (2.3.26) provided the turning-
point limit is omitted.
Measuring the horizontal range from the turning point, where z = 1/c'p,
we have
2 2 cq\*,
X+ = () < - g

i.e. a circle of radius 1/cp.
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Transforms

3.1

The results in Table 3.1 can be found in many textbooks, but confirm the
proofs from first principles. What assumptions are necessary for each re-
sult?

Fourier transform: a (naive) proof of the Fourier transform is usually
developed from the Fourier series. The complex Fourier series for a function
of period T is defined as

o
ft) = Z cne_iwnt7
n=-—o0o
where w,, = 27n /T (the sign is taken to be consistent with our choice in the
Fourier transform). As T — oo, the frequency step, Aw = 27 /T tends to
zero, and the infinite sum of terms in the Fourier series becomes an integral
with the coefficients, ¢, becoming functions of the continuous variable, w.
The coefficients of the series are given by

1 [T/2 - Aw [T/2 -
Cm = —/ f(t)eemtay = _w/ f)evemtat,
T J-1)2 2m J-1/2

which can be proved by evaluating the integral of the series, when only the
term n = m is non-zero. Substituting in the series we have

=3 52

Nne—oo —T/2

T/2 N dwnt’ 14/ —iwnt
F) elont dtleiont,

In the limit 7' — oo, Aw — 0 and the summation becomes an integral, i.e.

> A . 1 oo .
S S glwn)e et - / g(w)e " duw,
T

27 J—oo
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where
T/2 . , 00 . ,
g@) = [ peyeetae— [ p)etar
—T/2 —00

Hence we can define a transform pair
1 [o© ) o _
f(t) = %/ flw) e “dw and flw) = / f(t) elwtdt.

This proof assumes the infinite integrals exist. A more rigorous proof can
be found in Zygmund (1988)f.
Convolution: taking the Fourier transform of the convolution integral
o
0= [ o) st -1t
— 0o

we have
flw) = / / gt h(t — ') dt'e“tdt
_ / / g(t/) eiwt’h(t//) eiwt”dt/dt”,

where t” = t —t/. The Jacobian of the variable change is unity, and the
double integral over the complete plane still applies. Thus

© H / © H 1"

Flw) = / g(t) et ar / h(E") e At = g(w) h(w).
—0o0 —0o0

This proof assumes that the various transforms exist.

Hilbert Transform: the inverse Fourier transform of the spectrum f(w) =
—isgn(w) is

1 [ ot
ft) = %/_oo —isgn(w)e '“dw

= S /0 e 1wl dw — S /OO e ¢l dw
27 J—oo 21 Jo

- _ L e—iwt 0 + L e—iwt *

27t oo 2mi 0
_ 1
N it

Hence, using the convolution theorem, the inverse Fourier transform of
glw) = —isgn(w)f(w) is
1 f(t)
t)= —— —=d¢
g(t) < it

t Zygmund, A., 1998. Trigonometric Series, 2nd edn, Cambridge: Cambridge University Press.
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where to avoid the singularity, the integral is taken as the Cauchy principal
value. This proof assumes that the convolution integral exists.

Analytic times series: taking the Fourier transforms of F'(t) = f(¢t)+if(¢),
we have

F(w) = f(w) +i( —isgn(w))f(w) = 2H () f(w),

directly.
Shift rule: taking the Fourier transform of the shift function f(t + a)

‘/_ f(t + CL) eiwtdt — e—iwa/_ f(t/) eiwt’dt/ _ f(w) e—iwa7

where t’ = t+a. The shift is normally taken to be real. If complex, it assumes
that the shift causes no singularities to cross the real axis of integration.
Scaling rule: taking the inverse Fourier transform of f(aw) (and assuming
a is real and positive),

o [ fayetao = o= [ et on = pgjaya

where the dummy variable of integration is w’ = aw. If a is negative, the
algebra is the same but the direction of the w’ integral is reversed so

1 —iwt _
%/Bf(aw)e dw = — f(t/a)/a.

Hence the inverse transform of f(aw) is f(t/a)/|al, if a is real and non-zero.
Derivative: as in the text (3.1.26)

8f o0 af iw . iwt | oo i
(E) (w) = T ‘At = f(t)e t’_oo - /_Oolwf(t)e tdt
= —liwf(w)

provided f(t)e'“! — 0 ast — oo (f( —o0) = 0, from causality). Applying n
times, we obtain

G ft) — (—iw)"f(w),

where the conditions at infinity must apply to derivatives up to 9 ' f(¢).
Integration: similarly integrating by parts

( /_t ) f(t’)dt’) (W) = /_O:Oeiwt ( /_t . f(t’)dt’) dt

) —/oo iy ar

oo 1w

_ eiwt /t f(t/)dt/

iw

= (i) (),

—00
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assuming [0 f(t')dt’ = 0, i.e. the D.C. level is zero. Applying n times we
obtain

/t.../th(tl)dtl...dtn—>(—iw)_”f(w),

assuming the D.C. levels of the function and its (n — 1) integrals are zero.

3.2

Several useful Fourier transforms are given in Appendix B. Confirm these
results.

Dirac delta function: the Fourier transform of the Dirac delta function
follows from its definition

| s swat = 5(0)

/ S(t)et“tdt = 1.

The inverse Fourier transform of exp(—|w|b) is easily evaluated

1 [ : 1 /0 : 1 [ :
_/ e—|w|b—1wtdw _ _/ ewb—lwtdw+_/ e—wb—lwtdw
21 ) 21 ) 21 Jo
1 ewb—iwt 0 1 e—wb—iwt o0
T 2r b—it| 21 b—it
—00 0
1 ( Lo, )
o 2m \b—it b+it
1 b
T b2 2

The other results in Appendix B.1 can then be derived using the results in
Table 3.1.

Inverse square roots: the Fourier transform of the inverse square root,
A(t) (B.2.1) is evaluated

o H(t) iwt 34 o iwy? _ m 1/2 isgn(w)w/4
/oo—tl/2e dt—2/0 e dy—<m> e ,

using t = y? and the standard result (D.1.11). This result agrees with the
result (B.2.2) for A(w). The other results in Appendix B.2 can then be
derived using the results in Table 3.1.
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Exponentials and inverse square roots: rather than prove the result
for the inverse Fourier transform of the modified Bessel function of order
1/2 (B.3.1), we find the inverse Fourier transform of

(gwﬂgﬂﬂ%4w
w

(with w > 0) using the convolution theorem ((3.1.16) and (3.1.17)). The
spectrum is the product of an exponential (B.1.4) and inverse square root
((B.2.2) or (B.2.4)). Thus for results (B.3.3) and (B.3.3) we have

12 .
/ (2_71') etim/dg—bw—iwt 4, _ 21/2)\(t) * L
B

w m(t? + b?)
om\1/2 _ : - b
“n —im/4 ,—bw—iwt d _ 21/2)\ ¢ ]
L) et R T
The first case with the positive sign gives
/t 21/2p dr 2% /oo dz
oo T (T2t -T)V2 1w Jo ((t—x)2 +b2)xl/2
B 23/2b /oo dy
o1 Jo oyt =2ty 412 402

where 7 =t —x =t — y°.

This is a standard integral with a quadratic in y? in the denominator.
The denominator has no real roots as

B? —4AC = 4% — 4(t? + %) < 0,

and the indefinite integral is

/ dz 1 . 2% 4 2gz cos a + ¢?
= ————|sinaln
A4+ B2 4 C 4A¢3 sin(2a) 22 — 2qz cos a + q2
2 2
+2cosa tan”! <u>>
2gz sin a
where ¢ = (C/A)Y* and cos(20) = — B/2v/AC (Gradshteyn and Ryzhik,

1980, §2.161 (1) — although complicated, given the result, it can be con-
firmed by differentiation). The definite integral is then

/°° dz _ mcosa
0o Azt4+ Bz2+C  2A4¢3sin 2a

Now A =1, B = —2t and C' = t>4b? s0 ¢ = (t>+b%)"/* and tan(2a) = b/t.
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Thus

1/2
cos 2a + 1\ /2 (t + (82 + 52)1/2)

cosag = [ ———— _ |
( 2 ) 21/2(42 4 p2)1/4

and the convolution integral reduces to

/2

yt—2ty? + 12 + 0> 2 +v)2 7

1
93/2)) oo dy (t+ (2 +02)172)
=

i.e. result (B.3.3). The Hilbert transform result (B.3.4) is obtained in a very
similar fashion.

Bessel and Hankel functions: with special functions it is always diffi-
cult to know where to start — which definition of the Bessel function is
fundamental? We start with integral representations of the Bessel functions

Jo(z) = %/0 sin(z cosh #) d
Yo(z) = —%/0 cos(z cosh 0) d6,

with > 0 (Abramowitz and Stegun, 1965, §9.1.23), modified forms of the
Parseval’s integral (8.2.13). These can be found in various textbooks.
Thus

[e’] ) 2 oo oo .
/ Jo(aw) e " ¥dw = = / / sin(aw cosh #) e '** df dw
0 mJo Jo
1 0o oo, . .
_ _/ / (elw(acoshe—t) - e—lw(acoshG—i—t)) dw do
1T Jo 0
1 oo eiw(a cosh 6—t) e—iw(a cosh 0+t) \ |*°
- _;/0 acoshf —t + acoshf +t
1 [ 1 1
= = de.
71/0 (acosh@—t+acosh9+t>

These are known integrals. The indefinite results are

dz 1 . _1[a+bcoshz
/acoshz—l—b - _(a2—b2)1/2S1n (b—l—acoshz)
1 . <a+ b+ \/Wtanh(z/z)>
(b2 — a2)1/2 a+b— b2 —aZtanh(z/2) )’

do
0

when a? > b? and a® < b%, respectively (Gradshteyn and Ryzhik, 1980,
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§2.443 (3) — as the results are known, they can be confirmed by differenti-
ation). Then the definite results are

/OO dz 2 [ (a® = ?)/?
—— = ——————tan —
0o acoshz+b (a2 — b2)1/2 a+b
1 (@ + b+ Vb? —a?
= n
(b2 — a2)1/2 a+b—vVb2—a2)’
(Gradshteyn and Ryzhik, 1980, §3.513 (2)) when a? > b? and a? < b2,

respectively.
Thus if ? < a?

/ Jo(aw) et dw
0

9 o (a2 _ t2)1/2 N - (a2 _ t2)1/2
= -— n - 7 ~ 7
m(a? — t2)1/2 a—t a+t
1
- (a2 — £2)1/2’

using the standard formula (Abramowitz and Stegun, 1965, §4.4.34) to com-
bine two inverse tangents (and the argument of the single inverse tangent is
infinite — or immediately as the arguments of the two inverse tangents are
reciprocal). If t? > a?

/ Jolaw) e 19t dw
0

1 | a—t+4 (2 —a®)V? a+t+(t2—a?)/?
= n .
7T(t2 _a2)1/2 a—t1— (t2 _a2)1/2 a-+t— (t2 _a2)1/2

i

(t2 — a2)1/2’
as the argument of the logarithm reduces to — 1. This confirms (B.4.7) and
(B.4.8).
Similarly

o0 : i [ 1 1
Y; —lwt — l/ ( o ) )
/0 oaw)e de 7 Jo acoshf —t acosh@+t¢ dé

Thus
o .
/ Yy (aw) e ' dw
0

_ 2 o (a2 _ t2)1/2 B (a2 _ t2)1/2
m(a? — t2)1/2 a—t a+t
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2i .1 <t>
= ————— sin -1,
m(a? — t2)1/2 a

if t2 < a2, and
oo .
/ Yy(aw) e ¥ dw
0

i n a—t+(t2—a2)1/2 a+t—(t2—a2)1/2
7(t2 — a?)1/2 a—t— (2 —a2)V/2 a+t+ (2 —a2)l/2
2
; (t - a2)1/2)

T (a2 In{ — o2

B 2i (= (t? — a?)/? 1
T T2 — )i n a R

if 2 > a2, confirming results (B.4.9) and (B.4.10).
With these results we can obtain the inverse Fourier transforms of the
Bessel and Hankel functions.

3.3

Fvaluate the Radon transform as defined in equation (3.4.18) for the func-
tion f(t,x) = A(x) 6(t—T(x)). Approximate this about the singularities, and
show that the original function is recovered when substituted in the inverse
transform (3.4.19).

Substitute f(t,z) = A(x )5(t — T (z)) in definition (3.4.18)

1
9(rp) = — i dt / Az T(z) + pz)da.
Defining

T’(p)aj) = T(aj) - bz,

this can be rewritten

dz
Az T,
g(T,p) = 21/27T dt ]{ (dT) d

where the integral is written § to indicate it is over all ranges of T mapped
by x = — oo to co. In general, this will consist of several segments, some in
the positive direction when dT /dz > 0, and some in the negative direction
when dT/dz < 0 (in general, unless T(p, ) is a monotonic function of ,
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the integral will have multiple branches each ending at the points where
dT'/dx = 0). For a given 7 and p, we can solve the equation

T =T(p,x),
for value(s) of x. At these points, the delta function contributes to the
integral and we obtain

1 d- A(x
Q(Tap):—ma)\(ﬂ* Z <%>7

=T (p,z)

where the summation is over solutions of the equation 7 = T with the
value(s) of x substituted. The modulus of the derivative is obtained as when
the gradient is negative, the integral is in the negative direction (clearly in
the original integral, 6(¢ — T'(x)) dx > 0). This technique for evaluating the
Radon transform is clearly equivalent to that used for the WKBJ seismogram
(Section 8.4.1).

The above result is singular when

or AT
or P
i.e.

o ar
T dx

Expanding about a stationary point at xg

p =p(x), say.

~ ~ 1 8°T
T ~ T ——— (z — xp)?
(z0) + 5 52 (z — o)
~ 1 /dp 9
— Tha - (ZE _
0+ 3 (dx>0(a: o)
(subscript ¢ indicates values at z¢). Assuming (dp/dz)o > 0, two solutions

of 7 =T exist for 7 > Ty at

2(1 — Tp)
T=x0t 4| ——".
’ (dp/dz)o
Substituting these two solutions in the Radon transform we obtain
1 d- 24

g(t,p) =~

— == — A(T) *
2127 dt V2(dp/dz)o(t — Ty)

= — A(p)y/dw/dp 6(t — T(p)),
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as A(t) x A(t) = mH(t), with

Ap) = A(e()
T(p) = T (p,x(p)),

and x(p) is the inverse function of p(z). If (dp/dx)e < 0, the two solutions
of 7 =T are for 7 < T and the algebra is similar and the final result is the
Hilbert transform. In general there may be more than one singularity and
these can be summed in the final result.

Substituting this approximate Radon transform in the inverse transform
(3.4.19), we have

flt,x) ~ 21/277 dt / A(p dx/dp ) (t— T(p) —px) dp.
Defining
T (x,p) = T(p) + pz,
we obtain

1 d E\(t) « Z A(p)\/m

ft2) = = g g 'af /ap'

9

where for a given t and x, the points in the summation are where t = T
which can be solved for p. Again the terms in the summation will be singular
when

or dT
op dp
which can be solve for p. Expanding around a stationary point at pg,

= = 10T
T ~To+=——=(p—po)?
0+28p2(p po)”,

and the summation can be evaluated as before. The second derivative is
02T B dx
op2  dp’
so where if we had a minimum in T before (82T /dx% = dp/dz > 0), we now
have a maximum in T (92T /8z2 = — dz/dp < 0). Thus we find

£(6.0) = 4 (p(@)) 8 (1= T (2,0(0)) ) = Alx) oo ~ T(@))
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as A(t) * A(t) = — nH(t) and A(p(z)) = A(z) and J%(m,p(a:)) = T'(x), the

original functions.
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Review of continuum mechanics and elastic waves

4.1

Various other elastic parameters are used to describe isotropic, elastic media
apart from the Lamé parameters, A and p:

a) If a solid is compressed by a hydrostatic pressure, then the bulk modulus,
K s defined as minus the ratio of the hydrostatic pressure to the dilatation,
e.g. k = — P/8 where 044 = 0yy = 0,, = — P. Show that

2
=+ - p.
K +3u

b) If a solid is stretched with just one non-zero normal stress component,
e.g. stretching a wire where the sides are unconstrained, then Young’s mod-
ulus, E, is defined as the ratio of the stress to the same strain component,
e.g9. B = 0yp/€ps with oyy = 0., = 0. Show that

g MBA+20)
A+

c) With the same experiment as in part b), Poisson’s ratio, v, is defined
as minus the ratio of the transverse strain and the longitudinal strain, e.g.
V= —eyy/ess. Show that

A a? — 2432

YT ) T 22 )

a) The isotropic constitutive relation is (4.4.50)
Oij = /\95@' + 2/161‘]'.

For hydrostatic pressure, 0,, = 0yy = 0., = — P and by symmetry e;, =

28
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€y = €ze = 0/3. Thus

2
—P=X0+2u0/3= </\+§u>0.
Thus
2

c) For the stretching in the z direction, we have by symmetry e,, = e.. and
for the unconstrained sides
Oyy = 022 = 0 = Nega + 2yy) + 2116y,

Poisson’s ratio is then defined as

e A

vV = — ﬂ = —

erz 2N+ p)
solving the above equation.
b) For the stretching stress

Ozz = Megz + 2eyy) + 21144,

and substituting for e,, from above

A 3A+2
Thus
g Jaz _ HBA+2p)
Cxx A ‘
4.2

Show that if a plane wave

u= gelwp-x/c—lwt7

where P is the normalized phase direction and c the phase velocity, propa-
gates in a general, homogeneous anisotropic medium described by the matri-
ces Cji, (4.4.39), then the polarization, g, and phase velocity, c, must satisfy
the eigen-equation

(Pipreir/p) & = g
This is commonly called the Christoffel equation (see Section 5.3.2). As

the matriz T' = PiPrCik/p is symmetric the eigenvalues are real and the
non-degenerate eigenvectors are orthogonal.
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Show that for an isotropic medium, the solutions reduce to the longitudinal
P and the degenerate transverse S waves, with phase velocities given by
equations (4.5.60) and (4.5.61).

Substituting the plane wave
u= geiwf)-x/c—iwt7
in the constitutive equation (4.4.36), we obtain

iwﬁk iwp-x/c—iwt
tj: - C;rg8¢ p-x/ .

Then substituting in the equation of motion (4.5.35) (with zero body forces),
we have

jwhx/e—i 1 w?pjpr § wpx/e—i
_w2gelwpx/c fwt J ik iwp-x/c iwt

Hence

(hiprcjk/p) g = g .

For an isotropic medium, we can simplify the algebra by taking p in any
convenient direction. Let us take p =k, i.e. p; = po = 0 and p3 = 1. Then
with the matrices (4.4.55) and (4.4.56), the Christoffel matrix reduces to

n/p 0 0 g 0 0
L' =pjprcje/p=| 0 pu/p 0 = 0 5 0 [,
0 0 (A+2u)/p 0 0 o
and the eigen-equation has solutions ¢ = $% and ¢? = o? as in equations
(4.5.60) and (4.5.61).
4.3

Using the results of the previous question, show that for a transversely iso-
tropic medium with an x3 axis of symmetry (TIV), the eigenvalues (squared
phase velocities) are given by

pc? = Cggsin® ¢ 4+ Cyy cos® ¢
or

(044 + C33 cos? o+ Ci1 sin? 10}

DN =

pc” =
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+ \/[(033 — Cua) cos? ¢ — (C11 — Cug) sin? ¢]° + 4a2? cos? ¢ sin? <15) ,

where p = (sin ¢, 0, cos @) is the phase direction (so the polar angle from the
symmetry axis is ¢), and

a=Ciz+ Cy.

Show that the corresponding polarizations are

0

which is commonly called the ¢qSH wave, and

2ap1p3

g = sgn
(Cs3 — Cua)p3 — (C11 — Cug)p3 £ )
1/2

[((Cs = Caa)i — (O — Caa)p?)” + 4535302

The wave with the upper sign in the phase velocity and polarization is com-
monly called the gP wave, and the lower sign ¢SV .

As a TIV medium is axially symmetric, we can take po = 0 so p; = sin ¢ and
Pps = cos ¢ where ¢ is the angle from the symmetry axis. With the matrices
(4.4.62), the Christoffel matrix is

R A1 p? + Aup? 0 a’p1ps3
I'= 0 Agep? + Agap3 0 ;
a'p1ps3 0 App? + Assp3
where
a = Az + Ay,

and A;; = Cjj/p. This separates into a 2 x 2 system (the first and third
rows and columns) and a scalar system (the second row and column).
For the scalar system, the eigenvector is

0
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and eigenvalue
2 ~2 ~2
¢ = Agep1 + Asaps,
or
2 s 2 2
pc” = Cge sin” ¢ + Cyyq cos” ¢.

As the polarization is perpendicular to the p; — p3 propagation plane, this
is known as the ¢SH wave.

For the polarization in the propagation plane, the system is 2 x 2. For
the eigenvalue, we obtain (Musgrave, 1970, (8.2.7) and (8.2.1))

A1 Aggp} + Azz Agaps + Apips — 2 (Aqn + Aga)ps — 2 (Asz + Aga)pa +c* =0,

where
A= A11A33 + A?M - a'2.

This is a quadratic in ¢? and the solution reduces to

1 . .
= 3 (A44 + Ag3p3 + A pl

i\/[(A?)s — Aw)p3 — (An — Aw)i?)” + 4a/2ﬁ%ﬁ§) ;
or

2

pc = (044 + C33 cos? ¢ + Cqy sin® ¢

N =

+ \/[(033 — Cus) cos? ¢ — (C11 — Cug) sin? ¢]° + 4a2? cos? ¢ sin? <15) ,

where

a=Ci3+ Cuy.

With the positive sign, the phase velocity is higher and we have the gP wave;
with the lower sign, the ¢SV wave.

Note that the ¢SH velocity depends on two parameters, Ay and Agg,
and the phase direction, while the ¢P and ¢SV velocities depend on four
parameters, Aq1, Assg, Ayq and A3, and the phase direction (444 is common
to all). We return to this in Exercise 4.5.

From the first row of the Christoffel equation, we have

(A} + Aupi — ) g1 + aprisgs = 0,

SO
2 A2 n2
gs € — APy — Aaps
)

g1 ap1p3
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and substituting for ¢? we obtain the result for the polarization.

4.4

Verify that if the elastic parameters of two TIV media are equal, except for
the substitution

Ciz3 — — C13 — 204,

then the phase velocities are identical, but the polarizations differ. Physi-
cally, the anomalous negative value for Ci3 is extremely unlikely with very
unusual polarizations (verify by numerical exzample), but it is possible (Helbig
and Schoenberg, 1987).

The above expressions for the phase velocity are quadratic in the variable a
(or @), i.e. substituting — a for @ makes no difference. The only place where
(43 enters is in the factor a. That is

a=Ci3+Cy — —a= — (13— Cyy,

or equivalently
Ci13 = — C13 — 2C 4,

will not alter the phase velocity. However, this substitution alters the sign
of the g1 component of the polarization.

We illustrate this result numerically with a Matlab program. For TI me-
dia, it is straightforward to solve the Christoffel equation (Exercises 4.2
and 4.3, or see Section 5.7.1). For a given phase direction, p, the follow-
ing function computes the phase velocities, ¢, the group velocities, V (see
Section 5.3) and the polarizations, g (Exercise 4.2):

function [ PhaseSlow, GroupVel, Polar ] = ...
TISurfaces( dir , TI, nu )
% TISurfaces = anisotropic phase slowness, group velocity

yA and polarization for gP, gSH and gSV for
yA general TI medium using Voigt parameters
% INPUT:

% dir(3) = phase direction (normalised)

% TI.Cjk
% nu

TI sqaured-velocity parameters

symmetry axis (normalised)
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% OUTPUT:

% PhaseSlow(3) = phase slownesses

% GroupVel(3,3) = group velocities

A Polar(3,3) = normalized polarizations
)

% Note:

% TI are squared velocity parameters A_jk (not C_jk);

% dir and symmetry axis must be unit vectors;

% results order qP, qSH and qSV which may not correspond to
% qP, qS1 and 9S82 in AnisoSurfaces.

GroupVel = zeros(3,3); Polar = GroupVel;
yA

cs = dot(dir,nu);
tmp = cross(nu,dir);
ss = norm(tmp);

% special cases
% on axis

if ss ==
PhaseSlow(3) = 1/sqrt(TI.C44);
PhaseSlow(2) = 1/sqrt(TI.C44);
PhaseSlow(1) = 1/sqrt(TI.C33);

GroupVel(:,3) = sqrt(TI.C44)x*dir;
GroupVel(:,2) = sqrt(TI.C44)x*dir;
GroupVel(:,1) = sqrt(TI.C33)*dir;
% polarizations degenerate
Polar(:,1) = dir;
% tmp from smallest component cannot be parallel
% to Polar(:,1)
if abs(dir(1)) < abs(dir(2))
if abs(dir(1)) < abs(dir(3)) tmp=[1 0 0]’;

else tmp=[0 0 1]’; end
else

if abs(dir(2)) < abs(dir(3)) tmp=[0 1 0]’;

else tmp=[0 0 1]’; end

end

% orthonormalize

Polar(:,2) = tmp-dot(tmp,Polar(:,1))*Polar(:,1);
Polar(:,2) = Polar(:,2)/norm(Polar(:,2));
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Polar(:,3) = cross(Polar(:,2),Polar(:,1));
return
% on equator

elseif cs ==
PhaseSlow(3) = 1/sqrt(TI.C44);
PhaseSlow(2) = 1/sqrt(TI.C66);
PhaseSlow(1) = 1/sqrt(TI.C11);

GroupVel(:,3) = sqrt(TI.C44)x*dir;
GroupVel(:,2) = sqrt(TI.C66)*dir;
GroupVel(:,1) = sqrt(TI.C1l1)*dir;
Polar(:,3) = nu;

Polar(:,2) = cross(nu,dir);
Polar(:,1) = dir;

return

end
% qSH (56.7.23), (5.7.21), (5.7.25) and (5.7.26)
Polar(:,2) = tmp/ss;

pn = cross(Polar(:,2),nu);

cq = cs*cs;

sq = 1l-cq;

PhaseSlow(2) = 1/sqrt(TI.C66%sq+TI.C44%*cq);

GroupVel(:,2) = PhaseSlow(2)*(TI.C66%*ss*pn+TI.C44*cs*nu);
% gP and qSV phase slowness (5.7.34)

aa = TI.C13+TI.C44;

A = TI.C11%TI.C33+(TI.C44-aa)*(TI.C44+aa);

xx = (TI.C33-TI.C44)*cq-(TI.C11-TI.C44)*sq;
yy = xx*xxt+d*cqksqraaxaa;

zz = sqrt(yy);

vv = TI.C44+TI.C33*cq+TI.Cll*sq;

PhaseSlow(3) = 1/sqrt(.5x(vv-zz));

PhaseSlow(1) = 1/sqrt(.5x(vv+zz));

% qP and qSV group velocities (5.7.36) and (5.7.37)
pl = ss*PhaseSlow(1);

p3 = cs*PhaseSlow(1);

pls = plxpil;

p3s = p3*p3;

vv = (TI.C11+TI.C44)*pls+(TI.C33+TI.C44)*p3s-2;
GroupVel(:,1) = ...

(p1*(2+TI.C11+TI.C44*pls+A%p3s—TI.C11-TI.C44)/vv)*pn+. ..

(p3* (A*pls+2xTI.C33+TI.C44%p3s-TI.C33-TI.C44)/vv)*nu;

35
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pl = ss*PhaseSlow(3);
p3 = cs*PhaseSlow(3);
pls = plxpil;
p3s = p3*p3;

vv = (TI.C114TI.C44)*pls+(TI.C33+TI.C44)*p3s-2;

GroupVel(:,3) = ...
(p1%(2+TI.C11+TI.C44*pls+A*p3s—TI.C11-TI.C44)/vv)*pn+. ..
(p3* (A*pls+2xTI.C33+TI.C44%p3s-TI.C33-TI.C44)/vv)*nu;

% qP and qSV polarizations (5.7.35)

VV = 2%aa*Ccs*ss;

Polar(:,3) = (zz-xx)*nu-vv*pn;

Polar(:,3) Polar(:,3)/norm(Polar(:,3));

Polar(:,1) = vv*pn+(xx+zz)*nu;

Polar(:,1) = Polar(:,1)/norm(Polar(:,1));

if ¢s < 0 Polar(:,1) = -Polar(:,1); end

return

A main program that uses this function for the Green Horn shale (Jones
and Wang, 1981) and the equivalent anomalous TI medium is

function Exercise44
% Exercise 4.4
b
% uses Green Horn shale (Jones and Wang, 1981) properties to
% compute phase, group and polarizations for a TI medium using
% function TISurfaces. Units are Gpa and Mg/m~3.
b
density = 2.42;
TI = struct(
’C11°,34.3, ’C33’,22.7, ’C44’,5.4, °C66°,10.6, ’C13’,10.7 );
% squared-velocity parameters

TI.C11 = TI.C11/density;
TI.C13 = TI.C13/density;
TI.C33 = TI.C33/density;
TI.C44 = TI.C44/density;
TI.C66 = TI.C66/density;

% polarization length

gg = .04;

% overplot all results

% note phase slowness curves overplot but poalrizations differ
figure
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hold on
% loop over normal and anomalous TI
linetype =’ 7;
for k=1:2
% results for one quadrant
symmetry_axis = [ 0 0 1 1’;
for j=1:91
theta=(j-1)*pi/180;
ct cos(theta);
st sin(theta);
direction = [ ¢t 0 st ]17;
[ PhaseSlow, GroupVel, Polar ] = ...
TISurfaces( direction , TI, symmetry_axis );

qSVx(j) = ct*PhaseSlow(1);
qSVz(j) = st*PhaseSlow(1);
qSHx(j) = ct*PhaseSlow(2);
gSHz(j) = st*PhaseSlow(2);

gPx(j) = ct*PhaseSlow(3);
gPz(j) = st*PhaseSlow(3);
% plot polarization
if ( rem(j,5) == 1)
plot( [ qSVx(j) qSvx(j) 1, [ qSvz(j) qSvz(j) 1, ’b.’)
plot( [ gSHx(j) qgSHx(j) 1, [ qSHz(j) gSHz(j) 1, ’r.’)
plot( [ gPx(j) qPx(j) 1, [ qPz(j) qPz(j) 1, ’k.’)
A
plot( [ gqSVx(j) qSVx(j)+gg*Polar(1,1) ],
[ qSVz(j) qSVz(j)+gg*Polar(3,1) 1,
[’b’> linetypel,’LineWidth’,2)
plot( [ gPx(j) qPx(j)+gg*Polar(1,3) 1,
[ qPz(j) qPz(j)+gg*Polar(3,3) 1],
[’k’ linetypel,’LineWidth’,2)
end
end
% plot phase surfaces
plot( qSVx, qSVz, ’b’ )
plot( gSHx, gSHz, ’r’ )
plot( gPx, qPz, ’k’ )
% convert to anomalous TI
TI.C13 = -TI.C13-2%TI.C44;
linetype =’:";
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end
print -depsc2 exercise4_4.eps
return

This produces the following simple plot of the slowness surfaces (which are
coincident for the normal and anomalous media), and polarizations (which
are not):

0.7

0.6~

0.4
0.3F
0.2

0.1

One quadrant of the slowness surfaces for the Green Horn shale (Jones and Wang,
1981). The units are s/km. The short solid, thick lines illustrate the polarization
directions for the ¢P (blue) and ¢SV (black) waves at various points on the
slowness surfaces (they are of constant length). Also illustrated with dotted lines
are the polarization directions for the anomalous TI media with the same slowness
surfaces.

4.5

A TIV material is conveniently described by two axial velocities

ag = /Cs3/p

Bo = +/Cu/p,



4.5 39

and three dimensionless parameters

(Ch3 + Cua)? — (C33 — Cyq)?

1)
2C33(Cs3 — Cya)
. _ Ci1 — Cs3
_ Ceg—Cyy
o= =

These useful parameters were introduced by Thomsen (1986). Verify that the
elastic parameters, C;;, can be determined from these, except for an arbitrary
sign in the equation for C13 (see previous exercise). The anomalous negative
sign is normally ignored. In a general TI medium, two additional parameters
are needed to specify the direction of the symmetry axis, e.g. the spherical
polar angles, for a total of seven parameters.

Show that if the dimensionless parameters are small (compared with unity),
the phase velocities (see the previous exercises) can be approximated by

CqSH = Bo(1 +’ysin2 ®)
2
cqsv = o <1 + %(6 — §) sin? ¢ cos? qb)
0
cgp = ag(l+ 8sin? gcos? ¢ + esin ¢).

To first order, the polarizations are in the phase direction and transverse,
i-e. as in an isotropic medium. See Thomsen (1986) for more details.

If the 5 parameters are «ag, Gy, J, € and =y, we can obtain the Voigt parameters
as

Css = pog
Cu = pB
Ci1 = (1 + 26)033

Cés = (1+2v)Cu,

and

Cizs= = \/(033 — Cua + 20C33)(C33 — Cua) — Cua,

where normally we take the positive sign. If the anisotropy is weak, the
results for ¢ can be simplified to

_Ci3+2Cy — Cs3

o ,
C33




40 Review of continuum mechanics and elastic waves
and
013 ~ (1 + 5)033 — 2044,

corresponding to the positive sign.

In Exercise 4.3, we have an exact expression for the phase velocities. We
now substitute the weak approximations for the elastic parameters and ap-
proximate the square roots by the binomial expansion. For ¢SH waves we
have

C?ISH = Ass sin? o+ Ay cos® ¢
= 63(1 + 2ysin? ¢).
Thus
cesH =~ Bo(1 + ~ sin? o).

The first term in the expression for ¢SV and ¢P squared phase velocity
is
Ayy + Ass cos® é+ Ajsin? ¢ = ag + 6(2) + 2605(2) sin? o.

The argument of the square root is
2
[(Asrs — Aw)pi — (An — A44)ﬁﬂ +4a'*pip3
~ (o — 32 4 4ad(ad - 32) ((25 —€) cos? psin® ¢ + esin’ gb) :
Thus

\/[(A33 — A)p3 — (A1 — Aw)iR)” + 4a/ 25353
~ (af - 33)+ 202 ((25 — €) cos? psin® ¢ + esin? qb) .
Adding these expressions

2
CqP

~

~ % (2&% + 2ea sin® ¢ + 2(26 — €)ad sin? ¢ cos? ¢ + 2ea sin? qb)
= 03(1 + 26 cos? psin? ¢ + 2esin ¢).
Hence
cqp =~ ag(1 + & cos® ¢sin® ¢ + esin ¢).
Similarly, subtracting the expressions
Cisv

~

(2ﬁg + 2ead sin® ¢ — 2(26 — €)al sin® ¢ cos? ¢ — 2ead sin’ gb)

DN =
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= B34 2(e — 6)ad cos® psin’ .

Hence
2

cqsv = Bo <1 + %(6 —9) cos? ¢ sin® qb) )
0

In Exercise 4.3, we commented that the exact expressions for the ¢P and
¢SV velocities depend on four parameters, Ajq, Asz, A4y and Aq3, and the
phase direction. In the weak approximation, this number is reduced. The
qP velocity depends on three parameters, g, d and €, which using the weak
approximation for 4, is equivalent to three parameters Ay, Asz and A3 +
2A44. Equivalently, we can consider the three parameters as the deviation
of the velocity from isotropy on the axis (Ass), on the equator (A1), and
at 45 degrees to the axis (A3 + 2444) (Chapman and Miller, 1996)f. The
qSV velocity depends on only two parameters, 3y and (¢ — 6)a3 /32, again
the latter describing the anisotropy of the velocity at 45 degrees.

4.6

Further reading: Interpreting general anisotropic elastic parameters is dif-
ficult. If all 21 parameters are non-zero, is the medium in fact one with a
high-order of symmetry, e.q. TI, but with tilted azes or planes of symmetry?
In other words, would a simple rotation reduce the number of non-zero pa-
rameters significantly? This question has been addressed by several authors
who develop decompositions that do not depend on the coordinate system. A
useful review is by Baerheim (1993), who compares his results with those by
earlier authors (Backus, 1970 and Cowin, 1989, 1993). The general results
are too complicated to be included here and the paper by Baerheim (1993) is
suggested for further reading.

One particularly useful result is for the mean-squared velocities, averaged
over all directions. This can be used to define an isotropic medium that ap-
proximates an anisotropic medium. Defining the dilatational modulus tensor

Di; = cijkr,
and the Voigt tensor
Vij = Cikjk,

T Chapman, C.H. and Miller, D.E.; 1996. Velocity sensitivity in transversely isotropic media,
Geophys. Prosp., 44, 525-49
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the mean squared P and S velocities are

o? = (t(D)+2t(V)) /15p

B2 = (3tr ) —tr(D )/30/)

Show that in isotropic media, these expressions reduce to

N

a2 = ao?

g = p%
in transversely isotropic media to
— 8C11 + 3C33 + 8Cyy + 4C'31

oa? =
15p
? Ch1 + Cs3 + 6Cyy + 5Cq6 — 2013
15p
and in general anisotropic media to
a? =
3(C11 + Oz + O33) + 4(Cyy + Css 4 Cgp) + 2(Caz + C31 + C12)
15p
32 =

(C11 4+ Cag + C33) + 3(Caa + Cs5 + Cgg) — (Caz + C31 + Cr2)
15p ’

In a weak transversely isotropic medium (see previous exercise), show that

the results are

— 16
2 2
at = o (1+—156+—155>

B2

Show that these two results agree with averaging the approrimate squared

— 2 2 o
3 = B <1+3'y+15( 6)—).

velocities given in the previous exercise over a sphere, and averaging the two
shear wave velocities.
From the definitions
Dij = cijik
Vii = Cikjks
we obtain

tr(D) = (cii11 + crize + c1133) + (2211 + c2202 + €2233) +
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3311 + €3322 + €3333)
C11 + Cog + C33) + 2(Cag + C31 + Ch2)

ci111 + c1212 + c1313) + (2121 + 2222 + C€2323) +

(
(
tr(V) = (
(

3131 + C3232 + €3333)
= (Cu1 + Ca2 + C33) + 2(Cus + Cs5 + Coo).-
Then for general anisotropy
a? = (tr(D) + 2tr(V))/ 15p =

3(C11 + Ca2 + Cs3) + 4(Cys + Cs5 + Cep) + 2(Caz + C31 + Ci2)
15p

7 = (3tx(V) - tr(D)) / 30p =
(C11 4 Cog + C33) + 3(Cys + Cs5 + Cop) — (Caz + C31 + C12)
15p ’
Simplifying to transversely isotropic media with C1; = Cy, C31 = Cog,
Cyq = Cs5 and Ch9 = C11 — 2C%g, these reduce to

? _ 3(2011 + 033) + 4(2044 + 066) + 2(2031 + Ci1 — 2066)
15p

8071 +3C33 +8Cyy +4C5

N 15p
=5 (2C11 + C33) + 3(2C44 + Co6) — (2C31 + C11 — 2C66)
o= 15p

O+ C33 +6Cyy + 5Cg6 — 203

N 15p '

Finally in isotropic media with C1; = C33 = pa?, Cy = Ces = pB? and
Cs1 = p(a? — 23?), these reduce to

— 8a? + 3a? + 83% + 4(a? — 24%) 9

a? = =«

15
— a? 4+ a? 4+ 66% +53% — 2(a? — 23?) 9
6% = = -
15
In order to take the spherical average of the expressions in Exercise 4.5,

we integrate over surface elements on a sphere, i.e.

%/O%/OW...singbdgbdzp:%/ow...sm¢d¢a

as the velocity is azimuthally symmetric, where 1 is the azimuthal angle.
Now

ch ~ a(1 4 26 cos® ¢sin® ¢ 4 2esin? ¢),
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SO

C?J—P ~ a% (1 + 5/ cos? ¢sin® ¢ de + 6/ sin® qbdqb) .

0 0

We need

I, = / sin” ¢ d¢

0
= I, o— / (sinn_2 ¢ cos qb) cos ¢pdo
0

s n—1 T T owian—1

= I, o— Mcosgb —/ Msinqbdqb
n—1 0 0 n—1
1

= In—2 - mlna

integrating by parts. Thus

In: In—?a
n
and we have
I, = 2
2 4
I3 = -] =-
3 37173
4 16
Iy = —I3=—
5 5 3 157
etc. Thus
— 16 4
2 ~ 2 - - e
cp =~ a0<1 155+35+156)
16 4
2
— 14+ — =
0‘0( +15€+155>’

which agrees with the o2 given. For the ¢SH velocity we have

ciSH ~ B3(1 + 2ysin® ).

Hence

Gon = G147 [ sin’¢de)

4
2
= 14+=7v]).
Bo ( + 3 ’Y)
Similarly for the ¢SV velocity

2
C?ISV ~ (2 (1 + 2%(6 — §) sin? ¢ cos? gb) :
0
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Hence

2 g
cgsv ~ 32 1420 ( 5)/ sin® ¢ cos? ¢ do
83 0
4 o
- 1+—Y(—-0)].
8tk )
Taking the average of these
1 Qg

— 2 2 a?
2(qSH+CqSV) 50( 37 +1—5%(€—5)>>

which agrees with the 32 given.

4.7

Confirm that the two-dimensional result (4.5.84) or (4.5.85) can be derived

from the equivalent three-dimensional results by dividing the line source into

infinitesimal point elements and integrating along the line (see Figure 4.16).
Further reading: See, for instance, Hudson (1980, Section 2.5).

The point force, Green function is (4.5.71)

47T;R3 (H(t - R/a) - H(t - R/B)) (BRR" ~ 1) ,

where to avoid confusion with the cylindrical system we have denoted the
radial vector by R. In the cylindrical system, we use the unit vectors r, c}.’)
and z. We consider a line source along the z axis and decompose it into point
sources from z = — oo to co. For convenience, we measure the position of a
point source by the angle x between the symmetry plane though the receiver
(z constant) and the line joining the receiver to the elementary source, i.e.

R™t = cos x,

and

R =cos x 1 — sin x 2.

In order to integrate elementary point sources along the line, we can use
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independent variables z, x or R. We have

dz = rsec® ydy
I — rdR
X = R(R2_7a2)1/2’

First be consider a line source with the force r. Integrating the point
sources we have

u = /OO <Mc0s (cos x T — sin x 2)
) \ 4mpa?R X X X

N ﬁ (H(t— Rja) — H(t — R/B))

X (3cosx(cosxf‘— sinyz) — f‘) ) dz

rd (T2 50t—R/a) ot —R/P)
% /0 <7a2R cos” x + 752]%
t

+ 8 (H(t— R/a) — H(t — R/ﬂ)) (30052)( — 1)) sec? y dy

_rr o(t — R/a)r 5(t — R/B)(R? — r?)1/2
% /7“ o?R?%(R? — 7“2)1/2 * B2 R2r

sin? x

7“2 _ P2
N R4t:?R2 _i))m (H(t — R/a) — H(t — R/ﬁ))) dR,

retaining the symmetric part in half the range, and changing variables of
integration. The first two terms contribute at R = at and R = (t, respec-
tively. The final term contributes in the range R = (3t to at (assuming these
are in the range R = r to o0). Thus we obtain

r2f (t2 _ 7‘2/ﬂ2)1/22
2mpatt2(t2 — r2/a?2)1/2 27 p 322
thofot 32— R?

u =

— ————=dR.
* 2rp Jor RAY(R2 —r2)1/2 R
To evaluate the final integral, we need
dz B (.’E2 _ a2)1/2
/ x2(22 — a2)l/2 a’x
dz (.’E2 _ a2)1/2 ($2 _ a2)3/2
/ (22 — a2)t/2 a‘z C 3a4ad
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Then
u - r2¢ (t2 _ T2/ﬁ2)1/22
2mpatt2 (12 — r2/a2)1/2 27 p32t2
N t(R? — r2)1/2(R? + r2)i ot
2p3
2mpr*R st
r r?/o? 2 2/ 21/2 2 2/2\1/2

27 pr? <(t2_r2/a2)1/2 + (82 = r?/a®)V2 — (2 =12 /5%)1? )

This agrees with the line source, Green function (4.5.84) with a source f.
For a line source with force ¢, we have R"¢ = 0, so the integrated point
sources become
®© /6(t—R/B) 4
W o [T (RED
oo d7plB*R
t N
T (H(t— R/a) — H(t - R/)) ¢> dz
g [ (6<t — R/B)
~ 2mpJo B%R
t

— = (H(t - R/a) - H(t - R/ﬁ))) sec” xdx

R
@[> (t—R/B)
s (= ooy
t

- (H(t - Rja) - H(t - R/ﬁ))) dR

¢ 1 e dR
s (=, )

g 2 /32
- 27:;2 <(t2 _TT2//652)1/2 - (t2 - 7”2/042)1/2 + (752 - 7”2/52)1/2> )

in agreement with the line source, Green function (4.5.84) with a source ¢.

Finally we consider a line source with force z, so we have R’z = —sin X,
and
o0 0t—R
u = /_Oo <— ﬁsinx(cosxf‘— sin x z)
o(t—R
+ % (i — sin x(cos x & — sinxi))

n ﬁ (H(t —R/a) — H(t - R/ﬁ))
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X (— 3sin x(cos T —sinx z) — i) ) dz
rZ /W/2 <5(t — R/a) . 5(t — R/pB)
0

2 2
% 2R sin” x + R cos” x
t

+ s (H(t — R/a) — H(t — R/ﬁ)) (3sin2x — 1) ) sec? ydy

_orz [ 5(t — R/a)(R? — r?)1/2 o(t—R/B)r
2mp /r a’R?r * F2R2(R2 — r2)1/2

2 _ 3,2
+ 3322(22 — i2)3 e (H(t— R/a) - H(t - R/ﬂ))) dR.

The first two terms contribute at R = at and R = (¢, respectively. The
final term contributes in the range R = (t to at (assuming these are in the
range r to 00). Thus we obtain

(t? —r2/a?)1 /22 r’z
21 pa2t? 2mpBit2(t2 — r2/[32)1/2
tz [t 2R*-3r?
— ——————dR.
* 2rp Jpt RH(R? —r2)1/2

Using the integrals given above, this reduces to
(t2 _ 7A2/Oé2)1/22 r23
21 pat? 2mpBI2 (12 — 12/ 32)1/2
5 <(t2 —7”2/&2)1/2 (t2 —T2/ﬁ2)1/2>

_% _

Oé2t2 ﬁ2t2

Z
2@ (22— 2 [

in agreement with the line source, Green function (4.5.84) with a source z.

Combining the results for sources r, c}.’) and z, we confirm the complete
line source, Green function (4.5.84). Although the above algebra for the
construction of a line source from elementary point sources is straightfor-
ward, there are some interesting features. For instance for the source z, the
far-field of the P waves from symmetric elementary point sources appears

not to cancel. However, because the P radiation pattern is zero on the
symmetry plane (Figure 4.14), the far-field from all the elementary point
sources only contributes a near-field term. This cancels with the near-field
terms from the elementary point sources, and the final result contains no P
wave (as expected, by symmetry). Alternative derivations of Green function
(4.5.84) can be found in Hudson (1980, Section 2.5). The time derivative
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of his equation (2.34) gives the result for a z source (source (2.35) has a
time function H(t) rather than §(¢)). Equation (2.36) gives the results for
sources T and ¢.

4.8

Prove the general form of an isotropic fourth-order tensor (4.4.45) (Jeffreys,
1931).

We follow closely the proofs in Chapter VII of Jeffreys (1931, pp. 66-70).
For completeness we consider tensors up to fourth order.

For a tensor to be isotropic, its components must retain the same values
however the axes are rotated. We consider a rotation as described by 46
(4.2.5) or the anti-symmetric tensor, €.

There are no isotropic tensors of first order. Applying the anti-symmetric
tensor &, (4.2.4) to rotate a first-order tensor u, we have

u; = (Sip — &ip)up = wi — Sipup,

and this can be equal to u; only if §;pu, = 0 for all admissible values of §;,.
Thus

§12u2 — E31u3 =
—&1our +&o3uz =

Earur — §ozuz = 0,
and these equations are only satisfied for any £»3, £31 and &po if

u] = ug = ugz = 0.

If u;; is a second-order, isotropic tensor then
U;j = (6ip — &ip)(Gjqg — &jq)Upq
= wij = SipUpj — &jqllig, (4.1)

to first order, for all values of ¢ and j. Hence

SipUipj + EjqUig = 0
Take ¢ = 1 and j = 2 and we have

§12u22 — E31uz2 — E12u11 + &23u1z = 0.
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Therefore ug3 = uz2 = 0 and w11 = uge. By symmetry u;; = 0 if 7 # j, and
U1 = U22 = U33. Ifi = j = 1, we have

§12u21 — E31uz1 + &12u12 — §31u13 = 0,

which is satisfied as every term is zero. Hence the only isotropic tensors of
second order are a scalar multiple of d;;.
If w;j, is an third-order, isotropic tensor then

uijr, = (ip — &ip) (0jg — §jg) (Okr — Ekr ) Upqr
and for all values of 7, j and k
SipUpjk + EjqUiqr + Eprttijr = 0.
Take ¢ =7 =1 and
§12uo1k — §31uzik + E12urok — Ea1uisk + Spruanr + Spauniz + Skzuniz = 0.

Now put k = 2, then

U212 + U122 = U111
uzi2 +uzz = 0
upz = 0.

From the last equation, and by symmetry, u;;;, = 0 if two ¢, j, k are equal
and the third unequal. Then by the first equation, u;;; = 0 if all indices are
equal. And the second equation shows that

Ujjk = — WUjik-
If we put £ = 1 in the above equation, i.e. ¢ = j = k, every term vanishes
so it holds. Finally in the general equation, if ¢, j and k are all different,

Upjk is zero unless p =4 and then §;, = 0. Thus the general equation holds.
It follows that the only third-order, isotropic tensors are scalar multiples of
Gijk'

Finally for an isotropic, fourth-order tensor u;j;; we have

SipUpikl + Ejqligkt + Skrttijrt + &istijrs = 0.

There are four cases to consider: (a) two equal indices and the other two
unequal; (b) three equal; (¢) two equal and the other two equal but different;
and (d) all four different.

Case (a): takei =j =1, k=2 and [ = 3. Then

§12u2123 — §31u3123 + §12U1223 — §31U1323
— &12u1113 + &23u1133 + 311121 — E23U1122 = 0.
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Hence

U2123 + U1223 — U1113

u3123 + U1323 — U1121

U133 — U1122 =

Other instances of case (a) can be obtained by interchanging indices that
are not equal and by permuting axes. Thus the final relation gives

U1133 = U1122 = U2233 = U211 = U3322 = U3311,
and also
U313 =  U1212 = U2323 = U2121 = U3232 = U3131
U3113 = U2112 = U3223 = U1221 = U2332 = U1331-
Case (b): take i =j =k =1and [ =2. Then
§12u2112 — §31u3112 + §12U1212 — §31U1312
+ §12ur122 — §31u1132 — §12u1111 + 231113 = 0.

The last term shows w1113 = 0 and therefore by interchanging indices, all
components of case (b) are zero. Also from the coefficient of 31

uzi12 + w1312 + u1132 = 0.

But in the first result for class (a) the last term vanishes, so

ug2123 + u1223 = 0.
Similarly interchanging indices
w1312 + usiz2 = 0,
=)
uiiz2 =0,

and all coefficients of case (a) are zero. Finally from the coefficient of &19
we have

U1111 = u2112 + U212 + U1122,

relating components of class (d) to three of type (c).

No further information is obtained by transforming components of cases
(¢) and (d). Forif i = j =1 and k = [ = 2, replacing i or j by p will give
a zero component unless p = 1 and then the factor &, or §j, is zero. The
transformation relationship holds automatically. Similarly if ¢ = j =k = L.
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Above we have three groups of six equal components that need not be
ZEro:

U1133 = U1122 = U2233 = U2211 = U3322 = U3311 = A
U1313 = U1212 = U2323 = U2121 = U3232 = U3131 = [
U3113 = U2112 = U3223 = U1221 — U2332 = U1331 = V,
where A, 4 and v are arbitrary constants. It is then self-evident that all the
above results satisfy
Uikl = A0ijOky + likdjy + v0;10k,

the most general form of a fourth-order, isotropic tensor.

4.9

The dipole, explosion and double-couple results have only been given for the
far-field radiation patterns. Investigate the near-field terms by differentiating
the exact point source results (see, for instance, Aki and Richards (1980,
2002) or Pujol (2003) for details). Are the signals exactly zero on the node
planes?

The Green force dyadic is (4.5.71)

u(t,xr;Xs) = %ﬁ” + % (I—#17)
T 47T;R3 {H(t— R/a) — H(t — R/B)} (381" —T),
or
Ampug(t,XR;Xs) = Fify a(t ;j;/oé)
+ (85 — 757%) %
H(t— R/a) — H(t — R/f)

+ (37%’?% — 5jk) t,

R3
where 7; are the direction cosines (components of r).
Using & for the source location and x for the receiver (to avoid further
subscripts), we have r = x — £ so R? = (x}, — &) (21, — &) and
oR  z;—§ R

= — T

& R
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as 7; = (xj; — &)/ R. Also differentiating 7;, we have
Orj _ =& OR 0 _ Tifj — 0y
0§, R?2 8¢ R R
Applying these operators, it is now just a lot of terms! Thus

8 d(t—RJa) 3(t — R/a)

8_& fjfk: 7 = (37%7%’7% - fjfsik: - fk(sz]) R2
N 51 t— R/«
+ Tka%7
where we use the shorthand 6 ; = 90/0¢;. Next
G, L\ 0t —R/B)
% (O = 77%) =~ =
o(t—R
(732'5]'145 + fjéki + fkéz‘j - 37%‘@'@@)%
.. 0;t—R
+ Ok — 757%) %
Finally

D (g g g = Rfa) = Ht— R/D)

€, R3 b=

H(t—R/a)— H(t— R/S)
R4

+ @iy — o) (N - A B

t

3(57i7 Tk — Pi0jk — 750k — Tdij)

where in the final term we use
a%ﬂ(t —Rje)t= —t6(t — RJc)(R/c); = d(t — R/c) ]’Z—;"

as we can set t = R/c outside the delta function. Gathering up the various
terms, we obtain

drpujr;(t, XR; Xs) =
A 5(t— R/a
’I”Z"I”ka 7( Oé?’R/ )

. 0t —R/B)
+ (5]145 — Tj?“k)?”i W
NP . . R 0t — R/«
+ (GTZ‘Tka — Tiéjk — Tjdki — Tkéij)(TR!)
o(t — R/B)
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H(t—R/a)— H(t— R/S)
R4
The first two terms agree with the far-field approximation used in expression

(4.6.17). The other terms are the near field.

In both the force and moment Green functions, the near-field terms are
non-zero on the nodes of the far-field terms.

+ 3(5f¢fjfk — fidjk — fjékl- — fkéw) t.

4.10
Further reading: The homogeneous, far-field radiation pattern has been given
here for an isotropic medium (4.5.75). Lighthill (1960), Buchwald (1959)
and Burridge (1967) have investigated the equivalent result in an anisotropic
medium. The result, while more complicated to derive, is remarkably similar,
i.e. in the frequency domain

ol &P (xg—xs)

~T
g

o>

where K(p) is the Gaussian curvature of the slowness surface at p, and V
is the ray (group) velocity. See, for instance, Burridge (1967, Section 6.7).
This result is useful in anisotropic ray theory (see Section 5.4.2 and Kendall,
Guest and Thomson, 1992).

4.11

Further reading: We have only developed the stress and strain tensors, and
the elastic constitutive equations and equations of motion in cartesian co-
ordinates. For some problems, the equations in cylindrical or spherical co-
ordinates are useful. These results can be found in several textbooks, for
instance, the classic book by Love (1944) or the more modern treatments by
Fung (1965) or Takeuchi and Saito (1972).

As the full development can be found in textbooks, we just quote the useful
results.

Cylindrical polar coordinates: denoting the cylindrical coordinates by r
(cylindrical radius), ¢ (azimuthal angle) and z (axial coordinate), the strain
components are

ou,
Err =
or
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0T 0¢ r
. _ Ou,
L (e 1)
“: = 5\ 9: "7 96
B 1 <8uz n 8ur>
“r = 32\ o2
1 (1 Ou,  Oug u¢>
erg = = |- —_— - —
2 \r 0¢ or r
The equations of motion are
ov, 10 1 0o, 8027« o)
P ot Jrt r 8T(TUM) * 0¢ r
8U¢ . 10 180‘¢¢ 80‘¢z Org¢
815 = Jo r 8T(TUT¢)+ ¢ + r
ov, 10 1 0oy, 8azz
Par ~ Jo r 8T(TUZT) + ¢

Note the derivative terms on the right-hand side are div(t,), div(ty) and
div(t,), respectively.

Spherical coordinates: denoting the spherical coordinates by r (spherical
radius), 6 (co-latitude angle) and ¢ (azimuthal angle), the strain components
are

_ Ouy
= oy
cop — LU0 U
r 00 r
1 8u¢ u, cotf
€pp = rsnf 0 —I— + ; Ug
1 8ue 18u¢ cot 0
€0 = 5(7‘8111(9 foler ;W_ r u¢>
. B 1 8u¢, 1 8ur_%
T 9 ( rsm@ ¢ T‘)
1 (1 0u,  Oupg ug
€0 = 5(; 20 *W‘?)'

The equations of motion are
ovy 1 0,,

P ot _fr+ 2 8T(T Urr)
1 9 1 oy 1
+ rsinf 00 agsindoro) + rsinf ¢ o (700 + 799)
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p% = fo + % %(720',.9)

+ rsilng %(Sineaee) + Tsilne 8%(,5 + % (079 — Tg cOt 0)
p% = fo+ % %(ﬂ%r)

* rsilnH %(sin@a%) + rsilng 8;_;?5 + % (o¢r + a9 cOt 0).

Note the derivative terms on the right-hand side are div(t,), div(ty) and
div(ty), respectively.

4.12

Muir (personal communication, 2003) has pointed out that although the
Voigt notation is compact (Section 4.4.2), many of the awkward factors of 2
or /2, e.g. equation (4.4.14), can be avoided if we retain all 9 components
in the stress and strain vectors. Writing a stress vector as

and similarly for a strain vector, the constitutive equation can be written

Ci1 €12 Ci3
o=Ce=| c91 cyy co3 |e,

C31 C32 Cs3

where the 3 x 3 sub-matrices of the 9 x 9 matriz C are defined in equations
(4.4.36) to (4.4.39).

The symmetry of the stress and strain tensors are imposed by the equality
of rows and elements in the matrix C. Although this makes the matriz
C singular, show by numerical example or otherwise, that the compliance
matriz S can be obtained from the generalized inverse of the stiffness matriz
C.

It should also be commented that Muir (personal communication, 2003)
suggested an alternative order for the components of the stress and strain
vectors that emphasizes symmetries in the matriz C for symmetric media,
i.e. 1sotropic, transversely isotropic, etc.

To illustrate the stiffness matrix C and corresponding compliance matrix
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S, we introduce a general purpose routine which converts from the Voigt
notation Cj; (4.4.12) to the matrix notation c;j (4.4.37):

function matrices = cMatrices( Voigt )

% cMatrices = form 3x3 c_jk matrices (4.4.37) from Voigt
% notation, i.e. definitions (4.4.39)

% INPUT:
b Voigt.Cjk

% OUTPUT:
% matrices.cjk

matrices = ...

struct(’c11’, [ Voigt.
Voigt.

Voigt.

’c22’, [ Voigt.

Voigt.

Voigt.

’c33’, [ Voigt.

Voigt.

Voigt.

’c23’, [ Voigt.

.C25,

Voigt

Voigt.
’c31’, [ Voigt.
Voigt.
Voigt.
’c12’, [ Voigt.
Voigt.
Voigt.

return

C11,
C16,
C15,
cé6,
Cc26,
C46,
C55,
C45,
C35,
C56,

C45,
C15,
Cci4,
C13,
C16,
ce6,
C56,

Voigt elastic parameters

3x3 matrices c_jk

Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.

C16,
cé6,
C56,
Cc26,
c22,
Cc24,
C45,
C44,
C34,
C46,
c24,
C44,
C56,
C46,
C36,
C12,
Cc26,
C25,

Voigt.
Voigt.
Voigt
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.
Voigt.

Ci5 ;...
Cs6 ;...

.C65 1, ...

C26 ;...
c24 ;...
c44 1,...
C35 ;...
C34 ;...
c331],...
C36 ;...
C23 ;...
c341],...
Cs5 ;...
C45 ;...
c351],...
ci4 ;...
C46 ;...
C45 1 );

This function is used in further exercises in Chapter 5 and 6. The Voigt
notation is convenient for user input and display, while the matrix notation

is more suitable for computations.

For illustrative purposes, we consider an isotropic, Poisson solid with

Lamé parameters A = g = 1. The following program displays the 9 x 9 stiff-

ness matrix C and the corresponding 9 x 9 compliance matrix S obtained
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using the Moore-Penrose pseudoinverse. The Moore-Penrose pseudoinverse
is defined such that

CSC = C
SCS = S,

and CS and SC are Hermitian.

function Exercise412
% Exercise 4.12
b
% Moore-Penrose pseudoinverse of 9x9 matrix C
b
% use a very simple isotropic Poisson solid as example with
% mu = lambda = 1, so stiffnesses are 1, 1 and 3, and
% compliances are 2/5, 1/4 and -1/10 from equations (4.4.53)
% through (4.4.58)
L=1;
G=1;
% fluid example
% G=0;
A=L+2x%G;
Poisson = struct( ...
’c11’,A,’C12’,L,’C13’,L,’C14’,0,°C15°,0,°C16°,0, ...
’C22’,A,°C23’,L,°C24’,0,°C257,0,°C26°,0,...
’C33’,A,°C34’,0,°C357,0,°C367,0, ...
’C44°,G,’C45°,0,°C46°,0, ...
’Cb5’,G,’C66”,0, ...
’C667,G) ;
b
cjk = cMatrices( Poisson );
% make the 9x9 matrix C
C = zeros(9,9);
C(1:3,1:3) = cjk.cl1;
C(1:3,4:6) = cjk.c12;
C(1:3,7:9) = cjk.c317;
C(4:6,1:3) = cjk.cl12’;
C(4:6,4:6) = cjk.c22;
C(4:6,7:9) = cjk.c23;
C(7:9,1:3) = cjk.c31;
C(7:9,4:6) = cjk.c23’;
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C(7:9,7:9) = cjk.c33;

C

% take Moore-Penrose pseudoinverse
S = pinv(C)

return

The output for the matrix C is

3 0 o | o0 1 0
0 1 o | 1 0 0
0 0 1 1 0 0 0

1 o | 1 0 0
1 o | o0 3

0 o | o0 0 1
0 0 1 1 0 0

0 o | o0 0 1
1 0 o | o 1

O = O

-0.10

0.40 O 0 | 0 -0.10
0 0.25 0 | 0.26 O
0 0 0.25 | 0 0
0 0.25 0 | 0.26 O
-0.10 O 0 | 0 0.40
0 0 0 | 0 0
0 0 0.25 | 0 0
0 0 0 | 0 0
-0.10 O 0 | 0 -0.10

o

0.40

59

which can be recognized as agreeing with results (4.4.57) and (4.4.58). This
even works for a fluid when the analytic results (4.4.57) and (4.4.58) break
down. For example with bulk modulus k¥ = 1, the stiffness matrix C is

1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1

O O O O O

O O O O O

0

O O O O

= O O O
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0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1

and the Moore-Penrose pseudoinverse gives the compliance matrix S = C/9,
which corresponds to a compressibility £ = 1, and the equation e;; = —
kP/3, etc. (4.4.4).

4.13

Determine the compliance matriz S for a TIV medium, i.e. the equivalent of
(4.4.54) from (4.4.53) for isotropic media, but for (4.4.60) for TIV media
(see Nye, 1957).

Isotropic Media: In isotropic media, the Voigt matrix has the form (4.4.53)

A2 A A0 00
A A+20 X 0 00

oo A A A+24 0 0 0
0 0 0 w0 0|
0 0 0 0 pu O
0 0 0 0 0 u

and the compliance matrix has the same symmetries (4.4.54). As is well
known, the elastic stiffnesses can be written (4.4.49)

Cijkl = A 0ij Ok1 + 1(Sik 61 + 0it Sjk),
and the compliances as

Sijki = N 0ij Ot + H(0ik 8j1 + 6t Ok,
where (4.4.54)

< A
A= -
20(3X + 2u)

o= L
Boo= m

It is readily verified that
. A
Aop— —2tH
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TIV Media: In TIV media, the Voigt matrix has the form (4.4.60)
AL+ 2p AL v 0 0 0
AL AL+ 2y v 0 0 0
C— v v )\” + 2N|| 0 0 O 7
0 0 0w 0 0
0 0 0 0 m 0
0 0 0 0 0

and the compliance matrix must have the same symmetries with five pa-
rameters, A\ |, i, 5\”, i and . Nye (1957, p. 147) has given expressions
for the relationships between the compliances and stiffnesses. The results
are (remembering that Nye (1957, p. 134) has introduced factors of 2 and 4
in the compliance terms to make the relationship between compliance and
stiffness, and wvice versa, symmetrical)

j\J_ _ )\” + 2,LL|| B 1
2c dp

1
pl = 4,Ll—i
N — 20 +py) 1

[ c 20
1
K= E”

_ v

vo= -

where
c= 2()\” + 2/L||)(/\L +pl)— 22,

It is straightforward to confirm that this reduces to the isotropic result, in
particular that A\| = A\ =v = A\
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Asymptotic ray theory

5.1

Confirm that in equation (5.3.20) the terms due to derivatives of the polar-
izations, 0gr/0p;, cancel as the polarizations are normalized.
By differentiating the eigen-equation (5.8.14), show that the partial deriv-
ative of the polarization is
ogr > <2pjggafk§1> 5
a. 1~ 1)
Opy. oy 1-G,
where the summation is for values of v different from I (we assume non-
degeneracy), and afk is the symmetric part of ajy, i.e. afk = (ajr +ag;)/2.
Using the above result, obtain an expression for the partial derivatives

0Vi/0p; required for the elements of matriz R in equation (5.2.20). Confirm
that it reduces to the isotropic result, R = o1 (5.2.21).

With the definition (5.3.18) of the Hamiltonian, i.e.

1 - N
Hi(x,p) = = pjpr&rai8r,

2
the derivative required for equation (5.3.20) is
OH v 5. 1 og; . 1 e 08I
o Pr8I3k8I T 5 pjpkza—piajkgl + §pjpkglajk8—pia
where

1
S
ajy = 5 (ajk +ag),

the symmetric part of a;;. As the polarization is normalized, i.e. g7g; = 1,
we must have
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and the derivative of the polarization is orthogonal to the polarization. Now
Pipka;p&r = &r from the eigen-equation (5.3.11), so

aH[ 1 8§T ~ 1 ~ 8@[ ~ N
o = pe8iai8r + 5 oo T = pigial
1

Thus the derivatives of the polarizations do not contribute to equation
(5.3.20).
In the eigen-equation (5.3.14), Gy = 1 for the required solution and G =

c?, /c3, etc. for the others. Differentiating with respect to pg, we obtain
0g

gr _ 0.
Opy,

Expanding the partial derivative of the polarization in terms of the orthog-

2pjalgr + (I —I)-=-

onal polarizations
g1 . X R
ap. 9787 + 9K8K = Guv8u;
Pi

say, where J and K are the indices not equal to I, we obtain

2p;as8r + (T —T1)gu8 = 0 = 2p;aligr + g,(Gy — 1)8y.

Thus
. 2pjg$afkgl
g = -G, )
and
o1 _ 3 2p;&ras81 :
Op oy, 1-G, v

where we assume non-degeneracy.
For elements of the matrix R (5.2.20), we need

82H] OVj R R 8@} 1 S 3g1
== =gja g1+pe( S8+ gfa )
Op;Opk  Opk opy ° %3 oy,
The second term on the right-hand side is
o8] s g O8I ) g O8I
+gra = 2pgra
be (apk ]@gI g1 j0 o, apk Pe8r 0 apk
o 2pmEran 81\ .
— g 3 (2o
v#£I v
. Z (QPEQ}aijéu)(meé?aikéu)

oy, 1-G,
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B Z4ﬁeﬁm<g}azgy><g}aikéu>
- 2

oy g —c '
Hence
PH, OV, . . 4pepm (&]a58) (8T a8
=5 :glajkgl+z 5 o .
OpjOpr  Opi oy 2 —c2

In isotropic media, we can check the result for P as it is non-degenerate.
Let us take p = g7 = k = 13, say (I = 3). The matrices aj; for isotropic
media are

a> 0 0 0 0 0
an=| 0 B° 0 | and ap=|0 0 a?-28 |,
0 o0 p? 0 B3 0
etc. The matrix with the jk element g7a;;g; is
g2 0 0
(g}a]kgl) = (iga]kig) = 0 62 0
0 0 o
We also need g}afkg,,:
g}ag?,gu :i§a§3iy = 0
g}a%gv = igaggiu = 0 ifvr=1
= (?=p%/2 ifv=2
g}aglgv = iga:fliu = 0 ifv=2

(® —p3%)/2 ifv=1,

SO
2 2
S @ —f
g1a§jgu = 5 5jy
Thus
N A ar S oA o R 2_52\2
Apepm (87278, ) (8T a1 8r) 4 (a > ) 0w Oew
Z 2 — 2 - Z a2 — 52
v#£3 1 v v#£3
= (@ =5 0julr,
v#£3

where ¢ = m = 3 are the non-zero contributors. The matrix with this as the
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7k element is

2 _ 2
Upehm(87aS8,) (€705 ) - 00
Z 2 2 - 0 a’— 6% 0
v#£3 r =% 0 0 0

Combining with the above matrix (g}afkgl), we obtain

0?Hj 5
=a‘'I =R,
<8pj8pk>

as required (5.2.21).

5.2

Show that in isotropic media

1 d /J
Vir=—— (%),
cJ dT (c)
where T is the travel time, J is the ray tube cross-section and c is the veloc-

1ty.

From the definitions (5.1.6) and (5.1.14), we have

\%
VT =V -p=V_- (—2)
c
From equations (5.2.14) and (5.2.15),
d d
But
\% 1 2 1 2 dc

Combining these results we obtain

J’ d 1 d /J
op_ v ¢ _ Lt 4 /fJ
VT_CQJ c3 chT(c>'
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5.3

Show that in isotropic media, the transport equation, e.g. equation (5.2.10)
can be written

dv©® 1
dT + 2 <

d
2y/2 — 2y @ =
VT + 3 In(pe )) v 0

(which can be found in classic developments, e.g. éerveny and Hron, 1980).

From Exercise 5.2:

v 2 de d
X — 2 2 2 2 2T —1 2‘
V-V CV<02>+ch c°V +dTnc
Substituting in equation (5.2.10) and expanding
2 do® d
4, 2w el 42
ar Pt o ar VI = qpne
and hence
dv©® 1/,_, d )
— — 0) _
ar +2<c VT—l—dTln(pc ))v 0.

5.4

Show that in isotropic media, the matriz M (defined in equation (5.2.47)),
satisfies a Ricatti differential equation

ﬁ + c*M* = C,
where the matriz C is defined in equation (5.2.22).

Definition (5.2.47) is

M =P,P,_ .
Differentiating we have
AM  dP,, ., AP,
using the result (A7!) = — A“'A’A~! for the derivative of an inverse

matrix (6.7.3). As the propagator matrix P (5.2.24) satisfies the differential
equation (5.2.19) with matrix (5.2.21), this becomes

dM _ . -
57 = (CPo) Pl — PP (PP, ) Pl = C - M.



5.9 67

Hence
dM 5
— M“ =C.
a7 +c
5.5
If a wavefront has principal radii of curvature r1 and ro, show that
1 1
™ T2

say, in isotropic media as P is normal to the wavefront (this result is equiv-
alent to equation (5.6.11) — also proved result (5.6.10)). K = tr(K) is the
curvature of the wavefront, where matriz K is defined in equation (5.2.48).
Show that this is consistent with the differential equation

dJ
S JK
ds ’

where J s the ray tube cross-section and s the ray length.

Consider a wavefront with principal radii of curvature r1 and ro. Measure
positions on the wavefront in terms of the angles #; and 65 subtended at
the centres of curvature in the principal directions. Then an elementary
area on the wavefront is r1ry df; dfy. Consider the volume formed when the
wavefront propagates a distance dr. Then applying the divergence theorem
to the volume between the wavefronts, we have

/ V.pdV = / b-dS
~ (ry +dr)(rg +dr)df; dbs — riredf; Ao,
~ (’1”1 —i—’l”Q)d’l” do, dbs.

But dV = dr(r1df:)(r2dfs), so

1 1
Vp:’rl—i_,r?:——i——:K:tr(K)’
rra ™ T2

where K is the curvature matrix (equation (5.2.46) gives 6p = K dx on the
wavefront). This result is equivalent to equation (5.6.11) as p = g3. But

1 de

. D — . — 2 -

V-p V- (cp) =¢cV T—i—c2 aT
LAy L 1 1
 JdT \ ¢ 2dT  eJdT  J ds’
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using the result of Exercise 5.2 and ds = c¢dT'. Hence
dJ

-

In order to prove result (5.6.10), we consider the divergence theorem

[(v-gav = [ & -as,

in a volume formed by a ray tube and two wavefronts. The polarization,

JK.

g, is transverse so the surface integrals on the wavefronts are zero. The
integrals on the sides of the ray tube are just signed areas (as g, is a unit
vector normal to the side). Opposite sides approximately cancel — the only
contribution is from area changes due to changes in the ray arc lengths due
to velocity gradients in the wavefront. Thus if the volume in the divergence
theorem is dsdg; dgs, where ds = VdT is the ray arc length, and dg, the
tube width in the direction of the polarization g, then in this direction, the
arc length increases to ds + (g, - VV')dg, dT" due to the change in velocity
(to keep dT' fixed — no summation over v). Thus the area increase is
(&,-VV)/V dgi dga ds, and cancelling the volume in the divergence theorem,

we obtain result (5.6.10)
1

V-8, =—(&, VV).
g V(g )

5.6

Confirm the isotropic polarization results at the end of Section 5.5 (equations
(5.5.6) to (5.5.9)).

Using results (4.4.55) and (4.4.56), we have

(A4 2u)p1 pup2  pps
PjCj1 = Ap2 upr 0
Ap3 0 um

For equation (5.5.6) with k£ = 1, we have

o8 0 0 0
picit=A+pwpI+p| O +Al p2 —p1 O ,
0 p3 0 -1

SO

N N J2N
p;jcj183 = (A + p)p183 + Sht 0,



5.6 69

as p = gs/c. Thus for an arbitrary index k, we obtain result (5.5.6).
For equation (5.5.7) with k& = 1, the transpose of the above matrix gives

p* 0 0 0
pjcij = 2up I+ A | O +ufl p2 —p1 O ;
0 p3 O -1

SO
. AL
Pi€1383 = 2pp18s + 11 +0.
Thus for an arbitrary index k, we obtain result (5.5.7).

For equation (5.5.8) with k£ = 1, we have

T

| &
pjcjlzupll—l—)\(p 0 0)+M 0 s
0

SO
pjcj18&, = pp1&y + A (i18,) P +0,
as p"g, = 0. Thus for an arbitrary index k, we obtain result (5.5.8).
Finally for equation (5.5.9) with k = 1, we have

T

P
pjclj:,upll—l—u(p 0 0)"’)\ 0 s
0

SO

pjc1i& = pp1&y + 1 (118,) p + 0.

Thus for an arbitrary index k, we obtain result (5.5.9).
Thus in isotropic media we have

Z1g3 = pjcirgs = (A +2u)prgs + % i

Zygs = Dpjcki8s = 2upk8s + %ik
Zig, = pjcir8 = Upk€y + A&y - 1k)P
Zyg, = Dpjcki& = 1pr€s + u(& - k)P,
where p = g3/« or g3/3 for P or S rays. The second and fourth results,

(5.5.7) and (5.5.9), give the traction vectors, tj (5.3.24), and are equivalent
to the constitutive relationship (4.4.51).
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5.7

Confirm that the expressions in Section 5.7.1 for a transversely isotropic
medium reduce to those for an isotropic medium.

In an isotropic medium, if p1 is real, then p3 is either real or imaginary.
Demonstrate that this is not necessarily so in transversely isotropic media,
and that ps may be complex.

In an isotropic medium we have A, = As3 = o?, Ay = Agg = (% and
A3 = o? — 2% Thus in expression (5.7.32) for an isotropic medium we

have
a = o -2
A = 2a°3?
2B = o?+p3%— 2a2ﬁ2p%.

Thus the factor in the square root is
AB* — 4A33Au(Anp; — 1)(Aupt — 1) = (o = 5%)%,

SO

g CEE PR ) 1, 1
20232 o2 1 32 L

i.e. expression (2.3.3). It is straightforward to show that other expressions

in Section 5.7.1 reduce to the equivalent isotropic result.

Note that p3 is necessarily real in isotropic media if p; is real (the factor in
the square root is independent of p; and always positive), although it may
be positive or negative, so ps may be real or imaginary but not complex.
This is not necessarily so in TT media.

The factor in the square root in expression (5.7.32) is

AB* — 4A33A0(Anpi — 1)(Aupi — 1) = (A% — 4411 Ag3 A7, )pl+
(4A33 A0 (Ar1 + Add) — 2A(Azz + Awa)) pi + (Asz — Au)®.

At p? = 0, this is obviously positive. The coefficients of p{ and p? are zero
for isotropic media and the expression is independent of p;. Note that these
coefficients are zero from the subtraction of two equal terms. It is possible
to vary Ajz slightly, making a TI medium, so that the coefficient of pj is
negative, i.e. by increasing A3 so A2 < 4417 A33A%,. This is clearly possible
as the only energy constraint is that A3; < Asg(A1; — Agg). This constraint
is well satisfied in isotropic media so there is plenty of room to increase
A3, decrease A and make the coefficient of p] negative. If this is done, for
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large enough p; the factor in the square root will become negative and p3
complex. Then p3 will be complex not purely imaginary.

5.8

If a ray-tracing program is available for two- or three-dimensional models,
set up a model with random velocity variations. Trace rays through this
model and confirm numerically the dynamic reciprocity results, e.g. result
(5.2.36), and the KMAH index (it is assumed that the ray-tracing program
is good enough to satisfy kinematic reciprocity!).

5.9

Programming exercise: Write a computer program to compute the slow-
ness surfaces and wavefronts for an anisotropic, homogeneous medium, e.g.
Figure 5.9, together with the polarization wvectors, e.g. given the slowness
direction p, compute the vector slowness, p, the ray velocity, V, and the
polarization, g. Try the program for realistic values of the anisotropic para-
meters (from, for instance, Musgrave, 1970).

Hint: Although given the slowness direction, p, the solution for the slow-
ness reduces to a cubic polynomial, it is better to find the slowness from the
eigen-equation, (5.8.11). The 3 x 3 Christoffel matriz is symmetric and so
three, real eigenvalues are guaranteed, whereas rounding errors may make
the solutions of a cubic polynomial complex (especially near the degenerate,
isotropic case).

Using the function cMatrices from Exercise 4.12 to form the matrices c;p,
it is then straightforward to form the 3 x 3 Christoffel matrix, I" (5.3.15):

function Gamma = Christoffel( direction , aMatrices )
% Christoffel = form 3x3 Christoffel matrix (5.3.15)

% INPUT:

% direction(3) = phase direction

% aMatrices.cjk = squared-velocity matrices a_jk
b

% OUTPUT:

% Gamma (3,3)

Christoffel matrix (5.3.15)
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YA

% Note:

% assumes direction is unit vector and aMatrices are density

% normalized, and Christoffel matrix is normalized accordingly.

h

Gamma = ...
direction(l)*direction(l)*aMatrices.cll +...
direction(2)*direction(2)*aMatrices.c22 +...
direction(3)*direction(3)*aMatrices.c33 +...
direction(2)*direction(3)*(aMatrices.c23 +aMatrices.c23’)+...
direction(3)*direction(1)*(aMatrices.c31 +aMatrices.c31’)+...
direction(1)*direction(2)*(aMatrices.cl12 +aMatrices.cl12’);

return

and to solve the eigen-equation (5.3.16) for the phase velocities, ¢y, and
polarizations, g;:

function [ PhaseSlow, GroupVel, Polar ] =
AnisoSurfaces( direction , aMatrices )
% AnisoSurfaces = anisotropic phase slowness, group velocity

% and polarization vectors in order of
% decreasing velocity (P, S1, S2)

% INPUT:

yA direction (3) = phase direction

yA aMatrices.cjk = squared-velocity matrices a_jk
b

% OUTPUT:

% PhaseSlow(3) = phase slownesses

% GroupVel(3,3) = group velocities

A Polar(3,3) = normalized polarizations
b

% Note:

% solutions are sorted according to ascending phase slowness;
% for multiple directions this may not give the continuous

% surfaces, and may give problems with plotting

% (phase slowness surface plots should be OK except for right at
% crossing point, but group velocity surface may be seriously
% wrong when points are joined. Check by just plotting points,
% solve by resorting according to other criterion,

% e.g. polarization)
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b

% Christoffel matrix (5.3.15)

Gamma = Christoffel( direction , aMatrices );

% solve eigen-equation (5.3.16)

% columns of V are normalized polarizations

% diagonal elements of D are squared phase velocities
[V, D] = eig( Gamma );

[ PhaseSlow, ix ] = sort( 1./sqrt(diag(D)’) );

b

GroupVel = zeros(3,3); Polar = GroupVel;

for j=1:3
v = PhaseSlow(j);
g = V(:,ix(§));

Polar(:,j) = g;

% group velocity (5.3.20)

GroupVel(1l,j) = g’*(direction(l)*aMatrices.cll+...
direction(2)*aMatrices.cl12+...

direction(3)*aMatrices.c31’)*g*v;

GroupVel(2,j) = g’*(direction(l)*aMatrices.cl12’+...
direction(2)*aMatrices.c22 +...
direction(3)*aMatrices.c23)*g*v;

g’*(direction(1)*aMatrices.c31+...
direction(2)*aMatrices.c23’+...

direction(3)*aMatrices.c33)*g*v;

GroupVel(3,j)

end
return

This routine also computes the group velocities, V (5.3.20).

The following program computes results for Green Horn shale (Jones and
Wang, 1981). The results are the same as in Exercise 4.4 and Figure 5.13
except that the roots are ordered by slowness, ¢P, ¢SI and ¢S2, rather than
polarization, ¢P, ¢SH and ¢SV. The program also reproduces the results
for iron (Figure 5.15).

function Exerciseb9
% Exercise 5.9

% Solve Christoffel’s equation (5.3.11)

% use Green Horn shale (Jones and Wang, 1981) as an example
% (see Exercise 4.4). Units are Gpa and Mg/m~3
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density = 2.42;
GreenHorn = struct( ...
’C11’,34.3,°’C12’,13.1,°’C13’,10.7,°C14’, 0,’C15’,
’C22’,34.3,°C23°,10.7,°C24°, 0,’C25”,
’C33’,22.7,°C34’, 0,’C35”,
’C44°,5.4,°C45,

0,’C16’,0,...
0,’C26’,0,...
0,’C36’,0,...
0,’C46’,0, ...

’C65’,5.4,°C56°,0, ...

b
cjk = cMatrices( GreenHorn );
sqrtrho = sqrt(density);
b
for j=1:91
theta=(j-1)*pi/180;
% introduce density factor
ct = cos(theta);
st = sin(theta);
direction = [ ct 0 st ]17;
[ PhaseSlow, GroupVel, Polar ] = ...
AnisoSurfaces( direction , cjk );

gS2x(j) = sqrtrhoxct*PhaseSlow(1);

qS2z(j) = sqrtrho*st*PhaseSlow(1);

gS1x(j) = sqrtrho*ct*PhaseSlow(2);

qS1z(j) = sqrtrho*st*PhaseSlow(2);

gPx(j) = sqrtrho*ct*PhaseSlow(3);

gPz(j) = sqrtrhox*st*PhaseSlow(3);
end

% plot phase surfaces

figure

hold on

plot( gS2x, gS2z, ’b’ )

plot( gSix, gSiz, ’r’ )

plot( gPx, qPz, ’k’)

print -depsc2 exerciseb_9a.eps

b

% second example with iron (cubic) see Shearer and
% Chapman (1988), p.580. Units are (km/s)"2.
b

iron=struct( ...

’C11’,29.64,°C12° ,17.71,°C13’,17.71,°C14’, 0,’C15’,

’C667,10.6);

0,’C16’,0, ...



’C22°,29.64,°C23°,17.71,°C24°,
’C337,29.64,°C34°,
’C44°,14.78,°C45°,

b
cjk = cMatrices( iron );
b
for j=1:91
theta=(j-1)*pi/180;
ct = cos(theta);
st = sin(theta);

direction = [ ¢t 0 st 1°;
[ PhaseSlow, GroupVel, Polar ] = ...
AnisoSurfaces( direction , cjk );

gS2x(j) = ct*PhaseSlow(1);

gS2z(j) = st*PhaseSlow(1l);

gS1x(j) = ct*PhaseSlow(2);

gS1z(j) = st*PhaseSlow(2);

gPx(j) = ct*PhaseSlow(3);

gPz(j) = st*PhaseSlow(3);
end

% plot phase surfaces
figure

hold on

plot( gS2x, gS2z, ’b’ )
plot( gSix, gSlz, ’r’ )
plot( gPx, qPz, ’k’ )

5.9

print -depsc2 exerciseb5_9b.eps

return

The results are shown in the following figures:

75

0,’C257, 0,’C26’,0,...
0,’C357, 0,’C36’,0,...
0,’C46’,0,...

’Cb5’,14.78,°C56”,0, ..
’C66°,14.7

8);



76 Asymptotic ray theory

The slowness surfaces for Green Horn shale (Jones and Wang, 1981). These are
coloured with ¢P blue, ¢S red, and ¢S5 black.
0.351
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1 1 1 ]
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The slowness surfaces for iron. These are coloured with gP blue, ¢S red, and ¢S5
black.

5.10

Further reading: The dependence of the Hamiltonian, Hi(x,p) (5.3.18), on
the slowness, p, occurs explicitly in the Christoffel matriz, T' = p;prajk, and
implicitly in the polarization, g1, through the solution of the eigen-equation
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(5.3.26). Alternatively, using standard matriz methods, it can be written
explicitly in terms of the slowness.
The matrix

G(G)=GI-T,

in equation (5.3.14) is known as the characteristic matriz of matriz T'. Its
determinant,

I(G) =[G(G)| = |GT-T],

is the characteristic function or polynomial in G, and

is the characteristic equation, cf. equation (5.8.17). The roots, Gy, of the
characteristic equation are the eigenvalues of the matriz T .
Denoting the adjoint (5.4.24) of the characteristic matriz, G, by

G1(G) = adi (G(@)) .
we have
G(G)GHG) =T (AT,
and
G(GnGHGr) =0,

for an eigenvalue. Provided G is not a degenerate root, G(Gy) is simply
degenerate, and as GY(Gy) is not null, it is of unit rank. It can be expanded
in terms of the left and right eigenvectors of matriz T' (this is a specialization
of the well-known singular value decomposition (SVD, e.g. Golub and Loan,
1996; Riley, Hobson and Bence, 2002, Chapter 8), where any matriz can be
expanded as an outer product of its left and right singular vectors). As the
matriz I' is symmetric, the left and right singular vectors are the eigenvectors
and

GHG1) = tr (GH(G)) &rg] -

Cerveny (1972) has used this result in the kinematic ray equations (5.5.20)
and (5.3.21). The Hamiltonian (5.3.18) becomes

1
Hi(x,p) = §pjpk:aijlkGil/Gmm ,

where Gy are elements of the matriz G(1) (Cerveny, 1972, used the symbol
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Dj;). The elements of GH(G) are simply

GL(G) = (Tgy—G)(Tgs — G) — T3,
Gii(@) = Tpal's — a3y — G)

etc. with cyclic permutations, or generally
1
Gi(G) = 5 ejuckrs(Tip — Goir) (T = i)

where €;;1 1s the Levi-Civitta symbol.

This result expresses the Hamiltonian, Hr(x,p), explicitly in terms of the
slowness without the polarizations. However, this is not necessary in order
to obtain the differentials with respect to slowness (see Exercise 5.1), and
the polarizations will probably be known from the solution of the Christoffel
equation (see Exercise 5.9), e.g. for equations (5.3.20) and (5.3.21), any-
way.

5.11

Further reading: In anisotropic media, the KMAH index, o, may decrease
instead of increase at a caustic. Klimes (1997), Bakker (1998) and Garmany
(2000) give details of when this occurs (for a more general description, see
Lewis, 1965).

5.12

Show that the kinematic ray equations in general anisotropic media, (5.3.20)
and (5.8.21), can be rewritten (Zhu, Gray and Wang, 2005)

dx
dT
dp
dT

=V

= —Vine

In a recent abstract, Zhu, Gray and Wang (2005) have developed an al-
ternative expression for the kinematic ray equations in anisotropic media.
Apart from being a simpler, more elegant and unifying expression, it clari-
fies the dependence of the equations on the appropriate parameters, and in
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media where the Christoffel equation can be solved analytically, simplifies
computations.
The kinematic ray equations (5.3.20) and (5.3.21) are

d.Z‘Z' . oH

dT N 8]91'

dpz' o oH
d_T N B 833‘2 ’

where the Hamiltonian is given by (5.3.18)

1 -
H(x,p) = 5 @igkiPiPkd;91-
The first equation is, of course, the definition of the ray (group) velocity

(5.3.23)
v OH
7 api ijkiPkd;5 915
but the second kinematic ray equation involves spatial derivatives of the
density normalized elastic parameters, a;jr; (5.3.21). But the Hamiltonian
and its spatial derivative are homogeneous of degree 2 in the slowness, i.e.

1

H = —H(x,p
(X, p) 02 (X, 15) (X, p)
8 1 Oai-kl A 1 8 N
H = - Ty, =——— —H .
oz, (x,p) 2 ox; PP = ) o (x,p)
As we have (5.3.19)
1
H ==
(x,p) =3,
on the ray, we can combine these equations to give
0 1 Oc
H = - .
0x; (x,p) c Oz;
Thus the kinematic ray equations can be written
dx
= Vv
dT
d
% = —Vline

These equations are completely analogous to the acoustic equations (5.1.14)
and (5.1.15). Note that the spatial derivatives of the phase velocity are
calculated for fixed phase direction, p.
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These equations are a simple, unified way to write the kinematic ray equa-
tions in anisotropic media. It appears that Zhu, Gray and Wang (2005) are
the first to write the second equation as above. The equations indicate that
the kinematic ray results only depend on the appropriate parameters — the
group velocity and phase velocity of the appropriate ray type. In the orig-
inal equation (5.3.21) this property is not obvious as all elastic parameters
appear to contribute. This result is important in analyzing the sensitiv-
ity of travel times to media properties, i.e. in tomography. It also means
that in media where the group and phase velocity can be found from simple
analytic expressions, e.g. weak or normal TT media (Exercises 4.3, 4.5 and
Section 5.7.1), computations are more straightforward and efficient

Finally, the above results simplify the dynamic ray equations. The matrix
of the dynamic ray equations (5.2.20)

T R
()

has elements

PH 0V
83:¢8pj 8.1‘Z
O*H oV;
Rij = 0 0n: _ Ops
PiOP; D
Sy = 0*’H e

8@83:]- - 8@8%
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Rays at an interface

6.1

Programming exercise: Write a computer program to solve Snell’s law for
an anisotropic medium. (Finding the slowness vectors is more complicated
than the Ezercise 5.9 in Chapter 5. Given the slowness direction, p, and
finding the slowness, was equivalent to solving a cubic polynomial or finding
the eigenvalues of a symmetric 3 X 3 matrix, whereas given the interface
slowness, p1, and finding the normal slowness component, p,, is equivalent
to solving a sextic polynomial or finding the eigenvalues of a non-symmetric
6 x 6 matriz.)

Hint: The simplest method is probably to use a library routine to solve the
eigen-equation (6.3.14).

Further reading: Burridge (1970, Section 5) and van der Hijden (1987,
Section 6.3) discuss an alternative method for identifying the direction of
propagation of the eigen-solutions based on the analytic continuation of the
slowness component, p,, rather than the sign of the group velocity compo-
nent, V,.

Using the function cMatrices in Exercise 4.12 to define the matrices cjj
(4.4.39), the following function solves the eigen-equation (6.3.14):

function [ oSlow, polarizations, tractions ] = ...
AnisoEigen( p, rho, cjk )
% AnisoEigen = anisotropic eigenvectors

% INPUT:

b p(2) = horizontal slowness (px,py)

A rho = density

yA cjk = c_jk matrices from c_Matrices

81
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% OUTPUT:

% oSlow(1,6) = normal slownesses

A polarizations(3,6) = matrix of polarizations
% tractions(3,6) = matrix of tractions

h

% Note:

% cjk are elastic parameter matrices c_jk;

% columns 1 to 3 are in positive direction; 4 to 6 negative;

% use in conjuction with functions AnisoCoeffs;

% special cases (e.g. zero normal group velocity, fluid

% media, free surface) are not covered (shift by small

% numerical factor);

% no advantage of material symmetry taken (e.g. isotropy -
% use IsoEigen)

% differential matrix (6.3.15) to (6.3.17)

% in the matrix A, unit(A_11) and unit(A_22) = 1/velocity,

% unit(A_21) = density, unit(A_12) = 1/density*velocity”2

% so A_21 multiplied and A_12 divided by impedance to make

% unit(A) = 1/velocity. No compensation is needed to

% eigenvectors as traction is recalculated.

% RMS P velocity used for impedance (see Exercise 4.6)

A = zeros(6,6);

meancs = (3*(cjk.c11(1,1)+cjk.c22(2,2)+cjk.c33(3,3))+...
4% (cjk.c22(3,3)+cjk.c33(1,1)+cjk.c11(2,2))+...
2% (cjk.c23(2,3)+cjk.c31(3,1)+cjk.c12(1,2)))/15;

Z = sqrt(rho*meancs) ;

ic33 = inv(cjk.c33);

A(4:6,4:6) = —-(p(1)*cjk.c31’+p(2)*cjk.c23)*ic33;

A(1:3,1:3) = A(4:6,4:6);

A(1:3,4:6) = -ic33%*Z;

A(4:6,1:3) = (p()*p(1)*(cjk.cll-cjk.c31’*ic33*cjk.c31)+. ..

p(2)*p(2)*(cjk.c22-cjk.c23*ic33*cjk.c23’)+. ..
p(D*p(2)*(cjk.c12-cjk.c31’*ic33*cjk.c23’+. ..
cjk.c12’-cjk.c23%ic33*cjk.c31)-...
rhox*eye(3,3))/Z;
% solve eigen-equation (6.3.14)
[ w, pn ] = eig(A);
% extract results - note tractions recomputed after
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% ordering and normalizations
po = zeros(3,6); polarizations = po; tractions = po;
os = zeros(1,6); oSlow = os;

form = 1:6
os(1,m) = pn(m,m);
po(:,m) = w(1:3,m);
end

% order and degenerate cases

[ oSlow, polarizations ] = TidyEigen( p, cjk, rho, os, po );
% tractions t3 = -Z3 v (5.3.24) = -p_k c_3k v (5.3.22)

pcl2 = p(1)*cjk.c31+p(2)*cjk.c23’;

form = 1:6
tractions(:,m) = -(pcl2+oSlow(m)*cjk.c33)* ...
polarizations(:,m);
end
return

It uses a function TidyEigen to handle degenerate eigenvalues, to choose the
signs of the eigenvectors according to the isotropic definitions, (6.3.51) to
(6.3.53), to group the eigen-solutions according to their propagation direc-
tion (from the normal component of group velocity), to order them according
to the phase slowness (by decreasing real and increasing imaginary part for
waves propagating in positive direction, and vice versa in the negative di-
rection), and to normalize the polarizations according to equation (6.3.29).

function [ oSlow, polarizatiomns ] =...

TidyEigen( p, cjk, rho, in_oSlow, in_polarizations )
% TidyEigen = order and orthonormalize eigenvectors
% as revised for Addenda and Errata, 15 November 2004

% INPUT:

yA p(2) = horizontal slowness

yA cjk = struct of matrices c_jk
yA rho = density

% in_oSlow(1,6) = normal slownesses

% in_polarizations(3,6) = matrix of polarizations
b

b

% OUTPUT:

% oSlow(1,6) = normal slownesses

A polarizations(3,6) = matrix of polarizations
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% Note:
% for internmal use in Aniso_Eigen.

% algorithm:

% (1) first normalize polarization and order by phase slowness
A (negative qS will be 1/2 and positive gS will be 5/6);

% (2) orthogonalizing degenerate gqS eigenvectors making qSH and
% gSV (will be appropriate for isotropic but may not be

% correct for other degeneracies when qS1=qS2);

% (3) make signs of eigenvectors as like isotropic as possible;
% (4) compute normal group velocity for normalization and

A ordering;

% (5) divide into positive and negative solutions using

A normal group velocity;

% (6) order real eigenvalues by decreasing slowness magnitude,
% and complex by increasing imag magnitude;

% (7) energy flux normalize;

% (8) if gS degenerate, make 1 and 4 like qSV.

% storage
os = in_oSlow; po = in_polarizations;
oSlow = os; polarizations = po;
/A
form = 1:6
os(m) = in_oSlow(1,m);
% normalize (not using norm as without conjugate)
po(:,m) = in_polarizations(:,m)/...
sqrt(in_polarizations(:,m)’*in_polarizations(:,m));
end
% interface vectors
pnorm = p(1)~2+p(2)°2;
if ( pnorm == 0 )
11=[1001";

hh = [ 0101]°;
else
11 = [ p(1) p(2) 0 1’/sqrt(pnorm);
hh = [ -p(2) p(1) 0 1’/sqrt(pnorm);
end

% handle degeneracies and modifications to polarisations
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% first (must be done first as group velocity depends on
% polarisations) order eigenvalues with increasing real(os)
% to get degeneracies together (use io to index order,
% rather than swapping)
io = 1:6;
form = 1:5

for n = m+1:6

if ( real(os(io(n))) < real(os(io(m))) )
tmp = io(n); io(n) = io(m); io(m) = tmp; end Yswap

end
end
% degenerate eigenvalues (particularly isotropic)
% assumes degeneracies are largest slownesses (gS)

j=1; % most negative slownesses
k = 2;

% two cases for down-going and up-going

form = 1:2

% degenerate equal eigenvalues
if ( abs(os(io(j))-os(io(k))) < 1l.e-6*abs(os(io(j))) )
os(io(k)) = os(io(j));
% find normal to degenerate polarizations
poll = real( po(:,io(j)) );
pol2 = real( po(:,io(k)) );
% normal to degeneracy plane
normal = cross( poll, pol2 );

normal = normal/norm(normal) ;

fnorm = normal(1l) "2+normal(2)~2;

% degenerate plane is interface

if ( fnorm == 0 )
% in slowness plane (qSV) and normal to it (qSH)
po(:,i0(j)) = 11;
po(:,io(k)) = hh;

% general orientation of degenerate plane

else

% horizontal orthogonal to normal (qSH)

po(:,io(k)) = [ -normal(2) normal(1l) O ]1’/sqrt(fnorm);
po(:,i0(j)) = cross( normal, po(:,io(k)) );
end

end

h
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j = 6; % most positive slownesses
k = 5;
end

% try and make signs of polarizations compatible (like
% isotropic)
% qSH should be in direction of cross( k, p )
% gP and qSV should have dot( pol, p ) > O
A
if ( abs(po(3,i0(1))) > abs(po(3,i0(2))) )
% 2 is qSH, 1 qSV
if ( dot( po(:,i0(2)), hh ) < 0 )
po(:,i0(2)) = -po(:,i0(2)); end
if ( dot( po(:,io(1)), 11 ) < 0 )
po(:,io(1)) = -po(:,io(1)); end
else
% 1 is qSH, 2 qSV
if ( dot( po(:,io(1)), hh ) < 0 )
po(:,io(1)) = -po(:,io(1)); end
if ( dot( po(:,i0(2)), 11 ) < 0 )
po(:,i0(2)) = -po(:,i0(2)); end
end
% 3 and 4 are gP
if ( dot( po(:,i0(3)), 11 ) < 0 )
po(:,i0(3)) = -po(:,i0(3)); end
if ( dot( po(:,i0(4)), 11 ) < 0 )
po(:,io(4)) = -po(:,io0(4)); end
b
if ( abs(po(3,io(5))) > abs(po(3,i0(6))) )
% 6 is qSH, 5 qSV
if ( dot( po(:,i0(6)), hh ) < 0 )
po(:,io(6)) = -po(:,i0(6)); end
if ( dot( po(:,io(5)), 11 ) < 0 )
po(:,io(58)) = -po(:,io(5)); end
else
% 5 is qSH, 6 qSV
if ( dot( po(:,i0(5)), hh ) < 0 )
po(:,i0(5)) = -po(:,i0(5)); end
if ( dot( po(:,io(6)), 11 ) < 0 )
po(:,io(6)) = -po(:,i0(6)); end
end
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% normal component of group velocity (5.3.20)
pcl2 = p(1)*cjk.c31+p(2)*cjk.c23’;
form = 1:6
m2 = pcl2+oSlow(1l,m)*cjk.c33;
group(m) = po(:,m)’*m2*po(:,m)/rho;
end

% final ordering using group for up-down separation

% and on real and imaginary phase slowness

nRp = 0; nRn = 0; nCp = 0; nCn = O;

form = 1:6
if imag(group(m)) > 0, nCp=nCp+1;iCp(nCp)=m;
elseif imag(group(m)) < 0, nCn=nCn+1;iCn(nCn)=m;
elseif real(group(m)) > O, nRp=nRp+1;iRp(nRp)=m;
else nRn=nRn+1;iRn(nRn)=m;
end

end

% order Real positive (Rp) decreasing
for m=1:nRp-1
for n=m+1:nRp
if real(os(iRp(m))) < real(os(iRp(n)))
tmp = iRp(m); iRp(m)=iRp(n); iRp(n)=tmp; end
end
end
% make qSV first if degenerate
if (nRp > 2) && (real(os(iRp(1))) == real(os(iRp(2))))
if abs(po(3,iRp(1))) < abs(po(3,iRp(2)))
tmp=iRp(1); iRp(1)=iRp(2); iRp(2)=tmp; end
end
% order Complex positive (Cp) increasing
for m=1:nCp-1
for n=m+1:nCp
if imag(os(iCp(m))) > imag(os(iCp(n)))
tmp = iCp(m); iCp(m)=iCp(n); iCp(n)=tmp; end
end
end
% order Real hegative (Rn) increasing
for m=1:nRn-1
for n=m+1:nRn
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if real(os(iRn(m))) > real(os(iRn(n)))
tmp = iRn(m); iRn(m)=iRn(n); iRn(n)=tmp; end
end
end
% make qSV first if degenerate
if (mRn > 2) && (real(os(iRn(1))) == real(os(iRn(2))))
if abs(po(3,iRn(1))) < abs(po(3,iRn(2)))
tmp=iRn(1); iRn(1)=iRn(2); iRn(2)=tmp; end
end
% order Complex negative (Cn) decreasing
for m=1:nCn-1
for n=m+1:nCn
if imag(os(iCn(m))) > imag(os(iCn(n)))
tmp = iCn(m); iCn(m)=iCn(n); iCn(n)=tmp; end
end
end

% transfer to output

k=1;

for m=1:nRp
oSlow (k) = os(iRp(m));
polarizations(:,k) = po(:,iRp(m))/sqrt( 2*rho*group(iRp(m)));
k = k+1;

end

for m=1:nCp
oSlow (k) = o0s(iCp(m));
polarizations(:,k) = po(:,iCp(m))/sqrt( 2*rho*group(iCp(m)));
k = k+1;

end

for m=1:nRn
oSlow (k) = os(iRn(m));
polarizations(:,k) = po(:,iRn(m))/sqrt(-2*rho*group(iRn(m)));
k = k+1;

end

for m=1:nCn
oSlow(k) = 0s(iCn(m));
polarizations(:,k) = po(:,iCn(m))/sqrt(-2*xrho*xgroup(iCn(m))) ;
k = k+1;

end

return
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For the sake of completeness, we include a specialized version of AnisoEigen
for isotropic media:

function [ oSlow, polarizations, tractions ] = ...
IsoEigen( p, iso )
% IsoEigen = isotropic eigenvectors

% INPUT:

% P = horizontal slowness
% iso.Alpha = P velocity

% iso.Beta = S velocity

% iso.Rho = density

)

% OUTPUT:

A oSlow(6) = normal slownesses

A polarizations(3,6) = matrix of polarizations
% tractions(3,6) = matrix of tractions
b

% Note:

% the order of the eigenvectors is SV, SH and P;

% columns 1 to 3 are in positive direction; 4 to 6 negative;

% use in conjuction with functions Zoeppritz and AnisoCoeffs;

% the important features of the eigenvectors are the

% energy-flux normalization, and that the interface component

% displacement is positive (with p positive). Thus for the P

% waves, the normal components are in the propagation direction,
% and the SV normal components are opposite to the propagation
% direction.

polarizations = zeros(3,6); tractions = polarizations;
oSlow = zeros(1,6);
% fluid
if ( iso.Beta == 0 )
qa = sqrt((1/iso.Alpha-p)*(1/iso.Alpha+p));
w3 = sqrt(.5/(iso.Rho*qa));
% equations (6,3,53)
polarizations(1,3) = w3*p;

polarizations(1,6) = polarizations(1,3);

polarizations(3,3) = w3*qa;

polarizations(3,6) = -polarizations(3,3);
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tractions(3,3) = -w3*iso.Rho;
tractions(3,6) tractions(3,3);
%

oSlow(1,3) = qa;
oSlow(1,6) = -qa;

% solid

else
gqa = sqrt((1/iso.Alpha-p)*(1/iso.Alpha+p));
gb = sqrt((1/iso.Beta-p)*(1/iso.Beta+p));
mu = iso.Rho*iso.Beta”™2;

% definition (6.3.54)
Omega = gb*qb-p*p;
% normalizations (6.3.55) to (6.3.57)

wl = sqrt(.5/(iso.Rho*qgb));
w2 = sqrt(.5/(muxgb));
w3 = sqrt(.5/(iso.Rho*qa));

% equations (6.3.51)

polarizations(1l,1) = wilx*qb;
polarizations(1,4) = polarizations(1,1);
polarizations(3,1) = -wilx*p;

polarizations(3,4) -polarizations(3,1);
tractions(1,1) = -wil*mu*Omega;
tractions(1,4) = -tractions(1,1);
tractions(3,1) = wl*2kmuxp*qb;
tractions(3,4) = tractions(3,1);

% equations (6.3.52)

polarizations(2,2) = w2;
polarizations(2,5) = polarizations(2,2);
tractions(2,2) = -w2*mux*qb;
tractions(2,5) = -tractions(2,2);

% equations (6,3,53)

polarizations(1,3) = w3*p;

polarizations(1,6) = polarizations(1,3);
polarizations(3,3) = w3*qa;

polarizations(3,6) = -polarizations(3,3);
tractions(1,3) = -w3*2*muxp*qa;
tractions(1,6) = -tractions(1,3);

tractions(3,3)
tractions(3,6)
%

-w3*mu*Omega;
tractions(3,3);
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oSlow(1l,1) = gb;
oSlow(1,2) = gb;
oSlow(1,3) = qa;
oSlow(1,4) = -qb;
oSlow(1,5) = -qb;
oSlow(1,6) = -qa;

end

return

The following program uses AnisoEigen to solve Snell’s law for Green
Horn shale (Jones and Wang, 1981) used in Exercises 4.4 and 5.9 and Fig-
ure 5.13.

function Exercise61
% Exercise 6.1

% Solve Snell’s law

% use Green Horn shale (Jones and Wang, 1981) as an example
% (see Exercise 4.4). Units are Gpa and Mg/m~3
density = 2.42;
GreenHorn = struct(
’c11°,34.3,’C12?,13.1,°C13’,10.7,°C14’, 0,’Ci15’, 0,°’C16’,0,...
’C22°,34.3,°C23’,10.7,°C24’, 0,’C25’, 0,°C26°,0,...
’C33?,22.7,°C34’, 0,’C36’, 0,°C36”°,0,...
’C44°,5.4,°C45°, 0,°C46°,0,...
’C65’,5.4,°C66°,0, ...
’C66°,10.6) ;
b
cjk = cMatrices( GreenHorn );
sqrtrho = sqrt(density);
% repeat Exercise 5.9 to display results
for j=1:91
theta=(j-1)*pi/180;
% introduce density factor
ct = cos(theta);
st = sin(theta);
direction = [ ct 0 st ]17;
[ PhaseSlow, GroupVel, Polar ] = ...
AnisoSurfaces( direction , cjk );
qS2x(j) = sqrtrho*ct*PhaseSlow(1);
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gS2z(j) = sqrtrhox*st*PhaseSlow(1);

gS1x(j) = sqrtrhoxct*PhaseSlow(2);

gS1z(j) = sqrtrhox*st*PhaseSlow(2);

gPx(j) = sqrtrho*ct*PhaseSlow(3);

qPz(j) = sqrtrho*st*PhaseSlow(3);
end

% plot phase surfaces

% note here roots are ordered by phase slowness

figure

hold on

plot( gS2x, gS2z, ’b’ )

plot( gSix, gSlz, ’r’ )

plot( gPx, qPz, ’k’)

b

% now do Snell’s law for px = .2

px=.2;

b

[ oSlow, polarizations, tractions ] = ...
AnisoEigen( [ px O ], density, cjk );

% note here roots are ordered by normal group velocity

% (which differs from phase slowness order)

plot( [ .2 .21, [0 .71, ’k’ )

plot( [ 0 .2 1, [ oSlow(3) oSlow(3) 1, ’b’ )

plot( [ 0 .2 1, [ oSlow(2) oSlow(2) 1, ’r’ )

plot( [ 0 .2 1, [ oSlow(1l) oSlow(1) 1, ’k’ )

print -depsc2 exercise6_1.eps

return

The results for the normal slownesses p,, (6.3.14) are confirmed in a repeat
of the plot in Exercise 5.9.

The routine TidyEigen uses the normal component of the group velocity
V., to discriminate the propagation direction of the eigenvectors. Burridge
(1970, Section 5) and van der Hijden (1987, Section 6.3) discuss an alterna-
tive method based on the analytic continuation of the slowness eigenvalues,
pn. They give detailed arguments concerning the Riemann surfaces and
singularities of the function p,(p,) — here we just summarize the more
important results using our notation.

We assume that the coordinate system has been rotated into an interface
basis, e.g. equations (6.0.1) and (6.0.2), so that the slowness component
normal to the interface is p3 = p,. We consider a general cross-section of
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The slowness surfaces for Green Horn shale (Jones and Wang, 1981) with solutions
for p3 for p; = 0.2. These are coloured with ¢P blue, ¢S red, and ¢S2 black.

the slowness surfaces defined by an angle y such that

p1 = pcosx
p2 = psiny.

In the interfaces basis (6.0.1), x = 0 but in general we consider any real
angle. Note that p = |p_| is not to be confused with p = |p|. For fixed ¥,
we study the six solutions p§(p) with n = £1, £2 and £3. The solutions
pi(p) can be found by solving the Christoffel equation (5.3.17) or the eigen-
value equation (6.3.14) (both leading to a sixth-order polynomial with six
solutions). Our task is to associate the solutions with positive n with waves
propagating in the positive z3 direction, and vice versa.

The positive definite, strain energy function (4.4.32) means that the cross-
section of the slowness surfaces (x fixed) consists of three nested ovals (an
oval is topologically like a circle but not necessarily convex) enclosing the
origin. Note that the curves have point symmetry through the origin (as
slowness terms are all second order in equation (5.3.17)). We label the
curves O;, j =1, 2 and 3 in order of decreasing slowness (corresponding to
the ordering used in the text for the eigenvectors W). Note that in general,
the index n of the solutions does not correspond to the index j of the oval
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— one oval may have multiple solutions. The curves have branch points
at p = £&,, where dps/dp = +oo, again ordered in decreasing order with
m =1 to M. In the simplest cases, e.g. isotropy, the oval and branch point
indices, 7 and m, correspond, but in general M > 3 and they do not. This
is illustrate in the figure for a-quartz as used in Figure 5.8 in the main text
(p. 168) where M =5 (in this example x = 7/2).

D3

0.3

—0.3 F
&s & &

0.1 0.2 0.3

Similar to Figure 5.8 but illustrating the branch points. The py — p3 cross-section
of the three slowness surfaces O; for a-quartz (y = 7/2 in this cross-section) for
p > 0 is shown. The figure is based on the elastic constants from Bechmann
(1958) as used by Shearer and Chapman (1988, p. 579). See also Figure 10.2.1(i)
in Musgrave (1970). Branch points at p = &, with m =1 to 5 are indicated.
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This figure was produced using the code

function Exercise6la

% Exercise 6.1a

% added to Addenda and Errata, 15 November 2004

% C12 corrected from c13 to c12 (note figures do not
% alter significantly), 17 May 2007

% slowness surfaces for trigonal alpha-quartz as used in
% Figure 5.8 (see Figure 10.2.1 in Musgrave, 1970).

% Shearer, P.M. and Chapman, C.H., 1988.

% Ray tracing in anisotropic media with a linear gradient,
% Geophys. J., 94, 575-580.

% Bechmann, R., 1958. Elastic and piezoelectric constants
% of alpha-quartz, Phys. Rev., 110, 1060-1061.

% Musgrave (1970, p. 130 and 282, density ~ 2.67 and

% axis in Figure 10.2.1 (i) is reversed)

% Density normalized so units km"2 s7-2

cll = 32.73; % from Shearer and Chapman (1988)
c33 = 40.45;

cl2 = 2.64;

cl3 = 4.49;

c44 = 21.86;

cl4 = -6.76; % sign as Bechmann not Musgrave

b
quartz=struct( ...
’C11’,c11,°C12’ ,c12,°C13’,c13,°C14’, c14,°C15’, 0,’C16’,0,...
’C22’,c11,°C23’,¢c13,°C24’,-c14,°C25’, 0,’C26’,0,...
’C33’,c11,°C34”, 0,’C35’, 0,’C36’,0,...
’C44°, c44,°C45’, 0,’C46°,0,...
’C65’,c44,°C56° ,cl4, ...
7C66°, .56%x(cl11-c12));
/A
cjk = cMatrices( quartz );
% modified from Exercise 5.9
for j=1:181
theta=(j-91)*pi/180;
ct = cos(theta);
st = sin(theta);
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direction = [ 0 ct st ]’; % Figure 10.2.1 (i)
% direction = [ ct 0 st ]°; % Figure 10.2.1 (ii)
% direction = [ ct st 0 ]1’; % Figure 10.2.1 (iii)

[ PhaseSlow, GroupVel, Polar ] = ...
AnisoSurfaces( direction , cjk );

sx1(j) = ct*PhaseSlow(1);

sz1(j) = st*PhaseSlow(1);

sx2(j) = ct*PhaseSlow(2);

sz2(j) = st*PhaseSlow(2);

sx3(j) = ctxPhaseSlow(3);

sz3(j) = stxPhaseSlow(3);

end

figure

hold omn

plot( sx1, szil, ’b’ )
plot( sx2, sz2, ’r’ )
plot( sx3, sz3, 'k’ )

% units are km/s

axis ([0 .35 -.35 .35])
axis equal

axis manual

print -depsc2 exercise6_la.eps
return

which uses the routine AnisoSurfaces given in the Solutions to Exercises
for Exercise 5.9.

At a branch point, two solutions p% coincide. As the product of all eigen-
values is the determinant of the matrix A (6.3.14), differentiating with re-
spect to p, it is clear that for one solution dp%/dp = 400, while for the
other dp;™/dp = —oo (with n and 7 having the same sign), i.e. the two
solutions have indices of opposite sign — near the branch point, the propa-
gation direction has the opposite sign to the gradient — but not necessarily
the same value. For —&p; < p < &jr between the branch points and the
origin, a line p = constant must intersect each oval in two points, as there
must be six solutions. At p = 0, there will be three positive-negative pairs
of solutions for p3(p) (from the point symmetry, or the quadratic nature of
the Christoffel equation). The propagation direction is the same as the sign
of the solution, i.e.

p3 ' (0) < p3*(0) < p3°(0) <0 < p3(0) < p3(0) < p3(0).
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Let us define
pi = pi/p,
so p; = cos x and py = sin x are real. Suppose p is positive imaginary. It is
obvious that p3(p) cannot be purely real or imaginary but must be complex.
If Im(p) > 0, then Im(p3™) < 0 and Im(p3™) > 0 (n positive), and vice versa
when Im(p) < 0. Im(p3™) differ in sign unless Im(p) = 0. Let us consider
a branch cut at p = &, on the real axis, where two solutions pg.f" and p3 "
coalesce and are real for p > & (n and 7 are positive but not necessarily
equal) as illustrated in the figure.

71 Ps
p3 plane D3 R
A ' p?:ﬁ A l'~ ~

' , A V..
: p3(&e) !
‘ --

p3(&k) Vin

—+n

The behaviour of the slowness p near a branch point: on the left, the solutions in
the complex ps plane as p increases past a branch point at &x; and on the right,
the slowness surface ps(p) near the branch point p3(p = & ). In both figures, the
solution propagating in the negative direction is indicated with a dashed line.

Consider p with a small, positive imaginary part passing the branch
point. For Re(p) < &, Im(p3™) < 0 and Im(pz") > 0. As p passes the
branch point, these solutions approach the real axis at p3(£x). As p passes
the branch point on the left, the solutions for p3 turn to the left. Hence
Re(p3™) < p3(&) and decreases, while Re(p3™) > p3(&x) and increases. As
dp;f” /dp < 0 it continues as the solution propagating in the positive direc-
tion, and dpg n /dp > 0 continues in the negative direction (as these gradients
define the direction of the group velocity vector, V). This behaviour is il-
lustrated in the figure. A similar argument applies at branch cuts when the
solutions are real for p < &.

Burridge (1970) and van der Hijden (1987) have discussed in some detail
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the possible singularities of p3(p). Only the branch points on the real axis
are significant, so we have omitted other details.

Thus as Im(p3™) differ in sign unless Tm(p) = 0, analytic continuity of
the solutions from p = 0 (where they are clearly identifiable), allows us to
identify the solutions if Im(p) # 0. Taking Im(p) > 0 and small, we can
identify the positive and negative propagating solutions with Im(p3™) < 0
and Tm(p3™) > 0, respectively. A simple modification of the code and figure
given above illustrates the algorithm. The code becomes

function Exercise61b

% Exercise 6.1b

% added to Addenda and Errata, 15 November 2004

% C12 corrected from c13 to c12 (note figures do not
% alter significantly), 17 May 2007

% illustrate algorithm for finding propagation direction

% slowness surfaces for trigonal alpha-quartz as used in
% Figure 5.8 (p_2 - p_3 crossection of slowness surface)

% Shearer, P.M. and Chapman, C.H., 1988.

% Ray tracing in anisotropic media with a linear gradient,
% Geophys. J., 94, 575-580.

% Bechmann, R., 1958. Elastic and piezoelectric constants
% of alpha-quartz, Phys. Rev., 110, 1060-1061.

% Musgrave (1970, p. 130, 136 and 282, density ~ 2.67 and
% axis in Figure 10.2.1 (i) is reversed)

% Density normalized so units km"2 s7-2

cll = 32.73; % from Shearer and Chapman (1988)
c33 = 40.45;

cl2 = 2.64;

cl3 = 4.49;

c44 = 21.86;

cl4d = -6.76; % sign as Bechmann not Musgrave

b
quartz=struct( ...
’C11’,c¢11,°C12’ ,c12,°C13’,¢c13,°C14’, c14,°C15’, 0,’C16’,0,...
’C22’,c11,°C23’,¢c13,°C24’,-c14,°C25’, 0,’C26’,0,...
’C33’,c11,’C34’, 0,’C35°, 0,’C36°,0,...
’C44°, c44,°C45°, 0,’C46°,0,...
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’C557,c44,°C56° ,cl4, ...
’C667,.5%(c11-c12));
b
cjk = cMatrices( quartz );
% modified from Exercise 5.9
figure
hold on
% loop over 3 slowness surfaces - blue, red and black
cols = [ ’b’ ’r’ ’k’ ];

for n=1:3
cnt = 0; % point counter
dir = +1; % direction indicators

% start from py = O which is always dir=+1
% lots of detail to accurately pick up reversals
for j=91:-.1:-91
theta=(j-1)*pi/180;
ct = cos(theta);
st = sin(theta);
% Figure 10.2.1 (i) in Musgrave (1970)
direction = [ 0 ct st ]17;
% find n-th slowness surface
[ PhaseSlow, GroupVel, Polar ] = ...
AnisoSurfaces( direction , cjk );
py = ct*PhaseSlow(n);
pz = st*PhaseSlow(n);
% solve for p_z with slightly positive imaginary p_y
cp = complex( py, 1.e-8 );
[ oSlow, polarizations, tractions ] = ...
AnisoEigen( [ O cp 1, 1, cjk );
[ c k] = min(abs(oSlow-pz));
% change of propagation direction
% from positive to negative direction
if ( imag(oSlow(k)) > 0 && dir > 0 )
% plot positive direction with solid line
if ( cnt>0 ) plot( ppy(l:cnt), ppz(l:cnt), cols(n) ), end
dir = -1; cnt = 1;
% from negative to positive direction
elseif ( imag(oSlow(k)) < 0 && dir < 0 )
% plot negative direction with dashed line
plot( ppy(l:cnt), ppz(l:cnt), [ cols(n) ’--’> 1)
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dir = +1; cnt = 1;
% continue in same direction

else
cnt =cnt+1;
end
ppy(cnt) = py;
ppz(cnt) = pz;
end
% finish

if (dir > 0 )
plot( ppy(l:cnt), ppz(l:cnt), cols(n) )
else
plot( ppy(l:cnt), ppz(l:cnt), [ cols(n) °’--7 1)
end
end
% units are km/s
axis ([0 .35 -.35 .35])
axis equal
axis manual
print -depsc2 exercise6_1b.eps
return

which uses routines AnisoSurfaces from Exercise 5.9 and AnisoEigen from
Exercise 6.1. The figure, a modification of the previous figure, illustrates the
results, indicating the solutions propagating in a positive direction by solid
lines, and the solutions propagating in a negative direction by dashed lines.
Note, in particular, the section with £, < p < &3 propagating in the positive
direction with ps < 0.

6.2

Programming exercise: Using the results of the previous question (or oth-
erwise), compute the eigenvectors, w, of the matriz, A (6.5.14). Confirm
numerically that with the normalization (6.3.29), the eigenvectors satisfy the
orthonormality condition (6.5.33).

Using the functions from Exercise 6.1 in the following program, the ortho-
normality (6.3.29) is confirmed as the printed output is the matrix — I3
(defined in equation (0.1.5)).
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As the previous figure but with the solutions propagating in a positive direction
indicated by a solid line, and the solutions propagating in a negative direction by
a dashed line. Note, in particular, the section with &4 < p < &3 propagating in the
positive direction.

function Exercise62

% Exercise 6.2

b

% Solve eigen-equation (6.3.14) and check
% orthonormality (6.3.33)

)

% first check orthonormality for an isotropic medium
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px=.2;
isotropic = struct( ’Alpha’, sqrt(3), ’Beta’, 1, ’Rho’, 1.5 );
[ oSlow, polarizations, tractions ] = ...
IsoEigen( px, isotropic );
%

orthonormal = zeros(6,6);

for m=1:6
for n=1:6
orthonormal (m,n) = -tractions(:,m)’*polarizations(:,n)
-polarizations(:,m)’*tractions(:,n);
end
end
orthonormal

% now check for anisotropic (TI) medium

% use Green Horn shale (Jones and Wang, 1981) as an example
% (see Exercise 4.4). Units are Gpa and Mg/m~3

density = 2.42;

GreenHorn = struct(

’Cc11’,34.3,’C12’,18.1,’C13’,10.7,°C14’>, 0,’C15’, 0,’C16’,0,...
’C22’,34.3,°C23’,10.7,°C24°, 0,°C25’, 0,’C26°,0,...
’C33’,22.7,°’C34’, 0,’C35’, 0,’C36’,0,...

’C44’,5.4,°C45°, 0,’C46’,0,...

’C65’,5.4,°C56°,0, ...

’C66°,10.
yA
cjk = cMatrices( GreenHorn );
% solve eigen-equation (6.3.14) for p = .2
yA
[ oSlow, polarizations, tractions ] = ...
AnisoEigen( [ px 0 ], demnsity, cjk );
yA
orthonormal = zeros(6,6);
for m=1:6
for n=1:6
orthonormal (m,n) = -tractions(:,m)’*polarizations(:,n)
-polarizations(:,m)’*tractions(:,n);
end
end
orthonormal

return

6);
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6.3

Programming exercise: Using the results of the previous question (or other-
wise), compute the reflection/transmission coefficients (6.3.23) with (6.3.34)
for anisotropic media. Confirm the reciprocity (6.3.42) numerically. Con-
firm numerically that for isotropic media, the results agree with expressions
(6.3.60) with (6.3.61) and (6.3.62).

Comment: The sign of the coefficients depends on the sign of the eigenvec-
tors. A computer program for solving the eigen-equation (6.3.14) may give
the eigenvectors with arbitrary signs. If the eigenvector signs are not chosen
consistently in the two media, the reciprocity result may have sign inconsis-
tencies. It is vital to remember that reflection/transmission coefficients only
have meaning when given together with the eigenvectors.

Using the function AnisoEigen from Exercise 6.1 in each medium, the fol-
lowing function computes the matrix (6.3.23) of reflection/transmission co-
efficients.

function Rmatrix = AnisoCoeffs( poll, trcl, pol2, trc2 )
% AnisoCoeffs = anisotropic reflection/transmission

yA coefficients

% INPUT:

YA pol1(3,6) = polarizations in medium 1
YA trc1(3,6) = tractions in medium 1

YA pol2(3,6) = polarizations in medium 2
A pol2(3,6) = tractions in medium 2

b

% OUTPUT:

yA Rmatrix(6,6) = full matrix of coefficients
b

% Note:

% the Rmatrix corresponds to equation (6.3.23);

% first 3 columns correspond to waves incident from medium 1;
% last 3 columns correspond to waves incident from medium 2;
% first 3 rows correspond to waves generate in medium 1;

% last 3 rows correspond to waves generate in medium 2;
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% waves are ordered as in eigenvectors;

% the eigenvectors are defined in equation (6.3.29);

% thus writing Rmatrix = ( T_11 T_12 ) with 3x3 sub-matrices,
yA (T_21 T_22)

% T_11 are reflections in medium 1, T_21 are transmissions
% from medium 1 to 2, T_12 are transmissions from medium 2
% to 1, and T_22 are reflections in medium 2;

% the eigenvectors are given by function Aniso_Eigen.

YA

% matrix Q = I_3 W_1"T I_2 W_2 equation (6.3.34)

Q11 = zeros(3,3); Q12=Q11; Q21=Q11; Q22=Q11;

form = 1:3
for n =1:3
Q11(m,n) = -Dot( poll(:,m ),trc2(:,n ) )..
-Dot( trci(:,m ),pol2(:,n ) );
Q12(m,n) = -Dot( poll(:,m ),trc2(:,n+3) ).
-Dot( trci(:,m ),pol2(:,n+3) );
Q21(m,n) = Dot( poll(:,m+3),trc2(:,n ) ).
+Dot ( trcl(:,m+3),pol2(:,n ) );
Q22(m,n) = Dot( poll(:,m+3),trc2(:,n+3) ).
+Dot ( trcl(:,m+3),pol2(:,n+3) );
end
end
% coefficients (6.3.23)
Rmatrix=zeros(6,6);
Rmatrix(4:6,1:3) = inv(Q22); % T_21
Rmatrix(1:3,1:3) = Q12*Rmatrix(4:6,1:3); % T_11
Rmatrix(1:3,4:6) = Q11-Rmatrix(1:3,1:3)*Q21; % T_12
Rmatrix(4:6,4:6) = -Rmatrix(4:6,1:3)*Q21; % T_22

return

In isotropic media, the coefficients can be computed directly using expres-
sions (6.3.60), (6.3.61) and (6.3.62).

function Rmatrix = Zoeppritz( p, isol, iso2)
% Zoeppritz = Zoeppritz reflection/transmission coefficients

% INPUT:

% P = horizontal slowness
A isol.Alpha = medium 1 P velocity
A isol.Beta = medium 1 S velocity
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isol.Rho = medium 1 density
iso2.Alpha = medium 2 P velocity
iso2.Beta = medium 2 S velocity
iso2.Rho = medium 2 density
OUTPUT:
Rmatrix(6,6) = full matrix of coefficients
Note:

the Rmatrix corresponds to equation (6.3.23);

first 3 columns correspond to waves incident from medium 1;

last 3 columns correspond to waves incident from medium 2;

first 3 rows correspond to waves generate in medium 1;

last 3 rows correspond to waves generate in medium 2;

the waves are ordered SV, SH and P;

the SH and P-SV entries in Rmatrix are zero;

the eigenvectors are defined in equations (6.3.51)-(6.3.53);

the normalization is defined in equations (6.3.55)-(6.3.57);

the coefficients are defined by equations (6.3.60)-(6.3.62);

thus writing Rmatrix = ( T_11 T_12 ) with 3x3 sub-matrices,
(T_21 T_22)

T_11 are reflections in medium 1, T_21 are transmissions

from medium 1 to 2, T_12 are transmissions from medium 2 to

1, and T_22 are reflections in medium 2;

Rmatrix obviously contains redundant information due to

reciprocity (6.3.63), zero entries and interchanging media;

the eigenvectors are given by function Iso_Eigen;

the important features of the eigenvectors are the

energy-flux normalization, and that the interface component

displacement is positive (with p positive). Thus for the P

waves, the normal components are in the propagation direction,

and the SV normal components are opposite to the propagation

direction.

Rmatrix=zeros(6,6) ;

ri

= isol.Rho;

r2 = iso2.Rho;
p2=p*p;

)
)

free surface
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if (r1 ==0)

% free-fluid
if ( iso2.Beta == 0 )
% equation (6.4.2)
Rmatrix(6,6) = -1;

% free-solid

else
qa2 = sqrt((1/iso2.Alpha-p)*(1/iso2.Alpha+p));
gb2 = sqrt((1/iso2.Beta-p)*(1/iso2.Beta+p));

% definition (6.3.54)
Omega2 = gb2*qb2-p2;
% definition (6.4.6)
DeltaPV = 4xp2*qa2*qb2+0megal2”2;
% equations (6.4.5)
Rmatrix(6,6) = (4*p2*qa2*qb2-Omega2~2)/DeltaPV;
Rmatrix(4,4) = - Rmatrix(6,6);
Rmatrix(4,6) = 4xp*Omega2*sqrt(gqa2*qb2)/DeltaPV;
Rmatrix(6,4) = Rmatrix(4,6);
Rmatrix(5,5) = 1;
end
elseif ( r2 ==
if ( isol.Beta == 0 )

A

Rmatrix(3,3) = -1;

else
qal = sqrt((1/isol.Alpha-p)*(1/isol.Alpha+p));
gbl = sqrt((1/isol.Beta-p)*(1/isol.Beta+p));

Omegal = gbl*qbl-p2;
DeltaPV = 4xp2*qal*qgbl+Omegal”2;
Rmatrix(3,3) = (4*p2*qal*qbl-Omegal~2)/DeltaPV;
Rmatrix(1,1) = - Rmatrix(3,3);
Rmatrix(1,3) = 4*p*Omegal*sqrt(qalxgbl)/DeltaPV;
Rmatrix(3,1) = Rmatrix(1,3);
Rmatrix(2,2) 1;
end
% fluid
elseif ( isol.Beta == 0 )
% fluid-fluid
if ( iso2.Beta == 0 )
qal = sqrt((1/isol.Alpha-p)*(1/isol.Alpha+p));
qa2 = sqrt((1/iso2.Alpha-p)*(1/iso2.Alpha+p));
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DeltaA = r2xqal+rlx*qa2;
% equations (6.3.7) and (6.3.8)
Rmatrix(3,3) (r2*qal-ri*qa2)/Deltal;
Rmatrix(6,6) = -Rmatrix(3,3);
Rmatrix(3,6) = 2*sqrt(ril*r2*qal*qa2)/Deltal;
Rmatrix(6,3) = Rmatrix(3,6);

% fluid-solid

else

gal = sqrt((1/isol.Alpha-p)*(1/isol.Alpha+p));
ga2 = sqrt((1/iso2.Alpha-p)*(1/iso02.Alpha+p));
gb2 = sqrt((1/iso2.Beta-p)*(1/is02.Beta+p));
Omega2 = gb2*qb2-p2;

Fal = sqrt(2*rixqal);

Fa2 = sqrt(2*r2xqa2);

Fb2 = sqrt(2*r2xqb2) ;

% equation (6.5.9)

DeltaPV = 4x*p2*xqa2*qb2+0mega2~2+rixqa2/(r2*iso2.Beta”4*qal);

% equations (6.5.8)

Rmatrix(3,3) = (4*p2*qa2*qb2+0mega2”2-...
rixqa2/(r2*xiso2.Beta”4*qal))/DeltaPV;

Rmatrix(4,4) = (-4*p2*xqa2*qb2+0mega2~2+. ..
ri*qa2/(r2*iso2.Beta~4xqal))/DeltaPV;

Rmatrix(6,6) = (4xp2*qa2*qb2-Omega2”2+. ..
ri*qa2/(r2*iso2.Beta~4xqal))/DeltaPV;

Rmatrix(3,6) = Fal*Fa2*Omega2/(qal*r2*iso2.Beta”2*DeltaPV);

Rmatrix(6,3) = Rmatrix(3,6);

Rmatrix(4,6) = 2xp*Fa2*Fb2*0mega2/(r2+DeltaPV) ;

Rmatrix(6,4) = Rmatrix(4,6);

Rmatrix(3,4) = -2xp*Fal*Fb2*qa2/ ...
(qal*r2*iso2.Beta"2*DeltaPV) ;

Rmatrix(4,3) = Rmatrix(3,4);

Rmatrix(5,5) = 1;

end
% solid-fluid
elseif ( iso2.Beta == 0 )

gal = sqrt((1/isol.Alpha-p)*(1/isol.Alpha+p));
gbl = sqrt((1/isol.Beta-p)*(1/isol.Beta+p));
ga2 = sqrt((1/iso2.Alpha-p)*(1/iso02.Alpha+p));

Omegal = gbl*qbl-p2;
Fal = sqrt(2*rix*qal);
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Fbl = sqrt(2*ri*qgbl);
Fa2 = sqrt(2*r2*qa2);
% equation (6.5.9)
DeltaPV = 4xp2*qal*qbl+Omegal”2+...
r2*qal/(ri*isol.Beta”4*qa2);
Rmatrix(6,6) = (4xp2*qal*qbl+Omegal”2-...
r2*qal/(ri*isol.Beta~4xqa2))/DeltaPV;
(-4xp2*qal*gqbl+Omegal~2+. ..
r2xqal/(rixisol.Beta”4*qa2))/DeltaPV;
Rmatrix(3,3) = (4*p2*qal*qbl-Omegal”2+...
r2xqal/(rixisol.Beta”4*qa2))/DeltaPV;
Rmatrix(3,6) = Fal*Fa2*Omegal/(ga2*rl*isol.Beta”2*DeltaPV);
Rmatrix(6,3) = Rmatrix(3,6);
Rmatrix(1,3) = 2*p*Fal*Fbl*0Omegal/(r1*DeltaPV);
Rmatrix(3,1) = Rmatrix(1,3);
Rmatrix(6,1) = -2*pxFa2xFblx*qal/ ...
(qa2*ri*isol.Beta~2*DeltaPV);
Rmatrix(1,6) = Rmatrix(6,1);
Rmatrix(2,2) = 1;
% solid-solid
else
% vertical slownesses (6.2.8) and (6.2.9)
gqal = sqrt((1/isol.Alpha-p)*(1/isol.Alpha+p));
qa2 = sqrt((1/iso2.Alpha-p)*(1/iso2.Alpha+p));
gbl = sqrt((1/isol.Beta-p)*(1/isol.Beta+p));
gb2 = sqrt((1/iso2.Beta-p)*(1/iso02.Betatp));
% definitions (6.3.62)
Aap = r2xqal+isol.Rho*qaZ2;
Abp = r2*xqbl+rilxqb2;
Aam = r2xqal-rlx*qa2;
Abm = r2*qbl-rilx*qb2;
mul = ri*isol.Beta”2;
mu2 = r2*iso2.Beta”2;
Bl = mul-mu?2;
B2 = -B1;
Clp = 2*p*x(Blx(p2+qal*qbl)-rl);
Clm = 2*p*x(Blx(p2-qal*qbl)-rl);
C2p = 2*p*(B2x(p2+qa2*qb2)-r2);
C2m = 2xp* (B2*(p2-qa2xqb2)-r2);
D = p2*(ri+r2)°2;

Rmatrix(1,1)
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El = r1-2xp2x*B1;

E2 = r2-2xp2xB2;

Fal = sqrt(2*rix*qal);
Fa2 = sqrt(2*r2xqa2);
Fbl = sqrt(2*rix*qgbl);
Fb2 = sqrt(2*r2xqb2) ;
Gbp = mul*qgbl+mu2*qb2;
Gbm = mul*gbl-mu2*qb2;
Hbl = sqrt(2*mul*qgbl);
Hb2 = sqrt(2*mu2*qgb2) ;
% denominators (6.3.61)
DeltaPV = Aap*Abp-Clp*C2p+D;

DeltaH = Gbp;
% non-zero coefficients (6.3.60)
Rmatrix(3,3) = (Aam*Abp+Cilm*C2p-D)/DeltaPV; %P1P1
Rmatrix(6,6) = (-Aam*Abp+C1p*C2m-D)/DeltaPV; P2P2
Rmatrix(1,1) = (-Aap*Abm-Clm*C2p+D)/DeltaPV; %Vivi
Rmatrix(4,4) = (Aap*Abm-Clp*C2m+D)/DeltaPV; wV2v2
Rmatrix(3,6) = FalxFa2*x(qbl*E2+qb2*E1)/DeltaPV; %P2P1
Rmatrix(6,3) = Rmatrix(3,6); %P1P2
Rmatrix(1,4) = FblxFb2*x(qal*E2+qa2*E1)/DeltaPV; %V2V1
Rmatrix(4,1) = Rmatrix(1,4); YA
Rmatrix(1,3) = -pxFal*Fbl*(2xqa2%qb2+«E1*B2+. . .
E2% (E2-r1))/(r1*DeltaPV); %P1V1
Rmatrix(3,1) = Rmatrix(1,3); %ViP1
Rmatrix(4,6) = -p*Fa2xFb2x(2*qal*qbl*E2*B1+. ..
E1*x(E1-r2))/(r2*DeltaPV) ; %P2V2
Rmatrix(6,4) = Rmatrix(4,6); %V2P2
Rmatrix(3,4) = -p*FalxFb2x(2+%B2*qbl*qa2+. ..
E1-r2)/DeltaPV; %V2P1
Rmatrix(4,3) = Rmatrix(3,4); %P1V2
Rmatrix(1,6) = -pxFa2+Fbl*(2xBl*qb2*qal+. ..
E2-r1)/DeltaPV; %P2V1
Rmatrix(6,1) = Rmatrix(1,6); %V1P2
Rmatrix(2,2) Gbm/DeltaH; %H1H1
Rmatrix(5,5) -Gbm/DeltaH; %H2H2
Rmatrix(2,5) Hb1*Hb2/DeltaH; %H2H1
Rmatrix(5,2) Rmatrix(2,5); %H1H2

end
return
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These are compared for the isotropic media used in Figure 6.8 at one
slowness.

function Exercise63a

% Exercise 6.3 - first example

b

% compute reflection/transmission coefficients using
% (6.3.23) or (6.3.60), (6.3.61) and (6.3.31)

b

% a slowness value

px = .2;

yA

al = sqrt(3);
bl =1;

rl =1;

a2 = 1.270%*a1l;
b2 = a2/2;

r2 = 1.072%r1;
isol = struct( ’Alpha’, al, ’Beta’, bl, ’Rho’, rl );
struct( ’Alpha’, a2, ’Beta’, b2, ’Rho’, r2 );
% make cjk matrices for isotropic media
cll = ri*xalx*al;
c44 = ri1*blx*bl;
cl3 = cl11-2%c44;
aniso = struct( ...
’C11’,c11,°C12’,c13,°C13’,c13,°’C14’, 0,’C15’, 0,’C16’,0,...
’C22’,c11,°C23°,c13,°C24°, 0,’C25’, 0,’C26°,0,...
’C33’,c11,°C34’, 0,°C35’, 0,°’C36°,0,...
’C44° ,c44,°C45°, 0,’C46°,0,...
’Cb5’,c44,°C56°,0,...

iso2

’C66° ,c44);
cjkl = cMatrices( aniso );
cll = r2*a2*a2;
c4d = r2*b2*b2;
cl3 = cl11-2x%c44;

aniso = struct( ...
’C11’,c11,°C12’,c13,°C13’,c13,°’C14’, 0,°’C15’, 0,’Ci6’,0,...
’C227,c11,°C23’,c13,°C24°, 0,’C25°, 0,’C26°,0,...
’C33’,c11,’Cc34’, 0,’C35’, 0,’C36’,0,...
’C44° ,c44,°C45°, 0,°C46°,0,...
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’C55’,c44,°C56°,0, ...
’C66° ,c44);

cjk2 = cMatrices( aniso );
yA
% with Zoeppritz (6.3.60), (6.3.61) and (6.3.31)
rt = Zoeppritz( px, isol, iso2 )
% (6.3.23) using (6.3.51), (6.3.52) and (6.3.53)
[ osl, poll, trcl ]
[ 0s2, pol2, trc2 ] IsoEigen( px, iso2 );
Rmatrix = AnisoCoeffs( poll, trcl, pol2, trc2 )
% (6.3.23) using (6.3.14) with (6.3.29)
[ osl, poll, trcl ] = AnisoEigen( [ px 0 ], r1l, cjkl );
[ 0s2, pol2, trc2 ] = AnisoEigen( [ px 0 ], r2, cjk2 );
Rmatrix = AnisoCoeffs( poll, trcl, pol2, trc2 )
return

IsoEigen( px, isol );

The results from function Zoeppritz and AnisoCoeffs using IsoEigen or
AnisoEigen all agree and are

-0.0629 0 -0.0413 0.9966 0 0.0325
0 -0.0800 0 0 0.9968 0
-0.0413 0 0.1532 -0.0284 0 0.9869
0.9966 0 -0.0284 0.0602 0 0.0479
0 0.9968 0 0 0.0800 0
0.0325 0 0.9869 0.0479 0 -0.1504

In the final case using AnisoEigen, the equality depends on function TidyEigen
reproducing the order and signs of the eigen-solutions.

Finally we give results for coefficients from an isotropic/TI medium. The
main program is

function Exercise63b

% Exercise 6.3 - second example

)

% compute reflection/transmission coefficients using
% (6.3.23) for isotropic/TI

b

% a slowness value

px = .2;

% an isotropic medium
al = sqrt(3);

bl = 1;
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rl =1;

isol = struct( ’Alpha’, al, ’Beta’, bl, ’Rho’, rl );

% a TI medium - Green Horn shale (Jones and Wang, 1981)

% (see Exercise 4.4). Units are Gpa and Mg/m"3

r2 = 2.42;

GreenHorn = struct(

’Cc11’,34.3,’C12°,13.1,’Cc13’,10.7,°C14°, 0,’C15’, 0,’C16’,0,...

’C22’,34.3,°C23°,10.7,°C24°, 0,’C25°’, 0,’C26’,0,...
’C33’,22.7,°C34’, 0,’C35’, 0,°C36’,0,...
’C44° ,5.4,°C45°, 0,°C46°,0,...
’Cb5’,5.4,°C56°,0, ...

’C66°,10.6);

yA

cjk2 = cMatrices( GreenHorn );

yA

[ os1, poll, trcl ]

[ 0s2, pol2, trc2 ] AnisoEigen( [ px 0 1, r2, cjk2 );

Rmatrix = AnisoCoeffs( poll, trcl, pol2, trc2 )

return

IsoEigen( px, isol );

and the results

-0.3948 -0.0000 -0.2581 -0.0000 0.8499 0.2349
-0.0000 -0.5403 -0.0000 0.8415 -0.0000 0.0000
-0.2581 0.0000 0.5675 -0.0000 -0.1591 0.7655
-0.0000 0.8415 0.0000 0.5403 0.0000 -0.0000
0.8499 -0.0000 -0.1591 -0.0000 0.2219 0.4507
0.2349 -0.0000 0.7655 -0.0000 0.4507 -0.3946

6.4

In anisotropic media with up-down symmetry, e.q. isotropic, TIV, orthorhom-
bic or generally monoclinic, the eigen-system (6.3.14) must reduce to a third-
order system for p2, i.e. the eigenvalues of equation (6.3.14) must occur in
positive-negative pairs, symmetric about the horizontal plane of symmetry.
Obtain the third-order system, and demonstrate that it gives the known re-
sults for isotropic and transversely isotropic media (Section 5.7.1).

In anisotropic elastic media with up-down symmetry, i.e. the slowness sur-
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faces are symmetric under reflection in the horizontal plane, say the = - y
plane, the eigen-system (6.3.14)

Aw =p,w,

must have some special structure. In particular, we expect the eigenvalues to
be positive and negative pairs, and the equation to reduce from sixth order
to a cubic in p2. Up-down symmetry applies in isotropic, TIV, orthorhombic
media and more generally in monoclinic anisotropic media. It is necessary
to solve the eigen-system for Snell’s law at interfaces, and for ray tracing in
1D media, so analyzing the structure of the equations in up-down symmetric
media is important.

In monoclinic media with a horizontal, reflection symmetry plane, elastic
parameters where the vertical index appears an odd number of times must
be zero. Thus in the Voigt notation (4.4.13), the elastic parameter 6 x 6
matrix must be of the form

Cii Ci2 Ci3 0 0 Cis

Ciz2 Oy Co3 0 0 Co

Cc_ Ci3 Co3 C33 0 0 Cg
0 0 0 Cu O 0
0 0 0 0 Cs5 O

Cie Cp C36 0 0 Cegs

Isotropic media (4.4.53) and TIV media (4.4.59) are obviously special cases
of a monoclinic medium. The 3 x 3 stiffness matrices c;;, (4.4.39) are

Cii Cis O Ces C26 O
cip = Cis Ces O cpp=| Cyp Cp 0
0 0 C55 0 0 C44
Css 0 0 0 0 (s
C33 0 Cu O Co3 = 0 0 (a3
0 0 Cs3 0 Cu O
0 0 GCss Cie Ci2 O
c31 0 0 0 ci2=1| Ce6 Co6 O
Ciz C3 0 0 0 0

The matrix A is constructed from these parameter matrices, and if it is

divided into four 3 x 3 sub-matrices A,

N

A
Aoy

Ao
Ay

)
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we obtain (6.3.15), (6.3.16) and (6.3.17)

—1
Az = Al = —pycpscy

A = —ciy

Ay = PnPrCny — pI— pnpucn?)cgglc?)m (61)

with summations over indices 1 and 2. Thus in monoclinic media we have

1/Cs5 0 0
A = -— 0 1/044 0
0 0 1/C33
0 0 (p1Cis+ p2Cs6)/Cs3
Ay = = - 0 0 (p1Cs6+ p2Cas)/Css
b1 P2 0

Matrix Ao has many more terms but is constructed from matrices I, cq1,
€22, €12 and

C%/Cs3  C13C36/Cs3 0

C13C3 €31 = C13C36/Cs3  C35/Cs3 0
0 0 Css
C3/C33  C3C36/Cs53 0
C23C33Ca = C23C36/Cs3  C33/Css 0
0 0 Cu
. C13C36/Cs3 C13C23/C33 0
C13C3 Ca = (0230531031) = C3;/C33  C23C36/Cs3 0
0 0 0

The important thing is that although there are lots of terms, all these ma-
trices and therefore Ag; are of the form

A =

o X X
o X X
X © O

where the cross indicates a non-zero element. Overall the matrix A has the
form

O X X X © O
O X X X © O
X © O O X X
X © O O O X
X © O O X O
S X X X © O
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Noting where the zero elements are, we interchange the third and sixth rows
and columns in the eigen-system, corresponding to vs and o33, which can
be achieved by pre- and post-multiplying by the matrix

1 00 000
01 00O0O
Ty — 00 0O0O01
000100’
00 0O0T1QO0
00100O00O0

and obtain a modified eigen-system
Aw = an/7

where

! 0 ,12
A" =1I36Al3 = / o |
21

with the diagonal 3 x 3 blocks zero, and

U1
(2p)
/
o3 w
w =I3w = Bl = L), say.
J13 W2
023
U3
The sub-matrices are
A Ais Asg
/
A, = Agy Ags  Ags
Aes Aes  Ass
Ay Ay Age
/
AL, = As1 Asy Ase
Az1 Az Ass
The eigen-system can be expanded as
/ / /
12Wo = DPnWi
/ / /
Ay Wi = paWy,
and hence
' Al r 2./
( 12 21) W1 = DPpWi

( /21A/12)W/2 = DPpWs.
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These two eigen-systems are equivalent as both A/, and A); are symmetric
(as A15 = Agq = 0, Ayo = Ay from elements of matrix Agy, and A1 = Agy,
A23 = A65, A46 = A31 and A56 = A32 as A.22 = A{l) The matrix A/12A/21
has right-eigenvector w} and left-eigenvector w); for the matrix A/j,A%;,
the roles of the eigenvectors are reversed.

Thus we have reduced the sixth-order eigen-system to a third-order system
for the eigenvalues p2. Hence, the original eigenvalues must be in positive
and negative pairs. In the eigenvectors, w’, the second part, wj, changes
sign with p,. These results agree with the physical requirements in media
with up-down symmetry. There is always a sign ambiguity in the definition
of eigenvectors. The signs can always be chosen to be consistent with the
above rule that w} does not change sign but w/ changes sign with p;,.
Note that the signs in definitions (6.3.5), (6.3.51), (6.3.52) and (6.3.53) are
consistent with this rule.

Isotropic case (2 parameters): The matrix A in an isotropic medium is
given by equation (6.3.47). Thus the sub-matrices are

pw 0 p
2 = - 0 1/w 0
p 0 »p
np* —p 0 —pA/(A+2p)
5 = 0 pp* — p 0 ,
—pA/(A+2p) 0 —1/(A +2p)

where 7 is defined in equation (6.3.48). The 3 x 3 matrix for the eignevalues

Py, is

L _ 3A+4p, 2 O Ap
o B A R2p , ) pO+2m P
ApAy = 0 w P 0
w
2\ Ap p+Ap?
2p (p — 2pp?) M2n 0 2n

Although the SH eigenvalue is obvious, the P-SV result is not obvious but
straightforward algebra shows

124321 n L n )‘"’_2/1' n )

giving the expected eigenvalues.
TIV case (5 parameters): From the matrix A (6.3.64), the sub-matrices
are
1/Cyq 0 p
e = — 0 1/Cys 0O
p 0 »
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p*(C11 — Ci3/Cs3) — p 0 —pCr3/Cs3
o = 0 p*Co6 — p 0
—pC13/Cs3 0 —1/Cs3
The eigen-matrix is
,12A,21 =
P 2 C2,4+C13C14—C11C33 Ci13+Cyq
Caaq +p C33C44 0 P 0530
L p2 Cee 0
2 oo o Caa Caa .
3 C13—C11033 13+C33 P 2 (i3
p Cs3 TP G, 0 Ty TP Ty

After some algebra, the eigenvalue equation can be reduced to
AL — 21 =

1 ( 1 9 Aes
Ags A \Au ¥ A
where B is defined by equation (5.7.33) with (5.7.31) and (5.7.20), and just
here A;; = C;;/p are the density-normalized elastic parameters not elements
of the matrix A. Clearly the ¢SH root agrees with result (5.7.24), and the
qP-qSV roots from the quadratic for p? agree with solutions (5.7.32).
monoclinic (12 parameters): We discuss the general monoclinic system
next with 12 parameters, as in the simpler orthorhombic medium only 3
more parameters are zero. The general 3 x 3 matrices of elastic parameters
(4.4.39) have been given above. The sub-matrices A1 and Agy (6.3.15) and

A9 (6.3.16) of the matrix A have been given above and the elements of the
sub-matrix Ag; (6.3.17) are

An = pi(Ci — Cfs/Cs3) + p3(Ce — C3/Cs3)
+ 2p1p2(C16 — C13C36/C33) — p

Asy = pi(Ces — C35/Cs3) + p3(Caz — C33/Cs3)
+ 2p1p2(Ca — C23C36/C33) — p

Ags = —p

Asi = Ag = pi(Cis — C13C36/Cs3) + p3(Cas — Ca3C36/Cs3)
+ p1p2(Ci2 + Cgg — C13Ca23/Cs3 — C35/Cs3)

Agt = Agz = Ayz = As3 = 0.

- pi) [A33A44pi — Bp? + (Anp® — 1)(Awp* - 1),

The matrices of the third-order system are
1/Cs5 0 p1
Ay, = - 0 1/Cy p2
n P2 p
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o
91 =
An Asy — (p1C13 + p2C36)/Cs3
As1 Aso — (p1C36 + p2Ca3)/Cs3
— (p1C13 +p2C36)/C33  — (p1C36 + p2Ca3)/Cs3 —1/p

where the 3 long elements in the upper-left 2 x 2 have not been repeated. It
is easily checked that these results reduce to the isotropic and TIV results.

To find the eigenvalues of the third-order system we need to expand and
solve

/12A/21 —P%I =0.

This reduces to a cubic, but having found the matrices A, and A}, alge-

braically there is little point in proceeding further as the algebra does not

simplify. It is straightforward to find the coefficients of the cubic numeri-

cally. An analytic solution is available for a cubic. Although this used to be

textbook stuff, it is perhaps less well known now. The procedure is:
consider the cubic in its standard form

x3+pa:2+qa:+r:0.

This can be reduced to

y> +3Qy —2R =0,

where
_ p
y = ;13—1-3
1
30 = q—=p?
Q ¢— 3P

p 2p?
oR = 2,22,
3<q 9) "

We define a discriminant
D =Q*+ R%

If D > 0, there is one real root, and if D < 0 there are three real roots
(multiple roots if D = 0). The following algorithms require the special case
of a triple root when Q = R = 0, and y1 = y2 = y3 = 0, to be handled
separately.

If D > 0 we make the transformation

Yy = 2Q1/2 sinh g,
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and the cubic reduces to

The standard logarithmic formula for the inverse hyperbolic sine gives

9_1 S
3 an/Q’

where

S:(R+\/5)1/3.

Substituting, this gives the root
y1 = S+ T7
where
1/3

rT=-Q/S=(R-VD)".

If R < 01it is best to calculate T first and derive S from it.
If D < 0, then we make the transformation

y=2(~ Q)" cos

and the cubic reduces to
R

(necessarily @ < 0). The solutions are

Y1 = 2v —Qcosg

cosf =

3

0 2
Y1 = 2v — cos<§—|—§)

0 4
Yy = 24/ — cos<§+?ﬂ).

orthorhombic case (9 parameters): An orthorhombic medium is char-
acterized by a stiffness Voigt matrix

c_ Ci3 Co3 C33 0 0 O
0 0 0 Cu O 0
0 0 0 0 Cs5 O

0 0 0 0 0 Ces
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(Schoenberg and Helbig, 1997, and references therein). This results in some
simplification of the monoclinic results above, but in general it is probably
best to proceed numerically from the matrices A/, and A%, to the solution
of the cubic. Only if p; = 0 or po = 0, i.e. on a plane of symmetry, do the
results simplify significantly. Then the form simplifies to that in TIV media,
and the solution reduces to a simple equation for the ¢S wave transverse to
the symmetry plane, and a quadratic equation for the gP-¢S waves in the
symmetry plane.
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Differential systems for stratified media

7.1

Show that the same differential systems (7.1.4) with the definitions (7.1.6),
(7.1.33) and (7.1.84) for acoustic or isotropic elastic media, apply in cylin-
drical coordinates, except that the components of the vector w are trans-
formed cylindrical components (see Ezercise 4.11).

Algebraic details can be found in Takeuchi and Saito (1972). See also Chap-
man and Orcutt (1985)f. We define cylindrical basis functions

Y (r, ¢) = Jp(kr) e ™?,

and write the solution as

_ ! 208 LOYE™Y it
U= iwp <w1 or +w2r ¢ )e

1 1Oy YN
Yo = iwp <w1r ¢ w2 or )e
v, = w3Y "Wt

The functions w;, components of the vector w, depend on z, w, p and m; the
r and ¢ dependence is contained in the function Y™(r,¢). The equations
of motion in cylindrical coordinates are given in Exercise 4.11. Following
Takeuchi and Saito (1972), together with the constitutive equations, these
reduce to (7.1.4)

—w = iwAw,
dz

where the matrix A is given by equation (6.3.47) (which contains the acoustic

1 Chapman, C.H. and Orcutt, J.A., 1985. The computation of body wave synthetic seismograms
in laterally homogeneous media, Rev. Geophys., 23, 105-63.
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(7.1.6), SH (7.1.33) and and P-SV (7.1.34) systems). The development in
Chapman and Orcutt (1985) includes the source terms.

7.2

Investigate how the elastic matriz (7.1.34) is modified if buoyancy forces
due to gravity are included. This result would be relevant in extremely soft
sediments. How are the velocities and eigenvectors modified? A useful pub-
lication is Gilbert (1967).

There are two effects due to gravity: there is a buoyancy force due to changes
in density from the dilatation; and vertical motion changes the stress due
to the hydrostatic pressure gradient. An early publication with the re-
quired result is Biot (1940)f. A full development can be found in Aki and
Richards (1980, pp. 365-7; 2002, pp. 358-60), which includes the effect of
self-gravitation which we do not need here.

The equation of hydrostatic equilibrium is

—pgk=VP= —Vo,.

(remember k and z are positive upwards, and o,, becomes increasingly
negative with depth). The equation of motion (4.5.35) is modified to

ov 813]' ~ ~

— = _—4f V-(pu)k —V(pgk-u).

Yo o, TEHY (pu) (pgk - u)

The first extra term is the buoyancy force due to the dilatation. The decrease
in density is V - (pu) giving the vertical buoyancy force. The second extra
term is due to the change in 0., due to the displacement k - u = u, in the
hydrostatic gradient. Expanding these two terms with the constraint that
the pressure gradient is vertical, we obtain

9V - (pu)k — V(pgk-w) = pg o (ugk — u.i).
Thus the transformed equations of motion are modified so
—iwvy, = fy+iwpog, + % + ppgu,
—iwv, = f,+iwpos, + g;z — PPgUz,

1 Biot, M.A., 1940. The influence of initial stress on elastic waves, J. Appl. Phys., 11, 522-30.
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(Biot, 1940, equation (22); Aki and Richards, 1980, equation (8.59) and
2002, equation (8.60)) and the differential system (7.1.34) has extra terms

A= — Agg =229
iw

equivalent to the result in Gilbert (1967).

From the above equations of motion, the effect of gravity is to introduce
a term that is equivalent to a body force that is proportional to but perpen-
dicular to the particle velocity. We would therefore expect the rectilinear
particle motion of plane waves, i.e. longitudinal for P waves and transverse
for SV waves, to be distorted and to become slightly elliptical. This can be
analyzed by investigating the perturbations to the eigenvalues and vectors
of the matrix A.

We use normal perturbation theory, e.g. Section 10.2.1. The eigen-equation
(6.3.14) becomes

(A + 5A)(WZ + 5Wz’) = (Qi + (5qi)(wi + 5WZ‘),

where the unperturbed matrix A is given by equation (7.1.34), the pertur-
bation is

ppg (0 O
A= -
0 iw<11 O)

(I, is defined in equation (0.1.5)), the unperturbed eigenvalues are given
by equations (6.2.8) and (6.2.9), and the unperturbed eigenvectors by equa-
tions (6.3.51) and (6.3.53). The small (dimensionless) parameter is pg/w.
The orthonormality relation between the eigenvectors is given by equation
(6.3.33). The perturbed eigen-equation gives

0Aw; +Adw; = q; ow; + (5qu,

to first order.
Pre-multiplying by wg, we obtain the eigenvalue perturbation

Because A w; gives a term orthogonal to the particle velocity, this expres-
sion reduces to zero, i.e. dw; = 0 for all 4. Gravity does not affect the wave
velocity (to first order).

The eigenvector perturbation can be expanded in terms of the other eigen-
vectors (as they are orthonormal). Pre-multiplying the perturbation equa-
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tion by w,ﬁ, where k # i, we obtain

1 wi I, w;
(5wi:—@ k1 L W

1w ki w}iwk qi — 9k

For a up-going SV wave, the polarization of the unperturbed eigenvector is

43
g = wi .
and the perturbation is

N N TR RS a’p
6g_w12iw[qg<p> a2—52<52%>]'

Similarly for an up-going P wave, the unperturbed polarization is

o
and the perturbation is

e -p) 2 0*qa
5g—w32iw [%( o ) 042—52( _ﬁzpﬂ.

The perturbations tilt the polarization slightly and make it slightly elliptical.

7.3

Investigate how the differential system (7.1.4) behaves for elastic waves, i.e.
result (7.1.34), as the shear modulus, u, tends to zero. How is this compatible
with the fluid limit, when the tangential displacement is discontinuous at
interfaces? Gilbert (1998) has discussed numerical schemes for solving the
differential system as p — 0.

In the limit u — 0, the differential system matrix A (7.1.34) becomes sin-
gular. The eigenvalues = gg also become singular. In a transitional region
where 1 is small, this can lead to numerical difficulties solving differential
systems such as (7.1.25) with (7.1.34).

Gilbert (1998) has suggested approximations that give differential systems
that can be solved when p is small. The shear waves are suppressed by
imposing the constraint

Vxu=0,
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SO
Oug,  Ou, o
0z oz |wPu=
Thus
S <8um+8uz)_ ~ oumw
ze = B 0z or ) HPUz;
so the differential becomes
d (%% (%%
P Uy —iwA | wv, ,
Ozz Ozz
where
0 p 0 (%%
A= —pNQA+2p) 0 —1/(A+2p) v, |,
0 — ufd 0 Oz

with Q defined in equation (6.3.54). This equation has eigenvalues + ¢, and
0, i.e.

p p
A + qa = *qa + qa
— uf? — ufl
1
A 0 =0

A further approximation can be obtained if we take p as constant. Dif-
ferentiating 0,, = — 2upv, and substituting for both do,,/0z and dv,/0z
from the differential system (7.1.25) with (7.1.34), we obtain

POz = — ﬂQUx-

Then the above differential system reduces to
dZ Uzz UZZ

A:( 0 (pQA/uQ—l)/(AJr?u))
— uf2 0 ’

with

Gilbert (1998) has discussed how the boundary conditions must be applied
to these reduced differential equations.
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In addition, he discusses an alternative using a massive, elastic interface
(MEI) (a thin layer, thickness €, with constant parameters. In the solution
across the MEI, the displacement is constant and the traction has a discon-
tinuity (saltus)). Combining the first and fourth, and second and third rows
of the differential system (7.1.34) we obtain

do. dv, . 2
L bug, = it -pu
dog, dv,
& Vaz

Integrating these equations gives

= iw((A +2)p% = v

[Uzz] = lw (,ap2 - ﬁ) Uz
[sz] = iw ((;\ + 2ﬂ)p2 - ﬁ) Uz,

where i = pe, A = \e and p = pe. The virtue of the MEI conditions is that
there is no singular behaviour as u — 0. For SH waves, the MEI condition
becomes a saltus

[ny] =iw (/]p2 - ﬁ) Uy

7.4

Use the propagator method to write down the solution in the transform do-
main for a homogeneous layer over a homogeneous half-space, without using
the ray expansion method, i.e. using the Haskell matriz (7.2.4). Show that
the complete response can then be expanded into terms that can be identified
as the reverberating rays in the layer. First do this for SH waves (relatively
simple), and then for P — SV waves (algebraically messy). The advantages
of applying Kennett’s ray expansion method to the propagator should now be
obvious!

Using the eigenvectors (6.3.52) for SH waves, it is straightforward to form
the propagator for the SH system (7.1.33)

Pz, 2) = cos wqg(z — 2o) — (i/ngp) sinwqg(z — 2p)
’ — (ipgp) sinwqp(z — 20) coswqg(z — 2p)
(cf. acoustic propagator (7.2.6) — see Exercise 8.5). This is rows and

columns 2 and 5 of the full propagator.
Consider a homogeneous layer of thickness d and properties indicated by
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a subscript 1 over a homogeneous half-space indicated by subscript o (for
simplicity as we are only considering SH waves we drop the subscript g
from ¢). The top of the layer is a free surface at z = z;. In the half-space,
the solution must be a down-going wave so just below the interface the
transformed solution must be of form (6.3.52)

w(z2—0)2< v )Zaw2< ! )7
Oyz H242

where a is an unknown amplitude. Applying the propagator (C.1.9) with
a unit source in the y direction infinitesimally below the free surface (z5 =
z1 — 0), the solution at the free surface (zg = 21) is

< Uy ) _ < coswqid — (i/mq1) sinwaqid )

0 — (ip1q1) sinwqid cos wqid

><< 1 a (0
p2qz ) (2p12g2)t/? I

Eliminating the amplitude a, we obtain

1 p1q1coswqid — ipage sinwqid
H1q1 p2qe cos wqrd — ip1qy sinwqrd
1 1+ 7‘22 e2i wq1d
p1qr 1 — Ty etiwnd’
where 732 is given in equations (6.3.60), (6.3.61) and (6.3.62). Expanding
the denominator binomially, we obtain

1 = .
vy = —— <1 +2) Ty e2qu1d> ,

o n—1

’Uy ==

which can be recognized as the ray expansion in the layer. The first term
is the direct ray, and the summation is over reverberations in the layer —
the factor 2 occurs because the up- and down-going waves double (6.6.11)
as the free surface reflection coefficient is unity (6.4.5).

We leave as a further exercise the more general situation where zg # 23
and/or zr # z1. Then we obtain terms

eiwa\zR—zs\ + 7—22 eiwa(zR+zs—222)
i wgr (221 —2r— i wgr (2d—|2r—
+ elwar(2z1—2r—25) T30 elwai (2d—[2r Zs|)7

times the reverberation series.
The same problem for P-SV waves is similar except 2 x 2 matrices replace
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scalars. For simplicity we consider a point force in the z direction on the
surface. Then the solution on the free surface is

< V(gl) ) :P(Zl,ZQ)WQa— < E ) s

where W is the 4 x 2 matrix of down-going eigenvectors from equations
(6.3.51) and (6.3.53). The propagator can be calculated from (7.2.4) or more
simply from expression (7.2.201). However, the propagator is full and if we
expand and substitute the progagator, and then proceed with the algebra
to eliminate the unknown 2 x 1 amplitude vector a, it is very difficult to
recognize the reflection coefficients. Instead we substitute expression (7.2.4)

and obtain
V(Zl) _ iwp.d 0 i 0
< 0 ) — W]_e Q < a 1; )

where the matrix Q is defined in equation (6.3.22). Substituting expression
(6.3.21) for Q we obtain

V(Zl) _ WH(I)l ng(I’l_l 7—117—2_1121 . 9
0 W21(I)1 WQQ(I’I_I 72_11& k ’
where W;; are the sub-matrices of the eigenvector matrix Wy, T;; are sub-
matrices of the coefficient matrix (6.3.23) and the 2x2 diagonal phase matrix

1S
eiwqu 0
P = < 0 eiwqad ) .

Eliminating the vector a, we obtain
1 e
v(z1) = (Wn‘I’lTu + Wi @) ) (Wzl‘I’lTn + Word; ) k,

where T 11 is the reflection matrix from the interface at z = z9. The reflection
coefficient from the free surface z = z; is (6.4.4)

Ty = — Wy Wy

(as the two coefficient matrices have different subscripts we do not bother
to indicate the interface). Manipulating the above matrix expression (after
the binomial expansion, two series are combined into one), we obtain

v(z1) = (Wllq)lTll + W12q’1_1) (I- ‘I>1T22‘I>1T11)_1 ¢1W2_21R

<W12 +h) (2:T1®) (7224’1711@1)”) W k.

n=0
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where

h =Wy, + WpT 9,

are the interface polarizations at the free surface (cf. Section 6.6). The terms
in this expression can be recognized as all the reverberating rays expected
in the layer.

If instead of expanding the inverse matrix binomially, we invert the 2 x 2
matrix, the denominator of the complete response will contain the determi-
nant

I—®1T20® T =
1 — Ty T 93 — To6T33P7, — 2T46T1305P0
— (T Too T + T T Ty — Taa T Too Tos — Tig T ) D302,

In this expression, 744, 746 and 7Zgg are the reflection coefficients from the
free surface contained in the sub-matrix T o5, and 771, 713 and 733 are the re-
flection coefficients from the interface contained in the sub-matrix T1; — as
the coefficient-type indices differ, we have not indicated the different inter-
faces. We have used the symmetry of these sub-matrices. The phase factors
®3 and @, are the diagonal elements of the matrix ®1, i.e. 3 = exp(iwgpd)
and &, = exp(iwqad). The first five terms in this expansion can be recog-
nized as ray reverberations. In order they are: SSS, PPP, SPS (and PSP),
SPPSS and SSPPS, where each symbol represents a segment and the first
and last partial segments are down-going. The last two terms do not repre-
sent ray groups (and have the wrong sign). Only in the complete binomial
expansion do these terms cancel (Cisternas, Betancourt and Leiva, 1973). A
partial expansion will contain non-physical terms. The determinant is not
the proper expression to be expanded into a power series to obtain rays,
when two ray types exist.

As already mentioned we have not attempted to expand the propagator
matrix and recognize the reflection coefficients. The real algebraic difficul-
ties of obtaining the complete response as a ratio of just single numerator
and denominator functions, and expanding to obtain the ray expansion, are
encountered with more than one layer.

7.5

Further reading: A differential system similar to the ordinary differential
equation (7.1.4) applies in a stratified sphere when the elastic parameters are
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a function of the spherical radius. The horizontal derivatives are removed
from the partial differential equations by the generalized Legendre transform
(see Takeuchi and Saito, 1972, for the derivation of the differential system,).
A fundamental difference compared with the cartesian system is that the ma-
triz A depends explicitly on the radius, r, so even in a homogeneous layer,
a fundamental solution cannot be written as equation (7.2.2). The funda-
mental solution can be written in terms of spherical Bessel functions (see
Phinney and Alexander, 1966, for the solutions). Although the fundamental
matrix 1s more complicated, the matrix still has symplectic symmetries and
the inverse fundamental matriz needed to form the propagator is known with-
out explicitly inverting the fundamental matriz (first given by Teng, 1970,
although without using the symplectic symmetries).

For the sake of completeness we give the ordinary differential system for a
spherically stratified sphere. The result can be found in Takeuchi and Saito
(1972) with the simplification here of ignoring gravity. We define spherical
basis functions

Y6, 6) = P (cos 8) €™,

where P*(cos ) are the Legendre polynomials. We write the solution as

1
vy = —w3Y "
r
o ( LCU ay,;ﬂ>
v = iwpr? 190 T 2 5ing 0¢
! ( 1 oy aY,;ﬂ>
Yo = iwpr? “lsing 0¢ 2799 )

where

vn(n+1
b= (rw )
The functions w;, components of the vector w, depend on 7, w, n and m; the
0 and ¢ dependence is contained in the function Y,"(6,¢). The equations
of motion in spherical coordinates are given in Exercise 4.11. Following
Takeuchi and Saito (1972), together with the constitutive equations, these

reduce to (7.1.4)

EW = ilwAw.

The matrix A separates into two parts (cf. equations (7.1.33) and (7.1.34)).
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These are
A(25)%(25) _ 2/irw —1/p
up? —p —2u/r’w?  —2/irw |’
and
A (1346)x (1346) _
2/irw —p —1/p 0
— g - x/irw 0 -
np?* — p —2u/r*w? 2(p/irw —2/irw  —p¢ |’
— 2(p/irw —p+4¢/r2w? —-p  x/irw
where
b= 1+ 2)
n Ap(A + p) /(A +2p)
¢ = pBA+2u)/(A+2p)
£ = MNA+2p)

X = (A=2u)/(A+2p).

An early publication with these equations is Alterman, Jarosch and Pekeris
(1959)1 and they have appeared in many subsequent publications, e.g. Aki
and Richards (1980, equation (9.56); 2002, equation (9.81)), Chapman and
Phinney (1970, 1972), Chapman and Orcutt (1985)f. A most complete
derivation is due to Phinney and Burridge (1973)§. The terms and factors
have been arranged in our equations to emphasize the symmetries and sim-
ilarities with the matrix (6.3.47), particularly as rw — oco. It is straightfor-
ward to expand the matrix in a series in inverse powers of rw and include this
in the asymptotic methods, WKBJ (Section 7.2.5) or Langer (Section 7.2.7)
(Chapman and Orcutt, 1985).

Note that because of the way vy and vy are defined in terms of wy and
wa, the system separates into a 4 x 4 P-SV system (known as the spheroidal
system) and a 2x 2 SH system (known as the toroidal system). The solutions
w have been scaled with radius to make tr(A) = 0.

As the matrix A depends on the radius r, its eigenvalues are not of much
t Alterman, A., Jarosch, H. and Pekeris, C.L., 1959. Oscillations of the Earth, Proc. R. Soc.,

A252, 80-95.

1 Chapman, C.H. and Orcutt, J.A., 1985. The computation of body wave synthetic seismograms

in laterally homogeneous media, Rev. Geophys., 23, 105-63.

& Phinney, R.A. and Burridge, R., 1973. Representation of the elasto-gravitational excitation

of a spherical Earth model by generalized spherical harmonics, Geophys. J.R. astr. Soc., 34,
451-87.



132 Differential systems for stratified media

interest. Instead, we need the fundamental matrices (or propagator matri-
ces) in homogeneous media. The fundamental solutions for the SV waves
(columns 1 and 4 in the full 6 x 6 system) are given by

(hn(28)/25 + by (28))/ Bp

0
2n(n + 1) — iy (25)
P8 —ip [(Q+2/rw?) hn(25) + 2, (25) /B 25) /D |

0
2u (hy(28) — hal2s)/28)/ B

where z3 = rw/f. In the first column, h,(zg) = hgll)(zg) is the out-going,
spherical Hankel function and in the fourth column, h,(z3) = s (25),
the in-going function (with our sign conventions in the Fourier transform
(3.1.2)). For the SH waves (columns 2 and 5), the solutions are

0
2phn(2p)
2 0
B 0 ’
ip (28hy, (23) — hn(23))/ B
0
and for the P waves (columns 3 and 6)
hin(2a)
0
2n(n +1) ih! (za)/ ap
po 2ipu (hyy(2a) — ha(2a)/2a)/ ’
0

v (th(za) + 4h;l(za)/a22a)/p

where z, = rw/a. Apart from the arrangement and normalization factors,
these solutions have been given in several of the references cited above. Here
they have been orthonormalized so

FiF = — 13,

where F(r) is the 6 x 6 fundamental matrix formed with the above columns.
Thus the inverse matrix is

F!= —IF}

equivalent to a result first given by Teng (1970). The existence of these sim-
ple results follows from the Hermitian symplectic symmetries of the matrix
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A, and is discussed in Exercise 7.8. The above result can be confirmed using
the Wronskian of the spherical Hankel functions (Abramowitz and Stegun,
1965, §10.1.7)

1
W {hD (), h2 ()} = 5.

The fundamental matrix, F(r) can be used to form propagator matrices
in homogeneous spherical layers (Phinney and Alexander, 1966), asymptot-
ically equivalent to the Haskell matrix (7.2.4). In a ‘layer’ containing the
origin r = 0, the in- and out-going solutions must be summed to give the
non-singular, spherical Bessel function

I (2) + 1P (2) = 2ju(2).

Aside: the cylindrical system

As an aside, we give the equivalent results in cylindrically coordinates.
These are useful for studying the two-dimensional equivalent of a spherical
Earth (Teng and Richards, 1968f, 19691), for studying the interaction of
seismic waves with a plume structure (Tilmann, McKenzie and Priestley,
19988), and for studying waves in a borehole (Schoenberg, Marzetta, Aron
and Porter, 1981€)).

For comparison purposes, we first give the general results in an iso-
tropic medium in cartesian media. The general result was not given in
Section 7.1.5, as we immediately rotated to a system aligned with the p
slowness vector. In the general system, the 6 x 6 matrix A is

0 0 -p —1/p 0 0
0 0 — D2 0 —1/u 0
—pig —p2f 0 0 0 -
np3 + pp3 — p p1paC 0 0 0 —mé
p1p2( pupt+np3—p 0 0 0  —pk
0 0 -p  —p1 —D2 0

where

vo= 1/(A+2p)
n o= Ap(A+p)/(A+2p)
¢ = pBA+2u)/(A+2u)

1t Teng, T.-L. and Richards, P.G., 1968. Diffracted SH and SV, Nature, 218, 1154.

1 Teng, T.-L. and Richards, P.G., 1969. Diffracted P, SV, and SH waves and their shadow-
boundary shifts, J. Geophys. Res., T4, 1537-55.

& Tilmann, F.J., McKenzie, D.P. and Priestley, K.F., 1998. P and S wave scattering from mantle
plumes, J. Geophys. Res., 103, 21, 145-63.

q Schoenberg, M., Marzetta, T., Aron, J. and Porter, R.P., 1981. Space-time dependence of
acoustic waves in a borehole, J. Acous. Soc. Amer., 70, 1496-507.
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£ = MO+

Taking the combinations

w1 = (p1v1 + pav2)/p
w2 = (p27)1—p17)2)/p,

where p? = p? + p3, and similarly for o33 and 012, the matrix A decomposes
into the SH and P-SV parts, (7.1.33) and (7.1.34), respectively (using the
equality u+ ¢ = 7).

In the cylindrical coordinate system, we order the components ¢, z and
r corresponding to x = x1, y = x2 and z = x3. Assuming the medium only
varies in the radial direction, we can use the Fourier series (3.3.1) in the
azimuthal direction (so 0/0¢ — il¢), and Fourier transform (3.2.4) in the
axial direction (so 0/0z — iwq). With the vector

)
Uz

1/2 Ur

and the cylindrical equations of motion and constitutive equations (see Ex-
ercise 4.11), the matrix A is

3/2iwr 0 A
0 1/2iwr —q
e e — x/2iwr
nl'? 4+ pg* —p U'q¢ I'n/iwr
¢'q¢ pl?+n* —p  qufiwr
—U'n/iwr —qu/iwr — p+n/wir?
—1/u 0 0
0 1/ 0
0 0 — ¢
—3/2iwr 0 e |’
0 —1/2iwr —qg€
- —q X/2iwr
where
0 = {jwr

X = (A=2p)/(A+2p)
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v o= 2u\/(A+2p).

The 7'/2 scaling has been introduced to make tr(A) = 0. To lowest order, ig-
noring terms in 1/wr, this matrix is equivalent to the cartesian matrix above
with ¢ — p; and ¢ — po, the ‘horizontal’ slownesses, and r¢ — x the ‘dis-
tance’ travelled in the angular direction. However, in general it appears to be
impossible to separate it into 2 x 2 and 4 x 4 systems (the diagonal elements
and the elements Ay3, Ass, Ag1 and Agz cause problems). This restriction
is intuitively reasonable as the two ‘horizontal’ components of displacement
are not physically equivalent, i.e. v, does not ‘see’ the curvature of a cylin-
drical surface, whereas vy does. In the cartesian and spherical systems that
do separate, the two horizontal components are physically equivalent.

A fundamental matrix of the matrix A can be constructed using a poten-
tial representation for the particle displacement. To obtain results close to
the cartesian, with approximately P-SV and SH separation, we use

u=VP+V x (Hr)+V x(Vx (V).

where the potentials P, H and V satisfy the Bessel equation, i.e. P =
Jo(wr/a) and H or V = Jy(wr/B) (others have used the vector z in the shear
potentials but this does not emphasize the similarities with the cartesian
system). For brevity we have not written out the full fundamental matrix.
Although 6 x 6, the matrix A still has Hermitian symplectic symmetries,
and the inverse matrix can be obtained simply (see Exercise 7.8).
Although this is a classical problem, a full development with an analysis
of the ordinary differential system does not seem to have appeared in the lit-
erature, probably because the system does not separate. Most publications
assume symmetry so £ = 0 or ¢ = 0, and if they do consider the general case
only give the solution in homogeneous cylindrical layers to find numerically
the reflection/transmission coefficients or scattering by a cylindrical inter-
face. An early paper by Faran (1951)f considered the case ¢ = 0 and the
solutions in homogeneous media. White (1958)f and Pao and Mow (1971)§
considered the more general case with ¢ and ¢ non-zero with homogeneous
media. Similarly Miles (1960)9, Baron and Matthews (1961)||, Baron and
1 Faran, J.J., 1951. Sound scattering by solid cylinders and spheres, J. Acoust. Soc. Amer., 23,
i giitf‘R.M., 1958. Elastic wave scattering at a cylindrical discontinuity in a solid, J. Acoust.
Soc. Amer., 30, 771-85.
§ Pao, Y.-H. and Mow, C.-C., 1971. Diffraction of Elastic Waves and Dynamic Stress Concen-
trations, New York: Crane, Russak and Company.
€ Miles, J.W., 1960. Motion of a rigid cylinder due to a plane elastic wave, J. Acoust. Soc.
Amer., 32, 1656-9.

|| Baron, M.L. and Matthews, A.T., 1961. Diffraction of a pressure wave by a cylindrical cavity
in an elastic medium, J. Appl. Mech., 28, 347-54.
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Parnes (1962)11 and Hinders (1993)1f considered the case when g = 0, the
latter obtaining the full algebraic results for reflection/transmission coeffi-
cients from a general cylindrical interface. Schoenberg, Marzetta, Aron and
Porter (1991) considered the case when ¢ = 0 and gave the ordinary 4 x 4
differential system. Lu and Liu (1995)8§ considered the general case with
¢ and ¢ non-zero and gave the solutions in homogeneous layers. Tilman,
McKenzie and Priestley (1998) have given the ordinary 6 x 6 differential
System.

7.6

Programming exercise: Confirm numerically that the results from the algo-
rithm given in Section 7.2.8 applied to a single interface, agree with those in
programming Exercise 6.3 in Chapter 6 (Matlab code is given in Chapman,
2008, which should be revised according to Chapman, 2005, and the revised
algorithm given in the text).

Revised Matlab code from Chapman (2003) implementing the algorithm in
Section 7.2.8 is

function [ Rvv, Rpv, Rvp, Rpp 1 = ...
Rcoefficients( mat, p, omegas, properties )
% Rcoefficients - P-SV reflection coefficients from layer

YA stack using algorithm in Section 7.2.8

% INPUT:

% mat = ’Iso’ use Iso_PSV_EigenFactors
b = "TIV’ use TIV_PSV_EigenFactors
yA P = horizontal slowness

% omegas = circular frequencies

b

A if mat = ’Iso’:

yA properties(i).Alpha = P velocities

yA properties(i) .Beta S velocities

1t Baron, M.L. and Parnes, R., 1962. Displacements and velocities produced by the diffraction of
a pressure wave by a cylindrical cavity in an elastic medium, J. Appl. Mech., 28, 385-95.

i1 Hinders, M.K., 1993. Elastic-wave scattering from an elastic cylinder, Il Nuovo Cimento,
108B, 285-301.

88 Lu, C.-C. and Liu, Q.-H., 1995. A three-dimensional dyadic Green’s function for elastic waves
in multilayer cylindrical structures, J. Acoust. Soc. Amer., 98, 2825-35.
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if mat = ’TIV’:

properties(i).C11 = C11 stiffness
properties(i).C33 = C33 stiffness
properties(i).C44 = C44 stiffness
properties(i).C13 = C13 stiffness
properties(i) .Rho = densities

properties(i).Thick = layer thickness
coefficients are properties(1l).Thick above
interface and properties(nlayers).Thick is
ignored

stiffnesses may be frequency arrays for attenuation which
should match omegas arrray. They must be row vectors

e.g. 1 x nOmega.

OUTPUT:
Rvv = VV coeficient
Rpv = PV coeficient (P incident)
Rvp = VP coeficient (SV incident)
Rpp = PP coeficient

NOTE:

properties(*).Alpha etc. must be scalars or nOmega arrays to
include frequency-dependent velocities to model attenuation
(the attenuation model is therefore created externally);

in this simplified version -

p=0, Beta=0, p*Alpha=1 or p*Beta=1 are not allowed;

code is so simply we don’t use functions except for
’mat’_PSV_EigenFactors and LayerPhase;

the code is written to allow for frequency arrays of velocity
or not;

As revised for Addenda and Errata, 25 November 2004
Revised numerical normalization rather than analytic
factor, 18 Dec 2005

Revised to use travelling solutions, with revised
arguments, 22 January 2007
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b

nLayers = length(properties);
nOmega = length(omegas);

/A

Differential systems for stratified media

% loop from bottom to top

for

h

% eigenfactors of j-th layer

j = nlayers:-1:1

eval([ ’[qV,qP,ZV,ZP,gV,gP,sV,sP] =’
mat ’PSVEigenFactors(p,properties(j));’ 1);

h

% starting condition in lower half space,
% sixth column of Y"-1 L°-1 W - equation (7.2.223)
if j == nlayers

h

% propagate through j-th layer

% force correct frequency array size

x1 = zeros(1,n0mega);
x2 = x1;
x3 = x1;
x4 = x1;

x5 = ones(1,n0mega);
x6 = x1;

else

/A
% multiply by L~-1

% temporary vector is (wa,wb,.,.,wc,wd)

% first matrix multiply
wa = ZV.*xx1+x2;

wb = ZV.*x5+x6;

wc = -ZP.*x1-x2;

wd = -ZP.*x5-x6;

% second matrix multiply

x1 = -ZP.*wa-wb;
x2 = —-ZP.*wc-wd;
x5 = ZV.*wa+wb;
x6 = ZV.*wc+wd;

% scale (minus sign in theory

is not strictly necessary

% as it cancels with previous scaling in L for (j+1))

dZ = ZV-ZP;
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dZ.*x3;
-dZ.*x4;

% multiply by Y~-1
% temporary vector is (.,wa,wb,wc,wd,.)

wa = x2+x3

wb = x3-x2.
wc = x4+x5.
wd = xb-x4.
A

X2 = watwc.
x3 = wb+wd
x4 = wc-wa.
x5 = wd-wb.
h

x1 = 2%xx1;

A

% multiply

% equation

./gP;

*gP;
/gP;
*gP;

/gV;

./gV;

*gV;
*gV;

x6 2%x6;

by exp(i omega q d) (avoid if only DC)
(7.2.229)

if ( nOmega > 1 || omegas(l) "= 0 )
thick = properties(j).Thick;
% P and SV phases
PposExp = LayerPhase(omegas,thick,qP);

VposExp = LayerPhase(omegas,thick,qV);

wa = PposExp.*VposExp;

% include phase with 1/(PposExp*VposExp) removed to

% avoid overflow

x1
x2
x3
x4
x6
end
end

h

wa.*xx1;

wa.*wa.*x2;

VposExp. *VposExp. *x3;
PposExp.*PposExp.*x4;
wa.*x6;

% end condition in first layer

if j ==

A

% form coefficients
sqrt (gV.*gP) ;

dz =
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Rvv = -gV.*x3./x5;
Rpv = dZ.*x1./x5;
Rvp = dZ.*x6./x5;
Rpp = gP.*x4./x5;
/A
% recombine in j-th layer
else
% multiply by Y - equation (7.2.228)
% temporary vector is (.,wa,wb,wc,wd,.)
wa = x2-x3./gP;
wb = x3+x2.*gP;
wc = x4-x5./gP;
wd = x5+x4.xgP;
A
x2 = wa-wc./gV;
x3 = wb-wd./gV;
x4 = wctwa.*gV;
x5 = wd+wb.*gV;

yA

x1 = 2xx1; x6 = 2%x6;

yA

% multiply by L - equation (7.2.226)

% temporary vector is (wa,wb,.,.,wc,wd)

% first matrix multiply
wa = x1+x5;

wb = -ZV.*x1-ZP.*x5;

wCc = X2+x6;

wd = -ZV.*x2-7ZP.*x6;

% second matrix multiply
x1 = wct+wa;

x2 = -ZV.*xwc-ZP.x*xwa;

x5 = wd+wb;

x6 = -ZV.*xwd-ZP.x*wb;
% scale

dZ = ZV-ZP;

x3 = dZ.*x3;

x4 = -dZ.x*x4;

A

% Normalize solution independently at each frequency.
% Various factors are ommitted, and ZP and ZV may be
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% large or small depending on p and units.
% Safest solution is to normalize numerically - sqrt
% postponed for efficiency.

wt = max( real(x1l). 2+imag(x1).72, ...
real (x2) . 2+imag(x2) .72 );
wt = max ( real(x3). 2+imag(x3).72, wt );
wt = max ( real(x4). 2+imag(x4).72, wt );
wt = max ( real(x5). 2+imag(x5)."2, wt );
wt = 1./sqrt(max( real(x6). 2+imag(x6).72, wt ));
x1 = xl.*%wt; x2 = x2.*xwt; x3 = x3.*wt;
x4 = x4.*%wt; xb = xb.*xwt; x6 = x6.*wt;
end
end
return

function [ qV, gP, ZV, ZP, gV, gP, sV, sP ] = ...
IsoPSVEigenFactors( p, properties )
% return eigen-factors for P and SV waves for isotropic medium

% For intermal use in algorithm in Section 7.2.8

% For inelastic, vp and vs may be frequency arrays (for attenuation)
% and then gq*, Z* and g* will be arrays (s* is scalar).

% For elastic, all are scalars.

% In calling program assumed that arrays match frequencies.

b

ro

properties.Rho;

vp = properties.Alpha;

vs = properties.Beta;

% vertical slownesses - equations (6.2.8) and (6.2.9)
qV = sqrt((1./vs-p).*(1./vs+p));

qP = sqrt((1./vp-p).*(1./vp+p));

% cross-impedances - equations (7.2.193) and (7.2.194)
ZV = 2xro*p*(vs.*vs);

ZP = ZV-ro/p;

% polarization (co)tangents - equations (7.2.191)

% and (7.2.192)

gV = -p./qV;

gP = -p./qP;

% scaling factors - equations (7.2.195)

sV = sqrt(p/ro);
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sP = sV;
return

function posExp = LayerPhase( omegas, thick, q )
% return exponential phase term

% For internal use in algorithm in Section 7.2.8 for
% terms in matrix exp(i omega q d) (as in equation (7.2.202)).

% NOTE:
% valid for q as frequency array and omegas uneven, but
% tries to use recursive formula.

% Im(q) > O so this may be exponentially small causing underflow
% and zero (but not overflow and Inf or NaN).

nOmega = length(omegas) ;
iq = ix*q;
% if q is array, assumed to be frequency array so
% recursion cannot be used
if length(q) > O
posExp = exp(thick*omegas.*iq);
else
% q scalar so try to use recursion formula
posExp(1) = exp(thick*omegas(1)*iq);
if ( nOmega > 1 )
for n = 2:1:n0Omega
% compute delPosExp
% avoids recomputing for uniform distribution
if n ==
del02 = omegas(2)-omegas(1);
delPosExp = exp(thick*del02x*iq);

else
del01 = del02;
del02 = omegas(n)-omegas(n-1);

% assumes omegas monotonically increasing

% frequency increment NOT constant

if abs(del01-del02) > 1.e-6%(del01+del02)
delPosExp = exp(thickxdel02x*iq);

end
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end
b
posExp(n) = posExp(n-1)+*delPosExp;
end
end
end
return

A program computing the same coefficients in the same media as in Ex-
ercise 6.3 is

function Exercise76

% Exercise 7.6

b

% compute reflection/transmission coefficients using
% algorithm in Section 7.2.8.

b

% a slowness value

px = .2;

% media as in Exercise 6.3
al = sqrt(3);

bl =1,

rl =1,;

a2 = 1.270%*a1l;

b2 = a2/2;

r2 = 1.072%r1;

properties(1) = struct( ...
’Alpha’, al, ’Beta’, bl, ’Rho’, rl, ’Thick’, 0 );
properties(2) = struct( ...
’Alpha’, a2, ’Beta’, b2, ’Rho’, r2, ’Thick’, 0 );
b
[ Rvv, Rpv, Rvp, Rpp 1 = Rcoefficients( ’Iso’, px, O, properties );
Rmatrix = zeros(2,2);

Rmatrix(1,1) = Rvv(1l);
Rmatrix(1,2) = Rvp(1);
Rmatrix(2,1) = Rpv(1);
Rmatrix(2,2) = Rpp(1);
Rmatrix
return

The results are
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-0.0629 -0.0413
-0.0413 0.1532

which agree with the P-SV coefficients in Exercise 6.3.

7.7

Programming exercise: Generalize the code used in Exercise 7.6 (from Chap-
man, 2003) to TIV media by writing a new EigenFactors routine. Con-
firm that numerical results agree with those in programming Exercise 6.3 in
Chapter 6.

The TT version of EigenFactors is

function [ qV, gP, ZV, ZP, gV, gP, sV, sP ] = ...
TIVPSVEigenFactors( p, properties )
% return eigen-factors for P and SV waves for TIV medium

% For intermal use in algorithm in Section 7.2.8

% Stiffnesses are either scalars or frequency arrays (for
% attenuation).

% Assumption that all are same size so all internal

% variables will be same size.

A

A11 = properties.Cll/properties.Rho;
A33 = properties.C33/properties.Rho;
A44 = properties.C44/properties.Rho;
A13 = properties.C13/properties.Rho;

b

ps = p*p;

% terms (5.7.20), (5.7.31) and (5.7.33)
aa = A13+A44;

AA = A11.%A33+A44.%A44-aa.*aa;

BB = A33+A44-ps*AA;

% equation (5.7.32) for the normal component of slowness
A34 =2xA33.%*A44;

tmp = sqrt(BB.*BB-2*%A34.*(Allxps-1).*(A44*ps-1));

qVs = (BB+tmp) ./A34;

qV = sqrt(qVs);

gPs = (BB-tmp)./A34;
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gP = sqrt(qgPs);

% qSV polarizations (5.7.35)

gl = 2xp*aa.*qV;

tmp = (A33-A44) .*qVs-ps*(A11-A44);

g3 = tmp-sqrt (tmp.*tmp+gl.*gl);

% normal component of group velocity (5.7.37)

V3 = qV.*(ps*AA+A34.xqVs-A33-A44)./ ...
(ps*(A11+A44)+(A33+A44) . *qVs-2) ;

% energy normalize polarizations

gg = sqrt(gl.*gl+g3.*g3) .*sqrt(2*properties.Rho*V3);
gl = gl./gg;
g3 = g3./gg;

% traction components (6.3.66)

t31 = —(pxg3+qV.*gl) .xproperties.C44;

t33 = -p*gl.*xproperties.C13-qV.*g3.*properties.C33;
A

ZV = t33./gl;

gV = g3./gl;

sV = sqrt(-2*gl.*g3);

% repeat for gP
gl = 2xp*aa.*qP;
tmp = (A33-A44).*qPs-ps*(A11-A44);

g3 = tmp+sqrt (tmp.*tmp+gl.*gl);

V3 = gP.*(ps*AA+A34.xqPs-A33-A44)./ ...
(ps*(A11+A44)+(A33+A44) . *qPs-2) ;

gg = sqrt(gl.*gl+g3.*g3) .*sqrt(2*properties.Rho*V3);

gl = gl./gg;

g3 = g3./gg;

t31 = - (pxg3+qP.*gl) .*properties.C44;
t33 = -p*gl.*xproperties.C13-qP.*g3.*properties.C33;

ZP = t33./gl;

gP = -gl1./g3;

sP = sqrt(2*gl.*g3);
return

and the main program with the same media as in Exercise 6.3 is

function Exercise77
% Exercise 7.7
%

% compute reflection/transmission coefficients using
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% algorithm in Section 7.2.8 for TI media
b

% a slowness value

px = .2;

% media as in Exercise 6.3
al = sqrt(3);

bl = 1;

rl =1;

yA

cll = rixalx*al;

c44 = r1*xblx*xbl;

cl3 = cl11-2xcé44;

properties(1) = struct( ...
’C11’,c11, °C33’, cl11, °C44’, c44, ’C66°, c44,
’C13’, ¢13, ’Rho’, rl, ’Thick’, 0 );
% a TI medium - Green Horn shale (Jones and Wang, 1981)
% (see Exercise 4.4). Units are Gpa and Mg/m~3
r2 = 2.42;
properties(2) = struct( ...
’c11°,34.3, ’C33’, 22.7, ’C44’, 5.4, ’C66’, 10.6,
’C13’, 10.7, ’Rho’, r2, ’Thick’, 0 );
A
[ Rvv, Rpv, Rvp, Rpp ] = ...
Rcoefficients( *TIV’, px, 0, properties );
Rmatrix = zeros(2,2);

Rmatrix(1,1) = Rvv(1);
Rmatrix(1,2) = Rvp(1);
Rmatrix(2,1) = Rpv(1);
Rmatrix(2,2) = Rpp(1);
Rmatrix
return

which reproduces the results

-0.3948 -0.2581
-0.2581 0.5675

for the ¢SV-gP reflection coefficients.
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7.8

Investigate the symplectic symmetry properties of the differential system
dw/dz = iwAw with matrices (7.1.6), (6.3.15)-(6.3.17), (7.1.33) and (7.1.34)
(and those in Ezercises 7.2 and 7.5). Obtain an expression for the inverse
of the propagator matriz using a symplectic transform (cf. Section 6.5.2.1).

Consider the sub-matrices of the matrix A
A A
A = .
< Asr Ay
All the matrices (7.1.6), (6.3.15)—(6.3.17), (7.1.34) and (7.1.34) satisfy the
symmetries

Az = Ail
Al, = Ap
Al = Ay,

where AT is the transpose of the matrix. For the differential systems in
Exercises 7.2 and 7.5, it is necessary to generalize this so A is the Hermitian
transpose (i.e. conjugate transpose) and require the elastic parameters and
transform variables to be real. It is then evident that the matrix IoA (I
defined in equation (0.1.5)) is Hermitian.

Let us now define a symplectic transform of a propagator matrix

i opt
Pi= - Pl = - < P$1 P%l )
P22 P12

Then

d AP dP!
— (P'P) = PI—4+—P
dz ( ) dz + dz

_i,
= —iwPLAP - E12P
dz

= —iwP'(ILA)P +iwP' (AL)P
= 0,

as In A is Hermitian. Thus
PP = constant = — I,
from the value P(zp, z9) = I. Thus

P~ 1(z,20) = P(20,2) = — P}z, 2) = I,P(2, 2) L.
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It is straightforward to obtain expressions for the inverse of fundamental
matrices, too.

Although this proof requires the elastic parameters and transform vari-
ables to be real, if the propagator is known analytically, then the analytic
inverse propagator will also be valid for complex elastic parameters and
transform variables.
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Inverse transforms for stratified media

8.1
Prove result (8.1.35).

The equation (8.1.3) defining the Cagniard contour is
j:’p = PR + ¢ad.
This reduces to the quadratic
p?R? — 2pTpag + (T} — d*/a?) =0,

with solutions

Tpag £ \/T22} — TAR? + d2R?/a?
p = RZ

T’p$R :Ed\/R2/Oé2 —T’I%

R2

~ ~ 1/2
T2 1
= %sin@ii(—P——> cos 0,

R o2

i.e. equation (8.1.11), where R? = 23 + d?, sin = zgr/R and cosf = d/R.
The vertical slowness is found from

_ Tp—pag
o —a

~ ~ ~ 1/2
T T T2 1

= EpseCH— [EP sin@ii(R—g—$> cosﬂ} tan 6
~ ~ 1/2
T T2 1

= EPCOSHQIl(R—];—g) sin@.

149
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Differentiating the slowness equation we obtain

p 1 sin 0 'TP TI% 1 o cos 6
_ = —y 1 1—5 S - 9
oTp R i R*\R? o
- 1/2 ~
T2 1 T =
- <R—P - ;) inf =i cost| (T — R?/a?) V2
_ L 1qq

(T3~ R2ja?)1/7

In the fourth quadrant, Im(9dp/ 8Tp) < 0 so we require the negative sign.
Hence result (8.1.35).

8.2

The results for the direct rays from a line source in a homogeneous medium,
e.g. (4.5.84) and (8.1.36), can be obtained exploiting the cylindrical symme-
try about the line source. Using the Fourier-Bessel transforms (Section 3.3)
to obtain the result as an inverse Fourier transform of a Hankel function

(Appendiz B.4).

For simplicity let us consider a force along the line source. We consider
cylindrical polar coordinates r, ¢ and z with the source along the z axis.
From equation (4.5.84), or as proved in Exercise 4.7, we have the solution
Z
u= .
2B — 12/ 37) T2
From symmetry, there are no variations in the z or ¢ directions, and the

non-zero constitutive equation and equation of motion (from Exercise 4.11)
are

_ Ou,
Ozr = H Or
10
— 2 — -
PW Uy fa+ r or (To'zr)
_ Lo (%z)
= [ r Or <T or )’

in a homogeneous medium. Applying the transform (3.3.3) to this equation,
we obtain

T0 [ee] 1 .
—pwtu, = / fer Jo(wpr) dr + pu / 1Y <Tau
0 0 or

B ) r Jo(wpr) dr
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= f;;:_lo - Nw2p2um
where u, is a function of the transformed variables w and p. The last
term has been simplified by integrating by parts and using the differential
equation satisfied by the Bessel function Jy(z), i.e. J{(2)+J)(2)/z+ Jo(2) =
0. We have taken the source as a constant force over an small cylinder of
radius ry and cross-sectional area Ay = 777“8. Solving the above equation, we

have

The inverse transform (3.3.5) gives
szO o p
uy(w,r) = TR /0 o Jo(wpr) dp
f=Ao / < p )
= H d
13 | 2 o (wpr) dp,
using (3.3.7), provided w > 0. Expanding the integrand
f=Ao /°° ( 1 1 ) (1)
Uy (w,r) = —— — H; "’ (wpr)dp,
AN = o o\ B mp) o W
where the contour of integration loops above the pole at p = — 1/4 and

below the pole at p = 1/3. Distorting the contour upwards into positive
imaginary p plane, we pick up the residue of the pole at p =1/, i.e.

if.A
uy(w,r) = 40520 H(gl)(wr/ﬁ) dp.
Using transform result (B.4.13), we obtain
A 1
uy(t,r) = J=Ao

© 2mpB? (t2 — T2/52)1/2’

in agreement with the result above.
Results for the other force components or a pressure source can be ob-
tained by similar techniques but are algebraically more complicated.

8.3

Result (4.5.84) for the two-dimensional force Green function can be com-
pared with the Cagniard solution (8.1.36) for the two-dimensional pressure
Green function. By differentiating result (4.5.84) to form a force dipole,
and summing two orthogonal dipoles to form a pressure source, show that
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the two results are equivalent — remember the extra time differential in re-
sult (8.1.86) (it is fairly easy to confirm the equivalence of the leading term
— rather tedious to do for the complete expression).

The leading term for a unit radial line force from the Green dyadic (4.5.84)
is
H(t—r/a) .
U force delta(ts XR) = 27Tpa2(t2 — r2/a2)1/2 r.

For a unit, step-function pressure line source, expression (8.1.36) gives

1 tH(t —r/a)
U pressure step(t’XR) - 27Tpa27“ (t2 _ r2/a2)1/2

(AsPi(t) = 06(t)). The (almost trivial) problem is to prove that these are
equivalent.
If the force is a step function, H(t), we integrate the first result so

A

T t dt’ T - ot
U force step(ta XR) — 27rpa2 /e (t/2 _ 7”2/052)1/2 = 27Tp0£2 COS 7

using standard result (A.0.1). Taking minus the r derivative of this ex-

pression forms a dipole in the radial direction, i.e. a negative force at a
source-receiver distance of r 4 ¢ and a positive force at r —e. The orthogonal
dipole (from differentiating a force in the r:b direction) contributes nothing
to the radial displacement. The radial dipole and the orthogonal dipole
together make a pressure source. Thus

r tH(t —r/a)
u pressure step (t7 XR) = - Eu force step (ta XR) = 27Tp0é2?” (t2 — 7“2/042)1/27

in exact agreement with the above result from (8.1.36) (the exact agreement
is not guaranteed as we did not include the near-field terms in the force
dyadic).

8.4

Ezxercise 7.4 in Chapter 7 developed the solution for a homogeneous layer
over a half-space without the ray expansion. For SH waves, investigate the
conditions under which the transformed response has poles in the complex p
plane. Assume that the shear velocity of the half-space is greater than that of
the layer. Sketch the dispersion behaviour of these poles, first as a plot of w v.
(k = wp), and then as the phase velocity (c = p~1) v. w. Using the method of
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residues, find the spectral response, and then using the method of stationary
phase, approximate the time response. Show that these poles give rise to
a dispersed signal, where the low frequencies arrive first with the frequency
increasing with time. Later the high-frequency signals are superimposed with
the frequency decreasing with time. Finally, the two frequencies converge
and a large amplitude, known as the Airy phase, is observed. To find the
waveform of this signal, you will need the third-order saddle-point results
in Appendiz D.2. These dispersed waves are known as Love waves. They
are locked modes generated by the constructive interference of waves in the
surface layer that are totally reflected at the interface.

How does the amplitude of the Airy phase behave compared with the dis-
persed part of the Love wave? Why?

This problem was described by Knopoff (1958).

How is the solution altered if the velocity in the half-space is lower than
that of the layer?

The dispersion of Love waves can be investigated analytically or numer-
ically, but the equivalent waves for the P — SV system will probably need
numerical solutions. Show that dispersed waves exist for the P — SV sys-
tem (assume the shear velocity in the half-space is greater than that of the
layer). Show that the lowest-order wave behaves like the Rayleigh wave (see
Chapter 9) — at low frequencies it has the behaviour of the Rayleigh wave
velocity of the half-space and at high frequencies of the layer. Higher-order
waves are dispersed between the shear velocities in the half-space and layer.
Again Airy phases exist. This problem was described by Spencer (1965).

The model is as described in Exercise 7.4, i.e. a unit force in the y direction
on the free surface of a homogeneous layer with a homogeneous half-space.
First we consider the case when (B > (3;. From Exercise 7.4, the transformed
response is
1 14 Tpe?ivnd  N(w,p)
Y= pqr 1 — Tape?iwad = D(w,p)’

say. The reflection coefficient, 739, is given by equation (6.3.60) and in the
range (35 lep< By ! can be reduced to

Tog = e—2i sgn(w)¢

)

where
p2lqz|
o= ;
H1q1

cf. equations (6.3.11) and (6.3.12) (as we are only considering SH waves, we

tan
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drop the subscript g from ¢). We define the denominator as
D(w,p) -1 ein(nd—Zisgn(w)zf)

)

the (Love) dispersion function. More general situations with zg # z; and/or
Zr # z1 can be written similarly with the same dispersion function but a
more complicated numerator.

The dispersion function is zero when ¢ = wqid — nm (w > 0), which

reduces to
1
w = — tan_l <M) X
q1d H1q1

Thus for a given slowness p, we can immediately calculate the frequencies,
Wn, at with D(w, p) = 0. It is more convenient to plot function, wy,(p), as the
inverse function for the phase velocity p~! = ¢(w). The following program

illustrates the phase and group velocity functions.

function Exercise84a
% Exercise 8.4
%

% Love dispersion curves

3

betal =1
beta2 = 2;
rhol = 1;
rho2 =1
d =1

.5;

)
omax =10;

mul = rholxbetalxbetal;
mu2 = rho2xbeta2*beta?l;

ps = linspace( 1.000001/beta2, .999/betal, 1000);
pPsS2 = ps.*ps;

ql = sqrt(1/betal"2-ps2);

g2 = sqrt(ps2-1/beta272);

omegal = atan2( mu2xq2, mulxql )./(d*ql);

% plot c v. omega

figure
hold on
plot( omegaO, 1./ps, ’b’ )
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omegal = omegal + pi./(d*ql);

plot( omegal, 1./ps, ’b’ )

omega2 = omegal + pi./(d*xql);

plot( omega2, 1./ps, ’b’ )

axis([ O omax O beta2 ])

% plot cutoff

ol = pi/(d*sqrt(1/betal”~2-1/beta2"2));

02 = 2%o01;

plot([ol ol1], [0 beta2], ’k:’)

plot([o2 02], [0 beta2], ’k:’)

% plot V v. omega

dodp0 = omegal.*ps./(ql.*ql) +...
(mu2*rhol-mul*rho2) ./ (((mu2*mu2-mul*mul)*ps2-...
mu2+*rho2+mul*rhol) .*ql.*ql.*q2*d) ;

dodk0 = dodp0./(omegal+ps.*dodp0) ;

plot( omegalO, dodkO, ’r’)

dodpl = omegal.*ps./(ql.*ql) +...
(mu2*rhol-mul*rho2) ./ (((mu2*mu2-mul+*mul) *ps2-...
mu2*rho2+mul*rhol) .*ql.*ql.*q2*d) ;

dodkl = dodpl./(omegal+ps.*dodpl);

plot( omegal, dodkl, ’r’)

dodp2 = omega2.*ps./(ql.*ql) +...
(mu2*rhol-mul*rho2) ./ (((mu2*mu2-mul*mul)*ps2-...
mu2+*rho2+mul*rhol) .*ql.*ql.*q2*d) ;

dodk2 = dodp2./(omega2+ps.*dodp2) ;

plot( omega2, dodk2, ’r’)

b

plot([ O omax], [betal betall, ’k:’)

plot([ O omax], [beta2 beta2], ’k:’)

print -depsc2 exercise8_4a.eps

% plot omega v. k
kO
k1
k2
figure

hold on

plot( kO, omegaO, ’k’ )
plot( k1, omegal, ’k’ )
plot( k2, omega2, ’k’ )
% plot betal and beta2

omegal. *ps;

omegal.*ps;

omega2. *ps;



156 Inverse transforms for stratified media

plot ([0 omax/beta2], [0 omax], ’k--’)
plot ([0 omax/betal], [0 omax], ’k--’)
axis([ O omax O omax/betal ])

% plot cutoffs

plot ([0 ol/beta2], [0l ol]l, ’k:’)
plot ([0 o2/beta2], [02 02], ’k:’)
print -depsc2 exercise8_4b.eps

yA

return

0.6~

0.4

0.2

The dispersion functions ¢, (w) (blue) and V,,(w) (red) for acoustic modes n =0, 1
and 2 for Love waves in a model with a layer one unit thick, and velocities #; = 1
and [ = 2, and densities p; = 1 and ps = 1.5.

This plot is of ¢ v. w — as 1 = 1 and d = 1, this is essentially a dimension-
less plot. The other parameters are given in the program. An alternative
that is very convenient is to plot w against k, = wp where the slope of
straight lines through the origin is the phase velocity, c. The dashed lines
indicate these for 81 and (s

Note that there are multiple solutions of the dispersion equation due to the
inverse trigonometrical function. Each dispersion curve has a low-frequency
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10

The dispersion functions wy, (k) for acoustic modes n = 0, 1 and 2 for Love waves
in a model with a layer one unit thick, and velocities #; = 1 and B3 = 2, and
densities p1 = 1 and ps = 1.5. The velocities ¢ = f; =1 and ¢ = 5 = 2 are
illustrated with dashed lines, and the cutoff frequencies €2,, with dotted lines.

cutoff at
nm

" as -y

where ¢ = (2, the half-space velocity. These are indicated with dotted lines

in the figures. At high frequencies, the dispersion curves are asymptotic to
¢ = (1, the layer velocity.

The inverse slowness integral (3.2.4) passes just below the poles on the
real p axis between p = 35 Vand p = By ! By distorting the integration
path into the upper p plane, the integral can be reduced to the residues of
these poles plus branch cut integrals. We consider just the residues. Thus

o) . Ny—1 . i wpna
vy(w,x) = il M el @PTdy ~ Z IWN(‘*/Uapn) € ’
27 J—so D(w,p) ~= D'(w, pn)

where, for a given w, p,(w) solves the dispersion equation. We use the
notation D’ for 9D/dp. From the figure it is clear that the summation
contains only N, poles, where w < Qp,, the (N, + 1)-th cutoff. We can
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now take the inverse Fourier transform (3.1.10) to obtain

w pn 1k r—iwt
vy (t, - — — n dw,
y(tr) = T dt D' (w,pn)
where k, = k,(w) = wp,(w) are functions of frequency.
The exponential factor in the integrand is highly oscillatory so we evaluate
the integral approximately by the saddle-point method (Appendix D). The
saddle point exists when

dk,
— — t —
o x 0.
We define a function
dw
Vn = 77
(w) =3 e
and for given ¢ and z, solve
T
Vn = 7
(@) =2

for the frequency, say wy,, at the saddle point. We call V,,, the group velocity
function. The dispersion equation is easily differentiated so

dw K p2p1 — [11p2 1
dp ¢ (43— p1)p? — pop2 + pr ¢3lgald’

and the group velocity calculated from

dw  dw/dp
dk w4+ pdw/dp’

It is clear that at the two limits, the phase and group velocities are equal, i.e.
when p = ﬁl_l, then ¢ =V = (; and when p = 62_1, then ¢ =V = (5. The
function V,,(w) is plotted in the above figure with ¢, (w). It is the gradient of
the dispersion curves in the w — k; plot, so, as these must have an inflexion
point between the two limiting gradients 3, and 1, the function V,(w) must
have a minimum with V,(w) < 1. Let us call the frequency at the minimum
w = wpa. For a given n, solving the saddle-point condition V,(w) = z/t
may have one or two solutions. Let us denote these by wps < wn,a and
Wp1 > wpa: for Bo > x/t =V, > (1, only one saddle point with w = wys
exists; for 51 > x/t =V, > Va4 = Vi (wna), two saddle points with w = wiy,;
and wyo exist.

To evaluate the second-order saddle-point integral we need the second
derivative

V(w) =

d?k,

7 =~ Va@)/Viw) = U ),
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where U, (w) = 1/V,,(w), the group slowness. From the figure it is clear that

U7/z (wn2)

0
Ué(wnl) 0

>
<
Then the second-order saddle-point method (D.1.11) gives

2

vy(t,z) = — (—)1/2 Rez Z o w”m’p”m)

n=0m=1 wnrrwpnm)
1

e1wnm(pnm:c—t)iisgn(U;Lm)ﬂ/4
| |1/2 ’
where p,.m,, etc. indicates that the function is evaluated at wy,,. The number
of terms in the m summation will depend on the time, ¢. The signal due to
these poles starts with a low frequency signal at t = /0, from w = 0 for
the n = 0 pole, and from the cutoff 2,, for higher poles. As time increases,
the frequency increases in a dispersed wave-train. At any time the frequency
arriving is given by the solution of t = x/V,,, i.e. w = wy, (hence V,, is the
group velocity). The phase velocity of the waves between different ranges
is w/ky, = ¢,,. At time t = x/f;, a high-frequency signal begins to arrive
on the lower-frequency wave. As time increases, the frequency of this high-
frequency wave decreases until at ¢t = x/V,,(wpa) both wave-trains have the
same frequency w, 4. At later times, no dispersed waves arrive. The ampli-
tude of the dispersed waves depends on the magnitude of the dispersion. If
|U),,| is large, the velocity varies rapidly with frequency and the dispersion is
large and the amplitude small (as energy in a given frequency band is spread

1/2

out over a larger time interval). The amplitude decays as 2~ "/¢ because the

waves disperse more with range (we have only solved the two-dimensional

problem, so this factor z~1/2

is not due to cylindrical spreading, but to the
increased dispersion with range). These dispersed waves are known as the
Love waves.

At times near t = x/V,,(wn4), the dispersion U}, is small and the above
expressions break down. Two saddle points coalesce and we must use
the third-order saddle-point method (Appendix D.2). We approximate the
phase by its cubic term about the point where U/ (w,4) = 0, so the contri-

bution from the coalescing saddle points is

(t,z) ~ — lR (Meikmx—iwmt
n D (wnAapnA)

x / ™ a4 =) (w0 a)HUL (= )?/6 dw)
0
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_ 2P (M dtnarienat)
(z|U )3 D'(wna,pna)

% Ai t—aUpa
Y\ s |
(| Uy A1)
using (D.2.3) (where again p, 4, etc. indicates that the function is evaluated

at wp4). The signal only decays as 2 1/3 50 at large ranges it will dominate
the dispersed wave-train (as with a stationary value of the group velocity,

a minimum, the waves are not dispersed so much). It is known as the
Airy phase as the envelope of the waves with frequency w,4 is the Airy
function (Figure D.2). Beyond the time ¢t = x/V,(wpa), the signal will
decay exponentially.

We have only discussed the signal due to the real Love poles between
p = By 1 and By ! Near t = x /B2, head waves described by the branch
cut integral, that we have ignored, will be significant. At the branch point
p =0 ! the poles pass through the branch cut and become complex. To
describe the complete response, these poles must be investigated further.

If 35 < B1, no poles exist on the real p axis as for p < B!, |Taa| < 1 and
for p > ﬁl_l, ¢1 is imaginary so exp(2iwgid) < 1 (at p = ﬁl_l, g1 = 0 and
T2 = — 1 so the denominator is D = 2). Roots of the dispersion function,
D(w, p), exist when

i
@1 = 5 InTs.
w

Solutions of this equation can exist on lower Riemann sheets, i.e. Im(q) < 0).
Physically, if the contrast between the layers is large, so the coefficient is only
slightly less than unity for much of the range 0 < p < ﬁl_l (but 730 = —1 at
p =0y 1), then we would expect solutions with a small positive imaginary
part to p. The solution from this pole decays slowly with range (Im(p) > 0)
as some energy is transmitted out of the waveguide, and grows exponentially
with depth (Im(g2) < 0) below the waveguide due to this energy leakage.
These are known as leaking modes (as opposed to the locked modes of Love
waves). In the text we have considered a leaking mode from a single inter-
face (the leaking Rayleigh pulse, Section 9.1.5.3). There is a considerable
literature (mainly from the 1960’s) concerning leaking modes in layered me-
dia, e.g. Phinney (1961), Gilbert (1964)t, etc. and it is fairly straightforward
to analyse the positions and behaviour of the leaking modes further. Never-
theless there is still some confusion about whether leaking modes are useful

1 Gilbert, F., 1964. Propagation of transient leaking modes in a stratified elastic waveguide, Rev.
Geophys., 2, 123-53.
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to describe the response. For a single frequency, the solution increases ex-
ponentially with depth which seems to be physically impossible. However,
the monochromatic solution is a steady state solution and the exponential
growth is due to energy leaking out of the waveguide since t = — oo. For
the impulsive solution, this does not occur. The leaking modes are useful
to describe the solution at short ranges and depths before the reverberating
waves decay.
The dispersion function for P-SV waves is

II— 8T ®T 1| =0

(see Exercise 7.4 for details). The 2 x 2 matrices T 99 and T 11 are the reflec-
tion coefficient matrices from the free surface and the interface, respectively.
Although this equation is significantly more complicated than the Love wave
equation, it’s solutions can be described intuitively.

At high frequencies the wavelengths or exponential decay distances are
small. Rayleigh waves can exist on the free surface that decay rapidly with
depth (see Section 9.1.5.2 for a description of Rayleigh waves, and Exer-
cise 9.3 for a description of their depth dependence) and do not ’see’ the
half space. These waves will have velocity ¢ = v1 < (31, the Rayleigh wave
velocity in the layer (see Section 9.1.5.2). At low frequencies, the wave-
lengths are long and the decay rates slow. A wave with the Rayleigh wave
velocity of the half-space will exist (¢ = 72 < [33). This wave may be oscil-
latory or exponential in the layer depending whether vo > (31 or v < [y,
but because the frequency is low the wave does not ‘see’ the layer. At in-
termediate frequencies we expected a Rayleigh mode to exist with velocities
between v; and ~s.

In addition, we expect reverberating, interference modes to exist in the
layer waveguide. The phase velocities must be in the range 51 < ¢ < (32 so
the modes are locked with evanescent solutions in the half space. These are
known as shear modes as the behaviour is mainly controlled by the shear
velocities.

It is possible to analyse the dispersion function (e.g. Ewing, Jardetsky and
Press, 1953, p. 192) but numerical solutions are not difficult. The following
program and functions computes and plots these modes.

function Exercise84c

% Exercise 8.4

b

% Rayleigh and shear dispersion curves

A
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1.8
1.6
141

1.2

0.6

0.2+

The dispersion functions ¢, (w) for the Rayleigh and two shear modes in a model
with a layer one unit thick, and velocities 8, = 1, a1 = V/3, f2 = 2 and as = 2V/3,
and densities p; = 1 and ps = 1.5. The velocities ¢ = (1, (2, 71 and 7, are
illustrated with dotted lines.

Note:

The algorithm is slightly complicated as:

(a) the number of roots varies for different slownesses;
(b) the dispersion function is complex.

Rather than find zeros of the dispersion function, we
find minima of the modulus of ShearModeRadix, the
dispersion function, that are at (or numerically very
near) the origin of the complex plane.

For a given slowness the algorithm does a crude search
for a minimum using frequency steps dmax, and then uses
the library function fminbnd.

The algorithm depends on dmax being small enough, and is
not particularly efficient.

global pp
global dd isoO isol iso2
’% model
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The dispersion functions w, (k) for the Rayleigh and two shear modes in a model
with a layer one unit thick, and velocities 81 = 1, a1 = V/3, G2 = 2 and as = 2V/3,

and densities p; = 1 and ps = 1.5. The velocities ¢ = 1, (2, 71 and s are

illustrated with dashed lines.

betal = 1;

alphal = sqrt(3)*betal;
beta2 = 2;

alpha2 = sqrt(3)*beta2;
rhol = 1;

rho2 = 1.5;

dd =1;

% frequency range

omax = 20;

nmax = 2001; % increments for root search
dmax = omax/(nmax-1);

A

gammal = betal*RayleighVelocity(.25);

gamma2 = beta2+*RayleighVelocity(.25);

b

iso0 = struct( ’Alpha’, 0, ’Beta’, 0, ’Rho’,

0);

isol = struct( ’Alpha’, alphal, ’Beta’, betal, ’Rho’, rhol );
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iso2 = struct( ’Alpha’, alpha2, ’Beta’, beta2, ’Rho’, rho2 );
% complete slowness range
ps = linspace( 1.0001/beta2, .9999/gammal, 100);
% find 3 modal solutions (index ranges of defined solutions)
strt0 = length(ps)+1l; strtl = strt0; strt2 = strtO;
lastO = 0; lastl = 0; last2 = 0;
for nn=1:length(ps)
pp = ps(an);
% find nmode roots

if (1/pp > gamma2), nmode = 2; % just shear
elseif (1/pp < betal), nmode = 1; % just Rayleigh
else, nmode = 3; end

ms = 1; % frequency to start search from

ks = 0; % index of root found

for kk=1:nmode
% search for minimum amplitude from ms
for mm=ms:nmax
omega = dmax*(mm-1);
absradix(mm) = ShearModeRadix(omega) ;
if mm < ms+2, continue, end
% minimum condition at (mm-1)-frequency near origin
if ( (absradix(mm) > absradix(mm-1)) && ...
(absradix(mm-2) > absradix(mm-1)) && ...
absradix(mm-1) < .1 ), break, end

end

if mm == nmax, break, end
ms = mm;

ks = ks+1;

to(ks) = fminbnd( @ShearModeRadix, omega-2*dmax, omega );
end
% put solutions in appropriate arrays
if nmode == 2, % just shear modes
if ks > 0,
omegal(nn) = to(1);
strtl = min( strtl, nn ); lastl
end
if ks > 1,
omega2(nn) = to(2);
strt2 = min( strt2, nn ); last2
end

max( lastl, nn );

max( last2, nn );
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elseif nmode == 1, %
if ks > 0,
omegal(nn) = to(1);
strt0 = min( strt0, nn ); lastO
end
else, %
if ks > 0,
omegal(nn) = to(1);
strt0 = min( strtO, nn ); lastO
end
if ks > 1,
omegal(nn) = to(2);
strtl = min( strtl, nn ); lastl
end
if ks > 2,
omega2(nn) = to(3);
strt2 = min( strt2, nn ); last2
end
end
end
% plot c v. omega
figure
hold omn
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just Rayleigh mode

max( lastO, nn );

all modes

max( lastO, nn );

= max( lastl, nn );

max( last2, nn );

plot( omegaO(strt0:last0), 1./ps(strt0:last0), ’b’ )
plot( omegal(strti:lastl), 1./ps(strti:lastl), ’b’ )
plot( omega2(strt2:last2), 1./ps(strt2:last2), ’b’ )

b

axis([ O omax O beta2 ])

b

plot([ O omax], [betal betall, ’k:’)
plot([ O omax], [beta2 beta2], ’k:’)
plot([ O omax], [gammal gammal], ’k:’)
plot([ O omax], [gamma2 gamma2], ’k:’)
print -depsc2 exercise8_4c.eps

% plot omega v. k

kO(strt0:last0)
ki(strtl:lastl)
k2(strt2:last2)
figure

hold on

omegal(strt0:last0).
omegal (strtl:lastl).
omega2(strt2:last2).

*ps (strt0:last0);
*ps(strtl:lastl);
*ps(strt2:last2);
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plot( kO(strt0:1last0), omegal(strtO:last0), ’k’ )
plot( ki1(strtl:lastl), omegal(strtil:lastl), ’k’ )
plot( k2(strt2:1last2), omega2(strt2:last2), ’k’ )
% plot betal and beta2, gammal and gamma2

plot ([0 omax/beta2], [0 omax], ’k--’)

plot ([0 omax/betal], [0 omax], ’k--’)

plot ([0 omax/gamma2], [0 omax], ’k--’)

plot ([0 omax/gammal], [0 omax], ’k--’)

axis([ O omax O omax/betal ])

print -depsc2 exercise8_4d.eps

yA

return

function dispersion = ShearModeRadix( omega )
% ShearModeRadix = dispersion function for P-SV modes in

A layer waveguide

% INPUT:

% omega = frequency

b

% GLOBAL:

A pp = horizontal slowness

A dd = layer thickness

A iso0 = free space properties
yA isol = layer properties

% iso2 = half-space properties
b

% OUTPUT:

% dispersion = imaginary part of dispersion function

yA |I-Phi T_22 Phi T_11[=0

% Note: for internal use by Exercise8_4c
global pp
global dd isoO isol iso2

Rml = Zoeppritz( pp, iso0, isol );

Rm2 = Zoeppritz( pp, isol, iso2 );

PhiA = exp(i*omega*sqrt(1l/isol.Alpha”2-pp~2)*dd);
PhiB = exp(i*omega*sqrt(1/isol.Beta”2 -pp~2)*dd);
Pa2 = PhiA"2;
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Pb2

Pab

b

radix = (1-Rm1(4,4)*Rm2(1,1)*Pb2-Rm1(4,6)*Rm2(1,3)*Pab)*. ..

(1-Rm1(4,6)*Rm2(1, 3)*Pab-Rm1(6,6) *Rm2(3,3) *Pa2)-. ..

(Rm1(4,4)*Rm2(1,3)*Pb2+Rm1(4,6)*Rm2(3,3)*Pab) *. . .
(Rm1(4,6)*Rm2(1,1)*Pab+Rm1(6,6)*Rm2(1,3)*Pa2) ;

% simpler Love dispersion function for testing

Y%radix = 1-Rm2(2,2)*Pb2;

dispersion = abs(radix);

PhiB~2;
PhiA*PhiB;

return

This program uses the function Zoeppritz from Exercise 6.3 to compute the
reflection coeflicients, and RayleighVelocity from Exercise 9.3 to compute
the Rayleigh velocity, 7. Note the basic form of these modes is similar to
the Love waves except the lowest mode is asymptotic to the Rayleigh rather
than shear velocities. The dispersion curves have more ‘character’ and the
‘horizontal’ feature at an intermediate velocity is due to the existence of
an interface or pseudo-interface wave (locked or leaking Stoneley wave —
Section 9.1.5.3).

8.5

Show that in o fluid layer over a fluid half-space, dispersive waves exist de-
scribed by very similar mathematics to the Love waves — acoustic waveguide
modes. This problem has been described in the classic paper by Pekeris
(1948).

If the fluid layers are replaced by solids with very low shear velocities,
what happens to the acoustic modes? Their velocities are outside the range
of the shear velocities. Therefore, the waves are not totally reflected at the
interface and some shear energy leaks into the half-space. Hence the waves
are called leaky modes. What happens to the singularities of the response?
But if the shear velocities are very low, the conversion to shear energy is
very small, and the leaky mode may propagate significant distances.

Further reading: A related problem is the dispersion of gravity wave waves
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or tsunamis. Jeffreys and Jeffreys (1962, Section 17.09) have given the basic
theory which gives rise to another Airy phase (see Exercise 8.4).

The acoustic differential system (7.1.6) is

)
d—W:iw< 0 qa/p>w’
dz

with

The SH differential system (7.1.33) is

dw . 0 —1/u
E—lw<_ﬂq% 0 )W,

0
w = v,
Oyz

These systems are exactly equivalent provided we interchange parameters
and variables. The equivalence is shown in the table. With these changes the

with

Acoustic SH

VU, Oyz

- P Uy
p 1/p
o B

eigenvectors, (6.3.5) and (6.3.52) (except for the sign), reflection coefficients,
(6.3.2) and (6.3.60), propagator matrices, etc. are exactly equivalent. The
only differences are in source terms. Thus the results in Exercise 8.4 for
Love waves can all be translated into equivalent results for acoustic waves.
The model of a fluid layer over a fluid half-space was first investigated in a
classic paper by Pekeris (1948) as a model for oceanic, underwater acoustic
propagation — the model is now called the Pekeris waveguide.

In the fluid model, the acoustic modes exist between the phase veloc-
ities a1 < ¢ < a9. From Exercise 8.4, an elastic model has a Rayleigh
mode between v; < ¢ < 72 and shear modes between 31 < ¢ < 2. The
Rayleigh /shear modes are in a completely different velocity range from the
acoustic modes if 1 < [ € a1 < as. No locked modes can exist with
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phase velocity above 32 as shear energy will propagate into the half-space.
However, with the S velocities much smaller than the P velocities, the con-
version between P and S waves at the interfaces is small. In the P-SV
dispersion function

II— ®T0®T 1| =0

(see Exercises 7.4 and 8.4 for details), the diagonal elements of the matrices
T5, and T (the unconverted reflection coefficients) will be larger than
the non-diagonal elements (the converted reflection coefficients). To first
order, the equation decouples into an acoustic equation and a shear equation.
Although further analysis is possible in terms of a small parameter, the ratio
of the velocities 3/, it is straightforward to describe intuitively the expected
behaviour. The locked, shear modes will exist as described in Exercise 8.4.
The acoustic modes, with velocities between a; < ¢ < oo and behaviour like
the Love modes described in Exercise 8.4, will exist as leaking modes. The
dispersion will be very similar to the purely acoustic, locked modes but the
modes will decay slowly with range due to the slight leakage of shear energy
into the half-space (the reflection coefficient 733 will be complex for velocities
less than ag as this is beyond the P critical angle, but have magnitude only
slightly less than unity. The conversion transmission coefficient, 73; will be
small). Thus when the very low shear velocities are added to the model, the
acoustic modes will become leaking waveguide modes with poles at slightly
positive imaginary slowness.

This material for Further reading was written on 31 December 2004 on
returning from Sri Lanka in the immediate aftermath of the Asian tsunami
disaster of 26 December 2004.

In terms of a dimensionless frequency, Q = w(d/g)'/?, where d is the water
depth and g the acceleration due to gravity, and dimensionless wavenumber,
K = kd, the dispersion relation for gravity water waves on a flat ocean is

0% = K tanh K.

This gives dimensionless phase and group velocities of

1/2
C = clgd) V2=t = (tanhK>

K K
_ dQ tanh K + Ksech?K
Vo= wled) =g = 20 ’

respectively. The dispersion curves for these functions is shown in the fig-
ures.
In fact for tsunami, we only need the long-wavelength limit, K < 1, when
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0 = w(d/g)"”

¢ = (g/k)\2
v =dw/dk

1.6 c = (gd)1/2

14 b

06l c=w/k 1
0.4r b

0.2 b

The dispersion curve for gravity water waves, with the short and long wavelength
limits illustrated, and the derivation of the phase ¢ and group v velocity from this
curve.

the phase and group velocities can be approximated by the quadratic term,
i.e. for dimensionless velocities, these are

C ~ 1-K?%/6

V o~ 1-K?/2,
respectively. Then a wavenumber integral can be evaluated using the Airy

function (D.2.9) to give the wave displacement in the form of the so-called
Jeffreys phase (Bullen and Bolt, 1963, p. 465)t

y - /oo ei(QT—KX)dK,:/Oo K (T=X)—iK3T/6 4

—00

2T (X -=-T
= st <<T/2>1/3> ’

where T = t(g/d)"/? is the dimensionless time variable, and X = z/d the
dimensionless range. For realistic values for the propagation to Sri Lanka

1 Bullen, K.E. and Bolt, B.A., 1985. An Introduction to the Theory of Seismology, 4th edn,
Cambridge: Cambridge University Press
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The phase and group velocities for gravity water waves, derived from the
dispersion curve in previous figure, with the long-wavelength approximations
indicated.

of d =5 km and x = 2000 km, this gives X = 400. The limiting phase
and group velocities are C =V =1 or ¢ = v = 220 m/s, giving an arrival
time of T = 400 or ¢t = 9000 s = 150 mins. A dimensional time unit
is 22.5 s, or 1 hour equals 160 units. The figure illustrates the Jeffreys
phase at this range. The important features of the Jeffreys phase, caused by
the stationarity of the velocity with respect to wavenumber and frequency,
are the slow decay with range, X —1/3
due to second-order dispersion only, i.e. one-dimensional wave propagation.
Including the geometrical spreading in two dimensions, the decay rate would
be increased to X 5/ 6), the build up to an initial, large wave and the slow
amplitude decay and decreasing periods at later times.

Although the general form of this waveform corresponds to observations

, due to dispersion (this is the decay

in Sri Lanka, a major discrepancy exists in the period of the oscillations.
A small precursor wave observed could probably be modelled easily by in-
cluding a phase shift in the wavenumber integral. Periods of about 20 di-
mensionless units correspond to 7.5 mins, whereas observed periods were
significantly longer, e.g. 45 mins. This must have been caused by the earth-



172 Inverse transforms for stratified media

0.6

0.4

0.2

T =t(g/d)"
0.8 | | | | | | | | | - g
300 320 340 360 380 400 420 440 460 480 500

The Jeffreys phase for X = 400.

quake’s mechanism, large magnitude (M = 9 on the Richter scale) and
dimensions. Normally when a source propagates towards the observer, the
Doppler shift increases the frequency (decreases the pulse width), e.g. for a
seismic waveforms. But the rupture velocity is supersonic with respect to
the tsunami velocity (2000 m/s compared with 220 m/s), so the effect is dif-
ferent. Effectively an observer in Sri Lanka, in the direction of the rupture
propagation, sees tsunami waves from the last point of rupture (the nearest
point) first, and from the first point of rupture (the furthest point) last. In
fact the rupture velocity is so high (as it is in rock), about ten times the
tsunami velocity, that the direction of rupture relative to the observation
point is not very important. The tsunami from the nearest point of rupture
always arrives first, and from the furthest last. For simple numerical calcu-
lations, we can assume that all the rupture occurs instantaneously, i.e. an
infinite rupture velocity. The pulse can be broadened by the interference of
waves generated all along the rupture. This can be simulated by integrating
the Jeffreys phase

u= (17/2% /w(;r) Ai (%) dez,
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where w(z) is a weighting function indicating the source strength along the
rupture. Numerical experiments show that the resultant waveforms are very
sensitive to the width and form of this weighting function. Trials have been
made with triangular and boxcar weights of various widths. If the weighting
function is narrow (a few dimensionless units) the wave shape is close to
the Jeffreys phase, of course. With a greater width (say 20 units), the main
change is that waves from the two ends of the rupture of slightly differ-
ent frequencies (because the frequencies in the Jeffreys phase increase with
propagation time), interfere and cause beats and a more rapid decay. For
long source widths (40 units and greater), the wave begins to have approx-
imately the form of the weighting function with reduced later oscillations
(for large integration lengths, the Airy function in the above integral looks
more like a Dirac delta function). In reality, it is unlikely that the high-
frequency oscillations in the interference beats will propagated coherently
due to spatial variations of the source and ocean. If these oscillations are
removed, the remaining long-period oscillations from the amplitude of the
beats begin to approximate the observations better. Although these numer-
ical simulations are instructive, further numerical experiments with such a
simple model seem pointless given the sensitivity of the final waveform to
the source weighting function, and the undoubted complexity of such a large
earthquake. The varying water depth of the actual ocean will cause further
dispersion and focusing of energy. Full numerical simulations for realistic
models of tsunami propagation are calculated routinely.

8.6

The two-dimensional Cagniard result (8.1.31) of the far-field approxima-
tion for the three-dimensional result (8.2.68) contains singularities. Discuss
how the calculations should be performed so they are numerically robust to
aliasing problems (cf. the WKBJ seismogram method, Section 8.4.2 — or
perform the convolution with the impulse, A(t), in a manner that does not
suffer from aliasing problems).

The results of the integrals in the exact, three-dimensional Cagniard method
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(8.2.17) and (8.2.59) are not singular, but the integrand has singularities.
Discuss numerical methods for evaluating these integrals.

The general expression for the two-dimensional Cagniard response (8.1.31)

1 0
gray(t,xR) = — —Im <Qray(p) p~ ) ’
T 8Tray p:p(tva)

contains a singularity at the geometrical arrival time, T,y, where

OTay
dp

If the expression is evaluated numerically with a discrete sampling interval

= 0.

of At, then the results will be aliased (and unstable if a numerical sample
to + nAt happens to correspond to the geometrical arrival time within the
numerical rounding error). A solution is to apply the smoothing algorithm
used for the WKBJ seismogram (Section 8.4.2).

Applying the boxcar filter, B(t/At)/At (8.4.13), to both sides of the exact
response, we obtain

. 1 I /p(t+At,xR) g 4
u,,,(l,XR) = m ray \P) dp-
y( R) 2 2 t p(t— t7xR) y( )

The p integration follows the Cagniard contour but can be distorted to
straight segments between the points p = p(top + nAt,xgr). Provided the
function Qray is varying slowly, the interval integrals can often be approxi-
mated by

oy (13x8) = = 5T (G, (p(0x8)) Ap).

where

Ap = p(t + At,xRr) — p(t — At, xR),
or more accurately
Eray(ta XR) ~
i (G (plt — A1 xR)) + Gy (01 x0)) ) Ap-
+ (Gouy (P(t.%R)) + G,y (p(t + At xR))) Aps).

where

Ap— = p(t)XR)_p(t_At)XR)
Apy = p(t+ At,xR) — p(t,xR).
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Again, provided the intervals are small enough that the function Qray can be
treated as constant or linearly varying, it is not necessary to determine the
saddle point, pr,y, accurately nor to end intervals containing the geometrical
arrival exactly at the saddle point.

The most significant variation of the function Qray on the contour is usually
at branch points giving rise to head waves. In order to obtain numerically
accurate results, it is sensible to sub-divide the interval containing tpe.q at
Phead and evaluate the p integral using the known square root behaviour,

e.g.
)3/2‘
head 3

The numerical evaluation of the far-field approximation for the general

p(t,XR) 1/ 2
/ g(p) (p - phead) dp =3 g(phead)(p(ta XR) — Phead
p
three-dimensional Cagniard response (8.2.68)

1 d Op
W, (t,Xxg) ~¥ — ———= —A(t) * Im 12g —
u y( R) 7T2(2$R)1/2 dt ( ) <p _ray(p) 8Tray ()

contains similar problems to the two-dimensional Cagniard result (8.1.31).
If a band-limited version of the final term is evaluated as above, the convolu-
tion with the operator dA(¢)/dt can be performed in the frequency domain,
using a rational approximation for the operator as given by Chapman, Chu
Jen-Yi and Lyness (1988), or using a numerical robust evaluation of the con-
volution integral. The frequency domain approach is usually preferred when
realistic source and receiver functions are included, which will have band-
limited spectra. The numerical issues are just the standard ones encountered
approximating Fourier integrals by Fourier series (using a FFT). The ratio-
nal approximation is efficient and robust, but introduces extra smoothing
in the operator (three times the boxcar filter), and is not accurate at very
long times/low frequencies. In the numerical evaluation of the convolution,
two inverse square root singularities are encountered: from the geometrical
arrival and from the function A(¢). The convolution integral (3.1.17) can be
written

¢ / /2 _
/T = T){/(;(g i dt’ = /_W//2 f (# ! 2T sinx) dx,
using the change of variable
.2 —t-T
siny = ——7—

As f(t) is a non-singular function, this integral is easily evaluated numeri-
cally (even though the x sampling may be non-uniform). More simply, the
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singularities can be evaluated separately, e.g.

f(#) T+y
/T ' — T)2(t — 1/2 2/ (t—T — )12 dy,

with the change of variable t’ = T—l—y2 for the lower singularity, and similarly
t' =t — y? at the upper singularity, but this does not work well for the first
motion.

Finally we consider the exact, three-dimensional Cagniard result (8.2.59)

_ (= 7,2 )"
) = g [ 00

14 /Ot . (g(p)pm+1 \/(1 +(t - T)/pm) 829) 4T

m? dt (t—T)(t— T+ 2px) OT

(simplifying the notation slightly by removing subscripts). The final integral
has singularities at its upper and lower limits. Changes of variables as
above are necessary to evaluate the integral numerically, and for the first
motion both singularities should be removed simultaneously. Alternatively,
the p integral only has singularities at the upper limit, T= t, and only one
change of variable is necessary. As before, the p contour can be distorted
between the required time points and can be evaluated for a straight-segment
contour without error. When a head wave exists, the function G(p) contains
a branch point singularity. This is best handled by the change of variable
Y= (p—phead)l/2 ory = (t—thead)1/2 which makes the integrand polynomial.
The integral with respect to T along the real axis has an inverse square root
singularity at the geometrical arrival, which can either be handled by a
change of variable to y = (T — T)'/2 or to the original p.

8.7

Further reading: So many variants of the Cagniard method have appeared
in the literature, that it is probably confusing to study them. However a
particularly elegant alternative has been published by Burridge (1968).

8.8

Further reading: The two-dimensional, real slowness inverse method (8.4.1)
depends on the inverse spectral Fourier transform of exp(iwpz) being the
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Dirac delta function 6(t — pz) (cf. the Radon transform (3.4.15)). With
the WKBJ approzimation the inverse slowness integral (8.4.4) is trivial to
evaluate. In the text we have only developed the far-field approrimation
for the three-dimensional, real slowness inverse method. Chapman (1978)
has shown how using the inverse spectral Fourier transform of the Bessel
function, (B.4.7), an exact three-dimensional, real slowness inverse method
can be developed, where the slowness integral contains a convolution with the
inverse Fourier transform of the Bessel function (cf. the Radon transform
(8.4.23)). Approzimating the singularities of this function, we can obtain the
far-field approzimation where the three-dimensional result can be obtained by
including some extra factors and a convolution (8.2.66) (cf. Radon transform
(8.4.19) and (3.4.28)).

This has been largely covered in Section 3.4.2. In cylindrical coordinates,
the inverse transforms (3.1.2), (3.3.2) and (3.3.5) give

t X 1m¢/ 1wt/ J dnd
271' _Z P (wpr) u(w, p,m, z) dp dw,
m=—o
where u(w, p, m, z) is the transformed response found from the solution of an
ordinary differential equation (see Exercise 7.1). Taking the inverse Fourier
transform first, this reduces to (cf. equation (3.4.23))

1 d? (=)™ T (t/pr) ;
(t X . dt2 / :_OO/ p ’1”2 —t2 1/2 pg(t7p7m7 Z) elm¢ dp,

where u(t, p, m, z) is the inverse Fourier transform of u(w,p,m, z) and * is
a temporal convolution (3.1.18). We have used result (B.4.1) (Abramowitz
and Stegun, 1965, §11.4.21). In the t—p domain, the convolution operator
acts on u(t,p,m, z) in a sector defined by lines t + pr. These lines and the
sector are illustrated in the figure. In the far field, we use the approximation

(=)™ Tut/pr) 1

(p2r2 — £2)12 ~ (2pr)1/2

and the contribution mainly comes from the singularity along the line ¢t — pr

(i)™ AE +pr) + (=)A= pr))

as it may be tangent to a singularity of the function u(t,p,m,z) which
typically lie along 7(p) lines (as illustrated in the figure).

8.9
Further reading: In Ezercise 7.5 of Chapter 7, the spherical system was
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t+ pr

t—pr

>p

An illustration in the t—p domain of the sector defined by the lines ¢ & pr, over
which the convolution operator from the inverse Bessel function acts on
u(t,p,m, z). Also illustrated with a dashed line is a typical 7(p) curve where
u(t,p, m, z) is singular.

discussed. Performing the inverse transforms at high frequencies is an in-
teresting problem. The summation of modes is converted into an integral
using the Watson transform (Watson, 1918). Nussenzveig (1965) has given
a thorough analysis for scattering by an impenetrable sphere. In addition
to the normal ray expansion at interfaces, we need the so-called rainbow or
Debye expansion to expand rays that pass through the centre of the sphere.
This has been used extensively in electromagnetic theory by van der Pol and
Bremmer (1937a,b) and in seismology by Scholte (1956). A review is con-
tained in Chapman and Phinney (1972). The application of the slowness
method to the spherical system is discussed by Chapman (1978, 1979).

Wave propagation in media with cylindrical or spherical stratifications, i.e.
when media properties are a function of the cylindrical or spherical radius,
presents some interesting physical features and applied mathematical meth-
ods. These arise because the ‘horizonal’ angular coordinates are closed, i.e.
0 to m or 27, and the innermost ‘layer’ contains the radial origin. Physically,
the closed angular coordinates mean that signals can propagate around the



8.9 179

cylinder /sphere and pass a receiver multiple times. They can also propagate
in either direction to the same receiver. Diametrically opposite the source,
signals propagating in either direction arrive at similar times and interfere.
In a sphere, this applies to signals propagating with any azimuth and the in-
teresting phenomena of the Poisson spot occurs. The existence of the radial
origin means that rays can turn or be ‘reflected’ without a velocity gradi-
ent or interface. Mathematically these features are handled by generalizing
the ray expansion to include expansions for in- and out-going rays in all
layers including the radial origin, and for rays with multiple paths around
the cylinder or sphere. In order to handle the closed angular coordinates,
the discrete transform summations are converted into integrals using the
Watson transform or Poisson summation formula.

We first summarize the results in a cylindrical geometry as they are some-
what simpler than in a sphere. We consider a problem where the model
properties vary with the cylindrical radius, r, and are independent of the
axial variable, z, and angular variable, ¢. The Fourier series is used to the
transform the equation with respect to the angular variable, ¢, so the inverse
transform is (3.3.2)

oo

u(g) = Y u(l)e.
f=—0o0
We use the Fourier transform with respect to the axial variable, z, so the
inverse transform is (3.2.10)

oo .
_ el u(q) e'“?* dz.

oo oo

In Exercise 7.5, we investigate the ordinary differential system with indepen-
dent variable, r, that is obtained for the transformed solution, u(w, ¢, q, ).
The Fourier series does not converge rapidly and we convert it into an in-
tegral using the Watson transform (Watson, 1918) or equivalently (Nussen-
zveig, 1969a), the Poisson summation formula (Titchmarsh, 1948t, p. 60;
Morse and Feshbach, 19531, pp. 466-7, equation (4.8.28)). This gives

U(¢) — i /_o:o u(f) eiﬂ¢+21m€7rd€’

m=—0oQ

where now ¢ is a continuous variable (both methods depend on replacing the
summation by a contour integral around a string of poles). Letting ¢ = wpr,
1 Titchmarsh, E.C., 1948. Introduction to the Theory of Fourier Integrals, 2nd edn, Oxford:

Clarendon Press.
1 Morse, P.M. and Feshbach, H., 1953. Methods of Theoretical Physics, New-York: McGraw-Hill.
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we obtain

[e.e] 00 . .
u@) =riel Y[ utpderrermmarsap,
—00

m=—0oQ

where we follow our standard notation of using the same symbol for the dif-
ferent transformed functions, u(¢) or u(p). Teng and Richards (1969)f have
discussed the physical significance of the various terms in this expression.
Combining the inverse transforms, we have

u(t,x) = Z—ﬁmimé//_z

x @l WProtazt2mmer=t) (., p g, 1) dpdgdw

r d2 oo X
- rw /X
X 0(t — pré — qz — 2mapr) x u(t,p,q,r) dpdg
r d2 o X
- wm/l. X
X u (t —pr(¢+2mm) — qz,p, q, T‘) dpdg.

Each term in the summation is exactly as a two-dimensional Radon trans-
form. The impulse response in the p—q domain, u(t, p, ¢, ), is integrated over
plane surfaces. This is illustrated in the figure. For simplicity we assume
q = 0 to reduce the problem to two dimensions. This is for propagation
in the toroidal, ¢, direction around the cylindrical structure, the problem
considered by Teng and Richards (1969), with no variations in the axial, z,
direction.

The lines t — pr(¢ + 2mm) are illustrated. Assuming we arrange the co-
ordinates so ¢ < 7, the line with m = 0, t — pr¢, will generate signals that
have travelled the shorter distance to the receiver. Normally they will be
tangent to the 7(p) curves at the earliest times. At later times, other lines
will be tangent to the same curve: the line with m = 1, t — pr(¢ + 27),
will generate signals that have travelled once around the cylinder, i.e. an
angular distance ¢+ 27; the line with m = — 1, t+ pr (2w — ¢), will generate
signals that have propagated the opposite way round the cylinder, i.e. an
angular distance m < 2w — ¢ < 27, when the line is tangent to the 7(p) curve
for p < 0, i.e. the opposite propagation direction. As the 7(p) curves are
symmetric about the p origin (although may vary in strength due to direc-

1 Teng, T. and Richards, P.G., 1969. Diffracted P, SV and SH waves and their shadow boundary
shifts, J. Geophys. Res., T4, 1537-55.
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An illustration in the ¢—p domain of the lines ¢ £ pr(¢ 4+ 2mm) along which the
function u(t, p,0,r) is integrated. Also illustrated with a dashed line is a typical
7(p) curve where u(¢,p,0,r) is singular.

tional properties of the source), this arrival is normally after the signal that
has propagated an angular distance ¢ and earlier than the arrival that has
propagated ¢+ 27. Four terms are illustrated in the figure. If the receiver is
at ¢ = m, then the two arrivals will arrive simultaneously and constructively
interfere (unless they differ in sign from the source directivity). If ¢ > m,
then the identification of the different lines with different signals changes
(essentially the figure is reflected in the lines p = 0).

Using the slowness method, it is very straightforward to identify the phys-
ical significance of the various terms, and only include those required in com-
putations. The equivalent spectral results are easily derived. More details
can be found in Chapman (1978).

In addition to the ‘ray expansion’ in the angular direction, i.e. consider-
ing the different terms in the m summation separately, it is necessary to
generalize the ray expansion in the radial direction. The complete solution
must be non-singular at the origin, i.e. it must be of the form Jy(wr/c) (see
Exercise 7.5). However, this represents standing waves and it must be split
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m= —2

An illustration of the direction and angular distance propagated of signals in the
cylindrical solution.

into out- and in-going waves in order to separate rays, i.e.
2Jp(wr/c) = H (wr/c) + HP (wr/e),

even though the Hankel functions are singular at the origin, »r = 0. The
Hankel functions are used in the solutions at interfaces to perform the nec-
essary ray expansions — H él) (wr/c) is the out-going wave and H é2) (wr/c)is
the in-going wave. If a turning point is needed in a layer, then a ‘reflection’
coefficient of

T ~ H (wr/e) [ BP (wr/o),

is obtained. Using the asymptotic forms for the Hankel functions, this re-
duces to the phase integral to and from the turning point, and the phase
shift of a turning point (7.2.162). This expansion is known as the rainbow
or Debye expansion, and is illustrated in the figure.

In a spherically stratified model, the techniques are similar to the cylin-
drical model, with the complication that the Legendre transform is used in
the angular coordinates (see Exercise 7.5). The inverse transform is again a
summation which is converted into an integral using the Watson transform
or the Poisson summation formula. The inverse transform is naturally more
complicated and is a mixture of a finite length convolution operator (as in
Exercise 8.8) and the repetitive series in the cylindrical geometry (as above).

The inverse Legendre transform is

u(d,¢) = i i <n + %) P™(cos 0) e™%u(n,m).

n=0m=-—n
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An illustration of the in- and out-going waves in a cylindrical model, illustrating
the rainbow expansion needed in the ‘central’ layer.

If the source is located on the axis, 8 = 0, then the Fourier series in m only
contains a few terms (as in plane layered problems using the Bessel function,
equation (8.2.60)). For simplicity we take m = 0 in the following (an axi-
symmetric problem) although the results are easily generalized. In general,
it is also necessary to consider terms with the derivative of the Legendre
function with respect to angle, 6.

The series in n converges slowly so, as in the cylindrical case, we convert
the summation to an integral using the Watson transform or the Poisson
summation formula, i.e.

u(f) = ni_o% (n + %) Py (cos 6) u(n)

o0
= Z (— 1)m/ u(v)v P,_y/2(cos ) eAmT qy,
m=—o00 0
where v = n 4 1/2 is now a continuous variable (we follow our normal
convention of using the same notation for the transformed functions u(n) or
u(v), although obviously they are different functions).
The Legendre functions are standing waves (as are the Bessel functions),
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and in the spectral method it is convenient to split them into travelling waves
(cf. the Hankel functions). As Nussenzveig (1965), we define travelling waves

1 2i
Q1 (cos §) = 3 (Pn(cos 0) + ;lQn(cos 0)) .
and expand the Legendre function into two travelling waves using
P,(cos8) = QM (cos 0) + QP (cos 0).

In the slowness method, this split is unnecessary. The physical significance of
the above summations and integration are discussed by Nussenzveig (1965),
Burridge (1966)1, Ansell (1973)f, Gilbert (1976)§, etc.

Substituting v = wpr, we obtain

o0

u(f) = Z (— 1)mw2r2/0 u(p) p Pypr—1/2(cos 0) e2Immwpr 4

m=—0oQ

The similarities with the plane layered result, e.g Exercise 8.8, can be seen
using a uniform asymptotic expansion of the Legendre function given by
Szegd (1934)9

0

sin @

1/2
Praaleost)= (o) Do)

valid for small 8. With this substitution, apart from the summation over m,
the inverse transforms are like those in the plane layered problem.
Combining the inverse transforms, we obtain the expression

u(t, x) = %/Bmioo(— 17022 /Ooo

X w(w,p,7) p Pypr—1/2(cos ) eZimrwpr=iwt qp 4y,

If we change the order of integration, we require the inverse Fourier trans-
form of the Legendre function P, _1/2(cos#). This is given by the Mehler-
Dirichlet integral formula (Dirichlet, 1837||; Mehler, 187211, Whittaker and

1 Burridge, R., 1966. The Legendre functions of the second kind with complex argument in the
theory of wave propagation, J. Meth. Phys., 45, 322-30.

1 Ansell, J.H., 1973. Legendre functions, the Hilbert transform and surface waves on a sphere,
Geophys. J.R. astr. Soc., 32, 95-117.

8§ Gilbert, F., 1976. The representation of seismic displacements in terms of travelling waves,
Geophys. J.R. astr. Soc., 44, 275-80.

9 Szego, Von G., 1934. Uber Einige Asymptotische Entwickungen der Legendreschen Funktionen,
Proc. Lond. math. Soc., Ser. 2, 36, 427-50.

|| Dirichlet, G.L. 1837. Sur les séries dont le terme général dépend de deux angles, et qui servent &
exprimer des fonctions arbitraires entre des limites données, J. reine angew. Math., 54, 33-56.

11 Mehler, Von F.G., 1872. Notiz iiber die Dirichlet’schen Integralausdriike fiir die Kugelfunction
P"(cos ) und iiber eine analoge Intgeralform fiir die Cylinderfunction J(z), Math. Ann., 5,
141-4.
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Watson, 196311, p. 315; and Erdélyi, Magnus, Oberhettinger and Tricomi,
195388, equation (3.7 (27)))

2\ (sin@)* 0 cos(wt) dt
P o = 2 [
“"VQ(COS ) <7r) I'(1/2—p) Jo (cost — cos@)rt1/2’
valid for Re(u) < 1/2. Thus inverse Fourier transform of P,,_;/o(cos ) is
21/2B(t/6)
m(cost — cos 0)1/2’

P,_1/2(cos0) —

where the normalized boxcar has been defined in equation (8.4.13). Applying
this to the above inverse transforms, we obtain

e
ut = L2 3 (-7 |

B ((t/pr - 2m7r)/0)

(cos(t/pr — 2mm) — cos 0)

73 * u(t,p,r)dp.

The temporal convolution with the impulse response, u(t, p, ), is over bands
defined by the lines t — 2mmpr +0pr. Each band is like the convolution with
the inverse Fourier transform of .J,,, (wpr) in Exercise 8.8 for the plane layered
problem, and the repeated bands for different m are like the repeated lines in
the cylindrical problem in this exercise (particularly if the negative p values
are folded into the positive p values making the integral one-sided). The
bands are illustrated in the figure.

More details can be found in Chapman (1978, 1979). Of particular interest
are the Hilbert transforms that occur whenever a signal passes through 6 = 0
or w, and the interference and combination of two singularities that occur
when # — m, i.e. the Poisson spot phenomena.

Finally we note that the raindow or Debye expansion are also used to
generalize the ray expansion, with the expansion

2jn(wr/c) = hg)(wr/c) + hg) (wr/c),

to decompose the spherical Bessel function into travelling waves.

11 Whittaker, E.T. and Watson, G.N., 1963. A Course in Modern Analysis, Cambridge: Cam-
bridge University Press.

88 Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., 1953. Higher Transcendental
Functions, Vol I, New York: McGraw-Hill.
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t+ (27 +0)pr

m= —1
t+ (2 —0)pr
t+ Opr

An illustration in the t—p domain of the sectors defined by the lines

t + Opr — 2mmpr, over which the convolution operator from the inverse Legendre
function acts on u(t, p,r). Also illustrated with a dashed line is a typical 7(p)
curve where u(t,p,r) is singular.
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Canonical signals

9.1

Head waves can exist on reflected or transmitted waves, with velocities from
either side of the interface. There are four kinds of head waves: (1) a
reflected wave with velocity from the transmitted medium; (2) a transmitted
wave with velocity from the transmitted medium; (3) a transmitted wave with
velocity from the incident medium; and (4), a reflected wave with velocity
from the incident medium. Which head waves exists depends on the incident
wave type, and the arrangement of the velocities. There are six cases for
the wvelocities. In the following table, the six cases are listed together with
the number of head waves possible for the two incident rays (in the first
medium). Confirm these figures, identifying the kind and the ray notation
of the possible head waves.

Case Velocities P S
1 ar>Fo>a1 >0 &5 6
2 a2>a1>ﬁ2>ﬁ1 3 6
3 ar>a1 >/ >0 8 5
4 ar>ap>0B>p61 0 6
5 ar>as > >0 0 5
6 a1 >01>a>0 0 8

A head wave can exist for any wave type with velocity greater than the
incident and generated wave types. Ordering the head waves by decreasing
head-wave velocity and decreasing generated-wave velocity (where the latter
varies first so head waves with the same velocity are grouped together), the
possible head waves are:
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Case 1, P source:
Case 1, S source:
Case 2, P source:
Case 2, S source:
Case 3, P source:
Case 3, S source:
Case 4, P source:
Case 4, S source:
Case 5, P source:
Case 5, S source:
Case 6, P source:
Case 6, S source:

Canonical signals

P1p2Ss, Pipa Py, Pip2St, PisaoPy, PisaSy;
S1p2S2, S1paPr, S1p2S1, S152P1, S15251, S1p151;
Pipa Py, PipaSa, Pip2St;

S1paPr, S1p2S2, S1p2S1, S1p152, S1p151, S15251;
Pipa Py, PipaSt, Pip2Sa;

S1p2 Py, S1p2St, S1p2S2, S1p1S1, S1p152;

none;j

S1p1 P, S1p1S2, S1p151, S1p252, S1p251, S152571;
none;j

S1p1 P, S1p1S1, S1p1S2, S1p2S1, S1p252;

none;

S1p151, S1p1 P, S1p152.

9.2

The first-motion approrimation is based on first-order Taylor expansions
about the geometrical arrival. Investigate the second-order terms for a point
source in a homogeneous medium, and compare the results with the exact
result. Do the second-order terms always improve the approximation?

The spectral result corresponding to (8.2.14) is
ipJ1 (wpx)

/oo B eiwﬂ'dp’
0 ¢ \ *qJo(wpx)

simplifying the notation somewhat. A saddle point exists where

VP(w)w?
u(w,x) = Irpa?

sin 0
p =
o
cos 0
q =
«o

It is straightforward to evaluate the integral by the second-order saddle-
point method (Appendix D.1), to give the first-motion approximation, but
surprisingly tedious to find the next terms.

For the Bessel functions we only need

1 1 —_
~ 14— iz—in/4
Jo(2) s < + 8iz) e
~ 1 3 iz—3imr/4
Jl(z) =~ \/% <1 8iz) €
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(Abramowitz and Stegun, 1965, §9.2.5). We then need a second-order Taylor
expansion about the saddle point, i.e.

1/2 . .
pJo(wpx) ~ < P > <1+ ! )e“"m_”r/4

2w Siwpx

1

1 2
- —(27rwR 0] <a0 + by op + 500 op >

iwRsin? 0/a—ir/4

X e

2 3\ /2 . .
2 iam) = () (1 ) o
q

2mwaxq B Siwpzx
1 1 9
= TR 8 <a1 + b1 dp + 51 op )
% einsin2 6/01—317r/47

where

The coefficients are

= <Sin¢9 . «Q )
0 o SiwR sin2 6
1
2

by =

1 o 3/2
co = - Z . ) 9
and
sin3/2 9 (1 3o >
a = _ -
! al/2 cos 0 RiwR sin?
1 al/2gin'/2 9

by = 5W(3+2tan29)

1 a3/2
¢ = ————(3+16tan?0 + 12tan9),
! 4 sin/2 0 cos 6 ( )
where we have only retained the terms needed.

For the phase function 7 = gd, we need terms up to the fourth derivative
at the saddle point
= qd = Rcos’0/a
7 = —pd/qg= Rsinf
7 = —d/a’¢® = —aR/cos? 0

\]
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s = 3pd/a2q5 = — 3a2Rsin 0/ cos* 0
S 3d/a2q5 — 15p2d/a2q7 = —30°R (1 + 5tan? 9) /COS4 0.
Thus
) i 20 i
e'“T ~ exp <IWR €08 iwalt op® + Bop® + C(Sp4>

«a © 2cos20

12

o incosQH_ iwaR Sp2
P Q@ 2cos26 F

x (A + Bp® + Cép* + DépG) ,

where
A =1
a?Rsin 6
B = - —_
W 2costd
. a’Rsinf 9
C = —1wm(l+5tan 9)
D — 132:_w2a4R251n29
2 8cos8

Finally we require the saddle-integrals
o0 .2
I, :/ e ' dx.
—00

Integrating by parts it is easily shown that

n+1
In+2 - ( 9 >In7
1a

Iy = \/fe—iwﬂl’
a

is known (D.1.11) (assuming a > 0). With n odd, I, = 0 by the anti-
symmetry. The other required, non-zero integrals are

where

I, — /2 o 3im/4

2 = 2a3/2

I, = — 3!/2 —ir/4
4 4572

Iy = 157!/2 o 3im/4

o 8aq7/2
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For the u, integral: the terms ag, A and the integral Iy give

icosf _ cos 0 )
awR  8w2R2sin?6’

the terms ¢y, A and the integral I give

cos® )
8w2R2sin% @’
the terms by, B and the integral I, give
3cosf
42R?
the terms ag, C' and the integral I give
3(145tan?6) cost
8w2 R2 ’
and the terms ag, D and the integral I give
15sin? 0
~ 8w2R2cosf’
All other terms give odd integrals I, or are of order w™™ with m > 2.
Combining all the terms we have

icosf n cos 0
awR  WZR?%
Similarly for the u, integral: the terms a1, A and the integral I give
isinf 3 )
awR  8w?R2sinf’
the terms ¢y, A and the integral I give
3cos § + 16sin? 6 cos? § 4 12sin* 0
8w2R?sin f cos? 0 ’
the terms by, B and the integral Iy give
(9cos? 6 + 65sin 0) sin @
4w? R? cos? 0 ’
the terms a1, C' and the integral I give
3(145tan?6)sinf
8w2 R? ’
and the terms ay, D and the integral I give
15sin® 0
8w2R2cos2 0’
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All other terms give odd integrals I, or are of order w™" with m > 2.
Combining all the terms we have

isinf  sin6

awR + w?R?

Combining with the factor outside the spectral integral, we have

_ VP(w) sin 0 . @\ iwR/a
u(w’x)_47rpa3R ( :l:cos@) (—uu—i—ﬁ)e '

which agrees exactly with result (8.2.70).

The evaluation of the second term, which is of order w™" compared with
the first term, using higher-order, saddle-point methods, is equivalent to the
next term in a Taylor expansion about the geometrical arrival in the time
domain. In general, the Taylor expansion will not terminate — reflections,
etc. will not just be a step and a ramp as the coefficients will vary. Normally
the next term in the expansion will improve the approximation, except when

1

the first term is singular. The expansion may have limited validity if the
saddle point is near to another singularity, e.g. a branch point or pole.

9.3

Show that at a fized frequency (e.g. in the spectral domain), the particle
motion of a Rayleigh wave is an ellipse. Show that at the free surface it is
a retrograde ellipse but that at depth it changes from retrograde to prograde
(and at some depth it is vertical). Show that at the free surface the ratio
of wvertical to horizontal displacement varies from |u,/uz| = 1.83924 for
Poisson’s ratio v = 1/2, to 1.27201 for Poisson’s ratio v = 0.

The spectral result for an interface wave is given by (9.3.22)

i_w (pp(ﬂe ) 1/2 onle (ppOle) eiw ﬁay (ppoleyxR)
m 2x R gl (ppole) ’

U,y (wu XR) =

where Z}

G 1 is defined in equation (9.3.21)

onle (ppole)
G.y(p) = 7 (Poote) (P — Ppote)

For a homogeneous half-space, the function Qray will contain a factor

7

iwqaz N —iwgaz N —iwggz
gpe' IR + Tgsgpe IO + Tyg gge™ IR,
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for the source P wave, and
Gy I | Ty g IR Ty g i,

for the source SV wave, where the free-surface reflection coefficients are
given by expressions (6.4.5). These factors are combined with weightings
depending on the source excitation, depth, etc. At the Rayleigh pole, the
function g(p) can be taken as

g(p) = APV = 4p?qaqs + Q2

(definition (6.4.6), dropping the medium subscript). We have used the obvi-
ous notation for the up- and down-going, P and SV polarizations from the
eigen-matrix Wa, (6.3.51) and (6.3.53). The function onle(ppole) therefore
contains a factor

12003 =X (P lialen , 2PU099)' (G5 ulgslon
(2pqa)1/? ~ Ga (2pqp)'/? p

~ 2pqg < p ) wlaalzr 4 < s evlaslzr
— Qo

from the P wave source, and

4pQ(QaQﬁ)l/2 ( p )ewqazR . 4]9 AP qaqp — 247 02 < aa ) wlaglzr

(209a)'/? ~Ga @) 2\ b
as

~ 0 ( p ) wlgalzr _ 20qq <
— Ga

from the SV source (dropping common factors 4p(q/2p)'/2, and using 9(Ppole) =
4p®qaqp + Q2 = 0).
At the free surface, these expressions reduce to

P 43 1 2pqp
2 + Q0 =
”‘“(w) (p) W( Q )
P 43 B 1 Q
Q -2 @ - )
<_Qa> = <p> 2pﬁ2<—2pqa>

for the P and SV sources, respectively. The ratio of the displacement com-

evlasler

ponents is identical in the two cases

u,  Q  2pga . 2-9%B°

Uy 2pqs Q 12(1 —y2/32)1/2’
as g(Ppole = 1/7) is zero. This ratio is negative imaginary (as 2 < 0). Thus
the motion is a retrograde ellipse.
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Using the following program we can compute this ratio for Poisson’s ratio
between v = 0 and 1/2

function Exercise93
% Exercise 9.3

% surface ratio for Poisson ratio from O to 0.5

poisson = linspace(0,.5,100);

for j=1:length(poisson)
% Rayleigh wave velocity range is 0.8740 to 0.9553
gamma(j) = RayleighVelocity(poisson(j));
% magnitude of u_z/u_x range is from 1.27201 to 1.83924

uzx(j) = .5x(2-gamma(j)~2)/sqrt(l-gamma(j)~2);
end
uzx (1)
uzx (length(poisson))
figure

plot(poisson,uzx)
b

print -depsc2 exercise9_3a.eps

% depth profile for Poisson ratio of 0.25

poisson = 0.25;

beta =1;

alpha = beta*sqrt(2*(1-poisson)/(1-2*poisson));
gamma = RayleighVelocity(poisson);

p = 1/gamma;

p2 =p~2;

iqa = sqrt(p2-1/alpha~2);

igb = sqrt(p2-1/beta”2);

Omega = 1/beta”2-2%p2;

)
omegaz = linspace(0,6,100);

for j = 1:length(omegaz)
% from expression for P source
% minus imaginary part of u_x
iux(j) = 2xp2*igb*exp(-igqa*omegaz(j))...
+0Omega*igb*exp(-igb*omegaz(j));
% real part of u_z
ruz(j) = -2*p*iga*iqbxexp(-iqa*omegaz(j))...
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—-Omegaxp*exp (-igb*xomegaz (j)) ;
end
figure
hold on
plot (omegaz,iux,’b’)
plot (omegaz,ruz,’r’)
plot ([ omegaz(1) omegaz(length(omegaz)) 1, [0 0],°k’)
A

print -depsc2 exercise9_3b.eps
This uses the functions RayleighVelocity and RayleighRadix

function gamma = RayleighVelocity( Poisson )

% RayleighVelocity = normalized Rayleigh velocity

% INPUT:

% Poisson = Poisson’s ratio

b

% OUTPUT:

A gamma = normalized Rayleigh velocity
yA (gamma/beta)

% Algorithm: solve cubic (9.1.60) using fzero
global u

b

u = .5x(1-2%Poisson)/(1-Poisson);

y = fzero(@RayleighRadix, [1 1.4]);

gamma = 1/sqrt(y);

return

function fy = RayleighRadix( y )
% RayleighRadix = cubic for Rayleigh pole

% INPUT:

A y = variable p~2 beta"2
b

% GLOBAL:

yA u = beta"2 / alpha”2

% OUTPUT:

yA f(y) cubic given by equation (9.1.60)
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% Note: for internal use by RayleighVelocity
global u

b

fy = (1-u)*y~3+(u-3/2)*y~2+y/2-1/16;

return

and produces the plot below varying from 1.27201 to 1.83924.

I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.2 I I I I

A plot of the magnitude of the vertical to horizontal surface displacement for a
monochromatic Rayleigh wave against Poisson’s ratio.

It also produces a plot of the displacement as a function of depth for a
Poisson ratio v = 1/4 (a Poisson solid). The imaginary part of u, and
minus u, are plotted, i.e. —iwu, and — u, (specifically, we have used the
expressions given above for the P wave source, but it doesn’t matter which
is used — only the relative values are significant). Note that, of course, the
displacements decay with depth due to the two negative exponentials. The
horizontal displacement changes sign (as the positive P wave term decays
more rapidly than the negative SV wave term) so at a certain depth (about
wz = — 1), the displacement is vertical, and below this the motion is pro-
grade. This result is often discussed in textbooks but is of limited practical
significance as it only applies to monochromatic Rayleigh waves. It does not



9.4 197

0.7

A plot of the horizontal (minus imaginary — blue) and vertical (real — red)
displacements as a function of depth for a Poisson solid with unit shear velocity
and frequency. The magnitude of the vertical axis is not significant.

apply to Rayleigh waves generated by an impulsive source, as discussed in
the text (Section 9.1.5.2).

9.4

Further reading: The shadow results, Sections 9.3.6 and 9.3.7, have been
extensively studied in a spherical Earth, where even with homogeneous lay-
ers, the spherical surfaces cast shadows. Farly publications are Duwalo and
Jacobs (1959), Gilbert (1960) and Knopoff and Gilbert (1961). Other papers
are Phinney and Alexander (1966) and Chapman and Phinney (1972).

9.5

Further reading: The amplitudes of head waves were obtained using the
Cagniard and WKBJ methods and an expansion about the branch points
of the reflection/transmission coefficients (9.1.52). A completely different
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method is used in the textbook by Cerveny and Ravindra (1971). Show that
the two methods agree.
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Generalizations of ray theory

10.1

In Section 9.2.7, we have investigated the waveforms at Airy caustics in
some detail. In three dimensions, more general caustics are possible, e.q.
the Pearcey (1946) caustic. Using Maslov asymptotic theory, investigate the
waveforms at caustics possible in three dimensions.

A cusp or Pearcey (1946) caustic exists when two Airy caustic surfaces meet
at a line (in three dimensions, or a point in two dimensions). An example
is visible in Figure 5.5. The wave-function near a cusp was investigated by
Pearcey (1946) through the canonical integral

Pe(w, X, Y) = )\(w)/ el (Y PEXp*4ph) g
We define a time function

T(p, X, Y)=Yp+ Xp*+ph

The ‘coordinates’ are arranged so the cusp is at (X,Y) = (0,0), and at the
cusp, the caustic surfaces are tangent to the plane Y = 0. Saddle-points
corresponding to arrivals exist when

OT/op =Y +2Xp+ 4p° =0,
and caustics when
9T /9p* = 2X + 12p* = 0,

i.e. only when X < 0 and then at p = +/—X/6. Substituting back in the
saddle-point condition, the caustics are where Y? = — (2X/3)3. This is
illustrated in the figure of the X-Y domain in the range — 3 to 3. In the
next figure, we have plotted the ’time’ function, T, for the nine values of

199
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I

2r X X

1+ X X

0

1k

e

_3~ 1 1 1 1 J
23 -2 -1 0 1 2 3

The XY plane. The dotted lines are caustics, the origin the cusp, and the
crosses points where the T function is illustrated in the next plot.

(X,Y) marked in the first figure (these are at X = —2,0and 2 and Y =0,
1 and 2 — there is symmetry about Y = 0).

Between the caustics, with X < 0 and |Y| < (—2X/3)3/2, three arrivals
exist corresponding to stationary values of T. Two arrivals are normal (min-
ima of T), and one is a Hilbert transform (the maximum of T) as it has
touched a caustic. Outside this region, only one normal arrival exists which
has not touched a caustic (see Figure 5.5).

Pearcey (1948) has presented numerical results for the above function
Pe(w, X,Y), in the range X = — 8 to 8 and Y = 0 to &, i.e. the spectral
response near a cusp. The results are of historical interest as they were com-
puted using the differential analyser at Cambridge University, a precursor
of modern computers.

The waveforms can be studied using the same techniques as for the Airy
caustic (Appendix D.2.2) or the WKBJ seismogram (8.4.1). The inverse
Fourier transform (3.1.2) of the Pearcey integral is

/ .
0>0 (t —Yp— Xp? — p*)1/2

Pe(t, X,Y) =
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The function 7 for the nine values of (X,Y) marked in the first figure (these are
at X = —2,0and 2and Y =0, 1 and 2).

1
0T /op|

= A(t) = Z

T=t

It is simple to investigate the singularities using the WKBJ seismogram

method (the second expression). The geometrical arrivals and the Airy

caustic are as already investigated. The new result is the singularity at
cusp. It is given by

T(1/4T(1/2) 1 T(/4r(1/2)

21°(3/4) /4 2w3/4

This result can be obtained by a variety of means. With X =Y = 0, the
integral in the first expression above can be reduced to the integral

w/2
1/ sin_1/20d0,
2 Jo

with the substitution p? = t'/2sin6. Solutions of T =t are at p= +t/4
so the second expression reduces to the convolution of t~/2 and t=3/4 /2,
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which again can be reduced to the above integral. This integral is the beta
function (Abramowitz and Stegun, 1965, §6.2.1 and §6.2.2)

/2 I'(z)(w)
B(z,w) = 2/ sint)®* Heost)?Vldt = =L~

(w) =2 [ (sin) cost) "
which gives the above result. The equivalence of the time and frequency
domain results can be obtained using (B.2.6).

A more detailed analysis of the time function near a cusp can be obtained
in terms of complete elliptic integrals (Hanyga and Seredyriska, 199171). We
can restrict our discussion to Y > 0 as by symmetry we have Pe(t, X, —Y) =
Pe(t, X,Y). With the substitution ¢ = Y ~1/3p (Y > 0), we obtain

d
Pe(t,X,Y) = y—1/3/ g -
(>0 (y—4/3t — g — (XY 2/3)¢2 — q4)

= Y73 Pe(Y 3, XY 2/3 1),
IfY =0, let ¢=|X|~'/?p and

Pe(t,X,0) = |X|‘1/2/ o
0>0 (

1/2
X2t —sgn(X)qg? — q4) /
= | X|7V2 Pe( X2t sgn(X),0).

Finally we have the special case (see above) X =Y =0

dp
Pe(t,0,0) = / .
A Y T DRE
Thus overall we need to investigate the general case Pe(t, X,1) and the
special cases Pe(t, +1,0) and Pe(t,0,0).
At the cusp, X =Y = 0: first we investigate the special cases on the
symmetry axis. At the cusp has already been discussed above. Then

Pe(t,0,0) = 0 if t<0
/AT g

2I°(3/4)
Outside the caustics, on the axis, X =1 and Y = 0: inside and outside
the caustic surface, we use the results (Gradshteyn and Ryzhik, 1980, 3.152
(3) and (9))

if t>0.

/b dp _ 1 K( b )
0 V@ TP -2 | JEIR \VEZiB?

1 Hanyga, A. and Seredyriska, M., 1991. Diffraction of pulses in the vicinity of simple caustics
and caustic cusps, Wave Motion, 14, 101-21.
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a dp 1 a? — b2
/b\/(aQ—ac2)(ac2—b2) B 5K< a )’

where K(m) is the complete elliptic integral of the first kind (as defined
in Abramowitz and Stegun, 1965, §17.3.1). When X = 1 and ¢t > 0, we
use the first result as the denominator has two real roots at p = + b with

b2 = (V1 +4t —1)/2. With a® = (/1 + 4t +1)/2, the result is
Pe(t,1,0) = 0 if t<0

2 b
= K < > if t>0.
Va? 4 b? Va? 4 b?
Inside the caustics, on the axis, X = —1land Y =0: fort < —1/4
the denominator has no real roots and the function is zero. For —1/4 <

t < 0, the denominator has four real roots at p = =+ a and =+ b, where

a? = (1++/1+4t)/2 and b* = (1 — /1 + 4t)/2. We use the second result
above. For t > 0, the two real roots at p = 4 a, and — b? is positive. We
can use the first result above with > — a? and a> — — b%. Thus

Pe(t, —1,0) = 0 if t< —1/4

2 2 _ K2
- —K<“7b> if —1/4<t<0
a a

N (L> if t>0.
V3 \VE R
Outside the caustics, off the axis, X > —3/2 and Y = 1: the equation
8T/8p = 4p3 + 2Xp+ 1 =0 has one real root and at this root T = Ty, say.
Fort < Ty, t = T has no real roots and the function is zero. For ¢ > Ty,

t = T has two real roots, a and b, and a conjugate pair m =+ in. We use the
result from Gradshteyn and Ryzhik (1980, 3.145 (2))

A X -
V(a—p)(p—0)((p —m)* +n?)
LK(E\/(a—b)Q—(p—qV)’
VP4 2 Pq
where
P2 = (m—a)?+n?
¢ = (m—b)?+n’
Thus

Pe(t, X,1) = 0 if t<T)
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2 1 [(a=b)2—(p—9q)? i
= \/p_qK(Q\/ v ) f t>1T.

The roots can be found analytically (see aside below), or numerically.

Inside the caustics, off the axis, X < —3/2 and Y = 1: the cubic
oT /Op = 4p>+2Xp+1 = 0 has three real roots with corresponding times in
order T7 < Ty <1Tj5. If t < T, thent = T has no real roots and the function
is zero. For Th <t <Thort>1T3,t= T has two real roots, a and b, and a
conjugate pair m + in. Then we can use the above result. If To < t < T3,

then ¢ = T has four roots a, b, ¢ and d (in decreasing order). The integral
can be written

/ dp - ¢ dp

0=0 (t—T)2  Ja la—p)b—p)c—p)p—d)
+/a dp

b V(a—p)p—0b)(p—c)p—d

- 4 (a—b)(c—d)
B <a—c><b—d>K<V<a—c><b >>

where we have used Gradshteyn and Ryzhik (1980, 3.147 (2) and (7)) for
the two integrals. Thus

Pe(t, X,1) = 0 if t<T)

LK(}\/(a—b)Q—(p—qV)
V/Pq 2 Pq

if Ty<t<Ty or t>1T3

B 4 (a—0b)(c—d)
B (a—c)(b—d)K< (a—c)(b—d))
if Ty <t <Ts.

This completes a description of the Pearcey time functions. The same
functions can be used if the sign of quartic term is opposite, i.e. T =
Yp+ Xp? — p?, by reversing the signs of w and t.

It is straightforward to calculate these functions numerically. For the sake
of completeness we repeat the results in Figure D.3 for the Airy caustic func-
tions, C(¢t, £1) and C(¢,0) These have been calculated using the following
function

function C = AiryTime( t, sign )
% function AiryTime = C(t,sign)
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The Airy caustic functions C(¢,1) blue, C(¢, — 1) red and C(¢,0) black.

% INPUT:

A t = time points

A sign =0, +1 or -1

A

% OUTPUT:

b C = function C(t,sign)
b

% Note:

% inverse Airy function time function as defined in
% Appendix D.2.2
)
C=zeros(size(t));
)
% C(t,-1) - (D.2.29) with (D.2.35) and (D.2.36)
if sign == -1
for j=1:length(t)
a = -sinh(asinh(t(j))/3);
p = sqrt(3*a~2+3/4);
C(j) = ellipke((p-3*a/2)/(2*p))/sqrt(p);
end
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t,0) - result (D.2.21)
if sign ==
= 27 (1/3)*ellipke(1/2+sqrt(3)/4)/3(1/4);
27 (1/3)*ellipke(1/2-sqrt(3)/4)/3~(1/4);
r j=1:length(t)
if t(j) > 0.
C(j) = cp/t(§)~(1/6);
elseif t(j) < 0.
C(j) = cm/(-t(§))"(1/6);
% C(0,0) is singular

else
C(j) = Inf;
end
d
t,1)
if sign ==
r j=1l:length(t)
% result (D.2.29) with (D.2.27) and (D.2.28)
if £(§) > 1
a = real(-cosh(acosh(t(j))/3));
p = real(sqrt(3*a~2-3/4));
C(j) = ellipke((p-3*a/2)/(2xp))/sqrt(p);
% C(1,1) is singular
elseif t(j) ==
C(j) = Inf;
% result (D.2.29) with (D.2.30)
elseif t(j) < -1
a = real(cosh(acosh(-t(j))/3));
p = real(sqrt(3*a~2-3/4));
C(j) = ellipke((p-3*a/2)/(2xp))/sqrt(p);
% result (D.2.26) with (D.2.25)

else
aa(l) = real(cos(acos(-t(j))/3));
aa(2) = real(cos(acos(-t(j))/3+2*pi/3));
aa(3) = real(cos(acos(-t(j))/3-2%pi/3));

aa = sort(aa);
C(j) = 2xellipke((aa(2)-aa(1))/...
(aa(3)-aa(1)))/sqrt(aa(3)-aa(l));
end

end
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end
%

return

In the next figure, we display the special cases of the Pearcey function on
the symmetry axis, i.e. Pe(t, = 1,0) and Pe(t,0,0), and in the final figure

18

16

Pe(t,0,0)

12

10r

ar Pe(t,~1,0)

2r Pe(t,1,0)

0 I I I I I I I I ]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

The Pearcey caustic functions Pe(t, 1,0) blue, Pe(t, — 1,0) red and Pe(,0,0)
black.

the general function Pe(t, X, 1) for X = —3 to 3 in steps of 0.5. The Pearcey
time functions have been calculated with the following function

function Pe = PearceyTime( t, x, y )
% function PearceyTime = Pe(t,x,sign)

% INPUT:

% t = time points

b = X

yA y = y parameter O or 1

% OUTPUT:
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5 Pe(t,X,1)

The Pearcey caustic function Pe(t, X, 1) for X = — 3 to 3 in steps of 0.5.

y Pe = function Pe(t,x,y)

% Note:

% inverse Pearcey function time function as defined in
% Exercise 10.1

% general case Pe(t,x,1)

% special cases Pe(t,-1,0), P(t,0,0) and P(t,1,0)

Pe=zeros(size(t));
% special cases on axis

if y==
% Pe(t,-1,0) inside caustic on axis
if x == -1
for j=1:length(t)

if t(j) < -1/4, Pe(j) = 0;
else % t(j) > -1/4

z=sqrt (1+4*t (j));

aa = (1+z2)/2;

bb = (1-2)/2;

a sqrt(aa);
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if t(j) <0

Pe(j) = 2xellipke(sqrt(aa-bb)/a)/a;
else % t(j) > O

z = sqrt(aa-bb);

Pe(j) = 2xellipke(a/z)/z;

end
end
end
% P(t,0,0) at cusp
elseif x ==
for j=1:length(t)
if t(j) < 0, Pe(j) = 0;
elseif t(j) == 0, Pe(j) = Inf;

else % t(j) >0
Pe(j) = gamma(1/4)*gamma(1/2)/...
(2*gamma (3/4) *sqrt (sqrt (t(j))));
end
end
% P(t,1,0) outside caustic on axis
else
for j=1:length(t)
if t(j) < 0, Pe(j) = 0;
else % t(j) >0
z = sqrt(1+4*xt(j));
aa = (z+1)/2;
bb = (z-1)/2;
z=sqrt (aa+bb) ;
Pe(j) = 2xellipke(sqrt(bb)/z)/z;
end
end
end
% P(t,x,1)
else
% stationary points of quartic
cubic = [ 4 0 2*xx 1 ];
ps = roots(cubic);
% outside caustic, off axis
if x > -3/2
% one real root
for k=1:3
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if imag(ps(k)) == 0, break, end
end
pl = real(ps(k));
tl = pl™4+x*xpl~2+p1l;
A
for j=1:length(t)
if t(j) < t1, Pe(j) = 0;
else % t(j) > t1
% 2 real roots
quartic = [ -1 0 -x -1 t(j) 1;
ps = roots( quartic );

11 = 0;
for k=1:4
if imag(ps(k)) == 0
11 = 11+1;
ba(1ll) = ps(k);
else
mm = real(ps(k));
nn = abs(imag(ps(k)));
end
end

ba = sort(ba);

p = sqrt((mm-ba(2)) 2+nn"2);

q = sqrt((mm-ba(1)) 2+nn"2);

Pe(j) = 2xellipke(sqrt(((ba(2)-ba(1))"2-...

(p-q)"2)/(p*q))/2) /sqrt (p*xq) ;
end
end
% inside cusp, off axis

else % X < -3/2
% 3 real roots
for k=1:3
tt (k) = ps(k) " 4+x*ps (k) "2+ps(k);
end

tt = sort(tt);
YA
for j=1:length(t)
if t(j) < tt(1), Pe(j) = 0;
else % t(j) > tt(1)
quartic = [ -1 0 -x -1 t(j) 1;



10.1 211

ps = roots( quartic );
if  t(3) > tt(2) && t(j) < tt(3)
% 4 real roots
ps = sort(ps);
Pe(j) = 4xellipke(sqrt((ps(4)-ps(3))*(ps(2)-ps(1))/...
((ps(4)-ps(2))*(ps(3)-ps(1)I))) /...
sqrt ((ps(4)-ps(2))*(ps(3)-ps(1)));
else % tt(1) < t(j) < tt(2) or t(j) > tt(3)
% 2 real roots

11 = 0;
for k=1:4
if imag(ps(k)) ==
11 = 11+1;
ba(1ll) = ps(k);
else
mm = real(ps(k));
nn = abs(imag(ps(k)));
end
end

ba = sort(ba);
p = sqrt((mm-ba(2))"2+nn"2);
q = sqrt((mm-ba(1))"2+nn"2);
Pe(j) = 2xellipke(sqrt(((ba(2)-ba(1l))"2-...
(p-q)"2)/(p*q)) /2) /sqrt(p*q) ;
end
end
end
end
end
yA

return

These functions use the Matlab routines roots to solve the cubic and
quartic polynomials. However, these can be solved analytically and for the
sake of completeness, the methods are given below in an aside.

Brown (1986a)f has investigated the cusp caustic and has analyzed the
singularities. As mentioned above, Hanyga and Seredyriska (1991) have
analysed the same problem and have obtained the analytic results for the

1 Brown, M.G., 1986a. The transient wave fields in the vicinity of the cuspoid caustics, J. Acoust.
Soc. Amer., 79, 1367—-84.
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time functions at caustic cusps in terms of complete elliptic integrals (and
have confirmed the Airy caustic results of Burridge, 1963a, b, and Appen-
dix D.2.2). Burridge (1995)1 has also analysed the Pearcey cusp problem.
He has investigated the inverse Fourier transform of the functions

4

/oo ¢ eiw(Yp+p3)d Z b
N £
—00 P P 3 ‘3])2 + Y‘
t=p>+Yp
o 14
¢ iw(Yp+Xp2+p4)d p
/_oope P 2 [4p3 + 2Xp + Y|

t=p*+Xp2+Yp

i.e. without the spectrum A(w) (so the result corresponds to the two-dimensional
problem). We have used a notation analogous to Pearcey’s not quite Bur-
ridge’s. The first function with ¢ = 0 corresponds to the function C(t,y)
investigated in Appendix D.2.2, without the convolution with A(t). The
function with ¢ = 1 corresponds to the inverse Fourier transform of the
derivative of the Airy function, as required by the full asymptotic expansion
near an Airy caustic (Chester, Friedman and Ursell, 1959; Ludwig, 19667).
The second function is for the Pearcey cusp and for the full asymptotic ex-
pansion is required for £ = 0, 1 and 2. Burridge (1995) has investigated it
analytically for Y = 0 on the symmetry line, and illustrated all functions
numerically.

Brown (1986b)f has analyzed the singularities of higher-order caustics,
and Brown and Tappert (1986)§ have discussed the general caustic problem.
Aside: roots of cubic or quartic polynomials

A general method of finding the roots of a polynomial is to find the eigen-
values of the companion matrix. For a polynomial

anpx" + ...+ a1x+ag =0,

1 Burridge, R., 1995. Asymptotic evaluation of integrals related to time-dependent fields near
caustics, SIAM J. Appl. Math., 55, 390-409.

1 Ludwig, D., 1966. Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math., 19,
215-50.

1 Brown, M.G., 1986b. The transient wave fields in the vicinity of the elliptic, hyperbolic and
parabolic umbilic caustics, J. Acoust. Soc. Amer., 79, 1385-401.

§ Brown, M.G. and Tappert, F.D., 1986. Causality, caustics, and the structure of transient wave
fields, J. Acoust. Soc. Amer., 80, 251-5.
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the companion n X n matrix is

—ap_1/an —ap—2/an ... —aifa, —ag/ay
1 0 0 0
0 1 0 0
A =
0 0 0 0
0 0 1 0

The eigen-equation is

n—1 n—1
xn—2 xn—2
A : =z ,
X
1 1

and the eigenvalue is equivalent to the polynomial root. This method is
used by the Matlab routine roots.

Cubics and quartics can be solved analytically. Consider the cubic in its
standard form

x3+pm2+qz+r20.
This can be reduced to

y> +3Qy —2R =0,

where
_ p
y = ;1?—1-3
1
3 = q—=p?
Q q— 3P

p 2p?
oR = 222,
3<q 9) "

We define a discriminant
D= Q%+ R?.

If D > 0, there is one real root, and if D < 0 there are three real roots
(multiple roots if D = 0). The following algorithms require the special case
of a triple root when = R = 0, and y; = y» = y3 = 0, to be handled
separately.
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If D > 0 we make the transformation
0
Yy = 2Q1/2 sinh 3’
and the cubic reduces to
R
Q32
The standard logarithmic formula for the inverse hyperbolic sine gives

0 _ .5
3o

sinh 6 =

where
1/3
S=(R+vD) 2
Substituting, this gives the root
U1 = S+ Tu
where
1/3
T=-Q/S=(R-VD)".

If R < 01it is best to calculate T first and derive S from it.
If D < 0, then we make the transformation

y=2(— Q) cos .

3
and the cubic reduces to
cosf = ﬁ
(necessarily @ < 0). The solutions are
Yy = 2\/—— cos 3
y1 = 2v/—Qcos (g + 2%)
yi = 2/ - Qcos (g + %ﬂ) .

For a quartic

a4x4 + a3x3 + a2x2 + a1z + a9 =0,

the transformation
as

= s
y +4a4
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reduces it to

v oyt +ay+r =0,

where
as  3a3
b = ——=33
ay 8@4
al as a9 as
q = _— — _
aq 2a4 ayg 4a?1

First we consider the special cases:
e if g =r =0, there are two or four real roots
y1 = y2=0
Ys = —UYa=v — D

e if ¢ = 0, the quartic reduces to a quadratic in 2. There will be zero, two
or four real roots;
e if 1 =0, we obtain

y(y* +py +q) =0,

and we have the root y; = 0 plus the roots of the cubic. There will be
two or four real roots.

Returning to the general quartic. As the cubic term has been removed, it
can be factored as

(y2+vy+z+u) (y2—vy—|—z—u):0.

Expanding and comparing, we have

w o= 22—
v = 22— P
uv = —gq.

Squaring the last result and substituting, we obtain the reducing cubic

2
z3—§z2—m+<%—q§> =0,

from which we can always find at least one real solution for z defining the
quadratics. Solving these, we obtain zero, two or four real roots.
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10.2

Using transform methods, show that coupling between quasi-shear plane waves
exists (using methods similar to Section 7.2.6) and that the form of coupling
is similar to the ray result (10.2.56) (see Chapman and Shearer, 1989).

The coupling between the transformed eigen-solutions is given by equation
(7.2.122)

A k1) _ et C(z) T b,

dz ™~ -
dropping the source term, which is used to generate the zeroth iteration (see

Section 7.2.6 for more details). The matrix C is given by (7.2.95)
C=-wW'w,

where W is the matrix of eigenvectors. Let us just consider the sub-matrix
C2x(12) ¢ the coupling matrix between ¢S waves travelling in the posi-
tive direction. Using the orthogonal relationship (6.3.33) with the symplec-
tic transform (6.3.31) and the decomposition of the eigenvector w into the
velocity, v, and traction, t, vectors, we have

c2)x(12) _—  _ ti vi ViV
ty V3 t ty

_ 0 tl-V/Q—l-Vl-t/Q
tQ'Vll—l-Vg't/l 0 ’

where the subscripts indicate the wave type, i.e. 1 refers to the slower ¢S,
and 2 the faster ¢S1, and the prime, the derivative d/dz. This matrix is
known to be anti-symmetric (Section 7.2.5.1).

The traction is defined by (6.3.29)

t = — pre3pv,
SO
t/ _ / / /
= — PpC3kV — PkC3rV — PEC3LV .

We are interested in the problem where v varies rapidly compared with the
material properties due to a quasi-shear wave degeneracy. Thus we neglect
the derivatives pj, and cf,. Hence

/ / /
ty-vo+ vty >~ —vi(cgs + cap)va

P8 (cks + c3k)8)
2pV3
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where the normalizations of the two eigenvectors are approximately equal,
wy ~ wy ~ (2pV3) /2
and g are orthonormal, it is obvious that the matrix C
symmetric, and that the gradient of g, can be described using a rotation
angle, ¢, i.e.

, and we have ignored the derivative of pV3. As g

(12)x(12) s anti-

g = ¢'&
gy = —¢'&1
As prgicskgr = pVs (5.3.20), the quasi-shear coupling matrix becomes

azxaz _ [ 0 —¢
c <¢, ; )

Thus the coupling between the transformed eigen-solutions is completely
analogous to the quasi-shear ray coupling (10.2.56).

10.3

Using the stationary-phase method to evaluate the Born scattering integral,
linearized reflection coefficients can be obtained for a small-contrast interface
(Shaw and Sen, 2004). By considering a perturbation to a half-space, show
that the coefficients obtained in this matter agree with those in Section 6.7.

For simplicity, we consider a two-dimensional problem with very simple
geometry. The algebra is simplified and as the reflection coefficient obtained
is independent of the geometry (apart from the angle of incidence, of course),
the simplications are of no consequence. The acoustic model consists of an
interface separating two uniform half spaces. The Born perturbation applies
to the second half space, i.e.

P = ApH(z—2)
KB = AkH(z — 2).
In the notation of Section 6.7, Ap = — [p] and Ak = — [k]. The source and

receiver are at the same depth, z = 25 = 2r > 29.
The acoustic, two-dimensional, perturbation Born result is from (10.3.69)

B iw)\(w))2

B
u”(w,XR;Xs) = —< 2.

X / I‘B(x, £R7£S)2(2)(X, ﬁR’ﬁs)eiwf(x,LR,[js) av,
1%
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where from equation (10.3.72)

1 [Ap . . Ak
Mo LriLs) = 5o (= Dx L) Bl £s) — ) Hlz — 2)
= TBH(z - 2),

say, and definition (10.3.54) with the two-dimensional ray results (equations
(5.4.34) and (5.2.76)) is

Is(XRa ‘CR)IA)T(XS> ‘CS)

2
2( )(X7£R7£S) = - 2pa2(RRRS)1/2

The reference media, i.e. the half space z > 29, has constant velocity, «, and
density, p. The straight source and receiver ray lengths are Rg and Rg so

Xx—Xxs = Rsp(x,Ls)
X —XR = RrDP(x LR)

(note the signs of these definitions of p), and the travel time is
T(x,Lr,Ls) = Tr + Ts = (Rr + Rs)/av.

The Born integral reduces to
] V) o0 . ~
u= 2/ / FB2(2) T dxdz,
21 J o0 J -0
omitting the arguments for brevity. The x integral has a saddle point when

@_az—zR r
dz  aRr aRs

0,

i.e. z = xr/2 and Rr = Rs. The second derivative is

d2T (2 — 2R)? (2 — 25)?
dz? aR% aR%

> 0,

for a given z. The integral is approximated by the second-order saddle-point
contribution (D.1.11)

u 1w /22 B p?) g2iwR/a /OO elw (z=25)* (x—25/2)? /aR® .. 4

27 J -0 —00

3im /4 1/2 z 3/2
_ @ (%)/ [t g R
2 T oo 25 — 2

12

(for w > 0), where the terms in the integrand are evaluated at the saddle
point, i.e. with Rg = Rr = R, say. This oscillatory integral does not have a
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saddle point as R increases steadily as z — — 00, so the major contribution
comes the end-point, zo. We note that R is a function of z and write it as

R(z) = (25 — 2) sec(z),

where 6 is the angle between a ray through (xr/2,z) and the vertical. The
differentials are connected by dR = — cosf#dz, so integrating by parts and
dropping terms in O(1/w) to obtain the end-point contribution

u e/t (%) 2 /OO B 2(2) ein'R/a RY/2

1

5 - R(z) cos2 6
N eBim/4 (%)1/2 M (i) e2iw'R/a -
~ 2 i
2 7r cos 0 2w R(22)
3/21B p(2) p1/2 :
_ o’ TP DY R )\(w) e21wR/Ot’
47 cos? 6

where all terms are evaluated at the end-point. Substituting for T® and
2(2), the frequency independent coefficient reduces to
a3/2TB D) R1/2 PRrRDS Ap Ak:) sec 0

47 cos? 0 T BR2ra32(2R)1? <COS 26 p k) 4

The acoustic reflection coefficient from an interface is given by (6.3.7)

P24al = P1Ga2 1 ( po )/( pa )
T = 7~ = — A ,
M padat + p1das 0l 2 cos ¢ cos §
for the linearized coefficient (6.7.23). Using k = 1/pa? for the compressibil-
ity (4.4.4), and

Al = % tan @,

a

from Snell’s law, this can be rewritten (to first order in the perturbations)

as
A Ak 29
71]_ ~ <COS 20 7p — T) Sez 5
so (6.7.23)
2 cos? 2 cos?
a a
at the saddle point (remembering that Ap = — [p], etc.). Thus the Born

reflected solution reduces to

N grES {w(2R)/a
U (R A ’
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where a sign change occurs as we have now used the polarizations for the
complete ray, i.e. gr = g(xgr, Ls) = —Pr = —P(XR, Lr). The expression for
u can be recognized as the far-field, dyadic two-dimensional Green function
(5.2.83) for the reflection with ray length 2R.

Thus approximating the Born perturbation volume integral by the second-
order, saddle-point contribution in the interface coordinates, and the end-
point contribution in the coordinate normal to the interface, we obtain the
linearized approximation for the reflection coefficient. For anisotropic me-
dia, the operations will be similar although we must be careful to distin-
guish phase and group velocities, and ray types. The isotropic results can
be obtained by specializing the anisotropic results. First we investigate the
connection between the linearized coefficients (Section 6.7) and the pertur-
bation Born scattering (Section 10.3.3) for general anisotropic media. As
above we consider a perturbation to a half space z < zo

PP o= ApH(m—z)= —[p] H(z —z)
c}gk = AcjpH(z —2) = —[cjix] H(z2 — 2),

so the perturbation Born term is

% (x,Lr,Ls) = gk (Ap+pripsjAcy;) gs H(z — 2)
= I H(z - 2),

say, using the abbreviated notation defined above (pr = p(x,£Lgr) and
ps = p(x, Ls) for rays to a scattering point, x) (we use the form of Born scat-
tering with perturbations to the stiffnesses rather than compliances (10.3.78)
as this is more common in the literature — to first order, the results are
equivalent).

Expanding expression (6.7.21)

0T = W' [W]I,,
we can obtain a very simple expression

0Trs = [1rs] = tr(gs] + grlts];

for the linearized coefficient from a small-contrast interface with source and
receiver types indicated by S and R, respectively. However, we would prefer
a result in terms of the saltus of the medium rather than the saltus of
the eigen-solution. Combining equations (6.7.20) and (6.7.21) for a small-
contrast interface, we have

0T = — I;[6C]L,
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where the matrix dC is defined in equation (6.7.16)
off-diag ([pn, 0C]) = off-diag (IsW*Is JAW).
Rearranging the first equation
[0C] = — 130T Iy,
and substituting in the commutator, we have
off-diag ( — ppI3 0T Iy + I3 0T Iyp,) = off-diag (IsW'I,[A]W) .

Expanding this, we obtain for any term with R # S

(Pn)r0TRs — 6Trs(Pn)s = — wi[Alws,

where the subscripts R and S indicate the receiver and source ray types and
direction, i.e. RS map into the matrix indices ij. We have the notational
complication that in the matrix T the indexing depends on the medium (and
ray type), whereas in the above expression it would be more convenient if
the indexing depended on the ray direction (and ray type). This can be
achieved by swapping the columns (corresponding to the source ray) of the
matrix 7T, i.e.

T =TI,

and then in the matrix T+ the indexing depends on direction. We can then
treat R and S as indices, and the above scalar equation can be written in
matrix form

off-diag (pné’f - (5Tipn) = — off-diag (Wi [A]W) .

Expressions for A in terms of dp and dc;j, have been given in the text
(expressions (6.7.18) and (6.7.19)) — remember that the slowness compo-
nents, p,, contained in A are in the interface, and are the same for all rays
at the interface. The perturbation Born scattering term, I'®', has been given
above. Remember that in that expression, the polarizations are normalized
with respect to energy flux along the ray, whereas in the coefficients, T, they
are normalized with respect to energy flux normal to the interface (see dis-
cussion at the end of Section 6.8.2). Taking the above expression for §7gs,
we can rewrite it using expressions (6.3.25) and (6.3.31) as

- I R
(psg—pR3)5TRS: —gR( — PR;Cj3 I ) [A]< — ps kCak >g57

where in this expression pg is in the direction of the reflected ray, not the
reversed direction from receiver to scatterer used in the Born scattering term,
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I'B'. Substituting for [A], expressions (6.7.18) and (6.7.19), and expanding
summations such as

DR;Cj3 = PpCy3 + PR3C33

(as py’s are the same for the source and receiver rays), we obtain

(e 1) ( e, ) -

PopulCp] + PR3pPy[C3] + pypss(eys] + prapssless] — [p]T,
where many terms cancel in the expansion. Comparing this expression with
the expression for the perturbation Born scattering term, FB/, we obtain
1 1 B
i Vs|l/2|f - Vg|/2 f- (Ps + PR)

6Trs = [1rs| = ;
where now pg is in the Born direction from receiver to scatterer, and the
factors fi- V correct for the different normalizations of the polarizations. It
is trivial to confirm that this general result for anisotropic, elastic media
reduces to the acoustic result

.« B

~ 2cos26

TRrs

given above.

We now approximate the perturbation Born volume integral by the second-
order, saddle-point method to show that the expected reflection is obtained.
We summarize the Born integral (10.3.42) with the ray-theory approxima-
tion

’ w2 ’ s
uB - _ / FB D(B) ele d‘/,
An2 Jy,

where FB/(x, Lr, Ls) has been defined above. We first consider the ‘reflec-
tions’ from each plane of scatterers with z constant, and evaluate the xz—y
integral by the method of second-order, saddle-point method. Thus

, W (2 i, s pe)
N _%/_;e 7( RLS)W(M

where the terms in the integrand are functions of z and are evaluated at the
saddle point corresponding to the ‘reflection’ from the plane z (we assume
sgn(Vq(VqT)) = + 2, as usual). In order to evaluate this integral, we
change the variable of integration to T' and approximate by the end-point



10.3 223
contribution. We need the derivative dz/dT. As p = VT, this is given by

g =k-VI'= —n-(ps+Ppr) = — |ps + pr|

(note that with the direction of the z axis, d7'/dz is negative. The final
simplification occurs as the interface components of pr and ps cancel by
Snell’s law (10.4.58)). We can confirm this result by a simple geometrical
construction. The figure shows the change in rays for a depth change dz.
To first order we can assume that the rays are parallel (in direction \A/') and
that the spectral reflection point does not move laterally. The diagram is
for an anisotropic medium as the phase direction, p, perpendicular to the
wavefront (7 constant) is not in the same direction as V. Projecting the ray

=

ATV dz

Rays with approximately the same direction incident on reflection points dz
apart, with a travel-time difference of dT". The slowness direction, p, normal to
the wavefront, T' constant, is also illustrated.

increment d7'V and the vertical increment dz k onto the phase direction p,
we obtain

p-VdT =p - kdz.
Thus
dI  p-k p-k p-k .
—_— == — = :pk,
dz p-V Vecoso c

using p-V =1 (5.3.32).
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Thus the Born integral becomes

B’ 3

B’ 1 iwT(xg,Ls) I D( :

~ _—e¢ 17
|Va(VaD)| " 5 (ps + pr)

9

2T

where the terms are evaluated at the saddle point x = X;5y when z = 2.
Substituting for T and D®) this becomes
/ 1
u® o el WTORLs) g(xp, L) g7 (x5, Ls) Trs
LS V|2 - VR[V2 TG (09, £6) T® (Xpay, LR)

| va(va)| "

12

= o TR gl £6) g (xs, L) Trs T (xg, Ls),
apply the chain rule (5.2.55). The factors n - V are absorbed into the
chain rule to include the dynamic effects of the ‘reflection’ at z to con-
nect 7G) (Xray, Ls) and T (3) (Xray, Lr) infinitesimally before and after the
‘reflection’ point. Using results (5.4.19) and (6.2.15), the combination (1 -
V2T = (2 - V/S®)L/2 o (- V/eJ)/2 is conserved at a ‘reflection’.
The relationships between the spreading in the wavefront, perpendicular to
the ray, and in the interface are illustrated in the figure.
Thus we obtain the correct reflection from the perturbed half space.

10.4

Further reading: In Section 10.8.5, we have shown that Born perturbation
scattering theory predicts to lowest order the travel-time perturbation. In-
vestigate how Born scattering theory predicts other corrections to ray theory
(Coates and Chapman, 1990a; Chapman and Coates, 1994).

10.5

Confirm the result (10.3.55) for the acoustic scalar Born error scattering
term, TE.

Investigate expressions for the spatial derivatives needed in the anisotropic
scalar Born error scattering term, TP (10.3.68), and how they might be
calculated.
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Rays with approximately the same direction incident on an interface. The
spreading in the wavefront, OP, is proportional to J (definition (5.4.10);
perpendicular to the ray, OQ, is proportional to J cos¢ = ¢J/V which is
proportional to S (definition (5.4.19) and relationship (6.8.7)); and in the
interface, OR, is proportional to Jcos¢/|n - \Af| = ¢J/|ir - V| which is proportional
to S/(\B)/|f1 A\Af| (result (6.2.15)). The ratio of the spreadings OP and OR is

- V|/p- V.

Investigate the simplifications that occur in the Born scattering terms, T'F
(10.8.68) and I'® (10.5.78), in isotropic media.

From equation (10.3.52), we have the definition
E 1 T T T T
K" = — 2 (YRVPs — PRV - vs + (VER)" s — (V- vg)" Ps) .

where we have simplified the notation by dropping the suffix (), and replac-
ing the arguments (x,Ls) and (x, Lgr) by subscripts s and g, respectively.
The ray amplitude coefficients are given by equation (5.4.31) with (5.4.33)
which are notationally simplified to

ve = 27 VPgsz71/? (Ts gT(Xs,Es))
pPs = 2712712 (Ts gT(Xs7ﬁs)) :
The required derivatives are

Vevs = 272 (V-gs— g1 V(In2)/2 + &5 V(In T))
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x 7712 (Ts gT(Xs,ﬁs))
VPs = 272 (V(nZ)/2+V(nTs)) 2/ (Ts g" (x5, Ls)) ,

where we have ignored differentials of the source polarization, g(xs, Ls) (and
will also ignore differentials of the receiver polarization). Substituting in the
above expression for &E, the factors 2-Y/2 combine to give another 1/2, the
factors ZF1/2 cancel, and the factor Tg g"(xs, Ls) goes into the function D
(together with the similar factor from the receiver rays). Combining the
factors in the brackets for the source and receiver rays, we obtain result
(10.3.55)

1 1 Tr
BE_ - _ An +6c) — = R (pp — o
=1 (V(w2) - V) (er+as) - ; V(1 3F) - (er—ss).
For acoustic waves the polarizations are the same as the ray direction, i.e.
g = P, and are obtained directly from the kinematic ray equations. The gra-
dient V(In Z) is obtained from the model. The divergence of the polariza-
tions is obtained from the wavefront curvature, K (5.6.11) and Exercise 5.5

V-p=K.

The final term is normally small. For zero-offset seismograms it is ex-
actly zero as Tr = 75 and gr = gs. In general, we will have to estimate
V In(7r/7s) numerically as it depends on higher derivatives of the ray equa-
tions. Changes of 7 in the wavefront will depend on derivatives of the
dynamic ray equations. Changes of 7 in the ray direction are described by
the dynamic ray equations. 7 is proportional to the inverse square-root of
the spreading function S (equation (5.4.34)) which in turn is proportional to
cross-section function J (equation (5.2.67)). Exercise 5.5 has given a simple
expression for the derivative of J along the ray

dJ
— =JK.
ds J
Then above expression can be written
E 1. . 1
" = 7 (Br+Ps) VInZ - - (KR + Ks)
1 . .
~3 (Pr — Ps) - VIn(Js/JRr)
1. . 1
= 7 (PrR+Ps) - VInZ - g(KR + Ks)(1+¢)

_ é (Br = Bs) - (T pspE)VInJs — (1 - prpR)V In Jg)

where ¢ = pr-ps. While the final expression looks more complicated, it has
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been written in this manner to separate into the final term, the gradients in
the wavefront, (I — pp™)V InJ, which without higher-order ray equations,
can only be estimated numerically.

To evaluate the general expression for the Born error scattering term in
anisotropic media (10.3.68), we need spatial derivatives of the polarizations,
g, the impedances, Z;, and the propagation factors, 7. The partial deriv-
atives of the polarizations can be calculated by perturbation theory of the
Christoffel equation equation. Perturbations in the slowness vector can be
obtained from the paraxial results (5.2.46) and the kinematic ray equation
(5.3.5). Partial derivatives of the ray velocity, needed for the derivatives
of the normalized polarizations, can be obtained using the results of Ex-
ercise 5.1. Together with the spatial derivatives of the model parameters,
density, p, and stiffnesses, cjj, these allow the required derivatives to be cal-
culated although the expressions are sufficiently complicated that we have
not attempted to give them here. The derivatives of the propagation factors,
T, can only be estimated numerically unless higher-order ray equations are
solved.

In order to efficiently obtain the simplifications of the Born scattering
terms, I'® (10.3.68) and I'B (10.3.78), in isotropic media, we must use vector-
matrix notation. In Exercise 5.6, we have proved results (5.5.7) and (5.5.9)

Zigs = é(wppwu)ij
Zig, = 5 (b +&pn) i,

that can be used for the traction vectors. The tractions corresponding the
energy-normalized polarizations, g (5.4.33), can be written

ti(g) = — 2712712,
where Z = pa or pf3, the P or S impedance (5.2.8), and
d;(p.g) = <I - Z—ﬂ;(l — f)f)T)> i; for P rays
= (f)gT + gf)T) 1; for S rays.
The Born error scattering kernel, K* (10.3.67), is compactly written

1 Otis ov ot ovy
KE _ = T VIS T ~S J R¢.
o 2 <KR a$]’ R 83;]- * a$]’ s 8.Tj s

where the arguments (x, Lr) and (x, Ls) have been abbreviated as subscripts
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R and g, respectively. Using the above expressions, the Green solutions are
_ —1/2 . T
vs = 271275 2 g (ng (Xs,ﬁs))
tis = -2 Y22 d;s (Ts gT(Xs,Cs)) ;

2j
and similarly for the receiver functions, where the final factor in parentheses

will form part of D) (10.3.54). Substituting in K¥, we obtain the scalar
Born error scattering term (10.3.68)

e =
1 ([ Zg\'/? .0 1T Odjg . 0gs
2 (ZR T L n(ZeZp) /2R J —dr, =
ZR\Y2( . B, T .. 0djs 98k
— td;s)— In(ZsZg)V/2 =2 i ER L P .
+ (Zs) (8r gs)&rj n(ZsZR) 7. T &R P, w; S

In order to evaluate this expression, we need spatial derivatives of the ray
direction and the polarizations.

The derivatives of the ray direction, p (or longitudinal polarization, g3),
are obtained in the ray direction from the kinematic ray equation (5.1.15)
or result (5.6.9), and in the wavefront from the paraxial result (5.2.46) with
(5.2.47) and (5.2.48). Combining these we have

Vip= — (gV'VIHC) g p +K,

where V'p is the 3 x 3 matrix with ij-th element 9p;/0x; (strictly in vector-
matrix notation, it should be written (Vp™)™). The j-th column is
op C s .
P (-p)BD - I)Vine + Kij,
8a:j

and the trace is
tr(V'p) =V -p=K,
as given in equation (5.6.11) and proved in Exercise 5.5. We have used the
identities
v 8 =
g p = 0.

(1=}

pPD" +

> "4

For the spatial derivatives of the transverse polarizations, g, we have re-
sult (5.6.8) for derivatives in the ray direction. In the wavefront, g, changes
to remain perpendicular to the ray direction. Combining, we have

Ve = (& Vine) pp” - pE K.
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The j-th column is
0g FN f o AT s
> = (i;-p)(& - VIne)p - p&, Kij,
8a:j

and the trace is
tr(V'g,) =V-g, =8, -Ving,

as given in equation (5.6.10) and proved in Exercise 5.5.
In order to write relatively compact expressions for the scattering term
I'E. we define

u = (%/a? cf. equation (9.1.60)
— 1. R

p = 5(Pr+Ps)

— 1

K = i(KR + Ks).

The scattering term, I'®, depends on the source and receiver ray types. After
considerable algebra we find the scattering for P — P is

1
o= g ((1—2u—|—2uc)ﬁ-Vana—4uc§-Vlnﬁ

T
—2u(l —4c+A)p-Vina— (1 —2u—2uc)ﬁ-Vln?R
S

- (1- QUC)F) .

It is straightforward to show that this reduces to the acoustic expression
(10.3.55) when u = = 0.

When shear waves are involved, there are more angle cosines than just
¢ = Pr - Ps.- We need the scalar products of the direction and polarization
of the source and receiver rays. We write these as

() o= (: 1)

In the P — P case, a = b =c=d. In the S — § case, all elements are
different although there are only three independent angles (say the opening
angle and rotations of the shear polarizations relative to the direction plane).
In the P — S case, a = b and ¢ = d and there are two independent angles,
the opening angle and a rotation angle of the shear polarization from the
direction plane. Similarly in the S — P case a = ¢ and b = d with two
independent angles.
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The expression for § — S scattering is

1/ .4 R o )

re = 1 (bgR(KRpS +2(1—a)VInp) + g5 (Kr + aKs)gr
+ cgs (Kspr + 2(1 — a)VIng) + gr(Ks + aKR)gs
+2d(K +5-VIng)).

The expression for P — § scattering is

E 1 /7 1/2 Tr
— — _/6 ? o . 1/2_R
T 1 <Za) (((CpR + agR) V IH(ZaZﬁ) g

4+ 2bgr - VIn (G — 2acps - VIna
+dpr-VInG+agr-Vina+ cpr-Vina
+ 8iKrér + dKg — 8kKsbPr — DRKsgr )

1/2
+ i @—;) (((1 — 2u)8r + 2uaf)5) : vm(zazg)l/?%
—2ugr - VInua + 2ucps - VIna + 2ucKs
— (1 —2u+2ua®)gg - VIn g + 2ua§EKRf)s)

A similar expression for S — P is obtained by interchanging the source and
receiver subscripts. It is possible (and desirable) that more compact forms
of these expressions can be obtained.

For the Born perturbation result, we need the isotropic stiffness or com-
pliance matrices. In isotropic media, the stiffness matrices, c;; (4.4.55) and
(4.4.56), can be written

Cji = )\ijiz + ,U((Sjk:[ + ik;i]T)
The corresponding compliance matrices s, (4.4.57) and (4.4.58), are
sjk = L1 + m(0k] + 1ki]),

where

A
C2u(3) + 2p)
m — i
= o

Although it is not obvious from these expressions, they can be used in the
fluid limit with 4 = m = 0 and A\ = &, the bulk modulus, and ¢ = k/9,
where k = 1/k, the compressibility (see equation (4.4.4) and Exercise 4.12).
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The scalar Born perturbation scattering term, I'® (10.3.78), can be com-
pactly written

" = gk (PB —Zir SE]’ Z; S) gs
1 dp® 1/2.47 B
= 3 <W — (ZrZs)*digsk; d;s |

where the subscripts g and s have been used for the arguments (x, Lg) and
(x, Ls), respectively. We have used the above notation for the isotropic ex-
pression, where the source and receiver subscripts imply the correct choice
of P or S expressions. Using the above expression for s?k, with perturba-
tions ¢B and mPB, it is then reasonably easy to simplifying these expressions.
Different results apply, of course, for different source and receiver ray types:

rB Z%z _ p%g (©(3 + 20
+ 2mB (mﬂ +Ap) + 3A2)> for P — P
= Z:% — 4pBmB(ad 4 be) for S — 8
= % - 8p(aﬂ)1/2§—2 abm®  for § — P
= % - 8p(aﬁ)1/2§—z acm®  for P — S.

Note that the expression for P — P scattering reduces to the acoustic ex-
pression (10.3.72) if mP = 0 as /B = kB /9.

10.6

For a free acoustic surface, show that the Kirchhoff surface integral method
is robust to the numerical specification of the shape of the interface, i.e.
the surface can be represented as a smooth curve or a staircase and pro-
vided the steps are small compared with the wavelength, approximately the
same results are obtained. This result depends on the reflection coefficient
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being independent of angle, and a similar result is not available for general
interfaces.

The Kirchhoff integral result is (10.4.9)

K_ 1w K p®) eiwde/’
A2 Jgr

where for brevity we have omitted the argument (x,Ls, LR) for TK, D)
and 7. For an acoustic reflection from a free surface, the scalar Kirchhoff
scattering term is (10.4.12)

1
K — —
m = QTRS (COSHR—i—COSHS)
L/, . .
= 5 (Bs(x.Ls) +8(x. Lr) ) -1,
where we have used equations (10.4.13), (10.4.14), gr(x, Ls)-n = —gs(x, Ls)-
n, and the free-surface reflection coefficient, 7rs = — 1 (6.4.2). The vectors

and angles are illustrated in Figure 10.30. Substituting in the Kirchhoff
integral, we obtain

u® = % /5 D) el (é;s(xa Ls) + g(x, CR)) -ds/,
where dS’ = ndS’.

Let us now consider a small element of the surface, AS’, which may be
represented by two slightly different surfaces, AS] and ASY, e.g. one might
be a staircase and the other, a linear interpolation (we assume that the two
representations share perimeters). We assume that the surfaces are close
enough together that the factors 2(3), f, gs and g can be taken as constant
in the volume between the two surfaces (they do not depend on the surfaces).
Applying the divergence theorem to this volume, the volume integral is zero
SO

/ D) eieT (és(?@ Ls) + g(x, CR)) -ds' =
AS]

D) T (g(x, Ls) + &(x, Lg) ) - dS’
AS)
(the total surface integral is zero with the surface normal defined consistently
outwards, but we define S’ from the ray directions — Figure 10.30). Thus the
Kirchhoff integral does not depend on geometrical details of the surface, e.g.
its slope, but only on its position (provided the volume between different
surface representations is small). The significance of this result is that it
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means that the Kirchhoff integral result for acoustic reflections from a free
surface is numerically robust — very similar results are obtained whether
the surface is represented as a staircase, a ramp or something smoother.

The crucial part of this result is that for an acoustic reflection from a free
surface, Trs = — 1 (6.4.2), i.e. the reflection coefficient is independent of
incident angle, and hence independent of the surface orientation. This is
not true for more general reflections and the robustness result appears not
to exist.

10.7
Show that expression (10.3.55) for the acoustic Born error term can be re-

duced to

T®(x, Lr, Ls) =
1

7 (B0 LR) +8(x.£5)) Vin (Z() T (x, LRIT ) (x, £5))

The scalar Born error acoustic scattering term contains the divergence of the
normalized polarizations, g, and the gradient of the ray scalar amplitude, 7
(5.4.34). These are related.

Poynting’s vector (5.2.6) gives

\v& (p(O)V(O)) =0,
and substituting for the ray dyadic (5.4.31) with (5.4.33) this reduces to
V- (TQg) — 0,
assuming the source terms are isotropic. As a check, let us expand giving
Vg = —g-V(InT?
= g-V(nR?
= g-V(lnJ).
as the scalar ray amplitude is inversely proportional to the effective ray
length, R (5.4.34) with (5.2.72), and inversely proportional to the square
root of the ray tube cross-section, J (5.2.13) (the impedance factor Z in
equation (5.2.13) is part of the receiver normalization in g, (5.4.31) with

(5.4.33), not the transmission term, 7 (5.4.34)). These results are consistent
with those in Exercise 5.5

V.p=K,
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and
dJ
— =JK
ds ’
where K is the wavefront curvature, i.e.
d
V-g:K:£(an):g'V(an).

They are easily checked for a spherical wavefront in a homogeneous medium
with R=r,g=1, K=2/rand V-t =2/r.
The scalar Born error acoustic scattering term (10.3.55) is

Lo e Lo TR o
r =1 VinZ -V |- (g —i—g)—Z Vlnﬁ (g°—g).

For brevity, we omit the arguments and indicate the source/receiver rays
by a superscript, i.e. g(x,Ls) = g°. Substituting for the divergence of the
polarization, this reduces to

e = i &R +8°%) - Vin(Zz TRT®),

the required elegant, symmetric result.

10.8
Show that expression (10.5.78) can be reduced to

I'B(x, Lr, Ls) =
g"(x, Lr) p" (%) g(x, Ls) + O(x, Lg) : c”(x) : O(x, Ls),

where

Ox,£) = 5 (P, L)g" (x, £) + 8(x, L)p" (x,£))

is a symmetric dyadic (related to the time-integral of the energy-normalized
strain) formed from the ray slowness and energy-normalized polarization,
and the shorthand notation (:) indicates contraction of the fourth-order stiff-
ness perturbation tensor with the dyadics of the source and receiver rays.

The first term involving the density perturbation is identical, so we only
consider the second term. For brevity, we omit the arguments and indicate
the source/receiver rays by a superscript, i.e. g(x, Ls) = g°. Using subscript
notation, the scalar of interest is

N gRTZETSEjZJS'gS = — 9 (Z]Fj)ba (SEj)bc (Z]S)cd 9
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R/, R B
= —Ya (pmcambk)sbkcj (pzs chdl)gg
= - (gapm)R(plgd)S(Cambk Sl]?k’cj chdl)a
where, of course, we have assumed the Einstein summation convention over
the repeated indices j and k, and a, b, ¢ and d, and used definitions (5.3.22)

and (4.4.37).
We denote the second-order, symmetric tensor by ® where

1 1
O = §(gipj +gjpi) or O = §(g p'+pg")

(this symbol is used as overwriting g and p looks like 0, and its trace is
related to the dilatation (4.2.8)).
Differentiating expression (4.4.43), we have
B B
CiipqSpars + CijpgSpgrs = 0,
to first-order. Thus
B _ B
CambkSpkcjCejdl =  — CambkSbkcjCejdl
1
= - camek§ (Obdk1 + ObiOka)
B
= = Camdl>

using expression (4.4.43) and symmetries again. Thus the term of interest
is

RT7RT _B S _S R B S
-8 Zj Skajg = OumCama®u
R. .B.gQS

= O":c”:07,

using the shorthand notation, which is the required result. With this ex-
pression, we can easily obtain the special forms in isotropic and TIV media.

The early publications on the Born approximation in elastic media (Bha-
tia, 1959; Miles, 1960) only discussed isotropic media. Hudson and Her-
itage (1981) gave the general anisotropic result, and substituting the ray
Green function in their equation (3) would reduce to the above result. Ben-
Menahem and Gibson (1990) considered TIV media and Gibson and Ben-
Menahem (1991) generalized this. More recently, Burridge, de Hoop, Miller
and Spencer (1998) have given an expression very similar to ours, i.e. their
equation (3.28) with the dyadics (3.25) and (3.26).

Rather than use the tensor notation, where ® is 3 x 3 and c is 3 X 3 X
3 x 3, it is convenient to use a vector-matrix notation. Rather than use
the usual 6 x 6 Voigt matrix notation (4.4.13), it is more convenient to use
the expanded 9 x 9 form as this avoids complications with factors of 2, etc.
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Francis Muir (FM) has described this as the “Full Monty” (FM) notation!
The symmetries that reduce the order of the system to sixth from ninth are
implicitly included through equality of terms rather than explicitly through
the reduction. See Exercise 4.12 but here we follow Muir’s ordering of the
components in order to emphasize the isotropic and TIV symmetries. The

9 x 9 stiffness matrix is written

Cn
Ci2
Ci3

Cua
c—=| Cu

Cis
Cis

Cie
Cie

and second-order tensors as

Ci2
Ca2
Ca3

Cou
Coy

Cas
Cas

Coe
Coe

Ci3
Cas
Cs3

C34
Csy

Css
Css

C36
C36

Cua
Coy
Csy

Cu
Cua

Cys
Cys

Cue
Cue

Cia
Coy
C34

Cua
Cus

Cus
Cus

Cue
Cue

011
022
033

023
032

031
013

012
021

Generalizations of ray theory

Cse
Cse

Cas
Css

Cus
Cus

Css
Css

Cse
Cse

Cie
Cae
Cse

Cue
Cue

Cse
Cse

Ce6
Ce6

Cie
Cos
Cs

Cue
Cue

Cse
Cse

Ce6
Ce6
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In a TTV medium, the stiffness matrix is

AL+ 20 AL v 0 0 : 0 0 : 0

AL AL+ 20 v 0 0 0 0 0

v v ANj+2p 2 0 0 : 0 0 = 0

0 0 0 oy om0 0 10

C = 0 0 0 : u” u” . 0 0 : 0
0 0 0 S0 0 oo 20

0 0 0 0 0 0 0 iouy

0 0 0 S0 0 0 0 oy

(the equivalent matrix for an isotropic medium is a trivial simplication).
The polarization-slowness dyadic is

gip1
ga2p2
gsp3
92p3
e — g3p2
gsp1
g1P3
gip2
g2p1

(it is not important whether we define this symmetrically or not). The
required scattering term is then

—gf Zl sf 25 g5 = o CFeS,

where CP is the perturbation of the stiffness matrix above, and in the vector-
matrix algebra we have 1 x 9 times 9 x 9 times 9 x 1 reducing to a scalar.
Computations are straightforward for isotropic, TIV or even general aniso-
tropic media.

Ky
2R




