


Introduction

I Designing protocols that allow several single-antenna terminals
to cooperate via forwarding each others data can increase the
system reliability through achieving spatial diversity.

I The problem with the classical protocols, DAF and AAF, is
the loss in the data rate as the number of relays increases.

I Leads to the use of what is known as distributed space-time
coding.

I The term distributed comes from the fact that the virtual
multi-antenna transmitter is distributed between randomly
placed relay nodes.



System model

Source

Relay 1

Destination

Relay 2

Relay n

(we assume that there is no direct link between the source
and the destination node)



Decode-and-Forward DSTC System Model

I In phase 1, the source broadcasts its information the n relay
nodes

ys,ri =
√

P1hs,ri s + vs,ri , i = 1, 2, · · · , n,

I In phase 2, the relays that decodes correctly re-encodes the
data vector s with a pre-assigned code structure. Each relay
will emulate a single antenna in a multiple antenna
transmitter. The signal received at the destination from all
relays can be modeled as

yd =
√

P2 [I1xr1 , I2xr2 , · · · , Inxrn ]hd + vd ,



System Model (Cont.)

I The state of the k-th relay, i.e., whether it decoded correctly
or not, is denoted by the random variable Ik (1 ≤ k ≤ n)
which takes values 1 or 0 if the relay decodes correctly or
erroneously, respectively.

I The random variables Ik ’s (1 ≤ k ≤ n) are statistically
independent as the state of each relay depends only on its
channel conditions to the source which are independent from
other relays.



System Model (Cont.)

I The received signal model at the destination can be rewritten
as follows

yd =
√

P2Xrhd ,I + vd .

I The new channel hd ,I is defined as follows

hd ,I = [I1hr1,d , I2hr2,d , · · · , Inhrn,d ]T .

I The random variable Ik is a Bernoulli random variable with a
distribution given by

Ik =

{
0 with probability ' LnSER

1 with probability ' 1− LnSER.



Decode-and-Forward DSTC Performance Analysis

I For M-QAM, the exact expression for the SER can be upper
bounded by

SER ≤ Nog(2)

bP1δ2
s,r

.

I The destination applies a maximum likelihood (ML)
receiver which will be a minimum distance rule as follows

X = arg min
Xr∈X

|| yd −
√

P2Xrhd ,I ||2,

I The conditional PEP can be upper bounded as

P(X → X̂ |hd ,I ) ≤ exp

(
−P2 || Φ(X, X̂)hd ,I ||2

4No

)
.



Performance Analysis (Cont.)

I Averaging the conditional PEP over all channel realizations,
we get

P(X → X̂ | I) ≤
rI∏

i=1

1

1 +
P2δ2

r,d

4No
λIi

,

where {λIi}rI
i=1 is a subset of the eigenvalues of the matrix

DIΦ(X, X̂)
H
Φ(X, X̂)DI that depends on the realization of I.

I We can upper bound the PEP as

P(X → X̂ | I, cI = k) ≤ max
Ik :cI=k

rI∏

i=1

1

1 +
P2δ2

r,d

4No
λIi

,

where Ik denotes the set of realizations I which have the
same number of relays that decoded correctly k.



Performance Analysis (Cont.)

I The Ik ’s are i.i.d. Bernoulli r.v.’s, the number of relays that
decoded correctly cI has a binomial distribution given by

PcI(k) =

(
n

k

)
(1− LnSER)k (LnSER)n−k , k = 0, 1, · · · , n.

I Define SNR = P/No , where P = P1 + P2. Let P1 = a1P and
P2 = a2P
We get at high SNR

P(X → X̂ ) ≤
n∑

k=0

(
n

k

)
SNR−n+(k−rk)

(
Lng(2)

ba1δ2
s,r

)n−k

×
rk∏

i=1

(
a2δ

2
r ,d

4
λi ,k

)−1

.



Decode-and-Forward System Code Design Criteria

I To achieve full diversity of order n the code matrix

Φ(X, X̂)
H
Φ(X, X̂) must be of full column rank over all pairs

of distinct codewords X and X̂.

I This is the same code design criterion as for the space-time
codes designed for the MIMO channels to achieve full
diversity.

I To maximize the coding gain of the distributed space-time
code we need for each k ∈ {1, · · · , n} to maximize

minℵ:ℵ⊂{1,··· ,n},|ℵ|=k

(∏k
i=1 λi ,ℵ

)
. The maximization is over

all distinct pairs of codewords X and X̂.

I This is different from the determinant criterion in the case of
MIMO channels.



DSTC with Amplify-and-Forward Cooperation Protocol

I The system has two phases, in phase 1, the signal received at
the i-th relay can be modeled as

ys,ri =
√

P1hs,ri s + vs,ri , i = 1, 2, · · · , n,

I In the amplify-and-forward protocol, the relays can only
amplify the received signal and perform simple operations
such as permutations of the received symbols or other forms
of linear transformations.

I Each relay will multiply the received signal by the factor√
P2/Kn

P1δ2
s,r+N0

. It can be easily shown that this normalization will

give a transmitted power per symbol P = P1 + P2.



Amplify-and-Forward System Model

I the signal received at the destination from all relays can be
modeled as

yd =

√
P2/Kn

P1δ2
s,r + N0

X̃hd + vd .

I Each element of vd is

CN (0, N0

(
1 + P2/Kn

P1δ2
s,r+No

∑n
i=1 |hri ,d |2

)
), and vd accounts for

both the noise propagated from the relay nodes as well as the
noise generated at the destination.

I The received vector can be written as

yd =

√
P2P1/Kn

P1δ2
s,r + N0

XH + vd ,

where H = [ hs,r1hr1,d , hs,r2hr2,d , · · · , hs,rnhrn,d ]T .



DSTC with Amplify-and-Forward Protocol Performance
Analysis

I With the ML decoder, the PEP can be upper bounded by the
following Chernoff bound

P(X → X̂) ≤ EH exp

(
− P1P2/Kn

4N0

(
P1δ2

s,r + No + P2
Kn

∑n
i=1 |hri ,d |2

)HH(X− X̂)H

× (X− X̂)H

)
.

I By averaging over the source to relay channels we get

P(X → X̂) ≤ Ehr1,d ,··· ,hrn,d det−1
[
In +

δ2
s,rP1P2/Kn

4N0

(
P1δ2

s,r + No + P2
Kn

∑n
i=1 |hri ,d |2

)

(X− X̂)H(X− X̂)diag(|hr1,d |2, |hr2,d |2, · · · , |hrn,d |2)
]
.



Amplify-and-Forward Performance Analysis (Cont.)

I The PEP bound can be written in terms of the eigenvalues of
M as

P(X → X̂) ≤ Ehr1,d ,··· ,hrn,d

1∏n
i=1(1 + λMi

)
.

I At high SNR (high P) we can get the bound as

P(X → X̂) ≤
n∏

i=1


 (δ2

s,rP1P2/Kn)λi

4N0

(
P1δ2

s,r + P2
Kn

δ2
r,dn

)


−1

n∏

i=1

ln


 (δ2

s,rP1P2/Kn)λi

4N0

(
P1δ2

s,r + P2
Kn

δ2
r,dn

)

 .

I Let P1 = αP and P2 = (1− α)P, where P is the power per
symbol, for some α ∈ (0, 1). With the definition of the SNR
as SNR = P/N0, the bound can be given as

P(X → X̂) ≤ aAF
1∏n

i=1 λi
SNR−n (ln(SNR))n .



Amplify-and-Forward Performance Analysis (Cont.)

I The diversity order of the system can now be calculated as

dAF = lim
SNR→∞

− log(PEP)

log(SNR)
= n.

The system will achieve a full diversity of order n, if the
matrix M is full rank, that is the code matrix Ψ(X, X̂) must
have a full rank of order n over all distinct pairs of codewords
X and X̂.

I So any code that is designed to achieve full diversity in MIMO
channels will achieve full diversity in the case of
amplify-and-forward distributed space-time coding.



Amplify-and-Forward Performance Analysis (Cont.)

I If the full diversity is achieved, the coding gain is

CAF =
(
aAF

1∏n
i=1 λi

)− 1
n
.

I To maximize the coding gain of the amplify-and-forward
distributed space-time codes we need to maximize the term∏n

i=1 λi which is the same as the determinant criterion used
for MIMO channels.

I If the space-time code is designed to maximize the coding
gain in the MIMO channels it will also maximize the coding
gain if it is used in a distributed fashion with the
amplify-and-forward protocol.



Simulation Results
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Figure shows the simulations for two decode-and-forward systems
using the Alamouti scheme (DAF Alamouti) and the diagonal STC
(DAF DAST), and the DDSTC.



Summary

I For the decode-and-forward distributed space-time codes we
find that any code that is designed to achieve full diversity in
the MIMO channels will achieve full diversity.

I A code that maximizes the coding gain over the MIMO
channels is not guaranteed to maximize the coding gain in the
decode-and-forward distributed space-time coding.

I For the amplify-and-forward distributed space-time codes the
code designed to achieve full diversity in the MIMO channels
will also achieve full diversity.

I Furthermore, the code that maximizes the coding gain over
the MIMO channels will also maximize the coding gain in the
amplify-and-forward distributed space-time system.



Motivation of DDSTC

I Most of the previous works on cooperative transmission,
including DSTC, assume perfect synchronization between the
nodes.

I Perfect synchronization means that the users’ timings, carrier
frequencies, and propagation delays are identical.

I Perfect synchronization is almost impossible to be achieved in
wireless relay networks!

I To simplify the synchronization in the network a diagonal
structure is imposed on the space-time code used.

I The diagonal structure of the code bypasses the perfect
synchronization problem by allowing only one relay to
transmit at any time slot.



Motivation of DDSTC (Cont.)

I Nodes can maintain slot synchronization, which means that
coarse slot synchronization is available.

I However, fine synchronization (synchronization within the
time slot) is more difficult to be achieved.

Sampling point

Signal from first relay
Signal from second relay

Baseband signals (each is raised cosine pulse-shaped)
from two relays at the receiver.



DDSTC Time Frame Structure

Each relay will transmit in one time slot and there is no need
to synchronize simultaneous transmissions.



DDSTC System Model with the AF Protocol

I In phase 1, the source transmits the data s = [s1, s2, ..., sn]
T

to the n relay nodes. The received signal at the kth relay is

ys,rk =
√

P1hs,rk s + vs,rk , ∀k ∈ {1, 2, ..., n}.

I In phase 2, the k-th relay applies a linear transformation tk to
the received data vector, as

yrk = tkys,rk

=
√

P1hs,rk tks + tkvs,rk

=
√

P1hs,rk xk + vrk ,

where xk = tks and vrk = tkvs,rk .



DDSTC System Model with the AF Protocol (Cont.)

I Then, the relay multiplies yrk by the factor βk . And the
received signal at the destination due to the k-th relay
transmission is given by

yk = hrk ,dβk

√
P1hs,rk xk + hrk ,dβkvrk + ṽk

= hrk ,dβk

√
P1hs,rk xk + zk , k ∈ [1, n].

I The maximum likelihood (ML) decoder can be expressed as

arg max
si

p(y/si ) =

arg min
si

n∑

i=1

1

σ2
i

|yi −
√

P1P2

P1|hs,ri |2 + N0
hs,ri hri ,dxi |2.



DDSTC with the AF Protocol

I The PEP of mistaking X1 by X2 can be upper-bounded as

Pr(X1 → X2) ≤ Nn
0

n∏

i=1,x1i 6=x2i

(
1

P1δ2
s,r

+
1

P2δ2
r ,d

)

×



n∏

i=1,x1i 6=x2i

1

4
|x1i − x2i |2



−1

.

I The diversity order dDDSTC is

dDDSTC = lim
SNR→∞

− log(PEP)

log(SNR)
= min

m 6=j
rank(Xm,Xj),

where Xm and Xj are two possible code matrices.



DDSTC with the AF Protocol (Cont.)

I To achieve a diversity order of n, the matrix Xm − Xj

should be of full rank for any m 6= j (that is xmi 6= xji ,
∀m 6= j ,∀i ∈ [1, n]).

I To minimize the PEP bound we need to maximize

min
m 6=j

(
n∏

i=1

|xmi − xji |2
)1/n

,

which is called the minimum product distance of the set of
symbols s = [s1, s2, ..., sn]

T . This is the same criteria used to
design full-rate full-diversity space-frequency codes in Chapter
3. We can use the design presented in Chapter 3 to design the
DDSTC.



Simulation Results
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Figure shows the simulations for two decode-and-forward systems
using the Alamouti scheme (DAF Alamouti) and the diagonal STC
(DAF DAST), and the DDSTC.
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Simulation Results
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Summary

I For the decode-and-forward distributed space-time codes we
find that any code that is designed to achieve full diversity in
the MIMO channels will achieve full diversity.

I A code that maximizes the coding gain over the MIMO
channels is not guaranteed to maximize the coding gain in the
decode-and-forward distributed space-time coding.

I For the amplify-and-forward distributed space-time codes the
code designed to achieve full diversity in the MIMO channels
will also achieve full diversity.

I Furthermore, the code that maximizes the coding gain over
the MIMO channels will also maximize the coding gain in the
amplify-and-forward distributed space-time system.

I With DDSTC, the stringent synchronization between
randomly located relay nodes is simplified.



Introduction to Distributed Space-Frequency Coding

I Most of previous works have considered Distributed
Space-Time Coding (DSTC)

I For multi-path channels, design of Distributed
Space-Frequency Codes (DSFCs) is needed to exploit the
multi-path (frequency) diversity of the channel

I Exploiting the frequency axis diversity can highly improve the
system performance

I We consider the design of DSFCs with the
decode-and-forward (DAF) cooperation protocol



System Model

Source Destination

Relay 1

Relay N

Wireless multipath
fading channel

Wireless multipath
fading channel

Wireless multipath
fading channel

Wireless multipath
fading channel

Figure: Simplified two-hop system model for the distributed
space-frequency codes.



System Model (cont’d)

I OFDM with K subcarriers is used

I The channel is modeled as

hs,rn(τ) =
L∑

l=1

αs,rn(l)δ(τ − τl)

I The received signal in the frequency domain on the k-th
subcarrier at the n-th relay node is given as

ys,rn(k) =
√

PsHs,rn(k)s(k) + ηs,rn(k)

I Hs,rn(k) is given by

Hs,rn(k) =
L∑

l=1

αs,rn(l)e
−j2π(k−1)∆f τl



DSFC with the DAF protocol

I Each relay tries to decode the source symbols before
retransmission

I Two stages of coding are needed
I Stage 1: coding at the source node to ensure a diversity of

order L at relay nodes
I Stage 2: coding at the relay nodes to guarantee full diversity

of order NL

I We assume that each relay will be able to decide whether it
has decoded the “block” correctly or not



DSFC with the DAF protocol: Source Node Encoding

I For two distinct transmitted source symbols the PEP at any
relay node can tightly upper bounded as

PEP(s → s̃) ≤
(

2ν − 1
ν

)(
ν∏

i=1

λi

)(
Ps

N0

)ν

and ν is the rank of the matrix C ◦ R where

C = (s− s̃)(s− s̃)H,

R = E
{
Hs,rnH

H
s,rn

}
,

and Hs,rn = [Hs,rn(1), · · · ,Hs,rn(K )]T

λi ’s are the non-zero eigenvalues of the matrix C ◦ R



DSFC with the DAF protocol: Source Node Encoding
(cont’d)

I We propose to partition the transmitted K × 1 source
codeword as

s = [s(1), s(2), · · · , s(K )]T = [FT
1 ,FT

2 , · · · ,FT
M , 0T

K−ML]
T ,

where Fi = [Fi (1), · · · , Fi (L)]T

I For any two distinct source codewords, s and s̃, there exists at
least one index p0 for which Fp0 6= F̃p0

I We assume for s and s̃ that Fp = F̃p for all p 6= p0 (worst
case PEP)



DSFC with the DAF protocol: Source Node Encoding
(cont’d)

I We can prove that if the product
∏L

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣
2

is

non-zero over all the possible pairs of transmitted
codewords, s and s̃, then, a diversity of order L will be
achieved at any relay node



DSFC with the DAF protocol: Relay Nodes Encoding

I The transmitted K × N SF codeword from the relay nodes is given
by

Cr =




Cr (1, 1) Cr (1, 2) · · · Cr (1,N)
Cr (2, 1) Cr (2, 2) · · · Cr (2,N)

...
...

. . .
...

Cr (K , 1) Cr (K , 2) · · · Cr (K , N)




I The received signal at the destination on the k-th subcarrier is given
by

yd(k) =
√

Pr

N∑

n=1

Hrn,d(k)Cr (k , n)In + ηrn,d(k)

I In is the state of the n-th relay. In = 1 if the n-th relay has decoded
correctly in phase 1 and In = 0, otherwise



DSFC with the DAF protocol: Relay Nodes Encoding
(cont’d)

I The state of the n-th relay node, In, is a Bernoulli random variable
with pmf

In =

{
0 with probability = SER

1 with probability = 1− SER

I The SER at relay nodes can be upper bounded as

SER =
∑

s∈S
Pr(s) Pr{error given that s was transmitted}

≤
∑

s∈S
Pr(s)

∑

s̃∈S ,̃s 6=s

PEP(s → s̃)

≤ constant × SNR−L



DSFC with the DAF protocol: Relay Nodes Encoding
(Cont.)

I The transmitted K × N SF codeword from the relay nodes, if all
relays decoded correctly, is given by

Cr = [GT
1 ,GT

2 , · · · ,GT
P , 0T

K−PLN ]T

I Each Gi is a block diagonal matrix that has the structure

Gi =




X1L×1
0L×1 · · · 0L×1

0L×1 X2L×1
· · · 0L×1

...
...

. . .
...

0L×1 0L×1 · · · XNL×1




I Given a realization of the relays states, the PEP is upper bounded as

PEP(s → s̃/I) ≤
(

2κ− 1
κ

) (
κ∏

i=1

ηi

) (
Pr

N0

)κ



DSFC with the DAF protocol: Relay Nodes Encoding
(cont’d)

I κ is the rank of the matrix CI ◦ R and CI is defined as

CI = (C(I)r − C̃(I)r )(C(I)r − C̃(I)r )
H

I Consider two distinct source codewords for which Gp0 6= G̃p0 for

some p0 and Gp = G̃p for all p 6= p0 (worst case PEP)

I It can be shown if the product
∏NL

l=1

∣∣∣Gp0(l)− G̃p0(l)
∣∣∣
2

is non-zero

over all the possible pairs of transmitted codewords then, the
pairwise error probability decays with exponent nIL

I That rate of decay is guaranteed over all the possible realizations of
the relays’ states



DSFC with the DAF protocol: Relay Nodes Encoding
(cont’d)

I The number of relays that have decoded correctly, cr , follows a
Binomial distribution as

Pr{cr = k} =

(
N
k

)
(1− SER)kSERN−k

I The pairwise error probability can now be upper bounded as

PEP(s → s̃) =
∑

I

Pr(I)PEP(s → s̃/I) ≤ cons.× SNR−NL

where SNR = Ps/N0 = Pr/N0



Simulation Results
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Figure: SER for DSFCs, for BPSK modulation with Vandermonde based
linear transformations, versus SNR



Summary

I We proposed a two-stage coding for DSFC in conjunction with the
DAF protocol

I We proved that the proposed DSFCs with DAF protocol achieve full
diversity over the wireless relay channels

I The proposed DSFCs mitigate relay nodes’ synchronization
mismatches due to the use of OFDM transmission

I The proposed DSFCs mitigate relay nodes’ carriers offsets
mismatches since only one relay is transmitting on any subcarrier


