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A Student’s Guide to the Navier-Stokes

Equations: A Supplement on the Reynolds
Transport Theorem

A very common, and somewhat quick, way of deriving the integral form of the
governing equations involves what is known as the Reynolds transport theo-
rem. The Reynolds transport theorem involves taking the derivative of an in-
tegral whose limits are not constants but are instead functions of the variable
of the derivative. The Reynolds transport theorem is essentially an extension
of the Leibniz integration rule, also known as differentiation under the integral
sign rule. You may see a number of forms for the Reynolds transport theorem
but the most common is:
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where f is some function (which does not have to be a scalar but also could
be a higher order tensor). The velocity in this case is the velocity of an small
differential area segment on a moving fluid element. Notice on the left-hand
side of the equation that we are attempting to take the time derivative of an
integral whose limits are also functions of time (i.e., the V(t) is a function of
time). When we came across this type of situation before, we cheated a little
and attempted to “sneak” the derivative into integral with a trick where the
derivative of the differential volume was related to the divergence of veloc-
ity (see Section 2.4). This trick can be avoided by simply using the Reynolds
transport theorem.

Instead of deriving the Reynolds transport theorem, we are going to look at
some examples of its use. The simplest example of the use of the Reynolds
transport theorem is if we set f = 1, giving us:
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Notice that the result of setting f = 1 leads us right to the idea that the
material derivative of volume of a moving fluid element is proportional to the
divergence of velocity, which is something we found out in Chapter 2.

The next example we can look at is to set f = ρ, which is just mass per
volume (or density). This leads us to:

d
dt

$
V(t)
ρdV =
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ρV⃗ · n⃗dA (1.2)

By setting the right-hand side of Equation 1.2 to zero, we obtain the integral
form of the continuity equation:$

V(t)

∂ρ

∂t
dV +

	
A(t)
ρV⃗ · n⃗dA = 0

We can do the same thing with momentum as we did with mass. By setting
f = ρV⃗ (i.e., momentum per volume as opposed to mass per volume), the
Reynolds transport theorem now states:

d
dt
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The key thing here is recognizing that the V⃗V⃗ term on the right-hand side of
Equation 1.3 is actually the outer product of the velocity vector with itself, i.e.
V⃗ ⊗ V⃗ . Therefore:
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The right-hand side of Equation 1.4, when set equal to the summation of
forces, will lead to the integral form of the Navier-Stokes equations.

If we set f = ρe (or energy per volume), we get:

d
dt
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Setting the right-hand side of the above equation equal to Q̇−Ẇ+S ource gives
the starting point for our energy equation in integral form.

As you can probably tell, we could have started with the Reynolds trans-
port theorem and derived all of the equations from this theorem. However, the
approach taken in the book, in the author’s opinion, ends up offering a more
intuitive approach to the governing equations.




