
 1 

Date Evaluation: The Use of Bayesian Methodologies 
 

Fiona Petchey 
(University of Waikato, New Zealand; ARC Centre of Excellence for Australian Biodiversity and Heritage, 

Australia) 
 

Radiocarbon dating is a widely used analytical technique to determine the age of objects and archaeological 
remains, but the interpretation of radiocarbon ages (14C) is far from simple. A 14C age, reported as a mean 
and standard error, is a probability distribution that scatters around the true age of the sample. This 14C age 
is converted to a calendar date using a calibration curve independently developed from materials of known 
age (e.g. Intcal20; Reimer et al. 2020). These calibration curves also incorporate statistical scatter, and the 
converted calendar age is non-normally distributed (Figure 1). These factors complicate the interpretation 
and may lead to wrong conclusions when assessed by eye alone. 

 

 
Figure 1. OxCal-generated plot of a calibrated radiocarbon age. 

 
However, archaeologists are rarely interested in the age of a single object but are interested in answering 

questions such as when the activity started and ended and how long did an activity continue (Hamilton & 
Krus 2018). It is now common practice to use Bayesian statistical methodologies to develop chronological 
models that can provide answers to these questions. The core mathematics of Bayesian applications is 
Bayes’s theorem: 

 
Standardized likelihood (e.g. the dates) ´ Prior beliefs (e.g. the archaeological data and material-
related uncertainties) = Posterior belief (an answer).  
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The use of Bayesian modelling allows the statistical scatter on the 14C dates to be taken into account and 
integrates the dating with archaeological observations and other sources of information on the relative order 
of events. Importantly, the analysis calculates how successfully the 14C measurements conform to the prior 
knowledge and narrow down the width of the calibrated dates according to the stratigraphic model. When 
correctly applied, Bayesian modelling can improve the resolution enabling the assessment of chronometric 
change within a single generation (e.g. Bayliss et al. 2007). In addition, the quantitative results allow 
comparison between sites, typologies, and culture-based models. A wide range of available program 
interfaces are available for different applications (e.g. Bacon: Blaauw & Christen (2011); BChron: Haslett & 
Parnell (2008); OxCal: Bronk Ramsey (1995, 2001)). Buck et al. (1991, 1994) provide a detailed discussion of 
the principles of Bayesian analysis in archaeological chronologies. 

 
Basic Bayesian 

Bayesian applications specialised for archaeological chronologies allow the development of models either 
constrained or unconstrained by stratigraphy. The two main building blocks are Sequence, where information 
on the order of events is available, and Phase, where there is evidence that the samples belong to the same 
event, but the order is unknown. These are separated by Boundaries that define when the activity starts and 
ends and are key to broader comparisons beyond the single-site model (Bronk Ramsey 2001, 2009a, 2009b).  

Anderson and Petchey (2020) used the single phase option in OxCal to date the initial evidence of kūmara 
(sweet potato) gardening by Maori across different regions of New Zealand. They selected legacy 14C data 
based on documented association with archaeological evidence of kūmara gardening. Figure 2 shows 
terrestrial dates associated with kūmara gardening in inland regions of the North Island. This model 
construction informs the computer program that at some point in time in the past horticultural activity 
started, went on for some unknown duration, and then ended. The resultant model enabled the quantitative 
comparison of previous assumptions about the introduction and spread of kūmara around New Zealand and 
the wider Pacific, allowing a more nuanced evaluation and demonstrating the presence of gaps in our 
knowledge that need to be addressed by further research. 

 

 
Figure 2. Example of improved date resolution using Bayesian modelling. A: Basic calibrated date series. B: 

Bayesian modelled single phase model. The lighter shaded probability distributions represent the 
unmodelled calibrated dates, and the black distributions represent the results after Bayesian modeling. 
 
One drawback of this type of model is that the dates are assumed to be a random sample randomly 

deposited through time (Bronk Ramsey 1998, 2009a). The precision of the posterior probability estimates 
within these single-phase models depends on the number and the distribution of dates. Therefore, a higher 
percentage of late or early dates in models results in correspondingly older or younger age ranges that may 
skew chronologies (Blauuw et al. 2018; Hamilton & Krus 2018). 
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Informative Models 
More structured, informative models place 14C ages within an ordered temporal relationship (a Sequence) 
that mirrors the stratigraphy of an archaeological site. In more complex models, a combination of ordered 
sequences and unordered phases can be nested together and combined with other forms of dating 
information (Figure 3).  

In this example, Batt et al. (2015) combined stratigraphy, tephrochronology, and multiple 14C ages to 
assess the chronology of the site of Aðalstræti, a Viking-period hall in Reykjavík, Iceland. The chronological 
model for Aðalstræti uses seven barley seed ages and a calendar date for the Landnám tephra (871 ± 2 CE), 
which underlies the hall. Thus the tephra provides a terminus post quem for the site and initial occupation of 
the hall. The boundary command labelled ‘Start occupation’ occurs between this tephra and the floor and 
hearth sequences. The barley 14C ages are arranged into two Sequences within the same Phase (Figure 3). 
This is because the four stratigraphically related samples within the hearth could not be linked directly to the 
three stratigraphically ordered samples from the floor layers.  

 

 
Figure 3. A: Bayesian chronological model for Aðalstræti Hall. B: OxCal script for Aðalstræti Hall showing the 
use of Boundary, Sequence, and Phase commands. Radiocarbon ages are defined in the model code by the 

term R_Date (syntax = R_Date ‘name’, date, error). The calendar (tephra) date is defined by C_date. 
 
This model suggests that the hall was occupied by 890 CE, indicating that construction was within a few 

years of the deposition of the Landnám tephra, while the constrained dates of the floor and hearth deposits 
suggest that the hall was in use for less than 150 years. However, the authors recommended caution with 
this interpretation because the 14C samples came from hearths and floor surfaces that would have been 
repeatedly swept out, leaving gaps not reflected in the model. Therefore, these samples likely have not 
captured the earliest and final phases of use.  

 
Dealing with Outliers 

Even after defining realistic models and selecting and submitting secure samples for dating, it is likely that 
some of the dates will not conform to prior expectations. Disassociation between the event and date is the 
most common form of anomaly between a 14C age and expected age, and is not unexpected given the 
complexity of achieving such a goal with dynamic taphonomic contexts. Outlier analysis in OxCal (Bronk 
Ramsey 2009b) is one way to test whether the radiocarbon data agree with the prior information. This 
methodology provides a probabilistic measure of the degree to which samples appear to be outliers, and 
then calculates an offset relative to the context within which it is found and downweighs the influence of 
those ages on the model (Bronk Ramsey et al. 2010). In addition, specific outlier models can be chosen for 
specific types of outliers (Bronk Ramsey 2009b), enabling the inclusion of lower precision 14C results that are 
functionally related to the context (e.g. samples composed of old-growth wood) and samples of insecure 
context. 
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Plot()
 {
  Sequence("Adalstraeti Model")
  {
   Boundary("Start Adalstraeti model");
   C_Date("Landnam tephra", 871, 2);
   Boundary("Start occupation");
   Phase("Archaeological deposits")
   {
    Sequence("Floor")
    {
     R_Date("873 (AAR-7617)", 1152, 36);
     R_Date("864 (AAR-7616)", 1129, 35);
     R_Date("858 (AAR-7615)", 1153, 36);
    };
    Sequence("Long !re")
    {
     R_Date("831 (AAR-7614)", 1218, 40);
     R_Date("802 (AAR-7613)", 1087, 35);
     R_Date("795 (AAR-7612)", 1150, 36);
     R_Date("793 (AAR-7611)", 1092, 39);
    };
   };
   Boundary("End occupation");
  };
 };
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Figure 4. Bayesian age model for the Non Ban Jak sequence. The notation [e.g. O:2/5] indicates a 2% 

posterior probability of being an outlier in the model. Values >5 are considered outliers. C= Convergence 
values (see text for discussion) (figure after Higham et al. 2020). 
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The Bayesian model developed for Non Ban Jak shows the influence of outlier analysis on the modelled 
chronology and site interpretation (Figure 4). This model consists of four layers (Phases) arranged in 
Sequence, each separated by a Boundary command. Within this model, the internal consistency of the 
calibrated dates was tested using a General t-Type model with a prior outlier probability of 5%. This allows 
outliers to be either too young or too old and is the most common type of outlier model for archaeological 
applications (Bronk Ramsey 2009b). In this example, the model results indicate the presence of four major 
outliers (those with posterior outlier probabilities >60%). These outliers include three of >97%, which are not 
included in the model results 97% of the time, and two with outlier probabilities of between c. 20 and 30%. 
Three of these outliers come from Layer 1, and two are of similar date to material in Layer 2, suggesting 
intermixing between the two layers. Despite these outliers, the convergence values generated by OxCal were 
uniformly high (>98) and therefore indicate that the overall model is robust (low values indicate many 
different incompatible solutions to the model; Bronk Ramsey 2009a).  

 
Building a Bayesian Chronology 

 

 
 

Figure 5. Flow diagram showing the stages of building a Bayesian chronology (after Bayliss 2009). 
 
The examples of Bayesian chronologies presented here all started with careful sample selection and 

interpretation of how the 14C age relates to the activity under investigation (Figure 5). When developing a 
model, the specific parameters should be constructed following a progressive dating programme that infills 
and tests various aspects of the model even before the dating begins (e.g. using R_simulate in OxCal (Bronk 
Ramsey 2009b)). Bayliss (2015) discusses in detail guidelines for constructing Bayesian chronological models. 
However, it is important to remember that, ultimately, all models are wrong; the age ranges are a product 
of a statistical model imposed on the data and an interpretation of the archaeological evidence. Regardless, 
recognition of this fact, combined with care and attention to detail, will ensure that these models are valuable 
tools for building robust archaeological chronologies.  
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