Discrete Models of Financial Markets Errata

Marek Capinski and Ekkehard Kopp

page 17 Replace

Exercise 2.7 Assuming $\mathbb{E}_P(K_H) \ge R$ show that $\mathbb{E}_P(K_H) - R = (p-q) \frac{\sigma K_H}{\sqrt{p(1-p)}}$, where *q* is the risk-neutral probability, implying in particular that

 $p \ge q.$

by

Exercise 2.7 Assuming $\mathbb{E}_P(K_H) \ge R$ show that $\mathbb{E}_P(K_H) - R = (p - q) \frac{\sigma_{K_H}}{\sqrt{p(1 - p)}}$, where *q* is the risk-neutral probability, implying in particular that

 $p \ge q$.

page 33 Replace

Exercise 2.26 Consider a trinomial model for stock prices with S(0) = 120 and S(1) = 135, 125, 115, respectively. Assume that R = 10%. Consider a call with strike 120 as the second security. Show that $C(0) = \frac{120}{11}$ allows arbitrage and that there is a unique **degenerate** probability which makes discounted stock and call prices a martingale. Carry out the same analysis for $C(0) = \frac{255}{12}$ and draw a conclusion about admissible call prices.

by

Exercise 2.26 Consider a trinomial model for stock prices with S(0) = 120 and S(1) = 135, 125, 115, respectively. Assume that R = 10%. Consider a call with strike 120 as the second security. Show that $C(0) = \frac{120}{11}$ allows arbitrage and that there is a unique **degenerate** probability which makes discounted stock and call prices a martingale. Carry out the same analysis for $C(0) = \frac{255}{22}$ and draw a conclusion about admissible call prices.

page 141

Replace

Exercise 6.5 An investor gambles on a decrease in interest rates and wishes to earn a return K(0, n) higher by 1% than the current rate L(0, n). Sketch the graph of the function $k \mapsto L(k, n)$ which would allow one to achieve this at any 0 < k < n. First try the data from Example 6.1.

by

Exercise 6.5 An investor gambles on a decrease in interest rates and wishes to earn a return K(0, k) higher by 0.1% than the return implied by the current rates. Sketch the graph of the function $k \mapsto L(k, n)$ which would allow one to achieve this at any 0 < k < n. First try the data from Example 6.1.