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Introduction

e In a number of applications, it is necessary to split a digital signal into several

frequency bands.

e After such decomposition, the signal is represented by more samples than in the

original stage.

e Systems which decompose and reassemble the signals are generally called filter

banks.

e In the following deal with filter banks, showing several ways in which a signal can be
decomposed into critically decimated frequency bands, and recovered from them

with minimum error.



B CAMBRIDGE

Diniz, da Silva and Netto S5 GNIVERSIR RS

Filter banks

® In some applications, such as signal analysis, signal transmission, and signal coding,

a digital signal x(m ) is decomposed into several frequency bands.

X(N) ——» H,(2) —— X,(N)

—» H,(2) —— x,(n)

Figure 1: Decomposition of a digital signal into M frequency bands.
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Filter banks

e The signal in each of the bands xi (), for k =0,1,..., (M — 1), has at least the

same number of samples as the original signal.

e This implies that after the M-band decomposition, the signal is represented with at

least M times more samples than the original one.

® In the case where the signal is uniformly split in the frequency domain, each band

has bandwidth M times smaller than the one of the original signal.

e The bands xi (M) can be decimated by a factor of M (critically decimated) without

destroying the original.



w2 CAMBRIDGE

Diniz, da Silva and Netto “§> UNIVERSITY PRESS

Decimation of a bandpass signal

e If the input signal x(m) is lowpass and band-limited to [—<¢, <x], the aliasing after
decimation by a factor of M can be avoided.

e If before decimation the signal is split into M uniform real frequency bands, the kth

band will be confined to [ & Kz pkre (k£ 1))

e This implies that band k, for k # 0, is necessarily not confined to [— <z, =¢].

e The spectrum contained in [—%, ]f\jf] is mapped into [0, 7], if k is odd, or

into [—7t, 0], if k is even.

e The spectrum contained in the interval []fle‘, (kv)ﬂ} is mapped into [—7t, 0], if kK is
odd, or into [0, 71], if k is even.

AL
™M

e Note that that both W = 2,\1/(‘

w = O in the decimated signal.

and w = in the original signal are mapped to

e In order to allow proper reconstruction of signals having components of the form
A1 cos (2}\1/? ) the ideal filters must have half the passband gain for w = :I:ZLV”.
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Decimation of a bandpass signal

X ()
X ()
\
“k+yn ;... =2m 1 ] T oo .. ko (k+hm ©
M M M M M M M M

Figure 2: Uniform split of a signal into M real bands.
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Decimation of a bandpass signal

Figure 3: Spectrum of band k decimated by a factor of M: (a) k odd; (b) k even.
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Inverse decimation of a bandpass signal

e A bandpass signal can be decimated by M without aliasing, provided that its

spectrum is confined to [—W, —k—l\jﬂ U []fva, (kﬂ)ﬂ].

e The original bandpass signal be recovered from its decimated version by an

interpolation operation in the bandpass case.
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Inverse decimation of a bandpass signal

|
I
I km (k+ Dm
M M M M M M

Figure 4: Spectrum of band k after decimation and interpolation by a factor of M for k
odd.
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Inverse decimation of a bandpass signal

e To recover band k, it suffices to keep the region of the spectrum in Figure 4 within

(k+ 1) k kr (k+1)m
[_ M >_]\/TLI]U[]\;[T> M ]

e For k even, the procedure is entirely analogous.

® The process of decimating and interpolating a bandpass signal is similar to the case

of a lowpass signal, with the difference that for the bandpass case H(z) must be a

(k+1)m _g] U [th (k+1)7t]_

bandpass filter with bandwidth [— ==, — 37 VR
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Perfect Reconstruction: Critically decimated M -band filter banks

e If a signal x(m) is decomposed into M non-overlapping bandpass channels By,
with k =0,1,...,(M — 1), such that U]]Z/:; Bx = [—m, 71), then it can be

recovered by just summing these M channels.

e Exact recovery of the original signal may not be possible if each channel is

decimated by M.,

e \We examined a way to recover the bandpass signal from its decimated version. In

fact, all that is needed are interpolations followed by filters with passband

(k+ 1) k kr (k+1)m

12
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Critically decimated

M -band filter banks

u,(m)

X(n)

u (m)

Figure 5: Block diagram of an M-band filter bank.

Up_2(m)
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Critically decimated M-band filter banks
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Figure 6: A 2-band perfect reconstruction filter bank using ideal filters.
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Critically decimated M-band filter banks
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Figure 7: Two-band filter bank using realizable filters.
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Critically decimated M-band filter banks

e The filters required for the M-band perfect reconstruction filter bank described above

are not realizable.

e In a first analysis, the original signal would be only approximately recoverable from its

decimated frequency bands.

e One can see that since the filters Ho(z) and Hj (z) are not ideal, the sub-bands

s1(m) and sy, (m) have aliasing.

e The signals x{ (M) and x},(M) can not be correctly recovered from s (m) and

st (m), respectively.

16
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Critically decimated M-band filter banks

e Nevertheless, one can see that since Y (n) and yy (n) are added in order to obtain

y(n), the aliased components of Y (n) can be combined with the ones of Yy (1 ).

® In principle, there is no reason why these aliased components could not be made to
cancel each other, yielding y(n) equal to X(1). In such a case, the original signal

could be recovered from its sub-band components.

e In an M-band filter bank as shown in Figure 5, the filters Hy (z) and Gy (z) are

usually referred to as the analysis and synthesis filters of the filter bank.

17
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Perfect reconstruction: M-band filter banks in terms of polyphase
components

e Representing Hy (z) and G (z) by their polyphase components,

M—1
— Z Z_JEkj M (1)

j=0

M—1
z~ MRy (M) ©)

j=0

where Ey;(z) is the jth polyphase component of Hy (z), and Rjk (z) is the jth
polyphase component of Gy (z).

18
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Perfect reconstruction: M -band filter banks in terms of polyphase
components

e Matrices E(z) and R(z) entries are Ei;(z) and Ry;(z), for
1,j=0,1,...,(M—1)

Ho(z) 1

H;(z) M) zt1 )
Hm-1(2) ] _Z_(M_1 )_
_ Gol(z) _ M=)

G1(z) _RT(M) z_“\./l_z) "
Gm-1(2). L

19
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x(n) > > ¢M—>4M > >
zZ'yY vz
> " > YM —>+M —> N
sty | E@2) RZY| vz
-1 | -1
z T tz
»yM—>tM —> y(n)
(a)
x(n) > VM —> > >4AM >
v / \
> yM —> > >4+ M >
sty E(z) R(2) y 7
i : : : o
z z
L» Ml > >t ai» y(n)
(b)

Figure 8: M-band filter bank in terms of the polyphase components: (a) before application

of the noble identities; (b) after application of the noble identities.
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M -band filter banks in terms of polyphase components

e In signal processing it is often advantageous to split a sequence x(k) into several

frequency bands prior to processing.

X(N) ——» H(2) > L > —> 4L —» Gy(2)
Y Signal
— P Hl(z)_> vL —> |:)|'Ocessing_> L —> Gl(Z)
T : | Block

. , | (SPB) : : :
+—>HM_1(z)—> vL > 4L —»GM_1(2)4>—*—> y(n)

Figure 9: Signal processing in sub-bands.
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M-band filter banks in terms of polyphase components

e Since the bandwidth of each analysis filter output is M times smaller than in the
original signal, we can decimate each x; (k) by a factor of L smaller or equal to M

and still avoid aliasing.

e For L < M, itis possible to retain all information contained in the input signal by

properly designing the analysis filters in conjunction with the synthesis filters G;(z),
fori=0,1,...,(M—1).

e If L > M there is a loss of information due to aliasing which does not allow the

recovery of the original signal.
e For L = M, we refer to the filter bank as maximally (or critically) decimated.

e For L < M, the filter bank is called oversampled (or noncritically sampled) since the

set of sub-bands comprises more samples than the input signal.

22
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Perfect reconstruction M-band filter banks

e IfR(z)E(z) = |, where | is the identity matrix, the M-band filter bank becomes that

one shown in Figure 10.

X > i M %o (M) > T M >
Z_1 X1 (m) Z_1
; >iM >TM i
lz [ | m fu »lz v

Figure 10: M-band filter bank when R(z)E(z) = 1.
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Perfect reconstruction M-band filter banks

e By substituting the decimators and interpolators by the commutator models we arrive

at the a scheme which is clearly equivalent to a pure delay.

e Therefore, the condition R(z)E(z) = | guarantees perfect reconstruction for the
M -band filter bank.

e If R(z)E(z) is equal to a pure delay one can still consider that perfect reconstruction
holds.

e The weaker condition is sufficient for perfect reconstruction.
R(z)E(z) =z~ 2 (5)
e The total delay introduced by a perfect reconstruction filter bank is
Aota = MA+M — 1 (6)

where MA is the delay originated from the polyphase matrices product and the term

(M — 1) accounts for the delay introduced by the commutator.

24
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Perfect reconstruction M-band filter banks

Xo(m)

@ @
X, (m)

@ @

x(n) y(n)
| M+
Z
Xp_q (M)
n=0 @ ® n=0
Figure 11: The commutator model of an M-band filter bank when R(z)E(z) = | is equiv-

alent to a pure delay.
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Perfect reconstruction M -band filter banks

How a simple perfect reconstruction filter bank can be built?

X(n)

| 2

Xy (M) T )

| 2

x (m) g

X(n-1)

| 2

Figure 12: 2-band unit delay.
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Perfect reconstruction M -band filter banks

X(n) l 5 | %o Uo Yo 5

L Ug| | 1/2172 || Xg y 1 1/2 ||Ug 1
y = = z

\/

Identity

Figure 13: 2-band unit delay, including inverse matrices.
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Perfect reconstruction M-band filter banks

X u
x(n) l 5 | %o o 0 . Yo T 5
1 1
-1 -1
Z Z

1/2 1/2

X -

i 5 1 1 u, 1 Y1 T 5 x(n-1)

Figure 14: 2-band unit delay, with explicit realization of the matrix products.
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Perfect reconstruction M-band filter banks

X u
x(n) 2 0 1/2 0 1 Yo 2
1 1
v4 v4
X
2 1 1/2 1 Y1 2
2 %o 1 1/2 Yo T 2
1 1
‘ X u ‘ x(n-1)
2 1 1 1 -1/2 Y1 T 2

Figure 15: 2-band unit delay, splitting the decimators and interpolators.
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Perfect reconstruction M-band filter banks

u
x(n) 1/2 2 0 2 1 ——
1 1
vd vd
1/2 2 2 1
1 2 T 2 112
1 1
vd Z .
1 2 Uy T 2 172 X(n-1)

Figure 16: 2-band unit delay, moving the decimators and interpolators.
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Perfect reconstruction M -band filter banks

By “merging” the decimators/interpolators we reach the realization of the unit delay as

shown in Figure 17. Figure 17 is equivalent to the filter bank in Figure 18.

u
X(n) 1/2 l/ 2 0 T 2 1
1 1
Z Z
1/2 1
1 1/2
1 1
Z z 1
1 l 2 Y1 T 2 1/2 X(n

Figure 17: 2-band unit delay, merging the decimators and interpolators.
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Perfect reconstruction M -band filter banks

14z l o | Yo T 2 1477
2
x(n) X(n-1)
1
u
= 1_Z -1 \L 2 1 T 2 l—;

Figure 18: 2-band filter bank with perfect reconstruction.
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M -band filter banks in terms of polyphase components

Example 9.1
Let M = 2, and
- |
E(z)=| * )
1 —1
13
R(z) = 1 @)
1 =3

Show that these matrices characterize a perfect reconstruction filter bank, and find the

analysis and synthesis filters and their corresponding polyphase components.

33
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M -band filter banks in terms of polyphase components

Solution

e Clearly R(z)E(z) = I, and the filter bank yields perfect reconstruction. The
polyphase components Ey;(z) of the analysis filters Hy (z), and Rj (z) of the
synthesis filters Gy (z) are then

]

§>

Roo(z) =1,  Roi(z) =

Eoo(z) = Eo1(z) = Eio(z) =1, Eq1(z) =—1 9)

)

)

N — N —

]
Rio(z) =1, Rii(z) = —5 (10)

34
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M -band filter banks in terms of polyphase components

e We can find Hy (z), and Gy (z).

Ho(z) = 5(1 +z7) (11)

Hi(z) =1—2z"" (12)

Go(z) =1+4+2"" (13)
1

Gi(z) = —5(1 —z (14)

e The magnitude response of Gy (z) is equal to the one of Hy (z) for k = 0, T except

for a gain constant.
e Perfect reconstruction could be achieved with filters that are far from being ideal.

e Each sub-band is highly aliased, still we recover the original signal exactly. AN

35
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Perfect reconstruction M -band filter banks

-
-
-
-
-
-
-
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- » -
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s
s,
s

s
s
s
s
s
7
- Y -
. s
7
7
7
7

Magnitude response [dB]

0 0.5 1 1.5 2 2.5 3
Frequency [rad/sample]

Figure 19: Magnitude responses of the filters described by equations (11) and (12):
Ho(z) (solid line); H7 (z) (dashed line).
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Perfect reconstruction M-band filter banks

Example 9.2

e Repeat Example 33 for the case when

R L 2 T S
8 "4 8 45"

E(z) = (15)

11
ot 1
_ (z*_zZ ) _

R(z) = (16)

37



ity CAMBRIDGE

Diniz, da Silva and Netto | UNIVERSHX Razss

M -band filter banks in terms of polyphase components

Solution Since

R(z)E(z) = —z 'l (17)

then the filter bank has perfect reconstruction.

38
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M -band filter banks in terms of polyphase components

e From equations (15) and (16), the polyphase components, Ekj (z), of the analysis
filtters Hy (z), and Rj (z) of the synthesis filters Gy (z) are

1 3 |

EOO(Z):_§+Z7‘ 1—§z z

1 1
E()] (Z) = Z + 12_1

0 (18)

1T 1
E]()(Z) = z + 22_1
Ei1(z) = —1

39
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M -band filter banks in terms of polyphase components

o
Roo(z) =1 \
Roi(z) = 411 + ;121 |
Rio(2z) = % + %21
Ri1(z) = % — 221 + %zz )

40
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M -band filter banks in terms of polyphase components

e From equations (18) and (1), we can find Hy (z), and, from equations (19) and (2),

we can find Gy (z). They are

Ho(z) = —% + %z—‘ + %Z_Z + lez_3 — %2_4 (20)
Hi(z) = % —z 4 %Z_Z (21)
Go(z) = % +z7 1 + %zz (22)
Gi(z) = % + ;121 — %zz + lezs + %24 (23)
The magnitude responses of the analysis filters are depicted in Figure 20.
YA\

41
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Perfect reconstruction M -band filter banks

1.5

Magnitude response [dB]

O ——”/////I’ ! ! ! !
0 0.5 1 1.5 2 2.5 3
Frequency [rad/sample]

Figure 20: Magnitude responses of the filters described by equations (20) and (21):
Ho (z) (solid line); H1(z) (dashed line).

42



8- CAMBRIDGE

>/ UNIVERSITY PRESS

Diniz, da Silva and Netto

Perfect reconstruction M-band filter banks

Example 9.3 If the analysis filters of a perfect reconstruction filter bank are given by

\
Ho(z) =142z T+ %z_z

’ (24)

Hi(z)=1—2z"1+ %z_z

determine its synthesis filters.

Solution

e From equation (24), we can write the lowpass and highpass analysis filters as

Ho(z) 1+3z72 1 1
= (25)
H;(z) 1+ %Z_Z —1| |z
E(;rz)

43
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Perfect reconstruction M -band filter banks

e Then the polyphase analysis matrix is

T+31z71 1 T 1| [14+3z77 0
E(z) = = (26)
1+3z71 1 1 -1 0 1

44
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Perfect reconstruction M-band filter banks

e Therefore, since the filter has perfect reconstruction, we must have that

R(z) = z72E~'(z), which gives

R NS R 1
1,1 2 2 —A 1,1 1,1
R(z) = 24 1+ 5z _ ZT 1+ 5z 1+ 5z (27)
0 1 13 —5 1 —1
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Perfect reconstruction

e Then, from equation (4), the synthesis filters are

_ _ L i 1
Gol(z) 27! A (14122

=RE | =

G1 (Z) ] ;
n - _ A _‘l + zZ—Z

that is,
1+z 1+ 1272
G — —A 2
14z 1272
G — —A 2

Note that the FIR solution is not possible.

46

M -band filter banks

(28)

’ (29)
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Perfect reconstruction M -band filter banks

Example 9.3 Assume the analysis filters of a 3-band perfect reconstruction filter bank are

given by
Ho(z) = z?2+6z714+4 )
Hi(z) = z'+2 0 (30)
Hy(z) = 1

Determine its synthesis filters.

47
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Perfect reconstruction M -band filter banks

Solution

e From equations (1) and (3), the polyphase description of the given analysis filters is

Ho(z)| [4 6 1] [ 1]
Hi(z)| =12 1 0f |z}
H(z) 1 0 0] _z_z_
——
e Then
4 6 1
E(z’) = (2 1 0 (31)
10 0

48
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Perfect reconstruction M -band filter banks

e We can have perfect reconstruction if R(z)E(z) = I. Thus,
_ - —1 _ -
4 6 1 0 O ]
Rz) = E'z)=1{2 1 0 =10 1 =2 (32)
1 0 0 1 -6 38

Go(z) 7z 0 0 1] |z2
Gi(z)| =R"(Z) |z7"| =10 1 —6]| |z (33)
Ga(z) | 1 1 -2 8| |1

49
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Perfect reconstruction M -band filter banks

e Therefore, the transfer functions of the synthesis sub filters are given by:

\

Go(Z) = ]
Gi(z) = z7'—6 ’ (34)
Gy(z) = z2—2z7"+8 )

We note that the synthesis filters are all FIR. This is only possible because the
determinant of the polyphase matrix of the analysis filter is proportional to a pure

delay (equal to 1 in this case).

50
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Analysis of M-band filter banks

e The “signal processing block” could consist, for example, of quantization, filtering, or

other types of signal transformations.

x(n) H,(2) F>{{M —> —>4M —> G(2)

Signal
Hl(z) —> *M —» Processi ng —» fM —> Gl(z)

Block

-

-

—>—+

| | | (SPB) | | |
+—> H (2> +M —>» —»4tM —» G_.(2) 4>—t> y(n)

Figure 21: M-band filter bank.
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Modulation matrix representation

Using this concept, the analysis of the M-band filter bank can be performed in three

different, but equivalent ways:

e Using the polyphase decomposition: When the polyphase decomposition is used in
the analysis and synthesis banks, the resulting polyphase matrices are very useful to

establish design conditions for perfect reconstruction filter banks.

e Using the modulation matrix representation: By representing the sub-band signals in
the frequency domain, it is possible to describe the input-output relation of a filter
bank. This representation leads to the so called modulation matrix representation. It
is particularly effective in exposing the aliasing effects generated by the decimators.
Although this formulation is useful to design alias-free filter banks, it is not the easiest

formulation for design purposes.
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Modulation matrix representation

e Using time-domain analysis: It represents the input-output relation of the filter banks
in the time domain in terms of the impulse responses of the analysis and synthesis

sub-filters.

— It is very effective in exposing the properties of perfect reconstruction filter banks

as defining bases of vector spaces.

— The analysis operations are seen as signal projections onto bases, while the
synthesis operations are seen as signal expansions using bases of the vector

space.

— Properties such as orthogonality and biorthogonality come into play and provide

useful insights on filter bank analysis and design.
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Modulation matrix representation

e Noting that, the decimated signal X4 (z) is the sum of X(Z1V) andits (M — 1)
aliased components, X(ZM e Jznk) fork=1,2,...,(M —1), thatis

where Wy = e~ 1%

Z

I;l

M L]

ZX

> X(zMWRy) 35)

54
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Modulation matrix representation

e Using the above equation we can express the decimated output of the analysis filters
in Figure 5, Uy (z),for k=0,1,...,(M — 1), as

M—1
]
We(z) = o0 D X(MWR)Hi (2w W)
k=0
Hy (z ™)
1 " Hy (2 Wiy ) -
—_ M
(2 ) : (36)
Hi (zv W)
where
)
m(2¥) = | X(zH) XHWa) ... X(EWH) | 37)
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Modulation matrix representation

e Therefore, we can define the auxiliary vector

1 1 1
UT(2) = | Uolz) Uilz) ... Umi(2) | = 3oz Hn(z) @8)
e With
Ho(z™) Hi(zm) Hum 1 (zw)
N Ho(zmWm)  Hiz®Wm) ... Hmo1(z™Wy)
Hm(ZM): _ _ _ _ (39)
Ho(zv WNM—T) Hy (zm WNM—T) Hu_1 (zm WM
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Modulation matrix representation

e Applying the noble identities, we see that the filter bank output as a function of the

sub-bands Uy (z) is given by

M—1
Y(z) = ) W(zM)Gi(z) =UT(zM)g(2) (40)
k=0
e Where
g(z) = [ Go(z) Gi(z) ... Gm-1(z2) }T (41)

Then, from equations (38) and (40), we can express the input-output relation of an
M -band filter bank as

Y(z) = X (2)Hn(2)g(2) (42)
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Modulation matrix representation

e Since Y(z) above is a scalar, we have that x| (z)Hn(z)g(z) = g"(z)H! (z)xm(2),

and then '
Yiz) = o' (2H](z)n(z)
1
= | Gol2) Gilz) ... Gmoi(2) |
 Holz)  HolzWm) ... HozwWM ) || x@z |
’ Hi (z) Hi(zWm) ... HizWi ) X(zWnm)
 Hm-1(z) Hm-1(2Wm) ... Hymo1 (W) 1 X(zWii™ )

(43)
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Modulation matrix representation

® In equation (43), often referred to as the modulation matrix representation of the filter

bank, if
o'(2Hh(z) = | B2) 0 ... 0 (44)
e Then aliasing is canceled, since
o
Yiz)= [ Bz 0 ... 0] X(ZV:VM) = T B(2)X(z)  (45)
] X(zWh— 1) |

e It can also be inferred that if B(z) = Mcz %, then the output of the filter bank is
just a delayed version of the input scaled by a constant ¢, that is, the filter bank has

perfect reconstruction.
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Modulation matrix representation

Example 9.5 Find the perfect reconstruction conditions for all 2-band filter banks using

the modulation matrix approach.

Solution

e For the 2-band case, perfect reconstruction requires, since W5, = —1, that

| Golz) Gilz) | = 2ez2 0] o

which implies

Ho(z)Go(z) + H1(2)G1(z) = 2cz74

(47)
Ho(—2z)Gol(z) + Hi(—2)G1(z) = O

Then the output of the filter bank to be equal to the input delayed by A and scaled by
a constant C. JAN
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Time-domain analysis

e To carry out the time-domain analysis using the signals in matrix form, we have that

the signals x1 (M) at the output of the analysis filters can be expressed as

xi(n) =x(n) xh(n) = ) hu(n—1Ux(1) (48)

l=—00

where hy (1) denotes the impulse response of the kth analysis filter Hy (z), for
k=0,1,...,(M—1).
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Time-domain analysis

x(n) m@ L um)

X,(N)
H(2)|—— yM —» uy(m)

LHM_ 1(z)x“”‘—l(n)> vMt—u, (m)

Figure 22: Analysis filter bank.
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Time-domain analysis

e The signals uy (m) at sub-band k are the signals xi (") decimated by a factor of
M are

w(m) = )  h(mM-—n)x(n) (49)

n=——oo

e Define from the impulse response of the kth analysis filter bank hy (1)

ﬁk(m) — [ .. hk(mM) hk(mM—H hk(mM—Z) co hk(mM—n) .. .]T
(50)
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Time-domain analysis

e Such that the nth entry of hy (M) is given by

[ (M)]n = hye (MM —n) (51)
w(m) = ) [A(m)ux(n) (52)
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Time-domain analysis

e The signal in sub-band k can be expressed as
u(m) = hy(m)x (53)
e where

<= [ x(0) x(1) x(2) ... x(n) ]T (54)
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e Therefore, the signal in sub-band k is, in matrix form,

Ux —

66
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Time-domain analysis

e Which can be expanded to

Uk

hi (0) hye (—1) hy (—2) hi (—1) x(0)
hi (M) hy (MT) hi (M —2) hi (M —1) x(1)
hk(ZM) hk(ZM—” hk(ZM—Z) hk(ZM—l) X(Z)
hk(mM) hk(mM—U hk(mM—Z) hk(mM—l) X(TL)

(56)
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Time-domain analysis

e Now by defining the vector of outputs of the M sub-bands at sample m as

u(m) = [uo(m) ui(m) ... uUm-_i (m)}T (57)

68



Diniz, da Silva and Netto

8- CAMBRIDGE

@’ UNIVERSITY PRESS

e \We have that, from equation (52),

69
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Time-domain analysis

e Equivalently

u(m s

ho(mM) ho(mM—]) ho(mM—Z)
hy (mM) hy (mM—1) hq (mM—Z)

hm_1 (mM) hmo1 (mM—]) hm_1 (mM—Z)

ho(mM—l)
hy (mM—l)

hm1 (MM —1)

x(0)
x (1)
x(2)

x(mn)

N

H(m)
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Time-domain analysis

e Therefore, the whole time-domain expression can be written as

u(0) H(0)
u(l) H(1)
u(2) | = | H(2) | x (60)
u(m) H(m)
. - . ) -
U H
that is,
U = Hx (61)
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Time-domain analysis

e Note that matrix H(m ) consists of matrix H(0) shifted mM columns to the right.
e Then matrix H consists of a concatenation of properly shifted submatrices.

e As for the synthesis operation the signals Y (1) are

ye(m) = Y gr(n — mMug(m) (62)

m=—00
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Time-domain analysis

G(z) y(én)

— G(2)

U (M) —>4M
u(m) —»4M
u|\/|—1(m) —» f M

——»

y,(n)

*

> y(n)

Y,,_{N)
Gm-l(z)i >

Figure 23: Synthesis filter bank.
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Time-domain analysis

e From the impulse response of the kth synthesis filter bank, gi (1), define a vector

corresponding to this impulse response shifted by mM samples as

gk (—mM)
gik(1 —mM)
gk(m) = | gx(2 —mM) (63)
gk(n—mM)
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Time-domain analysis

e Such that [gx (M)l = gk(n — mM), equation (62) can be written as

oo

v = Y lok(m)lnw(m) (64)

m=—00
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Time-domain analysis

e Thus, in matrix form, we have that

Yk = Z gk (m)uy(m)

Ui (0)
wi (1)

= [ a0 gD gl ... oom) | | w(2)|63)
Uy (m)

Using matrix {{ in equation (60), the above equation can be rewritten as
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ug (0)
uy (0)

up —1(0)
ug (1)

up (1)
yk:|:... 0 -+ gp(0) v 0 -+v gp(1) -+ 0 -+ gr(m) --- O ] . (66)
up—1 (1)
ug(m)

uy (m)

up —1(m)
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Time-domain analysis

e Since, from Figure 23,

M—1

ym) =Y yx(n)

k=0
e In matrix form we have that

M—1

v=Y w

k=0

e The above equation together with equation (66) imply that

y = 6GU

/8

(67)

(68)

(69)
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Time-domain analysis

Where
g:[... go(0) -+ apm—1(0) go(1) -+ apm_1(T1) c-+ go(m) -+ gp_1(m)
go(0) -+ gm_1(0) go(—M) ImM_1 (—M) go(—mM) IM_1 (—mM)
go(1) -+ agm-1(1) go(1—M) -+ gpm_1(1—M) -+ go(l—mM) -+ gpm_1(1T—mM)
_ go(2) -+ agm-1(2) gpo(2—M) -+ gm_1(2—M) -+ go(2=—mM) -+ gm_1(2—mM)
go(mn) -+ gm_1(m) gop(n—M) .-+ gpm_1(n—M) v gogm=—mM) -+ gpm_1(m—mM)
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Time-domain analysis

e The structure of G becomes more evident if we define

s(m) = [golm) gr(m) -+ gm1(m)]

go(n—mM) gi(n—mM)

80
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gm—1(1 —mM)
IM—1(2 —mM)
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Time-domain analysis

e Using this definition, G in equation (70) can be expressed as

g:[... s(0) o(l) 62) ... o(m)

and thus equation (69) can be rewritten as

81
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Time-domain analysis

e Note, from equation (71), that matrix G(m ) consists of matrix G(0) shifted mM
rows up. Then, similarly to matrix 7{ in equation (60), from equation (72), matrix G

consists of a concatenation of properly shifted submatrices.

e |n order to summarize what we have seen so far, we can take equations (58), (61),
(69), and (73), and express the analysis and synthesis operations in a filter bank as

\

um) =H(m)x, form=...,0,1,2,...
- % (74)
y= Y o(mum)
m=—00 )
® or
U = Hx
(75)
y = GU
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Time-domain analysis

e If the filter bank has perfect reconstruction and zero delay, we have that x =.

e Therefore, from equation (75), we have that H and G must satisfy the following

constraints:
OH ="HG =1 (76)

e Note that if the filter bank has delay equal to A, then G’H corresponds to a delay of

A and HG corresponds to an advance of A.
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Time-domain analysis

Example 9.5 For the 2-band perfect reconstruction filter bank from example 37
(equations (20), (21), (22), and (23)),

Ho(z) = —% T %z_‘ + 22—2 + %2—3 %z 4
) (77)
\
Gol(z) = 4z '+3z72
’ (78)
G](Z) — %“"%Z—] _%Z—2+%Z_3+%Z_4

describe the matrices H and G.

84



B CAMBRIDGE

“l’> UNIVERSITY PRESS

Diniz, da Silva and Netto

Time-domain analysis

Solution

e The impulse responses of the analysis and synthesis and filters are (only the

non-zero samples are shown):

ho(0) =—3, ho(l) =13, ho(2)=3 ho(3)=1}, hod)=—3
> (79)
h0)=3, hM=-1 h(2) =3 )
9o(0) =%, go(1)=1 go(2)=13
e (80)
g1(0)=3%, ai(N =7, 91Q)=—-3, 918 =4, aid =3
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e From equations (58) and (60), matrix H is

ho(1)  Thg(0) 0 0 0 0 0
hi(1)  hq(0) 0 0 0 0 0
ho(3)  hg(2)  hg(1)  hg(0) 0 0 0

. 0 h1(2) hy(1) hq(0) 0 0 0
0 hg(4) hg(3) hg(2) ho(1)  hg(0) 0
0 0 0 h1(2) hy(1) hq(0) 0
0 0 ho(4) hgo(3) Thg(2)  Thg(l)
0 0 0 0 hi1(2)  hy(1)
1 1
-3 0 0 0 0
—1 1 0 0 0 0 0
1 3 1 1
s 1 C 0 0 0
0 1 —1 1 0 0 0

= %) 1 3 6D
0 1 1 3 1 _1 0
3 7] 7] 7] 3
0 0 0 : —1 : 0
1 1 3 1

0 ° -3 7 7 7
0 0 0 0 . —1
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e And from equations (71) and (72), the matrix G is

0 0 0 0 0 0 90(0) gq(0)
0 0 0 0 0 0 go(1)  gq(1)
0 0 0 0 gp(0) gq1(0) go(2) g1(2)
G _ 0 0 0 0 go (1) gy (1) 0 gq(3)
0 0 gpo (0) gq(0) go(2) gq(2) 0 gq(4)
0 0 go (1) gp(1) 0 gq(3) 0 0
gp(0) gq1(0) go(2) gq(2) 0 g1 (4) 0 0
go(1)  gq(1) 0 g1(3) 0 0 0 0
0 0 0 0 0 0 L "
0 0 0 0 0 0 1 1
0 0 0 0 1 % L 1%
0 0 0 0 1 1 0 1
- 0 0 1 1 1 f4é 0 i (62)
2 8 2 A 3
A A
2 ¥ 2 3 0 3 0 0
1 I 0 I 0 0 0 0
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Orthogonality and biorthogonality in filter banks

e \We have seen that the perfect reconstruction condition requires that
HG =1 (83)

e Using the expressions for H and G in equations (60) and (72), the above equation

becomes

s0) c(1) ... o(m) ...]:l (84)
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Orthogonality and biorthogonality in filter banks

e Note that 1 is an integer value that is used to emphasize the fact that we are not

specifying neither the number of rows nor the index of the first row of the matrix 7.

This gives
H(T)G(0) H(r)g(1) -~ H(r)G(m)
H(r+1)c(0) H(r+1)G(1) --- H(r+1)c(m)
— | (85)
H(r+m)G(0) H(r+m)G(1) --- H(r+m)G(m)
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Orthogonality and biorthogonality in filter banks

e Since, from equations (58) and (71), H(k) has M rows and G(1) has M columns,

the above equation implies that there must be an integer 1 such that

H(r + k)G(1) = d(k — l)Im (86)
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Orthogonality and biorthogonality in filter banks

e Now, expressing H(T + k) as function of its rows h{ (1 + k) (equation (58)) and G(1)

as function of its columns g; (1) (equation (71)) we have that equation (86) becomes

R(r+k) |
AT (T + k)
HirHl)e(l) = | e @ (1)

g (k)

AT(r+K)go() RS(r+K)gr (U AL K)gma (1)
| RrHRkgo() A (kg (1) AT (r+K)ant (1)

_h;\/[ 1 (t4+k)go(l) FHT\/[_1 (r4+k)g1 (1) F‘)Tv[_1 (T+Kk)gm (U_
— d(k—1)Im (87)
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Orthogonality and biorthogonality in filter banks

e The above equation is equivalent to
hi(T+k)g;(1) = 8(k —1)8(i —j) (88)

e This means that for k # 1 or i # j the vectors h{ (T + k) and 93 (1) are orthogonal.

e If k = land i = j their inner product should be 1. Since h} (k) are the rows of H
and g (1) are the columns of G, then perfect reconstruction implies that the rows of
"H are orthogonal to the columns of G*, except the cases where the (T 4+ m)th row

of "H should not be orthogonal to the mth column of G*, for all m.

e One often refers to the rows of H and columns of G* as being biorthogonal.
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Orthogonality and biorthogonality in filter banks

e In the case when H = G* , there must be an integer 1 such that
hi(r +m) = g (m), which implies that, for i =0,1,...,(M —1)and m € Z,

there is an integer s such that
hi(™™M +mM —n —s) = gi(n—mM) (89)

where the integer s is used to emphasize the fact that we are not specifying neither

the number of columns nor the index of the first column of the matrix . This gives

hi(rM —n —s) = g; (n) (90)
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Orthogonality and biorthogonality in filter banks

e Then equation (88) becomes
o7 (K)gj (1) = 8(k — )3(1 —j) (1)

which means that the columns of G (or the rows of ‘H) are orthogonal to each other.
In this case, the filter bank is said to be orthogonal, and the perfect reconstruction

condition is
HH* =H*H = (92)
or

GG* =G* G =1 (93)

and the pair in equation (75) becomes

U = Hx

. (94)
x =H"U
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Orthogonality and biorthogonality in filter banks

e \We see that an orthogonal perfect reconstruction filter bank can be regarded as a

unitary transform that maps a signal x into the transform coefficients {A.

e The interpretation of an orthogonal filter bank as being equivalent to a unitary

transform brings about an interesting insight on biorthogonal filter banks. If
U = Hx (95)

then the kth element of I/ can be regarded as the inner product between the

complex conjugate of the kth row of H and x.
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Orthogonality and biorthogonality in filter banks

e Likewise, we can say that if
x = GU (96)

then x can be regarded as a linear combination of the columns of §, where the

weight of the kth column is the kth element of /.

e In a biorthogonal filter bank, the analysis filters projects the input signal on the rows
of H*. The synthesis filter bank takes these projections and uses them to weight the

columns of G in order to recover the input signal.
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Orthogonality and biorthogonality in filter banks

e Given that vy and vy are unit-norm, orthogonal vectors. One can compute the

coordinates (transform) of vector x by projecting it on vy and v>.

® |t can be recovered by the vector addition of the two projections, that is

V1 Y

+ Ix]| sin(8)
va |

_ <X’ Vi > Vi +<X, V2 > V2 ©7)
vall /- flval lvall /- [lvzll

||| cos(0)

<
|
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V2
. \P
|| sin(0
ol siné)
Vi
(a)

U2
||| sin(0) v

J« cos(@) vl

[[x|| sin(6)
_-~ cos(a) ||v1]]
Vi

(||| cos(0 + a)

uq

(b)

Figure 24. Orthogonality and biorthogonality in two dimensions.
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Orthogonality and biorthogonality in filter banks

e One wants to express a vector x as a linear combination of two vectors vy and v

that are not orthogonal.
e This can be made by constructing the parallelogram with sides parallel to v and v>.

e But a side parallel to vy is orthogonal to a vector u> that is also orthogonal to v,

and a side parallel to v is orthogonal to a vector uy that is also orthogonal to v>.
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Orthogonality and biorthogonality in filter banks

e \We can see that in order to find the length of the parallelogram side with the same
direction as v1, we project it on uq and divide it by the cosine of the angle between

vianduj.

e Similarly, in order to find the length of the parallelogram side with the same direction

as v, we project it on uy and divide it by the cosine of the angle between v, and u;.

e That is, the analysis operation is carried out by the projection on u7 and uy, while the
synthesis by the linear combination of vectors vi and v, where u1 is orthogonal to

v2 and uy is orthogonal to v1.

100



8- CAMBRIDGE

Diniz, da Silva and Netto P UNIVERS IR

Orthogonality and biorthogonality in filter banks

e Mathematically, the above operations are expressed as

o= B S N H”(of)e ) ol )
® Since
cos(a) = <||51 I T ||> = <||3§||’ ||3§||>
I cos(ex+ ) = (x, 1) > (99)
][ sin(8) = (x, 727 )
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Orthogonality and biorthogonality in filter banks

e Equation (98) becomes

u u
<X’m> V1 <X’Hu—§H> V2
_|_
< iU >HV1H < va__ud >||V2||

INARIRITTRN| v [l ? Jluzl

_ (x,u1) vy + (x,uz) Vo (100)

(vi,u1) (v2,u2)
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Orthogonality and biorthogonality in filter banks

e In the above equation it can be clearly seen that the coordinates in the

(x,u1) (x,u2)
(vi,u1) (v2,uz)’

non-orthogonal basis composed by v and v, are given by

where u7 is orthogonal to v, and u> is orthogonal to v1.

e For an orthogonal filter bank we have that, from equation (90), there are integers 1

and s such that the analysis and synthesis filter banks satisfy

gin)=hi(*"M—n—s), for i=0,1,...,(M—1) (101)
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e In the z transform domain, for i =0,1,..., (M — 1),

Gi(z) = ) gilnz™

n=—oo

— i h'(tM —n—s)z "

n=—oo

— i h%k(t)ZtJrs—rM

t=——

. ,TMts Z h’{(t)zt

t=—0o0

(£ )

t=——

=z "™MFSHI((z)) (102)
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Orthogonality in the  z transform domain

® In case the filters have real coefficients orthogonality of the filter bank demands that

there must be integers T and S such that
Gi(z) = z ™FsH(z7"), for 1=0,1,...,(M—=1) (103)

e In the general complex case, equation (102) can be expressed as

Go(z) H5((z*) ")
Gila) | vk HT((Z.*)‘) 100
G (2) i (271
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e Using the matrix forms of the polyphase decompositions we have that

_Z—(M—U_ ( i 1 1) °
T .M Z—(M_Z) —1TM+s *\— M Z*
R'(z™7) | = z q E((z7) ) | >
*\(M—1)
A \ (27) 1)
1
M M z
= MR ()M
'Z—(M—n'
Z—(M—Z)
1
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Orthogonality in the  z transform domain

e Therefore, for orthogonal filters banks

RT(ZM) _ Z(—rM—I—S—l—M—HE*((z*)—M) (106)

e |f we choose a matrix H such that s = 1, the above equation becomes

RT(ZM) _ Z—rM—I—ME*((Z*)—M) (107)
and thus we can write

R'(z) = z "TTE*((z") ) (108)
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Orthogonality in the  z transform domain

e Since the perfect reconstruction condition is R(z)E(z) = z~?Im, we have that

T

E* ((z°) E(z) = 2z 178y (109)

e By choosing H such that r = A + 1, a sufficient condition for perfect reconstruction

filter bank to be orthogonal is

E* ((z)"E(z) = Im (110)
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Orthogonality in the  z transform domain

e A matrix E(z) satisfying the above condition is referred to as a paraunitary matrix.
Therefore, an orthogonal perfect reconstruction filter bank is also referred to as a

paraunitary filter bank. If the filters have real coefficients, equation (110) simplifies to

E'(z7E(z) = Im (111)
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Transmultiplexers

e If two identical zero-delay M -channel perfect reconstruction filter banks are
cascaded, we have that the signal corresponding to Wy (M) in one filter bank is

identical to the corresponding signal in the other filter bank, for each

k=0,1,...,(M—1).

e Therefore, one can build a perfect reconstruction transmultiplexer as in Figure 25,
which can combine the M signals 1y (M) into one single signal y(mn ), and then

recover the signals vy (m) that are identical to uy (m).

e One important application of such transmultiplexers is the multiplexing of M signals

so that they can be easily recovered without any cross-interference.
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Transmultiplexers

uy(M) ——— | M G,(2) Hy(2) M —— v, (M)
u,(m —= ™ G,(2) il H,(2) M ——— V3 (M)
Uy (M) ——= T M = 4(Z)—J \—>HM 4(z) i MP——— VM—l(m)

Figure 25: M-band transmultiplexer.
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General 2-band perfect reconstruction filter banks

The general 2-band case is shown in Figure 26.

> HO(Z) ——> l 2 M‘ T 2 = Go(z)
X(n) —— ——=y(n)
>H1(z)—>l2M>T2 - G, (2)

Figure 26: 2-band filter bank.
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General 2-band perfect reconstruction filter banks

e Representing the filters Ho(z), Hi(z), Go(z), and G1(z) in terms of their
polyphase components

Ho(z) = Eoo(z®) + 2z 'Eo1(2?) (112)
Hi(z) = Eqo(z%) + 2z 'Eq1(27) (113)
Go(z) =z~ 'Roo(z”) 4 Rio(z?) (114)
G1(z) = 27 'Ro1(2%) + Ry1(z%) (115)

E(z) = (116)

R(z) = (117)
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General 2-band perfect reconstruction filter banks

e If R(z)E(z) = I, we have perfect reconstruction.

e We see that the output signal y(mn) will be equal to x(n.) delayed by (M — 1)

samples, which for a 2-band filter bank is equal to just one sample.

e In the general case, we have R(z)E(z) = 1z, which makes the output signal of

the 2-band filter bank, y(n), equal to x(n) delayed by (2A + 1) samples.

e Therefore, the 2-band filter bank will be equivalent to a delay of (2A + 1) samples if

R(z) =z 2E ' (2) (118)
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General 2-band perfect reconstruction filter banks

e From equations (116) and (117), this implies that

Roo(z) Roi(z) | 274 Ei1(z) —Eoi(z)
Rio(z) Rii(z) ~ Eoo(2)E11(2) — Eo1(2)Eq0(2) —E10(z)  Eoolz)
i ] ] (119)

This is sufficient for IIR filter bank design, as long as stability constraints are taken

into consideration.

e If we want the filters to be FIR, the term in the denominator must be proportional to a
pure delay
Eoo(z)E11(2z) — Eo1(2)Eq0(2z) = cz ! (120)
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General 2-band perfect reconstruction filter banks

e From equations (112)—(115), we can express the polyphase components in terms of
the filters Hy (z) and Gy (z) as

Eoo(z?)

Eq0(z?)

Roo(z%)

Ro1(z%) =

Ho(z) + Ho(—2)

2
Hi(z) + Hi(—z)

2

Go(z) — Go(—2)

2z
Gi(z) — Gy(—2z)

2z 1

)

)

)

)

116

Ho(z) — Ho(—2)

EO] (Z ) — 22_1

Eqp(22) = H; (2)2;]‘1[1 (—2) (121)
Rio(e2) = (2) £ Gol-2

Ry (22) — Gi(z) +ZG1 (—2) (122)
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General 2-band perfect reconstruction filter banks

e Substituting equation (121) into equation (120), we have that
Ho(—2z)H1(z) — Ho(z)Hi(—2) = 2cz~*"! (123)

e Now, substituting equation (120) into equation (119), and computing the Gy (z) from

equations (114) and (115), we arrive at

ZZ(I—A)
Gol(z) = —THl (—z) (124)
ZZ(I—A)
Gi(z) = THO(—Z) (125)

e The reader can verify that whatever is the value of 1, the overall filter bank transfer

function consists of a delay of value Ay = 2A + 1.
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General 2-band perfect reconstruction filter banks

e Equations (123)—(125) suggest a possible way to design 2-band perfect

reconstruction filter banks. The design procedure is as follows:
(i) Find a polynomial P(z) such that P(—z) — P(z) = 2cz—2' 1.

(i) Factorize P(z) into two factors, Ho(z) and Hy (—z). Care must be taken to

guarantee that Hy(z) and Hy (—2z) are lowpass filters.

(iii) Find Go(z) and G1(z) using equations (124) and (125).
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General 2-band perfect reconstruction filter banks

e Some important points should be noted in this case:

— If the delay, A\, is zero, some of the filters are certainly noncausal: for negative 1,
either Hp(z) or H7 (z) must be noncausal (see equation (123)): for positive 1,
either Go(z) or G1(z) must be noncausal. Therefore, a causal perfect

reconstruction filter bank will necessarily have nonzero delay.

— The magnitude responses |Gq(e'® )| and |[H1 (e'® )| are mirror images of each
other around w = & (equation (124)). The same happens to |[Ho (e/“ )| and
|G1(e'?)] (see equation (125)).
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General 2-band perfect reconstruction filter banks

e If one wants the filter bank to be composed of linear-phase filters, it suffices to find a

linear-phase product filter P(z), and make linear-phase factorizations of it (one

y

should remember that if Zg Is a zero of a linear phase FIR filter, then z, * is also a

Zero).

® In this case we have some additional constraints on the filters. As we have seen

above,
P(z) — P(—z) = 2cz 2] (126)
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General 2-band perfect reconstruction filter banks

211 are null.

e This implies that all the odd-power terms of polynomial P(z) except z~
In addition, a linear-phase P(z) should be either symmetric or antisymmetric, with
the central term being cz—?' 1. Therefore, if P(z) has more than two terms, and
considering that the first term of P(z) is az®, then its last term should be
+az=*'"2. Then, its order is (41 4 2). Taking this into consideration, we have two

cases.

a) Both filters have even order. In this case, Ho(z) and H1(—2z) should be either
Type-1 or Type-lll filters. However, since a Type-lll filter should have zeros at
w = 0 and w = 7, and P(z) should be a lowpass filter, then both Hg (z) and
H1 (—2z) are Type-I filters, and so is Hj (z). In addition, since the sum of their
ordersis (41 + 2), the order of one is a multiple of 4 and the order of the other is

not (that is, their orders differ by an odd multiple of 2).

b) Both filters have odd order. In this case, Ho(z) and H (—2z) should be either

Type-Il or Type-lV filters. However, since a Type-IV filter should have a zero at
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w = 0, and P(z) should be a lowpass filter, then both Hy(z) and H1 (—2)
should be Type-ll filters, and H1(z) is Type-IV. In addition, if the orders of Hp(z)
and Hq (z) are (2ko + 1) and (2kq + 1), respectively, since the sum of their
orders is equal to (41 + 2), we have that

2ko+1)+2k1 +1) = 41+2 = ko=2l—ky (@127

and then the difference of their orders is

2ko+1)—(2k: +1) = 41—2k;+1—2ky —1
= 41— 2k — 2kq4
= 4(1—kq) (128)

which is a multiple of 4.
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General 2-band perfect reconstruction filter banks

e In the case that P(z) has only two terms, since it is linear phase, we have that

equation (126) implies that

P(z)=cz ?V" ' +cz 2" =cz 2" (27227 T 4 1) (129)

e Thus, P(z) has odd order equal to |21 — 21 + 1

We then have two cases:

, and all its zeros on the unity circle.

a) Ho(z) has even order and H1(z) has odd order. Then, P(z) being a lowpass
filter implies that Ho (z) is Type-l and Hy (—2z) is Type-Il, and therefore H{ (z) is
Type-IV.

b) Ho(z) has odd order and Hj (z) has even order. Then, in this case Ho(z) is
Type-Il and H7 (—2z) is Type-I, and therefore H1(z) is also Type-I.

e This last case is of little practical interest, since the resulting Ho(z) and H1(z) tend

to have poor frequency selectivity.
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General 2-band perfect reconstruction filter banks

Example 9.6 A product filter P(z) satisfying P(z) — P(—z) = 2z7?'" 1 is
]

P(z) = 16(—1—|—9z_2—|—16z_3—|—9z_4—z_6) —

Find two possible factorizations of P(z) and plot the magnitude responses of their

corresponding analysis filters.
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General 2-band perfect reconstruction filter banks

Solution We can see from the magnitude response that P(z) is a lowpass filter.

=
o
-

o
wn

Magnitude response [dB]
-

Magnitude response [dB]
=

Magnitude response [dB]
=

o

0 0.5 1 15 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0.5 1 15 2 2.5 3
Frequency [rad/sample] Frequency [rad/sample] Frequency [rad/sample]

o

(@) (b) (€)

Figure 27: Magnitude responses: (a) P(z) from equation (130); (b) Ho (z) (solid line) and
H; (z) (dashed line) from the factorizations in equations (131) and (132); (c)

Ho(z) (solid line) and H1(z) (dashed line) from the factorizations in equa-
tions (135) and (136).
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General 2-band perfect reconstruction filter banks

e One possible factorization of P(z) results in the following filter bank, This filter bank

is the popular symmetric short-kernel filter bank:

Ho(z) = %(—1 +227 V4627742273 — 27 (131)
1
Hi(z) = 5 (1 —2z7 ' 4 z7%) (132)
1 1 —2
Gol(z) = 2(1 227 +z2 “) (133)
Gi(z) = %(1 227 —6z27 2+ 2273 427 (134)

The magnitude responses of the analysis filters are depicted in Figure 27b.

126



B CAMBRIDGE

Diniz, da Silva and Netto 4P UNIVERSII Buess

General 2-band perfect reconstruction filter banks

® Another possible factorization is as follows:

Ho(z) = 411( 14327 +3272—23) (135)
H;(z) = ;1(1 — 3271 43272273 (136)
Golz) = %(1 +3z7 ' +3z27 % +277) (137)
Gi(z) = 31(1 +3z27 1 =322 273 (138)

The corresponding magnitude responses of the analysis filters are depicted in

Figure 27c.
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QMF filter banks

e One of the earliest proposed approaches for the design of 2-band FIR filter banks is
the so-called quadrature mirror filter (QMF) bank, where the analysis highpass filter
is designed to alternate the signs of the impulse-response samples of the lowpass
filter, that is

Hi(z) = Ho(—2) (139)

e For filters with real coefficients for the analysis filter bank, the magnitude response of
the highpass filter, |[H1 (e/?)

, Is the mirror image of the lowpass filter magnitude

response, |[Ho (€' )], with respect to the quadrature frequency 5. Hence the QMF

nomenclature.
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QMF filter banks

e QMF filter banks are designed to structurally avoid aliasing while keeping the
constraint in equation (139). Filter Hy(z) is then designed so that the filter bank is

close enough to achieving perfect reconstruction.

e |ts design equations can be derived by starting from the modulation matrix

representation in equation (42), for M = 2 bands,

Y(z) = % [ X(z) X(—z2) } (140)
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QMF filter banks

e The aliasing effect is represented by the terms containing X(—z). To avoid aliasing

choose the synthesis filters such that

Go(z) = Hi(—2z) (141)
G1(z)

—Ho(—2) (142)

e This choice keeps the filters Go(z) and G1(z) as lowpass and highpass filters,

respectively, as desired.

® Also, the aliasing is now canceled by the synthesis filters, instead of being totally

avoided by the analysis filters, relieving the specifications of the latter filters.

e The overall transfer function of the filter bank is given by

H(z) = ~(Ho(2)Go (2)+H1 (2)G1 (2)) = ~(Ho(2)H1 (—2)—H (z)Ho(—2))

2 2
(143)

where in the second equality we employed the aliasing elimination constraint.
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QMF filter banks

e In the original QMF design, the aliasing elimination condition is combined with the
alternating-sign choice for the highpass filter of equation (139). In such a case, the

overall transfer function is given by

H(z) = 5 (H3(2) — H3(~2) (a4

The expression above can be rewritten in a more convenient form by employing the

polyphase decomposition of the lowpass filter Ho(z) = Ego(2?) + 27 'Eo1 (22),

as follows:
H(z) = %(HO(Z)+H0(—Z))(HO(Z)—HO(—Z))
= 2z 'Eoo(z*)Eo1(2%) (145)
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QMF filter banks

e As pointed out above, the QMF design approach of 2-band filter banks consists of

designing the lowpass filter Hy(z).

e Perfect reconstruction is achievable only if the polyphase components of the lowpass

filter (that is, Eqo(z) and Egq(z)) are simple delays.

e This constraint limits the selectivity of the generated filters.
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QMF filter banks

e Therefore, for QMF design we usually adopt an approximate solution by choosing

Ho (z) to be an Nth-order FIR linear-phase lowpass filter.

e This eliminates any phase distortion of the overall transfer function H(z), which, in

this case, will also have linear phase.

e For either a Type-I or Type-Il Nth-order filter, the filter bank transfer function in

equation (144) can then be written as

. ] . .
H(e) = 2 (B3(w)e N = Bj(w —m)e (@ =™N)
—JjwN | | . 2
= =5 (Moler )P = e Holere [ )
~jwN | | 2
= - 5 (\Ho(e’“’)\z—(—UN\Ho(e‘(‘”m)\) (146)
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QMF filter banks

e From the above equation, we see that, for N even, H(e/Zz ) = 0, which is

undesirable. Therefore, for QMF filters the filter order must be odd.

® In this case, equation (146) becomes

| —jwN | | 2
Helw) = = (‘Ho(ejw)‘z—F‘Ho(e‘(wm)‘)

2
e—ij

= 73 ([Ho(e™)]” + [Hy (")) (147)
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QMF filter banks

e The design procedure goes on to minimize the following objective function using an
optimization algorithm:

2
dw  (148)

7T e—ij

2

E = 6[7[ Ho(e") [+ (1-8) | [H(e) -

W 0

where W is the stopband edge, usually chosen slightly above 0.57t.

e The parameter 0 < & < 1 provides a tradeoff between the stopband attenuation of

the lowpass filter and the amplitude distortion of the filter bank.
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QMF filter banks

e This objective function has local minima.

e A good starting point for the coefficients of the lowpass filter and an adequate
nonlinear optimization algorithm lead to good results, that is, filter banks with low

amplitude distortions and good selectivity of the filters.

e Usually, a simple window-based design provides a good starting point for the lowpass

filter. Overall, the simplicity of the QMF design makes it widely used in practice.

e Johnston was among the first to provide QMF coefficients for several designs. Due to

his pioneering work, such QMF filters are usually termed Johnston filter banks.
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QMF filter banks

0 0.006
_ _0.005 ¢
= D 0.004 |
g —20 g 0.003 |
§ S 0.002 t
@ —40 / @ 0001 |
— II e
) ! [ 0r
g o A S —0.001 |
% i % -0.002 |
s —80 < -0.003
-0.004 |
-100 - : : : : : ~0.005 : ' : : : :
0O 05 1 15 2 25 3 0O 05 1 15 2 25 3
Frequency [rad/sample] Frequency [rad/sample]
(a) (b)

Figure 28: QMF design of order N = 15: (a) magnitude responses of the analysis filters

(solid line: Ho(z); dashed line: H1(z)); (b) overall magnitude response.
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CQF filter banks

e The QMF design is quite simple. However, the possibility of getting perfect

reconstruction is lost except in a few trivial cases.

e By time-reversing the impulse response and alternating the signs of the lowpass filter,

one can design perfect reconstruction filter banks with more selective sub-filters.
e The resulting filters became known as the conjugate quadrature filter (CQF) banks.

e The CQF filter bank is an orthogonal filter bank. Its design can then be deduced from

the orthogonality condition, which, for the 2-band case, is

Gi(z) = z %" SHi(z™"), for 1=0,1 (149)
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CQF filter banks

e The perfect reconstruction conditions for the 2-band case are given by
equations (124) and (125),

,2(1-A)
Go(z) = ———Hi(~2)
72(1=A)
Gi(z) = “——Ho(~2

where 2A + 1 is the total delay of the filter bank and 1 can be any integer.

e Using equation (149) these conditions become

5 1 ZZ(l—A)
2z TS Ho(z7) = —fl‘h (—2z)
B B ZZ(l—A)
z 2T+SH1 (z 1) — ?Ho(—z)

139
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CQF filter banks

e From equation (152) we have that

(—2)*" SHo(—2) = —— Hi(z ™) (154)
® Then
Hi(z7') = —c(—z)R2tmA)F2r=sly (—2) (155)

e By replacing Hy(z~') from equation (155) in equation (153) we get
,2(1—A)

224 o —z) RITAN IS ()| = ——Hol—z)  (50)
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CQF filter banks

e Equivalently
_¢2(—1)2(1=A)+2r—s] [ZZ(I_A)HO(_Z)} el o

e Then

2 = (1) 20=A)k2r=s] (s -
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CQF filter banks

e In order for the 2-band perfect reconstruction filter bank to be orthogonal, we must
have s odd and ¢ = +1. Then, since for s odd, [2(1 — A) + 2r — s] is also odd,

equation (155) implies that

Hq(z) = cz P=A)IF2r=sly (=) (159)

e In the CQF design one usually makes the following design choices:

— The order of the lowpass filter is the odd number

N=2(1—A)+2r—s (160)
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CQF filter banks

e In order for orthogonality to imply the paraunitarity of matrix E(z), we must have

s =1.
e On the other hand, in the CQF bank it is sufficient that s be odd.

e However, from equation (160) we see that for any odd value of N, we can find a

value of r such that s = 1.

e Therefore, we have that for CQF filter banks the polyphase matrix E(z) is always

paraunitary. This is an important property for CQF filter banks.
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CQF filter banks

e With these design choices, we have that the analysis highpass filter is given by
Hi(z) =-—z NHo(—z"") (161)

® Since perfect reconstruction also requires that equation (123) to be valid, we must

have

—2z7%""1 = Ho(—2z)Hi(z) — Ho(z)H1 (—2)
= Ho(—z)(—z M) Ho(—2z"") — Ho(z)[—(—2z) NHo(z ")
= —z N [Ho(—z)Ho(—z ") + Ho(z)Ho(z )] (162)
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CQF filter banks

e By defining
P(z) = Ho(2z)Ho(z™") (163)

e The perfect reconstruction condition in equation (162) becomes

P(z) + P(—z) = 2N (164)
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CQF filter banks

e From the definition of P(z) in equation (163), we see that P(z) = P(z ™).

Therefore, from equation (164) we have

2zN721 0 — P(z) 4+ P(—2)

— Pz ") 4+P(—z 1

which implies that we should choose | such that N = 21 + 1.

e This condition makes the PR condition to be

P(z) +P(—z) =2 (166)
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CQF filter banks

e The synthesis filters from equations (150) and (151) become

Go(z) = 228 NI Hp (271) = 2724 UHo(271) (167)

Gi(z) = —z* VA Hy(—z) = —zN247H  (—2) (168)

e If p(Nn) is the inverse z transform of P(z), equation (166) is equivalent to

p(m)[1 + (=1)"] = 25(n) (169)
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CQF filter banks

e The design procedure for CQF filter banks consists of the following steps:

(i) Noting that p(n.) = O for n even, except for n = 0, we start by designing a

half-band filter, such that wp;wr = 7, with order 2N and the same ripple dnyp,

in the passband and stopband. The half-band filter will have null samples on its
impulse response for every even n except for n = 0. Such a filter can be
designed using the standard Chebyshev approach for FIR filters as follows:

(a) Design a zero-delay Hilbert transformer H;,(z) with order 2N. Since its order is
even it must be a Type Il FIR filter. Its ripple must be smaller than :I:é% in its
passband and its transition bandwidth around w = 0 and w = 7t should be
Wr.

(b) From the Hilbert transformer, create the filter P(z).

o
Pz) =1+ =7 — jHa(~i2)

Note that the term —jH,,(—jz) corresponds to a zero-delay filter with gain

(170)
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equal to (1 + 5%) for 0 < |w| < Z, and gain equal to — (1 + 6%) for
7 < |w| < 7. By summing (1 + 5%) to its frequency response we obtain a
zero-delay lowpass filter with gain 2 and ripple 11 in the passband and a
non-negative stopband gain ranging from zero to O . This is necessary since
P(e!®) must be non-negative for all w, as it corresponds to the modulus
squared of Hg (e'® ). As a rule of thumb, to simplify the design procedure, the
stopband attenuation in dB of the half-band filter should be at least twice the

desired stopband attenuation plus 6 dB.

(i) An approach is to decompose P(z) = Ho(z)Ho(z~') such that Hp (z) has
either near linear phase or has minimum phase. To obtain near linear phase, one
can select the zeros of Hp(z) to be alternately from inside and outside the unit
circle as the frequency is increased. Minimum phase is obtained when all zeros

are either inside or on the unit circle of the z plane.
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CQF filter banks

e If we wanted the filter bank to be composed of linear-phase filters, find a linear-phase

product filter P(z) and make linear-phase factorizations of it.

e The only linear-phase 2-band filter banks that satisfy equation (169) are the ones
composed of trivial linear-phase filters such as the ones described by

equations (11)—(14).

e There is no point in looking for linear-phase factorizations of P(z). This is why in
step (ii) above the usual approach is to look for either minimum phase or near

linear-phase factorizations of P(z).
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CQF filter banks

Example 9.7 Design a perfect reconstruction filter bank for which the lowpass analysis

filter is given by:

Hz)=—z2 342242z " +1 (171)

Solution

® In this example there is no particular constraint imposed to the highpass analysis

filters, so that we can look for a CQF design.

e The CQF design is only possible if equations (163) and (166) are valid. Since

HizH(z™") = (—z 24z +z "+ 1) (-2 +2°+2z4+1)
= P 4z444721 23 (172)

we have that

H(z)H(z™ ") + H(—z)H(—-z" ") = 8 (173)
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CQF filter banks

e Therefore, if we choose

1
Ho(z) = zH(z) (174)

we have that Ho(z)Ho(z7 ") + Ho(—2z)Ho(—2z"") = 2, and a CQF design with
Ho (z) equal to its lowpass analysis filter is possible. For this choice of Hp(z), the
order of the CQF bankis N = 3.
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CQF filter banks

e Supposing an overall delay of 2ZA 4+ 1 = 3 samples, the filter bank becomes, from
equations (161), (167), and (168),

ZH(Z)

—7z3Ho(—z"1)

153

(—z 3 +z2+z 1 +1)
(—z 3 +z72—2z"1-1)
(z34+z2+2z71—1)

(—z3—z2+z 1 —1)

N — N —= N —= N —

\

> (175)
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CQF filter banks

e An alternative way of designing a CQF filter bank is using the fact that the analysis

polyphase matrix is paraunitary.

e Using Ho(z) and Hq (z) from equation (175), we see that, from equation (121),

(272 +1)
(~27% +1)
(272 1)

(~272 1)

N — N — N — N —

154

\

> (176)
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CQF filter banks

e Then the analysis polyphase matrix E(z) is

£(2) 11 14+2z7" ] —z! 177
z) = =
21 J4z" -1z
such that
T 1+ —1 +
() ) = | TE TR 178)
211z —1—2
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CQF filter banks

e Therefore,

14+2z —1+2z

v B ] _1—|—Z_1 1 —2z]
E* (") DE(z) = 1
l—z —1—z| |-1+z1 —1-z71
1 0
= (179)
0 1

and the matrix E(z) is paraunitary, which implies that it is possible to have a CQF

filter with the given analysis filters.

e From equation (118)
R(z) =z 2E ' (2) (180)

where A = 1, since the overall delay (2A + 1) in this example was chosen to be

equal to the filter order N = 3.
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CQF filter banks

e Thus, the paraunitarity of E(z) implies that

. 1 lz7"+1 —z7 1 +1
R(z) =z 'E* ((z") ") = = (181)
N P L e
® The synthesis filters are
GO(Z) _ RT(ZZ) Z_]
G1(z) 1
] 272+ 1 z7% —1 771
2027241 —z2-1] | 1
1|z 4z 182,
2| 273 224,71 1




-4 CAMBRIDGE

Diniz, da Silva and Netto “§7 UNIVERSITY PRESS

Block transforms

e Perhaps the most popular example of M-band perfect reconstruction filter banks is

given by the block transforms.

e For instance, the discrete cosine transform (DCT) does essentially the same job as a

filter bank: It divides a signal into several frequency components.

e The main difference is that, given a length-N signal, the DCT divides it into N

frequency channels, whereas a filter bank divides it into M channels, with M < N.

e In many applications, one wants to divide a length-N signal into J blocks, each

having length M, and separately apply the transform to each one.

e This is done, for example, in the MPEG2 standard employed in digital video

transmission.
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Block transforms

e In it, instead of transmitting the individual pixels of a video sequence, each frame is
first divided into 8 X & blocks. Then a two-dimensional DCT is applied to each block,

and the DCT coefficients are transmitted instead.

e Consider asignal x(n), forn =0,1,...,(N — 1), divided into ] blocks Bj;, with
j=0,1,...,(J — 1), each of size M. Block Bj then consists of the signal x; (m),
given by

x;(m) =x(jM +m) (183)

for j=0,1,...,(J—1)and m=0,1,...,(M —1).
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Block transforms

x(0) xj (0) =x(jM) X(N —1)

xj (m) = x(jM + m)

Figure 29: Division of a length-N signal into ] non-overlapping blocks of length M.
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e Suppose thaty;(k),for k =0,1,..., (M —T)and j =0,1,...,(J —1),isthe

transform of a block x; (m), where the direct and inverse transforms are described

by
M—1
(k)= Y crlm)x;(m) (184)
m=0
M—1
x;j(m) =Y ci(my;(k) (185)
k=0
where ci (m), for m =0,1,..., (M — 1), is the kth basis function of the

transform, or, alternatively, the kth row of the transform matrix.

e We can then regroup the transforms of the blocks sequentially according to k, that is,

group all the y; (0), all the y; (1), and so on.
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Block transforms
e This is equivalent to creating M signals uy (j) = uj(k),for j =0,1,...,(J—1)

and k=0,1,...,(M—1).

e Since x;(m) = x(Mj + m), from equations (184) and (185), we have that

Z ck(m)x(Mj + m) (186)

x(Mj + m) Z Cr(m (187)
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Block transforms

e We can then interpret uy (j) as the convolution, sampled at the points Mj, of x(m)
with ¢ (—m). This is the same as filtering x(m.) with a filter of impulse response

cx(—m), and decimating its output by M.

e If we define ul(j) (j) as the signal Uy (j) interpolated by M, we have that

W (Mj+n)=0,for n=1,2,...,(M—1). This implies that
M—1 .
ci(mu() = Y cplm—n” (Mj+n) (188)
n=0

e Such an expression can be interpreted as ¢} (m)uy (j) being the result of

interpolating uk (j) by M, and filtering it with a filter of impulse response ¢y (m).
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Block transforms

e Substituting equation (188) in equation (187), we arrive at the following expression:

M—1M-—1
x(Mj 4+ m) = Z Z Cr(m—mn) ](g)(Mj—l—n) (189)
k=0 n=0

e A block transform is equivalent to a perfect reconstruction filter bank having the
impulse responses of band k analysis and synthesis filters equal to cx (—m ) and

cy (m), respectively.

164



Diniz, da Silva and Netto P UNIVERS IR

Block transforms

L [[m%0=%0 o
- u,0)=y @ :
- c,(-1) l M T M ci(n) e
CM_l(_n) l/ M u M—l(j) = y] (M-1) T M C I\*;l_l(n)

Figure 30: Interpretation of direct and inverse block transforms as a perfect reconstruction
filter bank.
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Block transforms

Example 9.8 The coefficients of the length-M DCT are given by

n(2m+ 1)k B
M ], form=01,...(M—1) (190)

crx(m) = (k) cos [

where & (0) = 4/ 1M and (k) = % for k=1,2,...,(M — 1). Plot the impulse
response and the magnitude response of the analysis filters corresponding to the

length-10 DCT. In addition, determine whether the filter bank has linear phase or not.

Solution

e As can be seen from Figure 30, the impulse responses hy (1) of the analysis filters
for the length-10 DCT filter bank are given by

hx(m) = cx(—m) = «(k) cos [T[“ ;OZn)k] , fork,n=0,1,...,9 (191)
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Block transforms

e These impulse responses are depicted in Figure 31 for each band k, and the

corresponding magnitude responses are depicted in Figure 32.

e Also, from equation (191), we can see that cx (m) = (—1)*ck (9 — m), and

therefore the filter bank has linear phase.

e This also implies that the magnitude responses of the analysis and synthesis filters

are the same.
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band 0 band 1
|
band 2 band 3
W
band 4 band 5
‘\
band 6 band 7
band 8 band 9

Figure 31: Impulse responses of the filters of the 10-band DCT.
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Figure 32: Magnitude responses of the filters of the 10-band DCT.

band 8
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Block transforms

e An alternative way to describe the block transforms as filter banks is to redraw them

as depicted in Figure 33.
e Note that in this case the M-sample block slides along the signal.

e However, since the transform is computed for non-overlapping blocks, then the

outputs of the analysis bank of

e Figure 33 should be decimated by M. This yields the representation of the direct
and inverse transforms as the causal filter bank in Figure 34 (note that there is a

delay of (M — 1) samples in this causal implementation of the transform).
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Block transforms

X(n) ——» — X(N)
Z'y
x(n—l) > Unitary —> Xl(n)
Z'Y  Transforn

Z* I
x(n—M+1)L > Xya(N)

Figure 33: Unitary transform analysis filter bank.
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Block transforms

Analysis Synthesis
m) = y,(0
X s MM IO T,
Z_lv v 7!
u,(m) = y,(1
X(n-1) > T [ vM (M) = % 2ﬂ\/| —
Z'Y YZ
z" o i
x(n—M+1)*—> —>vM h-AM)=M Yaml—» i’ y(n) =

Figure 34: Unitary transform filter bank.
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Block transforms

e By referring to Figure 8b, we see that the transform matrix T corresponds to the

polyphase matrices as follows:

(192)

e \We conclude that the polyphase components of the filter bank corresponding to a

signal transformation are constant.
e Note that the transform matrix T is such that T, = cx (M — 1T — m).
e Then, we have that

Exm(zM) = cx(M—1—m)

(193)
Rmk(zM) = cf(M—1—m)
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Block transforms

e Thus, from equations (1) and (2), we conclude that

hik(m) = ¢ cM—1—m)

K‘

(194)
(m)

=~ %

gr(m) = c

e Note that in the above equation, the analysis bank is delayed by (M — 1) samples
in comparison with the one shown in Figure 30. This explains the delay of (M — 1)

samples in Figure 34.
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Cosine-modulated filter banks

e The cosine-modulated filter banks (CMFB) are an attractive choice for the design and
implementation of filter banks with a large number of sub-bands. Their main features

are:

— Simple design procedure, consisting of generating a lowpass prototype whose
impulse response satisfies some constraints required to achieve perfect

reconstruction.

— Low cost of implementation measured in terms of multiplication count, since the
resulting analysis and synthesis filter banks rely on a type of DCT, which is
amenable to fast implementation and can share the prototype implementation

cost with each sub-filter.
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Cosine-modulated filter banks

e In the (CMFB) design, we begin by finding a linear-phase prototype lowpass filter
H(z) of order N, with passband edge w,, = (537 — ) and stopband edge
W = (537 + P), where 2p is the width of the transition band.

e We assume that the length N + 1 is an even multiple of the number M of
sub-bands, thatis, N = (2LM — 1). Although the actual length of the prototype

can be arbitrary, this assumption greatly simplifies our analysis.
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Cosine-modulated filter banks

e Given the prototype filter, we can generate cosine-modulated versions of it in order to

obtain the analysis and synthesis filter banks as follows:

i Yy N T
m) = 2h(n)cos | 2m+ D)= (n— NV - e
gdmin) = ncos_m ZMn 5 4_ (196)
forn=0,1,...,Nand m=0,1,...,(M —1),with N = (2LM — 1).
e The term that multiplies h(1) is related to the (m, n) entry cy » of an
(M x 2LM) DCT-type matrix C, given by
=2 (2m+1) T n—N +(—1)mﬂ 197
Cm,n = 2cos |[(2m IV > 1 (197)

177



B CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Cosine-modulated filter banks

e The prototype filter can be decomposed into 2M polyphase components as follows

L—12M—-1 . 2M—1 .
Hiz)=) > h@2WM+jz MI = % 27E(z*M)  (98)
1=0 j=0 §=0

where E;(z) = lL:_(; h(2IM + j)z~! are the polyphase components of H(z).

e With this formulation, the analysis filter bank can be described as

I
(@)
3
N
<
3
=
N
—
<
_|_
~
N
<
3
=
©
L
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Cosine-modulated filter banks

e This expression can be further simplified, if we explore the following property:

T N
oS {(2m+ 1)m [(n+ZkM) — 7] + (I)}
— (—=1)*cos (2m+1)i TL—E + ¢ (200)
B 2M 2
e Which leads to
Cmni2km = (=) Cmn (201)
e Substituting j for n, and 1 for k, we get
Cmyjt2im = (=1 em; (202)
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Cosine-modulated filter banks

e With this relation, and after some manipulation, we can rewrite equation (199) as

2M—1 L—1 2M—1
> cmiz ) (-1'h(2IM4)z M = Z Cm,jz  Ej(—22M)
j=0 1=0 y
(203)
e \Which can be rewritten as
Ho(z) Eo(—2z*M)
H;(z) 2z TEq (—z*M)
e(z) = | = [01 Cz} | (204)
Hm-—1(z) 2z BM=UE g (—22M)

where Cy and C, are M X M matrices whose (m, j) elements are ¢, j and

Cm. j+M., respectively, for m,j =0,1,..., (M —1).
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e Definingd(z) =[1 z=! ... z7M+1]T,
_Eo( ZZM) 0 ]
Eq (_ZZM) d(Z)
e(z) =[c1 | LMd(Z)]
| 0  Exm_1(—2z*M)]
( _Eo( ZZM) 0 ]
Eq(—2z*M)
=4 Cq
\ | 0 EM—1 (_ZZM)_
(Eam (—2z2™M) 0 1)
Em 41 (—ZZM)
+ 2z Mc, _ > d(z)
i 0 Eom_1(—2z*M)] )
=£e(zM)d(z) (205)
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Cosine-modulated filter banks

e To achieve perfect reconstruction in a filter bank with M bands, we should have
E(z)R(z) = R(2)E(z) = 1272,

e |t is well known that the polyphase matrix of the analysis filter bank can be designed
to be paraunitary or lossless, that is, ET(z~ ' )E(z) = I, where | is an identity matrix

of dimension M, supposing that the filter-bank coefficients are real.

® In this case, the synthesis filters can be easily obtained from the analysis filter bank

using either equation (196) or

R(z) =z 2E '(2) =2z 2E"(z7 1) (206)
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Cosine-modulated filter banks

e It only remains to show how the prototype filter can be constrained so that the

polyphase matrix of the analysis filter bank becomes paraunitary.

® The desired result is the following:

Property The polyphase matrix of the analysis filter bank becomes paraunitary, for a

real coefficient prototype filter, if and only if

1
Ei(z E(z) + Ejrmlz DEjimlz) = M (207)

for j =0,1,...,(M—1).

e If the prototype filter has linear phase, these constraints can be reduced by half,

because they are required only for j = 0,1, ..., MTq in case M is odd, and for
] :O,1,...,% — 1, in case M is even.
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Cosine-modulated filter banks

e QOutline

We need the following properties related to the matrices C1 and C»:

clcy =2M[+ (=) 1] (208)
clcy, =2M[I— (1)t 1] (209)
CiCz; =CjC1 =0 (210)

where | is the identity matrix, J is the reverse identity matrix, and O is a matrix with all

elements equal to zero.
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Cosine-modulated filter banks

e With equations (208)—(210), it follows

E(z” ")E(z) =

(Eo(—2z ) 0 | (Eo(—27) 0
Eq(—2z"7) ) Eq(—2%)
i 0 Em_1(—z?)] i 0 Em_1(—2z7)]
(Em(—2z2) 0 | (Em (—22) 0 |
EM+1(_Z_2) Emi1(—2z7)
+ chco
i 0 EZM—1(_272)_ i 0 EZM—1(_ZZ)_
(211)
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Cosine-modulated filter banks

e Since the prototype is a linear-phase filter, it can be shown that

Eo(—z72) 0 | [Eo(=22) o '
Eq(—z %) Eq(—2z7)
J
] 0 Em-—1 (—Z_z)_ i 0 Em-—1(—2z%)]
Em(—z2) 0 1 [Em(=2?) 0 '
Emt1(—2z7) Emi1(—2z°)
— J
I 0  Eamoa(—z%)] | 0  Eam-i1(—2%)
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Cosine-modulated filter banks

e This result allows some simplification, after we apply the expressions for C§C1 and
C}C2, yielding

([Eq(—2z2) 0 1 [Eo(—22) 0
E1(—z*2) E1(—22)
T

E 271)E(z):2M<

0 EM_1(*ZZ)-

Emat(—2%)

2y] L

0 Eom—1(—z" 0 Eopm_1(—22)

If the matrix above is equal to the identity matrix, we achieve perfect reconstruction.

e This is equivalent to requiring that polyphase components of the prototype filter are

pairwise power complementary.
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Cosine-modulated filter banks

e Equation (204) suggests the structure of Figure 35 for the implementation of the

CMFB.
x(n) . im E (-2 2
Z—l
| m E,(-2%)
7t c I
——=>u (M)
[ m E, (7 ——=u (m)
Z—l
iy E,2)
Z—l
‘1’ M B2 R —u, , (M
1 C ;
2
‘1’ M Enf?)

Figure 35: Cosine-modulated filter bank.
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Cosine-modulated filter banks

e This structure can be implemented using the DCT-IV, which is represented by the

C']\\fl matrix, by noting that the matrices C7 and C, can be expressed as follows:

1 = VM(=1)zch (1 - ) (214)

Cs = —vVM(=1)2cV (14 3) (215)
e For L even, and

ci =vVM(=1) 7 cN(+13) (216)

co =vVM(=1) 7 cN(-1) (217)

e For [ odd, where

2 1 T
{Can—\/Mcos [(Zm—l—ﬂ(n—l—z) m] (218)
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Cosine-modulated filter banks

e Equations (214)—(217) can be put in the form:
ci = VM= — (=)t (219)
Cs = —vVM(=DLZIN[(=1)H + 3] (220)
where ij represents the largest integer smaller than or equal to X.

e From equation (204) and the above equations, the structure in Figure 36 follows.

Such a structure can benefit from the fast implementation algorithms for the DCT-IV.
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Cosine-modulated filter banks

=]
2
x(n) ) M \1, M EO(—Zz)
Z—l
{m E,2%)
7t ) Y
= u,m)
Y B2 ) —> u,(m)
St DCT-IV
{m E, 29
=
Y B2 9 T Uy ™)
Z 313
Y™ SV o 9

Figure 36: Implementation of the cosine-modulated filter bank using the DCT-IV.

191



B CAMBRIDGE

Diniz, da Silva and Netto P8 UNIVERSITY PRESS

The optimization problem in the design of cosine-modulated filter
banks

e The procedure to design the prototype filter requires the definition of an appropriate
objective function imposing not only the frequency selectivity shape but also the

perfect reconstruction constraints.

® Since the prototype filter of a cosine-modulated filter bank requires the design of a
lowpass filter, the overall objective function should include a term defined as

mhin{Ep(w)} = min {

h

J Huéwﬂpdw} (221)

(OX

where H(ej‘”) Is the frequency response of the prototype filter, h is the prototype
filter coefficient vector, (), is the stopband frequency edge, and usually p = 2 or

P = o0.
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The optimization problem in the design of cosine-modulated filter
banks

e The prototype filter coefficients should be designed by minimizing a modified
objective function ﬁp (w), that combines the original objective function E, (w) with

a weighted set of constraints, described by
E,(w) =E,(w) + ATc(h) (222)

e Where A is the vector of constraint weights and c(h) is the vector enforcing the
constraints.
e The vectors are defined as
A = [AoA ... 7\NC_1]T (223)

c(h) = lcolh)ci(h)...eno—1(N)]T (224)

where N is the total number of constraints.
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The optimization problem in the design of cosine-modulated filter
banks

e The constraints of equation (207) can be described in the time domain using a
MATLAB notation as follows

1
conv (€j,€;J) + conv (€j+M,6j+MJ)—mdt (1) =0 (225)

for j =0,1,...,(M—1).

e Where /e\j is a row vector containing the L = g—;d coefficients of the polyphase
component E;(z), J is the antidiagonal matrix, and dt (1) in the present discussion
represents a sequence in MATLAB with (L — 1) zeros followed by a unit impulse at

i = 0and (L — 1) additional zeros, that is
dt (i) = [zeros (L—1,1); 1; zeros (L—1,1)]; (226)

® This set of constraints should be incorporated in the optimization process in the

appropriate manner.
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The optimization problem in the design of cosine-modulated filter
banks

e This optimization problem can be solved using quadratic programming (QP) which
may require information on the first and second derivatives of E, (w) to simplify its

implementation and speed the convergence.

e The constraint weights should be chosen beforehand when using a QP optimization

method.

e Another solution is to employ a sequential quadratic programming (SQP) algorithm,
which optimally sets the weights of the constraints based on the method of Lagrange

multipliers with the Kuhn-Tucker conditions.
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The optimization problem in the design of cosine-modulated filter
banks

Example 9.9 Design a filter bank with M. = 10 sub-bands using the cosine-modulated
method with L = 3.

Solution

e For the prototype linear-phase design, we employ the least-squares design method,
using as the objective the minimization of the filter stopband energy. This has been
obtained by sampling the error function only over the frequencies w; > wy,. The
perfect reconstruction restrictions in equations (207) and (225) have been dealt with

using the method.

e The length of the resulting prototype filteris (N + 1) = 2LM = 60, and the
minimum stopband attenuation obtained was A, =~ 40 dB, as shown in Figure 37.

Its impulse response is depicted in Figure 38.
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The optimization problem in the design of cosine-modulated filter
banks

e Let us verify a subset of the constraints of equation (225) for the case j = 0, where

h(0) h(20) h(40)]

[
:[ 8.1483E—04 2.5850E—02 2.0509E—02] (227)
— [h(10) h(30) h(50)]
— [—4.0655E—03 6.2266E—02 — 4.1105E—03] (228)
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The optimization problem in the design of cosine-modulated filter
banks

e Which yield

conv (€y,€pd) 4+ conv (€19,8103) =10 0 0.05 0 0]"
1

= mdt (1)

— 0.05dt (i) (229)

which is the expected result.
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Cosine-modulated filter banks

I
N
(@)

T

!

Magnitude response [dB]
@
o

0 0.5 1 1.5 2 2.5 3
Frequency [rad/sample]

Figure 37: Magnitude response of the prototype filter for cosine-modulated filter bank.
199



ity CAMBRIDGE

Diniz, da Silva and Netto %8 UNIVERSITY PRESS

Cosine-modulated filter banks

Figure 38: Impulse response of the prototype filter.
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Figure 39: Impulse responses, analysis filters of a 10-band CMFB length 60.
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Figure 40: Magnitude responses of the analysis filters of a 10-band cosine-modulated filter
bank of length 60.
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Lapped transforms

e The lapped orthogonal transforms (LOT) were originally proposed to be block

transforms whose basis functions extended beyond the block boundaries.

e |ts main goal was to reduce blocking effects, usually present under quantization of

the block transform coefficients.
e Blocking effects are discontinuities that appear across the block boundaries.

e They occur because each block is transformed and quantized independently of the

others, and this type of distortion is particularly annoying in images.

e LOT-based filter banks are very attractive because they lead to linear-phase analysis

filters and have fast implementation.
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Lapped transforms

e The LOT-based filter banks are members of the family of paraunitary FIR perfect

reconstruction filter banks with linear phase.
e The term LOT applies to the cases where the analysis filters have length 2M.

e Generalizations of the LOT to longer analysis and synthesis filters (length LM) are
available. They are known as the extended lapped transforms (ELT) and the
generalized LOT (GenLOT).

e The ELT is a cosine-modulated filter bank and does not produce linear-phase

analysis filters.

e The GenLOT is a good choice when long analysis filters with high selectivity are

required together with linear phase.
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Lapped transforms

e The LOT analysis filters are given by
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Lapped transforms

e Or

Hm-1(2)]

where C; and C, are M X M DCT-type matrices, and E(z) is the polyphase matrix

of the analysis filter bank. Note that if 61 is applied to a length-M block, then due to

M

the term z~ 7", matrix 62 is applied to the previous length-M block.
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Lapped transforms

e |tis as if two adjacent blocks are needed to compute a transform of a given block.
e There is an overlap between blocks in the computation of this transform.

e The perfect reconstruction condition with paraunitary polyphase matrices is

generated if
R(z) =z 2 "(z) =2z 2E"(z ") (232)
Property

The polyphase matrix of the analysis filter bank becomes paraunitary, for a real

coefficient prototype filter, if the following conditions are satisfied:

Ci1C; + G286, =1 (233)
A oAT A AT
C] CZ — C2C1 =0 (234)

207



8- CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Lapped transforms

e Proof: From equation (231), we have that
E(z) =C;+2z'C, (235)

e Perfect reconstruction requires that E(z)ET(z~!) = I. Therefore,

AN

(61 + 2_162)(61 + 265) 61C¥ + 6265 + 26165 + 2_1626¥ =1 (236)

and then equations (233) and (234) immediately follow.
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Lapped transforms

e The rows of C = {61 62] are orthogonal.

e The rows of 61 are orthogonal to the rows of 62, which is the same as saying that

the overlapping tails of the basis functions of the LOT are orthogonal.

e A simple construction for the matrices above, based on the DCT, and leading to

linear-phase filters, results from choosing

A ] Ce T CO
Ci == (237)
2 lc.—c,
A ] (Ce —Co)J 1 Ce +Co
C, = 5 _ > (238)
—(Ce — Co)J —Ce — Co
where C. and C, are % X M matrices consisting of the even and odd DCT basis

of length M..
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Lapped transforms

e Observethat C.J = C. and C,J = —C,, because the even basis functions are

symmetric and the odd ones are antisymmetric.

® The choice satisfies the relations (233) and (234). With this, we can build an initial

LOT whose polyphase matrix, as in equation (235), is given by

Ce —Co +2 1(Ce —Cg)J
Ce - CO - 2—1 (Ce - Co)\J
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Lapped transforms

® This expression suggests the structure of Figure 41 for the implementation of the
LOT filter bank.

e This structure consists of the implementation of the polyphase components of the
prototype filter using a DCT-based matrix, followed by several orthogonal matrices

To, T1,.. . T%—z’ which are discussed next.

e Actually, we can pre-multiply the right-hand term in equation (239) by an orthogonal

matrix L1, and still keep the perfect reconstruction conditions.

e The polyphase matrix is then given by

E(z) = =L (240)
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Lapped transforms

N[

x(n) Y - Uy (m) =y,,(0)
WY
{M - \X/ u,(m) =y, (1)

z M W u (m=y &9
7! DCT W )
: M,

N[

N = m o=

N[~

—u (M =y

N[

Y —u (m=y &)

o
T
N

N

|
[
N = oo

z ‘l’M

= u,,_(m) =y, (M-1)

Figure 41: Implementation of the lapped orthogonal transform.
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Lapped transforms

e The basic construction of the LOT presented equivalent to the one proposed in that

utilizes a block transform formulation to generate lapped transforms.

e The basic construction of the LOT presented equivalent to the one Note that in the
block transform formulation, equation (230) is equivalent to a block transform whose

. . AN AY
transform matrix L o7 IS equal to [C1 Cz} :

e Since the transform matrix L, o7 has dimensions M x 2M, in order to compute the
transform coefficients y; (k) of a block Bj, one needs the samples x; (m) and

Xj+1(m) of the blocks B; and Bj_ 1, respectively.
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Lapped transforms

e The term “lapped transform” comes from the fact that the block Bj+1 IS needed in
the computation of both y; (k) and yj41(k), that is, the transforms of the two blocks

overlap.
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e This is expressed formally by the following equation:

X)(O)
[ y;(0) ] :
. L Xj(M—])
3 T x(0)
yj (M — 1) :
X]+1(M_1)_
[ x;(0) |
_ [6 6] x; (M — 1)
T xa00)
_X)+1(M_])_
i x; (0) ] i xj+1(0) ]
= C +C> (241)
_X)(M_1)_ X]+1(M_1)_
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Lapped transforms

cos(el)

x(1) = y(i)

x(i + 1) = y(i+1)

Figure 42: Implementation of multiplication by Tj;.
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Lapped transforms

e Malvar starts with an orthogonal matrix based on the DCT having the following form:

1 Ce T Co (Ce T CO)‘J
Lo = =< (242)
2 Ce _Co _(Ce _CO)‘J

e The first half of the basis functions are symmetric, whereas the second half are

antisymmetric, thus keeping the phase linear, as desired.
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Lapped transforms

e The choice of Ly based on the DCT is the key to generating a fast implementation

algorithm.

e Starting with Ly, we can generate a family of more selective analysis filters in the

following form:
Lor = [&1 &2 =it (243)

where the matrix L1 should be orthogonal and should also be amenable to fast

implementation.
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Lapped transforms

e Usually, the matrix L is of the form

| O
L1 = (244)
0O L»

where L > is a square matrix of dimension % consisting of a set of plane rotations.

e More specifically,

Lo :T%_Z...T1To (245)
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Lapped transforms

e \Where
L 0 0
Ti= (0 Y(6;) 0 (246)
_O 0 I%—Z—l_
e And i i
cos0; —sinB;
Y(0;) = (247)
sin 0; cos 03

The rotation angles 0; are submitted to optimization aimed at maximizing the coding
gain, when using the filter bank in sub-band coders, or at improving the selectivity of

the analysis and synthesis filters.
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Lapped transforms

e The rows of matrix L, ot are not organized in frequency order — in fact, the first %
rows correspond to the even bands, and the last % rows correspond to the odd

bands.

e A simple fast LOT implementation not allowing any type of optimization consists of,
instead of implementing L, as a cascade of rotations T, implementing L, as a
cascade of square matrices of dimension M = % comprised of DCTs Type Il and

Type IV.
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Lapped transforms

® The elements of which are

Cln = ocm(l)\/%cos [(Zl + 1)% (n)] (248)

Cln = \/%cos [(21 + 1)% (n + %)] (249)

respectively, where oty (1) = 1/v/2,forl =0, or L = M, and oy (1) =1

otherwise. The implementation is fast because the DCTs of Types Il and IV have fast

e And

algorithms.
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Lapped transforms

Example 9.10 Design a filter bank with Ml = 10 sub-bands using the fast LOT.

Solution

e The length of the analysis and synthesis filters should be (N + 1) = 2M = 20.
Therefore, we use as a basis for this design the DCT matrix of order M = 10,

whose basis functions are given by equation (190) in Example 166 as

n(2Zm+ 1)k
20 ]

cr(m) = (k) cos [ (250)

where & (0) = Z]—Oandoc(k): ﬂ—o,fork:1,2,...,9
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Lapped transforms

and C, are

e Therefore, the % X M matrice
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Lapped transforms

e For the fast LOT design, we use a factorable L1 matrix composed of a cascade of a
C'" transform and a transposed C'" transform on its lower part, to allow fast

implementation, that is,

| O | O | 0
L1 = — (253)

0 L, o c"| o cVv

where C" and C" are square matrices of dimension % = 5.
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Lapped transforms

e The impulse responses of the resulting analysis filters, given by equation (230), with
61 and 62 as defined in equations (237) and (238), respectively, are shown in

Figure 43. The coefficients of the analysis filters are given by the rows of L o7, which
is defined in equation (243).

226



Diniz, da Silva and Netto

8- CAMBRIDGE

“B% UNIVERSITY PRESS

band O band 1
band 2 band 3
W,
band 4 band 5
SIRIRIRIN ‘\”\‘ ‘\H\‘
band 6 band 7
Ll i
e R
band 8 band 9

Figure 43: Impulse responses of the filters of a 10-band fast LOT.
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Figure 44: Magnitude responses of the filters of a 10-band fast LOT.
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Fast algorithms and biorthogonal LOT

e \We now present a general construction of a fast algorithm for the LOT. Defining two

matrices 63 and 64 such that

61 = 6364 (254)
C, = (1—C€3)C4 (255)

e |t is straightforward to show using equation (235) that the polyphase components of

the analysis filter can be written as

E(z) =[C3 +2z '(1—C3)1C4 (256)
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Fast algorithms and biorthogonal LOT

e The initial solution for the LOT matrix discussed previously can be analyzed in the

light of this general formulation.

e The matrices of the polyphase description above corresponding to the LOT matrix of

equation (242) are given by

C N (257)
3 — 3
20
A 1 Ce C0 ‘l' (Ce T CO)‘J Ce
&y = - — (258)
2 |Ce —Co — (Ce — Co)J —C,
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Fast algorithms and biorthogonal LOT

x(n) yM
- \

27t 64 63 . .
. . ' U (M)
-1
2 Y M — —= u,(m)
\
— U 1(m)
-1

L.
¥
\

Figure 45: Implementation of the lapped orthogonal transform according to the general

formulation in equation (256).
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Fast algorithms and biorthogonal LOT

® As long there are fast implementation algorithms for 63 and 64, the LOT will have a
fast algorithm.

e Biorthogonal lapped transforms can be constructed using the formulation of
equation (256), if (/33 is chosen such that 6363 = 63, matrix 64 is nonsingular and

nonorthogonal, and the polyphase matrix R(z) is such that

R(z) =€, 'z '€ + (1 - &3)] (259)
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Fast algorithms and biorthogonal LOT

Example 9.11 Show the 2-band lapped-transform structure that realizes the filter bank

with lowpass analysis filter
Ho(z) =—2 3 +327%243z " —1 (260)

specifying the value of each coefficient in that structure. Determine the corresponding
highpass analysis filter.

Solution

e Since M = 2, the DCT matrix has the following form

et o o
= V2 V2 = — (261)
Co cos( 7 ) cos(%T”) V2 11
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Fast algorithms and biorthogonal LOT

e Such that

— | L 1 |- - | L __1
ce=|% H =% %] (262)
e Since the lapped-transform filter bank has two bands, and the desired structure must

have linear phase, then there is no nontrivial orthogonal solution for this particular
case, thatis, E'(z~ 1) A E~ 1 (z).
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Fast algorithms and biorthogonal LOT

e One option is to look for biorthogonal solutions as given by equations (256)

and (259), whereby 64 should be chosen as a general nonorthogonal 2 X 2 matrix.

e Another option is to use an orthogonal 64 and use a nonorthogonal matrix P in the

input of Figure 45 in order to achieve perfect reconstruction.
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Fast algorithms and biorthogonal LOT

® In this case, we can choose 63 and 64 according to equations (257) and (258), that

IS
C o (263)
3 — 5
2111
® ] b (264)
4 — —=
V2 | 217
e Such that
C3C3 = — = C3 (265)
412 2
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Fast algorithms and biorthogonal LOT

® In order to achieve a biorthogonal solution, matrix

oo Do

P = P (266)
P1o P11

is placed before 64 in the block diagram of the analysis filter, post-multiplying 64 as

follows:

E(z) = [63 21— 63)] A

_|_

11 PR I R . ] 1 Poo Do
= = +z = —

211 1 2| —1 1 V2 | -1 1 Pio P11
1 (S R B I R
e — + z

22 0o 2 -2 0 Pio P
_ L_ z~! 1][ﬁoo ﬁo1]

—z7 1 Pio P11
[ Pooz ' +Pio Porz ' + P11 ]

(267)
| —Pooz ' + P10 —Porz ' +P11

237



B CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Fast algorithms and biorthogonal LOT

e Since the polyphase components of Hy(z) should be Ego(z) = —1 + 3z~ and

Eo1(z) =3 — 771 , the above equation implies that

1 _ Pooz ' + P10 Porz7! +Pn _ _ 14320 3oz 268)
V2 ] —Pooz '+ P10 —Porz ' + P || FEwlz)  Eailz)
e So that by choosing oo = 3v/2 = P11 and Po1 = —V'2 = P10, it follows that
Eio(z) =—1—=3z"1andEq1(2) =3+2z"".
® As result, the transfer function of the highpass analysis filter is given by
Hi(z) =—-1+43z"" 322423 (269)

238



wieg CAMBRIDGE

Diniz, da Silva and Netto P GVERSEREENE

Lapped transform implementation.

The resulting structure is depicted in Figure 46.

3v/2 1/v/2 1/2

z(n) ——e—= 2 + ° >@—> uo(m)
V2 1//2 1/2 !
—1
’ —V2 1//2 1/2
- v2 L - >® -
' 3v/2 —1/V2 1/2 ) T uim)
Ee

%

Figure 46: Lapped transform implementation.
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Generalized LOT

e The generalized lapped transforms (GenLOT) can also be constructed if the
polyphase matrices are designed as follows

.
E(z) = [] 3, €35 +2z '(1—C35)] €4 (270)
5=1 | 0 L2 ;
L Ly ! 0
R(Z):6;1 r {[Z163,j‘|—(|—63,j)] [ 3.3 1]} (271)
=1 0 L2

e Biorthogonal GenLOTs are obtained if 63)5 is chosen such that 63)563)5 — 63)5.
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Generalized LOT

X(n) \LM —= sy —> = uo(m)
-1
z
\1[ M ——-> s g —> > u 2(|fn)
-1
z L 0 K1 KL
271 \|/ u m)
Im vt

Figure 47: Implementation of the GenLOT.
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Generalized LOT

e To obtain an orthogonal GenLOT it is further required that 6;64 =1, Lg ng,j =1,
and Lj 5La ;5 =I.

e If we choose (/33 and (/34 as in equations (257) and (258), we have a valid GenLOT
possessing a fast algorithm of the following form:

1

1 B — _
T (L3 ; 0 l+z7 ' 1 —z | 4
e(z) =[] b —1 1| ) ©e
51 0 L2 |l—2z I 1+2z 7l

L1y ol v o ][ ]\
S \2 o0 Lyl o~ o ozmh o =

)
)

1
[T x)és (272)

=L
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Generalized LOT

e If, in order to have a fast algorithm, we fix (/34 as in equation (258), the degrees of
freedom to design the filter bank are the choices of matrices L3 ; and L j, which are

constrained to real and orthogonal matrices, to allow a valid GenLOT.

e The effectiveness in terms of computational complexity is highly dependent on how

fast we can compute these matrices.

e Equation (272) suggests the structure of Figure 47 for the implementation of the
GenLOT filter bank. This structure consists of the implementation of the matrix Ly in
cascade with a set of similar building blocks denoted as Kj. The structure for the

implementation of each Kj is depicted in Figure 48.
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0]

1

xM_1 i (2)

Figure 48: Implementation of the building blocks K; of the GenLOT.

Generalized LOT

0.

1

W W Ls,j
— yM—l,j(Z)
2
Z—1
— — T Yy ,J.(Z)
2
-1
Z =
yMﬂJ( )
2, 2
-1
Z —
— yM—l,j(Z)
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Figure 49: Impulse responses of the analysis filters of the 10-band GenLOT of length 40.

245



CAMBRIDGE

Diniz, da Silva and Netto UNIVERSITY PRESS
i x/\ AN : ASVA
band O band 1
; ﬂm YV I f\/\/\
band 2 band 3

ﬂﬂﬂ Yo It mmm N
band 4 band 5
YA
band 6 band 7
s ﬂm Fopnpin o
band 8 band 9

Figure 50: Magnitude responses of the analysis filters of the 10-band GenLOT of length
40.
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Figure 51: Impulse responses of the analysis filters of the 8-band lapped biorthogonal

transform filter bank of length 32.
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Figure 52: Magnitude responses of the analysis filters of the 8-band lapped biorthogonal

transform filter bank of length 32.

248



Diniz, da Silva and Netto

8- CAMBRIDGE

@8’ UNIVERSITY PRESS

band O

band 2

1]
band 4

band 6

band 1

band 3
RN

band 5

band 7

Figure 53: Impulse responses of the synthesis filters of the 8-band lapped biorthogonal

transform filter bank of length 32.

249



CAMBRIDGE

Diniz, da Silva and Netto UNIVERSITY PRESS

T

= =

2

2

2

8

S -30 [\ 30 [\

2 -4

05 1 15 2 15

Frequency [rad/sample] ency 1 ]

g o S o

2 2

g0 £-10

g 20 8 20

g @

3 -30 3 -30]

€ =

g-40 &40

=0 05 1 15 2 25 3 s 05 1 15 2 25 3
Frequency [rad/sample] Frequency [rad/sample]

g o g o

3 3

g-10 § -1

8 20 8 20

@ 2

3 30 3 -30]

€ =

g 40 2 40

2 05 T 15 2z 25 3 3 05 T 2 25 3
Frequency [rad/sample] Frequency [rad/sample]

g o g o

] g

210 £-10

& H

& 20 o -20

: /\ ] ﬂ

5 -30 S -30

= g

2-40 2 4

H 05 T 15 2 25 3 270 05 1 15 2 25 3
Frequency [rad/sample] Frequency [rad/sample]

band 6 band 7

Figure 54: Magnitude responses of the synthesis filters of the 8-band lapped biorthogonal

transform filter bank of length 32.
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Experiment 9.1:

e Here we will design a third order CQF filter bank. We start by designing the product

filter P(z) using a Hilbert transformer as in equation (170)

] Ohp .
P(z) = 5 (1 + > = JHh(—JZ)> (273)
e The impulse response of an ideal Hilbert transformer is
(
0, formn =0
h(n) = < [ (274)
— [T —=(=1)"], form #0
.\ 7N
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e Since the CQF filter bank should have order 3, then the product filter P(z) should

have order 6, and so should the Hilbert transformer.

e Applying a rectangular window to the ideal impulse response, the z transform of a

sixth order Hilbert transformer is

2 ] ]
Hi(z) == (-2 —z4+2 T4 2273 (275)
T 3 3

e \We can plot its magnitude response using the MATLAB commands
hh = (2/pi) =*[-1/3 0 -1 0 1 0 1/3];
[Hh,w]= fregz(hh):
plot(w,abs(Hh));
which yield Figure 55.
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14
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w [rad/sample]

Figure 55: Magnitude response of the order 6 Hilbert transformer from Experiment .1.
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e \We observe from Figure 55 that the magnitude response of the Hilbert transformer

has two maxima.

e \We can compute them in MATLAB using the command
maxHh = max(abs(Hh));
fregqmax = w(find(abs(Hh)==maxHh))/pi;
that gives for the maxima the value masHh = 1.2004 at the frequencies 7 and %Tﬂ'

e Alternatively, we can compute them analytically from Hy,(e'®) as

- 2 1 | | 1 .
Hh(elw) _ % (_geJBw _elw  giw §e13w>
4 (1 . | )
= —— | zsin3w +sinw (276)
7T \ 3
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e At the maxima, we should have

dH, (e!® 4]
n(e") S (cos 3w + cos w)

dw Tt
Ai
. _Ej (4cos3w—3cosw+cosw)
Ai
= —;Jcosw (4 cos” w — 2)
_ 0 (277)
e Then
p ( 7t
cosw:O w:E—l_kT[’ kEZ
< = i (278)
cosw = £—— w==x—+kmn, keZ
L 2 \ 4
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® Since,
H,(el2) = —% (%sin%+sin§>:_38_7jt X
H, (el %) = —% (%sin%—ksin%):_gg_\fj |

and thus we confirm that the maxima of [H, (e’ )| occurat w = % and w = =T,

having the value of 83%2 ~ 1.2004.
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e Since P(e!?) should be non-negative, we have that the value of 6% in

equation (273) should be such that

2

5 3 (280)

e With this value, the product filter P(z) becomes

Plz) = 1<8f—mh(—jz)>

2\ 3
o 4\/2 ] 1 3 : . y—1 1 -3
= 3= );[ [—g(—jZ) — (—jz) + (—jz) " + g(—JZ)
1 3 V2 -1 -3
= 3 (—z +3z4+4vV2+3z27" —2 ) (281)
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e However, for this product filter P(z), we have that

82,

P(z) + P(—2z) = (282)

e Since for the CQF filter bank we must have, from equation (166), that

P(z) + P(—2z) = 2, then the product filter must be normalized by 43%, yielding

P(z) = 4]\—5 (—23 +3z+4v2+3z71 — z—3) (283)
e The corresponding frequency response P(e!?’) can be plotted in MATLAB as follows
(note that, since P(z) is symmetric, then P(e!?) is real):
p = (/4 *sqgrt(2)) +[-1 0 3 4 =sqgrt(2) 3 0 -1];
[P,w]=freqz(p);
plot(w,abs(P));

as shown in Figure 56.
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2 .
1.8 /
161

14}

1.2}

P(e!?®)

0.8
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0.4F

0.2

e
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Figure 56: Plot of the frequency response of product filter P(e!®) from Experiment .1.
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e Now we must factorize P(z) into Ho(z)Ho(z71).

e One way to do that is to find the zeros of P(z) using the functions tf2zpk and
zplane from MATLAB
p = (1/(4 =sqrt(2))) *[-1 0 3 4 *sqgrt(2) 3 0 -1];
[zi pi k] = tf2zpk(p,1)
which indicate that we have a double zero at ej%ﬁ, another double zero at e_"%, a

zeroat (V2 + 1) andazeroat (V2 —1).
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T
1 - IR
Odouble zero |
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Figure 57: Zeros of the product filter P(z) from Experiment .1.
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e Hence, P(z) can be expressed as

P(z) = —#z Nz—e ) (z—e )2 (z2—V2—1)(z—V2+1)
(284)
e Grouping the complex conjugate poles together, we have
P(z) = ERELENE 3(22+V2z+1) (z—V2—1)(z—V2+1)
NG
= —4]\—521(1+\/Zz1—|—22)(zz+\/Zz+1)[1—(\/Z—|—1)z1](2—\/Z—|—1)
1—ﬂ z
= (T+V2z7  +272) (14+V2z2+22) [1—(V2+1) 2] <1+ )
4\& 2z z 22+z ( )z~ '] =3
V21 —1, -2 —1
— ﬁ(1+\f2z +z2 ) (1+V22+2) 1= (V2+ 1)z "1 = (1+v2)Z]

(285)
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e Since P(z) = Hy(z)Ho(z™ '), we can choose

Ho(z) = \/f\/_z] (T+V2z "+ 2790 - (V2+ 1)z 1]
— \/42\/_21 [1 —z ' (14+V2)z 2 — (1 + \/Z)z_3](286)
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e Supposing an overall delay of (2A + 1) = N = 3 samples, the highpass analysis,
lowpass synthesis, and highpass synthesis filters are, from equations (161), (167),
and (168),

\

Hi(z) = =z °Ho(~2z"")

Go(z) =z Ho(z™ ") > (287)

G1(z) = —Ho(—2)
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e Which correspond to a CQF filter bank described by

V21 ) ) )
Holz) =4/ =, [1—2 L (14+v2)z 2~ (1+2)z 3]
Hi(z) = \?\51 {—(1 +V2)+(1+V2)z7 ! =272 —z—3]
> (288)
V2 -1 S
Gole) = [ “om [T+ VD)~ (14 V2! — 272 4273
V21 B ) )
Gi(z) = VG [—1—7, "+ (1+vV2)z72— (1+V2)z 3} |
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e The magnitude responses of the lowpass and highpass filters for the analysis and
synthesis banks can be plotted using the MATLAB commands below.
c = sgrt((sqrt(2)-1)/(4 *sqrt(2)));
hO = c+[1 -1 -(1+sqrt(2)) -(1+sqgrt(2))];
[HO,w]= freqz(hO);
plot(w,abs(HO0)); hold;
hl = cx[-(1+sqgrt(2)) (1+sqgrt(2)) -1 -1];
[H1,w]= freqz(hl);
plot(w,abs(H1));
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15

Magnitude response

0 0.5 1 1.5 2 2.5 3 3.5
Frequency [rad/sample]

Figure 58: Magnitude responses of the lowpass and highpass filters of the analysis and

synthesis banks from Experiment .1: Hy(z) (solid line); H; (z) (dashed line).
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Experiment 9.2:

Design a filter bank with Ml = 10 sub-bands using the LOT.

e Since the LOT to be designed has M = 10, the matrix Ly can be built using
equation (242) with the matrices C. and C,. A MATLAB script to compute Ly is
C = dctmtx(10);

Ce = C([1:2:9],); Co = C([2:2:10],);
| = eye(10);J = fliplr(l);
LO = 0.5 #[Ce-Co (Ce-Co) =*J; Ce-Co -(Ce-Co) =,
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e To complete the design, we have to compute L, ot = L1Lo. Hence, we must find the
matrix L1, which is an orthogonal matrix as given in equation (245), where L is

determined by (% — 1) = 4 rotation angles 0;, fori = 0, 1, 2, 3 as follows:

L, =T3T2T1To (289)
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e Where
li 0] 0
Ti=1|0 v@) o |, 1=0,1,2,3 (290)
0 0 131 |
e And ) )
cos®; —sino;
Y(0;i) = (291)
sin 05 cos 0;
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e The MATLAB code to compute L ot given Lo and the rotation angles 6, 81, 05,
and O3 in a vector t is
function y = LOT(t,LO)
Y = zeros(2,2,3); T = zeros(5,5,3);L2 = eye(b);
for i1=1:4
Y(,:,1) = [cos(t(i), -sin(t(i)) ; sin(t()),
cos(t(i))];
T(,:,1) = [eye(i-1), zeros(i-1,2),
zeros(i-1,4-1);
zeros(2,i-1), Y(:,:,1), zeros(2,4-i);
zeros(4-i,i-1), zeros(4-1,2), eye(4-i)];
L2 = T(,:,1) *.2;

end;
L1 = [eye(5), zeros(5,5); zeros(5,5), L2];
y = L1+LO;
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e Therefore, these 4 rotation angles should be such that a certain optimization criterion

IS satisfied.
e |t can be the summation of the energy in the stopband of all bands.

® In this experiment we choose them such that the maximum energy compaction on
the transform coefficients is obtained, that is, most energy concentrates on the

smallest number of transform coefficients.

e |tis assumed that the input signal is an autoregressive (AR) process generated by

filtering a white noise with a first-order lowpass digital filter with a single pole at

z=0.9.
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e We have that if a WSS process {X} with autocorrelation Rx (n) is input to a linear

system with impulse response h(n ), then the autocorrelation Ry (1) at its output is

oo o0

Ry(n)= Y Y Rx(n—kh(k+r)h(r) (292)

k=—00 T=—00
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e Therefore, since the PSD of white noise is Rx (1) = d28(n), and the impulse
response of a stable digital filter with a pole at z = p is h(n) = p™u(n), we have
that the PSD of an AR process {W} with apole atz = p is

Rwin) = Y Y o%8(n—kh(k+1)h(r)
k=—00 T=—00
= o’ Z h(n 4 r)h(r) = o? Z p"t +71)p u(r)
T=——00 T=—00
_ O_an Z eru(n_I_ T)LL(T) _ O_an Z er
T=—00 r=max{—n,0}
5 pn+2 max{—n,0} o2 |
— — 293
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e Therefore, the autocorrelation of the output of the kth analysis filter hy (1), when an

AR process with a pole at z = p is input to it, from equations (292) and (293), is

oo (0.@)

Ry,m) = > Y Rwn—Uhe(l+r)h(r)

l=—00 T=—00

o0 oo

2
= X X et

l=—00 T=—

2 (0.@) oo

]ipz > ) oM (s)h(r) (294)

S=—O0 T=——00

e Consequently, its variance is

2 0 0
% =R (0 =77 3 5 o (s (295)

§=—00 T=—00
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e For a stationary process, its variance is equal to the variance of its decimated output.
Since the analysis filters have length M. = 20 and p = 0.9, we have that the

variance of the decimated output of the kth analysis filter is

o2 = 1_pZZZO9|S "y ()M (T) (296)

s=0r=0

e A good measure of the energy concentration at the output of an M-band orthogonal

filter bank is given by the coding gain

Mg
Aﬁ 2

G —

(297)
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e A MATLAB code for computing the coding gain of a given LOT matrix L, ot when the
AR pole is equal to rho is
function y = CG(Llot,rho)
sigma = zeros(1,10);
for k=1:10,
for s=1:20,
for r=1:20,
sigma(k) = sigma(k) +
rho”(abs(s-r)) * Llot(k,s) * Llot(k,r);
end,;
end,;
end,;
y = (sum(sigma.”2/10)/(prod(sigma.”2)"(1/10));
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e We should find the vectort = [0y, 81, 02, 03] that maximizes the coding gain, that
is, provides the maximum value of CG(LOT(t,L0),0.9)

e This can be done by using either the optimization routine fminsearch  or
fminunc from the MATLAB Optimization toolbox. The MATLAB code can be as
follows:
function [coding gain,tf] = LOTtest(t)
tf = fminsearch(@LotCG,t);
coding_gain = 1/LotCG(tf);
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e Running the routines above for r0=0.9 with the initial pointt = [0 0 0 O]
we get
coding_gain = 133.7581
tf = [0.4648 0.5926 -1.1191 -0.0912]
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Figure 59: Impulse responses of the filters of a 10-band LOT.
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Figure 60: Magnitude responses of the filters of a 10-band LOT.
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