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Introduction

e This chapter deals with the design methods in which a desired frequency response is
approximated by a transfer function consisting of a ratio of polynomials. In general,
this type of transfer function yields an impulse response of infinite duration.
Therefore, the systems approximated in this chapter are commonly referred to as

infinite-duration impulse-response (lIR) filters.

e In general, IIR filters are able to approximate a prescribed frequency response with
fewer multiplications than FIR filters. For that matter, IIR filters can be more suitable
for some practical applications, especially those ones involving real-time signal

processing.
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Introduction

® In Section 6.2, we study the classical methods of analog filter approximation, namely
the Butterworth, Chebyshev, and elliptic approximations. These methods are the
most widely used for approximations meeting prescribed magnitude specifications.
They originated in the continuous-time domain and their use in the discrete-time

domain requires an appropriate transformation.

e \We then address, in Section 6.3, two approaches that transform a continuous-time
transfer function into a discrete-time transfer function, the impulse-invariance and

bilinear transformation methods.

e Section 6.4 deals with frequency transformation methods in the discrete-time
domain. These methods allow the mapping of a given filter type to another, for

example the transformation of a given lowpass into a desired bandpass filter.
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Introduction

e In applications where magnitude and phase specifications are imposed, we can
approximate the desired magnitude specifications by one of the classical transfer
functions and design a phase equalizer to meet the phase specifications. As an
alternative, we can carry out the design entirely in the digital domain, by using
optimization methods to design transfer functions satisfying the magnitude and
phase specifications simultaneously. Section 6.5 covers a procedure to approximate

a given frequency response iteratively, employing a nonlinear optimization algorithm.

® In Section 6.6, we address the situations where an IIR digital filter must present an
impulse response similar to a given discrete-time sequence. This problem is

commonly known as time-domain approximation.

e Finally, we present some hands-on experiments with IIR filters in the Do-it-yourself

section.
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Analog filter approximations

e This section covers the classical approximations for normalized-lowpass analog

filters.

e Normalized filters are derived from standard ones through a simple variable scaling.
The original filter is then determined by reversing the frequency transformation

previously applied.

® In this section, to avoid any source of confusion, a normalized analog frequency is

always denoted by a primed variable such as Q’.

e The other types of filters, such as the denormalized-lowpass, highpass, bandstop,
and bandpass filters, are obtained from the normalized-lowpass prototype through

frequency transformations, which are also addressed in this section.
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Analog filter specification

e An important step in the design of an analog filter is the definition of the desired
magnitude and/or phase specifications that should be satisfied by the filter frequency

response.

e Usually, a classical analog filter is specified through a region of the (O x H(jQ)

plane where its frequency response must be contained.
e This is illustrated in Figure 1 for a lowpass filter.

e In this figure, O_p and (), denote the passband and stopband edge frequencies,

respectively.

e The frequency region between Qp and (), is the so-called transition band where no

specification is provided.

e |n addition, the maximum ripples in the passband and the stopband are denoted by

O and O, respectively.
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Analog filter specification

G(jQ) A )
1.0 j]
1-0p :
& | ,
Q D Qr Q

Figure 1: Typical gain specifications of a lowpass filter.
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Analog filter specification

e Alternatively, the specifications can be given in decibels (dB), as shown in Figure 2a,

in the case of gain specifications.
e Figure 2b shows the same filter specified in terms of attenuation instead of gain.

e The relationships between the parameters of these three representations are given
in Table 1.

e For historical reasons, in this chapter, we work with the attenuation specifications in
dB. Using the relationships given in Table 1, readers should be able to transform any

other format into the set of parameters that characterize the attenuation in dB.

10
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Analog filter specification

G(j Q)4 A(jQ)}
(dB) Qp Q Q (dB)
Gp N i »
G [ 2 Ap
Qp dr Q=
(a) (b)

Figure 2: Typical specifications of a lowpass filter in dB: (a) gain; (b) attenuation.

11
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Analog filter specification

Table 1: Relationships among the parameters for the gain, gain in dB, and attenuation in

dB specification formats.

Ripple Gain [dB] Attenuation [dB]
Passband Gp =20l0g15(1 —0p) Ap =—-Gy
Stopband &, Gy = 20logqq O+ A, =—G;

12
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Butterworth approximation

e Usually, the attenuation of an all-pole normalized-lowpass filter (that is, with

O_; = 1), is expressed by an equation of the following type:
o~/ 12 .~/ 2
AGQY)] =14 [E(iQ)] (1)

where A (s’) is the desired attenuation function and E(s’) is a polynomial which has

low magnitude at low frequencies and large magnitude at high frequencies.

e The Butterworth approximation is characterized by a maximally flat magnitude

response at Q' = 0.

e In order to achieve this property, we choose E(jQQ’) as
E(jQ") = e (iQ)" )

where € is a constant and n is the filter order.

13
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Butterworth approximation

e Equation (1) then becomes
A =1+e€* Q)" ©
resulting in the fact that the first (2n — 1) derivatives of the attenuation function at
Q' = 0 are equal to zero, as desired in the Butterworth approximation.
e The parameter € depends on the passband maximum attenuation Ap.

e [n that manner, since

Ads(Q') = 20109, |A (iQ)] = 1010g; |1+ €2 (Q')*"] (@)
at Q" = O, =1, we must have that
Ap = Ags(1) = 10logyo (1 + €7) (5)
and then
e = /100 1A% _ 1 (6)

14
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Butterworth approximation

e To determine the filter order required to meet the attenuation specification, A .., in the

stopband, at Q" = /. we must have that
Ar = Ag(Q}) =10log; [1 + ¢’ (—Q;)Zn} (7)

e Therefore, m should be smallest integer such that

0.TAy
10914 (10 - 1)
n > (8)
2logyo Q)]

with € as in equation (6).

e With n and € available, one has to find the transfer function A (s’). We can factor
IA(jQ7)|? in equation (3) as

AGQN? = A(—QNAGQ) =14 2Q"" =14 E2[—(JQ)" ()

15
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Butterworth approximation

e Using the analytical continuation for complex variables, that is, replacing jQ’ by s’,

we have that
A(s)A(—s') =1+ e2(—s'")" (10)

e In order to determine A(s’), we must then find the roots of [1 + 62(—3’2)“} and

then choose which ones belong to A (s’) and which ones belong to A(—s’).

e The solutions of
I G (11)
are
s — e welZ (TR (12)
withi=12 ... 2n.

16
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Butterworth approximation

e These 2n roots are located at equally spaced positions on the circumference of

1
radius € m centered at the origin of the s plane.

e In order to obtain a stable filter, we choose the N roots p; on the left-hand side of the

s plane to belong to the polynomial A (s’).

e As a result, the normalized transfer function is obtained as

/ /
H/(S/): HO _ HO (13)

H(S/ — Pi)

1=1

where Hy, is chosen so that [H'(j0)| = 1, and thus

n

Ho =] J(—p) (14)

1=1

17
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Butterworth approximation

e An important characteristic of the Butterworth approximation is that its attenuation

increases monotonically with frequency.
® |n addition, it increases very slowly in the passband and quickly in the stopband.

e In the Butterworth approximation, if one wants to increase the attenuation one has to

increase the filter order.

e However, if one sacrifices the monotonicity of the attenuation, a higher attenuation in

the stopband can be obtained for the same filter order.

e A classic example of one such approximation is the Chebyshev approximation.

18



B CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Chebyshev approximation

e The attenuation function of a normalized-lowpass Chebyshev filter is characterized

by
AGQ)) =14 e2C2(Q) (15)

where C,, (Q)’) is a Chebyshev function of order n, which can be written in its

trigonometric form as

, cos(mncos ' Q'), 0< Q' <1
Cn(Q ) — (16)
cosh(ncosh ' Q), Q' >1

e These functions C,, (Q’) have the following properties

0<CAQ)<T, 0<Q' <1

(17)
CZ(Q)) > 1, Q> 1

19
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Chebyshev approximation

® As a consequence, for the attenuation function defined in equation (15), the
passband is placed in the frequency range 0 < Q' < Q; — 1, the rejection band
is in the range Q" > Q) > 1, as desired, and the parameter € once again

determines the maximum passband ripple.

e The Chebyshev functions defined above can also be expressed in polynomial form as

Chni1(Q) 4+ Cho1(Q) = cos[(n+1)cos ' Q'] + cos[(n — 1) cos ' Q]
— 2 cos(cos™ ' Q') cos(ncos™ ' Q)

=20'C(Q) (18)

with Co(Q') =Tand C1(Q’) = Q.

20
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Chebyshev approximation

e \We can then generate higher order Chebyshev polynomials through the recursive

relation above, that is

C,(Q) =2Q'" -1

C3(Q) =4Q"” —30Q’
’ (19)

Cn+1 (Q/) — ZQ/CTL(Q/) —Cng (Q/)

/

e Figure 3 depicts the Chebyshev functions for several values of n.

21
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Chebyshev approximation

15[
n=5n=3 n=4 n=1
- n=2
Cy
0.5
I I
0 0.25 0.5 0.75 1

Figure 3: Chebyshev functionsforn =1,2,...,5.

22
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Chebyshev approximation

e Since C (Q') =T at Q" = Q} =1, we have that
A, = Ag(1) =10log;o(1 + €7) (20)

and then

e =/ 10%1A» 1 (21)
e From equations (15) and (16), when Q" = Q!., we find
A = Ag(QL) =10log;, [1 + €2 cosh? (TL cosh™! O_;)] (22)

and thus the order of the normalized-lowpass Chebyshev filter that satisfies the

required stopband attenuation is the smallest integer number that satisfies

100.1Ar 1
cosh_] 5
n> €

cosh~ 1 Q.

(23)

23
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Chebyshev approximation

e Similarly to the Butterworth case (see equation (9)), we can now continue the

approximation process by evaluating the zeros of A(s’)A(—s’), with s’ = jQ’.

® Since zero attenuation can never occur in the stopband, these zeros are in the

passband region 0 < )’ < 1, and thus, from equation (16), we have

s’ j
COS (n cos ! —_) =1— (24)
j €

e The above equation can be solved for s’ by defining a complex variable p as

/
P=X1+ X2 = cos”| (%) (25)

e Replacing this value of p in equation (24), we arrive at

cosn(xq + jx2) = (cosnxj coshmx,) — j(sinnxq sinhnxy) = +1 (26)
5

24
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Chebyshev approximation

e By equating the real parts of both sides of the above equation, we can deduce that

cosnxi coshnxy; =0 (27)
and considering that
coshmnxy > 1, forallm, x> (28)
we then have
cosnx] =0 (29)

which yields the following 2n solutions:

T (30)
fori=0,1,...,(2n—1).

25
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Chebyshev approximation

e Now, by equating the imaginary parts of both sides of equation (26) and using the

values of X1 obtained in equation (30), it follows that
sinnxy; = £1 (31)
| A
X2 = — sinh — (32)
n €
e Since, from equations (32) and (25), the zeros of A(s’)A(—s’) are given by

s: = 07 & jQ% = jcos(x1i + jx2) = sinxyisinhx; + jcosx1i coshxy  (33)

fori =0,1,...,(2n — 1), we have, from equations (25) and (30), that
o; = = sin F (21+ 1 )] sinh (l sinh ™ l) (34)
2 n n €
(); = cos [E (21—'_ ] )] cosh (l sinh ™| l) (35)
2 n n €

26
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Chebyshev approximation

e The calculated zeros belong to A(s’)A(—s’). Analogously to the Butterworth case,
we associate the N zeros, pi, with negative real partto A(s’), in order to guarantee

the filter stability.

e The above equations indicate that the zeros of a Chebyshev approximation are

placed on an ellipse in the s plane, since equation (34) implies the following relation:

2 2
o] Q)

_|_
sinh(L sinh=1 1) cosh(L sinh=1 1)

— 1 (36)

27
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Chebyshev approximation

e The transfer function of the Chebyshev filter is then given by

H H
H(s") = 25 = : (37)

H(S/ — P

i=1

where Hy, is chosen so that A (s’) satisfies equation (15), that is (see also Figure 3)

( n

H(—pi), for n odd

(38)

i=1
n
1070:054» H(—pi), for n even
i=1

\

28
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Chebyshev approximation

® |t is interesting to note that in the Butterworth case the frequency response is

monotone in both passband and stopband, and is maximally flat at () = 0.

e In the case of the Chebysheuv filters, the smooth passband characteristics are

exchanged for steeper transition bands for the same filter orders.

e In fact, for a given prescribed specification, Chebyshev filters usually require
lower-order transfer functions than Butterworth filters, owing to their equiripple

behavior in the passband.

29
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Elliptic approximation

e The two approximations discussed so far, namely the lowpass Butterworth and
Chebyshev approximations, lead to transfer functions whose numerator is a constant

and the denominator is a polynomial in s.
e These are called all-pole filters, because all their zeros are located at infinity.

e \When going from the Butterworth to the Chebyshev filters, we have traded-off
monotonicity and maximal flatness in the passband for higher attenuation in the

stopband.

e At this point, it is natural to wonder whether we could also exchange the monotonicity
in the stopband possessed by the Butterworth and Chebysheuv filters for an even

steeper transition band without increasing the filter order.

e This is indeed the case, as approximations with finite-frequency zeros can have

transition bands with very steep slopes.

30
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Elliptic approximation

® In practice, there are transfer function approximations with finite zeros which have
equiripple characteristics in the passband and in the stopband, with the advantage

that their coefficients can be computed using closed formulas.

e These filters are usually called elliptic filters, as their closed-form equations are
derived based on elliptic functions, but they are also known as Cauer or Zolotarev

filters.

® This section covers the lowpass elliptic filter approximation (the derivations are not

detailed here, as they are beyond the scope of this book).

e In the following, we describe an algorithm to calculate the coefficients of elliptic filters

which is based on the procedure described in the benchmark book by Antoniou.

31
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Elliptic approximation

e Consider the following lowpass filter transfer function:

where

Rn (Q)

\

H(jQ")| =

i 12 Q;Z “]
02— 5

1

T+ R2(Q)

i=1
n—1
2
C,Q’ I |
1=1

_Q/Z _ _Q/iz )
__Q/Z (O_;Z ) “]
QF
_Q/Z _ _Q/iz

for n even

, form odd

e The computation of R,, (Q’) requires the use of some elliptic functions.

32
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Elliptic approximation

e All frequencies in equation (39) are normalized. The normalization procedure for the
elliptic approximation is rather distinct from the one for the Butterworth and

Chebyshev filters.

e Here, the frequency normalization factor is given by

0. =+/0,0, (41)

e [n that manner, we have that

Q Q

y Ap p
2 =5_"Va, (42)

Q. Q.

c p

w
w
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Elliptic approximation

e Defining
Qo
— a — Q;z (44)
o — ] 1—(1—k2)= us)
21—kt
q = do + 293 + 15q3 + 150> (46)
100- 1Ay ]
€=\ 7007A —7 (47)
the specifications are satisfied if the filter order 1 is chosen through:
16
10910 —5
n>_—€ (48)
log1y —
10 q

34
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Elliptic approximation

e Having the filter order ., we can then determine the following parameters before

proceeding with the computation of the filter coefficients:

11000540 4]

®

oo

j=0

= 2n " 70005A,

2q7 Y (=1Y @0V sinh[(2) + 1)6)

1 +2£(-1)5in cosh(2j0)

j=1

W:\/(1+kc72) (1+%2>

35
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Elliptic approximation

e Also, fori=1,2,...,1,wherel = 5 fornevenand |l = *5— 1 for n odd, we

compute

> 25 + 1
Zq% Z(—”)q ()_H)Sln( j+

— n
Qf = —— > (52)
-z jTu
1
+ZZ COS -
ji=1
e
Vi = \ (1 —kQ,?) ( 5 ) (53)
where
u =1, for n odd

(54)
u=1— %, for n even

36
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Elliptic approximation

e The infinite summations in equations (50) and (52) converge extremely quickly, and

only two or three terms are sufficient to reach a very accurate result.

e The transfer function of a normalized-lowpass elliptic filter can be written as

o2

+ by

H/(S/) _ H 5 21 (55)
S—I—CTm s’* + ayis’ + az;
where

m=0andl = 3, for n even

(56)
m=1andl= "5 forn odd

37
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Elliptic approximation

e The coefficients of the above transfer function are calculated based on the

parameters obtained from equations (44)—(53) as

1
b = o2
(oVi)? + (QIW)?
A2i bl
(T4 GZQ’i )2
20‘\/1
a1{ = b}
1+ 02Q}
% Lo
2i
GH b’
Hy=<¢

\ i=1

38

10—0-05A,, GH azi |
b2i

for n odd

for n even

(57)

(58)

(59)

(60)
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Elliptic approximation

e Following this procedure, the resulting minimum stopband attenuation is slightly

better than the specified value, being precisely given by

100-TAv 1
A, =101 1 61
0910( T6qm + ) (61)

39
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Frequency transformations

e The approximation methods presented so far are meant for designing

normalized-lowpass filters.

® In this subsection, we address the issue of how a transfer function of a general
lowpass, highpass, symmetric bandpass, or symmetric bandstop filter can be

transformed into a normalized-lowpass transfer function, and vice versa.

e The procedure used here, the so-called frequency transformation technique, consists
of replacing the variable s’ in the normalized-lowpass filter by an appropriate function

of s.

e In the following, we make a detailed analysis of the normalized-lowpass
bandpass transformation. The analyses of the other transformations are similar, and

their expressions are summarized in Table 2.

40
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Frequency transformations

e A normalized-lowpass transfer function H’(s”) can be transformed into a symmetric
bandpass transfer function by applying the following substitution of variables
2 2
, 124+ Q435

— — 62
° a Bs (62)

where () is the central frequency of the bandpass filter, B is the filter passband

width, and a is a normalization parameter that depends upon the filter type.

41
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Frequency transformations

e The parameters (), B, and a are determined as follows:

Qo = /Qp, Qp, (63)
B=0, —0Q,, (64)
(
1, for any Butterworth or Chebyshev filter
Q, o
, for a lowpass elliptic filter
Qp
1 Qp for a highpass elliptic filter
P
QTz _QT1 e e g
, for a bandpass elliptic filter
sz o QD1
Q,, —Q
P2 P1 " for a bandstop elliptic filter
\ QT’Z Qr1

42
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Frequency transformations

e The value of a is different from unity for the elliptic filters because in this case the
normalization is not QF, = 1, but , /Qf Q) = 1 (see equations (41)—(6.43)).

e The frequency transformation in equation (62) has the following properties:
— The frequency s’ = jO is transformed into s = £jQ).

— Any complex frequency s’ = —jQ)’, corresponding to an attenuation of A4z in

the normalized-lowpass filter, is transformed into the two distinct frequencies

1 1
Oy = —5aBO' + \/Z a2B2Q? + Q2 (66)
Q] = —zaBQ — Z—la B-Q —I—QO (67)

where ()1 is a positive frequency and 51 IS a negative frequency, both

corresponding to the attenuation A4g.

43
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Frequency transformations

e (cont.)

— In addition, a complex frequency s’ = j(Q’, which also corresponds to an

attenuation of A yg, is transformed into two frequencies with the same attenuation

level, that is,
1 / 1 2R2 /2 2
Q; = 7aBQ" 44/ 7a?B20’" + OF (68)
Q; = 5aBQ' — /1 a?B2Q + Q5 (69)

and it can be seenthat Q1 = —Q>, and Q> = —Q;.

44
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Frequency transformations

e (cont.)

— The positive frequencies ()7 and (), are the ones we are interested in analyzing.

They can be expressed in a single equation as follows:

1 1
Q] 2 = :anBQ/ + \/ZaZBZQ/Z + Q% (70)

from which we get
O, — Q7 = aBQ’ (71)

010, = Q3 (72)

— These relationships indicate that, in this kind of transformation, for each frequency
with attenuation A yg there is another frequency geometrically symmetric with

respect to the central frequency () with the same attenuation.

45
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Frequency transformations

e (cont.)

— From the above the cutoff frequency of the normalized-lowpass filter _Q; 5

mapped into the frequencies

] 1
QP1,2 — :|:§aBQ;3 + \/ZaZBZQ{DZ + _Q% (73)
such that
sz — QP1 — aBQ% (74)
Q,,0Q,, = Qf (75)

46
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Frequency transformations

e (cont.)

— Similarly, the stopband edge frequency O_; of the normalized-lowpass prototype

is transformed into the frequencies

1 1
Qy, , = F5aBQ; + \/ZaZBzg;Z + 032 (76)
such that
Q,, —Q,, =aBQ; (77)
Q,,0,, = 0} @

47
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Frequency transformations

e The above analysis leads to the conclusion that this normalized-lowpass
bandpass transformation works for bandpass filters which are geometrically

symmetric with respect to the central frequency.
e However, bandpass filter specifications are not usually geometrically symmetric.

e \We can generate geometrically symmetric bandpass specifications satisfying the
minimum stopband attenuation requirements by the following procedure (see
Figure 4):

— (i) Compute Q3 = Qp,0Qyp,.

2

— (i) Compute Q,., = 50 ;andif Q. > Q. , replace Q. with Q.. as

2

illustrated in Figure 4.
2

— (i) f Q,, < Q. then compute Q,, = é)o ,and replace Q,, with Q..
1

— (iv) If Ay, # A+, choose A = max{A;,, A, .
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Frequency transformations
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Figure 4. Nonsymmetric bandpass filter specifications.
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Frequency transformations

e Once the geometrically symmetric bandpass filter specifications are available, we
need to determine the normalized frequencies Q; and Q' in order to have the

corresponding normalized-lowpass filter completely specified.

e According to equations (74) and (77), they can be computed as follows:

Q) = (79)

Q. —Q,,

Q) =
sz _QP1

T

1
a
1
— (80)
a

® |t is worth noting that bandstop filter specifications must also be geometrically
symmetric. In this case, however, in order to satisfy the minimum stopband
attenuation requirements, the stopband edges must be preserved, while the

passband edges should be modified analogously to the procedure described above.

e A summary of all types of transformations are shown in Table 2.
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Frequency transformations

Table 2: Analog frequency transformations.

Transformation Normalization Denormalization
] T QO 1
lowpass(Q)) < lowpass({)) == QL =——" ¢ — 5
a a Oy a Oy
1 1 QO 1 QO
highpass(Q) « lowpass(Q)’) == QL =— Ld sy — P
a a O a s
1 1s2 4+ 032
bandpass(Q)) ¢ lowpass(()’) /= — g ey =770
a a Bs
;1 Oy — Oy
a -sz o QD1
1 1 Bs
bandstop(Q)) < lowpass()’ = — s —————
p(Ll) pass(L2’) . 12 +Q%
I l sz - QP1
a Oy, — Oy,
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Frequency transformations

e The general procedure to approximate a standard analog filter using frequency

transformations can be summarized as follows:
e — (i) Determine the specifications for the lowpass, highpass, bandpass, or bandstop
analog filter.

— (ii) When designing a bandpass or bandstop filter, make sure the specifications
are geometrically symmetric following the proper procedure described earlier in

this subsection.

— (iii) Determine the normalized-lowpass specifications equivalent to the desired

filter, following the relationships seen in Table 2.

— (iv) Perform the filter approximation using the Butterworth, Chebyshev, or elliptic

methods.

— (v) Denormalize the prototype using the frequency transformations given on the
right-hand side of Table 2.
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Frequency transformations

e Sometimes the approximation of analog filters can present poor numerical
conditioning, especially when the desired filter has a narrow transition and/or

passband.

e In this case, design techniques employing transformed variables are available, which
can improve the numerical conditioning by separating the roots of the polynomials

involved.
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Example 6.1

e Design a bandpass filter satisfying the specification below using the Butterworth,

Chebyshev, and elliptic approximation methods:

A, =1.00dB

A, =40dB

Q,, =13%mrad/s
Q,, = 15107 rad/s
Q,, = 15707 rad/s
Qy, =1704mrad/s

¢ (81)
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Example 6.1 - Solution

e Since (O,,, O, # O, Q,,, the first step in the design is to determine the

geometrically symmetric bandpass filter following the procedure described earlier in
this subsection.

e In that manner, we get
2
Q5

T1

Q,, =0Q,, = — 1700.64567 rad/s (82)
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Example 6.1 - Solution

e Finding the corresponding lowpass specifications based on the transformations in
Table 2, we have

1

Q= = 83
P (83)

10Q,-0 1
Q= -2 1 — —5.1108 84
! a sz o QD1 a &9

where
1, for the Butterworth and Chebyshev filters

a— (85)

2.2607, for the elliptic filter
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Example 6.1 - Solution

e (a) Butterworth approximation: from the specifications above, we can compute €
from equation (6), and, having €, the minimum filter order required to satisfy the

specifications from equation (8):
e = 0.5088 (86)
n=4 (87)

e From equation (12), the zeros of the normalized Butterworth polynomial when n = 4

are given by

st , = —1.0939 & j0.4531

s 4 = —0.4531 £ j1.0939
> (88)
st ¢ = 1.0939 + j0.4531

sh g = 04531 % j1.0939
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Example 6.1 - Solution

e Selecting the ones with negative real part to be the poles of H'(s’), this normalized

transfer function becomes

1

H'(s") =1.9652— 3 >
s’ +3.0940s"” 4-4.7863s"~ +4.3373s’ + 1.9652

(89)

e The design is completed by applying the lowpass to bandpass transformation in
Table 2.

e The resulting bandpass transfer function is then given by

84

ags®+ass’+ags®+ass®+ass?+azsd+ars?it+aris+tag

H(S) — Ho

(90)

where the filter coefficients and poles are listed in Table 3.
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Example 6.1 - Solution

Table 3: Characteristics of the Butterworth bandpass filter. Gain constant: Hp =

2.4809 x 107.

Denominator coefficients  Filter poles

ap = 2.9971 x 10%? p1 = —41.7936 + j4734.9493
a; = 7.4704 x 10%* p2 = —41.7936 — j4734.9493
a; = 5.1331 x 10%2 p3 = —102.1852 + j4793.5209
az = 9.5851 x 10"/ pa = —102.1852 — j4793.5209
as = 3.2927 x 10> ps = —104.0058 + j4878.9280
as = 4.0966 x 10'° pe = —104.0058 — j4878.9280
ag = 9.3762 x 107 p7 = —43.6135 + j4941.1402
a; = 5.8320 x 107 ps = —43.6135 — j4941.1402

as = 1.0
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Example 6.1 - Solution

e Figure 5 depicts the frequency response of the designed Butterworth bandpass filter.

200

150}

100}

507

Magnitude response [dB]
A
o

Phase response [degree]
o

-50
_60 L
-100
-80L -150¢1
‘ ‘ ‘ ~200 ‘ ‘ ‘
600 700 800 900 1000 600 700 800 900 1000
Frequency [HZ] Frequency [Hz]
(a) (b)

Figure 5: Bandpass Butterworth filter: (a) magnitude response; (b) phase response.

60



B CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Example 6.1 - Solution

e (b) Chebyshev approximation: from the normalized specifications in equations (81)
and (82), one can compute € and n based on equations (21) and (23), respectively,

resulting in
e = 0.5088 (91)

n=23 (92)

e Then, from equations (24)—(35), we have that the poles of the normalized transfer

function are:

s7 2 = —0.247150.9660
(93)

s, = —0.4942 — j0.0
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Example 6.1 - Solution

e This implies that the normalized-lowpass filter has the following transfer function:

1

H'(s') = 0.4913— . (94)
s’> +0.9883s'~ + 1.2384s’ 4 0.4913
e The denormalized design is obtained by applying the lowpass to bandpass
transformation.
e The resulting transfer function is of the form
33
H(s) = Ho (95)

ags® + ass® + ass? + azs3 + ars? + ajs + ag

where all filter coefficients and poles are listed in Table 4.
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Example 6.1 - Solution

Table 4: Characteristics of the Chebyshev bandpass filter. Gain constant: Hp =

3.2905 x 10°.

Denominator coefficients  Filter poles

ap = 1.2809 x 10%2 p1 = —22.8490 + j4746.8921
a; = 1.0199 x 10"/ p2 = —22.8490 — j4746.8921
a, = 1.6434 x 101° p3 = —46.5745 + j4836.9104
as = 8.7212 x 107 pa = —46.5745 — j4836.9104
a4 = 7.0238 x 107 ps = —23.7255 + j4928.9785
as = 1.8630 x 107 Pe = —23.7255 — j4928.9785

e —1.0
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Example 6.1 - Solution

e Figure 6 depicts the frequency response of the resulting Chebyshev bandpass filter.

200 w ‘
150+ K
1
% 'g' 100t
8 £ sof
i 2
B [}
g -
.E @
g &
= -100F
-150+t
‘ ‘ ‘ ~200 ‘ ‘ ‘
600 700 800 900 1000 600 700 800 900 1000
Frequency [HZ] Frequency [Hz]
(a) (b)

Figure 6: Bandpass Chebyshev filter: (a) magnitude response; (b) phase response.
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Example 6.1 - Solution

e Elliptic approximation: from equation (6.85), for this elliptic approximation, we have

that a = 2.2607/, and then the normalized specifications are
O_; = 0.4423 (96)
Q! = 2.2607 (97)
e From equation (48), the minimum order required for the elliptic approximation to

satisfy the specifications is 1 = 3. Therefore, from equations (55)—(60), the

normalized-lowpass filter has the transfer function

s’ +6.7814
'3 +0.4362s'% + 0.2426s" + 0.0431

H'(s') = 6.3627 x 1073 (98)
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Example 6.1 - Solution

e The denormalized-bandpass design is then obtained by applying the lowpass to
bandpass transformation given in Table 2, with a = 2.2607. The resulting bandpass

transfer function is given by

bss® + bzs> + bis

H(s) =H
(s) 0a6s6_|_a555-|-a4s4+a333—|—a282—|—a13+(10

(99)

where all filter coefficients, zeros, and poles are listed in Table 5.
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Example 6.1 - Solution

Table 5: Characteristics of the elliptic bandpass filter. Gain constant: Ho = 2.7113 10°.

Numerator coefficients

Denominator coefficients

bo = 0.0 ao = 1.2809 x 10%?

by =5.4746 x 10'*  a; =1.0175 x 10"

b, = 0.0 ar, = 1.6434 x 10"

by =4.8027 x 107 a3 = 8.7008 x 10’

bs = 0.0 as = 7.0238 x 107

bs = 1.0 as = 1.8586 x 102

b6 = 0.0 g = 1.0

Filter zeros Filter poles

71 = +j4314.0061 p1 = —22.4617 + j4746.6791
7o = —j4314.0061 py = —22.4617 — j4746.6791
73 = +j5423.6991 p3 = —47.1428 + j4836.9049
74 = —i5423.6991 ps = —47.1428 — j4836.9049
z5 = 0.0 ps = —23.3254 + j4929.2035

Pe = —23.3254 — j4929.2035
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Example 6.1 - Solution

e Figure 7 depicts the frequency response of the resulting elliptic bandpass filter.

200 ‘ ‘
of 150} \
1
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= & 100}
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Frequency [HZ] Frequency [HZ]
(a) (b)

Figure 7: Bandpass elliptic filter: (a) magnitude response; (b) phase response.
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Continuous-time to discrete-time transformations

e As mentioned at the beginning of this chapter, a classical procedure for designing IIR

digital filters is to design an analog prototype first and then transform it into a digital
filter.

e In this section, we study two methods of carrying out this transformation, namely, the

impulse-invariance method and the bilinear transformation method.
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Impulse-invariance method

e The intuitive way to implement a digital filtering operation, having an analog
prototype as starting point, is the straightforward digitalization of the convolution

operation, as follows.

e The output Yy (t) of an analog filter having impulse response hq (t) when excited

by a signal x4 (t) is
Yalt) = J XalTha (t — T)dT (100

® One possible way to implement this operation in the discrete-time domain is to divide
the time axis into slices of size T, replacing the integral by a summation of the areas

of rectangles of width T and height xo (mT)hy(t — mT), for all integers m.
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Impulse-invariance method

e Equation (100) then becomes
ya(t) = ) xa(mThg(t—mT)T (101)
m=—o0
e The sampled version of Y (t) is obtained by substituting t by nT, yielding
«nT)= Y  Xq(mT)hg(nT —mT)T (102)
mM=—00

e This is clearly equivalent to obtaining the samples Y4 (nT) of y4 (t) by filtering the
samples X 4 (NT) with a digital filter having impulse response h(n) = h,(nT).

e That is, the impulse response of the equivalent digital filter would be a sampled
version of the impulse response of the analog filter, using the same sampling rate for

the input and output signals.
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Impulse-invariance method

e Roughly speaking, if the Nyquist criterion is met by the filter impulse response during
the sampling operation, the discrete-time prototype has the same frequency

response as the continuous-time one.

e |n addition, a sampled version of a stable analog impulse response is clearly also
stable. These are the main properties of this method of generating IR filters, called

the impulse-invariance method.

e In what follows, we analyze the above properties more precisely, in order to get a

better understanding of the main strengths and limitations of this method.
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Impulse-invariance method

e \We can begin by investigating the properties of the digital filter with impulse response

h(n) = hy(nT) in the frequency domain.

e From equation (102), the discrete-time Fourier transform of h(n) is

jO_T
H(e T Z Ho (jQ + jQ;1) (103)
l=—
where Hy(s), s = o + jQ, is the analog transfer function, and Q¢ = ZT” is the

sampling frequency.

e That is, the digital frequency response is equal to the analog one replicated at

intervals 1() .

e One important consequence of this fact is that if H, (j()) has much energy for
Q > /2, there will be aliasing, and therefore the digital frequency response will

be a severely distorted version of the analog one.
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Impulse-invariance method

e Another way of seeing this is that the digital frequency response is obtained by
folding the analog frequency response, for —oo < () < 00, on the unit circle of the
z = e®! plane, with each interval [0 + j(1 — %)_QS, o+ j(l+ %)QS], for all

integers 1, corresponding to one full turn over the unit circle of the z plane.

e This limits the usefulness of the impulse-invariance method to the design of transfer

functions whose magnitude responses decrease monotonically at high frequencies.

e For example, its use in the direct design of highpass, bandstop, or even elliptic

lowpass and bandpass filters is strictly forbidden, and other methods should be

considered for designing such filters.
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Impulse-invariance method

e Stability of the digital filter can also be inferred from the stability of the analog

prototype by analyzing equation (103).

e In fact, based on that equation, we can interpret the impulse-invariance method as a
mapping from the s domain to the z domain such that each slice of the s plane given
by the interval [0 + j(1 — %)QS, o+ j(l+ %)QS], for all integers 1, where

0 = Re{s}, is mapped into the same region of the z plane.

e Also, the left side of the s plane, that is, where 0 < 0, is mapped into the interior of
the unit circle, implying that if the analog transfer function is stable (all poles on the
left side of the s plane), then the digital transfer function is also stable (all poles

inside the unit circle of the z plane).
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Impulse-invariance method

® In practice, the impulse-invariance transformation is not implemented through
equation (103), as a simpler procedure can be deduced by expanding an Nth-order

H (s) as follows:

N

Ha(s) =y — (104)

S —_—
1=1 Pt

where it is assumed that H (s) does not have multiple poles.

e The corresponding impulse response is given by
N
ha(t) =) TePttu(t) (105)
1=1

where u(t) is the unit step function.
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Impulse-invariance method

e If we now sample that impulse response, the resulting sequence is

and the corresponding discrete-time transfer function is given by

T™Z
Ha(z) =)
_ abP1 T
=1 z—en

(106)

(107)

e This equation shows that a pole s = p of the continuous-time filter corresponds to

a pole of the discrete-time filter at z = ePrT,

e In that way, if p1 has negative real part, then eP'! is inside the unit circle, generating

a stable digital filter when we use the impulse-invariance method.
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Impulse-invariance method

e |n order to obtain the same passband gain for the continuous- and discrete-time

filters, for any value of the sampling period T, we should use the following expression

for Hq(2):
A TZ
o 1
Hy(z) = ;TZ_GmT (108)
which corresponds to
hga(n) = Thqy(nT) (109)

e Thus, the overall impulse-invariance method consists of writing the analog transfer
function H (s) in the form of equation (104), determining the poles P and

corresponding residues 11, and generating H 4 (z) according to equation (108).
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Example 6.2

e Transform the continuous-time lowpass transfer function given by

1
24541

into a discrete-time transfer function using the impulse-invariance transformation

H(s) (110)

method with () = 10 rad/s. Plot the corresponding analog and digital magnitude

responses.
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Example 6.2 - Solution

e A second-order lowpass transfer function can be written as

03

H(s) =
s2 4+ s + 03
B Qf 1 B 1 w1
QZ QZ QZ
Q—S—4Q% 3—1—?—5_\/“202 — Q7 s—|—?—(g_|_\/4Q02 —Q3
® |ts poles are located at
Qo Q32
—ph=—c- [QF JEpuunC 112
and the corresponding residues are given by
—i0?2
T =15 = 20 (113)
2 Q
V40— i
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e Applying the impulse-invariance method with T = 27t/10, the resulting discrete-time

transfer function is given by

2jTry sin(Im{p)T)eRetP1iTy
22 — 2 cos(Im{p1}T)eRelP1iTz 4 g2RelpiiT

H(z) =

- 0.27433103 2 .
= 21249825522+ 0.533488 09 (114)

e The magnitude responses corresponding to the analog and digital transfer functions

are depicted in Figure 8.

® As can be seen, the frequency responses are similar except for the limited stopband

attenuation of the discrete-time filter which is due to the aliasing effect.
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Example 6.2 - Solution
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Figure 8: Magnitude responses obtained with the impulse-invariance method: (@)

continuous-time filter; (b) discrete-time filter.
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Impulse-invariance method

e \We should again emphasize that the impulse-invariance method is suitable only for

continuous-time prototypes with frequency responses that decrease monotonically at

high frequencies, which limits its applicability a great deal.

e In the next section, we analyze the bilinear transformation method, which overcomes

some of the limitations of the impulse-invariance method.
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Bilinear transformation method

e The bilinear transformation method, like the impulse-invariance method, basically
consists of mapping the left-hand side of the s plane into the interior of the unit circle

of the z plane.

e The main difference between them is that in the bilinear transformation method the
whole analog frequency range —oo < () < o0 is squeezed into the unit circle
—71 < w < 71, while in the impulse-invariance method the analog frequency

response is folded around the unit circle indefinitely.

e The main advantage of the bilinear transformation method is that aliasing is avoided,
thereby keeping the magnitude response characteristics of the continuous-time

transfer function when generating the discrete-time transfer function.

e The bilinear mapping is derived by first considering the key points of the s plane and

analyzing their corresponding points in the z plane after the transformation.

e Hence, the left-hand side of the s plane should be uniquely mapped into the interior
of the unit circle of the z plane, and so on, as given in Table 6.
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Bilinear transformation method

Table 6: Correspondence of key points of the s and z planes using the bilinear transfor-

mation method.

S plane —  z plane
o£jQ —  retiw

j0 — 1

joo — =1

o>0 —  r>1

oc=20 — r=1

o<O0 — <]

iQ — el
—0<D<oo — —TmM<w<Tn
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Bilinear transformation method

e In order to satisfy the second and third requirements of Table 6, the bilinear

transformation must have the following form

s =k (115)

where f1(1) = Tand f(—1) = —1.

e Sufficient conditions for the last three mapping requirements to be satisfied can be
determined as follows:

(Re{f1(z)} — 1) + iim{f; (z)}
(Re{f2(z)} + 1) + jim{f2(z)}
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Bilinear transformation method

e Equating the real parts of both sides of the above equation, we have that

(Relfi(z); — T)(Reifa(z); + 1) + Imifq (2)/imif2(2))

o=k 117
Re(f2(2)) + 1) + (m{f2(2)))2 o
and since 0 = 0 implies that = 1, the following relation is valid:
jw jaw
Re(f ()} =1 im{fa(e)} s
Im{f; (el)} Re{f2(el®)} + 1
e The condition o < 0 is equivalent to
jw N _ jaw
Re{f](rel®)} — 1 Im{f, (re!?)} o (119)

mif (re )]~ Relfp(re@ ) + 1’

e The last two lines of Table 6 show the correspondence between the analog

frequency and the unit circle of the z plane.
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Bilinear transformation method

e If we want the orders of the discrete-time and continuous-time systems to remain the

same after the transformation, then f1(z) and f2(z) must be first-order polynomials.

e |n addition, if we wish to satisfy the conditions imposed by equation (115), we must

choose f1(z) = f2(z) = z.

e |t is straightforward to verify that equation (118), as well as the inequality (119), are

automatically satisfied with this choice for f1(z) and 2 (z).
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Bilinear transformation method

e The bilinear transformation is then given by

— 1]
s—>kZ

z+1

which, for s = jQ and z = /%, is equivalent to

elw 1 e e 3" sin &
iQ — k- =k =] 2
el® + 1] ez +e 2 cos =
that is
w
_Q%ktani

89
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Bilinear transformation method

e For small frequencies, tan % ~ % Hence, to keep the magnitude response of the

digital filter approximately the same as the prototype analog filter at low frequencies,

we should have for small frequencies () = w %; , and therefore we should choose
_ QO _ 2
k=== =z

e [n conclusion, the bilinear transformation of a continuous-time transfer function into a

discrete-time transfer function is implemented through the following mapping:

. (123)

z+ 1

H(Z) — Ha(5)|

—2
S=T

and therefore, the bilinear transformation maps analog frequencies into digital

frequencies as follows:
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Bilinear transformation method

e For high frequencies, this relationship is highly nonlinear, as seen in Figure 9a,

corresponding to a large distortion in the frequency response of the digital filter when

compared to the analog prototype.

e The distortion in the magnitude response, also known as the warping effect, can be

visualized as in Figure 9b.
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Bilinear transformation method
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Figure 9: Bilinear transformation method: (a) relation between the analog and digital fre-

guencies; (b) warping effect in the magnitude response of a bandstop filter.
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Bilinear transformation method

e The warping effect caused by the bilinear transformation can be compensated for by
prewarping the frequencies given at the specifications before the analog filter is

actually designed.

e For example, suppose we wish to design a lowpass digital filter with cutoff frequency

W, and stopband edge W

e The prewarped specifications Qap and () of the lowpass analog prototype are

then given by

2

Qq, = T tan % (125)
2 r

Qq, = T tan % (126)
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Bilinear transformation method

e Following the same line of thought, we may apply prewarping to as many frequencies

of interest as specified for the digital filter.

e If these frequencies are given by wy, fori = 1,2, ..., n, then the frequencies to be

included in the analog filter specifications are

2 i
Qq, = T tan % (127)

fori=12,.... n.
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Bilinear transformation method

e Hence, the design procedure using the bilinear transformation method can be

summarized as follows:

— (i) Prewarp all the prescribed frequency specifications w1, obtaining )., for
i=12...,n
— (ii) Generate H 4 (s), following the procedure given in Subsection 6.2.5, satisfying

the specifications for the frequencies () 4. .

— (iii) Obtain Ha(z), by replacing s with £ 21 in Hq(s).
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Bilinear transformation method

e With the bilinear transformation, we can design Butterworth, Chebyshev, and elliptic

digital filters starting with a corresponding analog prototype.

e The bilinear transformation method always generates stable digital filters as long as

the prototype analog filter is stable.

e Using the prewarping procedure, the method keeps the magnitude characteristics of

the prototype but introduces distortions to the phase response.
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Example 6.3

e Design a digital elliptic bandpass filter satisfying the following specifications:

\

A, =0.5dB

A, =650dB

Q,, =850rad/s

Q,, =980rad/s (128)

Q,, =1020rad/s
Q,, =1150rad/s
Q, =10000rad/s )
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Example 6.3 - Solution

e First, we have to normalize the frequencies above to the range of digital frequencies

27T
Q-

using the expression w = ()

e Since O = 10000 rad/s, we have that

\

Wy, = 0.5341 rad/sample

Wy, = 0.6158 rad/sample > (129

Wy, = 0.6409 rad/sample

Wy, = 0.7226 rad/sample

/
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Example 6.3 - Solution

e Then, by applying equation (127), the prewarped frequencies become

\

Qgq,, =870.7973 rad/s
Qq,, = 1012.1848 rad/s
Qgq,, =1056.4085 rad/s
Qq,, =1202.7928 rad/s )

(130)

e By making Qar1 = 888.9982 rad/s to obtain a geometrically symmetric filter, from
Table 2, we have that

Qo = 1034.0603 rad/s (131)
B = 44.2237 rad/s (132)
a = 2.6638 (133)

Q) = 0.3754 (134)

Q! = 2.6638 (135)
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e From the filter specifications, the required order for the analog elliptic

normalized-lowpass filter is 1 = 3, and the resulting normalized transfer function is

s'? 494372

H'(s') = 4.0426 x 107° — >
s'> +0.4696s'% +0.2162s’ + 0.0382

(136)

e The denormalized design is then obtained by applying the lowpass-to-bandpass

transformation given in Table 2, with a = 2.6638.

e After applying the bilinear transformation the resulting digital bandpass transfer
function becomes

b626 + b525 + b4Z4 + b323 + szz + b] Z+ bo
agz® + asz® + asz* + azz3 + axz? + a1z + ag

H(z) = Hp (137)

where all filter coefficients, zeros, and poles are listed in Table 7.

e Figure 10 depicts the frequency response of the resulting digital elliptic bandpass

filter.
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Example 6.3 - Solution

Table 7: Characteristics of the digital elliptic bandpass filter. Gain constant: Hy =

1.3461 x 104,
Numerator coefficients Denominator coefficients
byg =—1.0 a = 0.9691
b1 = 3.2025 aj — —4.7285
b, = —3.5492 a = 10.6285
bg = 0.0 azy — —13.7261
by = 3.5492 ag = 10.7405
bs = —3.2025 as = —4.8287
b6 = 1.0 g — 1.0
Filter zeros Filter poles

z1 = 0.7399 +j0.6727 p1 =0.7982 +j0.5958
z; = 0.7399 —j0.6727 py =0.7982 —j0.5958

23 = 0.8613 +j0.5081 p3 = 0.8134 +j0.5751
24 = 0.8613 —j0.5081 p4 = 0.8134 —j0.5751
zs = 1.04+j0.0 ps = 0.8027 + j0.5830
ze = —1.0+j0.0 pe = 0.8027 — j0.5830
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Example 6.3 - Solution
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Figure 10: Digital elliptic bandpass filter: (a) magnitude response; (b) phase response.
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Bilinear transformation method

e \We can then observe that, as we perform the mapping s — z, either opting for the
impulse-invariance method or the bilinear transformation method, we are essentially

folding the continuous-time frequency axis around the z-domain unit circle.

e Hence, any digital frequency response is periodic, and the interval

—%S <0< %5 , or equivalently, —7t < w < 71, is the so-called fundamental

period.

e \We should bear in mind that in the expressions developed in this subsection the
unfolded analog frequencies () are related to the digital frequencies w, which are
restricted to the interval —7t < w < TI.

e Therefore, all specifications should be normalized to the interval [—7t, 7t] using

27T
= (00— 138
w Q. (138)

e In the discussion that follows, we assume that (), = 27t rad/s.
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Frequency transformation in the discrete-time domain

e Usually, in the approximation of a continuous-time filter, we begin by designing a
normalized lowpass filter and then, through a frequency transformation, the filter with

the specified magnitude response is obtained.

e In the design of digital filters, we can also start by designing a digital lowpass filter

and then apply a frequency transformation in the discrete-time domain.

e The procedure consists of replacing the variable z by an appropriate function g(z) to

generate the desired magnitude response.
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Freguency transformation in the discrete-time domain

e The function g(z) needs to meet some constraints to be a valid transformation,

namely:

— The function g(z) must be a ratio of polynomials, since the digital filter transfer

function must remain a ratio of polynomials after the transformation.

— The mapping z — ¢(z) must be such that the filter stability is maintained, that is,
stable filters generate stable transformed filters and unstable filters generate
unstable transformed filters. This is equivalent to saying that the transformation
maps the interior of the unit circle onto the interior of the unit circle and the

exterior of the unit circle onto the exterior of the unit circle.
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Frequency transformation in the discrete-time domain

e It can be shown that a function g(z) satisfying the above conditions is of the form

3

(z—o) (z—«f)

Z— X4
o 139
o (1 —za) (1 —zou) ilzL 1 —z (139)

where o is complex conjugate of &4, and ¢ isrealforn +1 <1 < m.

e In the following subsections, we analyze special cases of g(z) that generate
lowpass-to-lowpass, lowpass-to-highpass, lowpass-to-bandpass, and

lowpass-to-bandstop transformations.
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Lowpass-to-lowpass transformation

e One necessary condition for a lowpass-to-lowpass transformation is that a
magnitude response must keep its original values at w = 0 and w = 71 after the

transformation.

e Therefore, we must have
g(1) =1 (140)
g(—1) = —1 (141)
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Lowpass-to-lowpass transformation

e Another necessary condition is that the frequency response should only be warped
between w = 0 and w = T, that is, a full turn around the unit circle in z must

correspond to a full turn around the unit circle in g(z).

e One possible g(z) in the form of equation (139) that satisfies these conditions is

Zz— X

g(z) = (142)

1l -z

where « is real such that || < 1.
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Lowpass-to-lowpass transformation

e Assuming that the passband edge frequency of the original lowpass filter is given by
Wy, and that we wish to transform the original filter into a lowpass filter with cutoff

frequency at Wy, , thatis, g(e/’»1) = e!®», the following relation must be valid:

. el®r1 —
JWp
e = . 143
1 — xe!®r: (143)
and then
(P %y (L Ppy : Wwp—w
eJ( 2 )_el( 2 ) sm( pz’“)

X = — (144)

- “’v+wv1) -(wv+“’p1) wp+w
—J(— \—= i PPy

e The desired transformation is then implemented by replacing z by g(z) given in

equation (142), with « calculated as indicated in equation (144).
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Lowpass-to-highpass transformation

e If Wy, isthe highpass filter band edge and wy, is the lowpass filter cutoff frequency,

the lowpass-to-highpass transformation function is given by

Z+ X

— 145
g(z) — (145)
where
COS (prrzwm )
X = — (146)
cos (22501
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Lowpass-to-bandpass transformation

e The lowpass-to-bandpass transformation is accomplished if the following mappings

occur
g(1) = —1 (147)

gle™¥v1) = el®r (148)

g(el®r2) = el®r (149)

g(—1) = -1 (150)

where Wy, and wy,, are the band edges of the bandpass filter, and w, is the band

edge of the lowpass filter.

e Since the bandpass filter has two passband edges, we need a second-order function

g(z) to accomplish the lowpass-to-bandpass transformation.
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Lowpass-to-bandpass transformation

e After some manipulation, it can be inferred that the required transformation and its

parameters are given by

22 + oz + o

9lz) =~ 02z + 1z + 1 (151)
with
20k k—1
X1 = —m; X2 = K+1 (152)
where

Wy - +w
cos( pzz LA

X = ) (153)
)

w — W
cos ( pzz 21

k = cot (wpz ; Do, ) tan (&> (154)
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Lowpass-to-bandstop transformation

e The lowpass-to-bandstop transformation function g(z) is given by

2 4+ oz + o

— 155
9(2) 0z% + o1z + 1 (155)
with
O S el (156)
TR+ TP 14k
where
COS (wpzzwm )
o — T (157)
coS ( 2 )
k = tan (wpz ;w‘” ) tan (%) (158)
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Variable-cutoff filter design

e An interesting application for the frequency transformations is to design highpass
and lowpass filters with variable cutoff frequency with the cutoff frequency being

directly controlled by a single parameter «.

e This method can be best understood through an example, as given below.
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Example 6.4

e Consider the lowpass notch filter

722 —\2z+ 1

Hlz) = 0.004 ==~

(159)

whose zeros are located at z — \/72 (1 & j). Transform this filter into a highpass

notch with a zero at frequency Wy, = % rad/sample.

e Plot the magnitude responses before and after the frequency transformation.
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Example 6.4 - Solution

e Using the lowpass-to-highpass transformation given in equation (145), the highpass

transfer function is of the form

H(z) — H (2 +v20+1) (22 +1HH V202 +4a+/2)z
~ 0 000.9602 +1.80+1)22+(1.802+3.92004+1.8)z+ (o2 +1.8x+0.96)
(160)

with Hp = 0.004.

e The parameter & can control the position of the zeros of the highpass notch filter.
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Example 6.4 - Solution

e For instance, in this example, as the original zero is at Wy, = % rad/sample and the

desired zerois at Wy, = % rad/sample, the parameter « should be, as given in

equation (146), equal to

E_|_E
4 6
COS( >

X = — (ggg = —0.8002 (161)
COS 5

e The magnitude responses corresponding to the lowpass and highpass transfer

functions are seen in Figure 11. Notice how the new transfer function has indeed a

zero at the desired position.
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Example 6.4 - Solution
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Figure 11: Magnitude responses of notch filters: (a) lowpass notch filter; (b) highpass

notch filter.
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Magnitude and phase approximation

® In this section, we discuss the approximation of IIR digital filters using optimization
techniques aimed at the simultaneous approximation of the magnitude and phase

responses.
e The same approach is useful in designing continuous-time filters and FIR filters.

e However, in the case of FIR filters more efficient approaches exist, as we have seen
in Subsections 5.6.2 and 5.6.3.
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Basic principles

e Assume that H(z) is the transfer function of an IIR digital filter. Then H(e'®) is a
function of the filter coefficients, which are usually grouped into a single vector v,

and of the independent variable 0 = w.

e The frequency response of a digital filter can be expressed as a function of the filter
parameters y and 0, that is F(y, 0), and a desired frequency response is usually
referred to as f(0).

e The complete specification of an optimization problem involves: definition of an
objective function (also known as a cost function), determination of the form of the
transfer function H(z) and its coefficients y, and the solution methods for the

optimization problem.
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Basic principles

e These three items are further discussed below.

e (a) Choosing the objective function: a widely used type of objective function in filter

design is the weighted Lp norm, defined as

mt P
IL(Y)Il, = (J W(6)[F(vy, 6) —f(e)\pd9> (162)
0
where W(0) > 0 is the so-called weight function.
e Problems based on the L;,-norm minimization criteria with different values of p lead,

in general, to different solutions.

e An appropriate choice for the value of p depends on the type of error which is

acceptable for the given application.

e For example, when we wish to minimize the mean-square value of the error between

the desired and the designed responses, we should choose p = 2.
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Basic principles

e Another problem is the minimization of the maximum deviation between the desired

specification and the designed filter by searching the space of parameters.

e This case, which is known as the Chebyshev or minimax criterion, corresponds to
P — 00. This important result derived from the optimization theory can be stated

more formally as:

e Theorem: For a given coefficient space P and a given angle space Xg, there is a
unique optimal minimax approximation F(y% , ©) for f(0). In addition, if the best L,
approximation for the function f(0) is denoted by F(v},, 0), then it can be
demonstrated that

im Y, = Yo (163)

P— 00
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Basic principles

e This result shows that we can use any minimization program based on the I_p norm
to find a minimax (or approximately minimax) solution, by progressively calculating

the L, optimal solution with, for instance, p = 2,4, 6, and so on, indefinitely.

e Specifically, the minimax criterion for a continuous frequency function is best defined

as

LYl = i { max (W(O)[F(y,0) — ()]} (164
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Basic principles

® |n practice, due to several computational aspects, it is more convenient to use a

simplified objective function given by

K
Lop(v) = > W(0y) (F(v,01) — f(0y))°P (165)
k=1

where, by minimizing L, (v), we also minimize ||L(v)||2p. In this case, the
minimax solution is obtained by minimizing L2, (y), forp = 1,2, 3, and so on,

indefinitely.

e The points O are the angles chosen to sample the desired and the prototype
frequency responses. These points, lying on the unit circle do not need to be equally
spaced. In fact, we usually choose 0y such that there are denser grids in the regions

where the error function has more variations.
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Basic principles

e The sort of filter designs described here can be applied to a large class of problems,
in particular the design of filters with arbitrary magnitude response, phase equalizers,
and filters with simultaneous specifications of magnitude and phase responses. The

last two classes are illustrated below.
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Basic principles

e (cont.)

— Phase equalizer: the transfer function of a phase equalizer is (see Section 4.7.1)

M 72 T
Hy(z) = H aiz” + arjiz + (166)

e z? + a11Z + azi

Since its magnitude is 1, the objective function becomes

K
LopT(y,To) = > W(0) (Ti(v,0k) — Ts(0) +10)*P  (167)
k=1

where T is the group delay of the original digital filter, T( (Y, 8« ) is the equalizer

group delay and Tg is a constant delay, whose value minimizes

SR (Te(By) — To)2P.
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Basic principles

e (cont.)

— Simultaneous approximation of magnitude and group-delay responses: for this

type of approximation, the objective function can be given by

K
Lop 2gM, T(¥,T0) = 8> Wnm(0k) (M(y,01) — f(0:))*P
k=1

R
+(1=8) Y Wa(0y) (t(v,0:) + T(05) — T0)*P
r=1

(168)

where 0 < 6 < 1 and T(0,) is the group delay which we wish to equalize.
Usually, in the simultaneous approximation of magnitude and group-delay
responses, the numerator of H(z) is forced to have zeros on the unit circle or in

reciprocal pairs, such that the group delay is a function of the poles of H(z) only.
The task of the zeros would be to shape the magnitude response.
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Basic principles

® (b) Choosing the form of the transfer function: one of the most convenient ways to
describe an IIR H(z) is the cascade form decomposition, because the filter stability

can be easily tested and controlled.

e In this case, the coefficient vector y is of the form
/ / / /
Y = (Y11, Y21, Ma1, M2, .. Y74, Y2i, Mai, M2, .. ., Ho) (169)

e Unfortunately, the expressions for the magnitude and group delay of H(z), as a

function of the coefficients of the second-order sections, are very complicated.

e The same comment holds for the expressions of the partial derivatives of H(z) with

respect to the coefficients, which are also required in the optimization algorithm.

e An alternative solution is to use the poles and zeros of the second-order sections

represented in polar coordinates as parameters.
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e In this case, the coefficient vector 'y becomes
Y = (rz1 y (I)Z1 y Tp1, (I)p1 ooy Vziy (I)Ziarpb (I)pia Y k'O) (170)
and the magnitude and group-delay responses are respectively expressed as

[1 — 27,4 cos(w—d)zi)—l—rﬁi} 7

M(Y,(U) — kO
H [1—21‘191 cos(w—cl)pi)—l—rf)i}

N|—=

1
1 _2 z1 z1i %i 2
y [ rzicos(W+d,i)+T } a71)

[1—2r1p4 cos(w—l—d)pi)—l—r%i]

No[—

N 1—1p1 cos(w—dpi) 1—7pi cos(W+dpi)

1—2rp4 cos(w—d)pi)—i-f%i 1—2rpi cos(w+dpi) ‘|‘T%i

(v, w)

i=1
1—1,icos(wW—d,i) B 1—1,icos(W+d,i)

1—2r,i cos(w—@,i) —l—rﬁi 1—2r,icos(w+d,i)+T

— | (172)

zi
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Basic principles

® In an optimization problem such as this, the first- and second-order derivatives should

be determined using closed-form formulas to speed up the convergence process.

e In fact, the use of numerical approximation to calculate such derivatives would make

the optimization procedure too complex.
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Basic principles

e The partial derivatives of the magnitude and group delay with respect to the radii and
angles of the poles and zeros, that are required in the optimization processes, are:

oM T,i—cos(Ww—@yi) T,i—cos(Ww+Pzi)
- M
T2+ v @) [1 i cos(W—bo) 412, 1211 cos(wt o)+ 72,
(173)
oM Toisin(w—d,1i) Tzisin(w+ 1)
— M _
0d2i v, @) {1 —2rgicos(w+dzi)+12  1—2r, cos(W+d,i)+T2
(174)
ot (1—1—1‘129i)cos(w—d)pi)—2rpi N (1—1—1‘129i)cos(w—|—d)pi)—2rpi
OTpi [1—2rpicos(w—c|)pi)—|—1‘%i}2 [1—ericos(w—|—c|)pi)—|—1‘%i}2
(175)

ot T‘pi(1—1‘%i)5in(w—¢pi) B T‘pi(1—1‘%i)5in(w+¢pi)
Obpi []_eriCOS(w_(bpi)—l_T%i}z [1—2Tpi005(w+¢pi)‘|‘ﬂz>i}2

(176)
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Basic principles

oM 9M ot o : . _
[
We also need aTpi’ dhpL’ ATLL and 3. which are similar to the expressions

1

above.

e These derivatives are part of the expressions of the partial derivatives of the

objective function with respect to the filter poles and zeros which are the derivatives

used in the optimization algorithms employed.

® These derivatives are:

K
aLZPM(Y) _ Z szM(ek) oM (M(Y, ek) B f(ek))2p_1 (177)
ﬁrzi - aTZi
oLopt(y) . 0T 2p1
0T, - ]; 2pWo (6x) oT,; (t(v,0x) — T(6x)) (178)
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Basic principles

e Analogously, we need the expressions for oL2p M(Y) 0Ly M(Y) 0L2p M(Y)

0P .i ’ OTpi ’ 0dpi ’
aLébe(.Y) | aL%p T_(Y) and aszT(.y) , which are similar to the expressions given
zi rpl acbpl

above.

e |tis important to note that we are interested only in generating stable filters. Since we
are performing a search for the minimum of the error function on the parameter
space [, the region in which the optimal parameter should be searched is a

restricted subspace 'y ={y | Tpi < 1, Vi
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Basic principles

e (c) Choosing the optimization procedure: there are several optimization methods
suitable for solving the problem of filter approximation. Choosing the best method
depends heavily on the designer’s experience in dealing with this problem and on the

available computer resources.

e The optimization algorithms used are such that they will converge only if the error
function has a local minimum in the interior of the subspace I's and not on the

boundaries of T’s.

® In the present case, this is not a cause for concern because the magnitude and group
delay of digital filters become large when a pole approaches the unit circle, and, as a

consequence, there is no local minimum corresponding to poles on the unit circle.
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Basic principles

e In this manner, if we start the search from the interior of [, that is, with all the poles
strictly inside the unit circle, and constrain our search to the subspace [, a local

minimum not located at the boundary of ['s will be reached for certain.

e Due to the importance of this step for setting up a procedure for designing IIR digital
filters, for the sake of completeness and clarity of presentation, its discussion is left to

the next subsection, which is devoted exclusively to it.
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Multi-variable function minimization method

e An n-variable function F(x) can be approximated by a quadratic function in a small

region around a given operating point.

e For instance, in a region close to a point Xy, we can write that

]
F(xx + 8x) =~ F(xi) +g' (xx)0x + ZSLH(Xk)Sk (179)
where
) = oF OF E (180)
9 ) = ox1 0xy 7 Oxn

is the gradient vector of F(x) at the operating point xy.

136



i CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Multi-variable function minimization method

e The Hessian matrix H(xy ) of F(x) defined as

Q°F Q°F o Q°F
Ox? 0X10X2 0Xx10Xn
Q°F 9°F o Q°F
0x>0X1 0x2 0Xx20X
H(xy) = 2 " (181)
d°F 0°F o s
| 0%x,,0X1 00X 0X> ox2 i

e Clearly, if F(x) is a quadratic function, the right-hand side of equation (179) is

minimized when

81 = —H ' (x1)g(xx) (182)
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Multi-variable function minimization method

e If, however, the function F(x) is not quadratic and the operating point is far away from
a local minimum, we can devise an algorithm which iteratively searches the minimum

in the direction of &y as

X1 = Xk + 8k = xi — oxH ™" (x)g (xi) (183)

where the convergence factor, ., is a scalar that minimizes, in the kth iteration,
F(xx + 8k ) in the direction of 8.

e There are several procedures for determining the value of xy, which can be

considered as two classes: exact and inexact line searches.
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Multi-variable function minimization method

e As a general rule of thumb, an inexact line search should be used when the
operating point is far from a local minimum, because in these conditions it is

appropriate to trade accuracy for faster results.

e However, when the parameters approach a minimum, accuracy becomes an

important issue, and an exact line search is the best choice.

e The minimization procedure described above is widely known as the Newton
method. The main drawbacks related to this method are the need for computation of
the second-order derivatives of the objective function F(x) with respect to the

parameters in x and the necessity of inverting the Hessian matrix.
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Multi-variable function minimization method

e Due to these two reasons, the most widely used methods for the solution of the
simultaneous approximation of magnitude and phase are the so-called quasi-Newton

methods.

® These methods are characterized by an attempt to build the inverse of the Hessian
maitrix, or an approximation of it, using the data obtained during the optimization

process.

e The updated approximation of the Hessian inverse is used in each step of the
algorithm in order to define the next direction in which to search for the minimum of

the objective function.

e A general structure of an optimization algorithm suitable for designing digital filters is

given below, where Py is used as an estimate of the Hessian inverse.
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Multi-variable function minimization method

e Algorithm:

— (i) Algorithm initialization:
Set the iteration counter as k = 0.
Choose the initial vector xg corresponding to a stable filter.
Use the identity as the first estimate of the Hessian inverse, that is, Py = .
Compute Fo = F(xg).

— (ii) Convergence check:
Check if convergence was achieved by using an appropriate criterion. For
example, a criterion would be to verify if Fi. < € where € is a pre-defined error

threshold. An alternative criterion is to verify that || xi — xx_1 ||*< €’

If the algorithm has converged, go to step (iv), otherwise go on to step (iii).

141



Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Multi-variable function minimization method

e (cont.):

— (i) Algorithm iteration:
Compute g, = g(xk).
Setsy = —Px0x.
Compute & that minimizes F(x) in the direction of sy.
Set 0 = Xk Sk.
Upgrade the coefficient vector, Xy 11 = X + Ox.
Compute Fi11 = F(xw1).
Update Py, generating Py 41 (see discussion below).

Increment k and return to step (ii).
— (iv) Data output:
Display x* = x3 and F* = F(x*).
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Multi-variable function minimization method

e \We should note that the way that the estimate Py of the Hessian inverse is updated
was omitted from the above algorithm. In fact, what distinguishes the different

guasi-Newton methods is solely the way that Py is updated.

e The most widely known quasi-Newton method is the Davidson-Fletcher-Powell

method. Such an algorithm updates Py in the form

518,  PrAgyAg; Py
StAgy  AgiPrAgy

(184)

where Agy, = gy — gy_1.
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Multi-variable function minimization method

e However, our experience has shown that the Broyden-Fletcher-Goldfarb-Shannon

(BFGS) method is more efficient. This algorithm updates Py in the form

AgLPkAgk) 518 SkAgiPk +PIAGSL o

Pk_|_] — Pk ‘|‘ (] —l_
AgLSk Ag]zék Ag]zék
with Agy. as before.

e |t is important to notice that, in general, filter designers do not need to implement an
optimization routine as they can employ optimization routines already available in a

number of computer packages.

e \What the designers are required to do is to express the objective function and

optimization problem in a way that can be input to the chosen optimization routine.
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Example 6.5

e Design a bandpass filter satisfying the specifications below:

M(w) =1, for0.2n< w < 0.57

M(w) =0, for0 < w <0.lmand 0.6t < w <7 (186)

T(w) =1L, for0.2mr < w < 0.57

where L is constant.
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Example 6.5 - Solution

® Since it is a simultaneous magnitude and phase approximation, the objective function
IS given by equation (168), with the expressions for magnitude and group delay, and

their derivatives given in equations (171)—(178).

e \We can start the design with an eighth-order transfer function with the characteristics

given in Table 8.

e This initial filter is designed with the objective of approximating the desired
magnitude specifications, and its average delay in the passband is used to estimate

an initial value for L.
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Example 6.5 - Solution

Table 8: Characteristics of the initial bandpass filter. Gain constant: Hy = 0.0588.

Filter zeros (1, ; ¢, [rad]) Filter poles (Tp . ; ¢p [rad])

T2, =1.0; ¢, = 0.1740 1r,, =0.8182;d,, = 0.3030
., =1.0; ¢, =—-0.1740 r,, =0.8182;¢,, = —0.3030
T2, =0.7927;b., = 0.5622  1p, =0.8391;p, = 0.4837
v, =0.7927;b,, = —0.5622 1,, = 0.8391;dp, = —0.4837
T2, = 1.0, &bz, = 09022 1, =0.8346;p, = 0.6398
T2, = 1.0, ¢, =—-0.9022 1, =0.8346;,, = —0.6398
., =1.0; ¢, = 26605 1,, =0.8176;d,, = 0.8053
Tz = 1.0; ¢z =—2.6605 1,5, =0.8176;d,, = —0.8053
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Example 6.5 - Solution

® In order to solve this optimization problem, we used a quasi-Newton program based

on the BFGS method.

e Keeping the order of the starting filter at n = 8, we ran 100 iterations without

obtaining noticeable improvements.

e \We then increased the numerator and denominator orders by two, that is, we made

n = 10, and after a few iterations the solution described in Table 9 was achieved.
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Example 6.5 - Solution

Table 9: Characteristics of the resulting bandpass filter. Gain constant: Hpo =

0.058 772 50.
Filter zeros (T,_; ¢, [rad]) Filter poles (1. ; ¢y [rad])
r., =1.0; ., = 0.1232 r,, =0.0; bp, = 0.0
r., =1.0; ., =-0.1232 r,, =0.0; bp, = 0.0
., =0.7748;, ¢., = 05545 r,, =0.9072; ¢,, = 0.2443
r., =0.7748; ¢,, =-—-0.5545 r,, =0.9072; ¢, = —0.2443

r.. =12907; ¢.. = 05545 71, =0.8654; p, = 0.4335
r.. =12907; ¢.. =-05545 71,. =0.8654; p. = —0.4335
r., =1.0; b, = 1.0006 t1,, =0.8740; dp, = 0.6583
r.y =1.0; by =—1.0006 1,y =0.8740; dp, =—0.6583
r., =1.0; b., = 20920 T1p, =0.9152; by, = 0.8604
r2., = 1.0; Gz = —2.0920 Tp,, =0.9152; dp,, = —0.8604
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Example 6.5 - Solution

e Figure 12 illustrates the resulting frequency response.
e The attenuation at the first stopband edges are 18.09 dB and 18.71 dB, respectively.

e The attenuation at the second stopband edges are 18.06 dB and 19.12 dB,

respectively.

e The passband attenuation at the edges are 0.69 dB and 0.71 dB, the two passband
peaks have gains of 0.50 dB and 0.41 dB, whereas the attenuation at the passband

minimum point is 0.14 dB.

e The group-delay values at the beginning of the passband, at the passband minimum,

and at the end of the passband are 14.02 s, 12.09 s, and 14.38 s, respectively.

150



CAMBRIDGE

Diniz, da Silva and Netto ] TGS

Example 6.5 - Solution

200
O,
1501
g—lof 'g' 100 1
. Z 5o :
5 —20h K=
i 8
S g 0
8 30/ P )\
= =50
£ 4
g
S -40f & -100}
—150¢
_50,
‘ ‘ ‘ ‘ ‘ ‘ -200 ‘ ‘ ‘ ‘ ‘
0 0.5 1 15 2 2.5 3 0 0.5 1 1.5 2 2.5
Normalized frequency [rad/s] Normalized frequency [rad/s]
(a) (b)

Figure 12: Optimized bandpass filter: (a) magnitude response; (b) phase response.
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Time-domain approximation

® In some applications, time-domain specifications are given to the filter designer. In
these cases the objective is to design a transfer function H(z) such that the
corresponding impulse response h,, is as close as possible to a given sequence ¢,
forn=0,1,..., (K—1), where

bo+biz '+ bz ™

H(z) = —ho+hiz7 ' +hoz 2+ (187
(z) I farz— T+ +anzN ot+hiz ~+hz = +---(187)

e Since H(z) has (M + N + 1) coefficients, if K = (M + N + 1) there is at least
one transfer function available which satisfies the specifications. This solution can be

obtained through optimization, as follows.
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Time-domalin approximation

e By equating
H(z) =go+ g1z '+ 4+ gmenz M 4.0 (188)

and considering the z-transform products as convolutions in the time domain, we can

write, from equations (187) and (188), that
b;, fori=0,1,... M

N
Z Andi—n = (189)
n=0 0, fori>M
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Time-domalin approximation

e Now, assuming that g,, = 0, for all n < 0, this equation can be rewritten in matrix

form as
i bo _ i Jdo 0 0 0 _ 1
by g1 do 0 0 ¢
b, 92 g1 go 0 “2
_ | | ' o | oo
bm Vi IM—1 gM-—2 o OM-—N ;
0
I 0 | | IM+N gM+N-1 IM+N-2 - OM i aN
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Time-domain approximation

e Which can be partitioned as

155

bo Jdo 0 0 0 1
by g1 9o 0 0 aj
b2 g2 91 go 0 a» | (191)
] bm | IM IM-1 IM-2 IM—N aN
- ]
0 i}
0 OM+1 IM—N-+T aj
ap (192)
JK—1 JK—N-1
O L
i an
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Time-domalin approximation

e Or, equivalently,

b G 1
= (193)
0 (O} Gg a
where g, is a column vector and Gz is an N X N matrix.
e If G3 is nonsingular, the coefficients a are given by
—1

e If G3 is singular of rank R < N, there are infinite solutions, one of which is obtained

by forcing the first (N — R) entries of a to be null.
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Time-domain approximation

e With a available, b can be computed as

1
b = G (195)
a

e The main differences between the filters designed with different values of M and N,
while keeping K = (M 4+ N + 1) constant, are the values of hy, for k > K.
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Time-domain approximation - Approximate approach

e A solution that is in general satisfactory is obtained by replacing the null vector in

equation (193) by a vector € whose magnitude should be minimized.

e |n that manner, equation (193) becomes

b G 1
— (196)
€ g, Gs3 a

e Given the prescribed g,, and the values of N and M, we then have to find a vector a

such that (€'€) is minimized, with
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Time-domain approximation - Approximate approach

e The value of a which minimizes (€'€) is the normal equation solution,
GiGza = —Gig, (198)

e If the rank of G3 is N, then the rank of GgGg is also N, and, therefore, the solution

IS unique, being given by
a=—[G}G3] "' G}y, (199)

e On the other hand, if the rank of G3 is R < N, we should force a; = 0, for

1=20,1,...,(R—1), as before, and redefine the problem.
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Time-domain approximation - Approximate approach

e |tis important to point out that the procedure described above does not lead to a

minimum squared error in the specified samples.

e In fact, the squared error is given by

ee=) (gn—hn)’ (200)

where g, and h,, are the desired and obtained impulse responses, respectively.

e In order to obtain b and a which minimize e'e, we need an iterative process. The

time-domain approximation can also be formulated as a system identification
problem.
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Example 6.6

e Design a digital filter characterized by M = 3 and N = 4 such that its impulse

response approximates the following sequence:

1 1

On — g A+ +e m u(n) (201)

form=0,1,...,7.
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Example 6.6 - Solution

e Using M = 3 and N = 4, one gets

92 =

go
g1
g2
g3

B

g3
g4
g5
96

Jdo
g1
g2

Jds

g2
g3
ga
g5
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g1
g2
g3
ga
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Example 6.6 - Solution

e As G3 is nonsingular, we can use equations (197) and (195) to determine

H(z) = 0.3726z> — 0.6446z% + 0.3312z — 0.0466 (205)
2% —2.2050z3 + 1.6545z% — 0.4877z + 0.0473

which has the exact desired impulse responseforn =0,1,...,7.

® The impulse response corresponding to the transfer function above is depicted in

Figure 13, together with the prescribed impulse response.

® The responses are the same in the first few iterations, and they become distinct for

n > 7/, as expected, because we have only eight coefficients to adjust.
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Example 6.6 - Solution

0.4

0.35}

=
© N ©
Nl W

Impulse response
o
H
(6]

0.1r

0 20 40 60 80 100

Figure 13: Impulse responses: desired (solid line) and obtained (dotted line).
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Do-it-yourself: IIR filter approximations

e Experiment 6.1: The elliptic bandstop filter specified in Example 6.3 can be readily
designed in MATLAB as follows:
Ap = 0.5; Ar = 65;
w1l = 850/5000; w2 = 1150/ 5000;
wpl = 980/5000; wp2 = 1020/ 5000;
wp = [wpl wp2]; wr = [wrl w2];
[n,wn] = ellipord(wp, w, Ap, Ar);
[b,a] = ellip(n, Ap, Ar, wp);

e In this script, commands el | i pordandel | i p require a frequency

normalization such that the Q¢ = 2, thus explaining all divisions by %5 = 5000.

e Similar Butterworth or Chebyshev filters can be designed using
but t er or d-but t er orchebyor d-cheby commands, respectively.
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Do-it-yourself: IIR filter approximations

e The group delay response, determined with the gr pdel ay command, for the

elliptic filter is seen in Figure 14.

e This figure indicates that two similar frequencies within the filter passband can suffer

quite different delays.

e For instance, frequencies f1 = 980 rad/s and > = 990 rad/s are delayed in
approximately 300 and 150 samples, respectively, corresponding in this case to a

difference of about

00—150 150

. = 94 ms

Q.
27t
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Do-it-yourself: IIR filter approximations

350

3007

Group delay [sample]
= N N
(o) o (o)
o o o

(BN
o
(=)

507

0 1
950 1000 1050
Normalized frequency [rad/s]

Figure 14: Group delay response in passband of elliptic filter.
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Do-it-yourself: IIR filter approximations

e Figure 15 compares the input and output signals for each frequency f1 and f, as
determined by the following script:
Fs = 10000/ (2xpi); Ts = 1/Fs; time = 0:Ts: (1-Ts);
f1 = 980; f2 = 990;
x1 = cos(fl.xtime); yl
X2 = cos(f2.xtime); y2

filter(b,a, x1);
filter(b, a, x2);

e \When the input signal presents a richer spectral component, this delay difference

may cause severe distortion on the output signal.

® In such cases, a delay equalizer must be employed or the designer should opt for an

FIR filter with perfectly linear phase.
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Do-it-yourself: IIR filter approximations
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Figure 15: Input (solid line) and output (dashed line) signals for elliptic bandpass filter: (a)

990 rad/s.

980 rad/s; (b) T2

f1
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Do-it-yourself: IIR filter approximations

e Experiment 6.2: Consider the analog transfer function of the normalized-lowpass

Chebyshev filter in Example 6.1, repeated here for convenience

1

Hy(s) = 0.4913
(s) $3 +0.9883s2 + 1.2384s + 0.4913

(206)

e The corresponding discrete-time transfer function H(z) obtained with the bilinear
transformation method with F; = 2 Hz can be determined in MATLAB using the

command lines

b =110.4913]; a = [1 0.9883 1.2384 0.4913]; Fs = 2;

[ bd, ad] = bilinear(b,a, Fs);

where bd and ad receive the numerator and denominator coefficients, respectively,
of H(z) such that

H(z) — 0.0058(z3 +3z% +3z+ 1) o7
2 = 3 0362122 +2.02572 — 0.6175 (207)
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Do-it-yourself: IIR filter approximations

e The magnitude responses of H (s) and H(z) are shown in Figure 16.

M agnitude response [dB]

Frequency [rad/s]

Figure 16: Analog (solid line) and digital (dashed line) magnitude responses related by

bilinear transformation method with F; = 2 Hz.
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Do-it-yourself: IIR filter approximations

® Interesting enough, the bilinear transformation can be implemented as a coefficient

mapping between the two transfer functions.

e If we write

H..(s) — bas™ + NN 4 4 By s+ by 208)
“ - ﬁNsn+ﬁN—1sN—1+-'-+ﬁ1s+ﬁo

b n bN—] N—1 b b
H(z) = NZ' 4 z + + b1z + by (209)
anz™ +aN=T1zN=1T + ...+t a;z+ ag

and define the coefficient vectors

a=[an ONoT ... ﬁo]T; b= [BN BN_1 Bo]T (210)

a=lan aN_] ... ao]T; b=[bxn bnot ... bo]T (211)
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Do-it-yourself: IIR filter approximations

e One may then write that:

a=PNnp1ANIA (212)

b = Pny1AN41D (213)

2\ 2\ 2
A]\H_] — diag [(T) ’(T) y e ey (T) y ]] (214)

where
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Do-it-yourself: IIR filter approximations

e And PN 1isan (N 4 1) x (N + 1) Pascal matrix with the following properties:
— All elements in the first row are equal to 1.

— Elements of first column are determined, fori=1,2,...,(N+ 1), as

N!

Py = (=11 215
L N i TGRS T (215

— The remaining elements, fori,j = 2,3, ..., (N + 1), are given by
Pij =Pi15+Pig5-1+Pij- (216)
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Do-it-yourself: IIR filter approximations

e In this experiment, since Fs = 2 and N = 3 we get

1 1 1 1] 43 0 0 O |
3 1 1 3 0 42 0 0
PNyl = ; ANt = (217)
3 -1 -1 3 0 0 4 0
L = 0 00 1
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Do-it-yourself: IIR filter approximations

e Such that

a; | | e 16 4 1| 1 | | 852577

ay | | —192 =16 4 3 []0.9883 | |—201.3853 18
a; 192 —16 —4 3 ||1.2384 172.7075

a0 | | —64 16 —4 1 ||04913| | —52.6495
by | [ 64 16 4 1] o | [04913]

by | [ —192 —16 4 3 0 |_[14739 16
b 192 —16 —4 3 0 1.4739

bo | | —64 16 —4 1 [|04913| [04913

which correspond to the same discrete-time transfer function as before, after proper

normalization forcing an = 1.
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