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Introduction

e In this chapter, we will study the approximation schemes for digital filters with
finite-duration impulse response (FIR) and we will present the methods for
determining the multiplier coefficients and the filter order, in such a way that the

resulting frequency response satisfies a set of prescribed specifications.

® In some cases, FIR filters are considered inefficient in the sense that they require a
high-order transfer function to satisfy the system requirements when compared to the

order required by digital filters with infinite-duration impulse response.

e However, FIR digital filters do possess a few implementation advantages such as a
possible exact linear-phase characteristic and intrinsically stable implementations,
when using non-recursive realizations. In addition, the computational complexity of
FIR digital filters can be reduced if they are implemented using fast numerical

algorithms such as the fast Fourier transform.
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Introduction

e \We start by discussing the ideal frequency response characteristics of commonly
used FIR filters, as well as their corresponding impulse responses. We include in the
discussion lowpass, highpass, bandpass, and bandstop filters, and also treat two

other important filters, namely differentiators and Hilbert transformers.

e \We go on to discuss the frequency sampling and the window methods for
approximating FIR digital filters, focusing on the rectangular, triangular, Bartlett,
Hamming, Blackman, Kaiser, and Dolph-Chebyshev windows. In addition, the design

of maximally flat FIR filters is addressed.
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Introduction

e Following this, numerical methods for designing FIR filters are discussed. A unified
framework for the general approximation problem is provided. The
weighted-least-squares (WLS) method is presented as a generalization of the
rectangular window approach. We then introduce the Chebyshev (or minimax)
approach as the most efficient form, with respect to the resulting filter order, to
approximate FIR filters which minimize the maximum passband and stopband
ripples. We also discuss the WLS-Chebyshev approach, which is able to combine
the desired characteristics of high attenuation of the Chebyshev scheme with the low

energy level of the WLS scheme in the filter stopband.

e \We conclude the chapter by discussing the use of MATLAB for designing FIR filters.
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Ideal characteristics of standard filters

® In this section, we analyze the time and frequency response characteristics of
commonly used FIR filters. First, we deal with lowpass, highpass, bandpass, and
bandstop filters. Then, two types of filters widely used in the field of digital signal
processing, the differentiators and Hilbert transformers, are analyzed, and their

implementations as special cases of FIR digital filters are studied.

e The behavior of a filter is usually best characterized by its frequency response
H(e'®). As seen in Chapter 4, a filter implementation is based on its transfer

function H(z) of the form
H(z)= ) h(m)z ™" (1)

e The FIR filter design starts by calculating the coefficients h(mn) which will be used in

one of the structures discussed in Section 4.2.
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Ideal characteristics of standard filters

e As seen in Section 2.8, the relationship between H(e'® ) and h(n) is given by the

following pair of equations:

H(e) = ) h(n)e " 2)
1 ™ . .
h(n) = —J H(e!®)e! " dw (3)
2t ).

e In what follows, we determine H(e'® ) and h(n) related to ideal standard filters.
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Lowpass, highpass, bandpass, and bandstop filters

e The ideal magnitude responses of some standard digital filters are depicted below.

IHE™) ¢ IHE™)| 4
1 _ 1
f f —> } } >
(a) W, T 21 W (b) 0 W T 21 w
IHE™)| 4 IHE™) 4
1 1 _
; f — f f >
(C) 0 (,Ocl Q)CZ TT 27T w (d) 0 (Dcl (.L)Cz Tt 21T w

Figure 1: Ideal magnitude responses: (a) lowpass; (b) highpass; (c¢) bandpass; (d) band-

stop filters.
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Lowpass, highpass, bandpass, and bandstop filters

e For instance, the lowpass filter, as seen in Figure 1a, is described by

» 1, forlw| < we
H(e™)| = (4)
0, forw. < |w|<m

e Using (3), the impulse response for the ideal lowpass filter is

(W
w —=, form =0
1 ¢ T
hin) = — e “Mdw =< (5)
21t ), sin(wen)
¢ . form #0
\ m

e One should note that in the above inverse transform calculations we have supposed

that the phase of the filter is zero.

10
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Lowpass, highpass, bandpass, and bandstop filters

e From Section 4.2.3, we have that the phase of an FIR filter must be of the form

oM . .
e Y72 where M is an integer.

e Therefore, for M even, it suffices to shift the above impulse response by %

samples. However, for M odd, % IS not an integer, and the impulse response must

be computed as

‘] r ¢ M
hin) = — e PP qw

= = (6)

11
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Lowpass, highpass, bandpass, and bandstop filters

e Likewise, for bandstop filters, the ideal magnitude response, depicted in Figure 1d, is
given by

(

1, for 0<|w| < we,

H(e') =< 0, for We, < |w| < we, (7)

L1, for we, <lw| <7

e Then, using (3), the impulse response for such an ideal filter is

1 We, _ 7T _ —We,
h(n) = — [J e/“dw + J e/“dw + J ejwndw]
27

—Wec, We, —7T
( _
1—|—wc1ﬂwcz, forn =0
=9 1 (8)
p— [sin(w¢,n) —sin(we,m)], forn#0
\

12
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Lowpass, highpass, bandpass, and bandstop filters

e Again, the above impulse response is valid only for zero phase. For non-zero linear

phase, the discussion following equation (5) applies.

e Following an analogous reasoning, one can easily find the magnitude responses of

the ideal highpass and bandpass filters, depicted in Figures 1b and 1c, respectively.

e Table 1 (Subsection 5.2.4) includes the ideal magnitude responses and their
respective impulse responses for the ideal zero-phase lowpass, highpass, bandpass,

and bandstop filters. The nonzero-phase case is considered in Exercise 5.1.

13
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Differentiators

e An ideal discrete-time differentiator is a linear system that, when samples of a
band-limited continuous signal are used as input, the output samples represent the

derivative of the continuous signal.

e More precisely, given a continuous-time signal X 4 (t) band-limited to [—%, %)
when its corresponding sampled version X(n) = x4 (nT) is input to an ideal
differentiator, it produces the output signal, y(m), such that

dxq(t)

y(n) = |, 9)

e If the Fourier transform of the continuous-time signal is denoted by X4 (jQ2), we

have that the Fourier transform of its derivative is jO X (jQ).

14
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Differentiators

e Therefore, an ideal discrete-time differentiator is characterized by a frequency

response, up to a multiplicative constant, of the form
H(e'®) = jw, for -t < w < 7 (10)

e The magnitude and phase responses of a differentiator are depicted in Figure 2.

15
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Differentiators
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n
2
—2Tt —TT Lt 2TC w
] —n
2
(b)

Figure 2: Characteristics of an ideal discrete-time differentiator: (a) magnitude response;

(b) phase response.

16
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Differentiators

e Using equation (3), the corresponding impulse response is given by

1 (™ -
h(in) = —J jwe' Tt dw
2]

(

0, forn =0
=9\ w  TA\1T (—1)m

L jon (Y% . f
27 [e (n jn2>] B n ’ orm 70

\ 7T

(11)

e One should note that if a differentiator is to be approximated by a linear-phase FIR

filter, one should necessarily use either a Type-IIl or a Type-IV form.,

17
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Differentiators

e In fact, using an argument similar to the one following equation (5), we can see that
the above equation can be used only in the case of Type-Ill filters. For Type-IV filters,

we must perform a derivation similar to the one in equation (6).

18
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Hilbert transformers

e The Hilbert transformer is a system that, when fed with the real part of a complex
signal whose Fourier transform is null for —7t < w < 0, produces at its output the

imaginary part of the complex signal.

e In other words, let x(1) be the inverse Fourier transform of X(e!®) such that
X(e!?) =0, —t < w < 0. The real and imaginary parts of x(1), xg (1) and

x1(n), are defined as

x(n) +x*(m) )
2

x(n) —x*(n)
2] )

Re{x(n)} =

’ (12)
Im{x(n)} =

19
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Hilbert transformers

e Hence, their Fourier transforms, Xg (e!®) = F{Re{x(n)}} and
Xi(e'?) = Flim{x(n)}}, are

X(e!) + X*(e7¥)

jwy _
e : ’ (13)
w,  X(e) =X (e71v)
X1(e'™) = .
2] y
e For —t < w < 0, since X(e!®) = 0, we have that
_ X>|< —jw )
Xgr(e') = (62 |
X* (1) 0 (14)
X1(e') = >
/

20
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Hilbert transformers

e And, for 0 < w < 7, since X*(e™!¥) = 0, we also have that

ja 3\
Xgr(e'Y) = X(ez )
e ( (15)
X1(e!”) = —] ; /

e From equations (14) and (15), we can easily conclude that

X1(e!?) = —jXg (), for0<w<m
’ (16)

X1(e!?) = jXgr(e!®), for —mt<w<0 )

21
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Hilbert transformers

e These equations provide a relation between the Fourier transforms of the real and
imaginary parts of a signal whose Fourier transform is null for —7t < w < Q. It thus
implies that the ideal Hilbert transformer has the following transfer function:

| —j, for0<w<m
H(e™) = (17)
j, for—t<w<0

e The magnitude and phase components of such a frequency response are depicted in

Figure 3.

22
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Hilbert transformers

[HE)| t
(a) —2Tt —In T 2T
0@ *
Tt
] 2
—2T1 —T TT 21T
- L
2
(b)

Figure 3: Characteristics of an ideal Hilbert transformer: (a) magnitude response; (b)

phase response.

23
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Hilbert transformers

e Using equation (3), the corresponding impulse response for the ideal Hilbert

transformer is given by

: 0, forn =20

7T 0
J—jejw“dw+J el Mdw | = {
0 o — [1—(=1)™, forn #£0

(18)

e By examining equation (17) we conclude, as in the case of the differentiator, that a
Hilbert transformer must be approximated, when using a linear-phase FIR filter, by

either a Type-IIl or Type-IV structure.

24
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Hilbert transformers

e An interesting interpretation of Hilbert transformers comes from the observation that
equation (17) implies that every positive-frequency sinusoid e!®? input to a Hilbert
transformer has its phase shifted by —% at the output, whereas every
negative-frequency sinusoid e /¢ has its phase shifted by —|—§ at the output, as

seen in Figure 3b.

e This is equivalent to shifting the phase of every sine or cosine function by —%.
Therefore, an ideal Hilbert transformer transforms every “cosine” component of a

signal into a “sine” and every “sine” component into a “cosine”.

25
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Summary

e Table 1 summarizes the ideal frequency responses and corresponding impulse
responses for the basic lowpass, highpass, bandpass, and bandstop filters, as well

as for differentiators and Hilbert transformers.

e By examining this table, we note that the impulse responses corresponding to all
these ideal filters are not directly realizable, since they have infinite duration and are
noncausal. In the remainder of this chapter, we deal with the problem of
approximating ideal frequency responses, as the ones seen in this section, by a

digital filter with a finite-duration impulse response.

26



Diniz, da Silva and Netto

B CAMBRIDGE

%> UNIVERSITY PRESS

Summary

Table 1: Ideal frequency characteristics and corresponding impulse responses for low-

pass, highpass, bandpass, and bandstop filters, as well as for differentiators and

Hilbert transformers.

Filter type  Magnitude response Impulse response
[H(e) h(n)
( wc
— formn =0
1, for0 < |w| < we m
Lowpass { ]
0, forwe < w| <7 — sin(wen), forn #0
.\ 7N
Wc
0, for0 < |w| < we T—— forn =0
Highpass 17
1, forwe <|lw|l <7 —— sinfwen), form #0
n

27
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Summary
Filter type = Magnitude response Impulse response
[H(e')] h(n)
(
0, for0<|w| < w [ (We, — W
) _‘ ‘ C1 ( ()] C1)) fOl‘Tl:O
Bandpass ¢ 1, forwe, < lw| < we, < m
— [sin(we, M) —sin(we,n)], form #0
| 0, forwe, <|w| < (7 (Wezm) (we,n], 7
p
1, for0 <|w| < w ( We, — W
’ = — 1—( 2 C1), forn =0
Bandstop ¢ 0, forwe, < |w| < we, 1 1 n
— [sin(we,n) —sin(we,M)], forn #0

1, forwe, <|lw|<m

. 7N

28
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Summary
Filter type Frequency response Impulse response
H(e") h(n)
0, formn =0
Differentiator jw, for—t<w<m (—1)™
, forn #0
n
Hilbert —j, for0<w<m 0, forn =0
]
transformer j, for —m<w<O0 p— [1—(=1)"], forn#0

29
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FIR filter approximation by frequency sampling

® In general, the problem of FIR filter design is to find a finite-length impulse response
h(n), whose Fourier transform H(e!® ) approximates a given frequency response

well enough.

® As seen in Section 3.2, one way of achieving such a goal is by noting that the DFT of

a length-N sequence h(m) corresponds to samples of its Fourier transform at the
27tk

frequencies W = ==, that is
N—1
H(e!) = ) h(n)e /®" (19)
n=0
and then
2 Nl 2
.27tk 2tkn
H(e ") =) h(n)e "N fork=0,1,...,(N—1) (20)
n=0

30
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FIR filter approximation by frequency sampling

e |t is then natural to consider designing a length-N FIR filter by finding an h(n)

whose DFT corresponds exactly to samples of the desired frequency response.

e In other words, h(m) can be determined by sampling the desired frequency
response at the N points eij_ﬁk and finding its inverse DFT. This method is generally

referred to as the frequency sampling approach.

e More precisely, if the desired frequency response is given by D (w ), one must first

find

. k
Alklel®k) —p [ Ls
(ke N

),fork:0,1,...,(N—1) (21)

where A (k) and 8(k) are samples of the desired amplitude and phase responses,

respectively.

31
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FIR filter approximation by frequency sampling

e If we want the resulting filter to have linear phase, h(n) must be of one of the forms
given in Subsection 4.2.3. For each form, the functions A (k) and (k) present

particular properties.
e \We then summarize the results for these four cases separately.

e Obs.: To maintain consistency with the notation in Subsection 4.2.3, in the following

discussion we will use the filter order M = N — 1 instead of the filter length N.

32
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FIR filter approximation by frequency sampling

e Type |: Even order M and symmetrical impulse response. In this case, the phase

and amplitude responses must satisfy

kM
= — f < k < 22
0(k) M_I_],orO_k_M (22)
M
and then, the impulse response is given by

_ M -

] k(1 + 2n)
h(n) = A0)+2) (—1*A(k 24
R ves BAUREDMEURAULSSS Ve (24
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FIR filter approximation by frequency sampling

e Type Il: Odd order M and symmetrical impulse response. The phase and amplitude

responses, in this case, become

§
—ﬂkM, forOSkg—Mz_1
M + 1
O(k) = < M (25)
\T[_M—I—V forM2+3§k§M
Ak) =AM—k+1), for1 <k < Mtl (26)
M + 1
A( i ):o @)
2
and the impulse response is
_ M -
1 k(1 4 2n)
h(n) = A(0) + 2 —1)*A(k 28
()= g |AOF2 X DA eos TGS 28)

forn=0,1,..., M.

34
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FIR filter approximation by frequency sampling

e Type lll: Even order M and antisymmetric impulse response. The phase and

amplitude responses are such that

(14+2r)m  ©wkM

_ _ <k<

0(k) 5 M_|_1,for1‘€Z and 0 <k<M (29)
M

A(k)zA(M—k-I-]),fOHSkST (30)

A(0) =0 (31)

and the impulse response is given by

(32)

forn=0,1,..., M.

35
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FIR filter approximation by frequency sampling

e Type IV: Odd order M and antisymmetric impulse response. In this case, the phase

and amplitude responses are of the form

§
E_ﬂkM, for1§k§—MZ_1
2 M+
Ok) = ¢ M (33)
T f M+1 < <
VS or 55— <k<M
Ak) =AM —-k+1), for1 <k <M (34)
A(0) =0 (35)
and the impulse response then becomes
_ M1 -
1 M1 M+1 K - mk(142n)
= — | (— AL —— |+2 ) (—D*A(k
) = gy |0 A(TS) 2 S AR sn

(36)

36
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Table 2: Impulse responses for linear-phase FIR filters with frequency sampling approach.

Filter type Impulse response Condition
h(n),for n=0,1,....M

M
Type | M:— " A(0) + Zk:1 (—1)* A(k) cos Ttk](\/]l;l:?n)

M1
Tpel | Al0)+2 2 CF AR e A (ML) =0

M
Type Il Mi 1 k; (1% T A(K) sin ”k&i?“) A(0) =0
M1

Type IV ML 1 (—1 )MT“+“A<MT+1> 42 k; (—1)*A(K)sin ”k&jj“) A(0) =0
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Example 5.1

e Design a lowpass filter satisfying the specification below using the frequency

sampling method:

M = 52
Q, = 4.0rad
- rad/s -
Q, = 4.2rad/s
Qs = 10.0rad/s |

e Obs.: Note that in this text, in general, the variable () represents an analog

frequency, and the variable w a digital frequency.

38
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Example 5.1 - Solution

e We divide the [0, Q] interval into (M + 1) = 53 sub-intervals of same length

QS H S
N7 each starting at (y = M+1k fork =0,1,..., M.

e According to the prescribed specifications, O_p and (), lie close to the extremes

S

k]D:{(M—I—l)x?1 J L53><—J—21 (38)

K, {(MJH) gJ L53><—J—22 39)

e Thus, we assign

I, for0<k<k,
Ak) = . (0)
0, fork, <k< 5

39
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Example 5.1 - Solution

e Then, one can employ the following MATLAB script, implementing the first row in
Table 2, to design a Type | lowpass filter using the frequency sampling method:
M = 52; N = M+1,;

Omega p = 4; Omega r = 4.2; Omega_s = 10;
kp = floor(N *Omega_p/Omega_5s);
kr = floor(N *Omega_r/Omega_5s);
A = [ones(1,kp+l) zeros(1,M/2-kr+1)];
k = 1:M/2;
for n=0:M,
h(n+l) = A(1) +
2+=sum((-1)."k. *A(k+1). *cos(pi. *kx*(1+2 *n)/N));
end;
h = h./N;

e Using this script, one ends up with the set of coefficients shown in Table 3.

40
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Example 5.1 - Solution

Table 3: Coefficients of the lowpass filter designed with the frequency sampling method.

h(0) to h(26)

h(0) = —0.0055 h(7) =—0.0202 h(14)=—0.0213 h(21)= 0.0114
h(1)= 0.0147 h(8) = 0.0204 h(15)= 0.0073 h(22) = —0.0560
h(2) = —0.0190 h(9) =-0.0135 h(16)= 0.0118 h(23)= 0.1044
h(3)= 0.0169 h(10)= 0.0014 h(17)=—0.0301 h(24) = —0.1478
h(4) = —0.0089 h(11)= 0.0124 h(18)= 0.0413 h(25)= 0.1779
h(5) = —0.0024 h(12) = —0.0231 h(19) = —0.0396 h(26) = 0.8113
h(6) = 0.0133 h(13)= 0.0268 h(20)= 0.0218

41
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Example 5.1 - Solution

e The corresponding magnitude response is shown in Figure 4.

10

Magnitude resposne [dB]

1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
Frequency [rad/s]

Figure 4: Magnitude response of the lowpass filter designed with the frequency sampling

method.

42
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FIR filter approximation by frequency sampling

e By examining the magnitude response shown in Figure 4, one notices that there is a
great deal of ripple both at the passband and at the stopband. This is the main

reason why this method has not found widespread use in filter design.

e This is not a surprising result, because the equations derived in this section
guarantee only that the Fourier transform of h(n) and the desired frequency

response D (w) (expressed as a function of the digital frequencies, that is,

27tk

w = 27135 — (T) coincide at the M + 1 distinct frequencies M7 for

k=0,1,...,(M+ 1), where M is the filter order.

e At the other frequencies, as is illustrated in Figure 5, there is no constraint on the

magnitude response, and, as a consequence, no control over the ripple d.

43
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FIR filter approximation by frequency sampling

211
M+ 1

Figure 5: The desired magnitude response and the Fourier transform of h(n) coincide

only at the frequencies % when using the frequency sampling approxima-

tion method.
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FIR filter approximation by frequency sampling

® An interesting explanation of this fact comes from the expression of the inverse
Fourier transform of the desired frequency response D (w), which, from

equation (3), is given by

1
27

7T 27
J D(w)e*™dw = lJ D(w)e!*™dw (41)

hin) = 27

e If we try to approximate the above integral as a summation over the discrete

27tk 27

frequencies = Z”k , by substituting w — == and dw — T, we end up with an

approximation, d( ), of h(n) given by
N—T N—T
] ZT[k 2tkn 27T ] Zﬂk 2tkn
= — D S TN — _ — D _ -
d(n) 27‘[% (N)e TN NT; (N)e ;

e Hence, we see that d(n) represents the IDFT of the sequence D( ) for

k=0,1,..,(N—1).

(42)

45
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FIR filter approximation by frequency sampling

e However, considering that the argument of the integral in equation (41) is
D(w)ej“m, the resolution of a good sampling grid for approximating it would have

to be of the order of 10% of the period of the sinusoid /™.

e This would require a sampling grid with a resolution of the order of 1ON In

equation (42) we are approximating the integral using a sampling grld with resolution

27

. and such approximation would only be valid for values of n < _o

e This is clearly not sufficient in most practical cases, which explains the large values

of ripple depicted in Figure 4.
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FIR filter approximation by frequency sampling

e One important situation, however, in which the frequency sampling method gives
exact results is when the desired frequency response D (w ) is composed of a sum
of sinusoids equally spaced in frequency. Such a result is formally stated in the

following theorem.

e Theorem: If the desired frequency response D(w) is a finite sum of complex

sinusoids equally spaced in frequency, that is

N

D(w) = Z a(n)e ien (43)

TL:NO

then the frequency sampling method yields exact results, except for a constant

group-delay term, provided that the length of the impulse response, N, satisfies
N > N7 —Ng + 1.
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FIR filter approximation by frequency sampling

e Proof: The theorem essentially states that the Fourier transform of the impulse
response, h(n), given by the frequency sampling method is identical to the desired

frequency response D (w), except for a constant group-delay term.

e That is, the above theorem is equivalent to

]—'{IDFT [D (2;‘—k>]} ~ D(w) (a2)

where F{-} is the Fourier transform.

® The proof becomes simpler if we rewrite equation (44) as

D (i:—k> =DFT{F ' [D(w)l} (45)

for k=0,1,...,(N—1).
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FIR filter approximation by frequency sampling

e For a desired frequency response in the form of equation (43), the corresponding

inverse Fourier transform is given by

2

0, forn < Np
din) =< a(n), form=Np,(Nog+1),...,Nj (46)
0, form > Nj

\

e The length-N DFT of the length-N signal composed by the non-zero samples of
d(n), H(k), is then equal to the length-N DFT of a(n ), adequately shifted in time
to the intervaln € [0, N — 1].
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FIR filter approximation by frequency sampling

e Therefore,if N > N7 — Ny + 1, we get that

H(k) = DFT [a(n’ + Np)]

N-—1 -
= Z a(n’+No)e_’%“/
n’=0
N-—1 5
= Y AW +Nole R
n’=0
N+Ngy—1
_ Z d(n)e—jzﬁ—k(n—No)
n=N g
Ny
:eJZNLkNO Z d(n)e_JzNLkn
n=Nyg
_ J5RENop (Z%k) (47)

for k=0,1,...,(N — 1), and this completes the proof.
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FIR filter approximation by frequency sampling

e This result is very useful whenever the desired frequency response D (w) is of the
form described by equation (43), as is the case in the approximation methods

discussed in Section 5.5 and Subsection 5.6.2.
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FIR filter approximation with window functions

e For all ideal filters analyzed in Section 5.2, the impulse responses obtained from

equation (3) have infinite duration, which leads to non-realizable FIR filters.

e A straightforward way to overcome this limitation is to define a finite-length auxiliary
sequence h/(n), yielding a filter of order M, as

’

NI

h(n), forn| <
h'(n) = < (48)

M
0 for n| > =

assuming that M is even.
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FIR filter approximation with window functions

e The resulting transfer function is written as
%
H'(z) =h(0)+ Y (h(-m)z" +h(n)z ™) (49)

—M
e This is still a noncausal function which we can make causal by multiplying it by z7 2,

without either distorting the filter magnitude response or destroying the linear-phase

property.

e The example below highlights some of the impacts that the truncation of the impulse

response in equations (48) and (49) has on the filter frequency response.
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Example 5.2

e Design a bandstop filter satisfying the specification below:

M = 50 ‘
Q.. = Zrad/s
o = a e/ > (50)
Qc, = Frad/s
Qs = 2mrad/s |
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Example 5.2 - Solution

e Applying equations (48) and (49) to the corresponding bandstop equations in

Table 1, one may use the script:

M = 50;

wcl = pi/4; wec2 = pi/2; ws = 2 * pI;

n = 1:M/2;

hO = 1 - (wc2 - wcl)/pi

haux = (sin(wcl. +*n) - sin(wc2. *n))./(pl. *N);

h = [fliplr(haux) hO haux];
to obtain the filter coefficients listed in Table 4 (only half of them are listed as the
others can be found using h(n) = h(50 — n)).

e The resulting magnitude response is depicted in Figure 6.
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Example 5.2 - Solution

Table 4: Bandstop filter coefficients.

h(0) to h(25)
h(0) = —0.0037 h(7) = 0.0177 h(14)= 0.0494 h(21)= 0.0000
h(1)= 0.0000 h(8) =-0.0055 h(15)= 0.0318 h(22)= 0.1811
h(2) = 0.0041 h(9) = 0.0000 h(16)=—0.0104 h(23)= 0.1592
h(3) = —0.0145 h(10) = 0.0062 h(17)= 0.0000 h(24) = —0.0932
h(4) = —0.0259 h(11) =—0.0227 h(18) = 0.0133 h(25) = 0.7500
h(5) = 0.0000 h(12)=—0.0418 h(19) = —0.0531
h(6) = 0.0286 h(13)= 0.0000 h(20)=—0.1087
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Example 5.2 - Solution

2
0
_ m 1.5 H
Q =,
=2 )
@ -20 3 1l
5 o
2 e ol
g -40 g 0.5
0} [}
E | g o
E _60 - h—
(o)) c
] o -0.5
= =
-80f 4l
-100 ‘ : ; : ; -15 : ; : ; : ;
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
(a) Frequency [rad/s] (b) Frequency [rad/s]

Figure 6: Bandstop filter: (a) magnitude response; (b) passband detail.
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FIR filter approximation with window functions

e The ripple seen in Figure 6 close to the band edges is due to the slow convergence
of the Fourier series h(mn) when approximating functions presenting discontinuities,

such as the ideal responses seen in Figure 1.

e This implies that large amplitude ripples in the magnitude response appear close to
the edges whenever an infinite-length h(n) is truncated to generate a finite-length

filter. These ripples are commonly referred to as Gibbs’ oscillations.

e |t can be shown that Gibbs’ oscillations possess the property that their amplitudes do
not decrease even when the filter order M is increased dramatically. This severely
limits the practical usefulness of equations (48) and (49) in FIR design, because the
maximum deviation from the ideal magnitude response can not be minimized by

increasing the filter length.
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FIR filter approximation with window functions

e Although we can not remove the ripples introduced by the poor convergence of the
Fourier series, we can still attempt to control their amplitude by multiplying the

impulse response h(n) by a window function w(n).

e The window W(m) must be designed such that it introduces minimum deviation from
the ideal frequency response. The coefficients of the resulting impulse response
h/(n) become

h'(n) = h(njw(n) (51)

e In the frequency domain, such a multiplication corresponds to a periodic convolution
operation between the frequency responses of the ideal filter, H(ej‘”), and of the
window function, W(e!®), that is

H'(e/*) = ]

_ J H(e@ YW(ell@~®))gw’ (52)
2t )
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FIR filter approximation with window functions

e \We can then infer that a good window is a finite-length sequence, whose frequency
response, when convolved with an ideal frequency response, produces the minimum

distortion possible.

e This minimum distortion would occur when the frequency response of the window

has an impulse-like shape, concentrated around w = 0, as depicted in Figure 7a.

e However, band-limited signals in frequency are not limited in time, and therefore such
a window sequence would have to be infinite, which contradicts our main
requirement. This means that we must find a finite-length window which has a

frequency response that has most of its energy concentrated around w = 0.

e Also, in order to avoid the oscillations in the filter magnitude response, the sidelobes

of the window magnitude response should quickly decay as |w| is increased.
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FIR filter approximation with window functions

wW(el®) w(el”)
main lobe
secondary lobe 1
secondary lobe 2
- - A% o m
(a) Tt Tm W (b) w

Figure 7: Magnitude responses of a window function: (a) ideal case; (b) practical case.
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FIR filter approximation with window functions

e A practical window function is in general as shown in Figure 7b. The effect of the

secondary lobe is to introduce the largest ripple close to the band edges.

e From equation (52), we see that the main-lobe width determines the transition

bandwidth of the resulting filter.

e Based on these facts, a practical window function must present a magnitude

response characterized by:

— The ratio of the main-lobe amplitude to the secondary-lobe amplitude must be as

large as possible.

— The energy must decay rapidly when |w| increases from O to 7t.

e \We can now proceed to perform a thorough study of the more widely used window

functions in FIR filter design.
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Rectangular window

e A simple truncation of the impulse response as described in equation (48) can be
interpreted as the product between the ideal h(n) and a window given by

’

1, forn| < %
wr(n) = < (53)
0, for|n|> %

e Note that if we want to truncate the impulse responses in Table 1 using the above
equation, and still keep the linear-phase property, the resulting truncated sequences

would have to be either symmetric or antisymmetric around n. = 0.

e This implies that, for those cases, M would have to be even (Type-l and Type-ll|

filters, as seen in Subsection 4.2.3).

e For the case of M odd, the solution would be to shift h(n) so that it is causal and
apply a window different from zero fromn = 0 to n = M — 1. This solution,

however, is not commonly used in practice.
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Rectangular window

e From equation (53), the frequency response of the rectangular window is given by

M
2
W, (e'?*) = e T
_ M
n=—%
- ] —e iw
plw(MFEL) (ML)
—J%
— e

= (54)
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Triangular windows

e The main problem associated with the rectangular window is the presence of ripples
near the band edges of the resulting filter, which are caused by the existence of

sidelobes in the frequency response of the window.

e Such a problem is due to the inherent discontinuity of the rectangular window in the
time domain. One way to reduce such a discontinuity is to employ a
triangular-shaped window, which will present only small discontinuities near its

edges.

e The standard triangular window is defined as

2

w(n) = M+ 2
0, for n| >

+1, for|n| <
(55)

NEGN Ee
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Triangular windows

e A small variation of such a window is called the Bartlett window and is defined by

([ 2n
————— +1, forn| <
Wi (Nn) = < M

0, for n| >

(56)

M
2

M
2

\

e These two triangular-type window functions are closely related. Their main difference
lies in the fact that the Bartlett window presents one null element at each of its
extremities. In that manner, an Mth-order Bartlett window can be obtained by
juxtaposing one zero at each extremity of the (M — 2)th-order standard triangular

window.

® In some cases, an even greater reduction of the sidelobes is necessary, and then

more complex window functions should be used, such as the ones described below.
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Hamming and Hann windows

e The generalized Hamming window is defined as

M

0, for In| >

’

wh(n) = < (57)

NN

\

with 0 < ox < 1,

e This generalized window is referred to as the Hamming window when « = 0.54,

and for o« = 0.5, it is known as the Hann or Hanning window.

e The frequency response for the general Hamming window can be expressed based

on the frequency response of the rectangular window.
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Hamming and Hann windows

e We first write equation (57) as
21

wh(n) =w;(n) [oc—i— (T — &) cos (V)] (58)

e By transforming the above equation to the frequency domain, clearly the frequency
response of the generalized Hamming window results from the periodic convolution
between W,.(e!®) and three impulse functions as

Wi () = W, () 4 [océ(w)Jr (1_7“) 5((»—%“) n (1_7“) 5(w+zmﬂ)] 59)

e And then

Wi () = aW, () + (1 ;oc) W, (ej(w—zﬁ)) n (1 ;oc) " (ej(w+zﬁﬁ))
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Hamming and Hann windows

e From this equation, one notices that W (e!?’ ) is composed of three versions of the
rectangular spectrum W, (€% ): the main component, x W, (e/® ), centered at
w = 0, and two additional ones with smaller amplitudes, centered at

w = £27/M, that reduce the secondary lobe of the main component.

-~

r' ‘| \
- -~ . R RN
/\,'//—L.“\ // \\\ , ““\ ','/'/‘"\‘\/\ / N %
Lot LN \ i/ TAER A ~-"7
-A411 =211 211 411

M+1 M+1 M+1 M+1

Figure 8: The three components of the generalized Hamming window combine to re-

duce the resulting secondary lobes. (Solid line — acW,.(e!®); dashed line —
1_T"‘Wr (ej(‘“_%)); dotted line — 1_T"‘Wr (ej(“”r%)).)
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Hamming and Hann windows

e The main characteristics of the generalized Hamming window are:

— All three W,.(e!*) components have zeros close to W = :I:]\fl‘—i]. Hence, the

main-lobe total width is MaT

— When & = 0.54, the main-lobe total energy is approximately 99.96% of the

window total energy.

— The transition band of the Hamming window is larger than the transition band of

the rectangular window, due to its wider main lobe.

— The ratio between the amplitudes of the main and secondary lobes of the

Hamming window is much larger than for the rectangular window.

— The stopband attenuation for the Hamming window is larger than the attenuation

for the rectangular window.
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Blackman window

e The Blackman window is defined as

( 2 4
0.42 4 0.5cos (%) + 0.08 cos (%) . forn| <

0, for n| >

wg(n) = < (61)

NEGN <

\

e Compared to the Hamming window function, the Blackman window introduces a

second cosine term to further reduce the effects of the secondary lobes of W, (% ).

e The Blackman window is characterized by the following issues:

— The main-lobe width is approximately % which is wider than that for the

previous windows.
— The passband ripples are smaller than in the previous windows.

— The stopband attenuation is larger than in the previous windows.
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Example 5.3

e Design a bandstop filter satisfying the specification below using the rectangular,

Hamming, Hann, and Blackman windows:

M = 80

Q,, =2000rad/s
Q,, =4000rad/s
Qs =10000rad/s |

(62)
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Example 5.3 - Solution

e This time, filter specifications are given in the analog frequency domain. Hence, one
must first normalize _Q]91 and sz before employing a script similar to the one
given in Example 5.2:

M = 80;

Omega cl = 2000; Omega c2 = 4000; Omega s = 10000;
wcl = Omega cl*2+pi/Omega_s; wc2 =

Omega_c2* 2*pi/Omega_s;

n = 1:M/2;
hO = 1 - (wc2 - wcl)/pi;
haux = (sin(wcl. +*n) - sin(wc2. *n))./(pl. *N);

h = [fliplr(haux) hO haux];

to obtain the impulse response using the rectangular window.
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Example 5.3 - Solution

e For the other three windows, one must multiply sample-by-sample h(n) above by
the corresponding window obtained with the MATLAB commands
hamming(M+1); , hanning(M+1); ,andblackman(M+1);

® The resulting impulse responses are shown in Tables 5-8, where only the filter
coefficients for 0 < n < 40 are given, since the remaining coefficients can be
obtained as h(n) = h(80 — n).

e The magnitude responses associated to the four impulse responses listed in
Tables 5-8 are depicted in Figure 9. The reader should notice the compromise
between the transition bandwidth and the ripple in the passband and stopband when
going from the rectangular to the Blackman window, that is, as the ripple decreases,

the width of the transition band increases accordingly.
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Example 5.3 - Solution

Table 5: Filter coefficients using the rectangular window.

h(0) to h(40)
h(0) = 0.0000 h(11)=-0.0040 h(22)=-0.0272 h(33)= 0.0700
h(1) =—-0.0030 h(12)=-0.0175 h(23)= 0.0288 h(34)= 0.0193
h(2) =-0.0129 h(13)= 0.0181 h(24)= 0.0072 h(35)= 0.0000
h(3) = 0.0132 h(14)= 0.0044 h(25)= 0.0000 h(36)= —0.0289
h(4) = 0.0032 h(15)= 0.0000 h(26)=—-0.0083 h(37)=—0.1633
h(5) = 0.0000 h(16) =-0.0048 h(27)=—-0.0377 h(38)= 0.2449
h(6) = —0.0034 h(17)=-0.0213 h(28) = 0.0408 h(39)= 0.1156
h(7) =—0.0148 h(18) = 0.0223 h(29) 0.0105 h(40) = 0.6000
h(8) = 0.0153 h(19) 0.0055 h(30) = 0.0000
h(?) = 0.0037 h(20)= 0.0000 h(31)=—-0.0128
h(10) = 0.0000 h(21)=-0.0061 h(32)=—-0.0612
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Example 5.3 - Solution

Table 6: Filter coefficients using the Hamming window.

h(0) to h(40)
h(0) = 0.0000 h(11)=—0.0010 h(22)=—-0.0167 h(33)= 0.0652
h(1) = —0.0002 h(12)=—0.0047 h(23)= 0.0187 h(34)= 0.0183
h(2) = —0.001T h(13)= 0.0054 h(24)= 0.0049 h(35)= 0.0000
h(3) = 0.0012 h(14)= 0.0015 h(25)= 0.0000 h(36) = —0.0283
h(4) = 0.0003 h(15)= 0.0000 h(26)=—0.0062 h(37)=—0.1612
h(5) = 0.0000 h(16)=—0.0019 h(27)=—0.0294 h(38)= 0.2435
h(6) = —0.0004 h(17)=—0.0092 h(28)= 0.0331 h(39)= 0.1155
h(7) = —0.0022 h(18)= 0.0104 h(29)= 0.0088 h(40)= 0.6000
h(8) = 0.0026 h(19)= 0.0028 h(30)= 0.0000
h(9) = 0.0007 h(20)= 0.0000 h(31)=—0.0114
h(10) = 0.0000 h(21)=—0.0035 h(32) = —0.0558
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Example 5.3 - Solution

Table 7: Filter coefficients using the Hann window.

h(0) to h(40)
h(0) = 0.0000 h(11)=—0.0008 h(22)=-0.0162 h(33)= 0.0651
h(1) =—0.0000 h(12)=—0.0040 h(23)= 0.0182 h(34)= 0.0183
h(2) =—0.0002 h(13)= 0.0047 h(24)= 0.0048 h(35)= 0.0000
h(3) = 0.0003 h(14)= 0.0013 h(25)= 0.0000 h(36) = —0.0282
h(4) = 0.0001 h(15)= 0.0000 h(26)=—0.0061 h(37)=—0.1611
h(5) = 0.0000 h(16)=—0.0018 h(27)=—0.0291 h(38) = 0.2435
h(6) = —0.0002 h(17)=—0.0086 h(28)= 0.0328 h(39)= 0.1155
h(7) =—0.0014 h(18) = 0.0099 h(29)= 0.0088 h(40)= 0.6000
h(8) = 0.0017 h(19)= 0.0026 h(30)= 0.0000

h(9) = 0.0005 h(20)= 0.0000 h(31)=—0.0114

h(10) = 0.0000 h(21) = —0.0034 h(32) = —0.0557
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Example 5.3 - Solution

Table 8: Filter coefficients using the Blackman window.

h(0) to h(40)
h(0) = 0.0000 h(11)=-0.0003 h(22)=-0.0115 h(33)= 0.0618
h(1) =—-0.0000 h(12)=-0.0018 h(23)= 0.0134 h(34)= 0.0176
h(2) =—-0.0000 h(13)= 0.0022 h(24)= 0.0037 h(35)= 0.0000
h(3) = 0.0001 h(14)= 0.0006 h(25)= 0.0000 h(36)=—0.0278
h(4) = 0.0000 h(15)= 0.0000 h(26)=—-0.0050 h(37)=—0.15%6
h(5) = 0.0000 h(16) =-—0.0010 h(27)=-0.0243 h(38)= 0.2424
h(6) = —0.0001 h(17) =-0.0049 h(28)= 0.0281 h(39)= 0.1153
h(7) =—0.0004 h(18) = 0.0059 h(29) 0.0077 h(40) = 0.6000
h(8) = 0.0006 h(19) 0.0017 h(30) = 0.0000
h(?) = 0.0002 h(20)= 0.0000 h(31)=—-0.0104
h(10) = 0.0000 h(21) =-0.0023 h(32)=—0.0520
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Example 5.3 - Solution
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Figure 9: Magnitude responses when using: (a) rectangular; (b) Hamming; (c) Hann; (d)
Blackman windows.
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Kaiser window

e All the window functions seen so far allow us to control the transition band through a

proper choice of the filter order M.

e However, no control can be achieved over the passband and stopband ripples, which
makes these windows of little use when designing filters with prescribed frequency

specifications, such as that depicted in Figure 10.

e Such problems are overcome with the Kaiser and Dolph-Chebyshev windows,

presented in this and in the next subsections.
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Kaiser window
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Figure 10: Typical specification of a lowpass filter. The specifications are in terms of the

digital frequency w = ZTté1 = QT.
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Kaiser window

® As seen earlier in this section, the ideal window should be a finite-duration function
such that most of its spectral energy is concentrated around |w| = 0, quickly

decaying when |w| increases.

e There is a family of continuous-time functions, called the prolate spheroidal functions,

which are optimal for achieving these properties.
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Kaiser window

e Such functions, although very difficult to implement in practice, can be effectively

approximated with the hyperbolic-sine I (-) functions as
( T2
Lo [By/T—(4)?]
Io(B)

0, for [t| > T

, for |t <7

w(t) = 4 (63)

\

where 3 = QT and Io(x) is the zeroth-order modified Bessel function of the first

kind, which can be efficiently determined through its series expansion given by

00 x\k 2
Lx)=1+) (2k3] (64)
k=1 ‘
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Kaiser window

e The Fourier transform of w(t) is given by

W(Q) = s [B\/ d. J (65)
falo(mwﬂ%)zq

e The Kaiser window is derived from equation (63) by making the transformation to the

‘O

discrete-time domain given by T — %T and t — nT. The window is then

el

wyg (M) = 4 , form| <

described by

(66)

NEQ

\ 0, for n| >

® Since the functions given by equation (65) tend to be highly concentrated around
Q] = 0, we can assume that W(Q)) =~ 0, for |QQ| > %
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Kaiser window

e Therefore, we can approximate the frequency response for the Kaiser window by

Wy () %W (?) (67)

where W(Q)) is given by equation (65) when T is replaced by %T.

e This yields
M sin ﬁ\/(w&)z_]]
Wi (e!?) = - (68)
Blo(B)y /()% —1
where g = QqTand P = Qo1 = %%T — wa7\24

e The main advantage of the Kaiser window appears in the design of FIR digital filters
with prescribed specifications, such as that depicted in Figure 10, where the

parameter [3 is used to control some filter characteristics.
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Kaiser window

e The overall procedure for designing FIR filters using the Kaiser window is as follows:

— (i) From the ideal frequency response that the filter is supposed to approximate,
determine the impulse response h(n) using Table 1. If the filter is either lowpass
or highpass, one should make (). = % The case of bandpass and

bandstop filters is dealt with later in this subsection.

— (i) Given the maximum passband ripple in dB, Ap, and the minimum stopband

attenuation in dB, A, determine the corresponding ripples

]OO.OSA]D —

613 — ]OO.OSAp _|_] (69)

61‘ _ ]O—O.OSAr (70)
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Kaiser window

e (cont.)

— (iii) As with all other window functions, the Kaiser window can only be used to
design filters that present the same passband and stopband ripples. Therefore, in

order to satisfy the prescribed specifications, one should use & = min{d,,, d,}.

— (iv) Compute the resulting passband ripple and stopband attenuation in dB using

140
Ap = 201log TS (71)
A, = —20log b (72)

— (v) Given the passband and stopband edges, (), and (), respectively, compute
the transition bandwidth T, = (Q, — Q).
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Kaiser window

e (cont.)
— (vi) Compute 3 using

/

0, for A, < 21
B =< 0.5842(A, —21)%4 +0.07886(A, —21), for21 < A, <50 (73)
| 0.1102(A, — 8.7), for 50 < A,

This empirical formula was devised by Kaiser based on the behavior of the
function W(()) in equation (65).

_ (vii) Defining the normalized window length D = 1t™ \where Q is the
sampling frequency, we have that:
0.9222, for A, < 21
D=4 (A, =795 (74)
Ar—7. ), for 21 < A,

14.36
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Kaiser window

e (cont.)

— (viii) Having computed D using equation (74), we can determine the filter order
M as the smallest even number that satisfies
QD
Ty

M > (75)

One should remember that T, must be in the same units as ().

— (ix) With M and [3 determined, we compute the window W (1) using
equation (66). We are now ready to form the sequence h’'(n) = wg (n)h(n),

where h(n) is the ideal filter impulse response computed in step (i).

— (x) The desired transfer function is then given by

H(z) =z~ % Z{h/ (n)) (76)
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Kaiser window

e The above procedure applies to lowpass filters (see Figure 10) as well as highpass
filters. If the filter is either bandpass or bandstop, we must include the following

reasoning in step (i) above:

— 1. Compute the narrower transition band
.= min{|Qr1 — Qp1 |> |Qp2 — Qrz ‘} (77)

Notice that T, is negative for bandpass filters and positive for bandstop filters.

— 2. Determine the two central frequencies as

Q., = (Qm + T) (78)

Ir
2
T,
QCZ — (sz — 7) (79)
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Kaiser window

e A typical magnitude specification for a bandstop filter is depicted in Figure 11.

1HE) T

_______________________

| |

1-90 777777777777 7 : BN
1 'R
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/ | 1 N\
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; I ! §
4 | 1 N\
7 R
1 [\

5 / \
/| | : \
1 A\
/ 1 1 | N 1 D>
0

Wpr Wez W “r2 ez ©pz " ®

Figure 11: Typical specification of a bandstop filter.
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Example 5.4

e Design a bandstop filter satisfying the specification below using the Kaiser window:

A, =1.00dB

A, =45dB

Q,, =800 Hz

Q., =950Hz (80)
Q,, = 1050 Hz

Qp,, = 1200 Hz

Qs = 6000 Hz
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Example 5.4 - Solution

e Following the procedure described above, the resulting filter is obtained as follows
(note that in the FIR design procedure described above, the parameters of the Kaiser
window depend only on the ratio of the analog frequencies in the filter specification to
the sampling frequency; therefore, the frequencies can be entered in the formula in

hertz, as long as the sampling frequency () is also in hertz):

— (i) From equations (77)—(79), we have that

T, = +min{(950 — 800), (1200 — 1050)} = 150 Hz (81)
Q., = 800 + 75 = 875 Hz (82)
Qc, = 1200—75 = 1125 Hz (83)
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Example 5.4 - Solution

e (cont.)

— (ii) From equations (69) and (70),

100.05 —1

op = 10005 £ 7 = 0.0575 (84)
5, = 10799545 — 0.005 62 (85)
(86)

— (iii) 6 = min{0.0575, 0.005 62} = 0.005 62

— (iv) From equations (71) and (72),
1+ 0.00562

A, = 201 — 0.0977 dB 87
p = 20100 750562 — OO (87)
A, = —2010g0.00562 =45 dB (88)
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Example 5.4 - Solution

e (cont.)
— (v) T+ has already been computed as 150 Hz in step (i).

— (vi) From equation (73), since A, = 45 dB, then
B = 0.5842(45 — 21)%% 4+ 0.078 86(45 — 21) = 3.9754327 (89)

— (vii) From equation (74), since A, = 45 dB, then

(45 — 7.95)

P =13

= 2.5800835 (90)

— (viii) Since the sampling period is T = 601W s, we have, from equation (75),

< 6000 x 2.580 0835

M > 150 =103.20334 = M =104 (91)
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Example 5.4 - Solution

e This whole procedure is implemented by a simple MATLAB script:
Ap = 1; Ar = 45;
Omega pl = 800; Omega r1 = 950;
Omega r2 = 1050; Omega p2 = 1200;
Omega_s = 6000;
delta p = (107(0.05 *Ap) - 1)/(107(0.05 *Ap) + 1);
delta r = 107(-0.05 * Ar);
F = [Omega pl Omega rl Omega r2 Omega_ p2];
A =1[1 0 1]
ripples = [delta p delta r delta p];
[M,Wn,beta,FILTYPE] =
kaiserord(F,A,ripples,Omega_s);
which yields as outputs beta = 3.9754 and M = 104, as determined above.
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Example 5.4 - Solution

e In this short script, the auxiliary vectors A and ripples  specify the desired gain

and allowed ripple, respectively, in each filter band.

e The Kaiser window coefficients are determined by:
kaiser_win = kaiser(M+1,beta);
and are shown in Figure 12 along with the associated magnitude response.
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Example 5.4 - Solution

Magnitude response [dB]

0 20 40 60 80 100 0 500 1000 1500 2000 2500 3000
(a) n (b) Frequency [Hz]

Figure 12: Kaiser window: (a) window function; (b) magnitude response.
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Example 5.4 - Solution

e The desired filter is obtained using the firl  command, as exemplified by:
h = firl(M,Wn,FILTYPE, kaiser_win, 'noscale /);
where the noscale flag avoids the unitary gain at the first passband center
imposed by MATLAB.

e The designed filter characteristics are summarized in Table 9.
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Example 5.4 - Solution

Table 9: Characteristics of the designed filter.

S o o
—_ N -

—

=
N

ODPPPD

o
N

2Oy

875 Hz
1125 Hz
800 Hz
950 Hz
1050 Hz
1200 Hz
0.0575
0.00562
150 Hz
2.5800835
3.9754327
104
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Example 5.4 - Solution

e The filter coefficients h(n) are given in Table 10. Once again, due to the symmetry
inherent to the Kaiser window function, Table 10 only shows half of the filter

coefficients, as the remaining coefficients are obtained as h(n) = h(M —n).

e The filter impulse response and associated magnitude response are shown in

Figure 13.
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Example 5.4 - Solution

Table 10: Filter coefficients using the Kaiser window.

h(0) to h(52)

h(0) = 0.0003 h(14)=—-0.0028 h(28)= 0.0000 h(42)= 0.0288
h(1) = 0.0005 h(15)= 0.0032 h(29)=—-0.0013 h(43)= 0.0621
h(2) = 0.0002 h(16)= 0.0070 h(30)= 0.0027 h(44)= 0.0331
h(3) = —0.0001 h(17)= 0.0038 h(31)= 0.0087 h(45)= —0.0350
h(4) = —0.0000 h(18) = —0.0040 h(32)= 0.0061 h(46)=—0.0733
h(5) = 0.0001T h(19)=—0.0083 h(33)=—0.0081 h(47) = —0.0381
h(6) = —0.0003 h(20)=—0.0042 h(34)=—0.0203 h(48)= 0.0394
h(7) = —0.001T h(21)= 0.0042 h(35)=—0.0123 h(49) = 0.0807
h(8) = —0.0008 h(22)= 0.0081 h(36)= 0.0146 h(50)= 0.0411
h(9) = 0.001T h(23)= 0.0038 h(37)= 0.0339 h(51) = —0.0415
h(10) = 0.0028 h(24)=—0.0033 h(38)= 0.0194 h(52)= 0.9167
h(11) = 0.0018 h(25) = —0.0055 h(39) = —0.0218

h(12) = —0.0021 h(26) = —0.0020 h(40) = —0.0484

h(13) = —0.0050 h(27)= 0.0011 h(41) = —0.0266
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Example 5.4 - Solution
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Figure 13: Resulting bandstop filter: (a) impulse response; (b) magnitude response; (c)

passband detail.
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Dolph-Chebyshev window

e Based on the Mth-order Chebyshev polynomial given by

(

cos[M cos ! (X”, for [x| <1
Cm(x) =< (92)
cosh[M cosh™ | (X)], for |x| > 1

\

the Dolph-Chebyshev window is defined as

( M
1 1 z ' 2ni
— —+ZZ Cm {XO cos( 7t )} cos( n17‘t> , forn| < %
wpc(n)=<{ M+1 | r = M+1 M+-1 (93)
L O, for m| > %
where 1 is the ripple ratio defined as r = g’—‘" and
P
h 1 h! 1 (94)
Xo = cosh | — cos —
0 M T
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Dolph-Chebyshev window

e The procedure for designing FIR filters using the Dolph-Chebyshev window is very
similar to the one for the Kaiser window:

— (i) Perform steps (i) and (ii) of the Kaiser procedure.

— (ii) Determine v = 2—1’.
P

— (iii) Perform steps (iii)—(v) and (vii)—(viii) of the Kaiser procedure, to determine the
filter order M. In step (vii), however, as the stopband attenuation achieved with
the Dolph-Chebyshev window is typically 1 to 4 dB higher than that obtained
using the Kaiser window, one should compute D for the Dolph-Chebyshev
window using equation (5.74) with A, replaced by A, + 2.5.

— (iv) With v and M determined, compute X from equation (94), and then compute

the window coefficients from equation (93).

— (v) We are now ready to form the sequence h/(n) = wpc(n)h(n), where
h(n) is the ideal filter impulse response computed in step (86).

— (vi) Perform step (x) of the Kaiser procedure to determine the resulting FIR filter.
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Dolph-Chebyshev window

e Overall, the Dolph-Chebyshev window is characterized by:

— The main-lobe width, and consequently the resulting filter transition band, can be

controlled by varying M.
— The ripple ratio is controlled through an independent parameter .

— All secondary lobes have the same amplitude. Therefore, the stopband of the

resulting filter is equiripple.
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Maximally flat FIR filter approximation

e Maximally flat approximations should be employed when a signal must be preserved
with minimal error around the zero frequency or when a monotone frequency

response IS necessary.

e FIR filters with a maximally flat frequency response at w = 0 and w = 7T were
introduced by Herrmann. We consider here, following the standard literature on the
subject, the lowpass Type-| FIR filter of even order M and symmetric impulse

response.

® In this case, the frequency response of a maximally flat FIR filter is determined in
such a way that H(e'®) — 1 has 2L zeros at w = 0, and H(e'®) has 2K zeros at

w = TT.

e To achieve a maximally flat response, the filter order M must satisfy
M = (2K 4 2L — 2). Thus, the first 2L — 1 derivatives of H(e!®) are zero at
w = 0, and the first 2K — 1 derivatives of H(e!*’) are zero at w = 7.
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Maximally flat FIR filter approximation

e If the above two conditions are satisfied, H(e'® ) can be written either as

H(e!®) = (cos—) Z d(n (sm —>2n
K L—1 n
_ (1 —I—c;osw) Z a(m) (1 —(;osw) (95)

n=0
e Oras
o W ZLK_1a W ZTL
H(e ):1—(sm?) T;) (n) (cos;)
1—cosw )" T4+cosw) "
_1_( ° )T;)a(n)( ° ) (96)
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Maximally flat FIR filter approximation

e Where the coefficients d(1) or d(n) are respectively given by

d(n) = “(<K__1 J!;‘!)! (97)
d(n) = (?L__] 1;23 ! (98

e Note that from equations (95) and (97), H(e!’) is real and positive.
e Therefore, for the maximally flat filters, |[H(e!® )| = H(e!®).

e From the above equations it is also easy to see that H(ejw) can be expressed as a
sum of complex exponentials in w having frequencies ranging from (—K — L + 1)

to (K 4+ L — 1), with an increment of 1.
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Maximally flat FIR filter approximation

e Therefore, from Theorem 5.1, one can see that h(n) can be exactly recovered by
sampling H(e!®) at (2K 4+ 2L — 1) = M + 1 equally spaced points located at
frequencies w = 2tn/(M + 1), for n =0, 1, ..., M, and taking the IDFT, as in

the frequency sampling approach.

e A more efficient implementation, however, results from writing the transfer function as

_ 2K L—1 _ 2n
H(z) = (M) Z(—U“d(n)z_(L_]_“) (i) (99)

2 2
n=0
or
e 2L K—1 1 2n
H(z) =2~ — (—1)L (%) Y Az k1 (”%) (100)
n=0
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Maximally flat FIR filter approximation

e These equations require significantly fewer multipliers than the direct-form

implementation.

e The drawback with these designs is the large dynamic range necessary to represent
the sequences d(m) and d(n).

e This can be avoided by an efficient cascade implementation of these coefficients

utilizing the following relationships:

K+n

dn+1) = d(n)n——|—1 (101)
dn+1) = Ei(n)TLlJFT111 (102)
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Maximally flat FIR filter approximation

® In the procedure described above, the sole design parameters for the maximally flat

FIR filters are the values of K and L.

e Given a desired magnitude response, as depicted in Figure 14, the transition band is
defined as the region where the magnitude response varies from 0.95 to 0.05, and

the normalized center frequency is the center of this band (W, = W).

e If the transition band in rad/sample is T, we need to compute the following

parameters:
T 2
M] — (T—) (103)
1
0 = +Cgsw° (104)
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Maximally flat FIR filter approximation

0.95

0.05

Figure 14: Typical specification of a maximally flat lowpass FIR filter.
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Maximally flat FIR filter approximation

e Then, for all integer values of M, in the range M7 < M, < 2M, we compute

K, as the nearest integer to pM,,,.

e We then choose K]”; and M; as the values of K;, and M, for which the ratio Kp

My
IS closest to P.
e The desired values of K, L, and M, are given by
K =Kj (105)
[ = M; _ K; (106)
M=2K+2L-2=2M; -2 (107)
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Example 5.5

e Design a maximally flat lowpass filter satisfying the specification below:

Q. =0.37trad/s )
T, =02mrad/s (108)

Q¢ =2mrad/s
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Example 5.5 - Solution

e One may use the script:
Omega ¢ = 0.3*pi; Tr = 0.2 *pi; Omega_s = 2 *pi,

M1 = (pi/Tr)°2;
rho = (1 + cos(Omega_c))/2;
Mp = ceil(M1):floor(2 *M1);

Kp = round(rho *Mp);

rho p = Kp./Mp;

[value,index] = min(abs(rho_p - rho));

K = Kp(index); L = Mp(index)-Kp(index); M =
2* Mp(index)-2;

to obtain the values of K = 27, L = 7, and M = 66.
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Example 5.5 - Solution

e The resulting coefficients d(n ), as given in equation (101), may be determined as

d(1) = 1;
for i = 0O:L-2,

d(i+2) = d(i+1) * (K+1)/(1+1);
end;

and are seen in Table 11.

e Notice that in this case, even though the filter order is Ml = 66, there are only

L = 7 nonzero coefficients d(n).
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Example 5.5 - Solution

Table 11: Coefficients of the lowpass filter designed with the maximally flat method.

d(0) to d(5)
d(0) =1
d(1) =27
d(2) = 378
d(3) = 3654
d(4) = 27405
d(5) = 169911
d(6) = 206192
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Example 5.5

e The corresponding magnitude response can be determined as:
omega = 2*pi. *(0:M)/(M+1);
i = (O:.L-1)
for k = 0:M,
H(k+1) = d *sin(omega(k+1)/2)."(2 *1);
end,;
H = H.*cos(omega./2).”(2 * K);

the result of which is depicted in Figure 15.
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Example 5.5 - Solution
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Figure 15: magnitude response of maximally flat lowpass FIR filter: (a) linear scale; (b)

dB scale.
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FIR filter approximation by optimization

e The window method seen in Section 5.4 has a very straightforward design procedure
for approximating the desired magnitude response. However, the window method is
not efficient for designing, for example, FIR filters with different ripples in the

passband and stopband, or nonsymmetric bandpass or bandstop filters.

e To fill this gap, in this section we present several numerical algorithms for designing

more general FIR digital filters.

® In many signal processing systems, filters with linear or zero phase are required.
Unfortunately, filters designed to have zero phase are not causal, this can be a

problem in applications where very little processing delay is permissible.

® Also, nonlinear phase causes distortion in the processed signal, which can be very

perceptible in applications like data transmission, image processing, and so on.

121



8- CAMBRIDGE

Diniz, da Silva and Netto %8> UNIVERSITY PRESS

FIR filter approximation by optimization

e One of the major advantages of using an FIR system instead of a causal IIR system

is that FIR systems can be designed with exact linear phase.

® As seen in Subsection 4.2.3, there are four distinct cases where an FIR filter
presents linear phase. To present general algorithms for designing linear-phase FIR
filters, a unified representation of these four cases is necessary.

e We define an auxiliary function P(w) as

L

P(w)=) p(l)cos(wl) (109)

1=0

where L + 1 is the number of cosine functions in the expression of H(e!?).
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FIR filter approximation by optimization

e Based on this function, we can express the frequency response of the four types of
linear-phase FIR filters as:

— Type I: Even order M and symmetric impulse response. We get

N|§

H(e!®) = e 1®

Plw) (110)
with
a(m)=p(m), form=20,1,... L (111)

where L =

NES
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FIR filter approximation by optimization

e (cont.)

— Type II: Odd order M and symmetric impulse response. In this case, we have

H(e!®) =e I 7 Z b(m) cos [ (m— %)] (112)

Using

( 1

p(O)—sz(]), form =1

1

b(m) = < z(p( —1)+p(m)), form=2,3,...,L (113)

1

~p(L), form=L+1

. 2
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FIR filter approximation by optimization

e With L = MT_1 then H(e!*) can be written in the form

H(e!®) = e 1T o5 (%) P(w) (114)

using the trigonometric identity

2 cos (%) cos(wm) = cos [w (m—l— %)] + cos [w (m— %)] (115)

e The complete algebraic development is left as an exercise to the interested reader.
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FIR filter approximation by optimization

e (cont.)

— Type lll: Even order M and antisymmetric impulse response. In this case, we

have
M
; M 7T =
H(el?) = e 0T —3) c(m) sin(wm) (116)
m=1
and then, by substituting
( 1
NM—ZMM, form =1
1
c(m) =« > (p(m—1)—p(m+1)), form=23,...,(L—1) @117
1
zp(m—]), form=LL+1
\
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FIR filter approximation by optimization

o With L = % — 1, equation (116) can be written as

H(e!®) = e i@ T —3) i wP(w) (118)
using, in this case, the identity

sinw cos (wm) =sin[w (M +1)] —sin[w (M — 1)] (119)

e Once again, the algebraic proof is left as an exercise at the end of this chapter.
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FIR filter approximation by optimization

e (cont.)

— Type IV: Odd order M and antisymmetric impulse response. We have that

M+1
| M oy e 1
H(e'®) = —jlwF—%) i - 12
(™) =e z 2 mZ] d(m) sin [w (m 2)] (120)
By substituting
( ]
p(O)—zp(U, form =1
]
d(m) =« z(p(m—ﬂ—p(m)), form=273... L (121)
l]:J(I_), form=L+41
. 2
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FIR filter approximation by optimization

o With L = MT_1 then H(e!?) can be written as

M
2

NI

H(e!®) = I ) sin (%) P(w) (122)

using the identity

2sin (%) cos(wm) = sin [w (m—l— %)] — sin [w (m— %)] (123)
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FIR filter approximation by optimization

e Equations (110), (114), (118), and (122) indicate that we can write the frequency

response for any linear-phase FIR filter as
H(el’) = e I(*@=BIQ(w)P(w) = e *¥ =B A (w) (124)
where A(w) = Q(w)P(w), x = % and for each case we have that:
— Typel: f =0and Q(w) =1
— Type ll: B = 0 and Q(w) = cos(F)
— Type lll: B = 5 and Q(w) = sin(w)
— Type IV: B = 5 and Q(w) = sin(F).
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FIR filter approximation by optimization

e Let D(w) be the desired amplitude response. We define the weighted error function

as

E(w) =W(w)(D(w) —A(w)) (125)

) D(w)
— W(w)Q(w) (w - P(w)) (126)

forall 0 < w <, as Q(w) is independent of the coefficients for each w.
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FIR filter approximation by optimization

e Defining
Wy(w) = W(w)Q(w) (127)
_ D(w)
Dg(w) = Ol (128)
the error function can be rewritten as
E(w) =Wq(w)(Dg(w) — Plw)) (129)

and one can formulate the optimization problem for approximating linear-phase FIR

filters as:

e Determine the set of coefficients (1) that minimizes some objective function of the

weighted error E(w) over a set of prescribed frequency bands.
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FIR filter approximation by optimization

e To solve such a problem numerically, we evaluate the weighted error function on a
dense frequency grid with 0 < wi < 7, for 1= 1,2,..., KM, where M is the

filter order, obtaining a good discrete approximation of E(w).

e For most practical purposes, using 8 < K < 16 is recommended. Points associated
with the transition bands can be disregarded, and the remaining frequencies should
be linearly redistributed in the passbands and stopbands to include their

corresponding edges.
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FIR filter approximation by optimization

e Thus, the following equation results

e =Wgq (dq — Up) (130)
where

e = [E(w) E(w3) - E(wgry)]' (131)
Wq = diag [Wq(w1) Wq(wz) - Wq(werg) ] (132)
dg = [Dg(w1) Dg(w3) -+ Dglwigg)]’ (133)

1 cos(wy)  cos(2wr) cos(Lws) |

1 cos(wy) cos(2w3>) cos(Lw>)

U= (134)

] 1 cos(wyrg) cos(2wirr) cos(Lwr) |
p=[p(0)p(1) --- p(L)] (135)
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FIR filter approximation by optimization

e With KM < KM, as the original frequencies in the transition band were discarded.

e For the four standard types of filters, namely lowpass, highpass, bandpass, and
bandstop, as well as differentiators and Hilbert transformers, the definitions of

W(w) and D(w) are summarized in Table 12.
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FIR filter approximation by optimization

Table 12: Weight functions and ideal magnitude responses for basic lowpass, highpass,

bandpass, and bandstop filters, as well as differentiators and Hilbert transform-

ers.
Filter type  Weight function |ldeal amplitude response
W(w) D(w)
§
1, for0 < w < wy 1, for0<w < wyp
Lowpass < 5
L forw, <w< T 0, forw, <w <7
\ T
(b
L for0 < w < wy 0, for0 < w < wy
Highpass < T
1, forwp,<w<m 1, forwp, <w<m
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FIR filter approximation by optimization

Filter type  Weight function

|ldeal amplitude response

W(w) D(w)
([ 0p %
—, for0 < w < wy, 0, for0 < w < wy,
.
Bandpass < 1, forwy,, < w < wyp, ¢ 1, forwy, <w < wp,
Op
—, forw,, <w <77 0, forw,, <w<T7
y 2 . 2
\ T
r %
I, for0 < w < wyp, 1, for0 < w < wyp,
O
Bandstop ¢ £ forw,, < w < wy, ¢ 0, forwy, <w < wy,
T
\ 1, for wp, <w <7 \ 1, forw,, <w<m
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FIR filter approximation by optimization

Filter type Weight function ldeal amplitude response

W(w) D(w)

1

—, for0 < w < wyp

Differentiator ¢ W w, for0<w<m
0,

forw, <w <7

0, for0 < w < wy,

Hilbert
§ 1, forw,, <w < w,, 1, forO<w<m
transformer

0, forwp, <w <7
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FIR filter approximation by optimization

e |tis important to remember all design constraints, due to the magnitude and phase
characteristics of the four linear-phase filter types, as summarized below, where a
‘Yes’ entry indicates that the corresponding filter structure is suitable to implement

the given filter type.

Filter type Typel Typell Typelll TypelV
Lowpass Yes Yes No No
Highpass Yes No No Yes
Bandpass Yes Yes Yes Yes
Bandstop Yes No No No
Differentiator No No Yes Yes
Hilbert

No No Yes Yes
transformer
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Weighted-least-squares method

e In the weighted-least-squares (WLS) approach, the idea is to minimize the square of

the energy of the error function E(w), that is
" 2
min {|[E(w)||5} = min {J E(w)] dw} (136)
p p 0

e For a discrete set of frequencies, this objective function is approximated by (see
equations (130)—(135))

Q

] KM ]
IE(w)||5 :Z\E(wan::eTe (137)

KM

since in these equations e is a real vector.
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Weighted-least-squares method

e Using equation (130), and noting that W is diagonal, we can write that
ele = (dIJl — pTUT)WEIWq(dGI — Up)
= (dg —p"U")Wg (dg — Up)
= dyWidq —dgWaUp —p'U'W2dg +p U'W Up
= dyWidq — 2p"U'W5dg + pTUTWE Up (138)
because dLWé Up = pTUTW%]dq, since these two terms are scalar.

e The minimization of such a functional is achieved by calculating its gradient vector

with respect to the coefficient vector and equating it to zero.
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Weighted-least-squares method

® Since
V.{Ax} = AT (139)
V.ix'axl = (A4 ATx (140)
this yields
Vo {e'e} = —2U"WZdq + 2U"WZUp* =0 (141)
which implies that
p* = (U'W} u)_1 U'WZdg (142)

e It can be shown that when the weight function W(w) is made constant, the WLS
approach is equivalent to the rectangular window presented in the previous section,

and so suffers from the same problem of Gibbs’ oscillations near the band edges.

e When W/(w) is not constant, the oscillations still occur but their energies will vary

from band to band.
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Weighted-least-squares method

e Amongst the several extensions and generalizations of the WLS approach, we refer

here to the constrained-WLS and eigenfilter methods.

® In the constrained-WLS method, the designer specifies the maximum and minimum

values allowed for the desired magnitude response in each band.

e In the proposed algorithm, the transition bands are not completely specified, as only
their central frequencies need to be provided. The transition bands are then

automatically adjusted to satisfy the constraints.

e The overall method consists of an iterative procedure where in each step a modified
WLS design is performed, using Lagrange multipliers, and the constraints are

subsequently tested and updated.
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Weighted-least-squares method

e Such a procedure involves verification of the Kuhn-Tucker conditions, that is, it
checks if all the resulting multipliers are non-negative, followed by a search routine
that finds the positions of all local extremals in each band and tests if all the

constraints are satisfied.

e For the eigenfilter method, the objective function in equation (129) is rewritten in a
distinct form, and results from linear algebra are used to find the optimal filter for the

resulting equation.

e \With such a procedure, the eigenfilter method enables linear-phase FIR filters with
different characteristics to be designed, and the WLS scheme appears as a special

case of the eigenfilter approach.
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Example 5.6

e Design a Hilbert transformer of order M = 5 using the WLS approach by choosing

an appropriate grid of only 3 frequencies. Obtain p* and the filter transfer function.
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Example 5.6 - Solution

e For the odd order M = 5, the FIR Hilbert transformer should be of Type IV and the

number of coefficients of p is (L 4+ 1), where L = MT_1 = 2.

e According to equations (129) and (130), the response error is

a8 B )

| sin(

]
] _ a( @1 ) L
sin( 3L ) 0 0 sin(3") 1 coswi cos2wi | |p(0)
g ]
e — 0 sin(5%) 0 \ sin( ©2) — |1 coswsy cos2wsy | |p(1)];
0 0 sin(5>) | 1 |1 cosws cos2ws | [p(2)]
7
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Example 5.6 - Solution

e \We then form the frequency grid within the range defined in Table 12, such as

in such a way that the error vector becomes

/

S O N=

0
V2

2

0

<
- o

T N
(U‘]:g
T
wzzz >
" _27[
T3
o1 1
0 1 0 —1
V3| |1 -1 _1
2 1 L 2 2

147
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Example 5.6 - Solution

e The WLS solution requires the following matrix:

11 1| [ oot I 1]
uTvvzu—11o 1110 2 ol (1 o0 1
q _4 2 2 o
-3 —1 —3] 0 0 3] [T -3 —3
6 -1 —4
_] 1
EEE TS
whose inverse is
22 8 28
—1 1
(U'wzu) =38 16 8 (147)
28 8 40
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Example 5.6 - Solution

e Then, the vector p* is computed as follows

p* = (U'w2u) ' U'wld,

22 8 28| [1 1 1 ][ o 017 T2 o o] [r
:%8168%0—%040 0 v2 0|1
28 8 40| -1 —1 —I]lo o ] |o o 2] |1
1.7405 |
= 10.8453 (148)
0.3263 ]
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Example 5.6 - Solution

e According to equations (121), we then have

\

d(1) =p(0) — 3p(1) =2h(2) = 1.31785
d(2) = 3(p(1) = p(2)) =2h(1) = 0.2595 (149)
d(3) = 3p(2) =2h(0) = 0.16315 )

and the overall transfer function is given by

H(z)=0.0816+0.1298z" ' +0.6589z % —0.6589z > —0.1298z~*—0.08162 >
(150)
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Example 5.6 - Solution

e If a Hilbert filter of same order is designed with the MATLAB firls ~ command,
which uses a uniform sampling to determine the frequency grid, the resulting transfer

function is

H(z) =—0.0828—0.1853z""' —0.62772 2 +0.6277z 3 +0.1853z4+0.08282 >
(151)

e As can be observed in Figure 16, H(z) and H(z) have very similar magnitude
responses, with the differences arising from the nonuniform frequency grid employed

in the H(z) design for didactic purposes.
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Example 5.6 - Solution

Magnitude response [dB]

_20 |

0.5 1 1.5 2 25 3
Normalized frequency [rad/sample]

Figure 16: Magnitude responses of Hilbert transformers in Example 5.6: step-by-step

H(z) design (solid line) and MATLAB H(z) design (dashed line).
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Chebyshev method

e In the Chebyshev optimization design approach, the idea is to minimize the

maximum absolute value of the error function E(w ).

e Mathematically, such scheme is described by

min ([E(w) oo} = mir {gg}gﬂE(wH}} (152

where F is the set of prescribed frequency bands. This problem can be solved with

the help of the following important theorem:
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Chebyshev method

e Theorem (Alternation Theorem): If P(w) is a linear combination of (L 4 1) cosine

functions, that is

Zp cos(wl) (153)

the necessary and sufficient condition for P(w) to be the Chebyshev approximation
of a continuous function D (w) in F, a compact subset of [0, 71|, is that the error

function E(w) must present at least (L 4 2) extreme frequencies in F.

e That is, there must be at least (L 4+ 2) points wy in F, where
Wy < wq < --+- < Wr41, such that

E(wx) = —E(wkyq), fork=0,1,..., L (154)
and

E(wy)| = maé{IE(w)I}, fork=0,1,...,(L+1) (155)
weE
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Chebyshev method

e A proof of this theorem can be found in (Cheney, 1966).

e The extremes of E(w) are related to the extremes of A (w) defined in
equation (125).

e The values of w for which a}gguw) — (O allow us to determine that the number Ny of

extremes of A (w) is such that:
— Type I: Ny < MTH

— Type I: N < MAL

— Type lll: Ny, < M

— Type Iv: Ny < Mtl
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Chebyshev method

e In general, the extremes of A (w) are also extremes of E(w). However, E(w)
presents more extremes than A (w), as E(w) may present extremes at the band

edges, which are, in general, not extremes of A (w).

e The only exception to this rule occurs at the band edges w = O or W = 71, where

A(w) also presents an extreme.

For instance, for a Type-I
bandstop filter, as depicted in Figure 17, E(w) will have up to (% + 5) extremes,

where (% + 1) are extremes of A (w), and the other four are band edges.
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Chebyshev method

2 extremals of A(w)

% — 1 ‘internal extremals’

A( w) //,/%

NP~

. 4 band edges .
M

5 + 1 extremals of A(w)

Figure 17: Extremes of A (w) for a bandstop filter.
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Chebyshev method

e To solve the Chebyshev approximation problem, we briefly describe the Remez
exchange algorithm that searches for the extreme frequencies of E(w) through the

following steps:

— (i) Initialize an estimate for the extreme frequencies wgp, W1, ..., W1 by
selecting (L 4 2) equally spaced frequencies at the bands specified for the

desired filter.
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Chebyshev method

e (cont.)

— (i) Find P(wy ) and 0 such that
Wy (wi)(Dg(wy) — Plwy)) = (=16, fork =0,1,...,(L+1) (156)

This equation can be written in a matrix form and have its solution analytically
calculated. Such a procedure, however, is computationally intensive. An

alternative and more efficient approach computes 0 by

aoDq(wo) +a1Dg(wy) 4+ -+ a4+ 1Dglwri1)

5 _ (157)
b @ (=) Tag
Wqlwo)  Wqlwr) Wqlwr41)
where
L+1 ,
ac= |] (158)
Y COS Wy — COos W4
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Chebyshev method

e (cont.)

— (iii) Use the barycentric-form Lagrange interpolator for P(w), that is

/

Cx, for w = Wy € {wg, w1,..., WL}
L
y b
(L — COSs Wi “ (159)
Plw) — — COS
(w) =< 1_5 o forw & {wo, w1,..., Wi}
y b
| £ cosw —cos wy
where, for k=0,1,...,(L+1):
O
—D — (=1 160
. ]
B = H — ay(cos wy —coswi 1) (161)
L0,z COS Wic — €os Wy
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Chebyshev method

e (cont.)

— (iv) Evaluate |E(w)]| in a dense set of frequencies. If |[E(w)| < |0] for all
frequencies in the set, the optimal solution has been found, go to the next step. If
IE(w)| > |0] for some frequencies, a new set of candidate extremes must be

chosen as the peaks of |E(w)|. In that manner, we force d to grow and to

converge to its upper limit. If there are more than (L + 2) peaks in |[E(w)|, keep

the locations of the (L + 2) largest values of the peaks of |E(w)|, making sure

that the band edges are always kept, and return to step (ii).
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Chebyshev method

e (cont.)

— (v) Since P(w) is a sum of (L + 1) cosines, with frequencies from zero to L,
then it is also a sum of (2L + 1) complex exponentials, with frequencies from —L

to L. Then, from Theorem 4.1, p(1) can be exactly recovered by sampling P(w)

at (2L + 1) equally spaced frequencies w = 22L7T1 , form=0,1,...,2L and
taking the inverse DFT. The resulting impulse response follows from
equations (111), (113), (117), or (121), depending on the filter type.

e The corresponding MATLAB function for such an algorithm is firpm  (see
Section 5.8).
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Example 5.7

e Design the PCM filter specified as in Figure 18.

LHE™)1 4
A,=+0.2 dB = 1.0233 f, = 2400 Hz
A1 ALTANIIRRRRRRRRS A2 = —02 dB = 0977 24 f2 = 3000 HZ
A;=-05dB=0.94406  f,=3400 Hz

A
A,
sl 373 A;=-09dB=0.90157  f,=4800Hz

Ag=-30 dB = 0.03162 f,= 32000 Hz

>

T
16000 f(Hz)

=~
5 -
o+

ISl

Figure 18: Lowpass PCM filter specifications.

163



w2 CAMBRIDGE

©§7) UNIVERSITY PRESS

Diniz, da Silva and Netto

Example 5.7 - Solution

e Two approaches were employed:

— In the first approach, we simplify the specifications and consider a single
passband with constant weight and ideal magnitude response. In this case, the
specifications employed correspond to the following description:
f3 = 3400; f4 = 4800; f5 = 32000;

Ap = 0.4; Ar = 30;

— One may estimate the required filter order using the command lines:

F = [f3 f4]; A = [1 0],
delta p = (107(0.05 * Ap)
delta r = 107(-0.05 * Ar);
ripples = [delta p delta r];
M = firpomord(F,A,ripples,f5);
which yields M = 32.

1)/(10°(0.05  *Ap) + 1);
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Example 5.7 - Solution

e (cont.)

— Such a value, however, is not able to satisfy the filter requirements forcing one to
use M = 34. The desired filter can then be designed as:
wp = f3+x2/f5;, wr = f4  *2/f5;
F1 = [0 3 f4 f5/2] = 2/f5;
Al = [1 1 0 O]
W1 = [1 delta p/delta r];
h = firpom(M,F1,A1,W1);,
which yields the filter coefficients provided in Table 13 for 0 < n < 17, with
h(n) = h(34 — n), and the magnitude response shown in Figure 19.

165



CAMBRIDGE

Diniz, da Silva and Netto UNIVERSITY PRESS

Example 5.7 - Solution

0.2
0
— —_ 0—
S -10f S
[} ()
2 2 _oaof
S -20 S 0.
[%)] 0
g g
% -301 § -0.4¢
5 40 5
o S _0gl
P < 06
_50,
-0.8r
-60 ‘ ; ; ‘ ‘ ‘ ‘ ‘
0 5000 10000 15000 0 500 1000 1500 2000 2500 3000
(a) Frequency [Hz] (b) Frequency [Hz]

Figure 19: Approach 1: (a) magnitude response; (b) passband detail.
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Example 5.7 - Solution

Table 13: Optimal PCM filter obtained with approach 1.

h(0) to h(17)

h(0) = 0.0153 h(5) =—0.0062 h(10) =—0.0237 h(15) =0.1569
h(1)= 0.0006 h(6)= 0.0093 h(11)=—0.0482 h(16)=0.2294
h(2) = —0.0066 h(7)= 0.0226 h(12) =—0.0474 h(17) =0.2572
h(3) = —0.0139 h(8)= 0.0231 h(13) = —0.0078
h(4) = —0.0149 h(9)= 0.0057 h(14)= 0.0674
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Example 5.7 - Solution

e (cont.)

— In a second approach, we explore the loosened specifications along the
passband and characterize an additional band for the firpm command:
f1 = 2400; f2 = 3000;

F2 = [0 f1 f2 {3 f4 {5/2] * 2/15;

al = 107(0.05 =*0.2);

ad = 107(0.05 =*(-0.9));

gain = (al+a4)/2-0.005;

A2 = [1 1 gain gain 0 O],

delta p2 = (al-a4)/2,

W2 = [1 delta p/delta p2 delta _p/delta_r];
h2 = firom(M,F2,A2,W2),
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Example 5.7 - Solution

e (cont.)

— In this case, the simplest filter obtained was of order Ml = 28. The filter
magnitude response is shown in Figure 20, and its coefficients are listed in
Table 14, where only half of the coefficients are shown due to filter symmetry. The

remaining coefficients are determined by h(n) = h(28 — n).
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Example 5.7 - Solution

0

o [}
5, 101 =)
(] ()
2 £
o —

g —20 8
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(a) Frequency [Hz] (b) Frequency [Hz]

Figure 20: Approach 2: (a) magnitude response; (b) passband detail.
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Example 5.7 - Solution

Table 14: Optimal PCM filter obtained with approach 2.

h(0) to h(14)
h(0) = —0.0186 h(4)= 0.0230 h(8) = —0.0456 h(12) =0.1579
h(1) = —0.0099 h(5)= 0.0178 h(9) = —0.0426 h(13) =0.2239
h(2) = 0.0010 h(6)= 0.0017 h(10)= 0.0002 h(14)=0.2517
h(3) = 0.0114 h(7)=-0.0274 h(11)= 0.0712
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WLS—-Chebyshev method

e In the standard literature, the design of FIR filters is dominated by the Chebyshev

and the weighted-least-squares (WLS) approaches.

e Some applications that use narrowband filters, like frequency-division multiplexing for
communications, do require both the minimum stopband attenuation and the total

stopband energy to be considered simultaneously.

e For these cases, it can be shown that both the Chebyshev and WLS approaches are
unsuitable as they completely disregard one of these two measurements in their

objective function.

e A solution to this problem is to combine the positive aspects of the WLS and
Chebyshev methods to obtain a design procedure with good characteristics with

respect to both the minimum attenuation and the total energy in the stopband.
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WLS—-Chebyshev method

e |awson derived a scheme that performs Chebyshev approximation as a limit of a
special sequence of weighted-least-p (Lp) approximations, with p fixed. The
particular case with p = 2 thus relates the Chebyshev approximation to the WLS

method.

e The L, Lawson algorithm is implemented by a series of WLS approximations using a

varying weight matrix Wy, the elements of which are calculated by
2 2
Wi (w) = Wi (w)By(w) (162)
where

Bi(w) = [Ex(w) (163)
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e Convergence of the Lawson algorithm is slow, in practice usually 10 to 15 WLS

iterations are required to approximate the Chebyshev solution.

e An efficiently accelerated version of the Lawson algorithm was devised by
Lim-Lee-Chen-Yang (LLCY) whose approach is characterized by the weight matrix

Wy recurrently updated by
Wﬁﬂ(w) = W2 (w)BE(w) (164)

where B,e((w) is the envelope function of By () composed by a set of piecewise

linear segments that start and end at consecutive extremes of By (w).
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e Band edges are considered extreme frequencies, and edges from different bands are
not connected. In that manner, labeling the extreme frequencies at a particular

iteration k as w“f, for ] € N, the envelope function is formed as

(w — w7)Br(wj ) + (W], — w)By(w7)

(wy g — wy)

B (w) = ; w] < w < wj,q(165)
e Figure 21 depicts a typical format of the absolute value of the error function
(dash-dotted curve), at any particular iteration, used by the Lawson algorithm to

update the weighting function, and its corresponding envelope (solid curve) used by
the LLCY algorithm.,
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Figure 21: Typical absolute error function B(w) (dash-dotted line) and corresponding en-

velope B¢ (w) (solid curve).

176



iy CAMBRIDGE

Diniz, da Silva and Netto W%§p UNIVERSITY PRESS

WLS—-Chebyshev method

e Comparing the adjustments used by the Lawson and LLCY algorithms, described in
equations (162)—(165), and seen in Figure 21, with the piecewise-constant weight
function used by the WLS method, one can devise a very simple approach for

designing digital filters that compromises the minimax and WLS constraints.

e The approach consists of a maodification of the weight-function updating procedure so

that it becomes constant after a particular extreme of the stopband of By (w), that is,

Wi (w) = Wi (w)Br(w) (166)
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e Where, for the modified-Lawson algorithm, 1 (w) is defined as

N Br(w), 0<w < wj
(167)
Bk(w}k)) w>]k<w§7-[

and for the modified-LLCY algorithm, 31 (w) is given by

N Bi(w), for0 < w < wyj
Pr(w) =Bi(w) = (168)
Bf(w7), forwj<w <

where w7 is the Jth extreme value of the stopband of B(w) = [E(w))].

e The passband values of B(w) and B¢ (w) are left unchanged in equations (167)

and (168) to preserve the equiripple property of the minimax method.
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e The parameter | is the single design parameter for the WLS-Chebyshev scheme.
Choosing ] = 1, makes the new scheme similar to an equiripple-passband WLS
design. On the other hand, choosing | as large as possible, that is, making w*f = TI,

turns the design method into the Lawson or the LLCY schemes.

e An example of the new approach being applied to the generic functions seen in
Figure 21 is depicted in Figure 22, where w*f was chosen as the fifth extreme in the

filter stopband.
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Normalized frequency [rad/sample]

Figure 22: WLS-Chebyshev approach applied to the functions in Figure 21. Modified-
Lawson algorithm B(w) (dash-dotted curve) and modified-LLCY algorithm
B¢ (w) (solid curve). The curves coincide for w > w.
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e The computational complexity of WLS-based algorithms, like the algorithms
described here, is of the order of N3, where N is the length of the filter. This burden,
however, can be greatly reduced by taking advantage of the Toeplitz-plus-Hankel
internal structure of the matrix (UTWZU) and by using an efficient grid scheme to

minimize the number of frequency values.

e These simplifications make the computational complexity of WLS-based algorithms
comparable to that for the minimax approach. The WLS-based methods, however, do

have the additional advantage of being easily coded into computer routines.
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e The overall implementation of the WLS-Chebyshev algorithm is as follows:

— (i) Estimate the order M, select 8 < K < 16, the maximum number of iterations

Kmax, the value of J, and some small error tolerance € > 0.

— (ii) Create a frequency grid of KM points within [0, 7t]. For linear-phase filters,
points in the transition band should be discarded and the remaining points

redistributed in the interval w € [0, w,] U [w., 1.

— (i) Set k = 0 and form Wq, dq, and U, as defined in equations (132)—(134),
based on Table 12.

— (iv) Setk = k + 1, and determine p* (k) from equation (142).

— (v) Determine the error vector e(k) as given in equation (130), always using Wy

corresponding to k = 0.
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e (cont.)

— (vi) Check if k > Kkax Or if convergence has been achieved via, for instance, the

criterion | || e(k) || — || e(k — 1) ||| < €. If so, then go to step (x).
— (vii) Compute {Bx }; = [{e(k)};|, forj =0, 1,..., KM, and B as the envelope
of By.

— (viii) Find the Jth stopband extreme of B]e(. For a lowpass filter, consider the
interval w € [wy, 71|, starting at w,.. For a highpass filter, search in the interval
w € [0, w,], starting at w--. For bandpass filters, consider the intervals
w € [0, wy, ], starting at W+, and w € [wy,, 7], starting at W, . For the
bandstop filter, look for the extreme in the interval W & [ol)r1 , wrz], starting at

both w, and W, .
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e (cont.)

— (ix) Update W%] using either equation (167) or equation (168), and go back to
step (iv).

— (x) Determine the set of coefficients h(n) of the linear-phase filter, and verify that
the specifications are satisfied. If so, then decrease the filter order M and repeat
the above procedure starting from step (ii). The best filter would be the one
obtained at the iteration just before the specifications are not met. If the
specifications are not satisfied at the first attempt, then increase the value of M
and repeat the above procedure once again starting at step (ii). In this case, the

best filter would be the one obtained when the specifications are first met.
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Example 5.8

e Design a bandpass filter satisfying the specification below using the WLS and
Chebyshev methods and discuss the results obtained when using the

WLS-Chebyshev approach:
M = 40
A, =1.0dB
r =% —0.4rad/s

p; =5 —0.1rad/s (169)

Q
Q
Q,, =% +0.1rad/s
Q
Q
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Example 5.8 - Solution

e As detailed in Example 5.7, the Chebyshev filter can be designed using the firpm
command:
Omega rl = pi/2 - 0.4, Omega pl = pi/2 - 0.1;
Omega_p2 = pi/2 + 0.1; Omega_r2 = pi/2 + 0.4,
wrl = Omega rl/pi; wpl = Omega pl/pi;
wp2 = Omega p2/pi; wr2 = Omega_r2/pi;
Ap = 1; Ar = 40;
delta p = (107(0.05 *2+xAp) - 1)/(107(0.05 * 2% Ap) + 1);
delta r = 107(-0.05 * Ar);
F1 = [0 wrl wpl wp2 wr2 1j;
Al =001 1 0 0]
W1 = [delta p/delta r 1 delta _p/delta_r];
h_cheb = firom(M,F1,A1,W1);
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e The WLS filter is designed using firlsS ~ command whose syntax is entirely

analogous to the firpm  command:
h wls = firls(M,F1,A1,W1);

e The magnitude responses for the Chebyshev and WLS filters designed as above are
seen in Figure 23, subplots (a) and (d), which correspondtothe ] = 10 and | = 1

cases, respectively.

e Other values of ], whose magnitude responses are also shown in Figure 23, require
a specific MATLAB script implementing the WLS-Chebyshev approach, as detailed

earlier in this subsection.
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Example 5.8 - Solution

e Table 15 shows half of the filter coefficients for the case when ] = 3. The remaining

coefficients are obtained as h(n) = h(40 — n).

e Figure 24 shows the tradeoff between the stopband minimum attenuation and total

stopband energy when ] varies from 1 to 10.

e Notice how the two extremes correspond to optimal values for the attenuation and
energy figures of merit, respectively. On the other hand, the same extremes are also
the worst case scenarios for the energy and the attenuation in the stopband. In this

example, a good compromise between the two measures can be obtained when

] =3.
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Figure 23: Magnitude responses using WLS-Chebyshev method with: (a) ] = 10; (b)
J=5@©]=30]=1.
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Table 15: Coefficients of the bandpass filter designed with the WLS-Chebyshev method

with ] = 3.
h(0) to h(20)
h(0) =—0.0035 h(6) =—-0.0052 h(12)= 0.0653 h(18)=—0.1349
h(1) =—0.0000 h(7) =-0.0000 h(13)= 0.0000 h(192)=—0.0000
h(2) = 0.0043 h(8) = 0.0190 h(14)=-0.0929 h(20)= 0.1410
h(3) = 0.0000 h(?2) = 0.0000 h(15)=—0.0000
h(4) = —0.0020 h(10) =—-0.0396 h(l16)= 0.1176
h(5) = 0.0000 h(11)=-0.0000 h(17)= 0.0000
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Minimum stopband attenuation [dB]

_45 1 1 1 1 1 1 1
36.5 37 375 38 385 39 395 40 40.5

Total stopband energy [dB]

Figure 24: Tradeoff between the minimum stopband attenuation and total stopband en-

ergy using the WLS-Chebyshev method.
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Do-it-yourself. FIR filter approximations

e Experiment 5.1: The output signal of a differentiator device to a complex sinusoid

input is given by

dx(t de/2t |
y(t) = 7;&) — edt — jQelf2t (170)

e Hence, the ideal differentiator has a magnitude gain proportional to the input

frequency () and a phase shift of :I:% depending on the sign of ().

e For discrete-time systems, this analysis holds for the digital frequency within

w € [—FTS, FTS], as depicted in Figure 2.
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e Consider 1-second interval of a cosine signal generated in MATLAB as
Fs = 1500; Ts = 1/Fs; t = 0:Ts:1-Ts;
fc = 200;
X = cos(2 *pi xfc. =*t);
whose output to a differentiator is
yl = -2 »pi *fc *sin(2 =*pi xfc. *t);

as discussed above.

e The differentiation operation can be approximated by

_x(t+ At) —x(t)

Yz (t) = At (171)

leading, in the discrete-time domain, to the output

cos(2mtf.(m + 1)Tg) — cos(27tf nT;
ya(n) » el H 1) Zcosl2mlenT) 72
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Do-it-yourself: FIR filter approximations

e This approximation can be determined in MATLAB as
y2 = [0 diff(X)])/Ts;

which, in the Z domain, corresponds to the transfer function

H,(z) = (‘ZT_—” (173)

whose magnitude response is shown as the dashed line in Figure 25a.

e In this plot, one can notice that this first-order approximation works very well for small

values of f., but deviates from the desired response (indicated by the solid line) as

f. approximates Fs  This fact motivates one to design better differentiators.
2
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e Using a rectangular window, the impulse response of a differentiator device is
obtained directly from Table 1, and can be determined in MATLAB, for an odd length
N, as
N = 45;
h3 = zeros(N,1);
for n = -(N-1)/2:(N-1)/2,

if n "= 0,
h3((N+1)/2+n) = ((-1)"n)/n;
end;
end;

yielding the frequency response
[H3,W] = freqgz(h3,1);
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e Using any other window function, as for instance the Blackman window, one may get
h4 = h3. xblackman(N);
H4 = freqz(h4,l);

e A differentiator may also be designed with Chebyshev algorithm using firpm

command.

e In this case, one must specify vectors F = [0 f1 f2 1] andA = [0
pi *f1 pi *f2 0] , characterizing the desired response, which should vary from
0 to 7tf1  within the differentiator passband [0, f1 | and from 7tf2 to O within the

normalized interval [f2 |, 1].
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Do-it-yourself: FIR filter approximations

e An example of such a design is given by
F =[0 0.9 091 1];

A = 1[0 0.9 *pi 091 =pi 0];
h5 = firpm(N-1,F,A, differentiator’);
H5 = fregz(h5,1);

e The magnitude responses of all differentiators designed above are shown in
Figure 25b.
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Figure 25: Magnitude responses of differentiators in Experiment 5.1: (a) ideal (solid line)

and first-order approximation (dashed line); (b) ideal (solid line), rectangular

window (dashed line), Blackman window (dash-dotted line), and Chebyshev

algorithm (dotted line).
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Do-it-yourself: FIR filter approximations

e Experiment 5.2: Using the specifications

N = 20
w, = 0.1
P \ (174)
w, =0.2
ws =2

/

a nice lowpass FIR filter can be designed with, for instance, the MATLAB command
firpom as given by

N = 20; Freg = [0 0.1 0.2 1]; Weight = [1 1 0 O],

h = firpm(N,Freq,Weight);

e The magnitude response of the corresponding filter is depicted in Figure 26, along
with the one of the moving average filter with N = 20 employed in Experiments 1.3
and 2.2.
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e From this figure, one clearly notices how the firpm filter can sustain a flatter
passband as desired, better preserving the two sinusoidal components in signal X

from Experiment 1.3, while strongly attenuating the noise components within the

specified stopband, as seen in Figure 27.
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Figure 26: Magnitude responses of lowpass filter with N = 20 in Experiment 5.2:

firpom (solid line) and moving-average (dashed line).
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Figure 27: Output signal from firpm filter in Experiment 5.2 for noisy sinusoidal compo-

nents in X signal in Experiment 1.3.
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