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Spectral Estimation

e This chapter considers the very practical problem of estimating the power spectral
density (PSD) of a given discrete-time signal y(mn).
e Typical applications include:
— Radar/sonar systems.
— Music transcription.
— Speech modeling.

e The classical solution is first estimating the autocorrelation function, followed by a

Fourier transform to obtain the desired spectral description.
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Spectral Estimation

e Spectral estimation algorithms are classified as non-parametric or parametric

methods.

e Non-parametric methods do not assume any particular structure behind the available

data.

e Parametric schemes consider that the process follows some pattern characterized by

a specific set of parameters pertaining to a given model.

e Parametric approaches tend to be simpler and more accurate, but they depend on

some a priori information.
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Spectral Estimation

Topics covered in this chapter:

e Basic concepts of estimation theory that are used to characterize the non-parametric

methods.
e Minimum variance method.

e General theory of system modeling, characterizing the autocorrelation function for

distinct system classes by the so-called Yule-Walker equations.

e PSD estimation for autoregressive systems, including the so-called autocorrelation,

covariance, and Burg’s methods.
e Parametric method based on linear prediction.
e Wiener solution.

e Do-It-Yourself section describing the PSD estimation of a synthetic signal.
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Estimation theory

e Problem of estimation is classified in two groups.

— The classic estimation problem: determine the value of a fixed (deterministic)

unknown value.

— The problem of estimating the value of a random parameter is referred to as

Bayesian estimation.

e Consider the deterministic estimation problem. Let ® be a real-valued parameter to
be estimated from the available set of data {y(0),y(1),...,y(L — 1)} associated

to a random variable y.
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Estimation theory

e The bias B(@) of an estimate © of a deterministic parameter © is defined as
B(©) = E{@) - © (1)
o If B(@) = 0, then the estimate O is called unbiased, otherwise it is referred to as
biased.

e Other important characteristics of an estimator are its variance, standard deviation,

and mean squared error (MSE), respectively defined as

varl®) = E { (@ — E{@}) 2} (2)
oy = 1\/var{®} (3)
MSE{®! = E { (©— @)2} (4)
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Estimation theory

e It is straightforward to show that
MSE{O} = var{®} + B2(O) (5)
in such a way that for an unbiased estimate we have that

MSE{O} = var{O} (6)
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Estimation theory

e An estimate @ is consistent if it converges (in probability) to the true parameter value
lim Prob{|® — @] > ¢} =0 (7)
Lo oo

where € is a small positive number, with the associated variance also converging to
zero.

e Consistency evaluates the estimator performance in the limiting case of sufficiently

large L and is a desirable feature for an estimator.

10
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Estimation theory

e \We aim at an unbiased estimator with low variance or, equivalently, with low MSE.

e \We can reduce bias at the cost of increasing the variance, and vice-versa. The

natural way of reducing both simultaneously is increasing the amount of data L.

e The variance of any unbiased estimate is bounded from below by the so-called

Cramer-Rao limit given by

var{©} > ! 5 (8)
0ln ,
e{ (2ot |

where p(y, 0) is the probability density of the observations y including its

dependence on 0, also known as likelihood function of O.

® An unbiased estimate is referred to as efficient if its variance achieves the
Cramer-Rao limit. In this case, we say that the estimate uses all available data in an

efficient manner.

11
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Nonparametric spectral estimation

e The nonparametric spectral estimation relies on the Wiener-Khinchin theorem that
defines the relationship between the autocorrelation and its Fourier transform,
namely the PSD.

e |t explains how to estimate the PSD and/or the autocorrelation sequence of a WSS
process, which is also ergodic, from a limited number of measured data. This type of

estimator is called periodogram.

12
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Periodogram

e The periodogram PSD estimator is defined by

My p(el®) = Zy e I 9)

e This is equivalent to using a rectangular window on the signal y(n) for the time
interval 0 < n < (L — 1), squaring the absolute value of the Fourier transform of
the truncated sequence, and normalizing the result by a factor L to obtain a density

measure of spectral power.

13
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Periodogram

e A simple algebraic development of equation (9) yields

L—1
ﬁY)P(ejw) _ <Z y me) <Z y(n)ejwn>
n=0
L— _
— f Z g o iw(m-—m)

—Jw(—L—|—1)

(y(0)y(L — 2)—|—y(])y(]__]))e—iw(—L+2)
..+(y (0) +y (1)+...+y2(L_1))e—jw(o)+m
(y(L—Ny(1) +y(L—2)y(0))e 2
y(L—1)y(0)e 1]

++++~|

L—-1 |
= ) Rus(v)e™” (10)

v=—L+1

14
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Periodogram

e \Where

L—1—|Vv]|
]

Ryp(i=1 3 umum+) (11)
n=0

forv=—(L—-1),—(L—2),...,0,...,(L—2),(L—1), and the subscript b
stands for biased.

e Therefore, the periodogram PSD applies the Wiener-Khinchin theorem in an

estimated version of the autocorrelation function.

15
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Periodogram

e By taking the expected value of equation (11), we get

L—1—]v|

E{Rv0} = X Bl )= SR )

® Hence, the autocorrelation estimation associated to the periodogram method is, in

average, the result of passing the Bartlett window

L—|v| : < .
welv) =4 T == (13)
0, otherwise

on the true autocorrelation function Ry (v).

16
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Periodogram

e In the frequency domain, the averaged periodogram PSD becomes the convolution

of the true PSD function with the Fourier transform W5 (e!®) of the Bartlett window,

that is
. 1 ™ . .
Efve(e)) = 5 | Walel ¥y (e) o (19
—7T
where
2
1 [ sin<9lt
WB(er) — i ) (i (15)
Sin >

17
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Periodogram

e An important characteristic of the periodogram, as given in equation (9), is that it is

readily implemented with the FFT algorithm.

e For finite L, the autocorrelation estimation ﬁy,b(v) defined in equation (11) is clearly

biased for v # 0, with the bias increasing for larger values of |v|.
e In addition, ﬁy)b(ﬁl) becomes zero for all lags such as | v| > (L —1).

e The variance of ﬁy,b(’V) also tends to increase with |v

, since the averaging sum is
performed for less values of n.

18
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Periodogram

e If the {Y} process is a white noise, such that ry(ej“’) = G%, the periodogram
estimate is unbiased even for finite L, since
2 [T
Elfo(e)) = 30 | Walel W) = ofwa(0) = o = Tv(e) a9
—7T
e |t can be verified that the periodogram PSD is biased for finite L, unbiased in the
limiting case L — 00, and presents a constant variance, regardless the value of L,

thus constituting a non-consistent estimator.

19
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Periodogram variations

e A large set of data can be partitioned into % blocks of length K each, yielding several
PSD estimates that can be averaged to decrease the variance associated to the

periodogram.

e This approach decreases the amount of data used in each estimate, increasing the
associated bias. The averaged periodogram method exchanges bias for variance in

the resulting PSD estimate.

e Another variation employs a non-rectangular window function on the whole data set
{y(0),y(1),...,y(L — 1)} being processed. This emphasizes the amplitude of
PSD peaks, better detecting sinusoidal components in {Y}, but also widens these

same peaks, what can make neighboring peaks to be seen as a single one.

20
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Periodogram variations

e One can avoid the bias in the periodogram autocorrelation by using (L — |v|)

instead of L in the denominator of (12), yielding

L—1—|v|
Rea = = 3w+ v a)
such that
1 L—1—|v|
ERvu} == 2. Emum+hi=Rv(v) @)
n=0

where u stands for unbiased.

21
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Periodogram variations

e Replacing ﬁy)b(’V) with ﬁy’u(V) in the last line of (10) may lead to negative values in

the resulting PSD function.

e This can be overcome by introducing a window function w(n), of length (2K + 1)

with K < L, in the computation of the new PSD estimate
T\Y a7 Z w(v ﬁYu (v)e 1wV (19)

which is referred to as the Blackman-Tukey (BT) spectral estimator.

22
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Periodogram variations

e Letting K << L removes the noisier samples of the autocorrelation function in the

computation of fy,BT(ejw), decreasing the variance in the resulting estimator, at the

expense of a slight bias increase.

e To avoiding negative PSD values there are several window functions w(n ) for the BT

spectral estimator, generating several different trade-offs between bias and variance.

23
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Example 7.1

e Consider a signal y(n) formed by three sinusoidal components as given by

y(n) =sin (27[12—”1) + sin (Zﬂ];—zn> + 5sin (27[%11) (20)

with f1 =45 Hz, f5 = 55 Hz, and f3 = 75 Hz, sampled at f; = 400 samples/s
during a time interval of 200 ms.

e Use the periodogram, periodogram with windowed data, averaged periodogram, and
BT methods to estimate the PSD function for this signal.

24
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Example 7.1 - Solution

e From the example data, the total number of samples is L = 80 and, where required,
K = 20.

e In Figure 1a, it is verified that the standard method yields a slightly biased estimation,
since the 45- and 55-Hz peaks are slightly off mark, with the neighboring sidelobes of

the 75-Hz peak almost masking the 55-Hz peak.

e The PSD estimate that applies a Hamming window to the data before calculating the
autocorrelation function is able to avoid the masking effect, as seen in Figure 1b, but
also widens the mainlobe of each peak, in this case merging the 45- and 55-Hz

peaks into a single one.

25
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Example 7.1 - Solution

e The averaged periodogram estimate is shown in Figure 1c where we observe the
resulting variance reduction and a loss in resolution. The averaged periodogram can
be shown to be asymptotically unbiased, however since the number of data samples
utilized in each periodogram is smaller than L there is a loss of resolution in the order

L
of K

e A periodogram using the entire data record should have a resolution smaller than s

L
which corresponds to 5-Hz. Since K = 20 the resolution is reduced by four

explaining why the peak at 55-Hz could not be observed in Figure 1c.

e Figure 1d depicts the PSD estimate from the BT method, using the Hamming window
on the estimated autocorrelation function, illustrating the excellent bias-variance

compromise achieved by this technique.

26
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Example 7.1 - Solution
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Figure 1: PSD: (a) standard periodogram; (b) periodogram with windowed data; (c) aver-

aged periodogram; (d) Blackman-Tukey method.
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Minimum variance spectral estimator

® In this section we derive yet another method to estimate the spectrum of a given

signal based on an estimate of the signal power at arbitrary frequencies.

e The nonparametric spectral estimator methods presented so far are based on the
periodogram as described in equation (9). This equation indicates that a rectangular
window is applied to the signal y(n ) placed at the time interval 0 < n < (L — 1),

followed by the computation of its Fourier Transform.

28
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Minimum variance spectral estimator

e The minimum-variance approach estimates the spectrum at frequency w. by
filtering the signal with a narrow bandpass filter centered at (W, and estimating the

power at the output of the filter.

e The filter should be optimized for having minimum energy outside the passband.
Consider the filter with center frequency W is WZ"UC (n) and has length L, and its
output is

L1
Ywaw, (M) =) Wi, (Yy(n—1) (21)
1=0
where the subscript MV stands for minimum variance. We allow W, _ (1) to be

complex.

29
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Minimum variance spectral estimator

e The power at the filter output is

1

Elftmio () = R (0) = 3 | WG ()P Ty (e™) oo 2

where W, (e™)) is the Fourier transform of the impulse response W}, (n) of

the passband filter centered at frequency W..

30
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Minimum variance spectral estimator

e If the passband Aw is narrow enough and has unit gain, equation (22) can be

written as

Aw

Hlymww, (M)*} ~ ﬁry(e“”c) (23)

which implies that the power of Yy, « . (1) is proportional to the PSD of y(n)
around the frequency wW..

e Our aim is to obtain an accurate estimate of Iy (/<) for any value of W, by

cleverly designing the appropriate filter.

e The key idea is to minimize the power of Ywy . (1) over the entire frequency range
—7t < w < 71, while keeping the filter gain at the arbitrary central frequency w.

equal to one.

e In this way we are able to reduce as much as possible the power contributions from

frequencies away from the central frequency.

31
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Minimum variance spectral estimator

e The objective of the MV spectral estimator is to minimize

Ewe = Elumyw, (M)IF) (24)

subject to
L1
Z wieTiwel — 1 (25)
1=0

for a given —t < w, < 71, where we have made W, (1) = wy in order to

simplify the notation.

32
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Minimum variance spectral estimator

e By defining the auxiliary vectors

ym) = mym—-1)...ym-L+1)] (26)
w = [wowi ... wr_1]" (27)
e(el®c) = [1 g IWe gTiZWe e_j(L_”wC]T (28)

one may incorporate the constraint into the objective function using a Lagrange

multiplier A, generating an unconstrained minimization

Ew. = EW* y(m)y* (m)w] + A(w* e(e/¢) — 1) (29)

*

where [-]* stands for complex conjugated and transposed.

33
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Minimum variance spectral estimator

e The gradient of Ewc with respect to w* should be equal to

V&, = Ryw + Ae(e!¥<) (30)

where Ry = Ely(n)y* (n)].

e For a positive definite matrix Ry, the value of w that satisfies VW*EwC = 0is

unique and is a minimum of &, _.

34
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Minimum variance spectral estimator

e If we denote this optimal solution by w, we have
Ryw + Ae(e!®¢) = 0
e Premultiplying the above equation by e* (el®e )R\_(1 , it follows that
e*T(ej“’C Jw + Ae*T(ej“’C )R\_(1 e(e!®c) =0

and then

1

)\ — T ; 1 i
e* (el®e )Ry e(el®e)

considering that the constraint of equation (25) holds for w.

35
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Minimum variance spectral estimator

e According to equation (31) the MV solution is

- 1

W= *T (ajw —1 jw
e* (el®c )Ry "e(el®e)

Ry 'e(e!ve) (34)

e For this solution, the minimum value of the objective function becomes

Ewemn = Min {E{lymyaw. (n)I*}}

Ew" y(n)y™ (n)w]

1
— 35
e*' (elwe )Ry Te(elwe) 89

36
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Minimum variance spectral estimator

e This solution is valid for any W = W, so that according to (23), one gets

| 27t 27
ﬁ ’ —_ W min ~
Vauv(e™) . Aw (e*T(el'w)R;]e(ejw))

Ao (36)

37
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Minimum variance spectral estimator

e Given that L is the window length, one may approximate the window bandwidth by

27
AW ~ — 37
[ (37)
and the minimum-variance spectrum estimator is
. L
Ty (') ~ (38)

e*' (ejw)R\_(] e(elw)

38
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Example 7.2

e Repeat Example 7.1 using the minimum variance method and comment on the

results.

39
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Example 7.2 - Solution

e From Figure 2 we can observe that the minimum variance method is able to
discriminate the presence of three sinusoids, however, the sinusoids at 45- and

55-Hz have rather biased estimations.

e |t can also be noticed that the estimated spectrum presents a rather smooth

behavior, as characteristic associated to the minimum variance method.

e Unfortunately, its resolution to discriminate the peaks is not as accurate as the
parametric methods for the type of application where we wish to estimate the

sinusoids frequencies.

40
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Example 7.2 - Solution

30

o)
S,
3
a

_20 L

_30 L

_40 1 - - 1 1

50 100 150 200
Frequency [HZ]

Figure 2: PSD estimate for MV method with true normalized frequencies indicated by ver-

tical dotted lines.
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Modeling theory

® In where applications there are models closely related to the process that we are

willing to estimate the behavior the periodogram is not the method of choice.

e \We now describe some classical modeling tools to be employed in applications

allowing parametric estimation.

e The Wold decomposition theorem states that any WSS process can be expressed as

the sum of a random and a deterministic processes.

e The deterministic component can be perfectly determined for all 0 < m based on the

knowledge of its infinite past for n < 0.

42
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Rational transfer-function models

e The classic concept of system modeling consists of writing a WSS process as the

output signal of a linear, time-invariant, and causal system to a white-noise input.

e The modeling problem is commonly solved in a two-step procedure: The first step

consists of choosing a particular input-output model that fits the available data.

e Then, we determine the parameter values of the particular model previously chosen.

43
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Rational transfer-function models

e FIR filters characterized by the input-output relationship
yn) =box(n) +bix(n—1)+ -+ bmx(n — M) (39)
are commonly referred to as moving average (MA) systems.

e The output can be seen as a weighted average of the input samples for
n,(n—1),..., (n— M) that shifts with n..

e Autoregressive (AR) models are characterized by a purely recursive input-output

relationship described by

ym) =xn) —ajym—-1) —aym—2) —--- —any(n—N)  (40)

44



8- CAMBRIDGE

Diniz, da Silva and Netto P UNIVERS IR

Rational transfer-function models

e Combining the two models above, we get the so-called ARMA model described by

yn) = box(n)+bix(in—1)+---+bpmx(n—M)
—aiym—1) —aym—2) —---—any(n—N) (41

which we associate to the general IIR filter.

e |n the z-transform domain, we notice that the MA, AR, and ARMA are associated to

Hualz) = bo+biz '+ +bpmz™
bazM 1+ b:zZM-1T L ...+ b
_ 0Z -+ 12 _ -+ + M (42)
z

45
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Rational transfer-function models

o
Ho(2) :

AR - 14+ aiz"+az2+---+anz N
~ g (43)

- zZN+aZNT +apzN2 4t an

Han(z) = bp+biz ' +---+buz™
ARIA - T+az"+az?2+--+anz N

baz™M b zZM-1T L ...+ b

_ ZN_M 0z + D12 + + Om (44)

ZN +a1zN-1T + azN-2 ... 4 ay

respectively.

46
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Rational transfer-function models

e The MA, AR, and ARMA nomenclature originated in the field of system modeling and

control, where the input signal is often assumed to be a white noise.

e Theorem (System decomposition theorem):  Any stable ARMA system can be
decomposed as a minimum-phase stable ARMA system cascaded by an all-pass

system with constant-gain.

In addition, any minimum-phase and stable ARMA model can be approximated by an

infinite-order AR system.

47
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Rational transfer-function models

e Proof: Consider the zero-pole constellation for the stable transfer function H(z).

e All poles are inside the unit circle and the zeros can be anywhere in the complex

plane.

ﬁ, which

1 271
e For each zero z; outside the unit circle, multiply H(z) by a factor

Zi

corresponds to a zero-pole pair inside the unit circle.

e Combining the z; zero with its inverse Zl forms a constant-gain all-pass system.

1

48
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Rational transfer-function models

e The (1 — Ziz_1 ) term corresponds to a zero within the unit circle.

e The transfer function can be written as the cascade of an all-pass system (combining
the constant-gain contributions of all original zeros outside the unit circle and the
corresponding reciprocate poles) and a minimum-phase stable ARMA system (which

includes all original poles and minimum-phase zeros and the newly introduced

minimum-phase zeros).

49
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Rational transfer-function models

e Let us now consider only the minimum-phase stable ARMA transfer function as

H(z) = by~ (45)

with all [z;| < T and |[p;| < T.

50
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Rational transfer-function models

e Representing the ARMA poles with an AR system is trivial. For each zero such that

1z;| < 1, using the summing formula for an infinite-length geometric series

e 1 1
1 —ziz7 ' = — = (46)
7.z 1 00
1+ e 1—|—Zz]fz_k
b k=1

® Hence, each minimum-phase zero also can be modeled as an AR system and so

can the complete ARMA model.

51
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Rational transfer-function models

e This result indicates that the above minimum-phase and stable ARMA-AR

equivalence, except for an all-pass factor, applies to a large set of linear systems.

e A similar result follows for minimum-phase and stable ARMA systems and MA
models, the demonstration of which is left as an end-of-chapter exercise for the

interested reader.

e The ARMA-AR and ARMA-MA equivalences indicate that we may not need to be
sure about which model to employ in a particular application. As indicated above, the
price to be payed for employing an MA or an AR model instead of an ARMA model is

that we may be forced to work with a high-order model.

52
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Example 7.3

e Approximate the ARMA system

(47)

by an Nth-order AR model.

53
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Example 7.3 - Solution

e Since the ARMA filter is minimum-phase, using equation (46) we can write that

H(z) = ] —
(1-0.9z71) (1 + Z(—oa)kzk)
k=1
_ ]
1+ ( 3 (O.3)kzk> —0.9271 —0.9 (i(o.s)kz(k“))
k=1 k=1

54
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Example 7.3 - Solution

® Hence,
H(z) = ! ,
1+ <i(o 3)kzk> — 0.9 (i (~0.3)* zk’>
' ' (—0.3)
k=1 k’=1
_ 1

1+ <i(o.3)kzk> +3 (i (o.s)k’zk’>

k=1 k’/=1
1

— (48)

1+4 Z(—O.S)kz_k
k=1
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Example 7.3 - Solution

e Which corresponds to an infinite-order AR system with denominator coefficient

’

ay = —1.2
) ary = 0.36
a; =4(—0.3)" = < (49)
as = —0.108
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Example 7.3 - Solution

e Truncating the last summation in equation (48), we get a finite-order AR

approximation

H(z) = ] (50)

N
144 Z(—os)kz—k
k=1
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Example 7.3 - Solution

Magnitude response [dB]

Frequency [rad/s]

Figure 3: Magnitude responses of original ARMA system (solid line) and AR approxima-

tions of orders: N = 1 (dotted line), N = 2 (dashed line), and N = 3
(dash-dotted line).
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Yule-Walker equations

e For the MA model, multiplying equation (39) by y(n — v) and taking the expected

value, we get

M
Eumym—v)} = E<) bix(n—jly(n—v)
=0
M
= ) biEx(n—jly(n—v)} (51)
=0
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Yule-Walker equations

e The general term E{x(n —j)y(m —v)} becomes null for v > j, since the output at
time (n — v) is independent of the future input x(n. — j), and then

Ex(n—jly(n —v)j = Eix(n —j)iBy(n —v); =0 (52)

assuming a zero-mean white noise x(m).
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Yule-Walker equations

e Forv < j, however, we obtain

Eix(n —jly(n —v)j

M
E {x(n—j)Zblx(n—l—v)}
1=0

M
— Z biEx(n —j)x(n—1—~v)}
1=0

— b)'_'v 0%( (53)

for a white noise x(n) with variance 0%.
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Yule-Walker equations

e Substituting equation (53) into (51), for the MA model, it is possible to show that

y

M
Y bibj_y | ox, forv=0,1,...,.M

)=V

0, forv > M

Ry(v) =

7\

(54)

\
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Yule-Walker equations

e For the AR model, multiplying equation (40) by y(n — v) and taking the expectation

value, we get

N
Ey(njyn—v); = Ex(njy(n—v)j—E {Z aiy(n—iyn — V)}
1=1

N
= Ex(My(n—v)}— ) aiE{y(n —i)y(n —v)yss)
1=1
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Yule-Walker equations

e And then

r N
Gi — Z a;Ry(v —1), forv =0
i=1

RY(V) = 9 N (56)
—Z a;Ry(v —1), forv >0
\ 1=1
since, for the AR model, we have that
Gf(, forv =20
Ex(n)jy(n —v)} = (57)

0, forv>0

64



i CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Yule-Walker equations

e For the general ARMA model, a similar relationship can be determined:

2

M N
Y bh(i—v)|ox—) aRy(v—1i), forv=0,1,....M
j=vV 1=1

N
—ZaiRy(’V—i), forv > M
\ i=1
(58)

where h(n) is the corresponding ARMA model impulse response.

e Equations (54), (56), and (58), relating the output autocorrelation function to the

model coefficients, are the Yule-Walker equations for the MA, AR, and ARMA models.
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Example 7.4

e Determine Ry (V) for the AR system

B 1
109z

assuming a unit-variance white-noise input.

H(z) (59)
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Example 7.4 - Solution

e For the given AR system, we use N = 1 in equation (56), resulting in the following

relationships for the correlation function

02 —ajRy(v—1), forv=0
Ry(v) — % — a1Ry(v ), forv ©0)
—ajRy(v —1), forv >0

such that, forv = 0, 1,

Ry(0) = 0% — aiRy(—1)
Ry(1) = —aiRy(0)

(61)
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Example 7.4 - Solution

e Since Ry(—1) = Ry (1), we have that

0%
Ry (0) = 62
and then
2 |v|
ox(—ar)
R = X 63
which, for O‘§< — 1 and a; = —0.9, is depicted in Figure 4.

68



w2 CAMBRIDGE

Diniz, da Silva and Netto “§> UNIVERSITY PRESS

Example 7.4 - Solution

1_

|
ul
o
T O
ul
o

|
1—-0.9z— 1"

Figure 4: Autocorrelation function of AR system H(z) =
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Parametric spectral estimation

e The periodogram-based spectral estimators perform a primary estimation of the

autocorrelation function according to the Wiener-Khinchin theorem.

® In such case, the autocorrelation estimation is restricted to a lag interval delimited by
the amount of available N or used M data. Outside that interval, the estimation

becomes zero, leading to a biased PSD estimation.
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Parametric spectral estimation

® |n parametric spectral estimation, we model the random process at hand, and the

resulting PSD estimate is obtained as the power spectrum of that model.

e The MA model also forces the estimated autocorrelation to become null for large lag

values, see the Yule-Walker equations (54).

e Therefore, PSD estimation based on MA models presents similar properties to the

periodogram-based methods.
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Parametric spectral estimation

e By employing an AR or ARMA model, we do not impose any null constraint on the

resulting autocorrelation function.

e In fact, for these types of models, the autocorrelation function is automatically

adjusted to better fit the statistical behavior of the available data.
e The result is a PSD estimation with better statistical properties.

e The nonparametric PSD methods require large amount of data whereas the

parametric methods are more suitable to applications where the data length is short.

72



Diniz, da Silva and Netto “l’> UNIVERSITY PRESS

Parametric spectral estimation

e The AR model presents interesting characteristics for practical system modeling:

— It does not force the autocorrelation function to become zero for large lag values,

as opposed to the MA model.

— Apart from an all-pass component, it can be used to approximate any stable

ARMA system.

— Its Yule-Walker equations consist of a linear relationship between the
autocorrelation values and the model coefficients, as opposed to the general
ARMA model.

— The resulting linear system presents a special structure yielding simplified

numerical algorithm.
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Linear prediction

e \We now describe the classical approach, commonly referred to as linear prediction

(LP), to estimate the parameters an AR model for a particular data set.

e The algebraic development is associated to the AR modeling problem with an

interesting frequency-domain interpretation.

e Consider that we know a set of discrete-time data {y(0),y(1),...,}froma
particular process. This data may have come from measurements of a stock price,

some bacteria population, or a speech signal, for instance.
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Linear prediction

e The idea behind the LP problem is to estimate the value of y(n) as a linear

combination of N past samples of the process, that is
N

gn) =arym -1 +aym -2+ +anym—-N) =) ayn—1i) (64)
i=1

where Qi, fori = 1,2,..., N, are the LP coefficients and N is the LP model order.
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Linear prediction

e By comparing the LP estimation to the true signal value, we can form the estimation

error
e(n) =y(n)—G4(n) (65)

and the associated mean-squared error (MSE) is given by
& = Ele?(n)) (66)

which, from equations (64) and (65), constitutes a quadratic function of the LP

coefficients ;.
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Linear prediction

e One may then determine that

o0& dE{e’(n)}
0a; 0a;

B de?(n)
- %%
= E {Ze(n) Oe(n) }

y

= —2Be(m)y(n—1); (67)
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Linear prediction

e By replacing e(m) by its expression in equation (65), it follows that

N
= —2Ry(D)+2) &Ry(i—j) (68)

assuming that the process {Y} is WSS.
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Linear prediction

e By forming the gradient vector V& with respect to the LP coefficient vector
a=1[a; a, ... ﬁN]T and equating it to zero, we determine the MSE stationary

point 2 as the solution of the following linear system:

 Ry(0)  Ry(=1) - Ry(1=N) | [ar | [ry() ]

Ry (1) Ry(0) --- Ry(2—N) as Ry (2)
— _ (69)

Ry(N—T) Ry(N=2) - Ry(0) | |ag | |Rv(N)
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Linear prediction

e The previous relation is the so-called Wiener-Hopf equation, rewritten as
Rya" = py (70)

where Ry is the autocorrelation matrix for the process {Y} and pvy is the right-hand

side vector in equation (69).
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Linear prediction

e Using equation (68), we determine the MSE second-order differentiations as

*(52)
o’y 04
04;0a4, 00y
N
0 [ —2Ry(1) +2) @Ry(i—j)
ji=1
- 0ay
— 2Ry(i—k) (71)
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Linear prediction

e The MSE Hessian matrix is given by

H= ﬁ — 2Ry(i—k)]. ., = 2R (72)
N aﬁlaﬁk ik B v Lk v

which is in general positive definite. The stationary point @a* in equation (70) is the

MSE global minimum.
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Linear prediction

e Analyzing equations (64) and (65) in the z-transform domain, for a given signal y(n)

we get
E(z) = (1 — @iz ' —az - — ﬁNZ_N) Y(z) (73)

or, equivalently,

Hiz) = £ = - (74)
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Linear prediction

e If the model order N is high enough, one may achieve the best possible prediction

and the error process {E} becomes a white noise.

e The LP problem corresponds to an AR modeling of y(mn) with the signal e(n) as

input.

e The Wiener-Hopf equation (69) can be obtained directly from the AR Yule-Walker
equations by considering e(n.) = x(m) and letting —a; = @; in equation (56), for
v=1,2,...,N.
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Linear prediction

® AR modeling and LP can be seen as a pair of inverse problems: Given an AR
system, using the Yule-Walker equations one is able to infer the autocorrelation

function of the output process.

e In the LP context, given the autocorrelation samples, we can estimate the AR system

that better fits these samples in the minimum MSE sense.
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Example 7.5

e Determine the second-order linear predictor for a WSS process characterized by

Ry(v) = 4(0.5)" (75)
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Example 7.5 - Solution

e From equation (75), we have that

4
Ry(1) =2 (76)
1

which results in the Wiener-Hopf equation

4 2 || a 2
= (77)
2 4 || a3 ]

e The solution of the above equation is given by @7 = 0.5 and @5 = 0.
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Example 7.5 - Solution

e The obtained solution corresponds in fact to the first-order AR system

1
H(z) = 78
(2) 1—0.5z7"! (78)

whose autocorrelation function is of the form

o (ax) o205  40%(0.5)
R — X X 79
v(v) T— (@)  1-052 3 (79)
with, in this case, Gi determined by

ox = Ry(0)(1 —(a})?) =4(1-0.5%) =3 (80)

turning equation (79) into (75), as expected.
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Linear prediction

e An interesting frequency-domain interpretation for the LP problem arises from

Ele?n) = Re(0) = 5 [ Tele)dw= oo [ =

e o dw (81)

e For a particular process, Fy(ejw) is a fixed nonnegative function and, for an AR

H(el®)|? is a strictly positive function.

system,

® Hence, the last integral in equation (81) is equivalent to the area below the curve

defined by the ratio of these two functions.
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Linear prediction

e The best we can do to minimize this area, and also the MSE, is to choose the LP

coefficients @; in such a way that the denominator |H(e!)|? becomes large when

the numerator is large, small when the numerator is small, and so on.

e The optimal MSE solution is such that |[H(e!® )| follows the shape of I'y (e/?), as

close as possible, considering the limited number N of variables.
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Linear prediction

® |n practice, the LP solution is such that the AR power spectrum becomes a smoothed

version of the PSD function of the process {Y}.

e The level of approximation required by the application at hand determines the

optimal value of N to be used.

e The implementation of the Wiener-Hopf equations differ in the algorithm for
estimating the autocorrelation function. Each variation of estimation method results

in a different AR model, as described in the following subsections.
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Covariance method

e |n the covariance method, the data set is windowed and the estimation error is

minimized only within the window interval.

e Only part of the available data is used in estimating the autocorrelation function. This
yields a different autocorrelation estimation for each window location k, disregarding

the common WSS assumption, such that

K+k—1

Ry,m(p,v) = Z y(n—py(m—-) (82)

where K < N is the window length.
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Covariance method

e This estimation has the advantage of being unbiased, since

K+k—1

E{Renwv)} = E¢Z Y yin—wy(n—v)
n=k
| Kk
= « 2 Eum—pym-—v)
n=k
— RY(H>V) (83)

with low variance for large values of (L — V), since all autocorrelation values are the

average of the same number K of non-zero terms.
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Covariance method

e This modified estimator forms a Wiener-Hopf equation

Ry(1,1) Ry(1,2) -~ Ry(I,N) | [az | [ Rry(1,00
RY(Z, 1) RY(2> 2) U RY(2> N) a; RY(2> O)

| = | (84)
RY(N)1) RY(N)Z) RY(NaN) a>|]<\] RY(N)O)

e The autocorrelation matrix is symmetric and non-Toeplitz, which can be inverted by
using the Cholesky or LU decompositions.

e The AR model obtained from the covariance method is not guaranteed to be stable.

e Practical problems often lead to stable poles and unbiased PSD estimation.
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Autocorrelation method

e |n the autocorrelation method for AR modeling, the LP problem (69) is solved by

using the biased autocorrelation estimation ﬁy,b(’V).

e The AR model can be shown to be guaranteed stable, but the associated PSD

estimation is biased and presents low resolution.

e The unbiased estimation ﬁy)u(’V) using all available data leads to an ill-conditioned

autocorrelation matrix, inducing large variance in the final PSD estimation.

e The even symmetry in the ﬁy)b(ﬁl) estimation, leads to autocorrelation matrix:
symmetric, Toeplitz, and positive definite, so that the Levinson-Durbin recursion can

be used to invert it and solve the linear system of equations.
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Example 7.6

e Consider the output signal y(m) of the Hamming-window FIR filter, to a white-noise
input with zero mean and unit variance. Find the Nth-order AR model for such signal

using the autocorrelation method for different values of N.
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Example 7.6 - Solution

e This problem constitutes an interesting challenge for the AR model, since it is
expected to approximate a system with all zeros on the unit circle and all poles at the

origin of the complex plane.

e Using the autocorrelation method with N = 10, 20, 50, as described in this section,
results in the AR power spectra shown in Figure 5 along with the original FIR

response (solid line).

e In this figure, all AR spectra were normalized to 0 dB at (v = 0. Results clearly
indicate that larger values of N yield AR models with power response closer to the

ideal one.
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Example 7.6 - Solution

.
’ W
::::::::

PSD [dB]

0 0.5 1 1.5 2 2.5 3
Frequency [rad/sample]

Figure 5: Power response for original MA system (solid line) and respective AR approxi-
mations using autocorrelation method: N = 10 (dotted line), N = 20 (dashed
line), N = 50 (dash-dotted line).
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Levinson-Durbin algorithm

e \We can generate the extended Wiener-Hopf equation of (56) by incorporating the AR

Yule-Walker equation (69) for v = O into the standard form, obtaining

Ry(0) Ry(—1) Ry(=2) ... Ry(-N) |[ 1 | [o2
Ry(1) Ry(0) Ry(—1) ...Ry(1=N) || —a} o, 0

Ry(2) Ry(1) Ry(0) ...Ry(2—N) —ﬁz[N] = 0 (85)
Ry(NJRy(N=T)Ry(N=2)... Ry(0) ||-ai | | O

where the sub-index [N] relates the associated variable to the Nth-order model.
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Levinson-Durbin algorithm

e We must notice that the value of Ry (V) is independent of the model order, whereas

the estimation error is highly dependent on N, and so is its variance Gi.

e The extended Wiener-Hopf equation can also be written in a compact form as

Ry, [N+1] = (86)

100



8- CAMBRIDGE

Diniz, da Silva and Netto ] ARG T

Levinson-Durbin algorithm

e The Levinson-Durbin algorithm determines the LP coefficients of the Nth-order
model from the (N — T)th-order model.

e This recursion is then initialized for the first-order model and then iterates up to

desired order N.

e To obtain the order-recursive relationships consider the upgrade from the second- to
the third-order AR model.
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Levinson-Durbin algorithm

e \We can express the third-order extended coefficient vector in equation (86) as

o1 0
1 _a —ar 4
1,[3 . 1,[2 2,[2
s —42,3] —42,12] — 41,12
| a3 3 0 L |

where k3 is an auxiliary parameter to be determined.
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Levinson-Durbin algorithm

e Using this expression, the extended Wiener-Hopf equation for N = 3 becomes

] Ry (—3) ]
—aj (3 Ry, [3] Ry(—2) —aj 3
Ry, (4] =
—a3 (3] Ry(=1) || =85 2
a3 3 ' Ry(3) Ry(2) Ry(1) Ry(0) || O |
Ry(0) Ry(—=1) Ry(=2) Ry(=3) || o
Ry (1 —a*
—k3 Y( ) /\j[z]
Ry(2) Ry, [3] —43 12
Ry (3) 11 ]
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e Or equivalently

Ry (4]

Levinson-Durbin algorithm

104
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Levinson-Durbin algorithm

e With

o
N
I
~
..<
=
|
~
..<
~
£
N
|
~
_<
o
vN
N

G%(,[Z] q[2] G%(,[s]
0 0 0
— k3 —
0 0 0
q o2 0
i 2] L VX, [2] i i

105

(89)

(90)



8- CAMBRIDGE

Diniz, da Silva and Netto P UNIVERS IR

Levinson-Durbin algorithm

e Or, equivalently,

2 2
Ox, 121 — K342 = 0% i3 1)
dr2) — k3G§<,[2] =0
e Solving the system above, we get
di2] RY(3) — RY(2)61 2] — RY(”az [2]
k3 — bl — > : : (92)
o) o
X,[2] X,[2]
2 2\ 2
ox,3 = (1=k3)ox (93)
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Levinson-Durbin algorithm

e Hence, from equation (87),

( Nk ANk . k ANk

1,30 — 41,12 92.12]
Y G203 =G — ksl (54)
L a?,m = k3
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Levinson-Durbin algorithm

e Equations (92), (93), and (94) illustrate that the third-order AR model can be

determined from the second-order parameters (2], O‘i’[z], ﬁT’[z], and 63,[2]-

e Generalizing this recursion, we obtain an iterative algorithm with computational

complexity proportional to N?Z and described by:
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Levinson-Durbin algorithm

() For a given data set, determine Ry (0), Ry(1),..., Ry(N).
(i) Set 0% o = Ry(0).

(i) Fori=1,2,..., N, compute:

ki = 2 (95)
O-X,[1—1]
2 2\ 2
OX,lil — (1 ki)GX,[1 1] (96)
R ST Ry RSN
), 1 kl, forj_l
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Burg’s method

e The auxiliary parameters ki, fori = 1,2, ..., N, are known as the reflection
coefficients, and they constitute an alternative description of the Nth-order AR

model, as opposed to the LP coefficients G [n7.

e The LP model given in equation (64) employs N past samples of the available signal

to estimate the current sample y(mn).

e The estimation error between y(n) and the optimal LP estimate is also known as

the Nth-order forward estimation error and denoted by

N
X (M) =y(m) — ) a;

i=1

Ny —1) (98)

)
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Burg’s method

e If we feed the LP model with a reversed-in-time version of the process {Y?}, then

future samples are combined to form an estimate of y(n — N).

e Since Ry (V) is an even function, the corresponding Wiener-Hopf equations, and

consequently the optimal LP model, remain the same.

e In such a case, the error between the past sample y(n — N) and its estimate is

referred to as the backward LP error and denoted by

N
xo,np (M) =y(n—N) = > @} yu(n—N +1) (99)

1=1
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Burg’s method

e Applying the Levinson-Durbin order-recursion of equation (97) to the optimal LP

coefficients in equation (98)

N—1
x,mi(m) = yn)— <Z ﬁf,[my(n—i)> —ay y(n—N)

= X N—1](N) = knXp (nm11 (U — 1) (100)
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Burg’s method

e A similar development for the backward estimation error, as defined in equation (99),

results in

N—1
Xp,nj(n) = yn—N)— (Z a; ny(n—N +i)> — ay, yn)

i=1
I N-T ]
= Xp,n—11(n—=T1)—kn |y(n) — a; vy (n —j)
ji=1
= XpNo1] (M= 1) —knxe (n—17 (1) (101)
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Burg’s method

e \We can then define the mean value of the forward and backward prediction-error

powers for the ith-order LP model as

&+ o, ]

Ep li] = 5 (102)
where
;L
2
Eili] = [ 1 Z Xy (1) (103)
n=1
;L
2
N Z X 1y () (104)
n=—1

e Burg’s method determines the reflection coefficients k; that minimize 55,[1]-
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Burg’s method

e Differentiating & 1) with respect to ki, we get

a&f, [1]
ok

L1

z 0xs, (] (1)
L—i n; X () —51

L1

2 0 (xi, i1 (M) — Kixo iy (n— 1)

L—i n; X111 (1) T
2 L—1

L—i Z X, 1] (M)Xp i1y (M — 1)

115

(105)



8- CAMBRIDGE

Diniz, da Silva and Netto P UNIVERS IR

Burg’s method

e Analogously, differentiating &, ;) with respect to ki, results in

9Ep [i] p - 0%y [i] (M)
ki L1 nZ: X1 (M) = -
L1
2 0 (xp fi—17(Mm — 1) — Kix¢ (115 (n))
= T3 nZ:iXb,[i] (n) 3k
L1
2
= 7 2 X e (106)
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Burg’s method

e Therefore, according to equations (100), (101), (105), and (106), we can write that

a&f, [1] a&b, [1]

Os ) _ Ok ' ok
ok 2
1 L—1
= 5 2 [Cag ) = (= 1) oy (= 1)
1 L—1
—7—= 2 [Ownn=1) —kix 1 (n) x; 1 ()] 207)
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Burg’s method

e Equating this result to zero, yields

L1
2> xqpenm)x, o (n—1)

— 1

Z (sz,[i—ﬂ (n—1)+ sz,[i—ﬂ (n))

n=1

ki =

(108)

I—q

which is the reflection coefficient used in Burg’s method.
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Burg’s method

e This estimate is employed in the Levinson-Durbin recursions of equations (95), (96),

and (97), to determine the corresponding LP model and the desired PSD estimation.

*

e The resulting estimate parameters ﬁj ] correspond to the solution of the so-called

modified correlation method.

® The spectral estimation literature associates Burg's method to a maximum entropy
PSD estimation. Such association, however, should be made to all AR modeling

schemes.
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Example 7.7

e Find an AR model for the same process using the covariance, autocorrelation, and
Burg’s method with N = 40.
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Example 7.7 - Solution

e The PSD estimates from the autocorrelation (dashed line), and Burg’s (dash-dotted

line) methods are shown in Figure 6 for N = 40.

e The PSD estimate from the covariance method is indistinguishable to the one from
Burg’s method, which, due to the unbiased estimate for the autocorrelation function,

IS superior to the one yielded by the autocorrelation method.
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Example 7.7 - Solution

PSD [dB]

0 0.5 1 1.5 2 2.5 3
Frequency [rad/sample]

Figure 6: Power response for original MA system (solid line) and respective AR approxi-
mations of order N = 40: autocorrelation (dashed line) and Burg and covari-

ance (dash-dotted line) methods.
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Relationship of Levinson-Durbin and a lattice structure

e \We describe how the parameters of the Levinson-Durbin recursion can be related to

a digital filter structure known as lattice structure.

e Equations (100) and (101), repeated here for the reader’s convenience,

Xt NT (M) =% (v 17 () — KX v (M — 1)
(109)
Xp (N (M) = Xp (nm17 (M — 1) — knxg v 17 (M)

relate the Nth-order estimation errors with their (N — 1)th-order counterparts.
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Relationship of Levinson-Durbin and a lattice structure

e Taking these relationships to the z domain, we obtain

Xin (2) = Xine1y(2) — knz ' X v 11 (2)

] (110)
Xo.N1(2) =27 " Xy in—11(2) — K X in—17(2)

which can be readily associated to the basic digital-filter cell depicted in Figure 7.

e Concatenating several of these cells yields the two-multiplier lattice structure seen in

Figure 8.
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Relationship of Levinson-Durbin and a lattice structure

Tp,[N] (n)

Figure 7: Basic cell equivalent to one-level Levinson-Durbin recursion.
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Relationship of Levinson-Durbin and a lattice structure

T, 0] (1) T, 111(n) Th(n)  xpn_11(n) T, (N (1)

Figure 8: Two-multiplier lattice structure equivalent to N-level Levinson-Durbin recursion.
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Wiener filter

e \We generalize the linear prediction problem to the case where we wish to
characterize the stochastic relationship between two processes represented by the

realizations y(n) and x(m). The resulting linear model is referred as Wiener filter.

e Assume that an estimate {j(n) of y(n) can be determined as a linear combination

of samples of x(n), that is

gn) = Wox(n)+Wix(n—1)+---+Wn_1x(n — M)
M
= ) Wix(n—1i) (111)
i=0
where Wi, fori =0, 1,..., M, are the so-called Wiener filter coefficients and M is

the filter order.
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Wiener filter

e The error signal in this case is given by

e(n) =ymn)—Ggn) (112)
and the associated MSE is given by

£ = E{e*(n)} (113)
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Wiener filter

e Similarly to the linear prediction case, equation (113) represents a quadratic function

of the Wiener filter coefficients W; .

® |t is then possible to deduce that

0t  OE{e*(n))
aWi N aﬁ)i
B de?(n)
_ E{ &L }
— E {Ze(n) aaeé;) }
= —2BE{e(m)x(n —1)} (114)
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Wiener filter

e Hence, by replacing e(1) by its expression using equations (111) and (112), it

follows that
of i
ol _JF y(n)—j:ZOW)x(n—)) x(n —1)
M
= —2< BE{ym)x(n —1) —ZWJE{X(“_J)X(“_U}
j=0
M
= —2pyx(V)+2) WiRx(i—j) (115)
j=0

where pyx (1) is the cross-correlation between y(m) and x(n — 1), assuming that
the processes {Y} and {X} are jointly WSS.
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Wiener filter

e By forming the gradient vector V & with respect to the Wiener filter coefficients
W= [Wy Wi ... WM]T and equating it to zero, it is possible to compute the

MSE stationary point W by solving the system

Rx(0)  Rx(=1) ... Rx(=M) | [wg | | pw(0
Rx(1)  Rx(0) ... Rx(-M+1) | | w2 pyx(1)

- | (116)
Rx(M) Rx(M—1) ... Rx(0) | |®% | [pvx(M)
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Wiener filter

e Tthatis
W* =Ry 'pyx (117)

where Rx is the autocorrelation matrix for the process {X} and ppy is the

cross-correlation vector in the right-hand side of equation (116).

e The minimum MSE yielded by the Wiener solution is given by

Emin = Y7 (M)} — pyxRx Pxy (118)
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Example 7.8

e Lety(n) and v(n) be realizations of two first-order AR processes characterized by

yn) = oywi(n)+0.8y(n—1) (119)

vin) = oowr(n)—0.8v(n—1) (120)
where w1 (1) and w, (1) are uncorrelated white noise signals.

e Assumethaty(mn), v(n), wi(n), and wz(n) all have unit variance.

e Determine the second-order Wiener filter for the jointly WSS processes {Y} and {X},

where

x(n) = zy(n) + —v(n) (121)
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Example 7.8 - Solution

e From equation (63), as G%M = O'%/Vz — 1, the autocorrelations of y(n) and v(n)

are such that

(0.8)Im
_ jm|
Elvin)v(in —m)] = oc% (1 3.2)82 (123)

: 2 2 2 2 2
and since 0y = oy, = 1, onehas oy = a5 = (1 —0.87).
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Example 7.8 - Solution

e In addition, since w1 (n) and w2 (n) are uncorrelated, so are y(mn) and v(n), and

then
2 2

Rx(0) = G) Ry (0)+ (?) Ry (0) = le+;1 =1 (124)

2 2
Rx(1) = (%) Ry (1)+ <\£§> Rv (1) = ;1(0.8)—#%(—0.8) ——04
(125)
Ryx(0) = %Ry(O) = 0.5 (126)
Ryx(1) = %Rym) =04 (127)
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Example 7.8 - Solution

e Therefore, as given by equation (116), the Wiener filter coefficients are the solution of

1

—0.4 0.5

—04 1 0.4

which corresponds to the Wiener filter

11 10 _
W(z):ﬁ—l—ﬁz 1
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Wiener filter

e The Wiener filter determines the best closed-form relationship, in the MSE sense,

between the realizations y(n ) and x(m) of two joint WSS processes.

e In that context, the LP problem can be seen as a special case where y(n)

represents a future sample x(n + 1) of the other process.

e Due to its generality, the Wiener filter finds wide application in a variety of problems
such as system identification, channel equalization, and noise cancellation, besides,

of course, linear prediction.
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Other methods for spectral estimation

e The list of PSD estimation methods is almost endless.

e For AR modeling, for instance, we may modify Burg’s method by incorporating a
window function onto the reflection coefficient estimate given in equation (108). The
result is a PSD estimate less prone to bias due to phase dependence on sinusoidal

components of the input signal.
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Other methods for spectral estimation

e Another technique, also based on the Levinson-Durbin algorithm, is due to Itakura

and Saito, and employs a reflection coefficient estimate given by

L—1
2 Z Xt [i—1] (M) Xp i1 (M —T)
i = — not (130)

L—1 L—1
2 2
be,ﬁ—n(“_” fo,[i—ﬂ(n)
\ n=1i n=1

e Alternatively, the same idea of combining forward and backward prediction errors can
be applied directly to the LP coefficients, originating a modified version of the

covariance method.
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Other methods for spectral estimation

e All these AR-modeling modifications yield minor differences on the resulting PSD

estimation, and may be seen as variations of the methods described here.

e We focused on AR models due to the simplicity of the associated algorithms, their

capacity of modeling ARMA systems, and to the excellent quality of the obtained
PSD estimates.
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Other methods for spectral estimation

e All these AR-modeling modifications yield minor Algorithms for ARMA and MA
models do exist and can be effectively employed when the spectrum at hand

presents significant number of zeros.

e \Working directly with ARMA or MA models, we avoid the high order required to
approximate these functions by AR systems. The price to be paid is the
computational complexity of the ARMA and MA modeling algorithms, which may

converge to local-optimal solutions due to the highly nonlinear equations associated.
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Other methods for spectral estimation

e The problem of PSD estimation may be particularized for several types of random

processes.

e The practical case of sinusoids embedded in noise is of crucial interest since it is

related to several communications or radar/sonar systems.

e Algorithms that are customized for this problem, including Prony’s, MUSIC, or
subspace methods, are classified as parametric, since they assume a particular

structure for the data at hand.

e Due to their general complexity, these methods are not covered in this book, and the
reader is once again directed to the vast literature on the subject to find out more

about them.
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Other methods for spectral estimation

e There is another very important group of methods that can be employed for PSD

estimation.

e The so-called adaptive algorithms are often employed in real-time situations, where
we do not have access to a significant amount of data in advance, or when the

process presents nonstationary statistical properties.

e Adaptive filters repeatedly adjust their transfer-function coefficients, generating a

time-varying model with an associated PSD function.
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Do-It-Yourself: Spectral estimation

e Experiment 7.1: In this experiment, we consider an ARMA process Z generated by
applying a white Gaussian noise, with zero mean and unit variance, to a filter with

transfer function

H(z) = 2 —V3z 4] (131)
10(z% + 1.8z + 0.96)

e This transfer function has zeros on the unit circle with angles +£0.5236 radians and

the poles are placed at angles £=2.7352 radians with radius 0.9798.

e The corresponding power response is shown in Figure 9.
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Do-It-Yourself: Spectral estimation

40 T T T T T

Power response [dB]

0 100 200 300 400 500
Frequency [HZ]

Figure 9: Power response associated to H(z) in Experiment 7.1.
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Do-It-Yourself: Spectral estimation

e Assume that this ARMA process is corrupted by a sinusoidal component S of
frequency f1 = fs/8 ,withfs = 1024 Hz, such that 250 ms of the measured
signal y can be determined in MATLAB as
fs = 1024; Ts = 1/fs; t = 0:Ts:(0.25-Ts); L =
length(t);
fl = 128; s1 = sin(2 *pi *fl. *t);

X = randn(l,L); x = x-mean(x); x = X./sqgrt(var(x));

b =[1 -sgrt(3) 1.0]; a = 10 *[1 1.8 0.96]; z =
filter(b,a,x);

y = z + sl

e Therefore, the PSD associated to the process {Y} incorporates a delta function with

area 0.5 at f =f1 to the power spectrum of {Z} seen in Figure 9.
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Do-It-Yourself: Spectral estimation

e The PSD estimate Gamma_Y _Rising the periodogram algorithm, based on an
Lf -point FFT, with Lf = 2048 , can be determined as
Ry = xcorr(y, biased’);
Gamma_Y_ P = 18logl0(abs(fft(Ry,Lf))) ;

e The estimated PSD is shown in Figure 10a, where it can be observed that both the
sinusoid frequency and the filter resonance frequency, indicated by the dotted

vertical lines, are located at their proper positions.
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Do-It-Yourself: Spectral estimation

e By dividing the data into Nb = 4 blocks of length L/nb , we may obtain distinct
periodogram estimates, which can be averaged to generate the PSD estimate
Gamma_Y_ARsing the script
YBlock = reshape(y,L/nb,nb);

RYBlock = zeros(2 =*L/nb-1,nb);
for i = 1:nb,
RYBIlock(:,i) = xcorr(YBlock(:,i),'biased’);
end,;
Gamma_Y_ AP = 168logl0(mean(abs(fft(RYBlock,LRy)")));

e The result, as seen in Figure 10b, is a smoothed estimate less able to discriminate

the sinusoidal component.
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Do-It-Yourself: Spectral estimation

e Another periodogram variation uses windowed data as given by
w = hamming(L)’; wy = w. *y;
Rwy = xcorr(wy,’biased’);
Gamma WY = XJoglO(abs(fft(Rwy,Lf)));

the PSD estimate of which is shown in Figure 10c.

e From this plot, one observes that the main effect of the data-windowing operation is
to discriminate the sinusoid with less resolution and turn the estimated curve a bit

smoother, as compared to the original periodogram estimate.
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Do-It-Yourself: Spectral estimation

e Using an unbiased estimate for the autocorrelation function of the windowed data, as
given by
Rwyu = xcorr(wy,’'unbiased’);
Gamma WYU = *0oglO0(abs(fft(Rwyu,Lf)));

results in the PSD estimate seen in Figure 10d.

® As expected, this approach leads to a sharp peak in the vicinity of the sinusoid

frequency with a very high variance around the entire frequency range.
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Do-It-Yourself: Spectral estimation

L L L L - L -80 L L L L - L
0 100 200 300 400 500 0 100 200 300 400 500
(a) Frequency [HZ] (b) Frequency [HZ]

PSD [dB]

-80 Lt . . . : . -80 L . . . - .
0 100 200 300 400 500 0 100 200 300 400 500
(C) Frequency [HZ] (d) Frequency [HZ]
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Do-It-Yourself: Spectral estimation

PSD [dB]
PSD [dB]

100 200 300 400 500 0 100 200 300 400 500
(e) Frequency [HZ] (f) Frequency [HZ]

Figure 10: PSD estimates for periodogram-based methods: (a) standard periodogram; (b)
averaged periodogram; (c) windowed-data periodogram; (d) windowed-data

periodogram with unbiased autocorrelation; (e) Blackman-Tukey scheme; (f)

minimum-variance method.
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Do-It-Yourself: Spectral estimation

e Using the autocorrelation function Ry determined for the standard periodogram
method, the Blackman-Tukey estimator can be implemented as RyBT =
hamming(2 *L-1)’. *RYy;

Gamma_ BT = 18logl0(abs(fft(RyBT,Lf)));

® As can be seen in Figure 10e, the PSD for the Blackman-Tukey estimator is quite

smooth and presents a broad peak associated to the sinusoidal component.
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Do-It-Yourself: Spectral estimation

e The MV method can be implemented in MATLAB according to the script:
wy =y - mean(y),
wy pad = [zeros(L-1,1);wy;zeros(L-1,1)];
for i1=1:L,
XU(,) = wy pad(L-i+1:3 *L-1-1);
end;
Rwy = XU’ XU/(L-1);
[eigvec,eigval] = eig(Rwy);
U = abs(fft(eigvec,LRy)).”2; V = diag(inv(eigval +
eps));
Gamma MV = 10logl0(L)-10 *loglO(U =V);
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Do-It-Yourself: Spectral estimation

e This implementation follows decomposes Ry 1 by its spectral decomposition

L—1 T

] qi9y
Ry = 132
Y Z Ay (132)
1=0
where qrand Ay, for L =1,2,..., L, are the eigenvectors and eigenvalues of Ry.

® As a result, one can rewrite equation (38) as

My mv(e'®) = — _ (133)

e The terms e* (/% )qy represent the DFT of the lth eigenvector.
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Do-It-Yourself: Spectral estimation

e In the script above, matrix U stores the terms |FFT[qy]|? and the diagonal matrix V
stores the inverse of the eigenvalues of R§1 , with a conditioning factor €pPsS to avoid

division by zero.

e Using the MV method, the PSD estimate for a single run of the recorded data is
depicted in Figure 10f, where we can observe a strong similarity, in this case, to the

Blackman-Tukey estimate.
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Do-It-Yourself: Spectral estimation

e Experiment 2: In this experiment, we investigate the performances of some

parametric methods.

e For the autocorrelation algorithm with order N, one may employ the script
Ry = xcorr(y2,N,'biased’);
Ryy = toeplitz(Ry(N+1:2 *N));
pyy = Ry(N+2:2 *N+1);
a = inv(Ryy) *pyy’
H AC dB = 20<loglO(abs(freqz(1,[1; -a],LRy/2+1));
with LRY as defined in Experiment 1, making the resulting PSD estimate compatible

to the frequency vector freq determined in the same experiment.

e This command sequence is equivalent to
[b,E] = Ipc(y2,N);
withb = [1; -a]
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Do-It-Yourself: Spectral estimation

e For other parametric approaches, we may resort to a powerful spectral-analysis tool
in MATLAB whose usage is exemplified here for Burg’s algorithm:
h = spectrum.burg(N, UserDefined’);
set(hopts,’NFFT’,LRYy);
HBurg = psd(h,y2,hopts);
HBurg dB = 10 *logl0(abs(HBurg.Data));

e Figure 11 shows the resulting PSDs for the autocorrelation and Burg’s methods for N
= 4 and N = 8in each case, indicating the good performances achieved by both

methods particularly for larger values of N.
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Figure 11: PSD estimates for AR methods when f1 = fs/8 : (a) autocorrelation with

N = 4 (b) autocorrelation with N = 8; (c) Burg’s algorithm with N = 4;

(d) Burg's algorithm with N = 8.
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Do-It-Yourself: Spectral estimation

e If, however, we move the sinusoid frequency f2 closer to the ARMA pole
frequencies, by making, for instance,
f2 = 3.3 *fs/8; s2 = sin(2 *pl *f2. *1),
y2 = z + S2;
the resulting PSD estimates for the two methods with N = 8and N = 24 are
depicted in Figure 161

e From these plots, one clearly notices how in this case both methods required a very

large model order N to discriminate the two PSD peaks satisfactorily.
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Figure 12: PSD estimates for AR methods when f2 = 3.3fs/8  : (a) autocorrelation

with N = 8; (b) autocorrelation with N = 24 (c) Burg’s algorithm with N =
8; (d) Burg’s algorithm with N = 24.
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Do-It-Yourself: Spectral estimation

e Figure 13 shows the pole-zero constellations for the AR model generated by the

autocorrelation methodwith N = 8and N = 24.

e |t can be observed that the AR estimate places some poles closer to the unit circle in

the frequency range where the input signal has higher power.

e Although this phenomenon happened in both cases, when N = 8 the number of

available poles was not enough to detect the presence of the sinusoid.
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Do-It-Yourself: Spectral estimation

(b)

0.5f

Imaginary Part
o

Figure 13: Pole-zero plot for the AR models generated by the autocorrelation algorithm for
Experiment2: (@) N = 8;(b) N =
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Do-It-Yourself: Spectral estimation

e Figure 14 shows 15 PSD estimates superimposed using the nonparametric

Blackman-Tukey and the parametric Burg (with N = 24) methods.

e As can be observed from the overlaid plots, the result for the nonparametric method,
despite being able to locate better the sinusoid, has much higher variance than the

parametric method.
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Figure 14: PSD estimates for 15 independent runs in Experiment 2: (a) Blackman-Tukey

periodogram; (b) Burg’s method with N = 24.
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Summary

e The nonparametric periodogram method was introduced, along with several of its

variations.

e The concept of window function was applied in the context of smoothing the data or
the autocorrelation function to yield better (with less bias or with reduced variance)

PSD estimates.

e \We also addressed the minimum variance nonparametric method which, in general,

results in smooth estimates of the PSD.

e The modeling problem, in which digital filters appear playing a major role, was then

introduced as the basic tool for performing parametric spectral estimation.
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Summary

e Our presentation focused on autoregressive (AR) modeling due to their general

ability of mimicking moving-average (MA) and ARMA systems.

e Several methods for determining the AR model, including the so-called covariance,
autocorrelation, and Burg’s approaches, were presented with different converging

characteristics.

e The resulting PSD estimate can then be determined as the power response for the
obtained AR model.

e \We addressed the Wiener filtering where the optimum filter output produces an

estimate of a reference signal by filtering another signal related to the reference.
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