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Introduction

• In this chapter, we will study the approximation schemes for digital filters with

finite-duration impulse response (FIR) and we will present the methods for

determining the multiplier coefficients and the filter order, in such a way that the

resulting frequency response satisfies a set of prescribed specifications.

• In some cases, FIR filters are considered inefficient in the sense that they require a

high-order transfer function to satisfy the system requirements when compared to the

order required by digital filters with infinite-duration impulse response.

• However, FIR digital filters do possess a few implementation advantages such as a

possible exact linear-phase characteristic and intrinsically stable implementations,

when using non-recursive realizations. In addition, the computational complexity of

FIR digital filters can be reduced if they are implemented using fast numerical

algorithms such as the fast Fourier transform.
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Introduction

• We start by discussing the ideal frequency response characteristics of commonly

used FIR filters, as well as their corresponding impulse responses. We include in the

discussion lowpass, highpass, bandpass, and bandstop filters, and also treat two

other important filters, namely differentiators and Hilbert transformers.

• We go on to discuss the frequency sampling and the window methods for

approximating FIR digital filters, focusing on the rectangular, triangular, Bartlett,

Hamming, Blackman, Kaiser, and Dolph-Chebyshev windows. In addition, the design

of maximally flat FIR filters is addressed.
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Introduction

• Following this, numerical methods for designing FIR filters are discussed. A unified

framework for the general approximation problem is provided. The

weighted-least-squares (WLS) method is presented as a generalization of the

rectangular window approach. We then introduce the Chebyshev (or minimax)

approach as the most efficient form, with respect to the resulting filter order, to

approximate FIR filters which minimize the maximum passband and stopband

ripples. We also discuss the WLS-Chebyshev approach, which is able to combine

the desired characteristics of high attenuation of the Chebyshev scheme with the low

energy level of the WLS scheme in the filter stopband.

• We conclude the chapter by discussing the use of MATLAB for designing FIR filters.
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Ideal characteristics of standard filters

• In this section, we analyze the time and frequency response characteristics of

commonly used FIR filters. First, we deal with lowpass, highpass, bandpass, and

bandstop filters. Then, two types of filters widely used in the field of digital signal

processing, the differentiators and Hilbert transformers, are analyzed, and their

implementations as special cases of FIR digital filters are studied.

• The behavior of a filter is usually best characterized by its frequency response

H(e jω). As seen in Chapter 4, a filter implementation is based on its transfer

function H(z) of the form

H(z) =

∞∑

n=−∞

h(n)z−n (1)

• The FIR filter design starts by calculating the coefficients h(n) which will be used in

one of the structures discussed in Section 4.2.
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Ideal characteristics of standard filters

• As seen in Section 2.8, the relationship between H(e jω) and h(n) is given by the

following pair of equations:

H(e jω) =

∞∑

n=−∞

h(n)e− jωn (2)

h(n) =
1

2π

∫π

−π

H(e jω)e jωndω (3)

• In what follows, we determine H(e jω) and h(n) related to ideal standard filters.
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Lowpass, highpass, bandpass, and bandstop filters

• The ideal magnitude responses of some standard digital filters are depicted below.
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Figure 1: Ideal magnitude responses: (a) lowpass; (b) highpass; (c) bandpass; (d) band-

stop filters.
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Lowpass, highpass, bandpass, and bandstop filters

• For instance, the lowpass filter, as seen in Figure 1a, is described by

|H(e jω)| =





1, for |ω| ≤ ωc

0, for ωc < |ω| ≤ π
(4)

• Using (3), the impulse response for the ideal lowpass filter is

h(n) =
1

2π

∫ωc

−ωc

e jωndω =






ωc

π
, for n = 0

sin(ωcn)

πn
, for n 6= 0

(5)

• One should note that in the above inverse transform calculations we have supposed

that the phase of the filter is zero.
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Lowpass, highpass, bandpass, and bandstop filters

• From Section 4.2.3, we have that the phase of an FIR filter must be of the form

e− jω M
2 , where M is an integer.

• Therefore, for M even, it suffices to shift the above impulse response by M
2

samples. However, for M odd, M
2

is not an integer, and the impulse response must

be computed as

h(n) =
1

2π

∫ωc

−ωc

e− jω M
2 e jωndω

=
1

2π

∫ωc

−ωc

e jω(n− M
2 )dω

=
sin

[

ωc

(

n − M
2

)]

π
(

n − M
2

) (6)
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Lowpass, highpass, bandpass, and bandstop filters

• Likewise, for bandstop filters, the ideal magnitude response, depicted in Figure 1d, is

given by

|H(e jω)| =






1, for 0 ≤ |ω| ≤ ωc1

0, for ωc1
< |ω| < ωc2

1, for ωc2
≤ |ω| ≤ π

(7)

• Then, using (3), the impulse response for such an ideal filter is

h(n) =
1

2π

[∫ωc1

−ωc1

e jωndω +

∫π

ωc2

e jωndω +

∫−ωc2

−π

e jωndω

]

=






1 +
ωc1

− ωc2

π
, for n = 0

1

πn
[sin(ωc1

n) − sin(ωc2
n)] , for n 6= 0

(8)
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Lowpass, highpass, bandpass, and bandstop filters

• Again, the above impulse response is valid only for zero phase. For non-zero linear

phase, the discussion following equation (5) applies.

• Following an analogous reasoning, one can easily find the magnitude responses of

the ideal highpass and bandpass filters, depicted in Figures 1b and 1c, respectively.

• Table 1 (Subsection 5.2.4) includes the ideal magnitude responses and their

respective impulse responses for the ideal zero-phase lowpass, highpass, bandpass,

and bandstop filters. The nonzero-phase case is considered in Exercise 5.1.
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Differentiators

• An ideal discrete-time differentiator is a linear system that, when samples of a

band-limited continuous signal are used as input, the output samples represent the

derivative of the continuous signal.

• More precisely, given a continuous-time signal xa(t) band-limited to
[

−π
T
, π

T

)

,

when its corresponding sampled version x(n) = xa(nT) is input to an ideal

differentiator, it produces the output signal, y(n), such that

y(n) =
dxa(t)

dt

∣

∣

∣

∣

t=nT

(9)

• If the Fourier transform of the continuous-time signal is denoted by Xa( jΩ), we

have that the Fourier transform of its derivative is jΩXa( jΩ).
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Differentiators

• Therefore, an ideal discrete-time differentiator is characterized by a frequency

response, up to a multiplicative constant, of the form

H(e jω) = jω, for −π ≤ ω < π (10)

• The magnitude and phase responses of a differentiator are depicted in Figure 2.
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Differentiators
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Figure 2: Characteristics of an ideal discrete-time differentiator: (a) magnitude response;

(b) phase response.
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Differentiators

• Using equation (3), the corresponding impulse response is given by

h(n) =
1

2π

∫π

−π

jωe jωndω

=






0, for n = 0

1

2π

[

e jωn

(

ω

n
−

1

jn2

)]
∣

∣

∣

∣

π

−π

=
(−1)n

n
, for n 6= 0

(11)

• One should note that if a differentiator is to be approximated by a linear-phase FIR

filter, one should necessarily use either a Type-III or a Type-IV form.
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Differentiators

• In fact, using an argument similar to the one following equation (5), we can see that

the above equation can be used only in the case of Type-III filters. For Type-IV filters,

we must perform a derivation similar to the one in equation (6).
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Hilbert transformers

• The Hilbert transformer is a system that, when fed with the real part of a complex

signal whose Fourier transform is null for −π ≤ ω < 0, produces at its output the

imaginary part of the complex signal.

• In other words, let x(n) be the inverse Fourier transform of X(e jω) such that

X(e jω) = 0, −π ≤ ω < 0. The real and imaginary parts of x(n), xR(n) and

xI(n), are defined as

Re{x(n)} =
x(n) + x∗(n)

2

Im{x(n)} =
x(n) − x∗(n)

2 j





(12)
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Hilbert transformers

• Hence, their Fourier transforms, XR(e jω) = F {Re{x(n)}} and

XI(e jω) = F {Im{x(n)}}, are

XR(e jω) =
X(e jω) + X∗(e− jω)

2

XI(e jω) =
X(e jω) − X∗(e− jω)

2 j





(13)

• For −π ≤ ω < 0, since X(e jω) = 0, we have that

XR(e jω) =
X∗(e− jω)

2

XI(e jω) = j
X∗(e− jω)

2





(14)
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Hilbert transformers

• And, for 0 ≤ ω < π, since X∗(e− jω) = 0, we also have that

XR(e jω) =
X(e jω)

2

XI(e jω) = − j
X(e jω)

2





(15)

• From equations (14) and (15), we can easily conclude that

XI(e jω) = − jXR(e jω), for 0 ≤ ω < π

XI(e jω) = jXR(e jω), for − π ≤ ω < 0





(16)
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Hilbert transformers

• These equations provide a relation between the Fourier transforms of the real and

imaginary parts of a signal whose Fourier transform is null for −π ≤ ω < 0. It thus

implies that the ideal Hilbert transformer has the following transfer function:

H(e jω) =






− j, for 0 ≤ ω < π

j, for − π ≤ ω < 0

(17)

• The magnitude and phase components of such a frequency response are depicted in

Figure 3.
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Hilbert transformers
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Figure 3: Characteristics of an ideal Hilbert transformer: (a) magnitude response; (b)

phase response.
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Hilbert transformers

• Using equation (3), the corresponding impulse response for the ideal Hilbert

transformer is given by

h(n) =
1

2π

[∫π

0

− je jωndω+

∫0

−π

je jωndω

]

=






0, for n = 0

1

πn
[1−(−1)n] , for n 6= 0

(18)

• By examining equation (17) we conclude, as in the case of the differentiator, that a

Hilbert transformer must be approximated, when using a linear-phase FIR filter, by

either a Type-III or Type-IV structure.
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Hilbert transformers

• An interesting interpretation of Hilbert transformers comes from the observation that

equation (17) implies that every positive-frequency sinusoid e jω0 input to a Hilbert

transformer has its phase shifted by −π
2

at the output, whereas every

negative-frequency sinusoid e− jω0 has its phase shifted by +π
2

at the output, as

seen in Figure 3b.

• This is equivalent to shifting the phase of every sine or cosine function by −π
2

.

Therefore, an ideal Hilbert transformer transforms every “cosine” component of a

signal into a “sine” and every “sine” component into a “cosine”.
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Summary

• Table 1 summarizes the ideal frequency responses and corresponding impulse

responses for the basic lowpass, highpass, bandpass, and bandstop filters, as well

as for differentiators and Hilbert transformers.

• By examining this table, we note that the impulse responses corresponding to all

these ideal filters are not directly realizable, since they have infinite duration and are

noncausal. In the remainder of this chapter, we deal with the problem of

approximating ideal frequency responses, as the ones seen in this section, by a

digital filter with a finite-duration impulse response.
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Summary

Table 1: Ideal frequency characteristics and corresponding impulse responses for low-

pass, highpass, bandpass, and bandstop filters, as well as for differentiators and

Hilbert transformers.

Filter type Magnitude response Impulse response

|H(e jω)| h(n)

Lowpass





1, for 0 ≤ |ω| ≤ ωc

0, for ωc < |ω| ≤ π






ωc

π
, for n = 0

1

πn
sin(ωcn), for n 6= 0

Highpass





0, for 0 ≤ |ω| < ωc

1, for ωc ≤ |ω| ≤ π






1 −
ωc

π
, for n = 0

−
1

πn
sin(ωcn), for n 6= 0

27



Diniz, da Silva and Netto

Summary

Filter type Magnitude response Impulse response

|H(e jω)| h(n)

Bandpass






0, for 0 ≤ |ω| < ωc1

1, for ωc1
≤ |ω| ≤ ωc2

0, for ωc2
< |ω| ≤ π






(ωc2
− ωc1

)

π
, for n = 0

1

πn
[sin(ωc2

n) − sin(ωc1
n)] , for n 6= 0

Bandstop






1, for 0 ≤ |ω| ≤ ωc1

0, for ωc1
< |ω| < ωc2

1, for ωc2
≤ |ω| ≤ π






1 −
(ωc2

− ωc1
)

π
, for n = 0

1

πn
[sin(ωc1

n) − sin(ωc2
n)] , for n 6= 0
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Summary

Filter type Frequency response Impulse response

H(e jω) h(n)

Differentiator jω, for −π ≤ ω < π






0, for n = 0

(−1)n

n
, for n 6= 0

Hilbert

transformer





− j, for 0 ≤ ω < π

j, for − π ≤ ω < 0






0, for n = 0

1

πn
[1 − (−1)

n
] , for n 6= 0
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FIR filter approximation by frequency sampling

• In general, the problem of FIR filter design is to find a finite-length impulse response

h(n), whose Fourier transform H(e jω) approximates a given frequency response

well enough.

• As seen in Section 3.2, one way of achieving such a goal is by noting that the DFT of

a length-N sequence h(n) corresponds to samples of its Fourier transform at the

frequencies ω = 2πk
N

, that is

H(e jω) =

N−1∑

n=0

h(n)e− jωn (19)

and then

H(e j 2πk
N ) =

N−1∑

n=0

h(n)e− j 2πkn
N , for k = 0, 1, . . ., (N − 1) (20)
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FIR filter approximation by frequency sampling

• It is then natural to consider designing a length-N FIR filter by finding an h(n)

whose DFT corresponds exactly to samples of the desired frequency response.

• In other words, h(n) can be determined by sampling the desired frequency

response at the N points e j 2π
N

k and finding its inverse DFT. This method is generally

referred to as the frequency sampling approach.

• More precisely, if the desired frequency response is given by D(ω), one must first

find

A(k)e jθ(k) = D

(

ωsk

N

)

, for k = 0, 1, . . ., (N − 1) (21)

where A(k) and θ(k) are samples of the desired amplitude and phase responses,

respectively.
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FIR filter approximation by frequency sampling

• If we want the resulting filter to have linear phase, h(n) must be of one of the forms

given in Subsection 4.2.3. For each form, the functions A(k) and θ(k) present

particular properties.

• We then summarize the results for these four cases separately.

• Obs.: To maintain consistency with the notation in Subsection 4.2.3, in the following

discussion we will use the filter order M = N − 1 instead of the filter length N.
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FIR filter approximation by frequency sampling

• Type I: Even order M and symmetrical impulse response. In this case, the phase

and amplitude responses must satisfy

θ(k) = −
πkM

M + 1
, for 0 ≤ k ≤ M (22)

A(k) = A(M − k + 1), for 1 ≤ k ≤ M

2
(23)

and then, the impulse response is given by

h(n) =
1

M + 1



A(0) + 2

M
2∑

k=1

(−1)kA(k) cos
πk(1 + 2n)

M + 1



 (24)

for n = 0, 1, . . ., M.
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FIR filter approximation by frequency sampling

• Type II: Odd order M and symmetrical impulse response. The phase and amplitude

responses, in this case, become

θ(k) =






−
πkM

M + 1
, for 0 ≤ k ≤ M−1

2

π −
πkM

M + 1
, for M+3

2
≤ k ≤ M

(25)

A(k) = A(M − k + 1), for 1 ≤ k ≤ M+1
2

(26)

A

(

M + 1

2

)

= 0 (27)

and the impulse response is

h(n) =
1

M + 1



A(0) + 2

M−1
2∑

k=1

(−1)kA(k) cos
πk(1 + 2n)

M + 1



 (28)

for n = 0, 1, . . ., M.
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FIR filter approximation by frequency sampling

• Type III: Even order M and antisymmetric impulse response. The phase and

amplitude responses are such that

θ(k) =
(1 + 2r)π

2
−

πkM

M + 1
, for r ∈ Z and 0 ≤ k ≤ M (29)

A(k) = A(M − k + 1), for 1 ≤ k ≤ M

2
(30)

A(0) = 0 (31)

and the impulse response is given by

h(n) =
2

M + 1

M
2∑

k=1

(−1)k+1A(k) sin
πk(1 + 2n)

M + 1
(32)

for n = 0, 1, . . ., M.
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FIR filter approximation by frequency sampling

• Type IV: Odd order M and antisymmetric impulse response. In this case, the phase

and amplitude responses are of the form

θ(k) =






π

2
−

πkM

M + 1
, for 1 ≤ k ≤ M−1

2

−
π

2
−

πkM

M + 1
, for M+1

2
≤ k ≤ M

(33)

A(k) = A(M − k + 1), for 1 ≤ k ≤ M (34)

A(0) = 0 (35)

and the impulse response then becomes

h(n) =
1

M+1



(−1)
M+1

2
+nA

(

M+1

2

)

+2

M−1
2∑

k=1

(−1)kA(k) sin
πk(1+2n)

M+1





(36)

for n = 0, 1, . . ., M.
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Table 2: Impulse responses for linear-phase FIR filters with frequency sampling approach.

Filter type Impulse response Condition

h(n), for n = 0,1,...,M

Type I
1

M+1

2

6

4
A(0)+2

M
2∑

k=1

(−1)kA(k)cos
πk(1+2n)

M+1

3

7

5

Type II
1

M+1

2

6

4
A(0)+2

M−1
2∑

k=1

(−1)kA(k)cos
πk(1+2n)

M+1

3

7

5
A

“

M+1
2

”

= 0

Type III
2

M+1

M
2∑

k=1

(−1)k+1A(k)sin
πk(1+2n)

M+1
A(0) = 0

Type IV
1

M+1

2

6

4
(−1)

M+1
2

+nA

„

M+1

2

«

+2

M−1
2∑

k=1

(−1)kA(k)sin
πk(1+2n)

M+1

3

7

5
A(0) = 0
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Example 5.1

• Design a lowpass filter satisfying the specification below using the frequency

sampling method:

M = 52

Ωp = 4.0 rad/s

Ωr = 4.2 rad/s

Ωs = 10.0 rad/s






(37)

• Obs.: Note that in this text, in general, the variable Ω represents an analog

frequency, and the variable ω a digital frequency.
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Example 5.1 - Solution

• We divide the [0, Ωs] interval into (M + 1) = 53 sub-intervals of same length
Ωs

M+1
, each starting at Ωk = Ωs

M+1
k, for k = 0, 1, . . . , M.

• According to the prescribed specifications, Ωp and Ωr lie close to the extremes

kp =

⌊

(M + 1) × Ωp

Ωs

⌋

= ⌊53 × 4

10
⌋ = 21 (38)

kr =

⌊

(M + 1) × Ωr

Ωs

⌋

= ⌊53 × 4.2

10
⌋ = 22 (39)

• Thus, we assign

A(k) =





1, for 0 ≤ k ≤ kp

0, for kr ≤ k ≤ M
2

(40)
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Example 5.1 - Solution

• Then, one can employ the following MATLAB script, implementing the first row in

Table 2, to design a Type I lowpass filter using the frequency sampling method:

M = 52; N = M+1;

Omega_p = 4; Omega_r = 4.2; Omega_s = 10;

kp = floor(N * Omega_p/Omega_s);

kr = floor(N * Omega_r/Omega_s);

A = [ones(1,kp+1) zeros(1,M/2-kr+1)];

k = 1:M/2;

for n=0:M,

h(n+1) = A(1) +

2* sum((-1).ˆk. * A(k+1). * cos(pi. * k* (1+2 * n)/N));

end;

h = h./N;

• Using this script, one ends up with the set of coefficients shown in Table 3.
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Example 5.1 - Solution

Table 3: Coefficients of the lowpass filter designed with the frequency sampling method.

h(0) to h(26)

h(0) = −0.0055 h(7) = −0.0202 h(14) = −0.0213 h(21) = 0.0114

h(1) = 0.0147 h(8) = 0.0204 h(15) = 0.0073 h(22) = −0.0560

h(2) = −0.0190 h(9) = −0.0135 h(16) = 0.0118 h(23) = 0.1044

h(3) = 0.0169 h(10) = 0.0014 h(17) = −0.0301 h(24) = −0.1478

h(4) = −0.0089 h(11) = 0.0124 h(18) = 0.0413 h(25) = 0.1779

h(5) = −0.0024 h(12) = −0.0231 h(19) = −0.0396 h(26) = 0.8113

h(6) = 0.0133 h(13) = 0.0268 h(20) = 0.0218

41



Diniz, da Silva and Netto

Example 5.1 - Solution

• The corresponding magnitude response is shown in Figure 4.
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Figure 4: Magnitude response of the lowpass filter designed with the frequency sampling

method.
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FIR filter approximation by frequency sampling

• By examining the magnitude response shown in Figure 4, one notices that there is a

great deal of ripple both at the passband and at the stopband. This is the main

reason why this method has not found widespread use in filter design.

• This is not a surprising result, because the equations derived in this section

guarantee only that the Fourier transform of h(n) and the desired frequency

response D(ω) (expressed as a function of the digital frequencies, that is,

ω = 2π Ω
Ωs

= ΩT ) coincide at the M + 1 distinct frequencies 2πk
M+1

, for

k = 0, 1, . . ., (M + 1), where M is the filter order.

• At the other frequencies, as is illustrated in Figure 5, there is no constraint on the

magnitude response, and, as a consequence, no control over the ripple δ.
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FIR filter approximation by frequency sampling

M + 1

2π


D(  
)
ω
 ω
j
H(e    
)


ω


δ


π


0


Figure 5: The desired magnitude response and the Fourier transform of h(n) coincide

only at the frequencies 2πk
M+1

, when using the frequency sampling approxima-

tion method.
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FIR filter approximation by frequency sampling

• An interesting explanation of this fact comes from the expression of the inverse

Fourier transform of the desired frequency response D(ω), which, from

equation (3), is given by

h(n) =
1

2π

∫π

−π

D(ω)e jωndω =
1

2π

∫2π

0

D(ω)e jωndω (41)

• If we try to approximate the above integral as a summation over the discrete

frequencies 2πk
N

, by substituting ω → 2πk
N

and dω → 2π
N

, we end up with an

approximation, d(n), of h(n) given by

d(n) =
1

2π

N−1∑

n=0

D

(

2πk

N

)

e− j 2πkn
N

2π

N
=

1

N

N−1∑

n=0

D

(

2πk

N

)

e− j 2πkn
N (42)

• Hence, we see that d(n) represents the IDFT of the sequence D(2πk
N

), for

k = 0, 1, . . ., (N − 1).
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FIR filter approximation by frequency sampling

• However, considering that the argument of the integral in equation (41) is

D(ω)e jωn, the resolution of a good sampling grid for approximating it would have

to be of the order of 10% of the period of the sinusoid e jωn.

• This would require a sampling grid with a resolution of the order of 2π
10N

. In

equation (42) we are approximating the integral using a sampling grid with resolution
2π
N

and such approximation would only be valid for values of n ≤ N
10

.

• This is clearly not sufficient in most practical cases, which explains the large values

of ripple depicted in Figure 4.
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FIR filter approximation by frequency sampling

• One important situation, however, in which the frequency sampling method gives

exact results is when the desired frequency response D(ω) is composed of a sum

of sinusoids equally spaced in frequency. Such a result is formally stated in the

following theorem.

• Theorem: If the desired frequency response D(ω) is a finite sum of complex

sinusoids equally spaced in frequency, that is

D(ω) =

N1∑

n=N0

a(n)e− jωn (43)

then the frequency sampling method yields exact results, except for a constant

group-delay term, provided that the length of the impulse response, N, satisfies

N ≥ N1 − N0 + 1.
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FIR filter approximation by frequency sampling

• Proof: The theorem essentially states that the Fourier transform of the impulse

response, h(n), given by the frequency sampling method is identical to the desired

frequency response D(ω), except for a constant group-delay term.

• That is, the above theorem is equivalent to

F
{

IDFT

[

D

(

2πk

N

)]}
= D(ω) (44)

where F {·} is the Fourier transform.

• The proof becomes simpler if we rewrite equation (44) as

D

(

2πk

N

)

= DFT
{
F−1 [D(ω)]

}
(45)

for k = 0, 1, . . ., (N − 1).
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FIR filter approximation by frequency sampling

• For a desired frequency response in the form of equation (43), the corresponding

inverse Fourier transform is given by

d(n) =






0, for n < N0

a(n), for n = N0, (N0 + 1), . . ., N1

0, for n > N1

(46)

• The length-N DFT of the length-N signal composed by the non-zero samples of

d(n), H(k), is then equal to the length-N DFT of a(n), adequately shifted in time

to the interval n ∈ [0, N − 1].
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FIR filter approximation by frequency sampling

• Therefore, if N ≥ N1 − N0 + 1, we get that

H(k) = DFT
ˆ

a(n′ +N0)
˜

=

N−1∑

n′=0

a(n′ +N0)e− j 2πk
N

n′

=

N−1∑

n′=0

d(n′ +N0)e− j 2πk
N

n′

=

N+N0−1∑

n=N0

d(n)e− j 2πk
N

(n−N0)

= e j 2πk
N

N0

N1∑

n=N0

d(n)e− j 2πk
N

n

= e j 2πk
N

N0D

„

2πk

N

«

(47)

for k = 0, 1, . . ., (N − 1), and this completes the proof.
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FIR filter approximation by frequency sampling

• This result is very useful whenever the desired frequency response D(ω) is of the

form described by equation (43), as is the case in the approximation methods

discussed in Section 5.5 and Subsection 5.6.2.
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FIR filter approximation with window functions

• For all ideal filters analyzed in Section 5.2, the impulse responses obtained from

equation (3) have infinite duration, which leads to non-realizable FIR filters.

• A straightforward way to overcome this limitation is to define a finite-length auxiliary

sequence h′(n), yielding a filter of order M, as

h′(n) =






h(n), for |n| ≤ M
2

0, for |n| > M
2

(48)

assuming that M is even.

52



Diniz, da Silva and Netto

FIR filter approximation with window functions

• The resulting transfer function is written as

H′(z) = h(0) +

M
2∑

n=1

(

h(−n)zn + h(n)z−n
)

(49)

• This is still a noncausal function which we can make causal by multiplying it by z
−M

2 ,

without either distorting the filter magnitude response or destroying the linear-phase

property.

• The example below highlights some of the impacts that the truncation of the impulse

response in equations (48) and (49) has on the filter frequency response.
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Example 5.2

• Design a bandstop filter satisfying the specification below:

M = 50

Ωc1
= π

4
rad/s

Ωc2
= π

2
rad/s

Ωs = 2π rad/s






(50)
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Example 5.2 - Solution

• Applying equations (48) and (49) to the corresponding bandstop equations in

Table 1, one may use the script:

M = 50;

wc1 = pi/4; wc2 = pi/2; ws = 2 * pi;

n = 1:M/2;

h0 = 1 - (wc2 - wc1)/pi;

haux = (sin(wc1. * n) - sin(wc2. * n))./(pi. * n);

h = [fliplr(haux) h0 haux];

to obtain the filter coefficients listed in Table 4 (only half of them are listed as the

others can be found using h(n) = h(50 − n)).

• The resulting magnitude response is depicted in Figure 6.
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Example 5.2 - Solution

Table 4: Bandstop filter coefficients.

h(0) to h(25)

h(0) = −0.0037 h(7) = 0.0177 h(14) = 0.0494 h(21) = 0.0000

h(1) = 0.0000 h(8) = −0.0055 h(15) = 0.0318 h(22) = 0.1811

h(2) = 0.0041 h(9) = 0.0000 h(16) = −0.0104 h(23) = 0.1592

h(3) = −0.0145 h(10) = 0.0062 h(17) = 0.0000 h(24) = −0.0932

h(4) = −0.0259 h(11) = −0.0227 h(18) = 0.0133 h(25) = 0.7500

h(5) = 0.0000 h(12) = −0.0418 h(19) = −0.0531

h(6) = 0.0286 h(13) = 0.0000 h(20) = −0.1087
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Example 5.2 - Solution
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Figure 6: Bandstop filter: (a) magnitude response; (b) passband detail.
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FIR filter approximation with window functions

• The ripple seen in Figure 6 close to the band edges is due to the slow convergence

of the Fourier series h(n) when approximating functions presenting discontinuities,

such as the ideal responses seen in Figure 1.

• This implies that large amplitude ripples in the magnitude response appear close to

the edges whenever an infinite-length h(n) is truncated to generate a finite-length

filter. These ripples are commonly referred to as Gibbs’ oscillations.

• It can be shown that Gibbs’ oscillations possess the property that their amplitudes do

not decrease even when the filter order M is increased dramatically. This severely

limits the practical usefulness of equations (48) and (49) in FIR design, because the

maximum deviation from the ideal magnitude response can not be minimized by

increasing the filter length.
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FIR filter approximation with window functions

• Although we can not remove the ripples introduced by the poor convergence of the

Fourier series, we can still attempt to control their amplitude by multiplying the

impulse response h(n) by a window function w(n).

• The window w(n) must be designed such that it introduces minimum deviation from

the ideal frequency response. The coefficients of the resulting impulse response

h′(n) become

h′(n) = h(n)w(n) (51)

• In the frequency domain, such a multiplication corresponds to a periodic convolution

operation between the frequency responses of the ideal filter, H(e jω), and of the

window function, W(e jω), that is

H′(e jω) =
1

2π

∫π

−π

H(e jω′

)W(e j(ω−ω′))dω′ (52)
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FIR filter approximation with window functions

• We can then infer that a good window is a finite-length sequence, whose frequency

response, when convolved with an ideal frequency response, produces the minimum

distortion possible.

• This minimum distortion would occur when the frequency response of the window

has an impulse-like shape, concentrated around ω = 0, as depicted in Figure 7a.

• However, band-limited signals in frequency are not limited in time, and therefore such

a window sequence would have to be infinite, which contradicts our main

requirement. This means that we must find a finite-length window which has a

frequency response that has most of its energy concentrated around ω = 0.

• Also, in order to avoid the oscillations in the filter magnitude response, the sidelobes

of the window magnitude response should quickly decay as |ω| is increased.
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FIR filter approximation with window functions
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Figure 7: Magnitude responses of a window function: (a) ideal case; (b) practical case.
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FIR filter approximation with window functions

• A practical window function is in general as shown in Figure 7b. The effect of the

secondary lobe is to introduce the largest ripple close to the band edges.

• From equation (52), we see that the main-lobe width determines the transition

bandwidth of the resulting filter.

• Based on these facts, a practical window function must present a magnitude

response characterized by:

– The ratio of the main-lobe amplitude to the secondary-lobe amplitude must be as

large as possible.

– The energy must decay rapidly when |ω| increases from 0 to π.

• We can now proceed to perform a thorough study of the more widely used window

functions in FIR filter design.
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Rectangular window

• A simple truncation of the impulse response as described in equation (48) can be

interpreted as the product between the ideal h(n) and a window given by

wr(n) =






1, for |n| ≤ M
2

0, for |n| > M
2

(53)

• Note that if we want to truncate the impulse responses in Table 1 using the above

equation, and still keep the linear-phase property, the resulting truncated sequences

would have to be either symmetric or antisymmetric around n = 0.

• This implies that, for those cases, M would have to be even (Type-I and Type-III

filters, as seen in Subsection 4.2.3).

• For the case of M odd, the solution would be to shift h(n) so that it is causal and

apply a window different from zero from n = 0 to n = M − 1. This solution,

however, is not commonly used in practice.
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Rectangular window

• From equation (53), the frequency response of the rectangular window is given by

Wr(e jω) =

M
2∑

n=− M
2

e− jωn

=
e jω M

2 − e− jω M
2 e− jω

1 − e− jω

= e− j ω
2

[

e jω( M+1
2

) − e− jω( M+1
2

)
]

1 − e− jω

=
sin

[

ω(M+1
2

)
]

sin
(ω

2

) (54)
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Triangular windows

• The main problem associated with the rectangular window is the presence of ripples

near the band edges of the resulting filter, which are caused by the existence of

sidelobes in the frequency response of the window.

• Such a problem is due to the inherent discontinuity of the rectangular window in the

time domain. One way to reduce such a discontinuity is to employ a

triangular-shaped window, which will present only small discontinuities near its

edges.

• The standard triangular window is defined as

wt(n) =





−

2|n|

M + 2
+ 1, for |n| ≤ M

2

0, for |n| > M
2

(55)
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Triangular windows

• A small variation of such a window is called the Bartlett window and is defined by

wtB(n) =






−
2|n|

M
+ 1, for |n| ≤ M

2

0, for |n| > M
2

(56)

• These two triangular-type window functions are closely related. Their main difference

lies in the fact that the Bartlett window presents one null element at each of its

extremities. In that manner, an Mth-order Bartlett window can be obtained by

juxtaposing one zero at each extremity of the (M − 2)th-order standard triangular

window.

• In some cases, an even greater reduction of the sidelobes is necessary, and then

more complex window functions should be used, such as the ones described below.
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Hamming and Hann windows

• The generalized Hamming window is defined as

wH(n) =






α + (1 − α) cos

(

2πn

M

)

, for |n| ≤ M
2

0, for |n| > M
2

(57)

with 0 ≤ α ≤ 1.

• This generalized window is referred to as the Hamming window when α = 0.54,

and for α = 0.5, it is known as the Hann or Hanning window.

• The frequency response for the general Hamming window can be expressed based

on the frequency response of the rectangular window.
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Hamming and Hann windows

• We first write equation (57) as

wH(n) = wr(n)

[

α + (1 − α) cos

(

2πn

M

)]

(58)

• By transforming the above equation to the frequency domain, clearly the frequency

response of the generalized Hamming window results from the periodic convolution

between Wr(e jω) and three impulse functions as

WH

`

e
jω

´

= Wr

`

e
jω

´

∗

»

αδ(ω)+

„

1−α

2

«

δ

„

ω−
2π

M

«

+

„

1−α

2

«

δ

„

ω+
2π

M

«–

(59)

• And then

WH

`

e
jω

´

= αWr

`

e
jω

´

+

„

1 − α

2

«

Wr

“

e
j(ω− 2π

M
)
”

+

„

1 − α

2

«

Wr

“

e
j(ω+ 2π

M
)
”

(60)
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Hamming and Hann windows

• From this equation, one notices that WH(e jω) is composed of three versions of the

rectangular spectrum Wr(e jω): the main component, αWr(e jω), centered at

ω = 0, and two additional ones with smaller amplitudes, centered at

ω = ±2π/M, that reduce the secondary lobe of the main component.

4π
2π
−2π

M + 1
 M + 1
 M + 1
 M + 1

−4π


ω


Figure 8: The three components of the generalized Hamming window combine to re-

duce the resulting secondary lobes. (Solid line – αWr(e jω); dashed line –
1−α

2
Wr

(

e j(ω− π
M

)
)

; dotted line – 1−α
2

Wr

(

e j(ω+ π
M

)
)

.)
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Hamming and Hann windows

• The main characteristics of the generalized Hamming window are:

– All three Wr(e jω) components have zeros close to ω = ± 4π
M+1

. Hence, the

main-lobe total width is 8π
M+1

.

– When α = 0.54, the main-lobe total energy is approximately 99.96% of the

window total energy.

– The transition band of the Hamming window is larger than the transition band of

the rectangular window, due to its wider main lobe.

– The ratio between the amplitudes of the main and secondary lobes of the

Hamming window is much larger than for the rectangular window.

– The stopband attenuation for the Hamming window is larger than the attenuation

for the rectangular window.
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Blackman window

• The Blackman window is defined as

wB(n) =






0.42 + 0.5 cos

(

2πn

M

)

+ 0.08 cos

(

4πn

M

)

, for |n| ≤ M
2

0, for |n| > M
2

(61)

• Compared to the Hamming window function, the Blackman window introduces a

second cosine term to further reduce the effects of the secondary lobes of Wr(e jω).

• The Blackman window is characterized by the following issues:

– The main-lobe width is approximately 12π
M+1

, which is wider than that for the

previous windows.

– The passband ripples are smaller than in the previous windows.

– The stopband attenuation is larger than in the previous windows.
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Example 5.3

• Design a bandstop filter satisfying the specification below using the rectangular,

Hamming, Hann, and Blackman windows:

M = 80

Ωp1
= 2000 rad/s

Ωp2
= 4000 rad/s

Ωs = 10 000 rad/s






(62)
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Example 5.3 - Solution

• This time, filter specifications are given in the analog frequency domain. Hence, one

must first normalize Ωp1
and Ωp2

before employing a script similar to the one

given in Example 5.2:

M = 80;

Omega_c1 = 2000; Omega_c2 = 4000; Omega_s = 10000;

wc1 = Omega_c1* 2* pi/Omega_s; wc2 =

Omega_c2* 2* pi/Omega_s;

n = 1:M/2;

h0 = 1 - (wc2 - wc1)/pi;

haux = (sin(wc1. * n) - sin(wc2. * n))./(pi. * n);

h = [fliplr(haux) h0 haux];

to obtain the impulse response using the rectangular window.
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Example 5.3 - Solution

• For the other three windows, one must multiply sample-by-sample h(n) above by

the corresponding window obtained with the MATLAB commands

hamming(M+1); , hanning(M+1); , and blackman(M+1); .

• The resulting impulse responses are shown in Tables 5–8, where only the filter

coefficients for 0 ≤ n ≤ 40 are given, since the remaining coefficients can be

obtained as h(n) = h(80 − n).

• The magnitude responses associated to the four impulse responses listed in

Tables 5–8 are depicted in Figure 9. The reader should notice the compromise

between the transition bandwidth and the ripple in the passband and stopband when

going from the rectangular to the Blackman window, that is, as the ripple decreases,

the width of the transition band increases accordingly.
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Example 5.3 - Solution

Table 5: Filter coefficients using the rectangular window.

h(0) to h(40)

h(0) = 0.0000 h(11) = −0.0040 h(22) = −0.0272 h(33) = 0.0700

h(1) = −0.0030 h(12) = −0.0175 h(23) = 0.0288 h(34) = 0.0193

h(2) = −0.0129 h(13) = 0.0181 h(24) = 0.0072 h(35) = 0.0000

h(3) = 0.0132 h(14) = 0.0044 h(25) = 0.0000 h(36) = −0.0289

h(4) = 0.0032 h(15) = 0.0000 h(26) = −0.0083 h(37) = −0.1633

h(5) = 0.0000 h(16) = −0.0048 h(27) = −0.0377 h(38) = 0.2449

h(6) = −0.0034 h(17) = −0.0213 h(28) = 0.0408 h(39) = 0.1156

h(7) = −0.0148 h(18) = 0.0223 h(29) = 0.0105 h(40) = 0.6000

h(8) = 0.0153 h(19) = 0.0055 h(30) = 0.0000

h(9) = 0.0037 h(20) = 0.0000 h(31) = −0.0128

h(10) = 0.0000 h(21) = −0.0061 h(32) = −0.0612
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Example 5.3 - Solution

Table 6: Filter coefficients using the Hamming window.

h(0) to h(40)

h(0) = 0.0000 h(11) = −0.0010 h(22) = −0.0167 h(33) = 0.0652

h(1) = −0.0002 h(12) = −0.0047 h(23) = 0.0187 h(34) = 0.0183

h(2) = −0.0011 h(13) = 0.0054 h(24) = 0.0049 h(35) = 0.0000

h(3) = 0.0012 h(14) = 0.0015 h(25) = 0.0000 h(36) = −0.0283

h(4) = 0.0003 h(15) = 0.0000 h(26) = −0.0062 h(37) = −0.1612

h(5) = 0.0000 h(16) = −0.0019 h(27) = −0.0294 h(38) = 0.2435

h(6) = −0.0004 h(17) = −0.0092 h(28) = 0.0331 h(39) = 0.1155

h(7) = −0.0022 h(18) = 0.0104 h(29) = 0.0088 h(40) = 0.6000

h(8) = 0.0026 h(19) = 0.0028 h(30) = 0.0000

h(9) = 0.0007 h(20) = 0.0000 h(31) = −0.0114

h(10) = 0.0000 h(21) = −0.0035 h(32) = −0.0558
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Example 5.3 - Solution

Table 7: Filter coefficients using the Hann window.

h(0) to h(40)

h(0) = 0.0000 h(11) = −0.0008 h(22) = −0.0162 h(33) = 0.0651

h(1) = −0.0000 h(12) = −0.0040 h(23) = 0.0182 h(34) = 0.0183

h(2) = −0.0002 h(13) = 0.0047 h(24) = 0.0048 h(35) = 0.0000

h(3) = 0.0003 h(14) = 0.0013 h(25) = 0.0000 h(36) = −0.0282

h(4) = 0.0001 h(15) = 0.0000 h(26) = −0.0061 h(37) = −0.1611

h(5) = 0.0000 h(16) = −0.0018 h(27) = −0.0291 h(38) = 0.2435

h(6) = −0.0002 h(17) = −0.0086 h(28) = 0.0328 h(39) = 0.1155

h(7) = −0.0014 h(18) = 0.0099 h(29) = 0.0088 h(40) = 0.6000

h(8) = 0.0017 h(19) = 0.0026 h(30) = 0.0000

h(9) = 0.0005 h(20) = 0.0000 h(31) = −0.0114

h(10) = 0.0000 h(21) = −0.0034 h(32) = −0.0557
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Example 5.3 - Solution

Table 8: Filter coefficients using the Blackman window.

h(0) to h(40)

h(0) = 0.0000 h(11) = −0.0003 h(22) = −0.0115 h(33) = 0.0618

h(1) = −0.0000 h(12) = −0.0018 h(23) = 0.0134 h(34) = 0.0176

h(2) = −0.0000 h(13) = 0.0022 h(24) = 0.0037 h(35) = 0.0000

h(3) = 0.0001 h(14) = 0.0006 h(25) = 0.0000 h(36) = −0.0278

h(4) = 0.0000 h(15) = 0.0000 h(26) = −0.0050 h(37) = −0.1596

h(5) = 0.0000 h(16) = −0.0010 h(27) = −0.0243 h(38) = 0.2424

h(6) = −0.0001 h(17) = −0.0049 h(28) = 0.0281 h(39) = 0.1153

h(7) = −0.0004 h(18) = 0.0059 h(29) = 0.0077 h(40) = 0.6000

h(8) = 0.0006 h(19) = 0.0017 h(30) = 0.0000

h(9) = 0.0002 h(20) = 0.0000 h(31) = −0.0104

h(10) = 0.0000 h(21) = −0.0023 h(32) = −0.0520

78



Diniz, da Silva and Netto

Example 5.3 - Solution
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Figure 9: Magnitude responses when using: (a) rectangular; (b) Hamming; (c) Hann; (d)

Blackman windows.
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Kaiser window

• All the window functions seen so far allow us to control the transition band through a

proper choice of the filter order M.

• However, no control can be achieved over the passband and stopband ripples, which

makes these windows of little use when designing filters with prescribed frequency

specifications, such as that depicted in Figure 10.

• Such problems are overcome with the Kaiser and Dolph-Chebyshev windows,

presented in this and in the next subsections.
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Kaiser window

ωωrωp π

| H(e
jω

)| dB

20 log10 (1 + δ)

20 log10 (1 - δ)
0

 20 log10 (δ)

Figure 10: Typical specification of a lowpass filter. The specifications are in terms of the

digital frequency ω = 2π Ω
Ωs

= ΩT .
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Kaiser window

• As seen earlier in this section, the ideal window should be a finite-duration function

such that most of its spectral energy is concentrated around |ω| = 0, quickly

decaying when |ω| increases.

• There is a family of continuous-time functions, called the prolate spheroidal functions,

which are optimal for achieving these properties.
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Kaiser window

• Such functions, although very difficult to implement in practice, can be effectively

approximated with the hyperbolic-sine I0(·) functions as

w(t) =






I0

[

β
√

1 − ( t
τ
)2

]

I0(β)
, for |t| ≤ τ

0, for |t| > τ

(63)

where β = Ωaτ and I0(x) is the zeroth-order modified Bessel function of the first

kind, which can be efficiently determined through its series expansion given by

I0(x) = 1 +

∞∑

k=1

[

(x
2
)k

k!

]2

(64)
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Kaiser window

• The Fourier transform of w(t) is given by

W(Ω) =
2τ sin

[

β
√

( Ω
Ωa

)2 − 1
]

βI0(β)
√

( Ω
Ωa

)2 − 1
(65)

• The Kaiser window is derived from equation (63) by making the transformation to the

discrete-time domain given by τ → M
2

T and t → nT . The window is then

described by

wK(n) =






I0

[

β

√

1 − (2n
M

)2

]

I0(β)
, for |n| ≤ M

2

0, for |n| > M
2

(66)

• Since the functions given by equation (65) tend to be highly concentrated around

|Ω| = 0, we can assume that W(Ω) ≈ 0, for |Ω| ≥ Ωs

2
.
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Kaiser window

• Therefore, we can approximate the frequency response for the Kaiser window by

WK(e jω) ≈ 1

T
W

(ω

T

)

(67)

where W(Ω) is given by equation (65) when τ is replaced by M
2

T .

• This yields

WK(e jω) ≈
M sin

[

β
√

( ω
ωa

)2 − 1
]

βI0(β)
√

( ω
ωa

)2 − 1
(68)

where ωa = ΩaT and β = Ωaτ = ωa

T
M
2

T = ωa
M
2

.

• The main advantage of the Kaiser window appears in the design of FIR digital filters

with prescribed specifications, such as that depicted in Figure 10, where the

parameter β is used to control some filter characteristics.
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Kaiser window

• The overall procedure for designing FIR filters using the Kaiser window is as follows:

– (i) From the ideal frequency response that the filter is supposed to approximate,

determine the impulse response h(n) using Table 1. If the filter is either lowpass

or highpass, one should make Ωc =
Ωp+Ωr

2
. The case of bandpass and

bandstop filters is dealt with later in this subsection.

– (ii) Given the maximum passband ripple in dB, Ap, and the minimum stopband

attenuation in dB, Ar, determine the corresponding ripples

δp =
100.05Ap − 1

100.05Ap + 1
(69)

δr = 10−0.05Ar (70)
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Kaiser window

• (cont.)

– (iii) As with all other window functions, the Kaiser window can only be used to

design filters that present the same passband and stopband ripples. Therefore, in

order to satisfy the prescribed specifications, one should use δ = min{δp, δr}.

– (iv) Compute the resulting passband ripple and stopband attenuation in dB using

Ap = 20 log
1 + δ

1 − δ
(71)

Ar = −20 log δ (72)

– (v) Given the passband and stopband edges, Ωp and Ωr, respectively, compute

the transition bandwidth Tr = (Ωr − Ωp).
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Kaiser window

• (cont.)

– (vi) Compute β using

β =






0, for Ar ≤ 21

0.5842(Ar − 21)0.4 + 0.078 86(Ar − 21), for 21 < Ar ≤ 50

0.1102(Ar − 8.7), for 50 < Ar

(73)

This empirical formula was devised by Kaiser based on the behavior of the

function W(Ω) in equation (65).

– (vii) Defining the normalized window length D = TrM
Ωs

, where Ωs is the

sampling frequency, we have that:

D =






0.9222, for Ar ≤ 21

(Ar − 7.95)

14.36
, for 21 < Ar

(74)

88



Diniz, da Silva and Netto

Kaiser window

• (cont.)

– (viii) Having computed D using equation (74), we can determine the filter order

M as the smallest even number that satisfies

M ≥ ΩsD

Tr

(75)

One should remember that Tr must be in the same units as Ωs.

– (ix) With M and β determined, we compute the window wK(n) using

equation (66). We are now ready to form the sequence h′(n) = wK(n)h(n),

where h(n) is the ideal filter impulse response computed in step (i).

– (x) The desired transfer function is then given by

H(z) = z− M
2 Z{h′(n)} (76)
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Kaiser window

• The above procedure applies to lowpass filters (see Figure 10) as well as highpass

filters. If the filter is either bandpass or bandstop, we must include the following

reasoning in step (i) above:

– 1. Compute the narrower transition band

Tr = ±min{|Ωr1
− Ωp1

|, |Ωp2
− Ωr2

|} (77)

Notice that Tr is negative for bandpass filters and positive for bandstop filters.

– 2. Determine the two central frequencies as

Ωc1
=

(

Ωp1
+

Tr

2

)

(78)

Ωc2
=

(

Ωp2
−

Tr

2

)

(79)
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Kaiser window

• A typical magnitude specification for a bandstop filter is depicted in Figure 11.
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Figure 11: Typical specification of a bandstop filter.
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Example 5.4

• Design a bandstop filter satisfying the specification below using the Kaiser window:

Ap = 1.0 dB

Ar = 45 dB

Ωp1
= 800 Hz

Ωr1
= 950 Hz

Ωr2
= 1050 Hz

Ωp2
= 1200 Hz

Ωs = 6000 Hz






(80)
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Example 5.4 - Solution

• Following the procedure described above, the resulting filter is obtained as follows

(note that in the FIR design procedure described above, the parameters of the Kaiser

window depend only on the ratio of the analog frequencies in the filter specification to

the sampling frequency; therefore, the frequencies can be entered in the formula in

hertz, as long as the sampling frequency Ωs is also in hertz):

– (i) From equations (77)–(79), we have that

Tr = + min{(950 − 800), (1200 − 1050)} = 150 Hz (81)

Ωc1
= 800 + 75 = 875 Hz (82)

Ωc2
= 1200 − 75 = 1125 Hz (83)
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Example 5.4 - Solution

• (cont.)

– (ii) From equations (69) and (70),

δp =
100.05 − 1

100.05 + 1
= 0.0575 (84)

δr = 10−0.05×45 = 0.005 62 (85)

(86)

– (iii) δ = min{0.0575, 0.005 62} = 0.005 62

– (iv) From equations (71) and (72),

Ap = 20 log
1 + 0.005 62

1 − 0.005 62
= 0.0977 dB (87)

Ar = −20 log 0.005 62 = 45 dB (88)
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Example 5.4 - Solution

• (cont.)

– (v) Tr has already been computed as 150 Hz in step (i).

– (vi) From equation (73), since Ar = 45 dB, then

β = 0.5842(45 − 21)0.4 + 0.078 86(45 − 21) = 3.975 4327 (89)

– (vii) From equation (74), since Ar = 45 dB, then

D =
(45 − 7.95)

14.36
= 2.580 0835 (90)

– (viii) Since the sampling period is T = 1
6000

s, we have, from equation (75),

M ≥ 6000 × 2.580 0835

150
= 103.203 34 ⇒ M = 104 (91)
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Example 5.4 - Solution

• This whole procedure is implemented by a simple MATLAB script:

Ap = 1; Ar = 45;

Omega_p1 = 800; Omega_r1 = 950;

Omega_r2 = 1050; Omega_p2 = 1200;

Omega_s = 6000;

delta_p = (10ˆ(0.05 * Ap) - 1)/(10ˆ(0.05 * Ap) + 1);

delta_r = 10ˆ(-0.05 * Ar);

F = [Omega_p1 Omega_r1 Omega_r2 Omega_p2];

A = [1 0 1];

ripples = [delta_p delta_r delta_p];

[M,Wn,beta,FILTYPE] =

kaiserord(F,A,ripples,Omega_s);

which yields as outputs beta = 3.9754 and M = 104, as determined above.
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Example 5.4 - Solution

• In this short script, the auxiliary vectors A and ripples specify the desired gain

and allowed ripple, respectively, in each filter band.

• The Kaiser window coefficients are determined by:

kaiser_win = kaiser(M+1,beta);

and are shown in Figure 12 along with the associated magnitude response.
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Example 5.4 - Solution
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Figure 12: Kaiser window: (a) window function; (b) magnitude response.
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Example 5.4 - Solution

• The desired filter is obtained using the fir1 command, as exemplified by:

h = fir1(M,Wn,FILTYPE,kaiser_win, ′noscale ′);

where the noscale flag avoids the unitary gain at the first passband center

imposed by MATLAB.

• The designed filter characteristics are summarized in Table 9.
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Example 5.4 - Solution

Table 9: Characteristics of the designed filter.

Ωc1
875 Hz

Ωc2
1125 Hz

Ωp1
800 Hz

Ωr1
950 Hz

Ωr2
1050 Hz

Ωp2
1200 Hz

δp 0.0575

δr 0.005 62

Tr 150 Hz

D 2.580 0835

β 3.975 4327

M 104
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Example 5.4 - Solution

• The filter coefficients h(n) are given in Table 10. Once again, due to the symmetry

inherent to the Kaiser window function, Table 10 only shows half of the filter

coefficients, as the remaining coefficients are obtained as h(n) = h(M − n).

• The filter impulse response and associated magnitude response are shown in

Figure 13.
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Example 5.4 - Solution

Table 10: Filter coefficients using the Kaiser window.

h(0) to h(52)

h(0) = 0.0003 h(14) = −0.0028 h(28) = 0.0000 h(42) = 0.0288

h(1) = 0.0005 h(15) = 0.0032 h(29) = −0.0013 h(43) = 0.0621

h(2) = 0.0002 h(16) = 0.0070 h(30) = 0.0027 h(44) = 0.0331

h(3) = −0.0001 h(17) = 0.0038 h(31) = 0.0087 h(45) = −0.0350

h(4) = −0.0000 h(18) = −0.0040 h(32) = 0.0061 h(46) = −0.0733

h(5) = 0.0001 h(19) = −0.0083 h(33) = −0.0081 h(47) = −0.0381

h(6) = −0.0003 h(20) = −0.0042 h(34) = −0.0203 h(48) = 0.0394

h(7) = −0.0011 h(21) = 0.0042 h(35) = −0.0123 h(49) = 0.0807

h(8) = −0.0008 h(22) = 0.0081 h(36) = 0.0146 h(50) = 0.0411

h(9) = 0.0011 h(23) = 0.0038 h(37) = 0.0339 h(51) = −0.0415

h(10) = 0.0028 h(24) = −0.0033 h(38) = 0.0194 h(52) = 0.9167

h(11) = 0.0018 h(25) = −0.0055 h(39) = −0.0218

h(12) = −0.0021 h(26) = −0.0020 h(40) = −0.0484

h(13) = −0.0050 h(27) = 0.0011 h(41) = −0.0266
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Example 5.4 - Solution
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Figure 13: Resulting bandstop filter: (a) impulse response; (b) magnitude response; (c)

passband detail.
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Dolph-Chebyshev window

• Based on the Mth-order Chebyshev polynomial given by

CM(x) =






cos
[

M cos−1(x)
]

, for |x| ≤ 1

cosh
[

M cosh−1(x)
]

, for |x| > 1

(92)

the Dolph-Chebyshev window is defined as

wDC(n) =






1

M+1






1

r
+2

M
2∑

i=1

CM

»

x0 cos

„

iπ

M+1

«–

cos

„

2niπ

M+1

«





, for |n| ≤ M

2

0, for |n| > M
2

(93)

where r is the ripple ratio defined as r = δr

δp
and

x0 = cosh

[

1

M
cosh−1

(

1

r

)]

(94)
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Dolph-Chebyshev window

• The procedure for designing FIR filters using the Dolph-Chebyshev window is very

similar to the one for the Kaiser window:

– (i) Perform steps (i) and (ii) of the Kaiser procedure.

– (ii) Determine r = δr

δp
.

– (iii) Perform steps (iii)–(v) and (vii)–(viii) of the Kaiser procedure, to determine the

filter order M. In step (vii), however, as the stopband attenuation achieved with

the Dolph-Chebyshev window is typically 1 to 4 dB higher than that obtained

using the Kaiser window, one should compute D for the Dolph-Chebyshev

window using equation (5.74) with Ar replaced by Ar + 2.5.

– (iv) With r and M determined, compute x0 from equation (94), and then compute

the window coefficients from equation (93).

– (v) We are now ready to form the sequence h′(n) = wDC(n)h(n), where

h(n) is the ideal filter impulse response computed in step (86).

– (vi) Perform step (x) of the Kaiser procedure to determine the resulting FIR filter.
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Dolph-Chebyshev window

• Overall, the Dolph-Chebyshev window is characterized by:

– The main-lobe width, and consequently the resulting filter transition band, can be

controlled by varying M.

– The ripple ratio is controlled through an independent parameter r.

– All secondary lobes have the same amplitude. Therefore, the stopband of the

resulting filter is equiripple.
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Maximally flat FIR filter approximation

• Maximally flat approximations should be employed when a signal must be preserved

with minimal error around the zero frequency or when a monotone frequency

response is necessary.

• FIR filters with a maximally flat frequency response at ω = 0 and ω = π were

introduced by Herrmann. We consider here, following the standard literature on the

subject, the lowpass Type-I FIR filter of even order M and symmetric impulse

response.

• In this case, the frequency response of a maximally flat FIR filter is determined in

such a way that H(e jω) − 1 has 2L zeros at ω = 0, and H(e jω) has 2K zeros at

ω = π.

• To achieve a maximally flat response, the filter order M must satisfy

M = (2K + 2L − 2). Thus, the first 2L − 1 derivatives of H(e jω) are zero at

ω = 0, and the first 2K − 1 derivatives of H(e jω) are zero at ω = π.
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Maximally flat FIR filter approximation

• If the above two conditions are satisfied, H(e jω) can be written either as

H(e jω) =
(

cos
ω

2

)2K
L−1∑

n=0

d(n)
(

sin
ω

2

)2n

=

(

1 + cos ω

2

)K L−1∑

n=0

d(n)

(

1 − cos ω

2

)n

(95)

• Or as

H(e jω) = 1 −
(

sin
ω

2

)2L
K−1∑

n=0

d̂(n)
(

cos
ω

2

)2n

= 1 −

(

1 − cos ω

2

)L K−1∑

n=0

d̂(n)

(

1 + cos ω

2

)n

(96)
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Maximally flat FIR filter approximation

• Where the coefficients d(n) or d̂(n) are respectively given by

d(n) =
(K − 1 + n)!

(K − 1)!n!
(97)

d̂(n) =
(L − 1 + n)!

(L − 1)!n!
(98)

• Note that from equations (95) and (97), H(e jω) is real and positive.

• Therefore, for the maximally flat filters, |H(e jω)| = H(e jω).

• From the above equations it is also easy to see that H(e jω) can be expressed as a

sum of complex exponentials in ω having frequencies ranging from (−K − L + 1)

to (K + L − 1), with an increment of 1.
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Maximally flat FIR filter approximation

• Therefore, from Theorem 5.1, one can see that h(n) can be exactly recovered by

sampling H(e jω) at (2K + 2L − 1) = M + 1 equally spaced points located at

frequencies ω = 2πn/(M + 1), for n = 0, 1, . . ., M, and taking the IDFT, as in

the frequency sampling approach.

• A more efficient implementation, however, results from writing the transfer function as

H(z) =

(

1 + z−1

2

)2K L−1∑

n=0

(−1)nd(n)z−(L−1−n)

(

1 − z−1

2

)2n

(99)

or

H(z) = z− M
2 − (−1)L

(

1 − z−1

2

)2L K−1∑

n=0

d̂(n)z−(K−1−n)

(

1 + z−1

2

)2n

(100)
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Maximally flat FIR filter approximation

• These equations require significantly fewer multipliers than the direct-form

implementation.

• The drawback with these designs is the large dynamic range necessary to represent

the sequences d(n) and d̂(n).

• This can be avoided by an efficient cascade implementation of these coefficients

utilizing the following relationships:

d(n + 1) = d(n)
K + n

n + 1
(101)

d̂(n + 1) = d̂(n)
L + n

n + 1
(102)
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Maximally flat FIR filter approximation

• In the procedure described above, the sole design parameters for the maximally flat

FIR filters are the values of K and L.

• Given a desired magnitude response, as depicted in Figure 14, the transition band is

defined as the region where the magnitude response varies from 0.95 to 0.05, and

the normalized center frequency is the center of this band (ωc =
ωp+ωr

2
).

• If the transition band in rad/sample is Tr, we need to compute the following

parameters:

M1 =

(

π

Tr

)2

(103)

ρ =
1 + cos ωc

2
(104)
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Maximally flat FIR filter approximation

c
ω


r
T


π
0

0


1

0.95


0.05


Figure 14: Typical specification of a maximally flat lowpass FIR filter.
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Maximally flat FIR filter approximation

• Then, for all integer values of Mp in the range M1 ≤ Mp ≤ 2M1, we compute

Kp as the nearest integer to ρMp.

• We then choose K∗
p and M∗

p as the values of Kp and Mp for which the ratio
Kp

Mp

is closest to ρ.

• The desired values of K, L, and M, are given by

K = K∗
p (105)

L = M∗
p − K∗

p (106)

M = 2K + 2L − 2 = 2M∗
p − 2 (107)
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Example 5.5

• Design a maximally flat lowpass filter satisfying the specification below:

Ωc = 0.3π rad/s

Tr = 0.2π rad/s

Ωs = 2π rad/s






(108)
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Example 5.5 - Solution

• One may use the script:

Omega_c = 0.3 * pi; Tr = 0.2 * pi; Omega_s = 2 * pi;

M1 = (pi/Tr)ˆ2;

rho = (1 + cos(Omega_c))/2;

Mp = ceil(M1):floor(2 * M1);

Kp = round(rho * Mp);

rho_p = Kp./Mp;

[value,index] = min(abs(rho_p - rho));

K = Kp(index); L = Mp(index)-Kp(index); M =

2* Mp(index)-2;

to obtain the values of K = 27, L = 7, and M = 66.
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Example 5.5 - Solution

• The resulting coefficients d(n), as given in equation (101), may be determined as

d(1) = 1;

for i = 0:L-2,

d(i+2) = d(i+1) * (K+i)/(i+1);

end;

and are seen in Table 11.

• Notice that in this case, even though the filter order is M = 66, there are only

L = 7 nonzero coefficients d(n).
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Example 5.5 - Solution

Table 11: Coefficients of the lowpass filter designed with the maximally flat method.

d(0) to d(5)

d(0) = 1

d(1) = 27

d(2) = 378

d(3) = 3 654

d(4) = 27 405

d(5) = 169 911

d(6) = 906 192
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Example 5.5

• The corresponding magnitude response can be determined as:

omega = 2* pi. * (0:M)/(M+1);

i = (0:L-1) ′;

for k = 0:M,

H(k+1) = d * sin(omega(k+1)/2).ˆ(2 * i);

end;

H = H.* cos(omega./2).ˆ(2 * K);

the result of which is depicted in Figure 15.

△
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Example 5.5 - Solution
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Figure 15: magnitude response of maximally flat lowpass FIR filter: (a) linear scale; (b)

dB scale.
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FIR filter approximation by optimization

• The window method seen in Section 5.4 has a very straightforward design procedure

for approximating the desired magnitude response. However, the window method is

not efficient for designing, for example, FIR filters with different ripples in the

passband and stopband, or nonsymmetric bandpass or bandstop filters.

• To fill this gap, in this section we present several numerical algorithms for designing

more general FIR digital filters.

• In many signal processing systems, filters with linear or zero phase are required.

Unfortunately, filters designed to have zero phase are not causal; this can be a

problem in applications where very little processing delay is permissible.

• Also, nonlinear phase causes distortion in the processed signal, which can be very

perceptible in applications like data transmission, image processing, and so on.
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FIR filter approximation by optimization

• One of the major advantages of using an FIR system instead of a causal IIR system

is that FIR systems can be designed with exact linear phase.

• As seen in Subsection 4.2.3, there are four distinct cases where an FIR filter

presents linear phase. To present general algorithms for designing linear-phase FIR

filters, a unified representation of these four cases is necessary.

• We define an auxiliary function P(ω) as

P(ω) =

L∑

l=0

p(l) cos(ωl) (109)

where L + 1 is the number of cosine functions in the expression of H(e jω).
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FIR filter approximation by optimization

• Based on this function, we can express the frequency response of the four types of

linear-phase FIR filters as:

– Type I: Even order M and symmetric impulse response. We get

H(e jω) = e− jω M
2

M
2∑

m=0

a(m) cos(ωm)

= e− jω M
2

M
2∑

l=0

p(l) cos(ωl)

= e− jω M
2 P(ω) (110)

with

a(m) = p(m), for m = 0, 1, . . ., L (111)

where L = M
2

.
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FIR filter approximation by optimization

• (cont.)

– Type II: Odd order M and symmetric impulse response. In this case, we have

H(e jω) = e− jω M
2

M+1
2∑

m=1

b(m) cos

[

ω

(

m −
1

2

)]

(112)

Using

b(m) =






p(0) +
1

2
p(1), for m = 1

1

2
(p(m − 1) + p(m)) , for m = 2, 3, . . ., L

1

2
p(L), for m = L + 1

(113)
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FIR filter approximation by optimization

• With L = M−1
2

, then H(e jω) can be written in the form

H(e jω) = e− jω M
2 cos

(ω

2

)

P(ω) (114)

using the trigonometric identity

2 cos
(ω

2

)

cos(ωm) = cos

[

ω

(

m +
1

2

)]

+ cos

[

ω

(

m −
1

2

)]

(115)

• The complete algebraic development is left as an exercise to the interested reader.

125



Diniz, da Silva and Netto

FIR filter approximation by optimization

• (cont.)

– Type III: Even order M and antisymmetric impulse response. In this case, we

have

H(e jω) = e− j(ω M
2

− π
2

)

M
2∑

m=1

c(m) sin(ωm) (116)

and then, by substituting

c(m) =






p(0) −
1

2
p(2), for m = 1

1

2
(p(m − 1) − p(m + 1)) , for m = 2, 3, . . ., (L − 1)

1

2
p(m − 1), for m = L, L + 1

(117)
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FIR filter approximation by optimization

• With L = M
2

− 1, equation (116) can be written as

H(e jω) = e− j(ω M
2

− π
2 ) sin ωP(ω) (118)

using, in this case, the identity

sin ω cos (ωm) = sin [ω (m + 1)] − sin [ω (m − 1)] (119)

• Once again, the algebraic proof is left as an exercise at the end of this chapter.
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FIR filter approximation by optimization

• (cont.)

– Type IV: Odd order M and antisymmetric impulse response. We have that

H(e jω) = e− j(ω M
2

− π
2

)

M+1
2∑

m=1

d(m) sin

[

ω

(

m −
1

2

)]

(120)

By substituting

d(m) =






p(0) −
1

2
p(1), for m = 1

1

2
(p(m − 1) − p(m)) , for m = 2, 3, . . ., L

1

2
p(L), for m = L + 1

(121)
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FIR filter approximation by optimization

• With L = M−1
2

, then H(e jω) can be written as

H(e jω) = e− j(ω M
2

− π
2 ) sin

(ω

2

)

P(ω) (122)

using the identity

2 sin
(ω

2

)

cos(ωm) = sin

[

ω

(

m +
1

2

)]

− sin

[

ω

(

m −
1

2

)]

(123)
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FIR filter approximation by optimization

• Equations (110), (114), (118), and (122) indicate that we can write the frequency

response for any linear-phase FIR filter as

H(e jω) = e− j(αω−β)Q(ω)P(ω) = e− j(αω−β)A(ω) (124)

where A(ω) = Q(ω)P(ω), α = M
2

, and for each case we have that:

– Type I: β = 0 and Q(ω) = 1

– Type II: β = 0 and Q(ω) = cos(ω
2

)

– Type III: β = π
2

and Q(ω) = sin(ω)

– Type IV: β = π
2

and Q(ω) = sin(ω
2

).
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FIR filter approximation by optimization

• Let D(ω) be the desired amplitude response. We define the weighted error function

as

E(ω) = W(ω)(D(ω) − A(ω)) (125)

• We can then write E(ω) as

E(ω) = W(ω)(D(ω) − Q(ω)P(ω))

= W(ω)Q(ω)

(

D(ω)

Q(ω)
− P(ω)

)

(126)

for all 0 ≤ ω ≤ π, as Q(ω) is independent of the coefficients for each ω.
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FIR filter approximation by optimization

• Defining

Wq(ω) = W(ω)Q(ω) (127)

Dq(ω) =
D(ω)

Q(ω)
(128)

the error function can be rewritten as

E(ω) = Wq(ω)(Dq(ω) − P(ω)) (129)

and one can formulate the optimization problem for approximating linear-phase FIR

filters as:

• Determine the set of coefficients p(l) that minimizes some objective function of the

weighted error E(ω) over a set of prescribed frequency bands.
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FIR filter approximation by optimization

• To solve such a problem numerically, we evaluate the weighted error function on a

dense frequency grid with 0 ≤ ωi ≤ π, for i = 1, 2, . . ., KM, where M is the

filter order, obtaining a good discrete approximation of E(ω).

• For most practical purposes, using 8 ≤ K ≤ 16 is recommended. Points associated

with the transition bands can be disregarded, and the remaining frequencies should

be linearly redistributed in the passbands and stopbands to include their

corresponding edges.
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FIR filter approximation by optimization

• Thus, the following equation results

e = Wq (dq − Up) (130)

where

e =
[

E(ω1) E(ω2) · · · E(ωKM)
]T

(131)

Wq = diag
[

Wq(ω1) Wq(ω2) · · · Wq(ωKM)
]

(132)

dq =
[

Dq(ω1) Dq(ω2) · · · Dq(ωKM)
]T

(133)

U =

















1 cos(ω1) cos(2ω1) . . . cos(Lω1)

1 cos(ω2) cos(2ω2) . . . cos(Lω2)

...
...

...
. . .

...

1 cos(ωKM) cos(2ωKM) . . . cos(LωKM)

















(134)

p = [p(0) p(1) · · · p(L)]
T

(135)
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FIR filter approximation by optimization

• With KM ≤ KM, as the original frequencies in the transition band were discarded.

• For the four standard types of filters, namely lowpass, highpass, bandpass, and

bandstop, as well as differentiators and Hilbert transformers, the definitions of

W(ω) and D(ω) are summarized in Table 12.
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FIR filter approximation by optimization

Table 12: Weight functions and ideal magnitude responses for basic lowpass, highpass,

bandpass, and bandstop filters, as well as differentiators and Hilbert transform-

ers.

Filter type Weight function Ideal amplitude response

W(ω) D(ω)

Lowpass






1, for 0 ≤ ω ≤ ωp

δp

δr

, for ωr ≤ ω ≤ π






1, for 0 ≤ ω ≤ ωp

0, for ωr ≤ ω ≤ π

Highpass






δp

δr

, for 0 ≤ ω ≤ ωr

1, for ωp ≤ ω ≤ π






0, for 0 ≤ ω ≤ ωr

1, for ωp ≤ ω ≤ π
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FIR filter approximation by optimization

Filter type Weight function Ideal amplitude response

W(ω) D(ω)

Bandpass






δp

δr

, for 0 ≤ ω ≤ ωr1

1, for ωp1
≤ ω ≤ ωp2

δp

δr

, for ωr2
≤ ω ≤ π






0, for 0 ≤ ω ≤ ωr1

1, for ωp1
≤ ω ≤ ωp2

0, for ωr2
≤ ω ≤ π

Bandstop






1, for 0 ≤ ω ≤ ωp1

δp

δr

, for ωr1
≤ ω ≤ ωr2

1, for ωp2
≤ ω ≤ π






1, for 0 ≤ ω ≤ ωp1

0, for ωr1
≤ ω ≤ ωr2

1, for ωp2
≤ ω ≤ π
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FIR filter approximation by optimization

Filter type Weight function Ideal amplitude response

W(ω) D(ω)

Differentiator






1

ω
, for 0 < ω ≤ ωp

0, for ωp < ω ≤ π
ω, for 0 ≤ ω ≤ π

Hilbert

transformer






0, for 0 ≤ ω < ωp1

1, for ωp1
≤ ω ≤ ωp2

0, for ωp2
< ω ≤ π

1, for 0 ≤ ω ≤ π
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FIR filter approximation by optimization

• It is important to remember all design constraints, due to the magnitude and phase

characteristics of the four linear-phase filter types, as summarized below, where a

‘Yes’ entry indicates that the corresponding filter structure is suitable to implement

the given filter type.

Filter type Type I Type II Type III Type IV

Lowpass Yes Yes No No

Highpass Yes No No Yes

Bandpass Yes Yes Yes Yes

Bandstop Yes No No No

Differentiator No No Yes Yes

Hilbert

transformer
No No Yes Yes
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Weighted-least-squares method

• In the weighted-least-squares (WLS) approach, the idea is to minimize the square of

the energy of the error function E(ω), that is

min
p

{
‖E(ω)‖2

2

}
= min

p

{∫π

0

|E(ω)|
2

dω

}
(136)

• For a discrete set of frequencies, this objective function is approximated by (see

equations (130)–(135))

‖E(ω)‖2
2 ≈ 1

KM

KM∑

k=1

|E(ωk)|2 =
1

KM
eTe (137)

since in these equations e is a real vector.
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Weighted-least-squares method

• Using equation (130), and noting that Wq is diagonal, we can write that

eTe = (dT
q − pTUT)WT

qWq(dq − Up)

= (dT
q − pTUT)W2

q(dq − Up)

= dT
qW2

qdq − dT
qW2

qUp − pTUTW2
qdq + pTUTW2

qUp

= dT
qW2

qdq − 2pTUTW2
qdq + pTUTW2

qUp (138)

because dT
qW2

qUp = pTUTW2
qdq, since these two terms are scalar.

• The minimization of such a functional is achieved by calculating its gradient vector

with respect to the coefficient vector and equating it to zero.
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Weighted-least-squares method

• Since

∇x{Ax} = AT (139)

∇x{x
TAx} = (A + AT)x (140)

this yields

∇p

{
eTe

}
= −2UTW2

qdq + 2UTW2
qUp∗ = 0 (141)

which implies that

p∗ =
(

UTW2
qU

)−1
UTW2

qdq (142)

• It can be shown that when the weight function W(ω) is made constant, the WLS

approach is equivalent to the rectangular window presented in the previous section,

and so suffers from the same problem of Gibbs’ oscillations near the band edges.

• When W(ω) is not constant, the oscillations still occur but their energies will vary

from band to band.
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Weighted-least-squares method

• Amongst the several extensions and generalizations of the WLS approach, we refer

here to the constrained-WLS and eigenfilter methods.

• In the constrained-WLS method, the designer specifies the maximum and minimum

values allowed for the desired magnitude response in each band.

• In the proposed algorithm, the transition bands are not completely specified, as only

their central frequencies need to be provided. The transition bands are then

automatically adjusted to satisfy the constraints.

• The overall method consists of an iterative procedure where in each step a modified

WLS design is performed, using Lagrange multipliers, and the constraints are

subsequently tested and updated.

143



Diniz, da Silva and Netto

Weighted-least-squares method

• Such a procedure involves verification of the Kuhn-Tucker conditions, that is, it

checks if all the resulting multipliers are non-negative, followed by a search routine

that finds the positions of all local extremals in each band and tests if all the

constraints are satisfied.

• For the eigenfilter method, the objective function in equation (129) is rewritten in a

distinct form, and results from linear algebra are used to find the optimal filter for the

resulting equation.

• With such a procedure, the eigenfilter method enables linear-phase FIR filters with

different characteristics to be designed, and the WLS scheme appears as a special

case of the eigenfilter approach.
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Example 5.6

• Design a Hilbert transformer of order M = 5 using the WLS approach by choosing

an appropriate grid of only 3 frequencies. Obtain p∗ and the filter transfer function.
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Example 5.6 - Solution

• For the odd order M = 5, the FIR Hilbert transformer should be of Type IV and the

number of coefficients of p is (L + 1), where L = M−1
2

= 2.

• According to equations (129) and (130), the response error is

e =









sin(ω1

2
) 0 0

0 sin(ω2

2
) 0

0 0 sin(ω3

2
)


































1

sin(ω1

2
)

1

sin(ω2

2
)

1

sin(ω3

2
)





















−









1 cos ω1 cos 2ω1

1 cos ω2 cos 2ω2

1 cos ω3 cos 2ω3

















p(0)

p(1)

p(2)














(143)
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Example 5.6 - Solution

• We then form the frequency grid within the range defined in Table 12, such as

ω1 =
π

3

ω2 =
π

2

ω2 =
2π

3






(144)

in such a way that the error vector becomes

e =














1

1

1









−









1
2

0 0

0
√

2
2

0

0 0
√

3
2

















1 1
2

−1
2

1 0 −1

1 −1
2

−1
2

















p(0)

p(1)

p(2)













(145)
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Example 5.6 - Solution

• The WLS solution requires the following matrix:

UTW2
qU =

1

4









1 1 1

1
2

0 −1
2

−1
2

−1 −1
2

















1 0 0

0 2 0

0 0 3

















1 1
2

−1
2

1 0 −1

1 −1
2

−1
2









=
1

4




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whose inverse is

(

UTW2
qU

)−1
=

1

3









22 8 28

8 16 8

28 8 40









(147)
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• Then, the vector p∗ is computed as follows

p∗ =
(

UTW2
qU

)−1
UTW2

qdq

=
1
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




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
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• According to equations (121), we then have

d(1) = p(0) − 1
2
p(1) =2h(2) = 1.31785

d(2) = 1
2
(p(1) − p(2)) =2h(1) = 0.2595

d(3) = 1
2
p(2) =2h(0) = 0.16315





(149)

and the overall transfer function is given by

H(z)=0.0816+0.1298z−1+0.6589z−2−0.6589z−3−0.1298z−4−0.0816z−5

(150)
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• If a Hilbert filter of same order is designed with the MATLAB firls command,

which uses a uniform sampling to determine the frequency grid, the resulting transfer

function is

H(z)=−0.0828−0.1853z−1−0.6277z−2+0.6277z−3+0.1853z−4+0.0828z−5

(151)

• As can be observed in Figure 16, H(z) and H(z) have very similar magnitude

responses, with the differences arising from the nonuniform frequency grid employed

in the H(z) design for didactic purposes.
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Figure 16: Magnitude responses of Hilbert transformers in Example 5.6: step-by-step

H(z) design (solid line) and MATLAB H(z) design (dashed line).
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Chebyshev method

• In the Chebyshev optimization design approach, the idea is to minimize the

maximum absolute value of the error function E(ω).

• Mathematically, such scheme is described by

min
p

{‖E(ω)‖∞ } = min
p

{
max
ω∈F

{|E(ω)|}

}
(152)

where F is the set of prescribed frequency bands. This problem can be solved with

the help of the following important theorem:
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• Theorem (Alternation Theorem): If P(ω) is a linear combination of (L + 1) cosine

functions, that is

P(ω) =

L∑

l=0

p(l) cos(ωl) (153)

the necessary and sufficient condition for P(ω) to be the Chebyshev approximation

of a continuous function D(ω) in F, a compact subset of [0, π], is that the error

function E(ω) must present at least (L + 2) extreme frequencies in F.

• That is, there must be at least (L + 2) points ωk in F, where

ω0 < ω1 < · · · < ωL+1, such that

E(ωk) = −E(ωk+1), for k = 0, 1, . . ., L (154)

and

|E(ωk)| = max
ω∈F

{|E(ω)|}, for k = 0, 1, . . ., (L + 1) (155)
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• A proof of this theorem can be found in (Cheney, 1966).

• The extremes of E(ω) are related to the extremes of A(ω) defined in

equation (125).

• The values of ω for which
∂A(ω)

∂ω
= 0 allow us to determine that the number Nk of

extremes of A(ω) is such that:

– Type I: Nk ≤ M+2
2

– Type II: Nk ≤ M+1
2

– Type III: Nk ≤ M
2

– Type IV: Nk ≤ M+1
2
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Chebyshev method

• In general, the extremes of A(ω) are also extremes of E(ω). However, E(ω)

presents more extremes than A(ω), as E(ω) may present extremes at the band

edges, which are, in general, not extremes of A(ω).

• The only exception to this rule occurs at the band edges ω = 0 or ω = π, where

A(ω) also presents an extreme.

•
For instance, for a Type-I

bandstop filter, as depicted in Figure 17, E(ω) will have up to (M
2

+ 5) extremes,

where (M
2

+ 1) are extremes of A(ω), and the other four are band edges.
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2
– 1M ‘internal extremals’ 

2
1+

M

ω0

4 band edges

π

A(   )ω

2 extremals of A(   )

extremals of A(   )ω

ω

Figure 17: Extremes of A(ω) for a bandstop filter.
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• To solve the Chebyshev approximation problem, we briefly describe the Remez

exchange algorithm that searches for the extreme frequencies of E(ω) through the

following steps:

– (i) Initialize an estimate for the extreme frequencies ω0, ω1, . . ., ωL+1 by

selecting (L + 2) equally spaced frequencies at the bands specified for the

desired filter.
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• (cont.)

– (ii) Find P(ωk) and δ such that

Wq(ωk)(Dq(ωk) − P(ωk)) = (−1)kδ, for k = 0, 1, . . ., (L + 1) (156)

This equation can be written in a matrix form and have its solution analytically

calculated. Such a procedure, however, is computationally intensive. An

alternative and more efficient approach computes δ by

δ =
a0Dq(ω0) + a1Dq(ω1) + · · · + aL+1Dq(ωL+1)

a0

Wq(ω0)
−

a1

Wq(ω1)
+ · · · + (−1)L+1aL+1

Wq(ωL+1)

(157)

where

ak =

L+1∏

i=0,i6=k

1

cos ωk − cos ωi

(158)
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Chebyshev method

• (cont.)

– (iii) Use the barycentric-form Lagrange interpolator for P(ω), that is

P(ω) =






ck, for ω = ωk ∈ {ω0, ω1, . . ., ωL}
L∑

i=0

βi

cos ω − cos ωi

ci

L∑

i=0

βi

cos ω − cos ωi

, for ω /∈ {ω0, ω1, . . ., ωL}
(159)

where, for k = 0, 1, . . ., (L + 1):

ck = Dq(ωk) − (−1)k δ

Wq(ωk)
(160)

βk =

L∏

i=0,i6=k

1

cos ωk − cos ωi

= ak(cos ωk − cos ωL+1) (161)

160



Diniz, da Silva and Netto

Chebyshev method

• (cont.)

– (iv) Evaluate |E(ω)| in a dense set of frequencies. If |E(ω)| ≤ |δ| for all

frequencies in the set, the optimal solution has been found, go to the next step. If

|E(ω)| > |δ| for some frequencies, a new set of candidate extremes must be

chosen as the peaks of |E(ω)|. In that manner, we force δ to grow and to

converge to its upper limit. If there are more than (L + 2) peaks in |E(ω)|, keep

the locations of the (L + 2) largest values of the peaks of |E(ω)|, making sure

that the band edges are always kept, and return to step (ii).
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Chebyshev method

• (cont.)

– (v) Since P(ω) is a sum of (L + 1) cosines, with frequencies from zero to L,

then it is also a sum of (2L + 1) complex exponentials, with frequencies from −L

to L. Then, from Theorem 4.1, p(l) can be exactly recovered by sampling P(ω)

at (2L + 1) equally spaced frequencies ω = 2πn
2L+1

, for n = 0, 1, . . ., 2L and

taking the inverse DFT. The resulting impulse response follows from

equations (111), (113), (117), or (121), depending on the filter type.

• The corresponding MATLAB function for such an algorithm is firpm (see

Section 5.8).
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Example 5.7

• Design the PCM filter specified as in Figure 18.

Figure 18: Lowpass PCM filter specifications.
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Example 5.7 - Solution

• Two approaches were employed:

– In the first approach, we simplify the specifications and consider a single

passband with constant weight and ideal magnitude response. In this case, the

specifications employed correspond to the following description:

f3 = 3400; f4 = 4800; f5 = 32000;

Ap = 0.4; Ar = 30;

– One may estimate the required filter order using the command lines:

F = [f3 f4]; A = [1 0];

delta_p = (10ˆ(0.05 * Ap) - 1)/(10ˆ(0.05 * Ap) + 1);

delta_r = 10ˆ(-0.05 * Ar);

ripples = [delta_p delta_r];

M = firpmord(F,A,ripples,f5);

which yields M = 32.
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• (cont.)

– Such a value, however, is not able to satisfy the filter requirements forcing one to

use M = 34. The desired filter can then be designed as:

wp = f3 * 2/f5; wr = f4 * 2/f5;

F1 = [0 f3 f4 f5/2] * 2/f5;

A1 = [1 1 0 0];

W1 = [1 delta_p/delta_r];

h = firpm(M,F1,A1,W1);

which yields the filter coefficients provided in Table 13 for 0 ≤ n ≤ 17, with

h(n) = h(34 − n), and the magnitude response shown in Figure 19.

165



Diniz, da Silva and Netto

Example 5.7 - Solution

(a)
0 5000 10000 15000

−60

−50

−40

−30

−20

−10

0

Frequency [Hz]

M
ag

ni
tu

de
 r

es
po

ns
e 

[d
B

]

(b)
0 500 1000 1500 2000 2500 3000

−0.8

−0.6

−0.4

−0.2

0

0.2

Frequency [Hz]

M
ag

ni
tu

de
 r

es
po

ns
e 

[d
B

]
Figure 19: Approach 1: (a) magnitude response; (b) passband detail.
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Table 13: Optimal PCM filter obtained with approach 1.

h(0) to h(17)

h(0) = 0.0153 h(5) = −0.0062 h(10) = −0.0237 h(15) = 0.1569

h(1) = 0.0006 h(6) = 0.0093 h(11) = −0.0482 h(16) = 0.2294

h(2) = −0.0066 h(7) = 0.0226 h(12) = −0.0474 h(17) = 0.2572

h(3) = −0.0139 h(8) = 0.0231 h(13) = −0.0078

h(4) = −0.0149 h(9) = 0.0057 h(14) = 0.0674
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• (cont.)

– In a second approach, we explore the loosened specifications along the

passband and characterize an additional band for the firpm command:

f1 = 2400; f2 = 3000;

F2 = [0 f1 f2 f3 f4 f5/2] * 2/f5;

a1 = 10ˆ(0.05 * 0.2);

a4 = 10ˆ(0.05 * (-0.9));

gain = (a1+a4)/2-0.005;

A2 = [1 1 gain gain 0 0];

delta_p2 = (a1-a4)/2;

W2 = [1 delta_p/delta_p2 delta_p/delta_r];

h2 = firpm(M,F2,A2,W2);
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• (cont.)

– In this case, the simplest filter obtained was of order M = 28. The filter

magnitude response is shown in Figure 20, and its coefficients are listed in

Table 14, where only half of the coefficients are shown due to filter symmetry. The

remaining coefficients are determined by h(n) = h(28 − n).
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Figure 20: Approach 2: (a) magnitude response; (b) passband detail.
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Table 14: Optimal PCM filter obtained with approach 2.

h(0) to h(14)

h(0) = −0.0186 h(4) = 0.0230 h(8) = −0.0456 h(12) = 0.1579

h(1) = −0.0099 h(5) = 0.0178 h(9) = −0.0426 h(13) = 0.2239

h(2) = 0.0010 h(6) = 0.0017 h(10) = 0.0002 h(14) = 0.2517

h(3) = 0.0114 h(7) = −0.0274 h(11) = 0.0712
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WLS–Chebyshev method

• In the standard literature, the design of FIR filters is dominated by the Chebyshev

and the weighted-least-squares (WLS) approaches.

• Some applications that use narrowband filters, like frequency-division multiplexing for

communications, do require both the minimum stopband attenuation and the total

stopband energy to be considered simultaneously.

• For these cases, it can be shown that both the Chebyshev and WLS approaches are

unsuitable as they completely disregard one of these two measurements in their

objective function.

• A solution to this problem is to combine the positive aspects of the WLS and

Chebyshev methods to obtain a design procedure with good characteristics with

respect to both the minimum attenuation and the total energy in the stopband.
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• Lawson derived a scheme that performs Chebyshev approximation as a limit of a

special sequence of weighted-least-p (Lp) approximations, with p fixed. The

particular case with p = 2 thus relates the Chebyshev approximation to the WLS

method.

• The L2 Lawson algorithm is implemented by a series of WLS approximations using a

varying weight matrix Wk, the elements of which are calculated by

W2
k+1(ω) = W2

k(ω)Bk(ω) (162)

where

Bk(ω) = |Ek(ω)| (163)
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• Convergence of the Lawson algorithm is slow, in practice usually 10 to 15 WLS

iterations are required to approximate the Chebyshev solution.

• An efficiently accelerated version of the Lawson algorithm was devised by

Lim-Lee-Chen-Yang (LLCY) whose approach is characterized by the weight matrix

Wk recurrently updated by

W2
k+1(ω) = W2

k(ω)Be
k(ω) (164)

where Be
k(ω) is the envelope function of Bk(ω) composed by a set of piecewise

linear segments that start and end at consecutive extremes of Bk(ω).
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• Band edges are considered extreme frequencies, and edges from different bands are

not connected. In that manner, labeling the extreme frequencies at a particular

iteration k as ω∗
J , for J ∈ N, the envelope function is formed as

Be
k(ω) =

(ω − ω∗
J)Bk(ω∗

J+1) + (ω∗
J+1 − ω)Bk(ω∗

J)

(ω∗
J+1 − ω∗

J)
; ω∗

J ≤ ω ≤ ω∗
J+1 (165)

• Figure 21 depicts a typical format of the absolute value of the error function

(dash-dotted curve), at any particular iteration, used by the Lawson algorithm to

update the weighting function, and its corresponding envelope (solid curve) used by

the LLCY algorithm.
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Figure 21: Typical absolute error function B(ω) (dash-dotted line) and corresponding en-

velope Be(ω) (solid curve).
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• Comparing the adjustments used by the Lawson and LLCY algorithms, described in

equations (162)–(165), and seen in Figure 21, with the piecewise-constant weight

function used by the WLS method, one can devise a very simple approach for

designing digital filters that compromises the minimax and WLS constraints.

• The approach consists of a modification of the weight-function updating procedure so

that it becomes constant after a particular extreme of the stopband of Bk(ω), that is,

W2
k+1(ω) = W2

k(ω)βk(ω) (166)
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• Where, for the modified-Lawson algorithm, βk(ω) is defined as

βk(ω) ≡ B̃k(ω) =





Bk(ω), 0 ≤ ω ≤ ω∗

J

Bk(ω∗
J), ω∗

J < ω ≤ π
(167)

and for the modified-LLCY algorithm, βk(ω) is given by

βk(ω) ≡ B̃e
k(ω) =





Be

k(ω), for 0 ≤ ω ≤ ω∗
J

Be
k(ω∗

J), for ω∗
J < ω ≤ π

(168)

where ω∗
J is the Jth extreme value of the stopband of B(ω) = |E(ω)|.

• The passband values of B(ω) and Be(ω) are left unchanged in equations (167)

and (168) to preserve the equiripple property of the minimax method.
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• The parameter J is the single design parameter for the WLS-Chebyshev scheme.

Choosing J = 1, makes the new scheme similar to an equiripple-passband WLS

design. On the other hand, choosing J as large as possible, that is, making ω∗
J = π,

turns the design method into the Lawson or the LLCY schemes.

• An example of the new approach being applied to the generic functions seen in

Figure 21 is depicted in Figure 22, where ω∗
J was chosen as the fifth extreme in the

filter stopband.
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Figure 22: WLS-Chebyshev approach applied to the functions in Figure 21. Modified-

Lawson algorithm B̃(ω) (dash-dotted curve) and modified-LLCY algorithm

B̃e(ω) (solid curve). The curves coincide for ω ≥ ω∗
5.
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• The computational complexity of WLS-based algorithms, like the algorithms

described here, is of the order of N3, where N is the length of the filter. This burden,

however, can be greatly reduced by taking advantage of the Toeplitz-plus-Hankel

internal structure of the matrix (UTW2U) and by using an efficient grid scheme to

minimize the number of frequency values.

• These simplifications make the computational complexity of WLS-based algorithms

comparable to that for the minimax approach. The WLS-based methods, however, do

have the additional advantage of being easily coded into computer routines.
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• The overall implementation of the WLS-Chebyshev algorithm is as follows:

– (i) Estimate the order M, select 8 ≤ K ≤ 16, the maximum number of iterations

kmax, the value of J, and some small error tolerance ǫ > 0.

– (ii) Create a frequency grid of KM points within [0, π]. For linear-phase filters,

points in the transition band should be discarded and the remaining points

redistributed in the interval ω ∈ [0, ωp] ∪ [ωr, π].

– (iii) Set k = 0 and form Wq, dq, and U, as defined in equations (132)–(134),

based on Table 12.

– (iv) Set k = k + 1, and determine p∗(k) from equation (142).

– (v) Determine the error vector e(k) as given in equation (130), always using Wq

corresponding to k = 0.
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• (cont.)

– (vi) Check if k > kmax or if convergence has been achieved via, for instance, the

criterion | ‖ e(k) ‖ − ‖ e(k − 1) ‖ | ≤ ǫ. If so, then go to step (x).

– (vii) Compute {Bk}j = |{e(k)}j|, for j = 0, 1, . . . , KM, and Be
k as the envelope

of Bk.

– (viii) Find the Jth stopband extreme of Be
k. For a lowpass filter, consider the

interval ω ∈ [ωr, π], starting at ωr. For a highpass filter, search in the interval

ω ∈ [0, ωr], starting at ωr. For bandpass filters, consider the intervals

ω ∈ [0, ωr1
], starting at ωr1

, and ω ∈ [ωr2
, π], starting at ωr2

. For the

bandstop filter, look for the extreme in the interval ω ∈ [ωr1
, ωr2

], starting at

both ωr1
and ωr2

.
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• (cont.)

– (ix) Update W2
q using either equation (167) or equation (168), and go back to

step (iv).

– (x) Determine the set of coefficients h(n) of the linear-phase filter, and verify that

the specifications are satisfied. If so, then decrease the filter order M and repeat

the above procedure starting from step (ii). The best filter would be the one

obtained at the iteration just before the specifications are not met. If the

specifications are not satisfied at the first attempt, then increase the value of M

and repeat the above procedure once again starting at step (ii). In this case, the

best filter would be the one obtained when the specifications are first met.
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• Design a bandpass filter satisfying the specification below using the WLS and

Chebyshev methods and discuss the results obtained when using the

WLS-Chebyshev approach:

M = 40

Ap = 1.0 dB

Ωr1
= π

2
− 0.4 rad/s

Ωp1
= π

2
− 0.1 rad/s

Ωp2
= π

2
+ 0.1 rad/s

Ωr2
= π

2
+ 0.4 rad/s

Ωs = 2π rad/s






(169)
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• As detailed in Example 5.7, the Chebyshev filter can be designed using the firpm

command:

Omega_r1 = pi/2 - 0.4; Omega_p1 = pi/2 - 0.1;

Omega_p2 = pi/2 + 0.1; Omega_r2 = pi/2 + 0.4;

wr1 = Omega_r1/pi; wp1 = Omega_p1/pi;

wp2 = Omega_p2/pi; wr2 = Omega_r2/pi;

Ap = 1; Ar = 40;

delta_p = (10ˆ(0.05 * 2* Ap) - 1)/(10ˆ(0.05 * 2* Ap) + 1);

delta_r = 10ˆ(-0.05 * Ar);

F1 = [0 wr1 wp1 wp2 wr2 1];

A1 = [0 0 1 1 0 0];

W1 = [delta_p/delta_r 1 delta_p/delta_r];

h_cheb = firpm(M,F1,A1,W1);
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• The WLS filter is designed using firls command whose syntax is entirely

analogous to the firpm command:

h_wls = firls(M,F1,A1,W1);

• The magnitude responses for the Chebyshev and WLS filters designed as above are

seen in Figure 23, subplots (a) and (d), which correspond to the J = 10 and J = 1

cases, respectively.

• Other values of J, whose magnitude responses are also shown in Figure 23, require

a specific MATLAB script implementing the WLS-Chebyshev approach, as detailed

earlier in this subsection.
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Example 5.8 - Solution

• Table 15 shows half of the filter coefficients for the case when J = 3. The remaining

coefficients are obtained as h(n) = h(40 − n).

• Figure 24 shows the tradeoff between the stopband minimum attenuation and total

stopband energy when J varies from 1 to 10.

• Notice how the two extremes correspond to optimal values for the attenuation and

energy figures of merit, respectively. On the other hand, the same extremes are also

the worst case scenarios for the energy and the attenuation in the stopband. In this

example, a good compromise between the two measures can be obtained when

J = 3.
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Example 5.8 - Solution
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Figure 23: Magnitude responses using WLS-Chebyshev method with: (a) J = 10; (b)

J = 5; (c) J = 3; (d) J = 1.
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Example 5.8 - Solution

Table 15: Coefficients of the bandpass filter designed with the WLS-Chebyshev method

with J = 3.

h(0) to h(20)

h(0) = −0.0035 h(6) = −0.0052 h(12) = 0.0653 h(18) = −0.1349

h(1) = −0.0000 h(7) = −0.0000 h(13) = 0.0000 h(19) = −0.0000

h(2) = 0.0043 h(8) = 0.0190 h(14) = −0.0929 h(20) = 0.1410

h(3) = 0.0000 h(9) = 0.0000 h(15) = −0.0000

h(4) = −0.0020 h(10) = −0.0396 h(16) = 0.1176

h(5) = 0.0000 h(11) = −0.0000 h(17) = 0.0000
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Example 5.8 - Solution
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Figure 24: Tradeoff between the minimum stopband attenuation and total stopband en-

ergy using the WLS-Chebyshev method.
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Do-it-yourself: FIR filter approximations

• Experiment 5.1: The output signal of a differentiator device to a complex sinusoid

input is given by

y(t) =
dx(t)

dt
=

de jΩt

dt
= jΩe jΩt (170)

• Hence, the ideal differentiator has a magnitude gain proportional to the input

frequency Ω and a phase shift of ±π
2

depending on the sign of Ω.

• For discrete-time systems, this analysis holds for the digital frequency within

ω ∈ [−Fs

2
, Fs

2
], as depicted in Figure 2.
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Do-it-yourself: FIR filter approximations

• Consider 1-second interval of a cosine signal generated in MATLAB as

Fs = 1500; Ts = 1/Fs; t = 0:Ts:1-Ts;

fc = 200;

x = cos(2 * pi * fc. * t);

whose output to a differentiator is

y1 = -2 * pi * fc * sin(2 * pi * fc. * t);

as discussed above.

• The differentiation operation can be approximated by

y2(t) ≈ x(t + ∆t) − x(t)

∆t
(171)

leading, in the discrete-time domain, to the output

y2(n) ≈ cos(2πfc(n + 1)Ts) − cos(2πfcnTs)

Ts

(172)
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Do-it-yourself: FIR filter approximations

• This approximation can be determined in MATLAB as

y2 = [0 diff(x)]/Ts;

which, in the z domain, corresponds to the transfer function

H2(z) =
(z − 1)

Ts

(173)

whose magnitude response is shown as the dashed line in Figure 25a.

• In this plot, one can notice that this first-order approximation works very well for small

values of fc, but deviates from the desired response (indicated by the solid line) as

fc approximates Fs

2
. This fact motivates one to design better differentiators.

194



Diniz, da Silva and Netto

Do-it-yourself: FIR filter approximations

• Using a rectangular window, the impulse response of a differentiator device is

obtained directly from Table 1, and can be determined in MATLAB, for an odd length

N, as

N = 45;

h3 = zeros(N,1);

for n = -(N-1)/2:(N-1)/2,

if n ˜= 0,

h3((N+1)/2+n) = ((-1)ˆn)/n;

end;

end;

yielding the frequency response

[H3,W] = freqz(h3,1);
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Do-it-yourself: FIR filter approximations

• Using any other window function, as for instance the Blackman window, one may get

h4 = h3. * blackman(N);

H4 = freqz(h4,1);

• A differentiator may also be designed with Chebyshev algorithm using firpm

command.

• In this case, one must specify vectors F = [0 f1 f2 1] and A = [0

pi * f1 pi * f2 0] , characterizing the desired response, which should vary from

0 to πf1 within the differentiator passband [0, f1 ] and from πf2 to 0 within the

normalized interval [f2 , 1].
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Do-it-yourself: FIR filter approximations

• An example of such a design is given by

F = [0 0.9 0.91 1];

A = [0 0.9 * pi 0.91 * pi 0];

h5 = firpm(N-1,F,A,’differentiator’);

H5 = freqz(h5,1);

• The magnitude responses of all differentiators designed above are shown in

Figure 25b.
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Do-it-yourself: FIR filter approximations
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Figure 25: Magnitude responses of differentiators in Experiment 5.1: (a) ideal (solid line)

and first-order approximation (dashed line); (b) ideal (solid line), rectangular

window (dashed line), Blackman window (dash-dotted line), and Chebyshev

algorithm (dotted line).

198



Diniz, da Silva and Netto

Do-it-yourself: FIR filter approximations

• Experiment 5.2: Using the specifications

N = 20

ωp = 0.1

ωr = 0.2

ωs = 2






(174)

a nice lowpass FIR filter can be designed with, for instance, the MATLAB command

firpm as given by

N = 20; Freq = [0 0.1 0.2 1]; Weight = [1 1 0 0];

h = firpm(N,Freq,Weight);

• The magnitude response of the corresponding filter is depicted in Figure 26, along

with the one of the moving average filter with N = 20 employed in Experiments 1.3

and 2.2.

199



Diniz, da Silva and Netto

Do-it-yourself: FIR filter approximations

• From this figure, one clearly notices how the firpm filter can sustain a flatter

passband as desired, better preserving the two sinusoidal components in signal x

from Experiment 1.3, while strongly attenuating the noise components within the

specified stopband, as seen in Figure 27.
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Do-it-yourself: FIR filter approximations

0 100 200 300 400 500
−50

−40

−30

−20

−10

0

Frequency [Hz]

M
ag

ni
tu

de
 r

es
po

ns
e 

[d
B

]

Figure 26: Magnitude responses of lowpass filter with N = 20 in Experiment 5.2:

firpm (solid line) and moving-average (dashed line).
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Do-it-yourself: FIR filter approximations
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Figure 27: Output signal from firpm filter in Experiment 5.2 for noisy sinusoidal compo-

nents in x signal in Experiment 1.3.
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