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Introduction

® In the previous chapters, we studied different ways of describing discrete-time
systems that are linear and time invariant. It was verified that the z transform greatly
simplifies the analysis of discrete-time systems, especially those initially described by

a difference equation.

e In this chapter, we study several structures used to realize a given transfer function

associated with a specific difference equation through the use of the z transform.

e The transfer functions considered here will be of the polynomial form (nonrecursive

filters) and of the rational-polynomial form (recursive filters).

® In the nonrecursive case we emphasize the existence of the important subclass of

linear-phase filters.
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Introduction

e Then, we introduce some tools to calculate the digital network transfer function as

well as to analyze its internal behavior.

e \We also discuss some properties of generic digital filter structures associated with

practical discrete-time systems.

e The chapter also introduces a number of useful building blocks often utilized in

practical applications.

e A Do-it-yourself section is included in order to enlighten the reader on how to start
from the concepts and generate some possible realizations for a given transfer

function.
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Basic structures of nonrecursive digital filters

e Nonrecursive filters are characterized by a difference equation in the form

M
y(n) =) bix(n—1 (1)
1=0
where the by coefficients are directly related to the system impulse response, that is,
by = h(l).

e Due to the finite length of their impulse responses, nonrecursive filters are also

referred to as finite-duration impulse-response (FIR) filters.

e \We can rewrite equation (1) as

M
y(n) = Y h(x(n—1 @

1=0
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Basic structures of nonrecursive digital filters

e Applying the z transform to equation (2), we end up with the input-output relationship

Y(z) M M
H(z) = = =) biz'=) h)z* 3
) = X0z ) b > h(U) 3)
1=0 1=0
® |n practical terms, equation (3) can be implemented in several distinct forms, using

as basic elements the delay, the multiplier, and the adder blocks.

® These basic elements of digital filters and their corresponding standard symbols are

depicted in Figure 1.

e An alternative way of representing such elements is the so-called signal flowgraph
shown in Figure 2. These two sets of symbolisms representing the delay, multiplier,

and adder elements, are used throughout this book interchangeably.
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Basic structures of nonrecursive digital filters

X@ BT 2 x(n—-1) 2 X0
(a) n

X(n) % m;x()
b
(b) o

Xo(N)
/ X1(N) X o(N) + - + x(N)

© O

Figure 1: Classic representation of basic elements of digital filters: (a) delay; (b) multiplier;
(c) adder.
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Basic structures of nonrecursive digital filters

(a) x(n) Z> x(n — 1)
m;
(b) x(n) > m; X(n)
x;(n)
X5(N)

/ > X(N) +Xy(N) + -+ +x(N)

Figure 2: Signal-flowgraph representation of basic elements of digital filters: (a) delay; (b)

multiplier; (c) adder.
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Direct form

e The simplest realization of an FIR digital filter is derived from equation (3). The
resulting structure, seen in Figure 3, is called the direct-form realization, as the

multiplier coefficients are obtained directly from the filter transfer function.

® Such a structure is also referred to as the canonic direct form, where for a canonic
form we understand any structure that realizes a given transfer function with the

minimum number of delays, multipliers, and adders.

e More specifically, a structure that utilizes the minimum number of delays is said to be

canonic with respect to the delay element, and so on.

10
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Direct form

X(n) > yA > yA E EE R EE EEER NN B yA > yA

h(0) h(1) h(M —1) h(M)

y(n)

Figure 3: Direct form for FIR digital filters.

11
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Direct form

e An alternative canonic direct form for equation (3) can be derived by expressing
H(z) as

M
H(z) = ) h()z!

e The implementation of this form is shown in Figure 4.

12
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X(n)

Direct form
75 @ 7 pP®----»
h(M) O hm-1) O h - 2)

O h(1)

o y(n)

O) h(0)

Figure 4: Alternative direct form for FIR digital filters.

13
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Cascade form

e Equation (3) can be realized through a series of equivalent structures. However, the
coefficients of such distinct realizations may not be explicitly the filter impulse

response or the corresponding transfer function.

e An important example of such a realization is the so-called cascade form which
consists of a series of second-order FIR filters connected in cascade, thus the name

of the resulting structure, as seen in Figure 5.

e The transfer function associated with such a realization is of the form

N

Hiz) = | [(vox + vz ' +vaxz™?) (5)
k=1

where if M is the filter order, then N = M /2 when M is even, and
N = (M + 1)/2when M is odd. In the latter case, one of the Y2} becomes zero.

14
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Cascade form

x(n)

4 Yi1
S - i
o) Lol Lo
Ya1 Y22 Yon

Figure 5: Cascade form for FIR digital filters.
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Linear-phase forms

e An important subclass of FIR digital filters is the one that includes linear-phase filters.
Such filters are characterized by a constant group delay T, and therefore they must

present a frequency response of the following form:
H(e!®) = B(w)e wTri¢ (6)
where B(w) is real, and T and ¢ are constant.

e Hence, the impulse response h(mn) of linear-phase filters satisfies

r7T
h(n) = Zl H(e'*")e ™ dw
)
1 (™ . L
=5 B(w)e I@TTidgiongy,
o 7
— ez—ﬂj B(w)e ™ gw (7)

16
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Linear-phase forms

e \We are considering here filters where the group delay is a multiple of half a sample,

that is,
k
e Thus, for such cases when 2T is an integer, equation (8) implies that
h2t—n)=—| B(w)e*?" " Jdw=—-—| B(w)e* " Ydw (9
27t 27
—7t —T7T
e Since B(w) is real,
g ib 7 _
h*(2t—n) = B*(w)e ® T Mg
2 )
e_jd) (" jw (N—T)
— B(w)e' dw (10)
2 )

17
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Linear-phase forms

e Then, from equations (7) and (10), in order for a filter to have linear phase with a

constant group delay T, its impulse response must satisfy
h(n) = e?®h* (2t —n) (11)
e \We now proceed to show that linear-phase FIR filters present impulse responses of
very particular forms. In fact, equation (11) implies that h(0) = e?®h*(27).

e Hence, if h(n) is causal and of finite duration, for 0 < n < M, we must

necessarily have that

T = M (12)
2
and then, equation (11) becomes
h(n) =e?®h* (M —n) (13)

which is the general property for the coefficients of a linear-phase FIR filter.

18
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Linear-phase forms

e In the common case where all the filter coefficients are real, then h(n) = h*(n),

and equation (13) implies that e2® must be real. Thus

k
b = 7” keZ (14)
and equation (13) becomes
h(n)=(—=1*h(M—=n), ke Z (15)

That is, the filter impulse response must be either symmetric or antisymmetric.

e From equation (6), the frequency response of linear-phase FIR filters with real

coefficients becomes
H(el®) = B(w)e 1@z TIF (16)

19
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Linear-phase forms

e For all practical purposes, we only need to consider the caseswhenk =0, 1, 2, 3,
as all other values of k will be equivalent to one of these four cases. Furthermore, as
B(w) can be either positive or negative, the cases k = 2 and k = 3 are obtained

from cases k = 0 and k = 1 respectively, by making B(w) «+ —B(w).
e Therefore, we consider solely the four distinct cases described by equations (13)
and (16). They are referred to as follows:
— Type I: k = 0 and M even.
— Type ll: k = 0 and M odd.
— Type lll: k = 1 and M even.
— Type IV: k = 1 and M odd.
e We now proceed to demonstrate that h(n) = (—1)*h(M — n) is a sufficient

condition for an FIR filter with real coefficients to have a linear phase. The four types

above are considered separately.

20
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Linear-phase form - Type |

e Type I: k = O implies that the filter has symmetric impulse response, that is,

h(M —n) = h(n).

e Since the filter order M is even, equation (3) may be rewritten as

71 M . M
H(z) = Z hin)z7"+h <7> z 2 + Z hin)z™™
n=0 n=2141
M
= )_hm) [z—“ +z—(M—“)} +h (%) 2% (17)
n=0

21
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Linear-phase form - Type |

e Evaluating this equation over the unit circle, that is, using the variable transformation

z — el one obtains

M1
H(e!*) = ZO h(n) {e_j“m + e(_jwMﬂw“)] +h (%) i
_ i ) n (%) + Z 2h(m) cos [w (n— %)] (18)
n=0

22
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Linear-phase form - Type |

e Substituting . by (% — m), we get

H(e!®) = e 0T R (%) + 2h (% — m) cos(wm)
m=1
— e iwy Z a(m) cos(wm) (19)
m=0
with a(0) = h(%) and a(m) = Zh(% —m),form=1,2,..., %

® Since this equation is in the form of equation (16), this completes the sufficiency
proof for Type-I filters.

23
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Linear-phase form - Type Il

e Type IIl: k = O implies that the filter has a symmetric impulse response, that is,

h(M —n) = h(n).

e Since the filter order M is odd, equation (3) may be rewritten as

H(z) = Z h(n)z ™ + Z h(n)z ™

— Z h(n)z ™™ 4z M=™)] (20)

24



8- CAMBRIDGE

Diniz, da Silva and Netto W%§p UNIVERSITY PRESS

Linear-phase form - Type Il

e Evaluating this equation over the unit circle, one obtains

<

—1

B

H(ejw) _ h(TL) [e—jwn _|_e(—jwM+jwn)}

_ ol Z h(n [e joo (n— %)Jrejw(n—%)]

— g iw Y Z 2h(n) cos [ (n— %)] (21)

25
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Linear-phase form - Type Il

e Substituting . with (M5 — m)
Mot
M M+ 1 ]
H(e!™) = e %2 Z 2h< 5 —m) cos [w (m—z)]
m=1
M+1
— e 0T i b(m) cos [w (m— 1)] (22)

2
m=1

with b(m) = 2h(MH —m), for m =1,2,..., ML

® Since this equation is in the form of equation (16), this completes the sufficiency

proof for Type-ll filters.

e Notice thatat w = 71, H(e!®) = 0, as it consists of a summation of cosine
functions evaluated at :I:g, which are obviously null. Therefore, highpass and

bandstop filters can not be approximated as Type-ll filters.

26
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Linear-phase form - Type Il

e Type lll: k = 1 implies that the filter has an antisymmetric impulse response, that is,

h(M —n) = —h(n).

e In this case, h( %) is necessarily null. Since the filter order M is even, equation (3)

may be rewritten as

7l M
H(z) = Z h(n)z ™ + Z h(n)z ™
n=0 n=2 41
M
= Y hin) [z M) (23)
n=0

27
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Linear-phase form - Type Il

e Which, when evaluated over the unit circle, yields

M
H(ejw) _ Z h(n) [e—jwn _e(—jwl\/H—jwn)}
n=0
M1
_ o iw'F Z h(n) {e—jw(n—%) _ejw(n—%)}
n=0
M

— e w7y ZZ —2jh(m) sin [w (n— %)]

—2h(m) sin [w (n — %)] (24)

28
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Linear-phase form - Type Il

e Substituting . by (% —m)

. M 7 M
H(e!®) = e il®wZ —7) —2h (7 — m> sin[w (—m)]
m=1
M
M 7T -
— g (wFT—3) c(m) sin(wm) (25)

m=1

with ¢(m) = Zh(% —m),for m=1,2,..., %

® Since this equation is in the form of equation (16), this completes the sufficiency
proof for Type-lll filters.

e Notice, in this case, that the frequency response becomes null at (w = 0 and at
W = 7t. That makes this type of realization suitable for bandpass filters,

differentiators, and Hilbert transformers, these last two due to the phase shift of %

29
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Linear-phase form - Type IV

e Type IV: k = 1 implies that the filter has an antisymmetric impulse response, that is,

h(M —n) = —h(n).

e Since the filter order M is odd, equation (3) may be rewritten as

2 M
Hiz) = ) hn)z "+ ) hn)z ™"
n=0 n— M2+1
_ Z h(n) [z — 2= (M=) (26)
n=0

30
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Linear-phase form - Type IV

e Evaluating this equation over the unit circle

H(e!®) = Z h(n) [e—iwn _e(—JwMHwn)}

n=0
I M
— e P72 EO —2jh(n) sin [w (n— 7)]
_ oz —F) _ : _
— e ! EO 2h(m) sin [w (n 5 )] (27)

31
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Linear-phase form - Type IV

e Substituting n. by ( 2“ —m)
Z ] 1
| . - M
H(e!®) = e i(wF—3) Z] —Zh( z—l_ —m) sin [w (z —m)]
M2—|—1
— g l(@F—3) Z d(m) sin [w (m— 1)] (28)
2
m=1
with d(m) = 2h(ME —m), for m =1,2,..., Mt

e Since this equation is in the form of equation (16), this completes the sufficiency

proof for Type-1V filters, thus finishing the whole proof.

e Notice that H(ej“’) = (0, at w = 0. Hence, lowpass filters can not be approximated
as Type-lV filters, although they are still suitable for differentiators and Hilbert

transformers, like filters having the Type-Ill form.

32
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Linear-phase forms
e Typical impulse responses of the four cases of linear-phase FIR digital filters are

depicted in Figure 6.

e The properties of all four cases are summarized in Table 1.

33



“B CAMBRIDGE

Diniz, da Silva and Netto 8" UNIVERSITY PRESS

34



ey CAMBRIDGE

Diniz, da Silva and Netto ) R

Table 1: Characteristics of linear-phase FIR filters: order, impulse response, frequency

response, phase response, and group delay.

Type M h(n) H(el®) O(w) T
M
M M M
I E S tri -5 — () — -
ven ymmetric e Z a(m)cos(wm) w > >
m=0
a(0) = h(%); a(m) :Zh(% — )
M1
iw M M M
I Odd  Symmetri —jw 3 b [ ( _l)] oz M
ymmetric e Z (m)cos |w ( M—5 wz >
m=1
b(m)zzh(M;‘ _ )
5
. M = M M
i E Anti tri —ilwZF—7) i _w2 2
ven ntisymmetric e Z c(m)sin(wm) w +2 >
m=1
c(m) :zh(% —m)
NES
: M = 7T M
IV Odd  Ant tri —i(lwF—%) d [ ( _l)] Mt M
ntisymmetric e Z (m)sin |w ( m—5 w— + >
m=1
d(m)zzh(MZH —m)
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Linear-phase forms

h(n)

0
h(n)
[{‘ 6 7891011
0

l Il T

h(n)

v

(@ ) ———
= —e
N
(%) ee—
NF———
()} a——
~N———
o=
o
=
~NT———
(oo e ]
O -
—-wo
= —e
v

=
o

\ 4

v

(c) (d) |

Figure 6: Example of impulse responses of linear-phase FIR digital filters: (a) Type I; (b)
Type Il; (c) Type lllI; (d) Type IV.
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Linear-phase forms

e One can derive important properties of linear-phase FIR filters by representing

equations (17), (20), (23), and (26) in a single framework as

_ —%i ( Ton g r “>) (29)

where K = 2= if M is even: or K = Jif M is odd.

e From equation (29), it is easy to observe that, if z, is a zero of H(z), sois z,,". This

implies that all zeros of H(z) occur in reciprocal pairs.

37



Diniz, da Silva and Netto

Linear-phase forms

e Considering that if the coefficients h(n) are real, all complex zeros occur in

conjugate pairs, and then one can infer that the zeros of H(z) must satisfy:

— All complex zeros which are not on the unit circle occur in conjugate and

reciprocal quadruples. In other words, if z,, is complex, then z;/] : Z%k,, and

(2;1 )* are also zeros of H(z).

— There can be any given number of zeros over the unit circle, in conjugate pairs,

since in this case we automatically have that 2;1 — Z%k,.
— All real zeros outside the unit circle occur in reciprocal pairs.
— There can be any given number of zeros at z = z, = +1, since in this case we
necessarily have that z°, T =41,

e A typical zero plot for a linear-phase lowpass FIR filter is shown in Figure 7.

38
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Linear-phase forms

»
>

v

Figure 7: Typical zero plot of a linear-phase FIR digital filter.
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Linear-phase forms

® An interesting property of linear-phase FIR digital filters is that they can be realized
with efficient structures that exploit their symmetric or antisymmetric

impulse-response characteristics.

e In fact, when M is even, these efficient structures require >- + 1 multiplications,

M+1

while when M is odd, only multiplications are necessary.

e Figure 8 depicts two of these efficient structures for linear-phase FIR filters when the

impulse response is symmetric.

40
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Linear-phase forms

X(n) 1 1 1 -1

x(n) 1 -1 = -1

N|
AN
N|
AN
NI
i
N|
AN
A

OrM_15 O@nrM-o05
2 2

y(n)

(a) (b)

Figure 8: Realizations of linear-phase filters with symmetric impulse response: (a) even
order; (b) odd order.
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Basic structures of recursive digital filters

e The transfer function of a recursive filter is given by

M
E biZ_1
1=0

H(z) = = (30)

o N
1+ Z (112_i
i=1

® Since, in most cases, such transfer functions give rise to filters with impulse

responses having infinite durations, recursive filters are also referred to as

infinite-duration impulse-response (lIR) filters.

e It is important to notice, however, that in the cases where D (z) divides N(z), the

filter H(z) turns out to have a finite-duration impulse response, and is actually an
FIR filter.

42
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Basic structures of recursive digital filters

e We can consider that H(z) as above results from the cascading of two separate

filters of transfer functions N(z) and #Z).

e The N(z) polynomial can be realized with the FIR direct form, as shown in the

previous section.

e The realization of ( 7 can be performed as depicted in Figure 9, where the FIR

filter shown will be an (N — 1)th-order filter with transfer function

D'(z) =z(1 — :—ZZ aiz " (31)

which can be realized as in Figure 3. The direct form for realizing ﬁ is then

shown in Figure 10.

43
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Direct form
z(n) H@ i >~ y(n)
1
FIR Filter
2(1-D(2) [
Figure 9: Block diagram realization of ﬁ.
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Direct form

x(n)

y(n)

Figure 10: Detailed realization of #z).
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Direct form

> y(n)

Figure 11: Noncanonic lIR direct-form realization.

46



2 CAMBRIDGE

Diniz, da Silva and Netto T8 UNIVERSITY PRESS

Direct form

e The complete realization of H(z), as a cascade of N(z) and ﬁ, is shown in

Figure 11. Such a structure is not canonic with respect to the delays, since for a
(M, N )th-order filter this realization requires (N + M) delays.

e Clearly, in the general case we can change the order in which we cascade the two

DEZ) T X N(z).

separate filters, that is, H(z) can be realized as N(z) X or

:

D(z

e In the second option, all delays employed start from the same node, which allows us
to eliminate the consequent redundant delays. In that manner, the resulting structure,
usually referred to as the Type 1 canonic direct form, is the one depicted in

Figure 12, for the special case when N = M.

e The majority of IIR filter transfer functions used in practice present a numerator
degree, M, smaller than or equal to the denominator degree, N. In general, one can
consider that M = N. In the case where M < N, we just make the coefficients

bma1,bme2, ..., bN inFigures 12 and 13 equal to zero.

47
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Direct form

by

x(n)

Figure 12: Type 1 canonic direct form for IIR filters.
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Direct form

e An alternative structure, the so-called Type 2 canonic direct form, is shown in

Figure 13. Such a realization is generated from the nonrecursive form in Figure 4.

49
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Direct form

x(n) — @ e ——Yy(N)

Figure 13: Type 2 canonic direct form for IIR filters.
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Cascade form

e In the same way as their FIR counterparts, the |IR digital filters present a large
variety of possible alternative realizations. An important one, referred to as the
cascade realization, is depicted in Figure 14a, where the basic blocks represent

simple transfer functions of orders 2 or 1.

e The cascade form, based on second-order blocks, is associated to the following

transfer function decomposition:

Yok +Y1kz ™' + vakz ?

H(z) —
(2] T+ mypez™! + moyz?

amE

]

T

YOkZZ + Y1kZ + Y2k
2?2 + myz + mok

=

]

K‘
I

I
T

m 2 / /
z- + z 4+ Y

ol z?2 + mixz + mox
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Cascade form

Y

X(n) O—>— Hl(z) HZ(Z) —» = - Hm(Z) ——»—0O y(n)

(@)

Hy(2)

Y

Y

flrb_._o .
\ y(n)

X(n) o—> > H,(z) >
P H,.(2) P
(b)

Figure 14: Block diagrams of: (a) cascade form; (b) parallel form.
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Parallel form

e Another important realization for recursive digital filters is the parallel form
represented in Figure 14b.

e Using second-order blocks, which are the most commonly used in practice, the

parallel realization corresponds to the following transfer function decomposition:

H(z) = i okZ YTz + Vo
22 + Mmyxz + Mok

k=1

_ - YikZ Vo
= ho + Z 2
—z + Mikz + Mok

(33)

m _p// 2 p//
—hy+ Y YokZ™ T VikZ2
— z2 + mixz + mox

also known as the partial-fraction decomposition.
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Parallel form

e This equation indicates three alternative forms of the parallel realization, where the

last two are canonic with respect to the number of multiplier elements.

e |t should be mentioned that each second-order block in the cascade and parallel
forms can be realized by any of the existing distinct structures, as, for instance, one

of the direct forms shown in Figure 15.
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Parallel form

x(n) e

A 4

o y(n)

0

@) (b)

Figure 15: Realizations of second-order blocks: (a) Type 1 direct form; (b) Type 2 direct

form.
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Parallel form

e As it will be seen in future chapters, all these digital filter realizations present different
properties when one considers practical finite-precision implementations, that is, the
guantization of the coefficients and the finite precision of the arithmetic operations,

such as additions and multiplications.

e In fact, the analysis of the finite-precision effects in the distinct realizations is a
fundamental step in the overall process of designing any digital filter, as will be

discussed in detail in Chapter 11.
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Example 4.1

e Describe the digital filter implementation of the transfer function

162%(z+ 1)

H(z) = (422 — 22+ 1)(4z + 3)

(34)

using
— A cascade realization.

— A parallel realization.
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Example 4.1 - Solution

e One cascade realization is obtained by describing the original transfer function as a
product of second- and first-order building blocks as follows
] 14271

H(z) = 35
(2) 1— 1z 4 122 142271 (59)

e Each section of the decomposed transfer function is implemented using the Type 1

canonic direct-form structure as illustrated in Figure 16.
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Example 4.1 - Solution

|

—14

Figure 16: Cascade implementation of H(z) as given in equation (35).
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Example 4.1 - Solution

e For the parallel form, let us write the original transfer function in a more convenient

form as follows

B 22 (z+ 1)
T E RN E D
z22(z+1)
= (36)
(2= 1-1) (2= 3 +i8) -+ )
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Example 4.1 - Solution

e Next, we decompose H(z) as a summation of first-order complex sections as

*

1) 5 4 T3
z—P2 z—P5 z+7P3

(37)

where 11 is the value of H(z) at z — oo and r; is the residue associated to the

pole pi, fori = 2, 3, such that

\
pa=1+j¥3
3
P3 =73
r =1 > (38)
__ b6 .5
2= 19 T30
9
T3 = 75 J
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Example 4.1 - Solution

e Given these values, the complex first-order sections are properly grouped to form
second-order sections with real coefficients, and the constant 1 is grouped with the

real coefficient first-order section, resulting in the following decomposition for H(z):

66 . —1
H(Z):]+7—6Z WZ —ﬁz
1+3z717  1—3z714 1272

(39)

e \We can then implement each section using the Type 1 canonic direct-form structure

leading to the realization shown in Figure 17.
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Example 4.1 - Solution

A

»
Lo

—1/4 —11/38

Figure 17: Parallel implementation of H(z) as given in equation (39).
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Digital network analysis

e The signal-flowgraph representation greatly simplifies the analysis of digital networks

composed of delays, multipliers, and adder elements.

® |n practice, the analysis of such devices is implemented by first numbering all nodes

of the graph of interest.

e Then, one determines the relationship between the output signal of each node with

respect to the output signals of all other nodes.

® The connections between two nodes, referred to as branches, consist of

combinations of delays and/or multipliers.

e Branches that inject external signals into the graph are called source branches. Such

branches have a transmission coefficient equal to 1.
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Digital network analysis

e Following this framework, we can describe the output signal of each node as a

combination of the signals of all other nodes and possibly an external signal, that is

N
Yi(z) = Xj(z) + ) (a1 Yi(z) + 2 "biy Yi(z) (40)
k=1
forj =1,2,...,N, where N is the number of nodes, ay; and z_1bkj are the

transmission coefficients of the branch connecting node k to node j, Yj (z) isthe z
transform of the output signal of node j, and Xj (z) is the z transform of the external

signal injected in node j.
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Digital network analysis

e \We can express equation (40) in a more compact form as
y(z) = x(z) +ATy(z) + BTy(z)z" (41)

where y(z) is the output signal N X 1 vector and x(z) is the external input signal

N x 1 vector for all nodes in the given graph.

e Also, A" isan N x N matrix formed by the multiplier coefficients of the delayless

branches of the circuit, while B is the N x N matrix of multiplier coefficients of the

branches with a delay.
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Example 4.2

e Describe the digital filter seen in Figure 18 using the compact representation given in

equation (41).

X(n)

@ @ ©)
)1 @ 1
(1), ()
a1 &3
(@)
as1

Figure 18: Second-order digital filter.
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Example 4.2 - Solution

e |n order to carry out the description of the filter as in equations (40) and (41), itis

more convenient to represent it in the signal-flowgraph form, as in Figure 19.

x(n) y(n)

Y
A 4

Figure 19: Signal-flowgraph representation of a digital filter.
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e Following the procedure described above, one can easily write that

<

112

Z

(z)
(z)
(z)
(z)

I

Z

Example 4.2 - Solution

X] Z)

(
0
0
0

oo o o O

o o O

69
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=<

=25
CONCHRGING)

0
0
0
0
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Digital network analysis

e The z-domain signals YJ- (z) associated with the network nodes are determined as
y(z) = T'(z)x(2) (43)
with
T (z) = (1—A"—B"z"" )_1 (44)
where | is the Nth-order identity matrix.

e In the above equation, T(z) is the so-called transfer matrix, whose entry T;;(z)

describes the transfer function from node 1 to node j, that is

Tij(z) = (49)
i(z X (2)=0,k=1,2,..,N, k#]j

X

and then Tij (z) gives the response at node j when the only nonzero input is applied

to node 1.
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Digital network analysis

e If one is interested in the output signal of a particular node when several signals are

injected into the network, equation (43) can be used to give
N
Yi(z) = Y Ty(2)Xi(2) (46)
i=1
e Equation (41) can be expressed in the time domain as

y(m) =x(n)+A'y(n)+B'y(n—1) (47)

e If the above equation is used as a recurrence relation to determine the signal at a
particular node given the input signal and initial conditions, there is no guarantee that
the signal at a particular node does not depend on the signal at a different node

whose output is yet to be determined.
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Digital network analysis

e This can be avoided by the use of special node orderings, such as:

() Enumerate the nodes only connected to either source branches or branches with
a delay element. Note that for computing the outputs of these nodes, we need
only the current values of the external input signals or values of the internal

signals at instant (n. — 1).

(i) Enumerate the nodes only connected to source branches, branches with a delay
element, or branches connected to the nodes whose outputs were already
computed in step (i). For this new group of nodes, their corresponding outputs
depend on external signals, signals at instant (. — 1), or signals previously

determined in step (i).

(i) Repeat the procedure above until the outputs of all nodes have been enumerated.
The only case in which this is not achievable (notice that at each step, at least the
output of one new node should be enumerated), occurs when the given network

presents a delayless loop, which is of no practical use.
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Example 4.3

e Analyze the network given in the previous example, using the algorithm described

above.
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Example 4.3 - Solution

e In the given example, the first group consists of nodes 2 and 4, and the second group

consists of nodes 1 and 3. If we reorder the nodes 2,4, 1, and 3as 1, 2, 3, and 4,

respectively, we end up with the network shown in Figure 20, which corresponds to

_<

1.2

Z

N

(2) |
(2)
(2)
(2) |

IO

Z

0

0

X3(z)
0

—|—z_1

o o o O

o o o O

0
0

0
0

0 0
0 0
0 0
0 0

<

112

Z

.

z)
)
)

(
(
(
(

I

Z

<

1\Z

Z

N

(z)
(z)
(z)
(z)

I

Z

(48)
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Example 4.3 - Solution

x(n) > y(n)

A 4

Figure 20: Reordering the nodes in the signal flowgraph.
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Digital network analysis

e In general, after reordering, AT can be put in the following form:

0 ... 0 ... 0 0]
0 0 ... 00
AT = | - - (49)
aij axj : :
_Cl]N oo QAN ... 0 O_

e This meansthat A" and B' tend to be sparse matrices. Therefore, efficient
algorithms can be employed to solve the time- or Zz-domain analyses described in

this section.
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State-space description

e An alternative form of representing digital filters is to use what is called the

state-space representation.

e In such a description, the outputs of the memory elements (delays) are considered

the system states.

e Once all the values of the external and state signals are known, we can determine
the future values of the system states (the delay inputs) and the system output

signals as follows:

x(n+1) = Ax(n) + Bu(n)
(50)
y(n) =C'x(n) + bu(n)

where x(n) is the N x 1 vector of the state variables.
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State-space description

e If M is the number of system inputs and M’ is the number of system outputs, we
have that Ais N x N,BisN x M, CisN x M/, andDis M’ x M.

e In general, we work with single-input and single-output systems. In such cases, B is

N x1,CisN x1,andDis1 x 1, thatis, D = d is a scalar.

e Note that this representation is essentially different from the one given in
equation (47), because in that equation the variables are the outputs of each node,

whereas in the state-space approach the variables are just the outputs of the delays.
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State-space description

e The impulse response for a system as described in equation (50) is given by

d, form =0
h(n) = (51)
CTA™ 1B, forn >0

e To determine the corresponding transfer function, we first apply the z transform to

equation (50), obtaining (note that in this case both y(n) and u(n) are scalars)

(52)
Y(z) =C™X(z) + dU(z)
and then
H(z) = Zl((?) =C' (zl —A)_1 B+d (53)

e From equation (53), it should be noticed that the poles of H(z) are the eigenvalues

of A, as the denominator of H(z) will be given by the determinant of (zI — A).
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State-space description

e By applying a linear transformation T to the state vector such that
x(n) =Tx'(n) (54)

where T is any N X N nonsingular matrix, we end up with a system characterized by

/ 1

AN=T1'aT: B =17'B; c'=T10cC d=4d (55)

e Such a system will present the same transfer function as the original system, and
consequently the same poles and zeros. The proof of this fact is left to the interested

reader as an exercise.

e In fact, the state-space representation leads to the minimum number of equations
describing all the internal behavior and the input-output relationship associated to a
given network, except for possible cases of insufficient controllability and

observability characteristics.
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Example 4.4

e Determine the state-space equations of the filters given in Figures 15a and 18.
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Example 4.4 - Solution

e Associating a state-space variable x; (1) to each delay output, the corresponding

delay input is represented by x; (n + 1).
e In Figure 15a, let us use i = 1 in the upper delay and i = 2 in the lower one.

® The state-space description can be determined as:

() The elements of the state-space transition matrix A can be obtained by inspection
as follows: For each delay input x; (1. + 1), locate the direct paths from the
states x; (n), for all j, without crossing any other delay input. In Figure 15a, the
coefficients —m; and —m. form the only direct paths from the states x1(n)
and x2 (M), respectively, to X1 (1. 4 1). In addition, the relationship
x1(n) = x2(n + 1) defines the only direct path from all states to x> (1. + 1).

(i) The elements of the input vector B represent the direct path between the input
signal to each delay input without crossing any other delay input. In Figure 15a,
only the delay input x1(n + 1) is directly connected to the input signal with
coefficient value of 1.

82



w2 CAMBRIDGE

Diniz, da Silva and Netto ) R

Example 4.4 - Solution

e (Cont.)

(i) The elements of the output vector C account for the direct connection between
each state and the output node without crossing any delay input. In Figure 15a,
the first state X1 (") has two direct connections with the output signal: One
through the multiplier Y1 and the other across the multipliers —1m and yy.
Similarly, the second state X (1) has direct connections to the output node

through the multiplier y, and through the cascade of —m, and yy.

(iv) The feedforward coefficient d accounts for the direct connections between the
input signal and the output node without crossing any state. In Figure 15a, there

IS a single direct connection though the multiplier with coefficient y.

83



8- CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Example 4.4 - Solution

e Following the procedure described above, for the filter shown in Figure 15a, we have

that
_x1(n+1)_:_—m1 —mz_ _X1(n)_+_]_u(n) \
x2(n+1) ] 0 X2 () 0
] ] ] S > (56)
x1(M)
y(n) = { (Y1 —mivo) (v2 — m2vo) } + vou(n)
| x2(n) | )
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Example 4.4 - Solution

e Using the same procedure for the filter in Figure 18, we get

x1(m+1) =azixi(n) + azgrx2(n) +u(n)

x2(n+1) = azzxi(n) + aszxz(n) ’ (57)

y(n) =xz(n) )

leading to the following state-space description:

x1(n+1) az1 Q47 x1(Mn) 1
= + u(n)
x2(n+1) a3 as43 x2(n) 0
: i I L L © 59
x1(n
y(n) = [ 0 1 ] Hm) + Ou(n)
x2(n) )

e Note that each state-space element is represented by a single coefficient, since

there is at most one direct path among the states, input node, and output node.
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Basic properties of digital networks

e In this section, we introduce some network properties that are very useful for
designing and analyzing digital filters.
e More specifically, we see the following concepts:
— Tellegen’s theorem
— Reciprocity and interreciprocity
— Transposition

— Sensitivity
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Tellegen’s theorem

e Consider a digital network represented by the corresponding signal flowgraph, in
which the signal at node j is Yy, and the signal that reaches node j from node 1 is
denoted by xi;. We can use this notation also to represent a branch that leaves from

and arrives at the same node. Such a branch is called a loop.

e Among other things, loops are used to represent source branches entering a node.
In fact, every source branch will be represented as a loop having the value of its
source. In this case, X;i includes the external signal and any other loop connecting

node 1 to itself.

e Following this framework, for each node of a given graph, we can write that

N
Yj = Z Xij (59)
i=1

where N in this case is the total number of nodes. Consider now the following result.
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Tellegen’s theorem

e Telegen's Theorem: All corresponding signals, (xij,Yj) and (xi;, Y5 ), of two

distinct networks with equal signal-flowgraph representations satisfy
N N
D D (yyx —yixi) =0 (60)
i=1j=1
where both sums include all nodes of both networks.

e Prrof: Equation (60) can be rewritten as

N N N N N

D lwd X =D (viD x| =D uivi—) vivi=0 ()

j=1 i=1 i=1 j=1 j= i=1

which completes the proof.

88



Diniz, da Silva and Netto “l’> UNIVERSITY PRESS

Tellegen’s theorem

e Tellegen’s theorem can be generalized for the frequency domain, since

N
Y]' = Z Xij (62)
i=1
and then

D> D> (X5 —YiX;) =0 (63)

N
=1

i=13

e Notice that in Tellegen’s theorem X; is actually the sum of all signals departing from
node 1 and arriving at node j. Therefore, in the most general case where the two

graphs have different topologies, Tellegen’s theorem can still be applied, making the

two topologies equal by adding as many nodes and branches with null transmission

values as necessary.
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Reciprocity

e Consider a particular network in which M of its nodes each have two branches

connecting them to the outside world, as depicted in Figure 21.

e The first branch in each of these nodes is a source branch through which an external
signal is injected into the node. The second branch makes the signal of each node

available as an output signal.

e Naturally, in nodes where there are neither external input nor output signals, one

must consider the corresponding branch to have a null transmission value.

e For generality, if a node does not have neither external nor output signals, both

corresponding branches are considered to have a null transmission value.
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Reciprocity
X, Yo Xu Ywm
Xl
) Digital network
Y1

Figure 21: General digital network with M ports.
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Reciprocity

e Suppose that we apply a set of signals X; to this network, and collect as output the

signals Yj.
e Alternatively, we could apply the signals X!, and observe the Y! signals.

e The particular network is said to be reciprocal if

M
D (XiY{ = X{Y;) =0 (64)

i=1
e In such cases, if the M -port network is described by
M
Y; = Z Tjin (65)
j=1

where Tji is the transfer function from port j to port 1, equation (64) is equivalent to

Tij = Tj i (66)
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Reciprocity

e Proof for this statement is based on the substitution of equation (65) into
equation (64):

M M M M M
P ZTﬁx’ X’ZTﬂX =Y Y (XTX) =) ) (X{TX;)
i=1 j=1 j=1 i=1j=1 i=1j=1
M M M M
— (XiTiX) — > > (XTyXy)
i=1j=1 i=1j=
M M
=Y Y (Ti—Ty) (XiXj)
i=1j=1
=0 (67)
and thus
Tij = Tji (68)
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Interreciprocity

e The vast majority of the digital networks associated with digital filters are not
reciprocal. However, such a concept is crucial in some cases. Fortunately, there is
another related property, called interreciprocity, between two networks which is very

common and useful.

e Consider two networks with the same number of nodes, and also consider that X
and Y; are respectively input and output signals of the first network. Correspondingly,

X’i and Y{ represent input and output signals of the second network.

e Such networks are considered interreciprocal if equation (64) holds for (X, Yi) and

(X[, Y], i=1,2,.., M.
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Interreciprocity

e |f two networks are described by

M
i = Z Tjin (69)
j—
and
M

it can be easily shown that these two networks are interreciprocal if
/

Once again, the proof is left as an exercise for the interested reader.
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Transposition

e Given any signal-flowgraph representation of a digital network, we can generate
another network by reversing the directions of all branches. In such a procedure, all

addition nodes turn into distribution nodes, and vice versa.

e Also, if in the original network the branch from node 1 to node j is Fij (that is,
Xi; = Fy;Yj), the transpose network will have a branch from node j to node 1 with

transmission ng such that
Fij — F;1 (72)

e Using Tellegen’s theorem, one can easily show that the original network and its

corresponding transpose network are interreciprocal.
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Transposition

e In fact, if we represent X; as X;i and number the M input-output nodes in Figure 21
as 1 to M, leaving indexes (M + 1) to N to represent the internal nodes, by

applying Tellegen’s theorem to all signals of both networks, one obtains

N N M
YN (X - YiX) + Y (VX — VX
=1 j=1 i=1
§AL, ifi< M4+ 1
N M
= Z Z (Y;FiY: — YiFuYs) + Z (YiXi — YiXis)
=1 541, a‘i:<1M+1 =1
M
=0+ Z (YiX/u - Y{Xii)
i=1
=0 (73)

where all external signals are considered to be injected at the first M nodes.
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Transposition

e Naturally, Z?L (YiX%; — YiXii) = Ois equivalent to interreciprocity (see

equation (64) applied to the interreciprocity case), which implies that (equation (71))
Ti]’ — Tj/i (74)
e This is a very important result, because it indicates that a network and its transpose
must have the same transfer function.

e For instance, the equivalence of the networks in Figures 3 and 4 can be deduced
from the fact that one is the transpose of the other. The same can be said about the

networks in Figures 12 and 13.
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Sensitivity

e Sensitivity is a measure of the degree of variation of a network’s overall transfer

function with respect to small fluctuations in the value of one of its elements.

e In the specific case of digital filters, one is often interested in the sensitivity with

respect to variations of the multiplier coefficients, that is

OH(z
Siilz) = z) (75)
v om,
for i=1,2,...,L, where L is the total number of multipliers in the particular

network.

e Using the concept of transposition, we can determine the sensitivity of H(z) with
respect to a given coefficient m; in a very efficient way. To understand how, consider
a network, its transpose, and also the original network with a specific coefficient

slightly modified, as depicted in Figure 22.
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Sensitivity

Xo——1 2f——>—o Y Yio—<«—11 A 2b——<—o X,=U

(a) (b)

(€)

Figure 22: Digital networks: (a) original; (b) transpose; (c) original with modified coeffi-

cient.
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Sensitivity

e Using Tellegen’s theorem on the networks shown in Figures 22b and 22c, one

obtains

N N
Z Z (Y]-X’- — YiX Jl

i=1j=1

N
(V;X735 = YiX51) + ) (V;Xh5 — Y5X;0)
1 j=1

)=
\ 4 \ 4

I\/]z

A, A
N N N
T Z (Yixlsj _ Yéxjs) T Z Z (YJ-XQJ- - Y{Xﬁ)
=1 i=4j=1
As Ao

= A1 +A2+ A3+ Ay
= 0 (76)
where A1, Ay, A3, and A4 are separately determined below.
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Sensitivity

e For Aq:

N
Al =Y, /11 _Y%XH ‘|‘Z (Y)X/h —YQX)])
j=2

N
=-uvi + Y (YF5Y = YiFnY)
j=2

= —uy; (77)

since F1; = Fjq, for all j.
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Sensitivity

e |n addition,

N
Az =YXy —YiXos + ) (ViXh; — Y5X;0)

=1
j#2

N
= UuY; + Z (Y5F; Y2 — Y3F32Y5)

=1
j£2

= Uy, (78)
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Sensitivity

e For Aj:

N
Az =Y4X5, — ViXaz + ) (ViF3 Y5 — YViF3Y5)
»y
= YymiY; — Y5 (my + Amy) Yy

= —Am,Y4Y} (79)

e Finally, for A:

p
S
|

(Yj X/ij - Y{Xii)

VR

]

)

M= [M=

T
N

(Y;F4 Y] — Y{F;pY5)

1 '1

M

]

)

(80)
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Sensitivity

e Hence, one has that
—UY] + UY2 — AmiYsY; =0
and thus
U (Y2 —Y]) = AmiYsYs

e Defining

Y Y’
AHi; = (Hi2 —H5;) = (Uz — ﬁ)

one gets, from equation (82), that

uz (H12 — H/21 ) = UZAH12 = AmiY4Y§
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Sensitivity

e If we now let A converge to zero, Hy> tends to H’21 , and consequently

OH12 Y4V,
. 2 = H5;H14 = H32Hi4 (85)

e This equation indicates that the sensitivity of the transfer function of the original
network, H1>, with respect to variations of one of its coefficients, can be determined
based on transfer functions between the system input and the node before the

multiplier, H1 4, and between the multiplier output node and the system output, H3>.
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Example 4.5

e Determine the sensitivity of H(z) with respect to the coefficients a1, az2, a2,

and a»1 in the network of Figure 23.

e,(n) > X,(n)

x(n) y(n)

Figure 23: State variable network.
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Example 4.5 - Solution

® The state-space description of the network in Figure 23 can be determined by using

the procedure described in Example 4.4 for the network in Figure 15a.

® In the present case, entries of the state-space matrices correspond exactly to the
multiplier coefficients of the network (due to this fact, the network in Figure 23 is

called the state-space structure):

_x1(n+1)_ _Ctn <11z_ _X1(Tl)_ _b1 _ \
= + u(n)
x2(n+1) azr a2 x2(Mn) b>
) S o - > (86)
y(n) = [ C1 C2 ] x1{n) + du(n)
- x2(n) | )
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Example 4.5 - Solution

e The transfer function of the state-space structure is given by

H(z) =cT(zi—A) 'B+d
(b1c1 +bacz)z+bicaarz +bacrazr —byicrazy —bacoarg

= D(z) 8d

with
D(z) =z* — (a1 + az)z+ (aj1az; — ajpaz) (88)

e The transfer functions required for computing the desired sensitivity functions can be

obtained as special cases of the general transfer function H(z).
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Example 4.5 - Solution

e For instance, the transfer function from the filter input to the state x1(n) is obtained

by settingc1 = 1, ¢c2 = 0, and d = O in equation (87), leading to

_ X (z)  biz+(b2az1 —braz)

Fi(z = 89
1(z) X(2) D(z) (89)
e The transfer function from the filter input to state x> (n ) is obtained by setting
c1 =0,c2 =1, and d = 0 in equation (87), resulting in
X2(z)  bzz+(brajz —bzagy)
F2(z) = = (90)

X(z) D(z)
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Example 4.5 - Solution

e Usingb; = 1,by, =0, and d = 0 in equation (87), one determines the transfer

function from state x1 (1) to the filter output, such that

~ Y(z)  ciz+(c2a12 —crazz)
Gz =g = D(z) o

e Finally, the transfer function from state x> (1) to the filter output is

Y(z) coz+ (c1az1 —caq)
E,(z) D(z) (92)

Ga(z)

which is determined by setting b; = 0, b, = 1, and d = 0 in equation (87).

111



87 CAMBRIDGE

Diniz, da Silva and Netto P GVERSEREENE

Example 4.5 - Solution

e The required sensitivities are then

SH(®) = F1(2)Gi(2) (93)
SHH2) = F,(2)G,(2) (94)
St = F,(2)Gq(2) (95)
Stz = F,(2)G,(2) (96)
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Example 4.6

e Given the digital filter structure of Figure 24
(a) Generate its transposed realization.

(b) Derive the structure to compute the sensitivity of the transfer function with respect

to multiplier coefficient A .

)

14

—> y(n)

Figure 24: Second-order lattice structure in Example 4.6.
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Example 4.6 - Solution

(a) Starting from the structure of Figure 24, we can obtain the transposed lattice
structure by changing the branches directions, turning the summations nodes into
distribution nodes and vice versa, and redrawing the network so that the input is

placed at the right-hand side, as given in Figure 25.

x ()

Y

YO v Y2

y

Y

y (n)

Figure 25: Transposed lattice structure in Example 4.6.
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Example 4.6 - Solution

(b) For the sensitivity calculation, we must first note that the multiplier A1 appears in the
network also as —A 7. Actually, if they were two different multipliers A1 and X1 :

respectively, we would have that

0H(z) OH(z) -
AH(z) = AN ——AA 97
(z) o, O + SV (97)

Since A7 = —A7, we have that AA; = —AM7, and thus

AH(z)  0H(z) B 0H(z) (98)
JAVN - O 8X1

As indicated in Figure 22, from equation (85), if multiplier A1 goes from node 4 to 3,

and multiplier —A7 goes from node 4’ do 3’, the above equation becomes

AH(z)

AN Hi4(z)H32(2) — Hiar(2)H3/2(2) (99)
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Example 4.6 - Solution

e \We now build a network to compute the above equation. The upper subnetwork of

Figure 26 computes two outputs, one equal to H14(z)X(z) and another equal to
Hi4/(2)X(2).

e We then use the lower subnetwork of Figure 26 to compute H3>(z) and H3/2(z).

e The output H14(z)X(z) is input to node 3 and the output H14/(z)X(z) is multiplied
by —1 and input to node 3’ (note the —1 muiltiplier in Figure 26).

e The output of the network in Figure 26 is then
H14(z)H32X(z) — Hya (2)H3z2X(2).

OH(z)

e From equation (99), this implies that its transfer function is equal to A
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D)
N

Yo

y(n)

Figure 26: Derivative structure in Example 4.6.
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Useful building blocks

® In this section, several building blocks with particularly attractive features are
presented and briefly analyzed.

e More specifically, we see:
— Second-order building blocks
— Digital oscillators

— Comb filter
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Second-order building blocks

e The typical second-order transfer functions resulting from classical approximation
methods are lowpass, bandpass, highpass, lowpass notch, highpass notch, and

allpass.

e The transfer functions discussed below are special cases where the numerator
polynomial is constrained to have its zeros either on the unit circle, where the zeros
are more effective in shaping the magnitude response, or are reciprocals of the

poles, as in the allpass case.
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Second-order building blocks - Lowpass

e Lowpass filter:

z+1)?
H(z) = — ( ) (100)
Z-+miz+mp
e In this transfer function, the zeros are placed at z = —1, leading to trivial coefficients

in the numerator.

e Typically the magnitude response will be increasing close to z = 1, it will reach a
maximum value at the frequency corresponding directly to the poles angles, and then

it will decrease to reach a zero value at z = —1, as illustrated in Figure 27a.
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Second-order building blocks - Bandpass

e Bandpass filter:

B 72 —1  (z=1(z+T)
224+ miz+my Z24+Hmyz+ o

H(z) (101)

e In this case, the zeros are placed at z = =1, also leading to trivial coefficients in the

numerator.

e Typically the magnitude response will be zero at z = 41, and will reach a maximum

value at frequency directly related to the poles angles, as depicted in Figure 27b.
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Second-order building blocks - Highpass

e Highpass filter:
(z—1)7
224 miz4+my

H(z) (102)

e As can be observed in Figure 27c, the zeros are placed at z = 1, so that all

numerator coefficients are simple to implement.

e The magnitude response will be decreasing close to z = —1, it will reach a
maximum value at a frequency directly related to the poles angles, and then it will

decrease to reach a zero value at z = 1.
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Second-order building blocks - Notch

e Notch filter:

72 +\/_z+1

H(z) = (103)

zZZ +miz+my
® The zeros are placed on the unit circle with angles coinciding with the poles angles,
whereas the poles are obviously placed inside the unit circle as in all other building

blocks discussed here (this requires that m, < 1).

e An example is shown in Figure 27d.
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Magnitude response [dB]
Magnitude response [dB]

0 0.5 15 2 2.5 3 0 0.5

1 1 115 é 215 é
(a) Normalized frequency [rad/sample] (b) Normalized frequency [rad/sample]
0 T 5
_10,
0
m' -20t o (ﬁ
h= h=
B 30/ 5
Q Q
8 40! g 10
g g
% _507 % _15,
2 2
S -60f =
_20,
=70
-80 : : : : 25 : : : :
0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
(C) Normalized frequency [rad/sample] (d) Normalized frequency [rad/sample]
Figure 27: Magnitude responses of normalized, standard, second-order blocks with m; = —1.8 and

my = 0.96: (a) lowpass; (b) bandpass; (c) highpass; (d) notch.
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Second-order building blocks - Notch

e | owpass/highpass notch filters:

72?2 +mzz+ 1

H(z) =
() zZ2 +miz+my

(104)

® In the highpass case, the zero at positive frequency is placed on the unit circle with
smaller positive angle than the pole positive angle, and in the lowpass case, with

larger positive angle than the pole positive angle.

e Figures 28a and 28b show typical magnitude responses of lowpass and highpass

notch filters, respectively.
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Second-order building blocks - Allpass

e Allpass filters:
2
moz- +myz+ 1
H(z) = —
Zc+miz+mp

(105)

e For allpass filters the zeros are reciprocals of the poles, that is, if p7 and p}" are the

stable filter poles, then z7 = 1 and Z1 = i* are the zeros.
P 1 P1 Pq

e Note that from equation (105)
zmz—l—qu_] 4272 ZA(Z_1)

H = =z — 106
(2 “ z2 +myz+my “ A(z) (109)

and the magnitude response is

Ale™)| _ A1)
Al@)] ~ JA(e)

H(e)| = =1 (107)

since M and m; are real.
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Second-order building blocks - Allpass

e The magnitude and phase responses of an allpass filter are shown in Figures 28c

and 28d, respectively.

e Such blocks are usually employed in delay equalizers, since they modify the phase

without changing the magnitude.
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Magnitude response [dB]

1 1.5 2 25
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Magnitude response [dB]
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_10 1 1 1 1 1
0 0.5 1 15 2 25
Normalized frequency [rad/sample]

(€)

(d)

-20¢t

Magnitude response [dB]
A
S

_50,
_60,
-80 L L L L L
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3,
2,
8
5
ﬁ 0
g,
[ \\
_2,
-3

0.5 1
Normalized fr

15 2 25 3
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Figure 28: Magnitude (and phase) responses for normalized, standard, second-order blocks: (a) lowpass

notchwith my = —1.8, m, = 0.96, and m3

my = 0.96, and m3
(d) allpass (phase) with T4
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1.42; (b) highpass notch with my; = 1.8,

= —1.42; (c) allpass (magnitude) with 1M
1.8 and m, = 0.96.

= —1.8and my; = 0.96;
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Digital oscillators

® A realization of a digital oscillator has the transfer function

B zsin(wg)
H(z) = z?2 —2cos(wg)z + 1 (108)

where the poles are placed exactly on the unit circle.

e According to Table 2.1, the impulse response for this system is an oscillation of the

form sin(won)u(m), as illustrated in Figure 29 for wg = %.

e Note that in this case the self-sustained oscillation does not look like a simple
sinusoid, because the sampling frequency is not a multiple of the oscillation

frequency.
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Digital oscillators

15

o
o

Output signal

_15 -

_2 | | | | | | | | |
9900 9910 9920 9930 9940 9950 9960 9970 9980 9990 10000
Iteration

Figure 29: Example of a digital oscillator output.

130



Diniz, da Silva and Netto “l’> UNIVERSITY PRESS

Comb filter

e The comb filter is characterized by a magnitude response with multiple identical
passbands. This device is a very useful building block for digital signal processing,
finding applications in instrument synthesis in audio and harmonics removal

(including DC), among others.

e The main task of a comb filter is to place equally spaced zeros on the unit circle, as

illustrated in the following example.
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Example 4.7

e For the first-order network seen in Figure 30:

(a) Determine the corresponding transfer function.

L

(b) Replace 77! by z— - and show its transposed version.

(c) For the network obtained in item (b), determine the pole-zero constellation when

L = 8 and a = 0.5, plotting the resulting frequency response.
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#(n) —= »@ - - y(n)
271 !

Figure 30: Comb filter structure in Example 4.7.
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Example 4.7 - Solution

(a) The transfer function of the first-order comb filter is

1 —2z!

Hiz) = 1 —az!

where is has a zero at z = 1 and a real pole at z = q.

(109)

(b) The transposed realization is depicted in Figure 31, with 771 replaced by z~ L The

corresponding transfer function is given by

1—2ztL

H —
(z) ] —az L
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z(n) —»@P - i _? y(n)

Figure 31: Transposed comb filter in Example 4.7.

135



w2 CAMBRIDGE

DiniZ, da Silva and Netto %§’ UNIVERSITY PRESS

Example 4.7 - Solution

(c) The pole-zero constellation associated to equation (110) consists of L equally
27
spaced zeros on the unit circle placed at z = e T with L poles placed at the same
1
angles but on a circle with radius aT . For L = 8 the pole-zero constellation of the

comb filter is depicted in Figure 32.

e Figures 33a and 33b show the magnitude and phase responses, respectively, of the

comb filter, where it can be observed the effects of the equally spaced zeros.

e The transitions between the peaks and valleys of the magnitude response are related
to the value of a. The closer the value of a is to one, a sharper magnitude response

and a more nonlinear phase result.

e In particular, for a = 0, the comb filter becomes a linear-phase FIR filter. This effect

is further explored in an end-of-chapter exercise.
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o
4

Imaginary part
<
Q
o}

|
o
o

Figure 32: Pole-zero constellation of comb filter with L = 8 in Example 4.7.
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1 L
0.8 —
2 E
o —_
T ol :
(B}
3 g
IS
9 0.4 3
s o
||
O ! ! ! ! ! ! . 1 1 ! ! ! !
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Normalized frequency [rad/sampl€] Normalized frequency [rad/sampl€]
(a) (b)

Figure 33: Frequency response of the normalized comb filter in Example 4.7: (a) magni-

tude response; (b) phase response.
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Do-it-yourself: Digital filters

e Experiment 4.1: Consider the direct-form transfer function

2+ +28 +20 +22 fz 4]
26 +325 + 12l 4 2223 4 2022 4 1z

H(z) = (111)
e One can easily find the poles and zeros of such a function in MATLAB using the
command lines:
num =1 11111 1j
den = [1 3 121/30 92/30 41/30 1/3 1/30],
[zc,pc,kc] = tf2zp(num,den);

leading to the results shown in Table 2.
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Do-it-yourself: Digital filters

Table 2: Zeros and poles of transfer function H(z) in Experiment 4.1.

Zeros Poles
0.6235 +0.7818j —0.5000 + 0.5000;j
0.6235 —0.7818j —0.5000 — 0.5000;j
—0.9010 + 0.4339] —0.7236
—0.9010 — 0.4339] —0.5000 + 0.2887]
—0.2225 4+ 0.9749] —0.5000 — 0.2887]
—0.2225 - 0.9749] —0.2764
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Do-it-yourself: Digital filters

e In general, the tf2zp command groups the complex poles and zeros in conjugate
pairs. However, as one can see in the pole column of Table 2, these
complex-conjugate pairs must be sorted out from the real roots to compose the

second-order blocks of a cascade realization with real coefficients.

e This is automatically done by the Zp2S0S command, whose usage is exemplified

below:
Hcascade = zp2sos(zc,pc,kc)

yielding
Hcascade =
1.0000 -1.2470 1.0000 1.0000 1.0000 0.2000

1.0000 0.4450 1.0000 1.0000 1.0000 0.3333
1.0000 1.8019 1.0000 1.0000 1.0000 0.5000

141



w2 CAMBRIDGE

Diniz, da Silva and Netto ) R

Do-it-yourself: Digital filters

® This result corresponds to the realization

22 —1.2470z+ 1 z2 +0.4450z + 1 2% +1.8019z + 1
H(z) = > 1 > 1 > 1 (112)
zc+z+ ¢ zc+z+ 3 zc+z+ 5

e The parallel realization of a given transfer function can be determined with the aid of

the residue command that expresses H(z) as the sum

T T T
H(z) = L N (113)
Z—P1 Z2—P2 Z—PN

where N is the number of poles, and the parameters T, Pi, and k are the outputs of

[rp,pp,.kp] = residue(num,den);

e Once again, one needs to sort out the pairs of complex-conjugate poles from the real
ones in PP to determine the second-order parallel blocks with strictly real
coefficients. This time, however, we can not rely on the ZP2S0S command, which is

suitable only for the cascade decomposition.
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Do-it-yourself: Digital filters

e The solution is to employ the cplXpair  command, that places the real roots after
all complex pairs, and rearrange the residue vector I'p accordingly, to allow the
proper combination of residues and poles to form the second-order terms, as in the
script below:

N = length(pp);
pp2 = cplxpair(pp);
2 = zeros(N,1);
for 1 = 1:N,
rp2(find(pp2 == pp(i)),1) = rp();
end;
num_blocks = ceil(N/2);
Hparallel = zeros(num_blocks,6);
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Do-it-yourself: Digital filters

for count p = 1:num_blocks,
If length(pp2) = 1,
Hparallel(count_p,2) = rp2(1)+rp2(2);
Hparallel(count_p,3) =
-rp2(1)  *pp2(2)-rp2(2)  *pp2(1);
Hparallel(count_p,5) = -pp2(1)-pp2(2);

Hparallel(count_p,6) = pp2(1) *pp2(2);
rp2(1:2) = [I; pp2(1:2) = I;
else,

Hparallel(count_p,2) = rp2(1);
Hparallel(count_p,5) = -pp2(1);
end;
Hparallel(count_p,4) = 1;
end;
Hparallel = real(Hparallel);
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Do-it-yourself: Digital filters

e This script, for this experiment, yields
Hparallel =

0 10 175000 1 1 0.5000
0O -20 -38.3333 1 1 0.3333
0 38 21.8000 1 1 0.2000

which, taking Kp = 1 also into consideration, corresponds to the parallel
decomposition
10z+17.5 20z+38.3333 8z+21.8
H(z) = G _ e + 2T + 1 (114)

CZ24z+3 Z2+z+d 224 z4 1
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Do-it-yourself: Digital filters

® A state-space description corresponding to a given transfer function is easily
determined in MATLAB with the command
[A,B,C,D] = tf2ss(num,den);

which, for H(z) as given in equation (111), results in

121 92 1 1
=3 30 T3 T3 T3 T30 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
A = ; B= ;
0 0 ] 0 0 0 0
0 0 0 ] 0 0 0
0 0 0o o0 1 0 0
2 2 2
c = |2 %2 N2, (115)
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