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Introduction

e In this chapter, alternative realizations to those introduced in Chapter 5 for FIR filters

are discussed.

e We first present the lattice realization, highlighting its application to the design of
linear-phase perfect reconstruction filter banks. Then, the polyphase structure is
revisited, discussing its application in parallel processing. We also present an
FFT-based realization for implementing the FIR filtering operation in the frequency
domain. Such a form can be very efficient in terms of computational complexity, and
is particularly suitable for off-line processing, although widely used in real-time
implementations. Next, the so-called recursive running sum is described as a special
recursive structure for a very particular FIR filter, which has applications in the design

of FIR filters with low arithmetic complexity.
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Introduction

e In the case of FIR filters, the main concern is to examine methods which aim at
reducing the number of arithmetic operations. These methods lead to more
economical realizations with reduced quantization effects. In this chapter, we also
present the prefilter, the interpolation, and the frequency response masking
approaches for designing lowpass and highpass FIR filters with reduced arithmetic
complexity. The frequency response masking method can be seen as a
generalization of the other two schemes, allowing the design of passbands with
general widths. For bandpass and bandstop filters, the quadrature approach is also

introduced.
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Lattice form

e Figure 1 depicts the block diagram of a nonrecursive lattice filter of order M, which is

formed by concatenating basic blocks of the form shown in Figure 2.

x(n) @ A Y0
Ko @ K, @ Ky
Ok, Ok -
z D Z° e 7 D)

Figure 1: Lattice form realization of nonrecursive digital filters.
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Lattice form

0

0

Figure 2: Basic block of the nonrecursive lattice form.
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Lattice form

e To obtain a useful relation between the lattice parameters and the filter impulse
response, we must analyze the recurrent relationships that appear in Figure 2.

These equations are

ei(n) =ei—1(m) +ki€_1(n—1) (1)
éin) =¢&_1(n—1)+kiei—1(n) (2)
for i=1,2,...,M,witheg(n) =&y(n) = kox(n) and epm(n) = y(n).

e In the frequency domain, equations (1) and (2) become

Ei(z) 1T kiz™! Ei_1(z)
. = 3 3)
Ei(z) ki z7! Ei1(z)

with Eo(z) = Eo(z) = koX(z) and Em(2) = Y(2).
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Lattice form

e Defining the auxiliary polynomials

Ni(z) = ko EO((Q (4)
Ni(z) = ko EO((Z 5)

one can demonstrate by induction, using equation (3), that these polynomials obey

the following recurrence formulas:

Ni(z) = Ni_1(z) + kiz "Ni_1(z ") (6)
Ni(z) =z 'Ny(z™") (7)
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Lattice form

e Therefore, from equations (3) and (7), we have that

T
11—k

Ni_1(z) (Ni(z) —kiz7"Ni(z™ 1) (8)

fori=1,2,... M.

e Note that the recursion in equation (3) implies that N (z) has degree i. Therefore,

N;(z) can be expressed as

Ni(z)= ) ho .z ™ ©)
m=0
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Lattice form

e Since N;i_1(z) has degree (i — 1) and Ny(z) has degree 1i, in equation (8) the
highest degree coefficient of N; (z) must be canceled by the highest degree

coefficient of k;z~*N; (z~ ). This implies that

e Since, from equation (9), hé),i — N; (00), and, from equation (6),
Ni(oco) = Ni_q(00) = = Ng(oo) = 1, we have that equation (10) is
equivalent to h’i)i — k. Therefore, given the filter impulse response, the k;
coefficients are determined by successively computing the polynomials N;_1(z)

from N (z) using equation (8) and making
fori=M,..., 1,0.

10
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Lattice form

e To determine the filter impulse response Nap (z) = H(z) = Zn]\il:o Nz ™ from
the set of lattice coefficients ki, we must first use equation (6) to compute the
auxiliary polynomials N;(z), starting with N (z) = k. The desired coefficients

are then given by
hm =h. M (12)

form=0,1,..., M.

11
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Filter banks using the lattice form

e Structures similar to the lattice form are useful for the realization of critically

decimated filter banks. They are referred to as lattice realizations of filter banks.

e As discussed in Chapter 9, using orthogonal filter banks one can only design trivial
2-band filter banks with linear-phase analysis/synthesis filters. Hence, for a more
general case, the solution is to employ biorthogonal filter banks. We now show one
example of such structures, which implement linear-phase 2-band perfect

reconstruction filter banks.

12
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Filter banks using the lattice form

e In order for a 2-band filter bank to have linear phase, all its analysis and synthesis
filters, Ho(z), H1(z), Go(z), and G1(z), must have linear phase. From
Subsection 4.2.3, if we suppose that all the filters in the filter bank have the same

odd order 2ZM + 1, then they have linear phase if

Hi(z) = 2z 2 THi(z7)

(13)
Gi(z) = £z 2M=1G;(z7 1)

fori=20,]1.

13



8- CAMBRIDGE

Diniz, da Silva and Netto P UNIVERS IR

Filter banks using the lattice form

e The perfect reconstruction property holds if the analysis and synthesis polyphase

matrices are related by
R(z) =z 2E" ' (2) (14)

where the analysis and synthesis polyphase matrices are defined by

Holz) g2y | (15)
Hi(z) 7z~
_ _ S
Golz) | _pripzy | 2 (16)
I G1(Z) ] I 1 ]

14
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Filter banks using the lattice form

e For perfect reconstruction the synthesis filters with ¢ = —1 should satisfy
Go(z) = 22" *H; (—2) (17)
Gi(z) = —z*""Ho(—2) (18)

e Recall from the discussions in Section 9.5 that
P(z) — P(—z) = Ho(z)H1(—2z) — Ho(—2z)Hi(z) =2z *""1  (9)

e Hence, P(z) has linear phase, and has to be symmetric with all odd-index
coefficients equal to zero, except the central coefficient of index 21 4+ 1 which must

be equal to 1.

e In addition, the end terms of P(z) have to be of an even index, in order to cancel in
P(z) — P(—z).

15
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Filter banks using the lattice form

e All these restrictions on P(z) lead to one of the following constraints on the order of

the analysis filters Ho(z) and H1 (z) (see details in Section 9.5):

— If both filter orders are even, they must differ by an odd multiple of 2 and the filter

impulse responses must be symmetric.

— If both orders are odd, they must differ by a multiple of 4 (which includes the case
where both filters are of the same order) and one filter must be symmetric and the

other antisymmetric.

— If one filter order is even and the other is odd, one filter must be symmetric and
the other antisymmetric, and the filter P(z) degenerates into only 2 non-zero

coefficients with all zeros on the unit circle.

16
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Filter banks using the lattice form

e Suppose, now, that we define the polyphase matrix of the analysis filters, E(z), as

having the following general form:

1
E(z) = Km (20)

with

= ﬁ(]—kz) (21)

17
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Filter banks using the lattice form

e If we define the polyphase matrix of the synthesis filters, R(z), as

M [ 1T —1 ] i ]
1 —ki Z 0 1 —1
R(z)=(]] (22)
| ke 0 1 .

we then have that

R(z) =z ME"(2) (23)

and perfect reconstruction is guaranteed irrespective of the values of k;.

18
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Filter banks using the lattice form

e Also, from equations (15) and (16), as well as equations (20) and (22), we have that

.
Ho(z) =z "M~ THo(z ")

Hi(z) = —z M TH (27 7)

> (24)
Go(z) =z *M71Go(z™")

Gi(z) = —z M7 1Gy(z7 1)

/

and linear phase is also guaranteed irrespective of the values of k.

19
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Example 12.1

e Prove by induction that the formulation of equation (20) leads to linear-phase

analysis filters.

20
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Example 12.1 - Solution

e For M = 1, the expression for the analysis filter bank, from equations (15) and (20),

becomes
Hol(z 1 1 ] 0 1 k 1
0(2) e 2 N
I H] (Z) 1 v I —] 1 1L O Z 1L K1 1 1L Z ]

1+kiz " +xiz7%2423
= K4 (25)
1 —kiz7 '+ Kz +273

e Since Hy(z) and H1(z) are symmetric and antisymmetric, respectively, the filter
bank is linear-phase for M = 1. Now, in order to finish the proof, we need to show

that if the filter bank is linear-phase for a given M, then it is also linear-phase for
M+ 1.

21
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Example 12.1 - Solution

e For a lattice structure with (M + 1) stages, we have that

§ — Ho(z)
Hy (z) | v
IRER / I ki N1
= Km1 H
—1 1 \i:MH kiz=% z72 z !
IR ka I ki__1_
= Km+1 i H
—1 1 kmpz= % z772 M kiz7?% z7% 271
1 11 1 K L 1 Kk 1
_ S + ICM H
1=K | =11 || kmpz 2 272 Sl kiz7? 272 z !

22
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Example 12.1 - Solution

® Hence
H
G _ o(z)
Hilz) M1
_ o - o - -1 -
B ] 11 ] Kmad 11 Ho(z)
1=K | =11 kmpz 2 z7? —1 1 Hi(z) M
B 1 (T+km)(T+27%)  (T—=kmp ) (—=14+2z72) || Ho(z)
20—k 1) | (T4km) (=T+272) (I—kma)(14+272) || Hi(z) "
R R R i
1| 1=kmsa  T+kmu || Hol(z)
_ (27)
21 4272 1422 Hi (z) iy

L 1—kmua T4+kmpr

23
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Example 12.1 - Solution

e Assuming that [Hqo(z)]am is symmetric and [H1(z)]am is antisymmetric of equal
orders (2M + 1) and similar coefficients, as given in equation (25) for the case

M = 1, we may write that

Ho(z)lyy = z "M~ [Ho(z™1)],, (28)

Hi(z)ly, = —z M7 [Hi(z7 )], (29)

e Therefore, for finishing the proof, we must show that [Ho(z)]am .1 is symmetric and
[H1(z)]m 41 is antisymmetric. Since their orders are equal to
(2(M+1)+1) = (2ZM + 3), we must show, according to equations (28) and
(29), that

Ho(2) ey = z M7 [Holz )], (30)

Hi(@lyy = —z M3 [Hiz )] (31

M1

24
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e From equation (27) we have that

Z—ZM—3

Example 12.1 - Solution

M-+1

Z—ZM—3

25

T 1422 —142z% 7
T—kmpa  T+kmp
—1+z? 1+ 22

L T —kmy T+ kmp

(32)
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Example 12.1 - Solution

e Substituting [Ho(z7")]am and [Hi (z71)]Mm from equations (28) and (29) in the
above equation we get

p_ ,—2M-3 Ho(z™")
-
Hi(z7) | s
1+2° —1+2z% ) i
_ z2M=3 1 T —kmpn T+ kmn M Ho(z)
2 —1 422 1+ 22 —H;(z) "
_ 1 — kM_H 1 + kM—H .

(33)
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Example 12.1 - Solution

e And then
p _ ,—2M-3 Ho(z™")
—1
Ha(z7) | o
T 14z —1+z72 7 i
B 1 1 —kmu 1+ kmoa Ho(2)
2 - -1 +z72 B 1+z7 Hi(z) "
L 1T —km T+kmy 1 )
Hol(z
_ 0(z) a4
—Hil(z) M

where the last step derives from equation (27).

27
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Example 12.1 - Solution

e Comparing the above equation with equations (30) and (31) we see that the lowpass
and highpass filters for (M + 1) stages are also symmetric and antisymmetric,

which completes the proof by induction.

e The realizations of the analysis and synthesis filters are shown in Figures 3a and 3Db,

respectively, for the same-order case, as developed in Example 12.1 above.

28
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Example 12.1 - Solution

(b)

Figure 3: Lattice form realization of a linear-phase filter bank: (a) analysis filters; (b) syn-

thesis filters.

29
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Example 12.1 - Solution

e ODbs: There are rare cases of perfect reconstruction FIR filter banks where the
corresponding lattices can not be synthesized as some coefficient k; may be equal
to 1.

® As seen above, one important property of such realizations is that both perfect

reconstruction and linear phase are guaranteed irrespective of the values of k.

e They are often referred to as having structurally induced perfect reconstruction and
linear phase. Therefore, one possible design strategy for such filter banks is to carry
out a multi-variable optimization on ki, for i = 1,2, ..., M, using a chosen

objective function.

30
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Example 12.1 - Solution

e For example, one could minimize the L, norm of the deviation of both the lowpass
filter Ho(z) and the highpass filter H1 (z) in both their passbands and stopbands

using the following objective function:

E(ki K2, .. k) = J (1= [Ho(e)])? dw—I—J Ho(e')|* dw
O wT
_|_J (] _ ‘H] (ejw)‘)z dw _|_J ’ ‘H1(ejw)‘2 dw
w 0

(35)

which corresponds essentially to a least-squares error function.

31
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Example 12.2

e Implement the transfer function below using a lattice structure:
Hi(z) =z > +22 440523 —-05z%2—-2z1—1 (36)

e Determine Hg(z) and the synthesis filters obtained.

32
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Example 12.2 - Solution

e Using M = 2 into equation (20), the polyphase matrix of the analysis filter bank is

then given by

1T 1111 0 1 x| [T O | 'S
E(Z):/Cz
—1 1] {0 z7! Ky 1 0 z71 Ki |
ol 1 1 o«
— K, ’ 1 @37)
—1 1 Koz"! oz Kiz7! 1

e Hence, from equation (15), the highpass filter becomes

Hi(z) = Ka[-1—kiz7 " +ka(1—k1)z 2 —ka(T—Kk1)z P +Kk12 4 427]
(38)

33
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Example 12.2 - Solution

e Equating this expression to the given transfer function, one gets

K1 =2
KZZO.S

(39)

e Note that with this lattice structure the resulting filter banks are equal to the desired
Ho(z) and H1(z) up to a constant, since the value of XC> must be given by

equation (21), which, in this case, is

] ] ] 2
0= (3) (Fz) (o) =5 0

34
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Example 12.2 - Solution

e Therefore, the filter H1 (z) becomes

2
Hi(z) = ~3 (—1 2771 —O.SZ_Z—O.SZ_3+ZZ_4+Z_5) (41)

e The polyphase components of the highpass filter of the analysis filter bank are such
that

Eio(z) = K2 [-1—xa(ki =Dz T +Kkiz272] = —5 (—1-0.52 " +2272)
Ei1(z) = K2 [—k1—xa(1—xk1)z7 ' +272] = =2 (-2+40.52 T +272)
(42)

35
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Example 12.2 - Solution

e And for the lowpass filter, we have that

Eoo(z) = K2 [14+K2(1+Kk1)z7 +K1272] = —2 (1+1.527 1 +2272)
Eo1(z) = K2 [k14+Kk2(T+K1)z7 +272] = =5 (241527 +272)
(43)

e The lowpass filter of the analysis filter bank has the following expression
Ho(z) = Eoo(z%) +z 'Eo1(2?)

2
=5 (1422 ' +1.52 2 +1.52 3 +2z 4 +27°) (44)

36
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Example 12.2 - Solution

e The determinant of the matrix E(z) has the following expression:

det [E(z)] = Eoo(z)E11(2) — E10(2)Eo1(2)

2

_ (é) (141527 +2272) (~2405z7 +272)
—(=1=05z""+2z7%) (2+ 1.5z +z77)]

_ _%Z—z (45)

37
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Example 12.2 - Solution

e As a result, from equation (23), the polyphase matrix of the synthesis filter is given by

72 _ Eqq (Z) —Eo1 (Z)
det [E(z)] —E10(z)  Eoolz)

(—2 + 0.5z 1 + 2_2) (—2 — 15z 1 — z_z)

R(z) =

= (46)
(1 +0.5z7! —Zz_z) (1 + 1.5z —|—ZZ_2>
e And the synthesis filters are, from equation (16),
Go(z)=1—-22"1"+0527240523—-2z4% 427> )

Gi(z) =1—=22""4+1522—-152z3+4+2z4—2z>

38
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Polyphase form

e A nonrecursive transfer function of the form H(z) = ZE:_(; h(n)z~™ when

N = KN (as seen in Section 8.8), can also be expressed as

N—1 N—1
H(z) = ) h(Kn)z7 "™+ ¥ h(Kn+1)z " 14
n=0 n=0
N-1
+ Y h(Kn+K— 1)z Kok
n=0
N-1 N-1
= Z h(Kn)z K 4 271 Z h(Kn+ 1)z k" 4 ...
n=0 n=0
N-1
4z KT Z h(Kn +K —1)z7Kkn (48)
n=0

39
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Polyphase form

e This last form of writing H(z) can be directly mapped onto the realization shown in

Figure 4, where each H; (z) is given by
N—1
Hi(z“) =) h{Kn+iz *" (49)
n=0

fori=0,1,..., (K—1).

e Such arealization is referred to as the polyphase realization and it finds a large
range of applications in the study of multirate systems and filter banks, as seenin
Chapter 9.

40
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Polyphase form

@
-1
Z
H,(2) y(n)
-1
c o .
z" L. H (2

Figure 4: Block diagram of realization of equation (48).

41
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Freqguency-domain form

e The output of an FIR filter corresponds to the linear convolution of the input signal

with the finite-length impulse response of the filter h(mn).

e Therefore, from Section 3.4 we have that, if the input signal x(mn.) of a nonrecursive
digital filter is known for all ., and null for n < 0 and n > L, an alternative approach

to computing the output y(m.) can be derived using the fast Fourier transform (FFT).

e If the filter length is N, by completing these sequences with the necessary number of
zeros (zero-padding procedure) and determining the resulting (N + L)-element

FFTs of h(n), x(n), and y(n ), we have that
FFT{y(n)} = FFT{h(n)}FFT{x(n)} (50)
and then

y(n) = FET T {FFT{h(n)}FFT{X (n) 1} (51)

42
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Freqguency-domain form

e Using this approach, we are able to compute the entire sequence y(mn) with a

number of arithmetic operations per output sample proportional to log- (L+ N).

® In the case of direct evaluation, the number of operations per output sample is of the
order of L. Clearly, for large values of L and not too large values of N, the FFT

method is the most efficient one.

e In the above approach, the entire input sequence must be available to allow one to
compute the output signal. In this case, if the input is extremely long, the complete
computation of Yy(m) can result in a long computational delay, which is undesirable in
several applications. For such cases, the input signal can be sectioned and each
data block processed separately using the so-called overlap-and-save and

overlap-and-add methods, as described in Chapter 3.

43
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Recursive running sum form

e The direct realization of the transfer function

H(z) = Z z7t (52)

where all the multiplier coefficients are equal to one, requires a large number of

additions for large M.

e An alternative way to implement such a transfer function results from interpreting it

as the sum of the terms of a geometric series. This yields

1 _Z—M—1

H(z) = p— (53)

This equation leads to the realization in Figure 5, widely known as the recursive

running sum (RRS).

44
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Recursive running sum form

x (n) —>» ><-|-T> > > y (n)
A

Figure 5: Block diagram of the recursive running sum (RRS) realization.

45
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Recursive running sum form

e The RRS corresponds to a very simple lowpass filter, comprising (M + 1) delays
and only 2 additions per output sample. The RRS bandwidth can be controlled by

appropriately choosing the value of M, as illustrated in Example 12.3 below.

e The RRS DC gain is equal to (M + 1). To compensate for that, a scaling factor of

(M++1) should be employed at the filter input, which generates an output roundoff

noise with variance of about [(M + 1)q]%/12.

e To reduce this effect, one may eliminate the input scaling and perform the RRS
internal computations with higher dynamic range, by increasing the internal binary

wordlength accordingly.

e In this case, the output-noise variance is reduced to q2/12, since the signal is
guantized only at the output. To guarantee this, the number of extra bits must be the

smallest integer larger than or equal to log, (M + 1).

46
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Example 12.3

e Determine the magnitude responses and pole-zero constellations for the RRS blocks
with M =5,7,9.

47
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Example 12.3 - Solution

e The RRS has a pole at z = 1 that is canceled by a zero at the same position,

leading to an FIR filter with a recursive realization.

e By examining the numerator polynomial of the RRS filter its zeros are equally spaced

. . 27t
on the unit circle, placedatz = eM+1,

e The magnitude responses of the RRS for Ml = 5,7, 9 are depicted in Figure 6a,

whereas the pole-zero constellation when M = 9 is seen in Figure 6b.

48
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Example 12.3 - Solution

N\ L o) o
-10¢ \\ .
) Vo 05 o 0
8; _20' ! Z +—
g Vi g
1
g 50 '.- 5 o0 o) x° ®
(] 1 =
s ; z
‘T —40¢} =
g ! -0.5r
= o o
_50 L
: -1 o o
_60 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 -1 -0.5 0 0.5 1
Normalized frequency [rad/sample] Red part
(a) (b)

Figure 6: RRS characteristics: (a) magnitude response for M = 5 (dotted line), M = 7
(dashed line), and M = 9 (solid line); (b) pole-zero constellation for M. = 9.

49
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Modified-sinc filter

e The RRS filter is certainly one of the most widely used lowpass filter with very
efficient implementation. The main drawback of the RRS filter is its low stopband

attenuation, that can not be increased in a straightforward manner.

e A simple and yet efficient extension of the RRS is the modified-sinc filter, which has

the following general transfer function:
1 1 — bz—(M+1) L pp—2(M+1) _ ,—3(M+1)
(M+1)3 ( l—az '+az2—z3 )
1 (1 —2cos(M+1 )woz(M+1)—|—Z2(M+U>(1 _Z(M+1)>

H(z) =

(M+1)3 1—2coswoz 1+2z2 ]—z—]
(54)

where a = (1 4+ 2coswg)and b = [1 + 2cos(M + 1)wy].
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Modified-sinc filter

e Figure 7 shows a canonic structure for the modified-sinc filter, that is, utilizing the

minimum number of multipliers, delays, and adders.

e The modified-sinc filter places equally spaced triplets of zeros on the unit circle. The
first triplet is located around DC (one zero at DC and two at ==w), and is cancelled
by the filter poles, generating an improved lowpass filter, as compared to the RRS

: 7T
filter, as long as wo < M+
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Modified-sinc filter

x (n) ¥ (n)

Figure 7: Canonic realization of the modified-sinc filter.
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Modified-sinc filter

e Figure 8 depicts the frequency response of the modified-sinc filter for Ml = 8 and

__ T
Wo = 50
0
=20
o
=)
% -40} g
¢ £
S 60 g
E= E
&
=
-80
-100 : : : : :
0 0.5 1 15 2 25 3
Normalized frequency [rad/sample]
(a) (b

0.5¢

-0.5+

)

| ‘@
¥
%24
®
-1 -0.5 0 0.5
Red part

Figure 8: Characterization of modified-sic filter for M = 8 and wg = %: (a) magnitude

response; (b) pole-zero constellation.
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Realizations with reduced number of arithmetic operations

e The main drawback of FIR filters is the large number of arithmetic operations
required to satisfy practical specifications. However, especially in the case of filters
with narrow passbands or transition bands, there is a correlation among the values of

filter multiplier coefficients.

e This fact can be exploited in order to reduce the number of arithmetic operations

required to satisfy such specifications.

e This section presents some of the most widely used methods for designing FIR filters

with reduced computational complexity.
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Prefilter approach

e The main idea of the prefilter method consists of generating a simple FIR filter, with
reduced multiplication and addition counts, whose frequency response approximates

the desired response as far as possible.

e Then this simple filter is cascaded with an amplitude equalizer, designed so that the

overall filter satisfies the prescribed specifications.

e The reduction in the computational complexity results from the fact that the prefilter

greatly relieves the specifications for the equalizer.

e This happens because the equalizer has wider transition bands to approximate, thus

requiring a lower order.
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Prefilter approach

e Several prefilter structures are given in the literature, and choosing the best one for a

given specification is not an easy task.
e A very simple lowpass prefilter is the RRS filter, seen in Section 12.5.

e From equation (53), the frequency response of the Mth-order RRS filter is given by

I s N
H(e!*) = e 2 (55)
(2
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Prefilter approach

e This indicates that the RRS frequency response has several ripples at the stopband
with decreasing magnitudes as w approaches 7t. The first zero in the RRS

frequency response occurs at

B 27T
M+

W21 (56)

e Using the RRS as a prefilter, this first zero must be placed above and as close as

possible to the stopband edge w-. In order to achieve this, the RRS order M must

be such that
2
M = {—ﬂ — 1J (57)
Wy

where ij represents the largest integer less than or equal to Xx.
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Prefilter approach

e More efficient prefilters can be generated by cascading several RRS sections. For
example, if we cascade two prefilters, so that the first one satisfies equation (57), and
the second is designed to cancel the secondary ripples of the first, we could expect a

higher stopband attenuation for the resulting prefilter.

e This would relieve the specifications for the equalizer even further. In particular, the
first stopband ripple belonging to the first RRS must be attenuated by the second

RRS, without introducing zeros in the passband.

e Although the design of prefilters by cascading several RRS sections is always
possible, practice has shown that there is little to gain in cascading more than three

sections. The modified-sinc filter is also a very efficient prefilter.
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Prefilter approach

e \We show now that the Chebyshev (minimax) approach for designing optimal FIR
filters presented in Chapter 5 can be adapted to design the equalizer, by modifying

the error function definition, in the following way.

® The response obtained by cascading the prefilter with the equalizer is given by
H(z) = Hy (z)He(2) (58)

where H,, (z) is the prefilter transfer function, and only the coefficients of He (z) are

to be optimized.
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Prefilter approach

e The error function can then be rewritten as

E(w)| = [W(w) (D(w) —Hyp (') He (')
_ jow D(w) jow
= [ Wiy (e (12 55— Hele) )
= |W/(w) (D’(w) — He(e"))] (59)
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Prefilter approach

e where
( 1
—— (W € passbands
D'(w) ={ Hple) (60)
\ 0, W € stopbands
Hp (e!)], w € passbands
W (w) = < 5 | (61)
\ 6_p ‘Hp(ejw) , W € stopbands
T

e It is worth mentioning that H1D (e!?) often has zeros at some frequencies, which
causes problems to the optimization algorithm. One way to circumvent this is to

replace |H,, (e!’)] in the neighborhoods of its zeros by a small number such as

10-¢.
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Example 12.4

e Design a highpass filter using the standard minimax and the prefilter methods

satisfying the following specifications:

A, =40dB
Q. = 6600 Hz
> (62)
QO = 7200 Hz
Q. =16000 Hz )
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Example 12.4 - Solution

e The prefilter approach described above applies only to narrowband lowpass filters.
However, it requires only a slight modification in order to be applied to narrowband

highpass filter design.

e The modification consists of designing the lowpass filter approximating D (71 — w)

1

and then replacing 77! by —z " in the realization.

e Therefore, the lowpass specifications are

Q

Q) = 73 — Q, = 8000 — 7200 = 800 Hz (63)
Q

Q; — 78 — ), = 8000 — 6600 = 1400 Hz (64)

e Using the minimax approach, the resulting direct-form filter has order 42, thus

requiring 22 multiplications per output sample.
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Example 12.4 - Solution

e Using the prefilter approach, with an RRS of order 10, the resulting equalizer has
order 34, requiring only 18 multiplications per output sample. Only half of the

equalizer coefficients are shown in Table 1, as the other coefficients can be obtained

as h(34 —n) = h(n).

Table 1: Equalizer coefficients.

h(0) to h(17)
h(0) = —5.7525E—03 h(6) = 3.9039E—03 h(12) = —2.9552E—03
h(1) = 1.4791E—04 h(7) = —5.3685E—03 h(13) = 7.1024E—03
h(2) = —1.4058E—03 h(8) = 6.1928E—03 h(14) = —1.1463E—02
h(3) = 6.0819E—04 h(9) = —5.9842E—03 h(15) = 1.5271E—02
h(4) = 6.3692E—04 h(10) = 4.4243E—03 h(16) = —1.7853E—02
h(5) = —2.2099E—03 h(11) = 9.1634E—04 h(17) = 1.8756E—02
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Example 12.4 - Solution

e The magnitude responses of the direct-form and the prefilter-equalizer filters are
depicted in Figure 9.

T T T T T T T T T T T T T T
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g
S
3 -60
c
(@)]
S
S 80
—-100 L L L L L L 1 -100 1 1 1 1 1 L L
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz] Frequency [HZz]
(a) (b)

Figure 9: Magnitude responses: (a) direct-form minimax approach; (b) prefilter approach.
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Example 12.4 - Solution

e \With the prefilter approach we can also design bandpass filters centered at Wy = %

and with band edges at (5 — 52), (5 + S2), (5 — %), and (§ + %4). This

can be done by noting that such bandpass filters can be obtained from a lowpass
1

filter with band edges at w,, and Wy, by applying the transformationz™ " — —z7 %

e There are also generalizations of the prefilter approach that allow the design of
narrow bandpass filters with central frequency away from % as well as narrow

stopband filters.

e Due to the reduced number of multipliers, filters designed using the prefilter method
tend to generate less roundoff noise at the output than minimax filters implemented
in direct form. Their sensitivity to coefficient quantization is also reduced when

compared to direct-form minimax designs.
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Interpolation approach

e FIR filters with narrow passband and transition bands tend to have adjacent multiplier
coefficients, representing their impulse responses, with very close magnitude. This
means there is a correlation among them that could be exploited to reduce

computational complexity.

e Indeed, we could think of removing some samples of the impulse response, by
replacing them with zeros, and approximating their values by interpolating the
remaining nonzero samples. That is, using the terminology of Chapter 8, we would
decimate and then interpolate the filter coefficients. This is the main idea behind the

interpolation approach.
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Interpolation approach

e Consider an initial filter with frequency and impulse responses given by H; (e'® ) and
hi(n), respectively. If hi(n) is interpolated by L, then (L — 1) null samples are

inserted after each sample of hi (1), and the resulting sequence h} (n) is given by

hi($), forn=XkL, withk=0,1,2,...

hi(n) =
0, for n £ kL

(65)

e The corresponding frequency response, H (e!’), is periodic with period 27t/L. For
example, Figure 10 illustrates the form of H’i(ejw) generated from a lowpass filter

with frequency response H; (/% ), using L = 3.
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Interpolation approach
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Figure 10: Effects of inserting (L — 1) = 2 zeros in a discrete-time impulse response.
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Interpolation approach

e The filter with frequency response H’i(ejw), commonly referred to as the
interpolated filter, is then connected in cascade with an interpolator G(e!®),

resulting in a transfer function of the form
/
H(z) = H;(z)G(z) (66)

e The function of the interpolator is to eliminate undesirable bands of H’i(z) (see

Figure 10), while leaving its lowest frequency band unaffected.

e As can be observed, the initial filter has passband and stopband which are L times
larger than the ones of the interpolated filter (in Figure 10, L = 3). As a
consequence, the number of multiplications in the initial filter tends to be
approximately L times smaller than the number of multiplications of a filter directly

designed with the minimax approach to satisfy the narrowband specifications.
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Interpolation approach

e An intuitive explanation for this is that a filter with larger passbands, stopbands, and

transition bands is easier to implement than one with narrow bands.

e For lowpass filters, the maximum value of L such that the initial filter satisfies the

specifications in the passband and in the stopband is given by

I—max — \\EJ (67)

W

where w- is the lowest rejection band frequency of the desired filter. This value for L

assures that w,, < 7T.
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Interpolation approach

e For highpass filters, L.« is given by
Tt
Lmax — \‘—J (68)
7T - wr
whereas for bandpass filters, L4 is the largest L such that

k+1 . .
”Tk < Wy, < Wy, < ud L+ ) for some k. In practice, L is chosen smaller than

L, .ax in order to relieve the interpolator specifications.

e Naturally, to achieve reduction in the computational requirements of the final filter, the

interpolator must be as simple as possible, not requiring too many multiplications.

e For instance, the interpolator can be designed as a cascade of subsections, in which

each subsection places zeros on an undesirable passband.

e For the example in Figure 10, if we wish to design a lowpass filter, G(e!%’ ) should

27
have zeros at e 3 .
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Interpolation approach

e Alternatively, we can use the minimax method to design the interpolator, with the
passband of G(e!®) coinciding with the specified passband, and with the stopbands
located in the frequency ranges of the undesired passband replicas of the

interpolated filter.

e Once the value of L and the interpolator are chosen, the interpolated filter can be

designed such that

\

(1-38,) < |Hi(ejw)G(ej%)‘ < (146,), forw € [0, Lwy]

()

J

‘Hi(ejw)G(eTw)‘ < b, forw € [Lw.,, 7

/

where the minimax method to design optimal FIR filters can be directly used.
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Example 12.5

e Design the filter specified in Example 12.1 using the interpolation method.
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Example 12.5 - Solution

e Using L = 2, we obtain the initial filter of order 20, thus requiring 11 multiplications
per output sample, whose coefficients are listed in Table 2. The required interpolator
is given by G(z) = (1 — z~1)#, and the resulting magnitude response of the

cascade of the initial filter and the interpolator is seen in Figure 11.
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Example 12.5 - Solution

Table 2: Initial filter coefficients.

h(0) to h(10)

h(0) = 1.0703E—03 h(4) = —2.8131E—03 h(8) = 9.5809E—03
h(1) = 7.3552E—04 h(5) = —3.3483E—03 h(9) = 1.4768E—02
h(2) = 3.9828E—04 h(6) = —1.2690E—03 h(10) = 1.6863E—02
h(3) = —1.2771E—03 h(7) = 3.3882E—03
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Example 12.5 - Solution
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Figure 11: Response of the interpolated model filter in cascade with the interpolator.
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Interpolation approach

e It is worth observing that the prefilter and the interpolation methods were initially
described as effective methods to design narrowband filters of the types lowpass,

highpass, and bandpass.

e However, we can also design both wideband and narrow stopband filters with the
interpolation method by noting they can be obtained from a narrowband filter H(z)
which is complementary to the desired filter, using

M
2

Hri(z) =272 —H(z) (70)

where M is the even order of H(z).
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Frequency response masking approach

e Another interesting application of interpolation appears in the design of wideband
sharp cutoff filters using the so-called frequency response masking approach. A brief

introduction to it was given in Subsection 8.10.2.

e Such an approach makes use of the concept of complementary filters, which
constitute a pair of filters, Hq (z) and H(z), whose frequency responses add to a

constant delay, that is
‘Ha(ejw) + Hc(ejw)’ =2 (71)

e If H,(2) is a linear-phase FIR filter of even order M, its frequency response can be

written as
Ho(el) = e 12 “A(w) (72)

where A (w) is a trigonometric function of w, as given in Section 5.6.
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Frequency response masking approach

e Therefore, the frequency response of the complementary filter must be of the form
. .M
He(e) =e™ 2% (1T — A(w)) (73)

and the corresponding transfer functions are such that

M
2

Halz) + Helz) =2~ (74)

e Hence, given the realization of H (z), its complementary filter H. (z) can easily be
implemented by subtracting the output of H, (z) from the (M /2)th delayed version

of its input, as seen in Figure 12.
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Frequency response masking approach

Hy@)X(2)
— H@ -
X(2) |
] _
B
Ho(@)X(2)

Figure 12: Realization of the complementary filter H. (z).
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Frequency response masking approach

e For an efficient implementation of both filters, the tapped delay line of H,(z) can be
used to form H.(z), as indicated in Figure 13, in which either the symmetry or

antisymmetry of H4 (2) is exploited, as we are assuming that this filter has linear

phase.

x(n) Ye(n)

Z—l o~ Z—l -1 Cl- C

A —

Rl

7 = 7
ho) (0)  h@)

& Ya(n)

Figure 13: Efficient realization of the complementary filter H. (z).
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Frequency response masking approach

e The overall structure of the filter designed with the frequency response masking

approach is seen in Figure 14.

® The basic idea is to design a wideband lowpass filter and compress its frequency

response by using an interpolation operation.
e A complementary filter is obtained, following the development seen above.

e We then use masking filters, Hap o (z) and Haqc (2), to eliminate the undesired

bands in the interpolated and complementary filters, respectively.

e The corresponding outputs are added together to form the desired lowpass filter.
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Frequency response masking approach

— = H,(zY - - Hy,.
X (2) val? X(z) H(2)
ML -
— = z 2 HMC(Z)

Figure 14: Block diagram of the frequency response masking approach.
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Frequency response masking approach

e To understand the overall procedure in the frequency domain, consider Figure 15.

e Suppose that H, (z) corresponds to a lowpass filter of even order M, designed with
the standard minimax approach, with passband edge 0 and stopband edge ¢, as

seen in Figure 15a.

e We can then form H.(z), corresponding to a highpass filter, with © and ¢ being the

respective stopband and passband edges.

e By interpolating both filters by L, two complementary multiband filters are generated,

as represented in Figures 15b and 15c, respectively.
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Frequency response masking approach

e We can then use two masking filters, Hapm o (z) and Haqc (2), characterized as in
Figures 15d and 15e, to generate the magnitude responses shown in Figures 15f
and 15¢.

e Adding these two components, the resulting desired filter seen in Figure 15h can

have a passband of arbitrary width with a very narrow transition band.

e In Figure 15, the positions of the transition band edges are dictated by the Hp 4 (2)

masking filter.

e An example of the frequency response masking approach where the transition band

edges are determined by the Hp1 (z) masking filter, is shown in Figure 16.
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Frequency response masking approach

AN ANEvAuRw
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Figure 15: Frequency response masking design of a lowpass filter with the Ha1 o (z) mask determining the
passband: (a) base filter; (b) interpolated filter; (c) complementary to the interpolated filter; (d)
masking filter Ha o (2); (e) masking filter Haq ¢ (2); (f) cascade of Hq (z-) with masking filter

Hm o (2); () cascade of He (z6) with masking filter Ha ¢ (2); (h) frequency response masking
filter.
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Frequency response masking approach
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Figure 16: Frequency response masking design of a lowpass filter with the Hpy . (z) mask determining the
passband: (a) base filter; (b) interpolated filter; (c) complementary to the interpolated filter; (d)
masking filter Ha o (2); (e) masking filter Haq ¢ (2); (f) cascade of Hq (z-) with masking filter

Hm o (2); () cascade of He (z6) with masking filter Ha ¢ (2); (h) frequency response masking
filter.
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Frequency response masking approach

e From Figure 14, it is easy to see that the product M L must be even to avoid a
half-sample delay. This is commonly satisfied by forcing M to be even, as above,

thus freeing the parameter L from any constraint.

e In addition, Hp (2) and Hpae (2) must have the same group delay, so that they
complement each other appropriately in the resulting passband when added together
to form the desired filter H(z).

e This means that they must be both of even order or both of odd order, and that a few
delays may be appended before and after either Haq o (2) or Hame (2), if necessary,

to equalize their group delays.

e For a complete description of the frequency response masking approach, we must

characterize the filters Hq (2), Hma (2), and Hpme (2).
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Frequency response masking approach

e \When the resulting magnitude response is determined mainly by the masking filter
Hma(2), as exemplified in Figure 15, then we can conclude that the desired band

edges are such that

2mm+ 0
Wy = (75)
[
7
W, = Wf L (76)

where m is an integer less than L.
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Frequency response masking approach

e Therefore, a solution for the values of m, 0, and ¢, suchthat0 < 8 < ¢ < 7, is

given by
wp L
= 77
m { 27T J (77)
0 =w,L—2mmn (78)
b = w,L —2mmn (79)

where | x | indicates the largest integer less than or equal to X.
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Freguency response masking approach

e \With these values, from Figure 15, we can determine the band edges for the masking

filters as given by

2mmt + 0

Wp Ma = L (80)
2 1) —

Wy Ma = (m+L)” ¢ (81)
2m7m — 0

Wp Mc = L (82)
2mm +

Wr Mc = T (I) (83)

where Wy Mq and W+ M are the passband and stopband edges for the Hma(2)
masking filter, respectively, and Wy, amc and Wy nc are the passband and

stopband edges for the Ha/c (z) masking filter, respectively.
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Frequency response masking approach

e When Hp/(2) is the dominating masking filter, as seen in Figure 16, we have that

) _

w, = 0 ¢ (84)

L
W — 2mm— 0 -
r = [ (85)

and a solution for m, 0, and ¢, suchthat 0 < 0 < ¢ < T, is given by

m = .k (86)

| 2
0 =2mm— w,L (87)
¢ =2mm— w,L (88)

where (ﬂ indicates the smallest integer greater than or equal to X.
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Frequency response masking approach

® In this case, from Figure 16, the band edges for the masking filters are given by

2(m — 1)+
Wp Ma = ( L) CI) (89)
2mm—0
Wr Ma = (90)
’ L
~ 2mmt—¢
Wp Mc = [ (91)
2mm+ 0
Wy Mc = L (92)
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Frequency response masking approach

e Given the desired wy, and Wy, each value of L may allow one solution such that

0 < @, either in the form of equations (77)—(79) or of equations (86)—(88).

e In practice, the determination of the best L, that is the one which minimizes the total
number of multiplications per output sample, can be done empirically with the aid of

the order estimation given in Exercise 5.25.

e The passband ripples and attenuation levels used when designing H (z),
Hma(z), and Hape (2) are determined based on the specifications of the desired
filter. As these filters are cascaded, their frequency responses will be added in dB,

thus requiring a certain margin to be used in their designs.
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Frequency response masking approach

e For the base filter Hq (z), one must keep in mind that its passband ripple 6,
corresponds to the stopband attenuation . of its complementary filter H. (z), and

vice versa.

e Therefore, when designing H, (z) one should use the smallest value between 6p

and &, incorporating an adequate margin.

® In general, a margin of 50% in the values of the passband ripples and stopband

attenuations should be used, as in the example that follows.
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Example 12.6

e Design a lowpass filter using the frequency response masking method satisfying the

following specifications:

A, =0.2dB

A, =060dB

Q, =0.6mrad/s
Q, =0.6lmtrad/s
Q¢ =2mrad/s

’ (93)

Compare your results with the filter obtained using the standard minimax scheme.
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Example 12.6 - Solution

e Table 3 shows the estimated orders for the base filter and the masking filters for

several values of the interpolation factor L.

e Although these values are probably slight underestimates, they allow a quick decision

as to the value of L that minimizes the total number of multiplications required.

e In this table My _ is the order of the base filter Hq (z), My, is the order of the
masking filter Hapq (2), and My, . is the order of the masking filter Hayc (2).
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e Also,
ﬂ:f(MHa) —l_f(MHMa) —l_f(MHMc) (94)
indicates the total number of multiplications required to implement the overall filter,
where
rx+1
> if X is odd
f(x) = < (95)
X
— 4+ 1, ifxiseven
. 2
and
M = LMy, + max{MHMa, MHMC} (96)

is the effective order of the overall filter designed with the frequency response

masking approach.
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Table 3: Filter characteristics for several values of the interpolation factor L.

L Mu, Mpy,, My, T M
2 368 29 0 200 765
3 246 11 49 155 787
4 186 21 29 120 773
5 150 582 16 377 1332
6 124 29 49 103 793
I 108 28 88 115 844
8 94 147 29 137 899
9 84 61 49 99 817

10 76 32 582 348 1342

11 68 95 5l 109 843

e From this table, we predict that L = 9 should yield the most efficient filter with

respect to the total number of multiplications per output sample.

100



B CAMBRIDGE

Diniz, da Silva and Netto Wi UNIVER SEIVERESS

Example 12.6 - Solution

e Using L = 9 in equations (77)—(92), the corresponding band edges for all filters are

given by

0 =0.51007t
¢ = 0.60007
Wp Ma = 0.51117
Wr Ma = 0.61007T
Wp mc = 0.60007
Wy Mc = 0.72337

(97)
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e From the filter specifications, we have that 6,, = 0.0115 and &, = 0.001.
Therefore, the value of &, with a margin of 50% was used as the passband ripple

and the stopband gain for the base filter to generate Table 3, that is
Op.a = Or,a = min{d,, 0} X 50% = 0.0005 (98)

corresponding to a passband ripple of 0.0087 dB, and a stopband attenuation of

66.0206 dB.

® Asdp g = Or ¢ the relative weights for the passband and stopband in the minimax

design of the base filter are both equal to 1.0000.
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e For the masking filters, we use
5p Ma = Op Mc = Op X 50% = 0.00575 (99)
Sr.Ma = Or.Me = 0r X 50% = 0.0005 (100)

corresponding to a passband ripple of 0.0996 dB, and a stopband attenuation of
66.0206 dB.

e In this case, the relative weights for the minimax design of both masking filters were

made equal to 1.0000 and 11.5124 in the passband and stopband, respectively.
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e The magnitude responses of the resulting filters for L = 9 are depicted in Figures 17
and 18.

e In Figures 17a and 17b, the base filter and its complementary filter are depicted, and

Figures 17c and 17d show the corresponding interpolated filters.

e Similarly, Figures 18a and 18b depict the two masking filters, Hpap 4 (z) and
Hm(z), respectively, and Figures 18c and 18d show the results at the outputs of

these filters, which are added together to form the desired filter.

e The overall frequency response masking filter is characterized in Figure 19 and

presents a passband ripple equal to A, = 0.0873 dB and a stopband attenuation
of A, = 61.4591 dB.
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Figure 17: Magnitude responses: (a) base filter Hq (2); (b) complementary to the base

fiter He (2); (c) interpolated base filter Hg (z"); (d) complementary to the
interpolated base filter Hc (z5).
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Figure 18: Magnitude responses: (a) masking filter Ha1 o (2); (b) masking filter Hac (2);
(c) combination of Hy (25 ) Hmq (2); (d) combination of He (z5)Hae (2).

106



« CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Example 12.6 - Solution

0.2 -60
o O o
3 0.15 8 65
o 01 g
2 S -70
2 005 a
%) 0
] ]
3] 3]
° °
2 -0.05 2
= ‘c -80
(2] (=]
T IS
s 01 =
-85
-0.15
-0.2 -90 s A . A
0 02 04 06 08 1 12 14 16 1.8 2 2.2 2.4 2.6 2.8 3
(a) Normalized frequency [rad/s] (b) Normalized frequency [rad/s]
0
— -10
0
= 20
3
c -30
2
o —40
o
o -50 ]
E
2= -60 g
5
© -70 ]
=
-80
—-90 L L n
0 0.5 1 15 2 25 3
(C) Normalized frequency [rad/s]

Figure 19: Magnitude response of the frequency response masking filter: (a) passband

detail; (b) stopband detail; (c) overall response.
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e The resulting minimax filter is of order 504, thus requiring 253 multiplications per
output sample. Therefore, in this case, the frequency response masking design

represents a saving of about 60% of the number of multiplications required by the
standard minimax filter.
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e Example 12.3 above shows that a constant ripple margin throughout the whole

frequency range w € [0, 71] is not required.

e In fact, with the ripple margin of 50% the passband ripple was considerably smaller
than necessary, as seen in Figure 19a, and the attenuation was higher than required

through most of the stopband, as seen in Figure 19b.
e A detailed analysis of the required margins in each band was performed by Y. C. Lim
who concluded that:

— The ripple margin must be of the order of 50% at the beginning of the stopbands

of each masking filter.

— For the remaining frequency values, the ripple margin can be set around 15-20%.

e It can be verified that such a distribution of the ripple margins results in a more
efficient design, yielding an overall filter with a smaller group delay and fewer

multiplications per output sample, as illustrated in the following example.
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e Design the lowpass filter specified in Example 12.3 using the frequency response
masking method with an efficient assignment of the ripple margin. Compare the

results with the filter obtained in Example 12.3.
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e The design follows the same procedure as before, except that the relative weights at
the beginning of the stopbands of the masking filters is set to 2.5, whereas for the

remaining frequency the weight is set to 1.0.

e That corresponds to ripple margins proportional to 50% and 20% respectively, in

these two distinct frequency ranges.
e Table 4 shows the filter characteristics for several values of the interpolation factor L.

e As in Example 12.3, the minimum number of multiplications per output sample is
obtained when L = 9, and the band edges for the base and frequency response

masking filters are as given in equation (97).

e In this case, however, only 91 multiplications are required, as opposed to 99

multiplications in Example 12.3.
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e Figures 20a and 20b depict the magnitude responses of the two masking filters,
Hma(z) and Hpc (2), respectively, and Figures 20c and 20d show the magnitude

responses which are added together to form the desired filter.

e From these figures, one can clearly see the effects of the more efficient ripple margin

distribution.

e The overall frequency response masking filter is characterized in Figure 21, and
presents a passband ripple equal to Ap — (0.1502 dB and a stopband attenuation
of A, = 60.5578 dB. Notice how these values are closer to the specifications than

the values of the filter obtained in Example 12.3.
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e Table 5 presents the first half of the base filter coefficients before interpolation, and
the coefficients of the masking filters Hp o (z) and Hpaq (2) are given in Tables 6

and 7, respectively.

e |t must be noted that, as stated before, for a smooth composition of the outputs of the
masking filters when forming the filter H(z), both these filters must have the same

group delay.

e To achieve that in this design example, we must add 5 delays before and 5 delays

after the masking filter Haq. (2), which has a smaller number of coefficients.

113



B CAMBRIDGE

Diniz, da Silva and Netto ®8" UNIVERSITY PRESS

Example 12.7 - Solution

Table 4: Filter characteristics for several values of the interpolation factor L.

L My, Mpy,., My, T M
2 342 26 0 186 710
3 228 10 44 144 728
4 172 20 26 112 714
5 138 528 14 343 1218
6 116 26 44 96 740
7 100 26 80 106 780
8 88 134 26 127 838
9 /8 55 45 91 757

10 70 30 528 317 1228

11 64 86 46 101 790
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Figure 20: Magnitude responses: (a) masking filter Ha1 o (2); (b) masking filter Hac (2);
(c) combination of Hy (25 ) Hmq (2); (d) combination of He (z5)Hae (2).
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Figure 21: Magnitude response of the frequency response masking filter: (a) passband

detail; (b) stopband detail; (c) overall response.
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Table 5: Base filter H, (z) coefficients.

ha(0) to hg(39)

hq(0) = —3.7728E—04 h,(14) = —1.7275E—03 h(28) = 7.7616E—03
ha(1) = —2.7253E—04 hy(15) = —4.3174E—03 h(29) = —2.6954E—02
ha(2) = 6.7027E—04 h,(16) = 3.9192E—03 h,(30) = 5.0566E—04
ha(3) = —1.1222E—04 h,(17) = 4.0239E—03 h,(31) = 3.5429E—02
hq(4) = —8.28905E—04 h,(18) = —6.5698E—03 h,(32) = —1.4927E—02
ha(5) = 4.1263E—04 hy(19) = —2.5752E—03 h(33) = —4.3213E—02
ha(6) = 1.1137E—03 h,(20) = 9.3182E—03 h(34) = 3.9811E—02
ho(7) = —1.0911E—03 h,(21) = —3.4385E—04 h,(35) = 4.9491E—02
he(8) = —1.1058E—03 h,(22) = —1.1608E—02 h,(36) = —9.0919E—02
ha(?) = 1.9480E—03 h(23) = 4.9074E—03 hy(37) = —5.3569E—02
ha(10) = 7.4658E—04 hy(24) = 1.2712E—02 h(38) = 3.1310E—01
ha(11) = —2.9427E—03 hy(25) = —1.1084E—02 h(39) = 5.5498E—01
he(12) = 1.7063E—04 h,(26) = —1.1761E—02

he(13) = 3.83156E—03 h,(27) = 1.8604E—02

o)
o)
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Table 6: Masking filter Haq o (z) coefficients.

(

hama(0) = 3.9894E—03 hpg(10) = —1.5993E—02 hpno(20) = 1.8066E—02
hama(l) = 5.7991E—03 hpg(11) = —4.4088E—03 hpq(21) = —4.8343E—02
hma(2) = 9.2771E—05 hma(12) = 1.6123E—02 hpza(22) = —1.2214E—02
hama(3) = —6.1430E—03 hmq(13) = 4.5664E—03 hamq(23) = 6.7391E—02
hma(4) = —2.5059E—03 hpq(14) = —1.5292E—02 hpno(24) = —1.3277E—02
hma(D) = 3.1213E—03 hmq(15) = 1.7599E—03 hmamo(25) = —1.1247E—01
hma(6) = —8.6700E—04 hpma(16) = 1.5389E—02 hpzq(26) = 1.0537E—01
hama(7) = —3.8008E—03 hma(17) = —1.1324E—02 hmq(27) = 4.7184E—01
hma(8) = 2.1950E—03 haa(18) = —7.2774E—03

hama(9) = —3.8907E—03 hpaq(19) = 3.7826E—02
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Table 7: Masking filter Haq. () coefficients.

hMc(O) to hMc(zz)

hame(0) = 1.9735E—04 hme(8) = —1.3031E—02 hm(16) = 2.3092E—02
hame(l) = —7.0044E—03 hmc(?2) = 3.5921E—03 hpe(17) = —5.8850E—02
hme(2) = —7.3774E—03  hm(10) = —4.7280E—03 hmm(18) = 7.3208E—03
hme(3) = 1.9310E—03 hpme(11) = —2.5730E—02 hm(19) = 5.5313E—02
hame(4) = —3.0938E—04 hmce(12) = 6.5528E—03 hpaq(20) = —1.2326E—01
hame(D) = —7.1047TE—03 hmc(13) = 1.1745E—02 hpc(21) = 9.7698E—03
hame(6) = 3.0039E—03 hpe(14) = —3.2147E—02 hmc(22) = 5.4017E—01
hme(7) = 5.8004E—04 hm(15) = 7.8385E—03
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e So far, we have discussed the use of the frequency response masking filters to

design wideband lowpass filters.

e The design of narrowband lowpass filters can also be performed by considering that
only one masking filter is necessary. Usually, we consider the branch formed by the
base filter H4 (z) and its corresponding masking filter Hat o (2), greatly reducing

the overall complexity of the designed filter.

® In such cases, the frequency response masking approach becomes similar to the
prefilter and interpolation approaches seen in previous subsections. The design of
highpass filters can be inferred from the design for lowpass filters, or can be
performed using the concept of complementary filters seen in the beginning of this

subsection.

e The design of bandpass and bandstop filters with reduced arithmetic complexity is

addressed in the next subsection.

120



w2 CAMBRIDGE

Diniz, da Silva and Netto “§7 UNIVERSITY PRESS

Quadrature approach

e In this subsection, a method for designing symmetric bandpass and bandstop filters
is introduced. For narrowband filters, the so-called quadrature approach uses an FIR

prototype of the form:
Hp (z) = Ha(z ) Hm(2) (101)

where H,(z) is the base filter and Hp () is the masking filter or interpolator, which
attenuates the undesired spectral images of the passband of Ha(zL), commonly

referred to as the shaping filter.

e Such a prototype can be designed using prefilter, interpolation, or simplified

one-branch frequency response masking approaches seen above.

e The main idea of the quadrature approach is to shift the frequency response of the
base filter to the desired central frequency W, and then apply the masking filter

(interpolator) to eliminate any other undesired passbands.
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e Consider a linear-phase lowpass filter H 4 (z) with impulse response h, (1), such

that

Ha(z) = ) he(n)z ™ (102)

e Let the passband ripple and stopband gain be equal to 6; and 6;, and the passband

and stopband edges be w’, and wr,, respectively.

e If h (M) is interpolated by a factor L, and the resulting sequence is multiplied by

elWo™ e generate an auxiliary Hi (z") as

Z hg(n)el®@enz (103)
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e This implies that the passband of H (z) is squeezed by a factor of L, and becomes
centered at W,. Analogously, using the interpolation operation followed by the
—jwon

modulating sequence e , we have another auxiliary function such that

M
H,(zh) = Z hg(n)e [Wen L (104)
n=0

with the corresponding squeezed passband centered at —Ww,,.

e We can then use two masking filters, Hai1(z) and Haq2(z), appropriately centered
at W, and —W,, to eliminate the undesired bands in Hy (z%) and H (z1),

respectively.

e Clearly, although the two-branch overall bandpass filter will have real coefficients,

each branch in this case will present complex coefficients.

e To overcome this problem, first note that Hj (z-) and H, (z%) have complex

conjugate coefficients.
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e If we design Haq1(z) and Haq2(z) so that their coefficients are complex

conjugates of each other, it is easy to verify that

Hi(z9Hmi(z) = (Hir(zY) + jHi1(25) (Hma r(2) + Hwmia(2)
= (H1,R(ZL)HM1,R(Z) — H1,1(ZL)HM1,I(2))
+j (H1 r(z5)Hm1,1(2) + Hi1(z5)Hma r(2)) (205)
Ha(zM)Hmz2(z) = (Har(z9) + jH21(25) (Hm2,r(2) + Hwm2,1(2)
= (H1,R(ZL) — jH],I(ZL)) (Hmi r(z) — jHm1,1(2))
= (H1,r(z")Hm1 r(z) = Hi1(z5)Hmi 1(2)
—i (H; r(ZYHM11(2) + Hy 1(z5)Hwm; r(z)) (108)

where the subscripts R and I indicate the parts of the corresponding transfer function

with real and imaginary coefficients, respectively.
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e Therefore,

Hi (25 Hma (zHH2 (25 Hmz(2) = 2 (Hi j (25 Hma r(2)—Hi 1 (25 Hma 1(2)
(107)
and the structure seen in Figure 22 can be used for the real implementation of the

guadrature approach for narrowband filters.

e Disregarding the effects of the masking filters, the resulting quadrature filter is

characterized by

5y =8, +8,
5, = 26!

/

wr] — wo —(UT.

’ (108)
wp] — wo - (U

T T

Wp, = We + W

Wy, = W, + W
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— H (ZY) > H (2 5

L H, @Y e H @)

Figure 22: Block diagram of the quadrature approach for narrowband filters.
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e For wideband filters, the prototype filter should be designed with the frequency

response masking approach.

e In that case, we have two complete masking filters, and the quadrature
implementation involving solely real filters is seen in Figure 23, with H1 (z") as
defined in equation (103), and Ha14(z) and Hac(2) corresponding to the two

masking filters, appropriately centered at W, and —Ww,, respectively.

e For bandstop filters, we may start with a highpass prototype and apply the quadrature

design, or design a bandpass filter and then determine its complementary filter.
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a 'HMc,R(Z)
ML cosML @,
- 5
sin ML W,
2
O]
_ Mc,I
H (z- H (z
- 1,|(Z) - Ma’l()

Figure 23: Block diagram of the quadrature approach for wideband filters.
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e Design a bandpass filter using the quadrature method satisfying the following

specifications:
A, =0.2dB \
A, =40dB
Q,, =0.097trad/s
Q,, =0.1mtrad/s (109)

Q,, =0.7mtrad/s
Q,, =0.71mrad/s
Q¢ =2mrad/s
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e Given the bandpass specifications, the lowpass prototype filter must have a
passband half the size of the desired passband width, and a transition bandwidth

equal to the minimum transition bandwidth for the bandpass filter.

e For the passband ripple and stopband attenuation, the values specified for the
bandpass filter can be used with a margin of about 40%. Therefore, in this example,

the lowpass prototype is characterized by
6; = 0.0115 x 40% = 0.0046

6. = 0.01 x 40% = 0.004

W — W
w; — P2 P1 —0.37
2

w) = wy, +min{(wp, — wy, ), (W, —wp, )} = 0317

> (110)

/
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e This filter can be designed using the frequency response masking approach with an
efficient ripple margin assignment, seen in the previous subsection. In this case, the
interpolation factor that minimizes the total number of multiplications is L = 8 and
the corresponding filter characteristics are given in Table 8, with the resulting

magnitude response in Figure 24.

Table 8: Filter characteristics for the interpolation factor L = 8.
L My, Mnuy,, Mnu,. I M

8 58 34 42 70 506
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Figure 24: Lowpass prototype designed with the frequency response masking approach

for the quadrature design of a bandpass filter.

132



8- CAMBRIDGE

Diniz, da Silva and Netto 8™ UNIVERSITY PRESS

Example 12.8 - Solution

e The resulting bandpass filter using the quadrature method is shown in Figure 25.

e For the complete quadrature realization, the total number of multiplications is 140,
twice the number of multiplications necessary for the prototype lowpass filter. For this
example, the minimax filter would be of order 384, thus requiring 193 multiplications
per output sample. Therefore, in this case, the quadrature design represents a saving

of about 30% of the number of multiplications required by the standard minimax filter.
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Figure 25: Magnitude responses of the bandpass filter designed with the quadrature ap-

proach: (a) overall filter; (b) passband detail; (c) lower stopband detail; (d)

upper stopband detail.
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Do-it-yourself: Efficient FIR structures

e Experiment 12.1: A base-band telephone speech signal occupies the frequency
range around 300-3600 Hz. Let us emulate such a signal as a sum of four sinusoids
as given by
Fs = 40000; Ts = 1/Fs; time = 0:Ts:(1-Ts);
f1 = 300;f2 = 1000; f3 = 2500; f4 = 3600;
sl = sin(2 =*pi *fl xtime); s2 = sin(2 *pi *f2 *time),
s3 = sin(2 =*pi *f3 xtime); s4 = sin(2 *pi *f4 *time),

X = sl + s2 + s3 + s4;

e Using the modulation theorem, we can shift the spectrum of X of fC by multiplying

this signal by a cosine function, that is
fc = 10000;
XDSB = X.*cos(2 *pi xfc *time);
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® In this way, several speech signals can fit in a single communication chan