
Diniz, da Silva and Netto

Discrete Transforms

Paulo S. R. Diniz

Eduardo A. B. da Silva

Sergio L. Netto

diniz,eduardo,sergioln@lps.ufrj.br

September 2010

1

Diniz, da Silva and Netto

Contents

• Introduction

• Discrete Fourier transform

• Properties of the DFT

• Digital filtering using the DFT

• Fast Fourier transform

• Other discrete transforms

• Signal representations

• Do-it-yourself: Discrete transforms

2

Diniz, da Silva and Netto

Introduction

• In Chapter 2, we saw that discrete-time signals and systems can be characterized in

the frequency domain by their Fourier transform.

• Also, as seen in Chapter 2, one of the main advantages of discrete-time signals is

that they can be processed and represented in digital computers.

• However, when we examine the definition of the Fourier transform in equation (??),

X(e jω) =

∞∑

n=−∞

x(n)e− jωn (1)

we notice that such a characterization in the frequency domain depends on the

continuous variable ω.

– This implies that the Fourier transform, as it is, is not suitable for the processing of

discrete-time signals in digital computers.

• We need a transform depending on a discrete-frequency variable that, if possible,

preserves the idea and information expressed by equation (1).

3

Diniz, da Silva and Netto

Introduction

• This can be obtained from the Fourier transform itself in a very simple way, by

sampling uniformly the continuous-frequency variable ω.

– With this, we obtain a mapping of a signal depending on a discrete-time variable

n to a transform depending on a discrete-frequency variable k.

• Such a mapping is referred to as the discrete Fourier transform (DFT).

4

Diniz, da Silva and Netto

Discrete Fourier transform

• The Fourier transform of a sequence x(n) is given by equation (1).

• Since X(e jω) is periodic with period 2π, it is convenient to sample it with a sampling

frequency equal to an integer multiple of its period, that is, taking N uniformly

spaced samples between 0 and 2π.

– Let us use the frequencies ωk = 2π
N

k, k ∈ Z.

• This sampling process is equivalent to generating a Fourier transform X′(e jω) such

that

X′(e jω) = X
(

e jω
)

∞∑

k=−∞

δ

(

ω −
2π

N
k

)

(2)

Applying the convolution theorem seen in Chapter 2, the above equation becomes

x′(n) = F−1
{
X′(e jω)

}
= x(n) ∗ F−1

{
∞∑

k=−∞

δ

(

ω −
2π

N
k

)

}

(3)

5

Diniz, da Silva and Netto

Discrete Fourier transform

and since

F−1

{
∞∑

k=−∞

δ

(

ω −
2π

N
k

)

}

=
N

2π

∞∑

p=−∞

δ (n − Np) (4)

equation (3) becomes

x′(n) = x(n) ∗ N

2π

∞∑

p=−∞

δ (n − Np) =
N

2π

∞∑

p=−∞

x (n − Np) (5)

• Equation (5) indicates that, from equally spaced samples of the Fourier transform, we

are able to recover a signal x′(n) consisting of a sum of periodic repetitions of the

original discrete signal x(n).

6

Diniz, da Silva and Netto

Discrete Fourier transform

• In this case, the period of the repetitions is equal to the number, N, of samples of the

Fourier transform in one period.

– It is then easy to see that if the length, L, of x(n) is larger than N, then x(n) can

not be obtained from x′(n).

– On the other hand, if L ≤ N, then x′(n) is a precise periodic repetition of x(n),

and therefore x(n) can be obtained by isolating one complete period of N

samples of x′(n), as given by

x(n) =
2π

N
x′(n), for 0 ≤ n ≤ N − 1 (6)

• From the above discussion, we can draw two important conclusions:

– The samples of the Fourier transform can provide an effective discrete

representation, in frequency, of a finite-length discrete-time signal.

– This representation is useful only if the number of samples, N, of the Fourier

transform in one period is greater than or equal to the original signal length L.

7

Diniz, da Silva and Netto

Discrete Fourier transform

• It is interesting to note that equation (5) is of the same form the equation that gives

the Fourier transform of a sampled continuous-time signal.

– That equation implies that, in order for a continuous-time signal to be recoverable

from its samples, aliasing has to be avoided.

∗ This can be done by using a sampling frequency greater than two times the

bandwidth of the analog signal.

– Similarly, equation (5) implies that one can recover a digital signal from the

samples of its Fourier transform provided that the signal length, L, is smaller than

or equal to the number of samples, N, taken in one complete period of its Fourier

transform.

8

Diniz, da Silva and Netto

Discrete Fourier transform

• We can express x(n) directly as a function of the samples of X(e jω) by

manipulating equation (2) in a different manner to that described above. We begin by

noting that equation (2) is equivalent to

X′(e jω) =

∞∑

k=−∞

X
(

e j 2π
N

k
)

δ

(

ω −
2π

N
k

)

(7)

By applying the inverse Fourier transform relation, we have

x′(n) =
1

2π

∫2π

0

X′(e jω)e jωndω

=
1

2π

∫2π

0

∞∑

k=−∞

X
(

e j 2π
N

k
)

δ

(

ω −
2π

N
k

)

e jωndω

=
1

2π

N−1∑

k=0

X
(

e j 2π
N

k
)

e j 2π
N

kn (8)

9

Diniz, da Silva and Netto

Discrete Fourier transform

• Substituting equation (8) in equation (6), x(n) can be expressed as

x(n) =
1

N

N−1∑

k=0

X
(

e j 2π
N

k
)

e j 2π
N

kn, for 0 ≤ n ≤ N − 1 (9)

– Equation (9) shows how a discrete-time signal can be recovered from its

discrete-frequency representation.

– This relation is known as the inverse discrete Fourier transform (IDFT).

• An inverse expression to equation (9), relating the discrete-frequency representation

to the discrete-time signal can be obtained by just rewriting equation (1) for the

frequencies ωk = 2π
N

k, for k = 0, 1, . . ., (N − 1).

– Since x(n) has finite duration, we assume that its nonzero samples are within

the interval 0 ≤ n ≤ N − 1, and then

X
(

e j 2π
N

k
)

=

N−1∑

n=0

x(n)e− j 2π
N

kn, for 0 ≤ k ≤ N − 1 (10)

– Equation (10) is known as the discrete Fourier transform (DFT).

10

Diniz, da Silva and Netto

Discrete Fourier transform

• It is important to point out that, in equation (10), if x(n) has length L < N, it has to

be padded with zeros up to length N, to adapt the sequence length when calculating

its corresponding DFT.

• Referring to Figure 1, we can see that the amount of zero-padding also determines

the frequency resolution of the DFT.

– Figure 1a, shows a signal x(n) consisting of L = 6 samples along with its

Fourier transform, which distinctively presents two pairs of close peaks within

[0, 2π).

– In Figure 1b, we see that sampling the Fourier transform with 8 samples in the

interval [0, 2π) is equivalent to computing the DFT of x(n) using equation (10)

with N = 8 samples, which requires x(n) to be padded with N − L = 2 zeros.

∗ From this figure, we observe that in such a case the two close peaks of the

Fourier transform of x(n) could not be resolved by the DFT coefficients.

11

Diniz, da Silva and Netto

Discrete Fourier transform

• This fact indicates that the resolution of the DFT should be improved by increasing

the number of samples, N, thus requiring x(n) to be padded with even more zeros.

– In Figure 1c, we can see that the close peaks can be easily identified by the DFT

coefficients when N has been increased to 32, corresponding to a zero-padding

of N − L = 32 − 6 = 26 zeros in x(n).

• We can summarize the issues in the above discussion as follows:

– The larger the number of zeros padded on x(n) for the calculation of the DFT,

the more it resembles its Fourier transform. This happens because of the larger

number of samples taken within [0, 2π).

– The amount of zero-padding used depends on the arithmetic complexity allowed

by a particular application, because the larger the amount of zero-padding the

greater the computational and storage requirements involved in the DFT

computation.

12

Diniz, da Silva and Netto

2πk
N

2πk
N

2π

2π

2π

ωje|X’ ()|

ωje|X’’ ()|

ωje|X ()|

0

N = 8
(b)

0

N = 8

x’(n)

n

(a)

0 ω 0

x(n)

n

(c)

0

N = 32

0

N = 32

x’(n)

n

Figure 1:

13

Diniz, da Silva and Netto

Discrete Fourier transform

• There is, however, an important observation that has to be made about the

discussion related to Figure 1.

– We have seen in Figure 1b that for N = 8 the DFT could not resolve the two

close peaks of the Fourier transform.

– However, since the signal duration is N = 6, x(n) can be recovered from the

samples of the Fourier transform in Figure 1b using equation (9).

– With x(n), the Fourier transform X(e jω), as in Figure 1a, can be computed

using equation (1), and therefore the two close peaks could be fully recovered

and identified.

• At this point one could ask why one would need to use a DFT of larger resolution if a

DFT of size equal to the signal duration would be enough to fully recover the correct

Fourier transform.

14

Diniz, da Silva and Netto

Discrete Fourier transform

• A justification for the use of a DFT of a larger size than the signal duration is that, for

example, for N large enough, one would not need to perform indirect calculations to

identify the two close peaks in Figure 1, because they would be represented directly

by the DFT coefficients, as depicted in Figure 1c.

• In what follows, we derive an expression relating the Fourier transform of a signal

x(n) to its DFT.

15

Diniz, da Silva and Netto

Discrete Fourier transform

• Equation (6), which relates the signal x(n) to the signal x′(n) obtainable from the

samples of its Fourier transform, can be rewritten as

x(n) =
2π

N
x′(n)(u(n) − u(n − N)) (11)

• Using the fact that a multiplication in the time domain corresponds to a periodic

convolution in the frequency domain, discussed in Chapter 2, we have

X(e jω) =
1

2π

2π

N
X′(e jω) ⊛ F {u(n) − u(n − N)}

=
1

N
X′(e jω) ⊛

[

sin ωN
2

sin ω
2

e− j
ω(N−1)

2

]

(12)

16

Diniz, da Silva and Netto

Discrete Fourier transform

• Substituting equation (7) in equation (12), X(e jω) becomes

X(e jω) =
1

N

[

∞∑

k=−∞

X
(

e j 2π
N

k
)

δ

(

ω −
2π

N
k

)

]

⊛

[

sin ωN
2

sin ω
2

e− j
ω(N−1)

2

]

=
1

N

∞∑

k=−∞

X
(

e j 2π
N

k
)

[

sin
(ω− 2π

N
k)N

2

sin
(ω− 2π

N
k)

2

e− j
(ω− 2π

N
k)(N−1)

2

]

=
1

N

∞∑

k=−∞

X
(

e j 2π
N

k
)

[

sin
(

ωN
2

− πk
)

sin
(

ω
2

− πk
N

) e− j(ω
2

− π
N

k)(N−1)

]

(13)

• This equation corresponds to an interpolation formula that gives the Fourier

transform of a signal as a function of its DFT.

• One should note, once again, that such a relationship only works when N is larger

than the signal length L.

17

Diniz, da Silva and Netto

Discrete Fourier transform

• In order to simplify the notation, it is common practice to use X(k) instead of

X
(

e j 2π
N

k
)

, and to define

WN = e− j 2π
N (14)

• Using this notation, the definitions of the DFT and IDFT, as given in equations (10)

and (9), become

X(k) =

N−1∑

n=0

x(n)Wkn
N , for 0 ≤ k ≤ N − 1 (15)

x(n) =
1

N

N−1∑

k=0

X(k)W−kn
N , for 0 ≤ n ≤ N − 1 (16)

respectively.

18

Diniz, da Silva and Netto

Discrete Fourier transform

• From the development represented by equations (7)–(10), it can be seen that

equation (16) is the inverse of equation (15).

(This can be shown in an alternative way by substituting equation (16) into

equation (15) directly.)

• One should note that if, in the above definitions, x(n) and X(k) are not restricted to

being between 0 and N − 1, then they should be interpreted as being periodic

sequences with period N.

19

Diniz, da Silva and Netto

Discrete Fourier transform

• From the above, the discrete Fourier transform as expressed in equation (15) can be

interpreted in two related ways:

– As a discrete-frequency representation of finite-length signals whereby a

length-N signal is mapped into N discrete-frequency coefficients, which

correspond to N samples of the Fourier transform of x(n).

– As the Fourier transform of a periodic signal having period N. This periodic signal

may correspond to the finite-length signal x(n) repeated periodically, not

restricting the index n in equation (16) to the interval 0 ≤ n ≤ N − 1.

• By referring to Chapter 2, one can see that the DFT and inverse DFT are actually a

Fourier series pair for the periodic signal.

20

Diniz, da Silva and Netto

Discrete Fourier transform

Example 3.1

Compute the DFT of the following sequence:

x(n) =






1, 0 ≤ n ≤ 4

−1, 5 ≤ n ≤ 9
(17)

21

Diniz, da Silva and Netto

Discrete Fourier transform

Solution

Before solving this example it is worthy stating a simple but important property of WN. If

k is a multiple of N, then

Wk
N = e− j 2π

N
k = e

− j 2π
N
k = WN

k
(18)

We have that

X(k) =

4∑

n=0

Wkn
10 −

9∑

n=5

Wkn
10 (19)

22

Diniz, da Silva and Netto

Discrete Fourier transform

Since 0 ≤ k ≤ 9, if k 6= 0, we have that

X(k) =
1 − W5k

10

1 − Wk
10

−
W5k

10 − W10k
10

1 − Wk
10

=
2(1 − W5k

10)

1 − Wk
10

=
2(1 − Wk

2)

1 − Wk
10

=
2(1 − (−1)k)

1 − Wk
10

(20)

If k = 0, the summation in equation (19) becomes

X(k) =

4∑

n=0

W0
10 −

9∑

n=5

W0
10 =

4∑

n=0

1 −

9∑

n=5

1 = 0 (21)

23

Diniz, da Silva and Netto

Discrete Fourier transform

By examining equations (20) and (21), we can see that X(k) = 0 for k even. Therefore,

we have that the DFT can be expressed as

X(k) =






0, for k even

4

1 − Wk
10

, for k odd
(22)

△

24

Diniz, da Silva and Netto

Discrete Fourier transform

Example 3.2

Given the sequence

x(n) = α(−a)n , for 0 ≤ n ≤ N − 1, (23)

compute the length-N DFT, supposing that N is even.

25

Diniz, da Silva and Netto

Discrete Fourier transform

Solution

1. For a 6= ±1, since N is even,

X(k) =

N−1∑

n=0

α(−a)nWkn
N

= α
1 − (−a)NWNk

N

1 + aWk
N

= α
1 − aNWNk

N

1 + aWk
N

= α
1 − aN

1 + aWk
N

(24)

26

Diniz, da Silva and Netto

Discrete Fourier transform

2. For a = −1, then x(n) = α for all n. Then

X(k) =

N−1∑

n=0

αWkn
N (25)

Since 0 ≤ k < N, if k = 0, we have that

X(k) =

N−1∑

n=0

α = αN (26)

If k 6= 0,

X(k) =

N−1∑

n=0

αWkn
N = α

1 − WNk
N

1 + Wk
N

= 0 (27)

From equations (26) and (27), we can write

X(k) = αNδ(k) (28)

27

Diniz, da Silva and Netto

Discrete Fourier transform

3. For a = 1,

X(k) =

N−1∑

n=0

α(−1)nWkn
N =

N−1∑

n=0

α(−Wk
N)n (29)

If k = N
2

, then Wk
N = −1, and from the above equation,

X(k) =

N−1∑

n=0

α = αN (30)

If k 6= N
2

, from equation (29), since N is even,

X(k) = α
1 − (−Wk

N)N

1 + Wk
N

= α
1 − WkN

N

1 + Wk
N

= 0 (31)

From equations (30) and (31), we can write

X(k) = αNδ

(

k −
N

2

)

(32)

28

Diniz, da Silva and Netto

Discrete Fourier transform

• From equation (32), it can be concluded that the signal x(n), for a = 1, has

spectral contents only at k = N
2

, which corresponds to ω = π, that is the

maximum normalized frequency for a discrete signal.

• On the other hand, equation (28) says that for a = −1 the signal x(n) has spectral

contents only for k = 0, that is, for ω = 0.

– This is indeed clear from the fact that, if a = −1 then x(n) = α, that is constant

and therefore has only the DC component.

△

29

Diniz, da Silva and Netto

Discrete Fourier transform

Equations (15) and (16) can be written in matrix notation, respectively, as

X(k) =
h

W0
N Wk

N W2k
N · · · W

(N−1)k

N

i

2

6

6

6

6

6

6

6

6

6

4

x(0)

x(1)

x(2)

...

x(N − 1)

3

7

7

7

7

7

7

7

7

7

5

(33)

x(n) =
1

N

h

W0
N W−k

N W−2k
N · · · W

−(N−1)k

N

i

2

6

6

6

6

6

6

6

6

6

4

X(0)

X(1)

X(2)

...

X(N − 1)

3

7

7

7

7

7

7

7

7

7

5

(34)

30

Diniz, da Silva and Netto

and then

2

6

6

6

6

6

6

6

6

6

4

X(0)

X(1)

X(2)

...

X(N − 1)

3

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

4

W0
N W0

N · · · W0
N

W0
N W1

N · · · W
(N−1)

N

W0
N W2

N · · · W
2(N−1)

N

...
...

. . .
...

W0
N W

(N−1)

N · · · W
(N−1)2

N

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

4

x(0)

x(1)

x(2)

...

x(N − 1)

3

7

7

7

7

7

7

7

7

7

5

(35)

2

6

6

6

6

6

6

6

6

6

4

x(0)

x(1)

x(2)

...

x(N − 1)

3

7

7

7

7

7

7

7

7

7

5

=
1

N

2

6

6

6

6

6

6

6

6

6

6

4

W0
N W0

N · · · W0
N

W0
N W−1

N · · · W
−(N−1)

N

W0
N W−2

N · · · W
−2(N−1)

N

...
...

. . .
...

W0
N W

−(N−1)

N · · · W
−(N−1)2

N

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

4

X(0)

X(1)

X(2)

...

X(N − 1)

3

7

7

7

7

7

7

7

7

7

5

(36)

31

Diniz, da Silva and Netto

Discrete Fourier transform

By defining

x =

















x(0)

x(1)

...

x(N − 1)

















, X =

















X(0)

X(1)

...

X(N − 1)

















(37)

and a matrix WN such that

{WN}ij = W
ij
N, for 0 ≤ i, j ≤ N − 1 (38)

equations (35) and (36) can be rewritten more concisely as

X = WNx (39)

x =
1

N
W∗

NX (40)

respectively.

32

Diniz, da Silva and Netto

Discrete Fourier transform

• Note that the matrix WN enjoys very special properties.

– Equation (38) above implies that this matrix is symmetric, that is, WT
N = WN.

– Also, the direct and inverse DFT relations in equations (39) and (40) imply that

W−1
N = 1

N
W∗

N.

• From either equations (15) and (16), or (35) and (36), one can easily conclude that a

length-N DFT requires N2 complex multiplications, including possible trivial

multiplications by W0
N = 1.

– Since the first row and the first column of the matrices in equations (35) and (36)

are equal to 1, we have (2N − 1) elements equal to 1.

– Therefore, if we discount these trivial cases, the total number of multiplications is

equal to (N2 − 2N + 1). Furthermore, the total number of additions is

N(N − 1).

33

Diniz, da Silva and Netto

Properties of the DFT

• In this section, we describe the main properties of the direct and inverse DFTs, and

provide proofs for some of them.

• Note that since the DFT corresponds to samples of the Fourier transform, its

properties closely resemble the ones of the Fourier transform presented in

Chapter 2..

• However, from N samples of the Fourier transform, one can only recover a signal

corresponding to the periodic repetition of the signal x(n) with period N, as given by

equation (5).

– This makes the properties of the DFT slightly different from the ones of the

Fourier transform.

34

Diniz, da Silva and Netto

Properties of the DFT

• One should bear in mind that, although the DFT can be interpreted as the Fourier

transform of a periodic signal, it is just a mapping from a length-N signal into N

frequency coefficients and vice versa.

• However, we often resort to this periodic signal interpretation, since some of the DFT

properties follow naturally from it.

– Note that in this case the periodic signal is the one in equation (5), which is the

same one as that obtained by allowing the index n in equation (16) to vary within

(−∞,∞).

35

Diniz, da Silva and Netto

Properties of the DFT

1. Linearity

The DFT of a linear combination of two sequences is the linear combination of the

DFT of the individual sequences, that is, if x(n) = k1x1(n) + k2x2(n) then

X(k) = k1X1(k) + k2X2(k) (41)

– Note that the two DFTs must have the same length, and thus the two sequences,

if necessary, should be zero-padded accordingly in order to reach the same

length N.

36

Diniz, da Silva and Netto

Properties of the DFT

2. Time-reversal

The DFT of x(−n) is such that

x(−n)←→ X(−k) (42)

– It must be noted that, if both indexes n and k are constrained to be between 0

and N − 1, then −n and −k are outside this interval.

– Therefore, consistency with equations (15) and (16) requires that

x(−n) = x(N − n) and X(−k) = X(N − k).

– These relations can also be deduced from the fact that we can interpret both

x(n) and X(k) as being periodic with period N.

37

Diniz, da Silva and Netto

Properties of the DFT

3. Time-shift theorem

The DFT of a sequence shifted in time is such that

x(n + l)←→W−lk
N X(k) (43)

– In the definition of the IDFT given in equation (16), if the index n is allowed to

vary outside the set 0, 1, . . ., (N − 1), then x(n) can be interpreted as being

periodic with period N. This interpretation implies that the signal x(n + l)

obtained from the inverse DFT of W−lk
N X(k) corresponds to a circular shift of

x(n), that is, provided that 1 ≤ l ≤ N − 1, if

y(n)←→W−lk
N X(k) (44)

then

y(n) =






x(n + l), for 0 ≤ n ≤ N − l − 1

x(n + l − N), for N − l ≤ n ≤ N − 1

(45)

38

Diniz, da Silva and Netto

Properties of the DFT

• This result indicates that y(n) is a sequence whose last l samples are equal to the

first l samples of x(n).

– An example of circular shift is illustrated in Figure 2.

– A formal proof of this property is provided below for the case 1 ≤ l ≤ N − 1.

x (n)

n

x (n –3)

n

(a) (b)

Figure 2: Circular shift of 3 samples: (a) original signal x(n); (b) resulting signal x(n−3).

39

Diniz, da Silva and Netto

Properties of the DFT

Proof

X′(k) =

N−1∑

n=0

x(n + l)Wnk
N

= W−lk
N

N−1∑

n=0

x(n + l)W
(n+l)k

N

= W−lk
N

N+l−1∑

m=l

x(m)Wmk
N

= W−lk
N

(

N−1∑

m=l

x(m)Wmk
N +

N+l−1∑

m=N

x(m)Wmk
N

)

(46)

40

Diniz, da Silva and Netto

Properties of the DFT

Since Wk
N has period N and x(n + l) is obtained from a circular shift of x(n), then the

summation from N to (N + l − 1) is equivalent to a summation from 0 to (l − 1).

Therefore

X′(k) = W−lk
N

(

N−1∑

m=l

x(m)Wmk
N +

l−1∑

m=0

x(m)Wmk
N

)

= W−lk
N

N−1∑

m=0

x(m)Wmk
N = W−lk

N X(k) (47)

• It is important to note that, since both x(n) and Wkn
N are periodic with period N,

then the property is still valid for both l < 0 and l ≥ N. �

• A short-hand notation for equation (45) is

y(n) = x((n + l) mod N) (48)

where the (n mod N) represents the remainder of the division of n by N, and is

always in between 0 and (N − 1).

41

Diniz, da Silva and Netto

Properties of the DFT

Example 3.3

Given the DFT of a length-6 sequence x(n) as below:

X(k) =






4, k = 0

2, 1 ≤ k ≤ 5
(49)

(a) Compute x(n).

(b) Determine the length-6 sequence y(n) whose DFT is Y(k) = W−2k
6 X(k).

42

Diniz, da Silva and Netto

Discrete Fourier transform

Solution

(a)

x(n) =
1

6

5∑

k=0

X(k)Wkn
6 =

1

6

(

4W0
6 +

5∑

k=1

2Wkn
6

)

(50)

If n = 0, we have that

x(0) =
1

6

(

4W0
6 +

5∑

k=1

2W0
6

)

=
7

3
(51)

For 1 ≤ n ≤ 5,

x(n) =
1

6

(

4 +
2Wn

6 − 2W6n
6

1 − Wn
6

)

=
1

6

(

4 + 2
Wn

6 − 1

1 − Wn
6

)

=
1

3
(52)

43

Diniz, da Silva and Netto

Properties of the DFT

In short-hand notation,

x(n) =
1

3
+ 2δ(n), for 0 ≤ n ≤ 5 (53)

We can express the above equations using the matrix notation in equation (37) as

x =
[

7
3

1
3

1
3

1
3

1
3

1
3

]T

(54)

44

Diniz, da Silva and Netto

Properties of the DFT

(b) Using the time-shift theorem, we have that if Y(k) = W−2k
6 X(k), then

y(n) = x((n + 2) mod 6) =
1

3
+ 2δ((n + 2) mod 6) (55)

Since ((n + 2) mod 6) = 0 for n = 4, then we can express y(n) as

y(n) =
1

3
+ 2δ(n − 4), 0 ≤ n ≤ 5 (56)

which, in matrix notation is

y =
[

1
3

1
3

1
3

1
3

7
3

1
3

]T

(57)

△

45

Diniz, da Silva and Netto

Properties of the DFT

4. Circular frequency-shift theorem (modulation theorem)

Wln
N x(n)←→ X(k + l) (58)

– The proof is analogous to the one of the time-shift theorem, and is left as an

exercise to the reader.

– Noting that

Wln
N = cos

(

2π

N
ln

)

− j sin

(

2π

N
ln

)

(59)

equation (58) also implies the following properties:

x(n) sin

(

2π

N
ln

)

←→
1

2 j
(X(k − l) − X(k + l)) (60)

x(n) cos

(

2π

N
ln

)

←→
1

2
(X(k − l) + X(k + l)) (61)

46

Diniz, da Silva and Netto

Properties of the DFT

5. Circular convolution in time

If x(n) and h(n) are periodic with period N, then

N−1∑

l=0

x(l)h(n − l) =

N−1∑

l=0

x(n − l)h(l)←→ X(k)H(k) (62)

where X(k) and H(k) are the DFTs of the length-N signals corresponding to one

period of x(n) and h(n), respectively.

47

Diniz, da Silva and Netto

Properties of the DFT

Proof

If Y(k) = X(k)H(k), then

y(n) =
1

N

N−1∑

k=0

H(k)X(k)W−kn
N

=
1

N

N−1∑

k=0

H(k)

(

N−1∑

l=0

x(l)Wkl
N

)

W−kn
N

=
1

N

N−1∑

k=0

N−1∑

l=0

H(k)x(l)W
(l−n)k

N

=

N−1∑

l=0

x(l)
1

N

N−1∑

k=0

H(k)W
−(n−l)k

N

=

N−1∑

l=0

x(l)h(n − l) (63)

�

48

Diniz, da Silva and Netto

Properties of the DFT

• This result is the basis of one of the most important applications of the DFT, which is

the ability to compute a discrete convolution in time through the application of the

inverse DFT to the product of the DFTs of the two sequences.

• However, one should bear in mind that when computing the DFT all the sequence

shifts involved are circular, as depicted in Figure 2.

– Therefore, we say that the product of two DFTs actually corresponds to a circular

convolution in the time domain.

– In fact, the circular convolution is equivalent to one period of the convolution

between one original sequence and the periodic version of the other.

– It is important to note that, as seen in Chapter 1, linear convolutions are usually

the ones of interest in practice.

– In the next section, we will discuss how linear convolutions can be implemented

through circular convolutions, and therefore through the computation of DFTs.

49

Diniz, da Silva and Netto

Properties of the DFT

• Since x(n) and h(n) in equation (62) have period N, then their circular convolution

y(n) also has period N, and needs to be specified only for 0 ≤ n ≤ N − 1.

• Therefore, the circular convolution in equation (62) can be expressed as a function of

only the samples of x(n) and h(n) between 0 and N − 1 as

y(n) =

N−1∑

l=0

x(l)h(n − l)

=

n∑

l=0

x(l)h(n − l) +

N−1∑

l=n+1

x(l)h(n − l + N), for 0 ≤ n ≤ N − 1(64)

which can be rewritten in a compact form as

y(n) =

N−1∑

l=0

x(l)h((n − l) mod N) = x(n) ⊛ h(n) (65)

where (l mod N) represents the remainder of the integer division of l by N.

50

Diniz, da Silva and Netto

Properties of the DFT

• Equation (65) can be expressed as y(n) = hTx with

h =























h(n mod N)

h((n − 1) mod N)

h((n − 2) mod N)

...

h((n − N + 1) mod N)























(66)

and x as before.

51

Diniz, da Silva and Netto

Properties of the DFT

• Therefore, the circular convolution can be put in matrix form as
2

6

6

6

6

6

6

6

6

6

4

y(0)

y(1)

y(2)

...

y(N − 1)

3

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

4

h(0) h(N − 1) h(N − 2) · · · h(1)

h(1) h(0) h(N − 1) · · · h(2)

h(2) h(1) h(0) · · · h(3)

...
...

...
. . .

...

h(N − 1) h(N − 2) h(N − 3) · · · h(0)

3

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

4

x(0)

x(1)

x(2)

...

x(N − 1)

3

7

7

7

7

7

7

7

7

7

5

(67)

• Note that each row of the matrix in the above equation is a circular right-shift of the

previous row.

• In the remainder of this chapter, unless otherwise stated, it will be assumed that all

the sequences are periodic and all the convolutions are circular.

52

Diniz, da Silva and Netto

Properties of the DFT

6. Correlation

The DFT of the correlation in time between two sequences is such that

N−1∑

n=0

h(n)x(l + n)←→ H(−k)X(k) (68)

This result is a direct consequence of the convolution and the time-reversal

properties. Its proof is left as an exercise to the reader.

53

Diniz, da Silva and Netto

Properties of the DFT

7. Complex conjugation

x∗(n)←→ X∗(−k) (69)

Proof

N−1∑

n=0

x∗(n)Wkn
N =

(

N−1∑

n=0

x(n)W−kn
N

)∗

= X∗(−k) (70)

54

Diniz, da Silva and Netto

Properties of the DFT

8. Real and imaginary sequences

If x(n) is a real sequence, then X(k) = X∗(−k), that is

Re{X(k)}= Re{X(−k)}

Im{X(k)}= −Im{X(−k)}





(71)

• The proof can be easily obtained from the definition of the DFT, by using the

expression for Wkn
N in equation (59).

• When x(n) is imaginary, then X(k) = −X∗(−k), that is

Re{X(k)} =−Re{X(−k)}

Im{X(k)} = Im{X(−k)}





(72)

55

Diniz, da Silva and Netto

Properties of the DFT

Example 3.4

Show how to compute the DFTs of two real sequences through the computation of only

one DFT.

56

Diniz, da Silva and Netto

Properties of the DFT

Solution

With the two real sequences x1(n) and x2(n) we form the sequence

y(n) = x1(n) + jx2(n). From the linearity of the DFT, we have that the DFT of y(n)

is

Y(k) = X1(k) + jX2(k) (73)

From this equation, we have that

Re{Y(k)}= Re{X1(k)} − Im{X2(k)}

Im{Y(k)}= Re{X2(k)} + Im{X1(k)}





(74)

Using the properties in equation (71) in the above equation, we get

Re{Y(−k)}= Re{X1(k)} + Im{X2(k)}

Im{Y(−k)}= Re{X2(k)} − Im{X1(k)}





(75)

57

Diniz, da Silva and Netto

Properties of the DFT

Combining equations (74) and (75) , the DFTs of x1(n) and x2(n) can be computed as

Re{X1(k)}=
1

2
(Re{Y(k)} + Re{Y(−k)})

Im{X1(k)}=
1

2
(Im{Y(k)} − Im{Y(−k)})

Re{X2(k)}=
1

2
(Im{Y(k)} + Im{Y(−k)})

Im{X2(k)}=
1

2
(Re{Y(−k)} − Re{Y(k)})






(76)

△

58

Diniz, da Silva and Netto

Properties of the DFT

9. Symmetric and antisymmetric sequences

• Symmetric and antisymmetric sequences are of special interest because their DFTs

have some interesting properties.

• We have studied before the properties of the Fourier transform relating to symmetric

and antisymmetric sequences.

• In this chapter, the meanings of symmetry and antisymmetry are slightly different.

–

– This happens because, unlike the Fourier and z transforms, that are applied to

infinite-duration signals, the DFT is applied to finite-duration signals.

– In fact, the DFT can be interpreted as the Fourier transform of a periodic signal

formed from the infinite repetition of the finite-duration signal.

59

Diniz, da Silva and Netto

Properties of the DFT

• Therefore, before describing the properties of the DFT relating to symmetric and

antisymmetric sequences, we give precise definitions for them in the context of the

DFT.

– A sequence is called symmetric (or even) if x(n) = x(−n). Since, for indexes

outside the set 0, 1, . . ., (N − 1), x(n) can be interpreted as periodic with

period N (see equation (16)), then x(−n) = x(N − n). Therefore, symmetry is

equivalent to x(n) = x(N − n).

– A sequence is antisymmetric (or odd) if x(n) = −x(−n) = −x(N − n).

– A complex sequence is said to be conjugate symmetric if

x(n) = x∗(−n) = x∗(N − n).

– A complex sequence is called conjugate antisymmetric if

x(n) = −x∗(−n) = −x∗(N − n).

60

Diniz, da Silva and Netto

Properties of the DFT

• Using such concepts, the following properties hold:

– If x(n) is real and symmetric, X(k) is also real and symmetric.

Proof

From equation (15), X(k) is given by

X(k) =

N−1∑

n=0

x(n) cos

(

2π

N
kn

)

− j

N−1∑

n=0

x(n) sin

(

2π

N
kn

)

(77)

Since x(n) = x(N − n), the imaginary part of the above summation is null,

because, for N even, we get that

61

Diniz, da Silva and Netto

N−1∑

n=0

x(n) sin

(

2π

N
kn

)

=

N
2

−1∑

n=0

x(n) sin

(

2π

N
kn

)

+

N−1∑

n= N
2

x(n) sin

(

2π

N
kn

)

=

N
2

−1∑

n=1

x(n) sin

(

2π

N
kn

)

+

N−1∑

n= N
2

+1

x(n) sin

(

2π

N
kn

)

=

N
2

−1∑

n=1

x(n) sin

(

2π

N
kn

)

+

N
2

−1∑

m=1

x(N − m) sin

[

2π

N
k(N − m)

]

=

N
2

−1∑

n=1

x(n) sin

(

2π

N
kn

)

−

N
2

−1∑

m=1

x(m) sin

(

2π

N
km

)

= 0 (78)

62

Diniz, da Silva and Netto

Properties of the DFT

Therefore, we have that

X(k) =

N−1∑

n=0

x(n) cos

(

2π

N
kn

)

(79)

which is real and symmetric (even). The proof for N odd is analogous, and is left as an

exercise to the reader.

�

• If x(n) is imaginary and even, then X(k) is imaginary and even.

• If x(n) is real and odd, then X(k) is imaginary and odd.

• If x(n) is imaginary and odd, then X(k) is real and odd.

• If x(n) is conjugate symmetric, then X(k) is real.

63

Diniz, da Silva and Netto

Properties of the DFT

Proof

A conjugate symmetric sequence x(n) can be expressed as

x(n) = xe(n) + jxo(n) (80)

where xe(n) is real and even and xo(n) is real and odd. Therefore,

X(k) = Xe(k) + jXo(k) (81)

From the above properties, Xe(k) is real and even, and Xo(k) is imaginary and odd.

Thus, X(k) = Xe(k) + jXo(k) is real.

�

• If x(n) is conjugate antisymmetric, then X(k) is imaginary.

The proofs of all other of these properties are left as exercises to the interested reader.

64

Diniz, da Silva and Netto

Properties of the DFT

Example 3.5

Given the sequence x(n) represented by the matrix below:

x =
[

1 2 3 4 0 0

]T

(82)

find the sequence y(n) whose length-6 DFT is given by Y(k) = Re{X(k)}.

65

Diniz, da Silva and Netto

Properties of the DFT

Solution

Y(k) =
X(k) + X∗(k)

2
(83)

From the linearity of the DFT,

y(n) =
IDFT{X(k)} + IDFT{X∗(k)}

2
(84)

Since x(n) is real and is a sequence of length 6,

y(n) =
x(n) + x(−n)

2
=

x(n) + x(6 − n)

2
(85)

66

Diniz, da Silva and Netto

Properties of the DFT

Then,

y(0) =
x(0) + x(6)

2
= 1

y(1) =
x(1) + x(5)

2
= 1

y(2) =
x(2) + x(4)

2
=

3

2

y(3) =
x(3) + x(3)

2
= 4

y(4) =
x(4) + x(2)

2
= 1

y(5) =
x(5) + x(1)

2
= 1






(86)

△

67

Diniz, da Silva and Netto

Properties of the DFT

10. Parseval’s theorem

N−1∑

n=0

x1(n)x∗
2(n) =

1

N

N−1∑

k=0

X1(k)X∗
2(k) (87)

Proof

N−1∑

n=0

x1(n)x∗
2(n) =

N−1∑

k=0

(

1

N

N−1∑

k=0

X1(k)W−kn
N

)

x∗
2(n)

=
1

N

N−1∑

k=0

X1(k)

N−1∑

k=0

x∗
2(n)W−kn

N

=
1

N

N−1∑

k=0

X1(k)X∗
2(k) (88)

68

Diniz, da Silva and Netto

Properties of the DFT

If x1(n) = x2(n), then we have that

N−1∑

n=0

|x(n)|2 =
1

N

N−1∑

k=0

|X(k)|2 (89)

• The above equation can be interpreted as an energy conservation property, since the

energy in the discrete-time domain is equal to the energy in the discrete-frequency

domain, up to a scaling factor N.

69

Diniz, da Silva and Netto

Properties of the DFT

11. Relationship between the DFT and the z transform

• We have defined before the DFT as samples of the Fourier transform, and showed,

in equation (13), how to obtain the Fourier transform directly from the DFT.

• Since the Fourier transform corresponds to the z transform for z = e jω, then clearly

the DFT can be obtained by sampling the z transform at ω = 2π
N

k.

• Mathematically, since the z transform Xz(z) of a length-N sequence x(n) is

Xz(z) =

N−1∑

n=0

x(n)z−n (90)

if we make z = e j 2π
N

k, then we have that

Xz

(

e j 2π
N

kn
)

=

N−1∑

n=0

x(n)e− j 2π
N

kn (91)

• This equation corresponds to samples of the z transform equally spaced on the unit

circle, and is identical to the definition of the DFT in equation (15).

70

Diniz, da Silva and Netto

• In order to obtain the z transform from the DFT coefficients X(k), we substitute

equation (16) into equation (90), obtaining

Xz(z) =

N−1∑

n=0

x(n)z
−n

=

N−1∑

n=0

1

N

N−1∑

k=0

X(k)W
−kn
N z

−n

=
1

N

N−1∑

k=0

X(k)

N−1∑

n=0

“

W
−k
N z

−1
”n

=
1

N

N−1∑

k=0

X(k)
1 − W−kN

N z−N

1 − W−k
N z−1

=
1 − z−N

N

N−1∑

k=0

X(k)

1 − W−k
N z−1

(92)

which, similarly to equation (13) for the Fourier transform, relates the DFT to the z

transform.

71

Diniz, da Silva and Netto

Digital filtering using the DFT

Linear and circular convolutions

• A linear time-invariant system implements the linear convolution of the input signal

with the impulse response of the system.

• Since the Fourier transform of the convolution of two sequences is the product of

their Fourier transforms, it is natural to consider the computation of time convolutions

in the frequency domain.

• The DFT is the discrete version of the Fourier transform, and therefore should be the

transform used for such computations.

• However, as is described in equation (5), the sampling process in the frequency

domain forces the signal to be periodic in time.

72

Diniz, da Silva and Netto

Digital filtering using the DFT

• We saw previously that this implies that the IDFT of the product of the DFTs of two

length-N signals corresponds to the convolution of one sequence with the periodic

version of the other.

– This periodic version is obtained by repeating the length-N signal with period N.

• As seen before, this convolution between a signal and the periodic version of the

other is called the circular convolution between the two length-N signals.

– This means that, using the DFT, one can in principle compute only circular

convolutions, and not the linear convolution necessary to implement a linear

system.

• In this section, we describe techniques to circumvent this problem and allow us to

implement discrete-time linear systems in the frequency domain.

73

Diniz, da Silva and Netto

Digital filtering using the DFT

These techniques are essentially based on a very simple trick:

• Supposing that the DFTs are of size N, we have that the circular convolution

between two sequences x(n) and h(n) is given by equation (64), which is repeated

here for the reader’s convenience

y(n) =

N−1∑

l=0

x(l)h(n − l)

=

n∑

l=0

x(l)h(n − l) +

N−1∑

l=n+1

x(l)h(n − l + N), for 0 ≤ n ≤ N − 1(93)

• If we want the circular convolution to be equal to the linear convolution between

x(n) and h(n), the second summation in the above equation must be null, that is

c(n) =

N−1∑

l=n+1

x(l)h(n − l + N) = 0, for 0 ≤ n ≤ N − 1 (94)

74

Diniz, da Silva and Netto

Digital filtering using the DFT

Assuming that x(n) has duration L and h(n) has duration K, that is,

x(n) = 0, for n ≥ L ; h(n) = 0, for n ≥ K (95)

we have that the summation c(n) in equation (94) is different from zero only if both x(l)

and h(n − l + N) are nonzero, and this happens if

l ≤ L − 1 and n − l + N ≤ K − 1 (96)

which implies that

n + N − K + 1 ≤ l ≤ L − 1 (97)

If we then want the summation c(n) to be null for 0 ≤ n ≤ N − 1, it should be

impossible to satisfy equation (97) for 0 ≤ n ≤ N − 1. This happens when

n + N − K + 1 > L − 1 for 0 ≤ n ≤ N − 1 (98)

75

Diniz, da Silva and Netto

Digital filtering using the DFT

Since the most strict case of equation (98) is for n = 0, we have that the condition for

c(n) = 0, 0 ≤ n ≤ N − 1, and therefore for the circular convolution to be equivalent

to the linear convolution, is

N ≥ L + K − 1 (99)

• Thus, in order to perform a linear convolution using the inverse DFT of the product of

the DFT of two sequences, we must choose a DFT size N satisfying equation (99).

• This is equivalent to padding x(n) using at least K − 1 zeros and padding h(n)

using at least L − 1 zeros.

• This zero-padding process is illustrated in Figure 3 for L = 4 and K = 3, where,

after zero-padding, the sequences x(n) and h(n) are denoted as x1(n) and

h1(n), respectively.

76

Diniz, da Silva and Netto

x(n)

h(n)

0

0

0

1

2

3

4

1 2 3 n

1

2

3

4

1 2 3 4 5 n

1

1 2 n

1

1 2 3 4 5 n

x (n)

h (n)
1

1

0

Figure 3: Zero-padding of two sequences in order to perform linear convolution using the

DFT: x1(n) corresponds to x(n), and h1(n) corresponds to h(n) after ap-

propriate padding.

The following example will help to clarify the above discussion.

77

Diniz, da Silva and Netto

Digital filtering using the DFT

Example 3.6

Referring to Figure 3, compute the linear convolution of the two sequences x(n) and

h(n) and compare it with the circular convolution of x(n) and h(n) as well as the

circular convolution of x1(n) and h1(n).

78

Diniz, da Silva and Netto

Digital filtering using the DFT

Solution

First, we compute the linear convolution of x(n) and h(n),

yl(n) = x(n) ∗ h(n) =

3∑

l=0

x(l)h(n − l) (100)

such that

yl(0) = x(0)h(0) = 4

yl(1) = x(0)h(1) + x(1)h(0) = 7

yl(2) = x(0)h(2) + x(1)h(1) + x(2)h(0) = 9

yl(3) = x(1)h(2) + x(2)h(1) + x(3)h(0) = 6

yl(4) = x(2)h(2) + x(3)h(1) = 3

yl(5) = x(3)h(2) = 1






(101)

79

Diniz, da Silva and Netto

Digital filtering using the DFT

The circular convolution of length N = 4 between x(n) and h(n), using equation (65),

is equal to

yc4
(n) = x(n) ⊛ h(n) =

3∑

l=0

x(l)h((n − l) mod 4) (102)

such that

yc4
(0) = x(0)h(0) + x(1)h(3) + x(2)h(2) + x(3)h(1) = 7

yc4
(1) = x(0)h(1) + x(1)h(0) + x(2)h(3) + x(3)h(2) = 8

yc4
(2) = x(0)h(2) + x(1)h(1) + x(2)h(0) + x(3)h(3) = 9

yc4
(3) = x(0)h(3) + x(1)h(2) + x(2)h(1) + x(3)h(0) = 6






(103)

80

Diniz, da Silva and Netto

Digital filtering using the DFT

We can also use equation (65) to compute the circular convolution of length N = 6 of

x1(n) and h1(n), obtaining

yc6
(n) = x1(n) ⊛ h1(n) =

5∑

l=0

x(l)h((n − l) mod 6) (104)

such that

81

Diniz, da Silva and Netto

yc6
(0) = x1(0)h1(0) + x1(1)h1(5) + x1(2)h1(4)

+ x1(3)h1(3) + x1(4)h1(2) + x1(5)h1(1)

= x1(0)h1(0)

= 4

yc6
(1) = x1(0)h1(1) + x1(1)h1(0) + x1(2)h1(5)

+ x1(3)h1(4) + x1(4)h1(3) + x1(5)h1(2)

= x1(0)h1(1) + x(1)h(0)

= 7

yc6
(2) = x1(0)h1(2) + x1(1)h1(1) + x1(2)h1(0)

+ x1(3)h1(5) + x1(4)h1(4) + x1(5)h1(3)

= x1(0)h1(2) + x(1)h(1) + x(2)h(0)

= 9

yc6
(3) = x1(0)h1(3) + x1(1)h1(2) + x1(2)h1(1)

+ x1(3)h1(0) + x1(4)h1(5) + x1(5)h1(4)

= x1(1)h1(2) + x(2)h(1) + x(3)h(0)

= 6

yc6
(4) = x1(0)h1(4) + x1(1)h1(3) + x1(2)h1(2)

+ x1(3)h1(1) + x1(4)h1(0) + x1(5)h1(5)

= x1(2)h1(2) + x(3)h(1)

= 3

yc6
(5) = x1(0)h1(5) + x1(1)h1(4) + x1(2)h1(3)

+x1(3)h1(2) + x1(4)h1(1) + x1(5)h1(0)

= x1(3)h1(2)

= 1






(105)

82

Diniz, da Silva and Netto

Digital filtering using the DFT

Comparing equations (101) and (105), it is easy to confirm that yc6
(n) corresponds

exactly to the linear convolution between x(n) and h(n).

△

• We have now seen how it is possible to implement the linear convolution between

two finite-length signals through the DFT.

• However, in practice, it is frequently necessary to implement the convolution of a

finite-length sequence with an infinite-length sequence, or even to convolve a

short-duration sequence with a long-duration one.

• In both cases, it is not feasible to compute the DFT of a very long or infinite

sequence.

83

Diniz, da Silva and Netto

Digital filtering using the DFT

• The solution adopted, in these cases, is to divide the long sequence into blocks of

duration N, and perform the convolution of each block with the short sequence.

– In most practical cases, the long or infinite sequence corresponds to the system

input and the short-length sequence to the system impulse response.

• However, the results of the convolution of each block must be properly combined so

that the final result corresponds to the convolution of the long sequence with the

short sequence.

• Two methods for performing this combination are the so-called overlap-and-add and

overlap-and-save methods discussed in the sequel.

84

Diniz, da Silva and Netto

Overlap-and-add method

• We can describe a signal x(n) decomposed in non-overlapping blocks

xm(n − mN) of length N as

x(n) =

∞∑

m=0

xm(n − mN) (106)

where

xm(n) =






x(n + mN), for 0 ≤ n ≤ N − 1

0, otherwise
(107)

that is, each block xm(n) is nonzero between 0 and N − 1, and x(n) is composed

of the sum of the blocks xm(n) shifted to n = mN.

85

Diniz, da Silva and Netto

Digital filtering using the DFT

• Using equation (106), the convolution of x(n) with another signal h(n) can be

written as

y(n) = x(n) ∗ h(n) =

∞∑

m=0

(xm(n − mN) ∗ h(n)) =

∞∑

m=0

ym(n − mN)(108)

• Note that the above equation implies that ym(n) is the result of the convolution of

h(n) with the mth block xm(n).

• As seen in Subsection 72, if we want to compute the linear convolutions leading to

ym(n) using DFTs, their lengths must be at least (N + K − 1), where K is the

duration of h(n).

• Thus, if xm(n) and h(n) are zero-padded to length (N + K − 1), then the linear

convolutions in equation (108) can be implemented using circular convolutions.

86

Diniz, da Silva and Netto

Digital filtering using the DFT

• If x′
m(n) and h′(n) are the zero-padded versions of xm(n) and h(n), we have

that the filtered blocks ym(n) in equation (108) become

ym(n) =

N+K−2∑

l=0

x′
m(l)h′(n − l), for 0 ≤ n ≤ N + K − 2 (109)

• Then, from equations (108) and (109), we see that in order to convolve the long

x(n) with the length-K h(n) it suffices to:

(i) Divide x(n) into length-N blocks xm(n).

(ii) Zero-pad h(n) and each block xm(n) to length N + K − 1.

(iii) Perform the circular convolution of each block using the length-(N + K − 1)

DFT.

(iv) Add the results according to equation (108).

87

Diniz, da Silva and Netto

N

K

N N N N

x (n – N)1 x (n – 2N)2 x (n – mN)m x (n – mN – N)m+1

y (n – N)1

y (n – 2N)2

y (n – mN)m

y (n – mN – N)m +1

x(n)

h(n)

x (n)0

y(n)

+

+

+ +

+

+

0y (n)

N + K – 1

N + K – 1

N + K – 1

N + K – 1

N + K – 1

Figure 4: Illustration of the overlap-and-add method.

88

Diniz, da Silva and Netto

Digital filtering using the DFT

• Note that in the addition performed in step (iv), there is an overlap of the K − 1 last

samples of ym(n − mN) and the K − 1 first samples of ym+1(n − (m + 1)N).

• This is why the above procedure is called the overlap-and-add method, which is

illustrated schematically in Figure 4.

89

Diniz, da Silva and Netto

Digital filtering using the DFT

Example 3.7

Compute graphically the linear convolution of x(n) and h(n) in Figure 5a by splitting

x(n) into blocks of two samples and using the overlap-and-add method.

90

Diniz, da Silva and Netto

Solution

According to equations (106) and (107), the division of the original signal in Figure 5a in

two blocks having length N = 2 can be expressed as

x(n) = x0(n) + x1(n − 2) (110)

where

x0(n) =






x(n), for 0 ≤ n ≤ 1

0, otherwise

x1(n) =






x(n + 2), for 0 ≤ n ≤ 1

0, otherwise






(111)

The two signals on the right-hand side of equation (110) are depicted in Figure 5b. The

desired convolution is then

y(n) = (x0(n) ∗ h(n)) + (x1(n − 2) ∗ h(n)) (112)

where each of the signals on the right-hand side of the above equation are depicted in

Figure 5d. Their sum y(n) is shown in Figure 5e. △

91

Diniz, da Silva and Netto

x(n) h(n)

n n

(a)

x’0(n) x’1(n−2)

n n

h' (n
)

n

(b) (c)

n

x’0(n) h’(n)

n

x’1(n−2) h’(n)* *

x’0

n

x ((nn)) h✳ ’h ((nn)) x’1(n−2) h’(n)** +=

(d) (e)

Figure 5: Example of the application of the overlap-and-add method: (a) original sequences; (b) input sequence divided

into length-2 blocks. Each block has been zero-padded to length N = 5; (c) zero-padded h(n); (d) circular

convolution of each zero-padded block with zero-padded h(n); (e) final result (normalized).
92

Diniz, da Silva and Netto

Overlap-and-save method

• In the overlap-and-add method, one divides the signal into blocks of length N and

computes the convolutions using DFTs of size (N + K − 1), where K is the

duration of h(n).

• In the overlap-and-save method, one uses DFTs of length N instead.

– This poses a problem, because the length-N circular convolution of a length-N

block xm(n) and a length-K h(n) is not equal to their linear convolution.

• To circumvent this, one only uses the samples of the circular convolution that are

equal to the ones of the linear convolution.

– These valid samples can be determined by referring to the expression of the

circular convolution

93

Diniz, da Silva and Netto

Digital filtering using the DFT

• From there, we see that the condition for computing a linear convolution using a

circular convolution is given by equation (94), repeated here for convenience, with

x(n) replaced by xm(n):

c(n) =

N−1∑

l=n+1

xm(l)h(n − l + N) = 0, for 0 ≤ n ≤ N − 1 (113)

• This equation indicates that the length-N circular convolution, between a length-N

block xm(n) and a length-K h(n), is equal to their linear convolution whenever the

above summation is null.

• Since, for 0 ≤ n ≤ N − 1, we have that xm(n) 6= 0, then c(n) above is null only

for n such that all the h(n) in the summation are zero, that is, h(n − l + N) = 0

for l in the interval n + 1 ≤ l ≤ N − 1.

94

Diniz, da Silva and Netto

Digital filtering using the DFT

• Since h(n) has length K, then h(r) = 0, for r ≥ K. Since we should have

h(n − l + N) = 0, then n should be such that n − l + N ≥ K, that is,

n ≥ K − N + l.

• The most strict case in this inequality is when l = N − 1. This implies that the

condition in equation (113) is satisfied only when n ≥ K − 1.

• The conclusion is that the only samples of the length-N circular convolution that are

equal to the ones of the linear convolution are for n ≥ K − 1.

• Therefore, when computing the convolution of the blocks xm(n) with h(n), the first

K − 1 samples of the result have to be discarded.

• In order to compensate for the discarded samples, there must be an overlap of an

extra K − 1 samples between adjacent blocks.

95

Diniz, da Silva and Netto

Digital filtering using the DFT

• Thus, the signal x(n) must be divided into blocks xm(n) of length N such that

xm(n) =






x(n + m(N − K + 1) − K + 1), for 0 ≤ n ≤ N − 1

0, otherwise
(114)

• Note that the first K − 1 samples of xm(n) are equal to the last K − 1 samples of

xm−1(n).

• The filtered output of the mth block consists only of the samples of the circular

convolution ym(n) of xm(n) and h(n) of index larger than or equal to K − 1.

• It is important that the original signal x(n) be padded with K − 1 zeros at the

beginning, since the first K − 1 samples of the output are discarded.

96

Diniz, da Silva and Netto

Digital filtering using the DFT

• Then, if h′(n) is the version of h(n) zero-padded to length N, the output ym(n) of

each block can be expressed as

ym(n) =

N−1∑

l=0

xm(l)h′((n − l) mod N) (115)

where only the samples of ym(n) from n = K − 1 to n = N − 1 need to be

computed.

• Then the output y(n) = x(n) ∗ h(n) is built, for each m, as

y(n) = ym(n − m(N − K + 1)) (116)

for m(N − K + 1) + K − 1 ≤ n ≤ m(N − K + 1) + N − 1.

97

Diniz, da Silva and Netto

Digital filtering using the DFT

• From equations (115) and (116), we see that, in order to convolve the long x(n) with

the length-K h(n) using the overlap-and-save method, it suffices to:

(i) Divide x(n) into length-N blocks xm(n) with an overlap of K − 1 samples as in

equation (114). The first block should be zero-padded with K − 1 zeros at its

beginning. If the original signal has length L, then the total number of blocks B

should obey

B ≥ L + K − 1

N − K + 1
(117)

(ii) Zero-pad h(n) to length N.

(iii) Perform the circular convolution of each block with h(n) (equation (115)) using a

length-N DFT.

(iv) Build the output signal according to equation (116).

• Note that we can interpret step (iv) as the K − 1 last samples of block ym(n) being

saved in order to replace the discarded K − 1 first samples of block ym+1(n), thus

justifying the terminology overlap-and-save method, illustrated in Figure 6.

98

Diniz, da Silva and Netto

K

x

y

(

(

n

n

−

−

)

1

1

x (n0 x

y

(

(((

(

((

(

(

(

n

n

−

−

2

2

N−K+1

N−K+1 N−K+1

N−K+1

N−K+1

N−K+1

N−K+1

N−K+1

))

))))

))

))

))

)

)

2

2

K−1 K−1 K−1
x

y

(

(

n

n

−

−

m

m

m

m

x

y

(

(

n

n

−

−

m

m

−

−

N

N

)

)

m

m

+

+

1

1

K−1

K−1

K−1

K−1

discard

discard

discard

discard

K−1

discard

K−1

x(n)

h(n)

0y (n)

N

N

N N

N

N

N

N

N

N

y(n)

zero−padding

Figure 6: Illustration of the overlap-and-save method.

99

Diniz, da Silva and Netto

Digital filtering using the DFT

Example 3.8

Determine, graphically, the linear convolution of x(n) and h(n) in Figure 7a using the

DFT, partitioning x(n) into length-6 blocks and using the overlap-and-save method.

100

Diniz, da Silva and Netto

Digital filtering using the DFT

Solution

The length of the impulse response h(n) is K = 3, x(n) has length L = 8, and the

DFT has length N = 6. From from equation (117), the number of overlapping blocks

should be

B ≥ 8 + 3 − 1

6 − 3 + 1
= 2.5 (118)

and therefore B = 3. The beginning of the first block will be zero-padded with 2 zeros

and the last block will be zero-padded with 4 zeros. Therefore, from equation (114), we

101

Diniz, da Silva and Netto

have that

x0(n) =






x(n − 2), for 0 ≤ n ≤ 5

0, otherwise

x1(n) =






x(n + 2), for 0 ≤ n ≤ 5

0, otherwise

x2(n) =






x(n + 6), for 0 ≤ n ≤ 5

0, otherwise






(119)

These signals are depicted in Figures 7b, 7d, and 7f, respectively. Using equation (115)

the signals in Figures 7c, 7e and 7g are computed as

ym(n) =

5∑

l=0

xm(l)h′((n − l) mod 6), for 2 ≤ n ≤ 5 and m = 0, 1, 2

(120)

102

Diniz, da Silva and Netto

The final result in Figure 7h is computed using equation (116) yielding

y(n) = y0(n), for 2 ≤ n ≤ 5

y(n) = y1(n − 4), for 6 ≤ n ≤ 9

y(n) = y2(n − 8), for 10 ≤ n ≤ 13






(121)

Note that in this example, we have that K = 3, N = 6, and each partial convolution

generates (N − K + 1) = 4 new samples.

△

103

Diniz, da Silva and Netto

n

x (n)

n

h(n)

(a)

n

x0(n)

n

x1(n−4)

n

x2(n−8)

(b) (d) (f)

n

x0(n) h’(n)*

n

x1(n−4) h’(n)*

n

x2(n−8) h’(n)*

(c) (e) (g)

n

y (n)

(h)

Figure 7: Linear convolution using the DFT and the overlap-and-save method: (a) original sequences; (b) first block; (c) first

partial convolution; (d) second block; (e) second partial convolution; (f) third block; (g) third partial convolution; (h)

final result.
104

Diniz, da Silva and Netto

Fast Fourier transform

• In the previous section, we saw that the DFT is an effective discrete representation in

frequency that can be used to compute linear convolutions between two discrete

sequences.

• However, by examining the DFT and IDFT definitions in equations (15) and (16),

repeated here for convenience

X(k) =

N−1∑

n=0

x(n)Wkn
N , for 0 ≤ k ≤ N − 1 (122)

x(n) =
1

N

N−1∑

k=0

X(k)W−kn
N , for 0 ≤ n ≤ N − 1 (123)

we see that in order to compute the DFT and IDFT of a length-N sequence, one

needs about N2 complex multiplications, that is, the complexity of the DFT grows

with the square of the signal length.

105

Diniz, da Silva and Netto

Fast Fourier Transform

• This severely limits its practical use for lengthy signals.

• Fortunately, in 1965, Cooley and Tukey proposed an efficient algorithm to compute

the DFT, which requires a number of complex multiplications of the order of

N log2 N.

• This may represent a tremendous decrease in complexity.

– For example, even for signal lengths as low as 1024 samples, the decrease in

complexity is of the order of 100 times, that is, two orders of magnitude.

• It is needless to say that the advent of this algorithm opened up an endless list of

practical applications for the DFT, ranging from signal analysis to fast linear filtering.

• Today, there is an enormous number of fast algorithms for the computation of the

DFT, and they are collectively known as FFT (fast Fourier transform) algorithms.

• In this section we will study some of the most popular types of FFT algorithms.

106

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• Suppose we have a sequence x(n) whose length N is a power of two, that is,

N = 2l.

• Now, let us express the DFT relation in equation (122) by splitting the summation into

two parts, one with the even-indexed x(n) and another with the odd-indexed x(n),

obtaining

X(k) =

N−1∑

n=0

x(n)Wnk
N

=

N
2

−1∑

n=0

x(2n)W2nk
N +

N
2

−1∑

n=0

x(2n + 1)W
(2n+1)k

N

=

N
2

−1∑

n=0

x(2n)W2nk
N + Wk

N

N
2

−1∑

n=0

x(2n + 1)W2nk
N (124)

107

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• If we note that for N even, we have that

W2nk
N = e− j 2π

N
2nk = e

− j 2π
N
2

nk
= Wnk

N
2

(125)

then equation (124) becomes

X(k) =

N
2

−1∑

n=0

x(2n)Wnk
N
2

+ Wk
N

N
2

−1∑

n=0

x(2n + 1)Wnk
N
2

(126)

and we can see that each summation may represent a distinct DFT of size N/2.

• Therefore, a DFT of size N can be computed through two DFTs of size N/2, in

addition to the multiplications by Wk
N.

• Note that each new DFT has only N/2 coefficients, and for the computation of its

coefficients we now need solely (N/2)2 complex multiplications.

• In addition, since we have one distinct coefficient Wk
N for each k between 0 and

N − 1, then we need to perform N multiplications by Wk
N.

108

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• Therefore, the computation of the DFT according to equation (126) requires

2

(

N

2

)2

+ N =
N2

2
+ N (127)

complex multiplications.

– Since (N + N2

2
) is smaller than N2, for N > 2, equation (126) provides a

decrease in complexity when compared to the usual DFT computation.

109

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• We should also compare the number of complex additions of the two forms of

computation.

– The usual length-N DFT computation needs a total of N(N − 1) = N2 − N

additions.

– In equation (126), we need to compute two DFTs of length N/2, and then

perform the N additions of the two DFTs after multiplication by Wk
N.

– Therefore, the total number of complex additions in equation (126) is

2

[

(

N

2

)2

−
N

2

]

+ N =
N2

2
(128)

which also corresponds to a reduction in complexity.

• From the above, exploiting the fact that N is a power of 2, it is easy to see that if the

procedure shown in equation (126) is recursively applied to each of the resulting

DFTs, we may get a very significant reduction in complexity until all the remaining

DFTs are of length 2.

110

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• The overall procedure is formalized in an algorithm by first rewriting equation (126) as

X(k) = Xe(k) + Wk
NXo(k) (129)

where Xe(k) and Xo(k) are, respectively, the DFTs of length N
2

of the even- and

odd-indexed samples of x(n), that is

Xe(k) =

N
2

−1∑

n=0

x(2n)Wnk
N
2

=

N
2

−1∑

n=0

xe(n)Wnk
N
2

Xo(k) =

N
2

−1∑

n=0

x(2n + 1)Wnk
N
2

=

N
2

−1∑

n=0

xo(n)Wnk
N
2






(130)

111

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• The DFTs above can be computed by separating xe(n) and xo(n) into their even-

and odd-indexed samples, as follows

Xe(k) =

N
4

−1∑

n=0

xe(2n)Wnk
N
4

+ Wk
N
2

N
4

−1∑

n=0

xe(2n + 1)Wnk
N
4

Xo(k) =

N
4

−1∑

n=0

xo(2n)Wnk
N
4

+ Wk
N
2

N
4

−1∑

n=0

xo(2n + 1)Wnk
N
4






(131)

such that

Xe(k) = Xee(k) + Wk
N
2

Xeo(k)

Xo(k) = Xoe(k) + Wk
N
2

Xoo(k)





(132)

where Xee(k), Xeo(k), Xoe(k), and Xoo(k) correspond now to DFTs of length
N
4

.

112

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• Generically, in each step we compute DFTs of length L using DFTs of length L
2

as

follows

Xi(k) = Xie(k) + Wk
LXio(k) (133)

• A recursive application of the above procedure can convert the computation of a DFT

of length N = 2l in l steps to the computation of 2l DFTs of length 1, because each

step converts a DFT of length L into two DFTs of length L
2

plus a complex product by

Wk
L and a complex sum.

• Therefore, supposing that M(N) and A(N) are respectively the number of

complex multiplications and additions to compute a DFT of length N the following

relations hold:

113

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

M(N) = 2M
(

N

2

)

+ N (134)

A(N) = 2A
(

N

2

)

+ N (135)

• In order to compute the values of M(N) and A(N), we must solve the recursive

equations above.

– The initial conditions are M(1) = 1 and A(1) = 0, since a length-1 DFT needs

no additions and a multiplication by W0
1 (these multiplications are trivial but must

be considered in order to maintain coherence with equation (127) ; they will be

discounted when stating the final result).

114

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• We can compute the number of multiplications employing the change of variables

N = 2l and T(l) =
M(N)

N
. With it, equation (134) becomes

T(l) = T(l − 1) + 1 (136)

Since T(0) = M(1) = 1, then T(l) = l + 1. Therefore, we conclude that

M(N)

N
= 1 + log2 N (137)

and thus

M(N) = N + N log2 N (138)

• Note that the above equation is coherent with equation (127).

• However, since we do not perform the trivial multiplications necessary to compute the

N DFTs of size 1, we conclude that the actual number of multiplications is

M(N) = N log2 N (139)

115

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• In order to compute the number of additions, we can use the same change of

variables, that is, we make N = 2l and T(l) =
A(N)

N
. With it, equation (135)

becomes

T(l) = T(l − 1) + 1 (140)

but this time T(0) = A(1) = 0, and then T(l) = l. Therefore, we conclude that

A(N)

N
= log2 N (141)

and thus

A(N) = N log2 N (142)

that is, the fast Fourier transform (FFT) can be computed using N log2 N complex

multiplications and additions, which comprises an economy of the order of N
log2 N

,

when compared to the direct implementation in equation (122).

116

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• This FFT algorithm is known as a decimation-in-time algorithm because it recursively

divides the sequence x(n) into subsequences.

• We can devise a graphical representation of the above procedure by noting that in

the operation in equation (133) each value of either Xie(k) or Xio(k) is used twice.

– This is so because, if Xi(k) has length L, then Xie(k) and Xio(k) have length
L
2

(and thus period L
2

).

• The corresponding equations are:

Xi(k) = Xie(k) + Wk
LXio(k) (143)

Xi

(

k +
L

2

)

= Xie

(

k +
L

2

)

+ W
k+ L

2

L Xio

(

k +
L

2

)

= Xie(k) + W
k+ L

2

L Xio(k) (144)

117

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• Therefore, if we have the DFTs of length L
2

, Xie(k) and Xio(k), we can compute

the length-L DFT Xi(k) by applying equations (143) and (144), for

k = 0, 1, . . .,
(

L
2

− 1
)

.

• This process is illustrated by the graph in Figure 8.

• Since the FFT algorithm is composed of repetitions of this procedure, it is often

called the basic cell of the algorithm.

• Due to the appearance of its graph, the basic cell is often referred to as a butterfly.

118

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

W
L
k

X (k)io

X (k)ie X (k)i

X (k+L)i
2W

L

k+L
2

1

1

Figure 8: Basic cell of the decimation-in-time FFT algorithm.

• A graph for the complete FFT algorithm above is obtained by repeating the basic cell

in Figure 8, for L = N, N
2

, . . ., 2 and for k = 0, 1, . . .,
(

L
2

− 1
)

. Figure 9

illustrates the case when N = 8.

119

Diniz, da Silva and Netto

x (0
)

x (4)

x(2)

x(6)

x(1)

x (5)

x(3)

x(7)

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1 1

11

1

1

1

1

1

1 1

1

1

Xee(1)

Xeo(0)

Xe(1)

Xe(2)

Xe(3)Xeo(1)

Xoe(0)

Xoe(1)

Xoo(0)

Xoo(1)

Xo(1)

Xo(0)

Xo(2)

Xo(3)

X Xe(0) (0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

WN

W
2

N

W
3

N

W 4
N

W 5
N

W 6
N

W 7
N

Xee(0)

2

2

3

WN
4

WN
4

WN
4

WN
4

WN
2 WN

2

WN
2 WN

2

WN
2

WN
2

3

Figure 9: Graph of the decimation-in-time 8-point FFT algorithm.

120

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• The graph in Figure 9 has an interesting property. The nodes of one section of the

graph depend only on nodes of the previous section of the graph.

– For example, Xi(k) depends only on Xie(k) and Xio(k).

– In addition, Xie(k) and Xio(k) are only used to compute Xi(k) and

Xi(k + L
2
).

– Therefore, once computed, the values of Xi(k) and Xi(k + L
2
) can be stored in

the same place as Xie(k) and Xio(k).

• This implies that the intermediate results of the length-N FFT computation can be

stored in a single size-N vector, that is, the results of section l can be stored in the

same place as the results of section l − 1.

• This is why the computation of the intermediate results of the FFT is often said to be

‘in place’.

121

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• Another important aspect of the FFT algorithm relates to the ordering of the input

vector.

• As seen in Figure 9, the output vector is ordered sequentially while the input vector is

not.

• A general rule for the ordering of the input vector can be devised by referring to the

FFT graph in Figure 9.

• Moving from right to left, we note that in the second section, the upper half

corresponds to the DFT of the even-indexed samples and the lower half to the DFT

of the odd-indexed samples.

• Since the even-indexed samples have the least significant bit (LSB) equal to 0 and

the odd-indexed samples have the LSB equal to 1, then the DFT of the upper half

corresponds to samples with an index having LSB = 0 and the lower half to the DFT

of samples with an index having LSB = 1.

122

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• Likewise, for each half, the upper half corresponds to the even-indexed samples

belonging to this half, that is, the ones with the second LSB = 0. Similarly, the lower

half corresponds to the second LSB = 1.

• If we proceed until we reach the input signal on the left, we end up with the

uppermost sample having an index with all bits equal to zero, the second one having

the first bit equal to one and the others equal to zero, and so on.

• We note, then, that the ordering of the input vector is the ascending order of the

bit-reversed indexes.

– For example, x(3) = x(011) will be put in position 110 of the input, that is,

position 6.

123

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• An additional economy in the number of complex multiplications of the algorithm can

be obtained by noting that, in equation (144)

W
k+ L

2

L = Wk
LW

L
2

L = Wk
LW2 = −Wk

L (145)

Then, equations (143) and (144) can be rewritten as

Xi(k) = Xie(k) + Wk
LXio(k)

Xi

(

k + L
2

)

= Xie(k) − Wk
LXio(k)





(146)

• This allows a more efficient implementation of the basic cell in Figure 8, using one

complex multiplication instead of two.

• The resulting cell is depicted in Figure 10.

124

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

X (k)io

X (k)ie

W

L

k

X (k)
i

X k+ L i
 2

1

–1

1

1

1

()

Figure 10: More efficient basic cell of the decimation-in-time FFT algorithm.

• Substituting the basic cells corresponding to Figure 8 by the ones corresponding to

Figure 10, we have the more efficient graph for the FFT shown in Figure 11.

125

Diniz, da Silva and Netto

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

0

0

0

0

0

0

W
0

N

WN

WN
2

WN
3

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

X(4)

X(5)

X(6)

X(1)

X(2)

X(3)

X(7)

WN
4

WN
4

WN
4

WN
4

WN
2

WN
2

WN
2

WN
2

Figure 11: More efficient graph of the decimation-in-time 8-point FFT algorithm. The unmarked

branches are equal to 1.
126

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• With this new basic cell, the number of complex multiplications has dropped to half,

that is, there is a total of N
2

log2 N complex multiplications.

• In order to perform a more accurate calculation, we have to discount the remaining

trivial multiplications.

– One set of them are by W0
L = 1.

– In equation (146), when the DFTs have length L, we have N
L

DFTs and thus the

term W0
L appears N

L
times.

– Then, we have N
2

+ N
4

+ · · · + N
N

= N − 1 multiplications by 1.

– The other set of trivial multiplications are the ones by W
L
4

L = − j.

– Since, in the first stage, there are no terms equal to − j and, from the second

stage on, the number of times a term − j appears is the same as the number of

times a term 1 appears, then we have N − 1 − N
2

= N
2

− 1 multiplications by

− j.

127

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• This gives an overall number of nontrivial complex multiplications equal to

M(N) =
N

2
log2 N − N + 1 −

N

2
+ 1 =

N

2
log2 N −

3

2
N + 2 (147)

• Note that the number of complex additions remains A(N) = N log2 N.

• If we shuffle the horizontal branches of the graph in Figure 11 so that the input signal

is in normal ordering, then the output of the graph comes in bit-reversed ordering.

– In this case, we have another ‘in place’ algorithm.

• In fact, there are a plethora of forms for the FFT.

– For example, there is an algorithm in which the input and output appear in normal

ordering, but where there is no possibility of ‘in place’ computation.

• It is clear from equations (122) and (123) that, in order to compute the inverse DFT it

suffices to change, in the graphs of Figures 9 or 11, the terms Wk
N to W−k

N and

divide the output of the graph by N.

128

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• An interesting interpretation of the FFT algorithms can be found if we look at the

matrix form of the DFT in equation (39),

X = WNx (148)

• The matrix form is widely used for describing fast transform algorithms.

• For instance, the decimation-in-time FFT algorithm can be represented in matrix form

if we notice that equations (143) and (144), corresponding to the basic cell in

Figure 8, can be expressed in matrix form as




Xi(k)

Xi(k + L
2
)



 =





1 Wk
L

1 W
k+ L

2

L









Xie(k)

Xio(k)



 (149)

• Then the graph in Figure 9 can be expressed as

X = F
(8)

8 F
(4)

8 F
(2)

8 P8x (150)

129

Diniz, da Silva and Netto

where

P8 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(151)

corresponds to the bit-reversal operation onto the indexes of the input vector x,

130

Diniz, da Silva and Netto

F
(2)

8 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 W0
2 0 0 0 0 0 0

1 W1
2 0 0 0 0 0 0

0 0 1 W0
2 0 0 0 0

0 0 1 W1
2 0 0 0 0

0 0 0 0 1 W0
2 0 0

0 0 0 0 1 W1
2 0 0

0 0 0 0 0 0 1 W0
2

0 0 0 0 0 0 1 W1
2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(152)

corresponds to the basic cells of the first stage,

131

Diniz, da Silva and Netto

F
(4)

8 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 W0
4 0 0 0 0 0

0 1 0 W1
4 0 0 0 0

1 0 W2
4 0 0 0 0 0

0 1 0 W3
4 0 0 0 0

0 0 0 0 1 0 W0
4 0

0 0 0 0 0 1 0 W1
4

0 0 0 0 1 0 W2
4 0

0 0 0 0 0 1 0 W3
4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(153)

corresponds to the basic cells of the second stage, and

132

Diniz, da Silva and Netto

F
(8)

8 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 W0
8 0 0 0

0 1 0 0 0 W1
8 0 0

0 0 1 0 0 0 W2
8 0

0 0 0 1 0 0 0 W3
8

1 0 0 0 W4
8 0 0 0

0 1 0 0 0 W5
8 0 0

0 0 1 0 0 0 W6
8 0

0 0 0 1 0 0 0 W7
8

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(154)

corresponds to the basic cells of the third stage.

• Comparing equations (148) and (150), one can see the FFT algorithm in Figure 9 as

a factorization of the DFT matrix W8 such that

W8 = F
(8)

8 F
(4)

8 F
(2)

8 P8 (155)

• This factorization corresponds to a fast algorithm because the matrices F
(8)

8 , F
(4)

8 ,

F
(2)

8 , and P8 have most elements equal to zero.

133

Diniz, da Silva and Netto

Radix-2 algorithm with decimation in time

• Because of that, the product by each matrix above can be effected at the expense of

at most 8 complex multiplications.

• An exception if the product by P8, that, being just a permutation, requires no

multiplications at all.

• Equations (150)–(155) exemplify the general fact that each different FFT algorithm

corresponds to a different factorization of the DFT matrix WN into sparse matrices.

– For example, the reduction in complexity achieved by replacing Figure 8

(equations (143) and (144)) by Figure 10 (equation (146)) is equivalent to

factoring the matrix in equation (149) as




1 Wk
L

1 W
k+ L

2

L



 =





1 1

1 −1









1 0

0 Wk
L



 (156)

134

Diniz, da Silva and Netto

Decimation in frequency

• An alternative algorithm for the fast computation of the DFT can be obtained using

decimation in frequency, that is, division of X(k) into subsequences. The algorithm

is generated as follows:

X(k) =

N−1∑

n=0

x(n)Wnk
N

=

N
2

−1∑

n=0

x(n)Wnk
N +

N−1∑

n= N
2

x(n)Wnk
N

=

N
2

−1∑

n=0

x(n)Wnk
N +

N
2

−1∑

n=0

x

(

n +
N

2

)

W
N
2

k

N Wnk
N

=

N
2

−1∑

n=0

(

x(n) + W
N
2

k

N x

(

n +
N

2

))

Wnk
N (157)

135

Diniz, da Silva and Netto

Decimation in frequency

• We can now compute the even and odd samples of X(k) separately, that is

X(2l) =

N
2

−1∑

n=0

(

x(n) + WNl
N x

(

n +
N

2

))

W2nl
N

=

N
2

−1∑

n=0

(

x(n) + x

(

n +
N

2

))

W2nl
N (158)

for l = 0, 1, . . .,
(

N
2

− 1
)

, and

136

Diniz, da Silva and Netto

Decimation in frequency

X(2l + 1) =

N
2

−1∑

n=0

(

x(n) + W
(2l+1) N

2

N x

(

n +
N

2

))

W
(2l+1)n

N

=

N
2

−1∑

n=0

(

x(n) − x

(

n +
N

2

))

W
(2l+1)n

N

=

N
2

−1∑

n=0

[(

x(n) − x

(

n +
N

2

))

Wn
N

]

W2ln
N (159)

for l = 0, 1, . . .,
(

N
2

− 1
)

.

137

Diniz, da Silva and Netto

Decimation in frequency

• Equations (158) and (159) can be recognized as DFTs of length N
2

, since

W2ln
N = Wln

N
2

. Before computing these DFTs, we have to compute the two

intermediate signals Se(n) and So(n), of length N
2

, given by

Se(n) = x(n) + x

(

n +
N

2

)

So(n) =

(

x(n) − x

(

n +
N

2

))

Wn
N






(160)

• Naturally, the above procedure can be repeated for each of the DFTs of length N
2

,

thus generating DFTs of length N
4

, N
8

, and so on.

138

Diniz, da Silva and Netto

Decimation in frequency

• Therefore, the basic cell used in the decimation-in-frequency computation of the DFT

is characterized by

Sie(n) = Si(n) + Si

(

n +
L

2

)

Sio(n) =

(

Si(n) − Si

(

n +
L

2

))

Wn
L






(161)

where Sie(n) and Sio(n) have length L
2

, and Si(n) has length L.

• The graph of such a basic cell is depicted in Figure 12.
11

−1

1

1

L
nW

S (n)io

S (n)ieS (n)i

S (n+L)i
2

Figure 12: Basic cell of the decimation-in-frequency FFT algorithm.

139

Diniz, da Silva and Netto

Decimation in frequency

• Figure 13 shows the complete decimation-in-frequency FFT algorithm for N = 8.

• It is important to note that, in this algorithm, the input sequence x(n) is in normal

ordering and the output sequence X(k) is in bit-reversed ordering.

• Also, comparing Figures 11 and 13, it is interesting to see that one graph is the

transpose of the other.

140

Diniz, da Silva and Netto

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

0
WN

3

–1–1

0

0

0

0

0

W
0

N

WN

WN
2

–1

–1

–1

–1

–1 –1

–1

–1

–1

–1

X(1)

X(5)

X(3)

X(4)

X(2)

X(6)

X(7)

WN
4

WN
4

WN
4

WN
4

WN
2

WN
2

WN
2

WN
2

Figure 13: Graph of the decimation-in-frequency 8-point FFT algorithm.

141

Diniz, da Silva and Netto

Radix-4 algorithm

• If N = 22l, instead of using radix-2 algorithms, we can use radix-4 FFT algorithms,

which can give us additional economy in the required number of complex

multiplications.

• The derivation of the radix-4 algorithms parallels those of the radix-2 ones.

• If we use decimation-in-time, a length-N sequence is divided into 4 sequences of

length N
4

such that

142

Diniz, da Silva and Netto

Radix-4 algorithm

X(k) =

N
4

−1∑

m=0

x(4m)W4mk
N +

N
4

−1∑

m=0

x(4m + 1)W
(4m+1)k

N

+

N
4

−1∑

m=0

x(4m + 2)W
(4m+2)k

N +

N
4

−1∑

m=0

x(4m + 3)W
(4m+3)k

N

=

N
4

−1∑

m=0

x(4m)Wmk
N
4

+ Wk
N

N
4

−1∑

m=0

x(4m + 1)Wmk
N
4

+ W2k
N

N
4

−1∑

m=0

x(4m + 2)Wmk
N
4

+ W3k
N

N
4

−1∑

m=0

x(4m + 3)Wmk
N
4

=

3∑

l=0

Wlk
N

N
4

−1∑

m=0

x(4m + l)Wmk
N
4

(162)

143

Diniz, da Silva and Netto
• We can rewrite the above equation as

X(k) =

3∑

l=0

Wlk
N Fl(k) (163)

where each Fl(k) can be computed using 4 DFTs of length N
16

, as shown below

Fl(k) =

N
4

−1∑

m=0

x(4m + l)W
mk
N
4

=

N
16

−1∑

q=0

x(16q + l)W
4qk
N
4

+ W
k
N
4

N
16

−1∑

q=0

x(16q + 4 + l)W
4qk
N
4

+ W
2k
N
4

N
16

−1∑

q=0

x(16q + 8 + l)W
4qk
N
4

+ W
3k
N
4

N
16

−1∑

q=0

x(16q + 12 + l)W
4qk
N
4

=

3∑

r=0

W
rk
N
16

N
16

−1∑

q=0

x(16q + 4r + l)W
qk
N
16

(164)

144

Diniz, da Silva and Netto

Radix-4 algorithm

• This process is recursively applied until we have to compute N
4

DFTs of length 4.

• From equation (163), we can see that the basic cell implements the equations below

when computing a DFT S(k) of length L using 4 DFTs of length L
4

,

Sl(k), l = 0, 1, 2, 3.

S(k)=

3∑

l=0

Wlk
L Sl(k)

S
(

k + L
4

)

=

3∑

l=0

W
l(k+ L

4
)

L Sl(k) =

3∑

l=0

Wlk
L (− j)lSl(k)

S
(

k + L
2

)

=

3∑

l=0

W
l(k+ L

2
)

L Sl(k) =

3∑

l=0

Wlk
L (−1)lSl(k)

S
(

k + 3L
4

)

=

3∑

l=0

W
l(k+ 3L

4
)

L Sl(k) =

3∑

l=0

Wlk
L (j)lSl(k)






(165)

145

Diniz, da Silva and Netto

• The corresponding graph for the radix-4 butterfly is shown in Figure 14.

S (k)

–j

j

–1

–1

–1

– j

j

–1

S (k +)L
4

S (k +)L
2

S (k +)3L
4

W 3k
L

W
2k

L

W k
L

S (k)3

S (k)

S (k)

S (k)

2

1

0

Figure 14: Basic cell of the radix-4 FFT algorithm.

• As an illustration of the radix-4 algorithm, Figure 15 shows a sketch of the

computation of a DFT of length 64 using a radix-4 FFT.

146

Diniz, da Silva and Netto

Powers
 of

X(63)

S(4)

S(N –
1)

S(0)
X(0)

WN
16

The coefficients

 are powers of

 WN

WN
4

WN
4

WN
4

WN
4

S()3N
4

S()N
2

S()N
4

Figure 15: Sketch of a length-64 DFT using a radix-4 FFT algorithm.

147

Diniz, da Silva and Netto

Radix-4 algorithm

• As can be deduced from Figure 14 and equation (164), at each stage of the

application of the radix-4 FFT algorithm we need N complex multiplications and 3N

complex additions, giving a total number of complex operations of

M(N) = N log4 N =
N

2
log2 N (166)

A(N) = 3N log4 N =
3N

2
log2 N (167)

• Apparently, the radix-4 algorithms do not present any advantage when compared

to radix-2 algorithms.

148

Diniz, da Silva and Netto

Radix-4 algorithm

• However, the number of additions in the radix-4 basic cell can be decreased if we

note from Figure 14 and equation (165) that the quantities

W0
LS0(k) + W2k

L S2(k)

W0
LS0(k) − W2k

L S2(k)

Wk
LS1(k) + W3k

L S3(k)

Wk
LS1(k) − W3k

L S3(k)






(168)

are each computed twice, unnecessarily.

• By exploiting this fact, the more economical basic cell for the radix-4 algorithm shown

in Figure 16 results, and we decrease the number of complex additions to 2N per

stage, instead of 3N.

149

Diniz, da Silva and Netto

Radix-4 algorithm

–j

1

–1

–1 j

–1

W
3k
L

W
2k
L

W
k

L

S (k)S (k)

S (k)

S (k)

S (k)

0

4
S (k + L)

2
S (k + L)

4
S (k + 3L)

1

2

3

Figure 16: More efficient basic cell of the radix-4 FFT algorithm.

150

Diniz, da Silva and Netto

Radix-4 algorithm

• The number of multiplications can be further decreased if we do not consider the

multiplications by W0
N.

• There is one of them in each basic cell, and three more of them in the basic cells

corresponding to the index k = 0.

• Since there are log4 N stages, we have, in the former case, N
4

log4 N elements

W0
N, while the number of elements corresponding to k = 0 is

3(1 + 4 + 16 + · · · + N
4

) = (N − 1).

• Therefore, the total number of multiplications is given by

M(N) = N log4 N −
N

4
log4 N − N + 1 =

3

8
N log2 N − N + 1 (169)

• Some additional trivial multiplications can also be detected.

151

Diniz, da Silva and Netto

Radix-4 algorithm

• If we then compare equations (147) and (169), we note that the radix-4 algorithm can

be more economical, in terms of the number of overall complex multiplications, than

the radix-2 algorithm.

• It is important to point out that, in general, the shorter the length of the DFTs of the

basic cell of a FFT algorithm, the more efficient it is.

– The exceptions to this rule are the radix-4, -8, -16,. . ., algorithms, where we can

obtain a smaller number of multiplications than in radix-2 algorithms.

• Although the radix-4 algorithm introduced here was based on the decimation-in-time

approach, a similar algorithm based on the decimation-in-frequency method could be

readily obtained.

152

Diniz, da Silva and Netto

Fast Fourier Transform

Example 3.9

Derive the butterfly of the radix-3 DFT exploiting the possible savings in the number of

multiplications and additions.

153

Diniz, da Silva and Netto

Fast Fourier Transform

Solution

X(k) =

2∑

n=0

x(n)Wnk
N

= x(0) + Wk
3 x(1) + W2k

3 x(2)

= x(0) + e− j 2π
3

kx(1) + e− j 4π
3

kx(2) (170)

• Using the above equation and discounting the trivial multiplications, one can compute

the radix-3 butterfly using 6 additions (2 for each value of k) and 4 complex

multiplications (2 for k = 1 and 2 for k = 2).

154

Diniz, da Silva and Netto

Fast Fourier Transform

• By further developing equation (170), we have

X(0) = x(0) + x(1) + x(2) (171)

X(1) = x(0) + e− j 2π
3 x(1) + e− j 4π

3 x(2)

= x(0) + e− j 2π
3 x(1) + e j 2π

3 x(2)

= x(0) + W3x(1) + W−1
3 x(2) (172)

X(2) = x(0) + e− j 4π
3 x(1) + e− j 8π

3 x(2)

= x(0) + e j 2π
3 x(1) + e

4π
3 x(2)

= x(0) + e j 2π
3

(

x(1) + e j 2π
3 x(2)

)

= x(0) + W−1
3

(

x(1) + W−1
3 x(2)

)

(173)

• From equations (171) to (173), we can compute the radix-3 butterfly using the graph

in Figure 17, that uses 6 additions and 3 complex multiplications, a saving of 1

complex multiplication relative to the solution in equation (170).

155

Diniz, da Silva and Netto

Fast Fourier Transform

W3

x(0)

x(1)

x(2)

W
−1

3
W
−1

3

X(0)

X(1)

X(2)

Figure 17: Efficient butterfly for the radix-3 DFT in Example 153.

△

156

Diniz, da Silva and Netto

Algorithms for arbitrary values of N

• Efficient algorithms for the computation of DFTs having a generic length N are

possible provided that N is not prime.

• In such cases, we can decompose N as a product of factors

N = N1N2N3 · · ·Nl = N1N2→l (174)

where N2→l = N2N3 · · ·Nl.

• We can then initially divide the input sequence into N1 sequences of length N2→l,

thus writing the DFT of x(n) as

157

Diniz, da Silva and Netto

X(k) =

N−1∑

n=0

x(n)W
nk
N

=

N2→l−1∑

m=0

x(N1m)W
mN1k

N +

N2→l−1∑

m=0

x(N1m + 1)W
mN1k+k

N + · · ·

+

N2→l−1∑

m=0

x(N1m + N1 − 1)W
mN1k+(N1−1)k

N

=

N2→l−1∑

m=0

x(N1m)W
mk
N2→l

+ W
k
N

N2→l−1∑

m=0

x(N1m + 1)W
mk
N2→l

+ W
2k
N

N2→l−1∑

m=0

x(N1m + 2)W
mk
N2→l

+ · · ·

+ W
(N1−1)k

N

N2→l−1∑

m=0

x(N1m + N1 − 1)W
mk
N2→l

=

N1−1∑

r=0

W
rk
N

N2→l−1∑

m=0

x(N1m + r)W
mk
N2→l

(175)

158

Diniz, da Silva and Netto

Algorithms for arbitrary values of N

• This equation can be interpreted as being the computation of a length-N DFT using

N1 DFTs of length N2→l.

• We then need N1N2
2→l complex multiplications to compute the N1 mentioned

DFTs, plus N(N1 − 1) complex multiplications to compute the products of Wrk
N

with the N1 DFTs.

• We can continue this process by computing each of the N1 DFTs of length N2→l

using N2 DFTs of length N3→l, where N3→l = N3N4 · · ·Nl, and so on, until all

the DFTs have length Nl.

159

Diniz, da Silva and Netto

Algorithms for arbitrary values of N

• It can be shown that in such a case the total number of complex multiplications is

given by

M(N) = N(N1 + N2 + · · · + Nl−1 + Nl − l) (176)

– For example, if N = 63 = 3 × 3 × 7 we have that

M(N) = 63(3 + 3 + 7 − 3) = 630.

– It is interesting to note that in order to compute a length-64 FFT we need only 384

complex multiplications if we use a radix-2 algorithm.

• This example reinforces the idea that we should, as a rule of thumb, divide N into

factors as small as possible.

• In practice, whenever possible, the input sequences are zero-padded to force N to

be a power of 2.

• As seen in the example above, this usually leads to an overall economy in the

number of multiplications.

160

Diniz, da Silva and Netto

Alternative techniques for determining the DFT

• The algorithms for efficient computation of the DFT presented in the previous

subsections are generically called FFT algorithms.

• They were, for a long time, the only known methods to enable the efficient

computation of long DFTs.

• In 1976, however, Winograd showed that there are algorithms with smaller

complexity than the FFTs.

• These algorithms are based on convolution calculations exploring ‘number-theoretic’

properties of the addresses of the data.

• These algorithms are denominated Winograd Fourier transform (WFT) algorithms.

• In terms of practical implementations, the WFT has a smaller number of complex

multiplications than the FFT, at the expense of a more complex algorithm.

161

Diniz, da Silva and Netto

Alternative techniques for determining the DFT

• This gives an advantage to the WFT in many cases. However, the FFTs are more

modular, which is an advantage in hardware implementations, especially in very

large scale integration (VLSI).

• The main disadvantage of the WFT in this case is the complexity of the control path.

• Therefore, when implemented in special-purpose digital signal processors (DSPs)

the FFTs have a clear advantage.

• This is so because multiplications are not a problem in such processors, and the

more complex algorithms of the WFT make it slower than the FFTs in most cases.

• Another class of techniques for the computation of convolutions and DFTs is given by

the number-theoretic transform (NTT), which explores number-theoretic properties of

the data.

• NTT techniques have practical implementations in machines with modular arithmetic.

• Also, they are useful for computations using hardware based on residue arithmetic.

162

Diniz, da Silva and Netto

Other discrete transforms

• As seen in the previous sections, the DFT is a natural discrete-frequency

representation for finite-length discrete signals, consisting of uniformly spaced

samples of the Fourier transform.

• The direct and inverse DFTs can be expressed in matrix form as given by

equations (39) and (40), repeated here for the reader’s convenience

X = WNx (177)

x =
1

N
W∗

NX (178)

where {WN}ij = W
ij
N.

• Now, let AN be a matrix of dimensions N × N, such that

A−1
N = γA∗T

N (179)

where the superscript T and asterisk denote the matrix transposition and complex

conjugate operations, respectively, and γ is a constant.

163

Diniz, da Silva and Netto

Other discrete transforms

• Using AN, we can generalize the definition in equations (177) and (178) to

X = ANx (180)

x = γA∗T

NX (181)

• Equations (180) and (181) represent several discrete transforms which are frequently

employed in signal processing applications.

• In the next subsection we will see that Parseval’s theorem is also valid for discrete

transforms in general, and discuss some of its implications.

164

Diniz, da Silva and Netto

Discrete transforms and Parseval’s theorem

• Before proceeding, it is interesting to define some important operations between two

vectors v1, v2 ∈ C
N:

– The inner product between v2 and v1 is defined as

〈v2, v1〉 = v∗
T

1 v2 (182)

– The norm of vector v is defined as

‖v‖2 = 〈v, v〉 = v∗
T

v (183)

– The angle θ between two vectors v2 and v1 is defined as

cos θ =
〈v2, v1〉
‖v1‖‖v2‖

=
v∗

T

1 v2

‖v1‖‖v2‖
(184)

165

Diniz, da Silva and Netto

Discrete transforms and Parseval’s theorem

• Given two length-N signals x1(n) and x2(n) (x1 and x2 in vector form), and their

respective transforms X1(k) and X2(k) (X1 and X2 in vector form), according to

equations (180) and (181), we have that

N−1∑

k=0

X1(k)X∗
2(k) = X∗T

2 X1

= (ANx2)∗
T

ANx1 = x∗
T

2 A∗T

NANx1

= x∗
T

2

(

1

γ
A−1

N

)

ANx1 =
1

γ
x∗

T

2 x1

=
1

γ

N−1∑

n=0

x1(n)x∗
2(n) (185)

• The above equation when γ = 1
N

is equivalent to the Parseval’s relation in

equation (87).

166

Diniz, da Silva and Netto

Discrete transforms and Parseval’s theorem

• If x1(n) = x2(n) = x(n), equation (185) becomes

‖X‖2
=

1

γ
‖x‖2

(186)

• An interesting property of transforms as defined by equations (180) and (181) is

related to the angle between two vectors as defined by equation (184).

167

Diniz, da Silva and Netto

Discrete transforms and Parseval’s theorem

• We have that the angles θx between x1 and x2 and θX between their transforms X1

and X2 satisfy

cos θx =
x∗

T

1 x2

‖x1‖ ‖x2‖

=
(γA∗T

NX1)∗
T

(γA∗T

NX2)√
γ‖X1‖

√
γ‖X2‖

=
γX∗T

1 ANγ
(

1
γ

A−1
N

)

X2

γ‖X1‖ ‖X2‖

=
X∗T

1 X2

‖X1‖ ‖X2‖
= cos θX (187)

that is, transforms do not change the angles between vectors.

168

Diniz, da Silva and Netto

Discrete transforms and Parseval’s theorem

• A special case of transforms is when γ = 1. These are referred to as unitary

transforms.

• For unitary transforms, equation (186) means that the energy in the transform

domain is equal to the energy in the time domain, or, equivalently, unitary transforms

do not change the length of vectors.

• If we consider this property together with the one expressed by equation (187), we

see that neither angles nor lengths are changed under unitary transforms.

– This is equivalent to saying that unitary transforms are just rotations in C
N.

169

Diniz, da Silva and Netto

Discrete transforms and Parseval’s theorem

• Note that γ = 1
N

for the DFT as defined in equations (177) and (178).

– A unitary definition of the DFT would be

X =
1√
N

WNx (188)

x =
1√
N

W∗
NX (189)

where {WN}ij = W
ij
N. This unitary version is often used when one needs strict

energy conservation between time and frequency domains.

170

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• Two vectors v1 and v2 are orthogonal if their inner product is null, that is,

〈v2, v1〉 = v∗
T

1 v2 = 0 (190)

• Equation (190), together with equation (184), implies that the angle between two

orthogonal vectors is θ = π
2

.

• The transforms as defined in equation (179) have an interesting interpretation when

we consider the orthogonality concept.

• We can express matrix AN as composed by its rows:

AN =

















a∗
T

0

a∗
T

1

...

a∗
T

N−1

















(191)

where a∗
T

k is the kth row of matrix AN.

171

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• As we have seen above, the transform definition in equations (180) and (181)

implies equation (179), which is equivalent to

ANA∗T

N =
1

γ
IN (192)

172

Diniz, da Silva and Netto

Expressing AN as in equation (191), the above equation becomes

ANA∗
T

N =

2

6

6

6

6

6

6

4

a∗
T

0

a∗
T

1

...

a∗
T

N−1

3

7

7

7

7

7

7

5

h

a0 a1 · · · aN−1

i

=

2

6

6

6

6

6

6

4

a∗
T

0 a0 a∗
T

0 a1 · · · a∗
T

0 aN−1

a∗
T

1 a0 a∗
T

1 a1 · · · a∗
T

1 aN−1

...
... · · ·

...

a∗
T

N−1a0 a∗
T

N−1a1 · · · a∗
T

N−1aN−1

3

7

7

7

7

7

7

5

=
1

γ
IN

=
1

γ

2

6

6

6

6

6

6

4

1 0 · · · 0

0 1 · · · 0

...
... · · ·

...

0 0 · · · 1

3

7

7

7

7

7

7

5

(193)

173

Diniz, da Silva and Netto

Discrete transforms and orthogonality

which is the same as saying that

a∗
T

k al =
1

γ
δ(k − l) (194)

• Therefore, we can conclude that the rows of a transform matrix AN are orthogonal,

that is, the angle between any pair of distinct rows is equal to π
2

.

• In addition, the constant γ is such that

γ =
1

a∗
T

k ak

=
1

‖ak‖2
(195)

174

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• Now, expressing the direct transform in equation (180) as a function of the rows of

AN we have that

X =

















X(0)

X(1)

...

X(N − 1)

















=

















a∗
T

0

a∗
T

1

...

a∗
T

N−1

















x =

















a∗
T

0 x

a∗
T

1 x
...

a∗
T

N−1x

















(196)

that is,

X(k) = a∗
T

k x = 〈x, ak〉 (197)

175

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• Likewise, expressing the inverse transform in equation (181) as a function of the

columns of A∗T

N, we have that

x = γ
[

a0 a1 · · · aN−1

]

X

= γ
[

a0 a1 · · · aN−1

]

















X(0)

X(1)

...

X(N − 1)

















=

N−1∑

k=0

γX(k)ak (198)

• The above equation means that a transform expresses a vector x as a linear

combination of N orthogonal vectors ak, for k = 0, 1, . . . , (N − 1).

176

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• The coefficients of this linear combination are proportional to the transform

coefficients X(k).

• Furthermore, from equation (197), X(k) is equal to the inner product between the

vector x and the vector ak.

• We take this interpretation one step further by observing that orthogonality of the

vectors ak imply that γ is given by equation (195).

177

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• Replacing this value of γ and the value of X(k) from equation (197) in

equation (198), we get

x =

N−1∑

k=0

„

1

‖ak‖2

«

︸ ︷︷ ︸
γ

“

a∗
T

k x
”

︸ ︷︷ ︸
X(k)

ak

=

N−1∑

k=0

a∗
T

k x

‖ak‖

!

ak

‖ak‖

=

N−1∑

k=0

fi

x,
ak

‖ak‖

fl

ak

‖ak‖
(199)

• From the above equation, one can interpret the transform as a representation of a

signal using an orthogonal basis of vectors ak, for k = 0, 1, . . . , (N − 1).

– The transform coefficient X(k) is proportional to the component of vector x in the

direction of the basis vector ak, which corresponds to the projection p of x on

the unit-norm vector ak

‖ak‖ , that is, p =
〈

x, ak

‖ak‖

〉

.

178

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• If the transform is unitary, then γ = 1, which implies, from equation (195), that

‖ak‖ = 1.

• In this case, vectors ak are said to form an orthonormal basis, such that

equation (199) becomes

x =

N−1∑

k=0

〈x, ak〉 ak (200)

that is, the transform coefficient X(k) is equal to the projection of vector x on the

unit-norm basis vector ak.

179

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• The canonical basis is formed by the vectors ek, for k = 0, 1, . . . , (N − 1), such

that
















e0

e1

...

eN−1

















=

















1 0 · · · 0

0 1 · · · 0

...
... · · ·

...

0 0 · · · 1

















(201)

• The vectors ek form an orthonormal set that is an orthonormal basis of C
N.

– In this basis, the nth component of any vector x can be expressed as

x(n) = e∗
T

n x = 〈x, en〉 (202)

• From the above equation, we see that the samples of x are its projections (or

coordinates) on the canonical basis.

180

Diniz, da Silva and Netto

Discrete transforms and orthogonality

• Since all orthonormal basis are rotations of one another, and any unitary transform is

a projection on an orthonormal basis, this confirms the statement made earlier that

all orthonormal transforms are just rotations in C
N.

• In the remainder of this section we describe some of the most commonly employed

discrete transforms.

181

Diniz, da Silva and Netto

Discrete cosine transform

• The length-N discrete cosine transform (DCT) of a signal x(n) can be defined as

C(k) = α(k)

N−1∑

n=0

x(n) cos

[

π(n + 1
2
)k

N

]

, for 0 ≤ k ≤ N − 1 (203)

where

α(k) =






√

1
N

, for k = 0

√

2
N

, for 1 ≤ k ≤ N − 1

(204)

• Accordingly, the inverse DCT is given by

x(n) =

N−1∑

k=0

α(k)C(k) cos

[

π(n + 1
2
)k

N

]

, for 0 ≤ n ≤ N − 1 (205)

• Note that the DCT is a real transform, that is, it maps a real signal into real DCT

coefficients.

182

Diniz, da Silva and Netto

Discrete cosine transform

• From equations (203)–(205), we can define the DCT matrix CN by

{CN}kn = α(k) cos

[

π(n + 1
2
)k

N

]

(206)

and the matrix form of the DCT becomes

c = CNx (207)

x = CT
Nc (208)

• Note that for the above equations to be valid, C−1
N = CT

N, which, together with the

fact that CN is a real matrix, implies that the matrix CN is unitary.

• As seen earlier, the Parseval theorem is valid, and the DCT can be considered a

rotation in C
N (and also in R

N, since it is a real transform).

183

Diniz, da Silva and Netto

Discrete cosine transform

• The DCT basis functions ck are the conjugate transpose of the rows of CN (see

equation (191)), and are thus given by

ck(n) = {CN}
∗
kn

= α(k) cos

[

π(n + 1
2
)k

N

]

= α(k) cos

(

2π

2N
kn +

π

2N
k

)

(209)

that are sinusoids of frequencies ωk = 2π
2N

kn, for k = 0, 1, . . . , (N − 1).

– Thus, the DCT, besides being a rotation in RN, decomposes a signal as a sum of

N real sinusoids of frequencies given by ωk above.

• The DCT enjoys another very important property: When applied to signals such as

voice and video, most of the transform energy is concentrated in few coefficients.

184

Diniz, da Silva and Netto

Discrete cosine transform

• For example, in Figure 18a, we can see a digital signal x(n) corresponding to one

line of a digitized television signal, and in Figure 18b, we show its DCT coefficients

C(k).

• It can be seen that the energy of the signal more or less evenly spread among its

samples, while it is mostly concentrated in the first transform coefficients.

• Due to this property, the DCT is widely used in video compression schemes,

because the coefficients with lowest energy can be discarded during transmission

without introducing significant distortion in the original signal.

• In fact, the DCT is part of most of the digital video broadcasting systems in operation

in the world.

185

Diniz, da Silva and Netto

0
 50
 100
 150
 200
 250
 300
 350
 400

–0.1

–0.2

–0.3

–0.4

–0.5

0

0.1

0.2

0.3

n

x(
n)

0
 50
 100
 150
 200
 250
 300
 350
 400

–1

–0.8

–0.6

–0.4

–0.2

k

C
(k

)

0.8

0.6

0.4

0.2

0

(a) (b)

Figure 18: The DCT of a video signal: (a) discrete-time video signal x(n); (b) DCT of

x(n).

186

Diniz, da Silva and Netto

Discrete cosine transform

• Since the DCT is based on sinusoids and cos(x) = 1
2
(e jx + e− jx), then in the

worst case the DCT of x(n) can be computed using one length-2N DFT.

• This can be deduced by observing that

cos

[

π(n + 1
2
)k

N

]

= cos

(

2π

2N
kn +

π

2N
k

)

=
1

2

[

e j(2π
2N

kn+ π
2N

k) + e− j(2π
2N

kn+ π
2N

k)
]

=
1

2

(

W
k
2

2NWkn
2N + W

− k
2

2N W−kn
2N

)

(210)

187

Diniz, da Silva and Netto

which implies that

C(k) = α(k)

N−1∑

n=0

x(n) cos

[

π(n + 1
2
)k

N

]

=
1

2

(

α(k)W
k
2

2N

N−1∑

n=0

x(n)Wkn
2N + α(k)W

− k
2

2N

N−1∑

n=0

x(n)W−kn
2N

)

=
1

2
α(k)

(

W
k
2

2N DFT2N {x̂(n)} (k) + W
− k

2

2N DFT2N {x̂(n)} (−k)
)

(211)

for 0 ≤ k ≤ N − 1, where x̂(n) is equal to x(n) zero-padded to length 2N.

– Note that the second term in the above equation is equivalent to the first one

computed at the index −k.

– Therefore, we actually need to compute only one length-2N DFT.

• One can see that the algorithm in equation (211) has a complexity of one length-2N

DFT, plus the 2N multiplications by Wk
2N, which gives a total of

(2N + 2N log2 2N) complex multiplications.

188

Diniz, da Silva and Netto

Discrete cosine transform

• However, there are other fast algorithms for the DCT which give a complexity of the

order of N log2 N real multiplications.

• The graph of one popular fast DCT algorithm for N = 8 is shown in Figure 19.

–cπ/4

–cπ/4

cπ/4

cπ/4

cπ/4

cπ/8

cπ/16

c3π/16

c5π/16

c7π/16

cπ/4

cπ/4

c3π/8

–s3π/8

sπ/8

sπ/16

s5π/16

–s7π/16

–s3π/16cπ/4

–1

–1

–1

–1

–1

–1

–1

–1

x (1)

x (2)

x (0)

x (3)

x (4)

x (5)

x (6)

x (7)

C(0)

C(4)

C(6)

C(1)

C(5)

C(3)

C(7)

C(2)

Figure 19: A fast algorithm for the computation of a length-8 DCT. In this graph, cx corre-

sponds to cos x and sx corresponds to sin x.

189

Diniz, da Silva and Netto

Discrete cosine transform

• This graph corresponds to the following factorization of C8:

C8 = P8A4A3A2A1 (212)

where

190

Diniz, da Silva and Netto

Discrete cosine transform

A1 =







































1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 1 −1 0 0 0

0 0 1 0 0 −1 0 0

0 1 0 0 0 0 −1 0

1 0 0 0 0 0 0 −1







































(213)

191

Diniz, da Silva and Netto

Discrete cosine transform

A2 =







































1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 1 − 1 0 0 0 0 0

1 0 0 − 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 − cos π
4

cos π
4

0

0 0 0 0 0 cos π
4

cos π
4

0

0 0 0 0 0 0 0 1







































(214)

192

Diniz, da Silva and Netto

Discrete cosine transform

A3 =







































cos π
4

cos π
4

0 1 0 0 0 0

cos π
4

− cos π
4

0 0 0 0 0 0

0 0 sin π
8

cos π
8

0 0 0 0

0 0 −sin 3π
8

cos 3π
8

0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 1 1







































(215)

193

Diniz, da Silva and Netto

Discrete cosine transform

A4 =







































1 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 sin π
16

0 0 cos π
16

0 0 0 0 0 sin 5π
16

cos 5π
16

0

0 0 0 0 0 − sin 3π
16

cos 3π
16

0

0 0 0 0 − sin 7π
16

0 0 cos 7π
16







































(216)

194

Diniz, da Silva and Netto

Discrete cosine transform

and P8 is given by equation (151), corresponding to the placement in normal ordering of

the bit-reversed indexes of the output vector c.

• Note that the operation corresponding to P8 is not shown in Figure 19.

• After discounting the trivial multiplications, we have that, for a generic N = 2l, the

numbers of real multiplications M(N) and real additions A(N) in this fast

implementation of the DCT are

M(N) = N log2 N −
3N

2
+ 4 (217)

A(N) =
3N

2
(log2 N − 1) + 2 (218)

195

Diniz, da Silva and Netto

A family of sine and cosine transforms

• The DCT is a particular case of a more general class of transforms, whose transform

matrix has its rows composed of sines or cosines of increasing frequency.

• Such transforms have a number of applications including the design of filter banks

(Chapter 9).

• In what follows, we present a brief description of the so-called even forms of the

cosine and sine transforms.

• There are four types of even cosine transforms and four types of even sine

transforms.

196

Diniz, da Silva and Netto

A family of sine and cosine transforms

• Their transform matrices are referred to as CI–IV
N for the cosine transforms and SI–IV

N

for the sine transforms. Their (k, n) elements are given by

{Cx
N}kn =

√

2

N + ǫ1

(αN+ǫ1
(k))

ǫ2 (αN+ǫ1
(n))

ǫ3 cos

[

π(k + ǫ4)(n + ǫ5)

N + ǫ1

]

(219)

{Sx
N}kn =

√

2

N + ǫ1

(αN+ǫ1
(k))

ǫ2 (αN+ǫ1
(n))

ǫ3 sin

[

π(k + ǫ4)(n + ǫ5)

N + ǫ1

]

(220)

where

αγ(k) =






1√
2
, for k = 0 or k = γ

1, for 1 ≤ k ≤ γ − 1

(221)

• The set (ǫ1, ǫ2, ǫ3, ǫ4, ǫ5) defines the transform.

197

Diniz, da Silva and Netto

A family of sine and cosine transforms

• Table 1 gives those values for all even cosine and sine transforms.

• One should note that all these transforms have fast algorithms and are unitary, that is

A−1 = A∗T

.

• For instance, the DCT defined in Subsection 182 is the same as CII
N.

198

Diniz, da Silva and Netto

A family of sine and cosine transforms

Table 1: Definition of the even cosine and sine transforms.

ǫ1 ǫ2 ǫ3 ǫ4 ǫ5

CI
kn −1 1 1 0 0

CII
kn 0 1 0 0 1

2

CIII
kn 0 0 1 1

2
0

CIV
kn 0 0 0 1

2
1
2

SI
kn 1 0 0 0 0

SII
kn 0 1 0 0 −1

2

SIII
kn 0 0 1 −1

2
0

SIV
kn 0 0 0 1

2
1
2

199

Diniz, da Silva and Netto

Discrete Hartley transform

• The discrete Hartley transform (DHT) can be viewed as a real counterpart of the DFT

when it is applied to real signals.

• The definition of a length-N direct DHT is

H(k) =

N−1∑

n=0

x(n) cas

(

2π

N
kn

)

, for 0 ≤ k ≤ N − 1 (222)

where cas x = cos x + sin x.

• Similarly, the inverse DHT is determined by

x(n) =
1

N

N−1∑

k=0

H(k) cas

(

2π

N
kn

)

, for 0 ≤ k ≤ N − 1 (223)

200

Diniz, da Silva and Netto

Discrete Hartley transform

• The Hartley transform is attractive due to the following properties:

– If the input signal is real, the DHT is real.

– The DFT can be easily derived from the DHT and vice versa.

– It has efficient fast algorithms.

– It has a convolution-multiplication property.

• The first property follows trivially from the definition of the DHT.

201

Diniz, da Silva and Netto

Discrete Hartley transform

• The other properties can be derived from the relations between the DFT X(k) and

the DHT H(k) of a real sequence x(n), which are

H(k) = Re{X(k)} − Im{X(k)} (224)

X(k) = E{H(k)} − jO{H(k)} (225)

where the operators E{·} and O{·} correspond to the even and odd parts,

respectively, that is

E{H(k)} =
H(k) + H(−k)

2
(226)

O{H(k)} =
H(k) − H(−k)

2
(227)

202

Diniz, da Silva and Netto

Discrete Hartley transform

• The convolution property (the fourth property above) can be stated more precisely

as, given two arbitrary length-N sequences x1(n) and x2(n), the DHT of their

length-N circular convolution y(n) is given by (from equations (224) and (62))

Y(k) = H1(k)E{H2(k)} + H1(−k)O{H2(k)} (228)

where H1(k) is the DHT of x1(n) and H2(k) is the DHT of x2(n).

• This result is especially useful when the sequence x2(n) is even, which leads to

Y(k) = H1(k)H2(k) (229)

• This equation only involves real functions while equation (62) relates complex

functions to determine Y(k).

• Therefore, in the case x2(n) is even, it is advantageous to use equation (229)

instead of equation (62) for performing convolutions.

203

Diniz, da Silva and Netto

Discrete Hartley transform

• To conclude, we can say that the DHT, as a signal representation, is not as widely

used in practice as the DFT or the DCT.

• However, it has been used in a large range of applications as a tool to perform fast

convolutions, as well as a tool to compute FFTs and fast DCTs.

204

Diniz, da Silva and Netto

Hadamard transform

• The Hadamard transform, also known as the Walsh-Hadamard transform, is a

transform that is not based on sinusoidal functions, unlike the other transforms seen

so far.

• Instead, the elements of its transform matrix are either 1 or −1. When N = 2n, its

transform matrix is defined by the following recursion:

H1 =
1√
2





1 1

1 −1





Hn =
1√
2





Hn−1 Hn−1

Hn−1 −Hn−1



 (230)

• From the above equations, it is easy to see that the Hadamard transform is unitary.

205

Diniz, da Silva and Netto

Hadamard transform

• For example, a length-8 Hadamard transform matrix is

H3 =
1√
8







































1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1







































(231)

• An important aspect of the Hadamard transform is that, since the elements of its

transform matrix are only either 1 or −1, then the Hadamard transform needs no

multiplications for its computation, leading to simple hardware implementations.

206

Diniz, da Silva and Netto

Hadamard transform

• Because of this fact, the Hadamard transform has been used in digital video schemes

in the past, although its compression performance is not as high as that of the DCT.

• Nowadays, with the advent of specialized hardware to compute the DCT, the

Hadamard transform is used in digital video only in specific cases.

• However, one important area of application of the Hadamard transform today is in

carrier division multiple access (CDMA) systems for mobile communications, where it

is employed as channelization code in synchronous communications systems.

207

Diniz, da Silva and Netto

Hadamard transform
• The Hadamard transform also has a fast algorithm. For example, the matrix H3 can

be factored as:

H3 = A3
8 (232)

where

A8 =
1√
2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(233)

• Therefore, the number of additions of a fast Hadamard transform algorithm is of the

order of N log2 N.

208

Diniz, da Silva and Netto

Other important transforms

Wavelet transforms

• Wavelet transforms constitute a different class of transforms which have become

very popular in the past years.

• They come from the area of functional analysis, and in digital signal processing are

usually studied under the discipline of multirate signal processing.

• Wavelet transforms are studied in Chapter 10 of this book.

209

Diniz, da Silva and Netto

Other important transforms

Karhunen-Loève transform

• As seen earlier, the DCT is widely used in image and video compression because it

has the ability to concentrate the energy of a signal in a few transform coefficients.

• A question that naturally arises is which is the transform that maximizes this energy

concentration.

• Given a statistical distribution of an ensemble of signals, the optimum transform in

terms of this energy compaction capability is the Karhunen-Loève transform (KLT).

• It is defined as the transform that diagonalizes the autocorrelation matrix of a

discrete random process.

• From the above, we see that there is a different KLT for each of the different signal

statistics.

210

Diniz, da Silva and Netto

Other important transforms

• However, it can be shown that the DCT approximates the KLT when the signals can

be modeled as Gauss-Markov processes with correlation coefficients near to 1.

• This is a reasonably good model for several useful signals; probably the best

example of it is given by video signals.

• For them, the DCT is indeed approximately optimum in terms of energy compaction

capability, which explains its widespread use.

211

Diniz, da Silva and Netto

Signal representations

• In Chapters 1–3, we have dealt with several forms of signal representations, both

continuous and discrete.

• We now summarize the main characteristics of those representations.

• We classify them in terms of both the time and frequency variables as continuous or

discrete, as well as real, imaginary, or complex.

• Also, we classify the representations as being periodic or nonperiodic.

• The time-frequency relationship for each transform is shown in Figures 20–25.

212

Diniz, da Silva and Netto

Signal representations

Laplace transform

X(s) =

∫∞

−∞

x(t)e−stdt ←→ x(t) =
1

2π
eσt

∫∞

−∞

X(σ + jω)e jωtdω

(234)

• Time domain: nonperiodic function of a continuous and real-time variable.

• Frequency domain: nonperiodic function of a continuous and complex frequency

variable.

213

Diniz, da Silva and Netto

Signal representations

t

x (t)

…
 ←→

σ

Ω
j

(a) (b)

Figure 20: Laplace transform: (a) continuous-time signal; (b) domain of the corresponding

Laplace transform.

214

Diniz, da Silva and Netto

Signal representations

z transform

X(z) =

∞∑

n=−∞

x(n)z−n ←→ x(n) =
1

2π j

∮

C

X(z)zn−1dz (235)

• Time domain: nonperiodic function of a discrete and integer time variable.

• Frequency domain: nonperiodic function of a continuous and complex frequency

variable.

215

Diniz, da Silva and Netto

Signal representations

n

x(n)

…
 ←→

σ

ω

Re

Im

(a) (b)

Figure 21: z transform: (a) discrete-time signal; (b) domain of the corresponding z trans-

form.

216

Diniz, da Silva and Netto

Signal representations

Fourier transform (continuous time)

X(Ω) =

∫∞

−∞

x(t)e− jΩtdt ←→ x(t) =
1

2π

∫∞

−∞

X(Ω)e jΩtdΩ (236)

• Time domain: nonperiodic function of a continuous and real-time variable.

• Frequency domain: nonperiodic function of a continuous and imaginary frequency

variable.

217

Diniz, da Silva and Netto

Signal representations

t

x (t)

…
 ←→

Ω
2π
π
−π
−2π

Ω
X(
)

(a) (b)

Figure 22: Fourier transform: (a) continuous-time signal; (b) corresponding Fourier trans-

form.

218

Diniz, da Silva and Netto

Signal representations

Fourier transform (discrete time)

X(e jω) =

∞∑

n=−∞

x(n)e− jωn ←→ x(n) =
1

2π

∫∞

−∞

X(e jω)e jωndω (237)

• Time domain: nonperiodic function of a discrete and integer time variable.

• Frequency domain: periodic function of a continuous frequency variable.

n

x(n)

…
 ←→

ω
j
e
X(
)

ω
2π
π
−π
−2π

…
…

(a) (b)

Figure 23: Discrete-time Fourier transform: (a) discrete-time signal; (b) corresponding

discrete-time Fourier transform.

219

Diniz, da Silva and Netto

Signal representations

Fourier series

X(k) =
1

T

∫T

0

x(t)e− j 2π
T

ktdt ←→ x(t) =

∞∑

k=−∞

X(k)e j 2π
T

kt (238)

• Time domain: periodic function of a continuous and real-time variable.

• Frequency domain: nonperiodic function of a discrete and integer frequency variable.

t
0
 2T
T

x(t)

…
 ←→

k

X(k)

(a) (b)

Figure 24: Fourier series: (a) continuous-time periodic signal; (b) corresponding Fourier

series.

220

Diniz, da Silva and Netto

Signal representations

Discrete Fourier transform

X(k) =

N−1∑

n=0

x(n)e− j 2π
N

kn ←→ x(n) =
1

N

N−1∑

k=0

X(k)e j 2π
N

kn (239)

• Time domain: periodic function of a discrete and integer time variable.

• Frequency domain: periodic function of a discrete and integer frequency variable.

n

x(n)

N 2N
0

…
 ←→

N

X(k)

0
 k
–N

…
…

(a) (b)

Figure 25: Discrete Fourier transform: (a) discrete-time signal; (b) corresponding discrete

Fourier transform.

221

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

Experiment 3.1:

• We have seen that the output signal y(n) of a linear, time-invariant, causal filter can

be determined by the linear convolution between the input signal x(n) and the

system impulse response h(n).

• In this experiment, we investigate several ways to perform such an operation using

MATLAB.

• We work here with short-length sequences x(n) and h(n), such as:

x = ones(1,10);

h = [1 2 3 4 5 6 7 8 9 10];

so that the reader can obtain the desired output algebraically in advance.

• Later, we compare the performance of each method seen below for longer

sequences.

222

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

• Given x(n) and h(n), perhaps the easiest way, but not necessarily the most

numerically efficient one, is to employ the command conv:

y1 = conv(x,h);

whose input arguments can be swapped since the convolution operation is

symmetric.

• For a general digital filter with transfer function

H(z) =
B(z)

A(z)
=

b0 + b1z−1 + · · · + bMz−M

a0 + a1z−1 + · · · + aNz−N
, (240)

with a0 6= 0, one can determine the output y(n) to the input x(n) using the

command filter.

• For this command, the input arguments are two vectors, containing the numerator

and denominator coefficients of H(z), and the input signal.

223

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

• In this experiment, where the impulse response h(n) is given, we may use the

command filter assuming that A(z) = 1 and associating h(n) to the

numerator-coefficient vector, such as:

y2 = filter(h,1,x);

• It is interesting to notice that the filter command forces the length of the output

vector to be the same as of the input.

• Therefore, if one wants to determine all non-zero samples of y(n), we must force

x(n) to have the desired output length by padding the original input with the proper

number of zeros:

xaux = [x zeros(1,length(h)-1)];

y3 = filter(h,1,xaux);

224

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

• As mentioned earlier, one can implement the digital filtering operation via the

frequency domain using the FFT.

• To avoid the circular convolution, one must first pad the x(n) and h(n) vectors with

the proper numbers of zeros.

• The easiest way to determine these number of zeros is to remember that the length

of the desired output signal should be the length of the linear convolution of x(n)

and h(n), that is

length(y) = length(x) + length(h) − 1. (241)

225

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

• Hence, we must guarantee that the FFTs of x(n) and h(n) are determined with this

length, as performed by the following script:

length_y = length(x) + length(h) - 1;

X = fft(x,length_y);

H = fft(h,length_y);

Y4 = X.*H;

y4 = ifft(Y4);

– In old MATLAB versions, numerical errors tended to accumulate throughout the

filtering process, generating a complex output sequence, even when x(n) and

h(n) were real signals.

– In these cases, one was forced to use the real command to store only the real

part of the result. Current versions of MATLAB get rid of the spurious imaginary

part of y4 automatically.

226

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

• As mentioned before, this whole experiment was based on short x(n) and h(n)

signals to allow the reader to follow closely all computations performed in MATLAB.

• In practice, if the lengths of these signals are sufficiently short (both of them around

100 coefficients), the simplest and fastest way to perform the digital filtering is with

the conv command.

• If, however, both signals become too lengthy, the frequency domain becomes quite

advantageous in terms of numerical computations.

• In the case where only one of the signals has a long duration, the overlap-and-add

method described earlier can be implemented as:

y5 = fftfilt(h,xaux);

where the FFT size and the segmentation of x(n) are automatically chosen to

guarantee efficient execution.

227

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

• The reader is encouraged to experiment all forms above to perform digital filtering

with distinct input signals and impulse responses.

– Particularly, he/she may increase the length of these signals, to the order of

thousands of samples, in order to verify how the frequency domain becomes an

important tool in several practical situations.

228

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

Experiment 3.2:

• Let us now employ the frequency domain to analyze the contents of a given signal

x(n) composed by a 10-Hz sinusoid corrupted by noise, with Fs = 200 samples/s

for an interval of 1 second, as given by:

fs = 200; f = 10;

time = 0:1/fs:(1-1/fs);

k = 0;

x = sin(2*pi*f.*time) + k*randn(1,fs);

figure(1);

plot(time,x);

where the parameter k controls the amount of noise present in x(n).

229

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

• Figure 26 shows examples of x(n) and Figure 27 depicts the absolute value of the

corresponding FFT for distinct values of k.

• Figure 26 indicates that the sinusoidal component is clearly observed in the time

domain for small amounts of noise, such as when k ≤ 0.5.

– For larger amounts of noise, as when k = 1.5, the frequency domain can then be

employed to detect the sinusoidal component, as well as to estimate its frequency

value, from the position of the dominating peaks in Figure 27.

– However, when k is too large, the sinusoid becomes masked by the noisy

component even in the frequency domain, as observed in Figure 27d.

230

Diniz, da Silva and Netto

(a) (b)

(c) (d)

Figure 26: Sinusoidal signal corrupted with different levels of noise: (a) k = 0; (b) k =

0.5; (c) k = 1.5; (d) k = 3.
231

Diniz, da Silva and Netto

(a) (b)

(c) (d)

Figure 27: Absolute value of FFT of sinusoidal signal corrupted with different levels of

noise: (a) k = 0; (b) k = 0.5; (c) k = 1.5; (d) k = 3.
232

Diniz, da Silva and Netto

Do-it-yourself: Discrete transforms

• One way to deal with the large-noise case is to estimate the spectrum for several

different time segments of x(n) and average the results.

• By doing so, the 10-Hz sinusoidal peaks are present in all FFTs whereas the noise

peaks are randomly located in the different FFTs.

• Therefore, the averaging operation tends to preserve the FFT peaks corresponding

to the 10-Hz sinusoid while attenuating the peaks due to the noise component.

• This approach is left as an exercise for the reader.

233

