
Diniz, da Silva and Netto

Multirate systems

Paulo S. R. Diniz

Eduardo A. B. da Silva

Sergio L. Netto

diniz,eduardo,sergioln@lps.ufrj.br

September 2010

1

Diniz, da Silva and Netto

Contents

• Basic principles

• Decimation

• Interpolation

• Rational sampling-rate changes

• Inverse operations

• Noble identities

• Polyphase decompositions

• Commutator models

2

Diniz, da Silva and Netto

Contents

• Decimation and interpolation for efficient filter implementation

• Overlapped block filtering

• Random signals in multirate systems

• Do-It-Yourself - Multirate systems

3

Diniz, da Silva and Netto

Introduction

• In many applications of digital signal processing it is necessary that different

sampling rates coexist within a given system.

• One common example is when two subsystems working at different sampling rates

have to communicate and the sampling rates must be made compatible.

• Another case is when a wideband digital signal is decomposed into several

non-overlapping narrow-band channels in order to be transmitted.

– In such case, each narrow-band channel may have its sampling rate decreased

until its Nyquist limit is reached, thereby saving transmission bandwidth.

• Here we describe such systems which are generally referred to as multirate systems.

• Multirate systems are used in several applications, ranging from digital filter design to

signal coding and compression, and have been increasingly present in modern

digital systems.

4

Diniz, da Silva and Netto

Basic principles

• Intuitively, any sampling-rate change can be effected by recovering the band-limited

analog signal xa(t) from its samples x(m), and then resampling it with a different

sampling rate, thus generating a different discrete version of the signal, x′(n).

• Supposing:

x(m) generated from an analog signal xa(t) with sampling period T1, band-limited

to [− π
T1

, π
T1

], (x(m) = xa(mT1))

•

xi(t) =

∞∑

m=−∞

x(m)δ(t − mT1) (1)

whose spectrum is periodic with period 2π
T1

.

5

Diniz, da Silva and Netto

Basic principles

• To recover the original analog signal xa(t) from xi(t), the repetitions of the

spectrum must be discarded.

• xi(t) must be filtered with a filter h(t) whose ideal frequency response H(jω) is:

H(jω) =





1, ω ∈ [− π

T1
, π

T1
]

0, otherwise
(2)

and then

xa(t) = xi(t) ∗ h(t) =
1

T1

∞∑

m=−∞

x(m)sinc

[

π

T1

(t − mT1)

]

(3)

6

Diniz, da Silva and Netto

Basic principles

• Resampling xa(t) with period T2 to generate the digital signal x′(n) = xa(nT2),

for n ∈ Z, we have that

x′(n) =
1

T1

∞∑

m=−∞

x(m)sinc

[

π

T1

(nT2 − mT1)

]

(4)

This is the general equation governing sampling-rate changes.

7

Diniz, da Silva and Netto

Basic principles

• There is no restriction on the values of T1 and T2.

• If T2 > T1 and aliasing is to be avoided, the filter in equation (2) must have a

frequency response equal to zero for ω 6∈ [− π
T2

, π
T2

].

• Since equation (4) consists of infinite summations involving the sinc function, it is not

of practical use.

• In general, for rational sampling-rate changes, which covers most cases of interest,

one can derive expressions working solely in the discrete-time domain.

• Special cases are considered: decimation by an integer factor M, interpolation by an

integer factor L, and sampling-rate change by a rational factor L/M.

8

Diniz, da Silva and Netto

Decimation

• To decimate or subsample a digital signal x(m) by a factor of M is to reduce its

sampling rate M times.

• This is equivalent to keeping only every Mth sample of the signal.

• It is represented as in Figure 1.

M

x(m)
 x (n)
d

Figure 1: Block diagram representing the decimation by a factor of M.

9

Diniz, da Silva and Netto

Decimation

0
 m
5
4
3
2
1

1
 2 3 4 5 6 7 8 9
10
 11
0
 n

x(m)

x (n)
d

…

…

Figure 2: Decimation by 2. x(m) = . . . x(0) x(1) x(2) x(3) x(4) . . .; xd(n) = . . .

x(0) x(2) x(4) x(6) x(8) . . .

10

Diniz, da Silva and Netto

Decimation

• The relation between the decimated signal and the original one is

xd(n) = x(nM) (5)

• In the frequency domain, if the spectrum of x(m) is X(e jω), the spectrum of the

decimated signal, Xd(e jω), becomes

Xd(e jω) =
1

M

M−1∑

k=0

X
(

e j ω−2πk
M

)

(6)

11

Diniz, da Silva and Netto

Decimation

• Such a result is reached by first defining x′(m) as

x′(m) =





x(m), m = nM, n ∈ Z

0, otherwise
(7)

which can also be written as

x′(m) = x(m)

∞∑

n=−∞

δ(m − nM) (8)

12

Diniz, da Silva and Netto

Decimation

• The Fourier transform Xd(e jω) is then given by

Xd(e jω) =

∞∑

n=−∞

xd(n)e− jωn

=

∞∑

n=−∞

x(nM)e− jωn

=

∞∑

n=−∞

x′(nM)e− jωn

=

∞∑

l=−∞

x′(l)e− j ω
M

l

=X′(e j ω
M) (9)

13

Diniz, da Silva and Netto

Decimation

• But

X′(e jω) =X(e jω) ⊛ F

{
∞∑

n=−∞

δ(m − nM)

}

=X(e jω) ⊛
2π

M

M−1∑

k=0

δ

(

ω −
2πk

M

)

=
1

M

M−1∑

k=0

X
(

e j(ω− 2πk
M)

)

(10)

• Then, from equation (9),

Xd(e jω) = X′
(

e j ω
M

)

=
1

M

M−1∑

k=0

X
(

e j ω−2πk
M

)

(11)

which is the same as equation (6).

14

Diniz, da Silva and Netto

Decimation

• Equation (6) means that the spectrum of xd(n) is composed of copies of the

spectrum of x(m) expanded by M and repeated with period 2π (which is equivalent

to copies of the spectrum of x(m) repeated with period 2π
M

and then expanded by

M).

• In order to avoid aliasing after decimation, the bandwidth of the signal x(m) must be

limited to the interval [− π
M

, π
M

].

• The decimation operation is generally preceded by a lowpass filter, which

approximates the following frequency response:

Hd(e jω) =





1, ω ∈ [− π

M
, π

M
]

0, otherwise
(12)

15

Diniz, da Silva and Netto

Decimation

e
jωX()

–4π –2π 4π2π ω–2π+ ω – ωω 2π–ωpp pp

(a)

e

j
ω
X (
)

d

–4π
 –2π
 4π
2π
–2π
+ ω
 – 2ω
 ω
2π
 22
 ω
–2ω
p p p p

(b)

Figure 3: Signal spectra of: (a) original digital signal; (b) decimated signal by a factor of

2.

16

Diniz, da Silva and Netto

Decimation

• Including the filtering operation, the decimated signal is obtained by retaining every

Mth sample of the convolution of the signal x(m) with the filter impulse response

hd(m)

xd(n) =

∞∑

m=−∞

x(m)hd(nM − m) (13)

• Some important facts:

– It is time varying, that is, if the input signal x(m) is shifted, the output signal will

not in general be a shifted version of the previous output. More precisely, let DM

be the decimation-by-M operator. If xd(n) = DM{x(m)}, then in general

DM{x(m − k)} 6= xd(n − l), unless k = rM, when

DM{x(m − k)} = xd(n − r). Because of this property, the decimation is

referred to as a periodically time-invariant operation.

– Referring to equation (13), one can see that, if the filter Hd(z) is FIR, its outputs

need only be computed every M samples, which implies that its implementation

17

Diniz, da Silva and Netto

complexity is M times smaller than that of a usual filtering operation. This is not

valid in general for IIR filters, because in such cases one needs all past outputs to

compute the present output, unless the transfer function is of the type

H(z) =
N(z)

D(zM)

18

Diniz, da Silva and Netto

Decimation

• If the frequency range of interest for the signal x(m) is [−ωp, ωp], with

ωp < π
M

, one can afford aliasing outside this range. Therefore, the constraints

upon the filter can be relaxed, yielding the following specifications for Hd(z)

Hd(e jω) =





1, |ω| ∈ [0, ωp]

0, |ω| ∈ [2πk
M

− ωp, 2πk
M

+ ωp], k = 1, 2, . . ., M − 1

(14)

H (z)

d

x(m)

M
 d
x (n)

Figure 4: General decimation operation.

19

Diniz, da Silva and Netto

Decimation

• The decimation filter can be efficiently designed using the optimum FIR

approximation methods.

• In order to do so, one has to define the following parameters:

δp : passband ripple

δr : stopband attenuation

ωp : passband cutoff frequency

ωr1
= (2π

M
− ωp) : first stopband edge






(15)

• In general, it is more efficient to design a multiband filter according to equation (14),

as illustrated below.

20

Diniz, da Silva and Netto

Decimation

| H
d
(e
j
ω
) |
 2
δ
p

ω
ω
p

0

δ
r

π
–
ω
p

π

2
 +
ω
p

π

2

Figure 5: Specifications of a decimation filter for M = 4.

21

Diniz, da Silva and Netto

Decimation

Example 8.1 A signal that carries useful information only in the range 0 ≤ ω ≤ 0.1ωs

must be decimated by a factor of M = 4. Design a linear-phase decimation filter

satisfying the following specifications:

δp=0.001

δr=5 × 10−5

Ωs=20 000 Hz





(16)

Solution

The stopband edges should be located at
(

Ωs

4
− Ωs

10

)

and
(

Ωs

4
+ Ωs

10

)

in the first

stopband, and
(

Ωs

2
− Ωs

10

)

in the second stopband.

There is a “don’t care” band between
(

Ωs

4
+ Ωs

10

)

and
(

Ωs

2
− Ωs

10

)

. The order is 85.

In Figure 6, it can be observed that between 7000 Hz and 8000 Hz is located a “don’t

care” band as expected.

22

Diniz, da Silva and Netto

Decimation

–100

–80

–60

–40

–20

0

0
 2000
 4000
 6000
 8000
 10 000

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)

Frequency (Hz)

Figure 6: Magnitude response of the decimation filter for M = 4.

23

Diniz, da Silva and Netto

Interpolation

• To interpolate or upsample a digital signal x(m) by a factor of L is to include L − 1

zeros between its samples.

• This operation is represented as

L

x(m)
 i
x^ (n)

Figure 7: Interpolation by a factor of L.

• The interpolated signal is then given by

x̂i(n) =





x

(

n
L

)

, n = kL, k ∈ Z

0, otherwise
(17)

24

Diniz, da Silva and Netto

Interpolation

• The interpolation operation for the case L = 2:

• In the frequency domain, if the spectrum of x(m) is X(e jω), it is straightforward to

see that the spectrum of the interpolated signal, X̂i(e jω), becomes

X̂i(e jω) = X(e jωL) (18)

25

Diniz, da Silva and Netto

Interpolation

x (n)

i

x (n)

i

0
 m

1
 2 3 4 5 6 7 8 9
10
 11
0
 n

1
 2 3 4 5 6 7 8 9
10
 11
0
 n

x(m)

5
4
3
2
1

^

…

…

…

Figure 8: Interpolation by 2. x(m): original signal; x̂i(n): signal with zeros inserted

between samples; xi(n): interpolated signal after filtering by Hi(z). (x(m) =

. . . x(0) x(1) x(2) x(3) x(4) x(5) x(6) . . .; x̂i(n) = . . . x(0) 0 x(1) 0 x(2)

0 x(3) . . .; xi(n) = . . . xi(0) xi(1) xi(2) xi(3) xi(4) xi(5) xi(6) . . .)

26

Diniz, da Silva and Netto

Interpolation

Figure below shows the spectra of the signals x(m) and x̂i(n) for an interpolation

factor of L.

–4π –2π 4π2π ω

e
jωX()

–2π+ ω – ωω 2π–ωpp pp

–2π

e
j
ω

4π
–6π
–8π
 6π
 8π
 ω
2π
–4π

0
L L L

−π
 π

L L L LL L L

X (
)

i

Figure 9: Signal spectra of: (a) original digital signal; (b) interpolated signal by a factor of

L.

27

Diniz, da Silva and Netto

Interpolation

• Since the spectrum of the original digital signal is periodic with period 2π, the

spectrum of the interpolated signal has period 2π
L

.

– To obtain a smooth interpolated version of x(m), the spectrum of the interpolated

signal must be a compressed version of X(e jω) in the frequency range [−π, π),

without any spectrum repetitions.

– This can be obtained by filtering out the repetitions of the spectrum of x̂i(n)

outside [−π
L
, π

L
].

Thus, the interpolation operation is followed by a lowpass filter which

approximates the following frequency response:

Hi(e jω) =





L, ω ∈ [−π

L
, π

L
]

0, otherwise
(19)

28

Diniz, da Silva and Netto

Interpolation

L
x(m)

H (z)
i

xx ((nn)) ii
^

Figure 10: General interpolation operation.

• The interpolation operation is equivalent to the convolution of the interpolation filter

impulse response, hi(n), with the signal x̂i(n) whose only nonzero samples have

a multiple of L index, that is

x̂i(kL) =





x(k), k ∈ Z

0, otherwise
(20)

29

Diniz, da Silva and Netto

• In the time domain, the filtered interpolated signal becomes

xi(n) =

∞∑

m=−∞

x̂i(m)h(n − m) =

∞∑

k=−∞

x(k)h(n − kL) (21)

30

Diniz, da Silva and Netto

Interpolation

Some important facts must be noted about the interpolation operation

• As opposed to the decimation operation, the interpolation does not entail loss of

information. More precisely, if IL is the interpolation-by-L operator, equations (5)

and (20) imply that DL{IL{x(m)}} = x(m), that is, the interpolation operation is

invertible. However, {IL{x(m − k)}} = xi(n − kL), which means that the

interpolation is inherently time varying.

• Referring to equation (21), one can see that the computation of the output of the filter

Hi(z) uses only one out of every L samples of the input signal, because the

remaining samples are zero.

This means that its implementation complexity can be made L times simpler than

that of a usual filtering operation.

31

Diniz, da Silva and Netto

Interpolation

• If the signal x(m) is band-limited to [−ωp, ωp], the repetitions of the spectrum will

only appear in a neighborhood of radius
ωp

L
around the frequencies 2πk

L
,

k = 1, 2, . . ., L − 1.

The constraints upon the filter can be relaxed as in the decimation case, yielding

Hi(e jω) =






L, |ω| ∈ [0,
ωp

L
]

0, |ω| ∈ [
2πk−ωp

L
,

2πk+ωp

L
], k = 1, 2, . . ., L − 1

(22)

The gain factor L in equations (19) and (22) can be understood by noting that since we

are maintaining one out of every L samples of the signal, the average value of the signal

decreases by a factor L, and therefore the gain of the interpolating filter must be L to

compensate for this.

32

Diniz, da Silva and Netto

Examples of interpolators

Supposing L = 2, two common examples can be devised as shown in Figure 11:

• Zero-order hold: x(2n + 1) = x(2n). From equation (21), this is equivalent to

having h(0) = h(1) = 1, that is, Hi(z) = 1 + z−1.

• Linear interpolator: x(2n + 1) = 1
2
[x(2n) + x(2n + 2)]. From equation (21), this

is equivalent to having h(−1) = 1
2

, h(0) = 1, and h(1) = 1
2

, that is,

Hi(z) = 1
2
(z + 2 + z−1).

33

Diniz, da Silva and Netto

x (n)

i

x (n)

i

1
 2 3 4 5 6 7 8 9
10
 11
0
 n

(
b
)

1
 2 3 4 5 6 7 8 9
10
 11
0
 n

(a)

 …

…

Figure 11: Examples of interpolators: (a) zero-order hold; (b) linear interpolator.

34

Diniz, da Silva and Netto

Examples of interpolators

• Lth-band filters are interesting examples of interpolators.

• When used as interpolators by L they keep the original samples of the signal to be

interpolated.

• If one decimates by L the interpolated signal xi(n) generated with an Lth-band

filter, one obtains the original signal x(m).

• This is equivalent to saying that

xi(mL) = x(m) (23)

• In this case, equation (21) becomes

xi(mL) =

∞∑

k=−∞

x(k)h(mL − kL) = x(m) (24)

35

Diniz, da Silva and Netto

• This only happens if

h(mL − kL) =





1, m = k

0, m 6= k
(25)

That is, the samples of h(n) that are multiples of L are zero, except the one for

n = 0, which should be equal to one.

Note that both the zeroth-order hold and the first-order hold are 2-band filters,

commonly referred as, half-band filters.

36

Diniz, da Silva and Netto

Rational sampling-rate changes

• A rational sampling-rate change by a factor L
M

can be implemented by cascading an

interpolator by a factor of L with a decimator by a factor of M, as represented below:

L

x (n)
c
x(m)

H(z)
 M

Figure 12: Sampling rate change by a factor of L
M

.

H(z) is an interpolation filter ⇒ ωc < π
L

H(z) is a decimation filter ⇒ ωc < π
M

⇒ It must approximate the following frequency response:

H(e jω) =





L, |ω| ≤ min{π

L
, π

M
}

0, otherwise
(26)

37

Diniz, da Silva and Netto

• Likewise the case of decimation and interpolation, the specifications of H(z) can be

relaxed if the bandwidth of the signal is smaller than ωp.

The relaxed specifications are the result of cascading the specifications in

equation (22) and the specifications in equation (14) with ωp replaced by
ωp

L
.

Since L and M can be assumed, without loss of generality, to be relatively prime,

this yields

H(e jω) =






L, |ω| < min{
ωp

L
, π

M
}

0, min{2π
L

−
ωp

L
, 2π

M
−

ωp

L
} ≤ |ω| ≤ π

(27)

38

Diniz, da Silva and Netto

Inverse operations

• A natural question to ask is: Are the decimation-by-M (DM) and interpolation-by-M

(IM) operators inverses of each other?

• In other words, does DMIM = IMDM = identity?

• It is easy to see that DMIM = identity, because the (M − 1) zeros between

samples inserted by the interpolation operation are removed by the decimation as

long as the two operations are properly aligned, otherwise a null signal will result.

• IMDM is not the identity operator since their cascade is equivalent to replacing

(M − 1) out of M samples of the signal with zeros.

39

Diniz, da Silva and Netto

Inverse operations

• However, if the decimation-by-M operation is preceded by a band-limiting filter for

the interval [− π
M

, π
M

] and the interpolation operation is followed by the same filter

then IMDM becomes the identity operation.

• This can be easily confirmed in the frequency domain

– The band-limiting filter avoids aliasing after decimation, and which makes the

decimation operation remain invertible.

– After interpolation by M, there are images of the spectrum of the signal in the

intervals [πk
M

,
π(k+1)

M
], k = −M, −M + 1, . . . , M − 1.

– The second band-limiting filter keeps only the image inside [− π
M

, π
M

], which

corresponds to the spectrum of the original signal.

40

Diniz, da Silva and Netto

Inverse operations

M

x(m)x (n)

M
d
H(z)
 H(z)
x(m)

Figure 13: Decimation followed by interpolation.

41

Diniz, da Silva and Netto

Inverse operations

L
ωs

ωs
ωs

Mx(n) L

M M

y(m)

(a)

L
L

ωs
ωs

ωs

x(n)

M

L M y(m)

(b)

Figure 14: Cascade operations: (a) decimation/interpolation; (b) interpolation/decimation.

42

Diniz, da Silva and Netto

Inverse operations

• Under which conditions the decimation and interpolation operations are

commutative?

That is, when the connection DMIL is equivalent to ILDM.

• We have already seen that when M = L they are not equivalent.

• Usually, these interconnections are not equivalent, unless M and L are relatively

prime numbers.

• For compression before expansion the output signal is given by

y(m) =





x

(

mM
L

)

, m = kL, k ∈ Z

0, otherwise
(28)

43

Diniz, da Silva and Netto

• For expansion before compression the output signal is given by

y(m) =





x

(

mM
L

)

, mM = kL, k ∈ Z

0, otherwise
(29)

• Note that the condition in equation (28), m = kL, k ∈ Z, implies the condition in

equation (29), that is mM = kML = k′L, k′ ∈ Z. On the other hand, the

condition in equation (29), mM = kL, k ∈ Z only implies that m = k′L, k′ ∈ Z if

M and L have no common multiple, that is, if they are relatively prime.

44

Diniz, da Silva and Netto

Noble identities

• The noble identities are depicted in Figure 15.

• They have to do with the commutation of the filtering and decimation or interpolation

operations, and are very useful in analyzing multirate systems and filter banks.

M
H(z) MH(z)M

y(n)x(m) y(n)x(m)

(a)

H(z)

M

H(z
)
M
M

y(n)x(m) y(n)x(m)

(b)

Figure 15: Noble identities: (a) decimation; (b) interpolation.

45

Diniz, da Silva and Netto

Noble identities

• The identity in Figure 15a means that to decimate a signal by M and then filter it

with H(z) is equivalent to filtering the signal with H(zM) and then decimating the

result by M.

– A filter H(zM) is one whose impulse response is equal to the impulse response

of H(z) with (M − 1) zeros inserted between adjacent samples.

– Mathematically, it can be stated as

DM{X(z)}H(z) = DM{X(z)H(zM)} (30)

where DM is the decimation-by-M operator.

46

Diniz, da Silva and Netto

Noble identities

• The identity in Figure 15b means that to filter a signal with H(z) and then interpolate

it by M is equivalent to interpolating it by M and then filtering it with H(zM).

– Mathematically, it is stated as

IM{X(z)H(z)} = IM{X(z)}H(zM) (31)

where IM is the interpolation-by-M operator.

47

Diniz, da Silva and Netto

Noble identities

• In order to prove the identity in Figure 15a, one begins by rewriting equation (6),

which gives the Fourier transform of the decimated signal xd(n) as a function of the

input signal x(m), in the z domain, that is

Xd(z) =
1

M

M−1∑

k=0

X
(

z
1
M e− j 2πk

M

)

(32)

• For the decimator followed by filter H(z), we have that

Y(z) = H(z)Xd(z) =
1

M
H(z)

M−1∑

k=0

X
(

z
1

M e− j 2πk
M

)

(33)

• For the filter H(zM) followed by the decimator, if U(z) = X(z)H(zM), we have,

48

Diniz, da Silva and Netto

from equation (32), that

Y(z) =
1

M

M−1∑

k=0

U
(

z
1
M e− j 2πk

M

)

=
1

M

M−1∑

k=0

X
(

z
1
M e− j 2πk

M

)

H
(

ze− j 2πMk
M

)

=
1

M

M−1∑

k=0

X
(

z
1
M e− j 2πk

M

)

H(z) (34)

which is the same as equation (33), and the identity is proved.

• Proof of the identity in Figure 15b is straightforward, as H(z) followed by an

interpolator gives Y(z) = H(zM)X(zM), which is the same as the expression for

an interpolator followed by H(zM).

49

Diniz, da Silva and Netto

• The z transform H(z) of a filter h(n) can be written as

H(z) =

+∞∑

k=−∞

h(k)z−k

=

+∞∑

l=−∞

h(Ml)z−Ml +

+∞∑

l=−∞

h(Ml + 1)z−(Ml+1) + · · ·

+

+∞∑

l=−∞

h(Ml + M − 1)z−(Ml+M−1)

=

+∞∑

l=−∞

h(Ml)z−Ml + z−1

+∞∑

l=−∞

h(Ml + 1)z−Ml + · · ·

+ z−M+1

+∞∑

l=−∞

h(Ml + M − 1)z−Ml

=

M−1∑

j=0

z−jEj(z
M) (35)

50

Diniz, da Silva and Netto

Polyphase decompositions

• Equation (35) represents the polyphase decomposition of the filter H(z), and

Ej(z) =

+∞∑

l=−∞

h(Ml + j)z−l (36)

are called the polyphase components of H(z).

• In such a decomposition, the filter H(z) is split into M filters: the first one with every

sample of h(m), whose indexes are multiples of M, the second one with every

sample of h(m), whose indexes are 1 plus a multiple of M, and so on.

51

Diniz, da Silva and Netto

Polyphase decompositions

• Let us now analyze the basic operation of filtering followed by decimation

represented in Figure 16a.

• Using the polyphase decomposition, such processing can be visualized as in

Figure 16b, and applying the noble identity in equation (30), we arrive at Figure 16c,

which provides an interesting and useful interpretation of the operation represented

in Figure 16a.

• In fact, Figure 16c shows that the whole operation is equivalent to filtering the

samples of x(m) whose indexes are equal to an integer k plus a multiple of M, with

a filter composed of only the samples of h(m) whose indexes are equal to the same

integer k plus a multiple of M, for k = 0, 1, . . ., M − 1.

52

Diniz, da Silva and Netto

Polyphase decompositions

•

H(z
)
 M

M
 M

M
 M

M
 M

z

–1

z
–1

z

–1

z
–1

z

–1

z
–1

E
0
(z

M

)
 E

0

(z)

E
1
(z
M

)
 E
1
(z)

E
M–
1
(z
M

)
 E
M–
1
(z
)

=

(a
)

(b
)
 (c
)

y(n)

y(n) y(n)

x(m)

x(m) x(m)

…

…

…

…

…

…

…

…

Figure 16: Decimation representations: (a) decimation by a factor of M; (b) decimation

using polyphase decompositions; (c) decimation using polyphase decomposi-

tions and the noble identities.

53

Diniz, da Silva and Netto

Polyphase decompositions

• The polyphase decompositions also provide useful insights into the interpolation

operation followed by filtering.

• In this case, a variation of equation (35) is usually employed.

• Defining Rj(z) = EM−1−j(z), the polyphase decomposition becomes

H(z) =

M−1∑

j=0

z−(M−1−j)Rj(z
M) (37)

Applying the noble identity.

54

Diniz, da Silva and Netto

Polyphase decompositions

M

M

M

z

–1

z

–1

z

–1

R

0

(z)

R

1

(z)

R

M–
1

(z)

G(
z)

(a
)

M

(b
)

y(n)

y(n)

x(m)

x(m)

Figure 17: Interpolation representations: (a) interpolation by a factor of M; (b) interpola-

tion using polyphase decompositions and the noble identities.

55

Diniz, da Silva and Netto

Commutator models

• The operations at the input and output of Figures 16c and 17b can also be

interpreted in terms of rotary switches.

• The decimators and delays are replaced by rotary switches as depicted in Figure 18.

56

Diniz, da Silva and Netto

x (m)

x (m)

0

1

M–1
x (m)

x (m)1

M

M

M

z

z

x (m)0

M–1
x (m)n = 0

x(n)

…

…

x(n)

(a)

M–1
x (m)

0
x (m)

1

x (m) –1

–1

z

z

0

M–1

1

x (m)

x (m)

x (m)

n = 0

M

M

M

x(n)

x(n)

…

…

(b)

Figure 18: Commutator models for: (a) decimation; (b) interpolation.
57

Diniz, da Silva and Netto

• The previous model with decimators and delays is noncausal, having “advances”

instead of delays.

• In real-time the causal model of Figure 19 is usually preferred.

x (m)1

M

M

x (m)

x (m)

0

1

M–1
x (m)

z

z

–1

–1

x (m)0

M–1
x (m)n = 0
 M

z
–M+1

x(n)

…

…

x(n)

Figure 19: Causal commutator model for decimation.

58

Diniz, da Silva and Netto

Commutator models

• The operation depicted in Figure 19 is usually referred to as a serial-to-parallel

converter.

x(m) =
[

x(mM) x(mM − 1) . . . x(mM − M + 1)

]T

(38)

• Its inverse operation if the one depicted in Figure 18b. It is usually referred to as a

parallel-to-serial converter.

• Note that each x(m) is a block of M consecutive samples of x(n). According to

equation (38), these blocks do not overlap, since there is no common sample

between x(m) and x(m − 1). In addition, the last sample of x(m) is consecutive

to the first sample of x(m − 1). This implies that indeed equation (38) represents

the splitting of x(n) in non-overlapping blocks of length M. Likewise, the inverse

operation in Figure 18b is equivalent to putting the blocks side-by-side, recovering

the signal x(n).

59

Diniz, da Silva and Netto

Commutator models

• If we generalize equation (38) to

xM
L (m) =

[

x(mM) x(mM − 1) . . . x(mM − L + 1)

]T

(39)

where L > M, then we have that there is an overlap between the samples of

xM
L (m) and xM

L (m − 1). The last (L − M) samples of xM
L (m) are the same as

the first (L − M) samples of xM
L (m − 1). That is, we divide the signal x(n) into

overlapping blocks. Note that in this overlapping blocks case, the right-hand side of

Figure 19a becomes Figure 20a.

60

Diniz, da Silva and Netto

Commutator models

• If we define a unit delay operator D{·} applied to a block xM
L (m) as

D{xM
L (m)} =

[

x(mM − 1) x(mM − 2) . . . x(mM − L)

]T

(40)

This delay operation displaces the start of the block by one sample, and thus

D{xM
L (m)} 6= xM

L (m − 1). In fact,

DM{xM
L (m)} = xM

L (m − 1) (41)

• We can then map a non-overlapping block division to an overlapping block division

for M < L < 2M as follows:

xM
L (m) =





IM

DMIL−M 0



 xM
M(m) =









IL−M 0

0 I2M−L

DMIL−M 0









xM
M(m) (42)

where IM is the M × M identity matrix.

61

Diniz, da Silva and Netto

Commutator models

• If we consider the original signal x(n) in vector form as the concatenation of the

non-overlapping blocks xM
M(m)

x =
[

. . . xMT

M (m + 1) xMT

M (m) xMT

M (m − 1) . . .

]T

(43)

62

Diniz, da Silva and Netto

Commutator models

• We can express the serial-to-parallel conversion in the overlapped case as

xM
L (m) =



































. . .
...

...
...

... · · ·

· · · 0 0 0 0 · · ·

· · · 0 IL−M 0 0 · · ·

· · · 0 0 I2M−L 0 · · ·

· · · 0 DMIL−M 0 0 · · ·

· · · 0 0 0 0 · · ·

· · ·
...

...
...

...
. . .





































































...

xM
M(m + 1)

xM
M(m)

xM
M(m − 1)

...



































︸ ︷︷ ︸
x

(44)

63

Diniz, da Silva and Netto

Commutator models

x (m)1

M

M
z

z

−1

−1

x (m)0

L−1x (m)
M

...
x(n)

−1

−1

z

z

0

N−1

1

w (m)

w (m)

w (m)
M

M

M
y(n)

...

(a) (b)

Figure 20: Commutator models for: (a) division into overlapping blocks (L > M); (b)

generating a signal by summation of overlapping blocks (N > M).

64

Diniz, da Silva and Netto

Commutator models

• Likewise, if we increase the number of branches in Figure 18b to N > M, we get

Figure 20b.

• The last (N − M) samples of xM
N (m) are added to the first (N − M) samples of

xM
N (m − 1). More precisely, this operation is equivalent to generating a block

yM
M(m) from wM

N (m) as

yM
M(m) =









0

IM

DMIN−M









wM
N (m)

=





0 I2M−N 0

DMIN−M 0 IN−M



 wM
N (m) (45)

65

Diniz, da Silva and Netto

Commutator models

• If we consider the output signal y(n) in vector form as the concatenation of the

non-overlapping blocks yM
M(m),

y =
[

. . . yMT

M (m + 1) yMT

M (m) yMT

M (m − 1) . . .

]T

(46)

• Substituting equation (45) into equation (46) we can express the parallel to serial

conversion in the overlapped case as

66

Diniz, da Silva and Netto

y=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

.

.

.

yM
M

(m + 1)

yM
M

(m)

yM
M

(m − 1)

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

. . .
...

...
...

...
...

...
... · · ·

· · · 0 I2M−N 0 0 0 0 0 · · ·

· · · D
M IN−M 0 IN−M 0 0 0 0 · · ·

· · · 0 0 0 I2M−N 0 0 0 · · ·

· · · 0 0 D
M IN−M 0 IN−M 0 0 · · ·

· · · 0 0 0 0 0 I2M−N 0 · · ·

· · · 0 0 0 0 D
M IN−M 0 IN−M · · ·

· · ·

...
...

...
...

...
...

...
. . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

.

.

.

wM
N

(m + 1)

wM
N

(m)

wM
N

(m − 1)

.

.

.

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(47)

67

Diniz, da Silva and Netto

Decimation and interpolation for efficient filter implement ation

Narrowband FIR filters

• Consider the system in Figure 21, consisting of the cascade of a decimator and an

interpolator by M.

Ωs
Ωs
 Ωs

M
 M
H (z)
 H (z)d i

M

y(n)x(n)

Figure 21: Filter using decimation/interpolation.

• From equations (6) and (18), one can easily infer the relation between the Fourier

transforms of y(n) and x(n), which is

Y(e jω) =
Hi(e jω)

M

{
M−1∑

k=0

[

X(e j(ω−2π k
M

))Hd(e j(ω−2π k
M

))
]

}

(48)

68

Diniz, da Silva and Netto

Decimation and interpolation for efficient filter implement ation

• Supposing that both the decimation filter, Hd(z), and the interpolation filter, Hi(z),

have been properly designed, the spectrum repetitions in the above equation are

canceled, yielding the following relation:

Y(e jω)

X(e jω)
=

Hd(e jω)Hi(e jω)

M
= H(e jω) (49)

• This result shows that the cascading of the decimation and interpolation operations

of the same order M is equivalent to just cascading the decimation and interpolation

filters, provided that both bandwidths are smaller than π
M

.

69

Diniz, da Silva and Netto

Decimation and interpolation for efficient filter implement ation

• The advantage is that in the implementation of the decimation operation, there is a

reduction by M in the number of multiplications, and the same is true for the

interpolation operation.

• The multiplication reduction increases with the value of M such that the bandwidth

of the desired filter remains smaller than π
M

.

• If we wish to design a filter with passband ripple δp and stopband ripple δr, it is

enough to design interpolation and decimation filters, each having passband ripple
δp

2
and stopband ripple δr.

70

Diniz, da Silva and Netto

Decimation and interpolation for efficient filter implement ation

Example 8.2

Using the concepts of decimation and interpolation, design a lowpass filter satisfying the

following specifications:

δp=0.001

δr=1 × 10−3

Ωp=0.025Ωs

Ωr=0.045Ωs

Ωs=2π rad/s






(50)

Solution

• With the given set of specifications, the maximum possible value of M is 11. Using

the Chebyshev (minimax) method, Hd(z) and Hi(z) can be made identical, and

they must be at least of order 177 each.

71

Diniz, da Silva and Netto

0 0.5 1 1.5 2 2.5 3

−100

−80

−60

−40

−20

0

Frequency, rad/sample

M
ag

ni
tu

de
 r

es
po

ns
e

[d
B

]

Figure 22: Magnitude response of filter using decimation/interpolation.

72

Diniz, da Silva and Netto

Decimation and interpolation for efficient filter implement ation

• With the conventional approach, the total number of multiplications per sample would

be 87 (as a linear-phase filter of order 173 would be required).

• Using decimation and interpolation, the total number of multiplications per output

sample is only 178/11 (89/11 for the decimation and 89/11 for the interpolation).

• Greater reductions in complexity can be achieved if the decimators and interpolators

in Figure 21 are composed of several decimation stages followed by several

interpolation stages.

• The procedure can also be used to design narrowband bandpass filters. All we have

to do is to choose M such that the desired filter passband and transition bands are

contained in an interval of the form [iπ
M

,
(i+1)π

M
], for only one value of i. In such

cases, the interpolation and decimation filters are bandpass.

• Highpass and bandstop filters can be implemented based on lowpass and bandpass

designs.

73

Diniz, da Silva and Netto

Wideband FIR filters with narrow transition bands

• Another interesting application of interpolation is in the design of sharp cutoff filters

with low computational complexity using the frequency response masking approach.

• It takes into account that an interpolated filter has a transition band L times smaller

than the prototype filter. The complete process is

• An interpolation ratio of L = 4 is exemplified as follows.

74

Diniz, da Silva and Netto

z

–4D
 +
+

+

+

+
 Y(z)
X(z)

–

F (z)

F (z)

1

2

H (z
4
)

1

Figure 23: Filter design with the frequency response masking approach using interpola-

tion.

75

Diniz, da Silva and Netto

Wideband FIR filters with narrow transition bands

• Suppose, for instance, that we want to design a normalized-lowpass filter having

ωp = 5π/8 and ωr = 11π/16, such that the transition width is π/16.

• Using the frequency response masking approach, we design such a filter starting

from a prototype half-band lowpass filter having ωp = π/2 and a transition

bandwidth four times larger than the one needed, in this case, π/4.

• The implementation complexity of this prototype filter is much smaller than the

original one.

• From this prototype, the complementary filter H2(z) is generated by a simple delay

and subtraction as

H2(z) = z−D − H1(z) (51)

76

Diniz, da Silva and Netto

2
 2

ω
H2(
)

ω
π
π
−π
 −π

2
 2

π
−π

H1(
)
ω

ω
π
−π

(a)

−π

8

π

8

−π

8

π

8

ω
π
−π

ω
π
−π

H1(4ω)
 F1(ω)

H2(4ω)

F2(ω)

(b)

ω
π
−π

F(ω)

(c)

Figure 24: (a) Prototype half-band filter H1(z) and its complementary filter H2(z); (b)

frequency responses of H1(z) and H2(z) after interpolation by a factor of

L = 4; (c) frequency response of the equivalent filter F(z).

77

Diniz, da Silva and Netto

Overlapped block filtering

• Consider the system represented in Figure 25.

+

+

MM

MM

MM
N-1L-1

11

00

Transfer
Function

y n()

x n()

z
-1

z
-1

z
-1

z
-1

N Lx

C(z)

Figure 25: Multirate representation of an overlapped block digital filter.

78

Diniz, da Silva and Netto

Overlapped block filtering

• The input signal is divided into blocks of length L that have an overlap of (L − M)

samples. After processing, each length-L block is mapped into a length-N block.

• The output signal is generated by summing these blocks with and overlap of

(N − M) samples.

• The N × L matrix C(z) represents the linear mapping of an input block of length L

to an output block of length N.

• Its element Cij(z) describes a time-invariant linear filtering operation performed on

the sequence of elements j of each input block in order to generate the sequence of

elements i of each output block.

• A widely used example of overlapped block filtering is the overlap-and-add method

for which the decimation factor is N and the lengths of the input and output blocks

are both equal to (N + L − 1).

79

Diniz, da Silva and Netto

Overlapped block filtering

• The processing carried out by C(z) is the circular convolution with h(n).

• Due to decimation-by-M operation, aliasing may occur in the process. In this case,

one may not be able to describe the relation between the input and output as a linear

filtering operation.

• Depending on the relative values of decimation factor M, overlap factor at the input

(L − M), and overlap factor at the output (N − M), matrix C(z) has to satisfy

different conditions in order to guarantee that the input-output relation is aliasing-free.

80

Diniz, da Silva and Netto

Non-overlapped case

• In the non-overlapped case the blocks do not overlap neither at the input nor at the

reconstruction stage at the output. This happens when L = M = N.

• Our aim is to use the scheme in to implement a shift-invariant system. The

input-output relation of such a system can be expressed as in the z transform

domain as

Y(z) =
1

M

[

z−(N−1) . . . z−1 1

]

C(zM)

M−1∑

i=0

















1

(zWM)−1

...

(zWM)−(L−1)

















X(zWi
M)

(52)

81

Diniz, da Silva and Netto

Non-overlapped case

• In the non-overlapped case the blocks do not overlap neither at the input nor at the

reconstruction stage at the output. This happens when L = M = N.

• If we want the system in equation (52) to be shift-invariant, the aliasing terms in the

summation have to be zero. It can be shown that this happens if and only if the

matrix C(z) is pseudo-circulant, that is

82

Diniz, da Silva and Netto

Non-overlapped case

C(z) =

















C0 0(z) C0 1(z) · · · C0 M−1(z)

C1 0(z) C1 1(z) · · · C1 M−1(z)

...
...

. . .
...

CM−1 0(z) CM−1 1(z) · · · CM−1 M−1(z)

















=























E0(z) E1(z) · · · EM−2(z) EM−1(z)

z−1EM−1(z) E0(z) · · · EM−3(z) EM−2(z)

z−1EM−2(z) z−1EM−1(z) · · · EM−4(z) EM−3(z)

...
...

. . .
...

...

z−1E1(z) z−1E2(z) · · · z−1EM−1(z) E0(z)























(53)

83

Diniz, da Silva and Netto

Non-overlapped case

• In the non-overlapped case the blocks do not overlap neither at the input nor at the

reconstruction stage at the output. This happens when L = M = N. Two important

properties of pseudo-circulant matrices are:

– A product of pseudo-circulant matrices is also pseudo-circulant. This implies that

it is possible to exploit the decomposition of a pseudo-circulant matrix as a

product of submatrices of the same type.

– If a matrix C(z) is pseudo-circulant and has an inverse, its inverse is also

pseudo-circulant.

• In this case the overall transfer function becomes

H(z) = z−M+1[E0(zM) + z−1E1(zM) + · · · + z−(M−1)EM−1(zM)] (54)

that is, in the non-overlapped case, the polyphase components of the overall transfer

function correspond to the functions Ei(z) in equation (53).

84

Diniz, da Silva and Netto

Non-overlapped case

Example 8.3 Assume that L = M = N = 2 and demonstrate that the SISO transfer

function is time-invariant when the transfer matrix C(z) is pseudo-circulant.

Solution

• The output signal can be described using its polyphase components as

Y(z) = [z−1 1]





Y0(z2)

Y1(z2)



 (55)

where, as can be observed the polyphase components of Y(z), denoted by Yi(z)

for i = 1, 2, are the outputs of matrix C(z) when its inputs are the decimated

polyphase components of the input signal.

85

Diniz, da Silva and Netto

Non-overlapped case

• Therefore, these polyphase components can be expressed as

Y0(z) =
1

2
[X0(z

1
2) + X0(z

1
2 W2)]C00(z) +

1

2
[X1(z

1
2) + X1(z

1
2 W2)]C01(z)

(56)

and

Y1(z) =
1

2
[X0(z

1
2) + X0(z

1
2 W2)]C10(z) +

1

2
[X1(z

1
2) + X1(z

1
2 W2)]C11(z)

(57)

respectively.

86

Diniz, da Silva and Netto

• The filter output can then be described as

Y(z) = z
−1

Y0(z
2
) + Y1(z

2
)

=
z−1

2

h

(X0(z) + X0(zW2))C00(z
2
) + (X1(z) + X1(zW2))C01(z

2
)
i

+
1

2

h

(X0(z) + X0(zW2))C10(z
2
) + (X1(z) + X1(zW2))C11(z

2
)
i

=
1

2

h

z
−1

C00(z
2
)X0(z) + z

−1
C01(z

2
)X1(z) + C10(z

2
)X0(z) + C11(z

2
)X1(z)

i

+
1

2

h

z
−1

C00(z
2
)X0(zW2) + z

−1
C01(z

2
)X1(zW2)

+C10(z
2
)X0(zW2) + C11(z

2
)X1(zW2)

i

=
1

2

h“

z
−1

C00(z
2
) + C10(z

2
)
”

X0(z) +
“

z
−1

C01(z
2
) + C11(z

2
)
”

X1(z)
i

+
1

2

h

(z
−1

C00

“

z
2
) + C10(z

2
)
”

X0(zW2) +
“

z
−1

C01(z
2
) + C11(z

2
)
”

X1(zW2)
i

=
1

2

h“

z
−1

C00(z
2
) + C10(z

2
)
”

(X0(z) + X0(−z))

+
“

z
−1

C01(z
2
) + C11(z

2
)
”

(X1(z) + X1(−z))
i

(58)

87

Diniz, da Silva and Netto

Non-overlapped case

• According to equation (6), the polyphase components of the input signal can be

expressed as

X0(z) =
1

2
[X(z) + X(−z)]

X1(z) =
z−1

2
[X(z) − X(−z)] (59)

which imply that

X0(z) + X0(−z) = X(z) + X(−z)

X1(z) + X1(−z) = z−1 [X(z) − X(−z)] (60)

As a result, the z transform of the output signal can be expressed as

Y(z) =
1

2

[(

z−1C00(z2) + C10(z2)
)

(X(z) + X(−z))

+ z−1
(

z−1C01(z2) + C11(z2)
)

(X(z) − X(−z))
]

(61)

88

Diniz, da Silva and Netto

Non-overlapped case

• If we choose C00(z) = C11(z) = E0(z) and C01(z) = zC10(z) = E1(z), then

Y(z) =
[

z−1(C00(z2) + C11(z2)) + C10(z2) + z−2C01(z2)
]

X(z)

= z−1
[

E0(z2) + z−1E1(z2)
]

X(z) (62)

which has no aliasing component, meaning that the transfer function between the

filter input and output is time invariant. Note that the above equation is in the same

form as equation (54). △

89

Diniz, da Silva and Netto

Overlapped input and output

• We now discuss more general forms of implementing shift-invariant systems using

overlapped block filtering.

• We will start from the non-overlapped case analyzed. From such implementations,

we use the matrix representations of the serial-to-parallel and parallel-to-serial

converters with overlapping in order to, from an M × M matrix C(z) (that

implements a system without overlapping), generate an implementation

corresponding to a factorization

C(z) = PM
N (z)Ĉ(z)SM

L (z) (63)

In this case, Ĉ(z) is an N × L matrix that implements a system with overlapping,

while SM
L (z) and PM

N (z) correspond to the serial-to-parallel and parallel-to-serial

converters, respectively.

90

Diniz, da Silva and Netto

Overlapped input and output

• In order to derive an expression for the matrices SM
L (z) and PM

N (z) from

equations (42) and (45), we must first define the z transform of a signal block as in

equation (39), that is

XM
L (z) =

∞∑

m=−∞

xM
L (m)z−m (64)

• Also, applying the above definition to equation (41), we have that

Z{DM{xM
L (m)}} = Z{xM

L (m − 1)} = z−1XM
L (z) (65)

91

Diniz, da Silva and Netto

Overlapped input and output

• Therefore, in the z-transform domain, equations (42) and (45) become, for L < 2M

and N < 2M,

XM
L (z) =









IL−M 0

0 I2M−L

z−1IL−M 0









XM
M(z) (66)

YM
M(z) =





0 I2M−N 0

z−1IN−M 0 IN−M



 WM
N (z) (67)

respectively.

92

Diniz, da Silva and Netto

Overlapped input and output

• Since C(z) represents the non-overlapping block processing and Ĉ(z) the

overlapping block processing, we have that

YM
M(z) = C(z)XM

M(z) (68)

WM
N (z) = Ĉ(z)XM

L (z) (69)

93

Diniz, da Silva and Netto

Overlapped input and output

• Therefore, from equations (63), (66), (67), (68), and (69), we conclude that the

matrices SM
L (z) and PM

N (z) have the following general forms:

SM
L (z) =









IL−M 0

0 I2M−L

z−1IL−M 0









(70)

PM
N (z) =





0 I2M−N 0

z−1IN−M 0 IN−M



 (71)

94

Diniz, da Silva and Netto

Example 8.4

For the case where L = M = 4 and N = 7, implement the transfer function

H(z) = z−3[E0(z4) + z−1E1(z4) + z−2E2(z4) + z−3E3(z4)] (72)

in a block form, by noting that overlapping is applied only at the output.

Solution

95

Diniz, da Silva and Netto

• We should choose matrix Ĉ(z) as

Ĉ(z) =

































E3(z) 0 0 0

E2(z) E3(z) 0 0

E1(z) E2(z) E3(z) 0

E0(z) E1(z) E2(z) E3(z)

0 E0(z) E1(z) E2(z)

0 0 E0(z) E1(z)

0 0 0 E0(z)

































(73)

96

Diniz, da Silva and Netto

Example

• With the above choice, from equations (70) and (71), we respectively have that

S4
4(z) = I4 (74)

P4
7(z) =





0 I1 0

z−1I3 0 I3



 =















0 0 0 1 0 0 0

z−1 0 0 0 1 0 0

0 z−1 0 0 0 1 0

0 0 z−1 0 0 0 1















(75)

97

Diniz, da Silva and Netto

Example

• Note that S4
4(z) is an identity matrix because there is no overlap between blocks at

the input. With these choices, we have C(z) = P4
7(z)Ĉ(z)S4

4(z) = P4
7(z)Ĉ(z), so

that

C(z) =















E0(z) E1(z) E2(z) E3(z)

z−1E3(z) E0(z) E1(z) E2(z)

z−1E2(z) z−1E3(z) E0(z) E1(z)

z−1E1(z) z−1E2(z) z−1E3(z) E0(z)















(76)

which is a pseudo-circulant matrix representing the overall transfer function of the

block digital filter, according to equation (52).

△

98

Diniz, da Silva and Netto

Example

• For the algorithm presented the input blocks are not overlapped, whereas the output

blocks are overlapped. We now generalize this algorithm for an input block size

L = M and an output block size N = 2M − 1. The matrix Ĉ(z) of dimensions

(2M − 1) × M should have the form

Ĉ(z) =



































EM−1(z) 0 · · · 0

EM−2(z) EM−1(z) · · · 0

...
...

. . .
...

E0(z) E1(z) · · · EM−1(z)

0 E0(z) · · · EM−2(z)

...
...

. . .
...

0 0 · · · E0(z)



































(77)

in order for the product P̂M
2M−1(z)Ĉ(z)IM to result in a pseudo-circulant matrix.

99

Diniz, da Silva and Netto

Example 8.5

We now consider the implementation of the transfer function of the Example for L = 7

and N = 4 = M. Note that overlapping is applied only at the input.

Solution

• We should choose:

Ĉ(z) =















E0(z) E1(z) E2(z) E3(z) 0 0 0

0 E0(z) E1(z) E2(z) E3(z) 0 0

0 0 E0(z) E1(z) E2(z) E3(z) 0

0 0 0 E0(z) E1(z) E2(z) E3(z)















(78)

100

Diniz, da Silva and Netto

With the above choice, we have from equations (70) and (71) that

Ŝ
4

7(z) =









I3 0

0 I1

z−1I3 0









=

































1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

z−1 0 0 0

0 z−1 0 0

0 0 z−1 0

































(79)

P̂
4

4(z) = I4 (80)

This case leads to the same C(z) as the previous example.

△

101

Diniz, da Silva and Netto

Example

• In the structure of this Example, the input blocks are overlapped, whereas the output

blocks are not overlapped. This structure can also be generalized for M = N and

L = 2M − 1 by employing the block transfer function matrix Ĉ(z) of dimensions

M × (2M − 1) given by

Ĉ(z) =

















E0(z) E1(z) · · · EM−1(z) · · · 0

0 E0(z) · · · EM−2(z) EM−1(z) · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · E0(z) E1(z) · · · EM−1(z)

















(81)

• It is possible to generate several alternative structures for values of L, M, N

different from those discussed here. For each case, a distinct form for Ĉ(z) is

required for proper generation of shift-invariant structure.

• However, determining the right Ĉ(z) in order to achieve this is not trivial.

102

Diniz, da Silva and Netto

Fast convolution structure I

• Inspired by overlapped block implementation it is possible to derive structure I,

corresponding to the case where L = M = 2, and N = 3. This structure was

derived by decomposing matrix Ĉ(z) as follows









E1(z) 0

E0(z) E1(z)

0 E0(z)









=









1 0 0

−1 1 −1

0 0 1

















E1(z) 0 0

0 E0(z)+E1(z) 0

0 0 E0(z)

















1 0

1 1

0 1









(82)

103

Diniz, da Silva and Netto

Fast convolution structure I

• Each polynomial Ei(z), for i = 0, 1, is a polyphase component of H(z), and

therefore corresponds to a filter operation with an FIR filter of about half the length of

the original filter H(z).

• This structure then shows how to implement an FIR filtering of a given order through

three FIR filters of half order and operating at half rate. This can be done recursively,

since each half-order FIR filter can be further decomposed into three other subfilters.

• Every time a new decomposition is applied the number of multiplications per sample

is reduced whereas the latency (delay) of the response increases.

104

Diniz, da Silva and Netto

Fast convolution structure II

+

+

2

2

2

2

2C (z)0

C (z)1

C (z)1

C (z) + C (z)0 1

1 0 0

-1 1 -1

0 0 1

1 0

1 1

0 1

y n()

x n()

z
-1

z
-1

z
-1

Figure 26: Overlapped structure I for fast convolution. Ci(z) = Ei(z), i = 0, 1.

105

Diniz, da Silva and Netto

Fast convolution structure II

• Structure II is exactly the transpose of overlapped block structure I. Note that in the

transposition of multirate systems, decimators become interpolators and vice versa.

+

2

2

2

2

2 C (z)0

C (z)2

C (z)1

C (z) + C (z)0 1

1 0 0

-1 1 -1

0 0 1

1 0

1 1

0 1

y n()

x n()

z
-1

z
-1

z
-1

Figure 27: Overlapped structure II for fast convolution. Ci(z) = Ei(z), i = 0, 1.

106

Diniz, da Silva and Netto

Fast convolution

Example 8.6 Determine if the transfer function matrix below can be the block

representation of a linear and time-invariant system.

C(z) =





1 + z−1 − 1
2a

2a 0









1 0

0 1 + 2bz−1 + z−2









1
(1+z−1)

2a

0 1



 (83)

Solution

107

Diniz, da Silva and Netto

• Let us start by computing C(z) to access its properties:

C(z) =





1 + z−1 − 1
2a

− b
a
z−1 − 1

2a
z−2

2a 0









1 1
2a

(1 + z−1)

0 1





=





1 + z−1 − 1
2a

− b
a
z−1 − 1

2a
z−2 + 1

2a
(1 + 2z−1 + z−2)

2a 1 + z−1





=





1 + z−1 1−b
a

2a 1 + z−1



 (84)

• The matrix above represents a linear and time-invariant system, if it is

pseudo-circulant. Hence, the following condition must be satisfied:

1 − b

a
= 2a ⇒ b = 1 − 2a2 (85)

△

108

Diniz, da Silva and Netto

Fast convolution

Example 8.7

1. Propose a block implementation for a linear time-invariant transfer function using the

matrices SM
L (z) and PM

N (z) in equations (70) and (71), such that the input and

output blocks have overlaps given by L = 4 and N = 3, respectively. The number

of subchannels is M = 2.

2. Implement the transfer function below with the proposed structure and draw the

overall realization

H(z) = z−4 + z−3 + 2z−2 + 4z−1 (86)

109

Diniz, da Silva and Netto

Fast convolution

Solution

• (a)

For this case N = 3, M = 2, and L = 4. Therefore,

S2
4(z) =















1 0

0 1

z−1 0

0 z−1















(87)

P2
3(z) =





0 1 0

z−1 0 1



 (88)

• A possible and simple solution for Ĉ(z), leading to the minimum overall delay, is

110

Diniz, da Silva and Netto

given by

Ĉ(z) =









0 0 0 0

E0(z) E1(z) 0 0

0 E0(z) E1(z) 0









(89)

111

Diniz, da Silva and Netto

Fast convolution

• By post-multiplying the matrix Ĉ(z) by S2
4(z), it follows that

Ĉ(z)S2
4(z) =









0 0

E0(z) E1(z)

z−1E1(z) E0(z)









(90)

• By pre-multiplying the resulting matrix by P2
3(z), we have

C(z) = P2
3(z)Ĉ(z)S2

4(z) =





E0(z) E1(z)

z−1E1(z) E0(z)



 (91)

which is pseudo-circulant.

112

Diniz, da Silva and Netto

Fast convolution

2

2

z
−1

C1(z)

C0(z)

C1(z)

C0(z)

z
−1

2

2

z
−1

Figure 28: Realization of equation (91). Ci(z) = Ei(z), i = 0, 1.

113

Diniz, da Silva and Netto

Fast convolution

• Since aliasing is canceled, the transfer function is given by

H(z) =
[

z−1 1

]

C(z2)





1

z−1





=
[

z−1 1

]





E0(z2) + z−1E1(z2)

z−1E0(z2) + z−2E1(z2)





= 2z−1
[

E0(z2) + z−1E1(z2)
]

(92)

From the above expression and equation (86), E0(z) and E1(z) become

E0(z) = 2 +
z−1

2
(93)

E1(z) = 1 +
z−1

2
(94)

△

114

Diniz, da Silva and Netto

Random signals in multirate systems

• An important concept often present in rate change of stochastic signals is that of

cyclostationary processes. A real random process {X} is wide-sense

cyclostationary (WSCS) with period M if its mean value and autocorrelation

function satisfy

E{X(n)} = E{X(n + kM)} (95)

and

RX(n, k) = RX(n + M, k + M) = E{X(n + M)X(k + M)} (96)

for all n, k.

115

Diniz, da Silva and Netto

Random signals in multirate systems

• As the definitions state, the mean and the autocorrelation function are periodic with

period M. Very often this property appears in several practical applications.

Examples include sampling in communication systems, modulation, multiplexing,

and the interaction of WSS processes with multirate systems.

• Let us assume now that the serial-to-parallel converter of consecutive samples of a

realization of a WSCS process without overlap as follows

XM
M(m) = [X(mM) X(mM − 1) . . . X(mM − M + 1)]T (97)

For a given random input vector, the autocorrelation matrix is defined as

RXM
M

(m) = E{XM
M(m)XMT

M (m)} (98)

116

Diniz, da Silva and Netto

Random signals in multirate systems

• The characteristics of the autocorrelation matrix play a key role in understanding the

effects of multirate processing in random signals. Note that if the input process is

WSCS with period M, the block vector XM
M(m) is WSS, that is, the matrix

RXM
M

(m) does not depend on m.

117

Diniz, da Silva and Netto

Random signals in multirate systems

• Assume that an M × 1 WSS vector XM
M(m) is input to a transfer function matrix

C(z) of dimensions N × M, then the power spectral density (PSD) of the output

vector will be given by

ΓU(z) = C(z)ΓXM
M

(z)CT(z−1) (99)

where

ΓXM
M

(z) =

∞∑

ν=−∞

RXM
M

(ν)z−ν (100)

is the PSD of the input signal vector. The expressions in (99) and (100) are

M-dimensional generalizations.

118

Diniz, da Silva and Netto

Random signals in multirate systems

• A very important property of the PSD matrix formulation is that if the input process to

a serial-to-parallel converter is WSS, then the PSD matrix ΓXM
M

(z) is

pseudo-circulant Conversely, in case the vector XM
M(m) output by a serial-to-parallel

converter is WSS and its PSD matrix is pseudo-circulant, then the input process to

the serial-to-parallel converter is WSS.

119

Diniz, da Silva and Netto

Interpolated random signals

• If a WSS random signal is applied to the input of an interpolator, the signal random

X̂(n) at the output is WSCS with period L.

• Its blocked output vector is given by

X̂
L

L(m) = [X̂(mL) X̂(mL − 1) . . . X̂(mL − L + 1)]T

= [X̂(mL) 0 . . . 0]T (101)

= [X(m) 0 . . . 0]T (102)

120

Diniz, da Silva and Netto

Interpolated random signals

• So that its autocorrelation matrix is

RX̂L

L

(m) = E{X̂
L

L(m)X̂
LT

L (m)}

=

















E{X̂2(mL)} 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

















(103)

=

















E{X2(m)} 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

















(104)

121

Diniz, da Silva and Netto

Interpolated random signals

• Since X(m) is WSS, then E{X2(m)} is constant for all m, and therefore the

correlation matrix is not a function of m, that is, the vector X̂
L

L(m) is WSS. This

implies that its unblocked version X̂(n) is WSCS with period L.

122

Diniz, da Silva and Netto

Decimated random signals

• Consider now the case where a random signal is applied to a decimator as in

Figure 1.

• The decimated random signal Xd(n) is the result of retaining every Mth sample of

the input random signal denoted as X(nM).

• If we assume the general case where the input signal is WSCS with period N, the

decimated process will also be WSCS but with a period P.

123

Diniz, da Silva and Netto

Decimated random signals

• In order to determine the value of P, we analyze the properties of the autocorrelation

function of the decimated signal, that is

RXd
(n, l) = E{Xd(n)Xd(l)}

= E{X(nM)X(lM)} (105)

If the output signal is WSCS with period P then

RXd
(n + P, l + P) = E{Xd(n + P)Xd(l + P)}

= E{X ((n + P)M)X ((l + P)M)} (106)

124

Diniz, da Silva and Netto

Decimated random signals

• Considering that we assumed the input process WSCS with period N, the equality of

(106) holds if PM = iN for some integer i. Therefore, the period P should be

P =
N

gcd(M, N)
(107)

where gcd(·) stands for the greatest common divisor between two integer numbers.

Some special choices for M and N are worth mentioning:

– If N = 1, then P = 1, meaning that if the input to the decimator is WSS, then its

output is also WSS.

– If N and M are prime numbers, then P = N.

– If N = M, then P = 1, indicating that a cyclostationary signal, when decimated

by its cyclostationarity period becomes WSS.

125

Diniz, da Silva and Netto

Do-it-yourself: Multirate systems

Experiment .1: Consider a sinusoidal signal s of frequency f1 = 0.01 Hz corrupted by

noise and sampled at Fs = 1 samples/s for a time interval of ten minutes.

• Assume that the noise component is the output of the filter

H1(z) =
1

12

11∑

i=0

(−1)iz−i (108)

to a zero-mean and unit-variance Gaussian noise, such that

Fs = 1; Ts = 1/Fs; duration = 600;

time = 0:Ts:(duration-Ts); Ntime = length(time);

s = sin(2*pi*f1*time);

w = randn(1,Ntime); w = w-mean(w); w =

w./sqrt(w*w’);

h1 = [1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]./12;

wh1 = filter(h1,1,w);

x = s+wh1;

126

Diniz, da Silva and Netto

Do-it-yourself: Multirate systems

0 100 200 300 400 500 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

x
(n

)

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

50

Frequency [Hz]

|X
(e

j
ω
)|

(a) (b)

Figure 29: Signal s corrupted by noise: (a) time domain; (b) frequency domain.

127

Diniz, da Silva and Netto

Do-it-yourself: Multirate systems

• In order to simplify the sinusoidal storage or transmission, we may decimate signal x

by M=10, after performing a proper lowpass filtering to minimize aliasing distortion,

as given by

ordh2 = 20; h2 = ones(1,ordh2+1)./(ordh2+1);

xh2 = filter(h2,1,x);

M = 10; xdec = xh2(1:M:Ntime);

resulting in the xdec signal characterized in Figure 30.

128

Diniz, da Silva and Netto

0 100 200 300 400 500 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

x
d
e
c
(n

)

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

50

Frequency [Hz]

|X
d
e
c
(e

j
ω
)|

(a) (b)

Figure 30: Signal s corrupted by noise filtered and decimated by 10: (a) time domain; (b)

frequency domain.

129

Diniz, da Silva and Netto

Do-it-yourself: Multirate systems

• The sampling rate can be expanded back to its original value by introducing (M-1)

zeros between each two consecutive samples of xdec, which in MATLAB can be

performed as

xaux = [xdec; zeros(M-1,Ntime/M)];

xaux2 = reshape(xaux,1,Ntime);

This procedure causes spectral repetitions that must be removed by a proper

lowpass filtering such as

h3 = firpm(30,[0 0.01 0.09 0.5]*2,[1 1 0 0]);

xdec_int = filter(M*h3,1,xaux2);

Figure 31 depicts the filtered signal and its corresponding spectral representation,

which can be readily compared to signal xh2, before the decimation operation.

130

Diniz, da Silva and Netto

0 100 200 300 400 500 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

x
d
e
c

i
n
t
(n

)

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

50

Frequency [Hz]

|X
d
e
c

i
n
t
(e

j
ω
)|

(a) (b)

Figure 31: Decimated signal from Figure 30 interpolated by 10 and filtered: (a) time do-

main; (b) frequency domain.

131

Diniz, da Silva and Netto

Do-it-yourself: Multirate systems

• In the last step of this experiment, one can use a bandpass, instead of a lowpass,

filter h3 to generate a modulated version of the original signal. This type of

processing is employed in Experiment 11.1, which the student is motivated to read,

to modulate a signal without an explicit multiplication by a high-frequency sinusoidal

carrier.

All rate-changing operations employed in the present experiment can be performed

automatically with the MATLAB commands decimate and interp, which

already include the corresponding lowpass filtering stage.

△

132

