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Introduction

The most widely used realizations for IIR filters are the cascade and parallel forms of

second-order, and, sometimes, first-order, sections. The main advantages of these

realizations come from their inherent modularity, which leads to efficient VLSI

implementations, to simplified noise and sensitivity analyses, and to simple limit-cycle

control.

We also deal with other interesting realizations such as the doubly-complementary filters,

made from allpass blocks, and IIR lattice structures, whose synthesis method is

presented. A related class of realizations are the wave digital filters, which have very low

sensitivity and also allow the elimination of zero-input and overflow limit cycles.
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IIR parallel and cascade filters

• The Nth-order IIR direct forms seen in Chapter 4 have roundoff-noise transfer

functions Gi(z) and scaling transfer functions Fi(z) whose L2 or L∞ norms

assume significantly high values, because these transfer functions do not present the

filter zeros to attenuate the gain introduced by the filter poles close to the unit circle.

• Also, in an Nth-order IIR direct-form filter, a variation in a single coefficient causes

variation on all the polynomial roots, leading to high sensitivity to coefficient

quantization.

• To deal with these issues, it is wise to implement high-order transfer functions

through the cascade or parallel connection of second-order building blocks, instead

of using the direct-form realization. Such a structures also have the advantage of

modularity, making them suitable for VLSI implementation.
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Parallel form

• A canonic parallel realization is shown in Figure 1, where the corresponding transfer

function is given by

H(z) = h0 +

m∑

i=1

H
p
i (z) = h0 +

m∑

i=1

γ0iz
2 + γ1iz

z2 + m1iz + m2i

(1)
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Figure 1: Parallel structure with direct-form sections.
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Parallel form

• It is easy to show that the scaling coefficients to avoid internal signal overflow in the

form seen in Figure 1 are given by

λi =
1

‖Fi(z)‖p

(2)

where

Fi(z) =
1

Di(z)
=

1

z2 + m1iz + m2i

(3)

• Naturally, the numerator coefficients of each section must be divided by λi, so that

the overall filter transfer function remains unchanged.
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Parallel form

• The PSD of the output roundoff noise for the structure in Figure 1 is

ΓY(e jω) = σ2
e

(

2m + 1 + 3

m∑

i=1

1

λ2
i

H
p
i (e jω)H

p
i (e− jω)

)

(4)

when quantizations are performed before the additions.

• In this case, the output-noise variance, or the average power of the output noise, is

σ2
o = σ2

e

(

2m + 1 + 3

m∑

i=1

1

λ2
i

‖Hp
i (e jω)‖2

2

)

(5)

• And the relative noise variance becomes

σ2 =
σ2

o

σ2
e

=

(

2m + 1 + 3

m∑

i=1

1

λ2
i

‖Hp
i (e jω)‖2

2

)

(6)
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Parallel form

• For the cases where quantization is performed after the additions, the PSD becomes

ΓY(e jω) = σ2
e

(

1 +

m∑

i=1

1

λ2
i

H
p
i (e jω)H

p
i (e− jω)

)

(7)

and then

σ2 =
σ2

o

σ2
e

=

(

1 +

m∑

i=1

1

λ2
i

‖Hp
i (e jω)‖2

2

)

(8)

• Although only even-order structures have been discussed so far, expressions for

odd-order structures (containing one first-order section) are obtained in a similar way.

• In the parallel forms, as the positions of the zeros depend on the summation of

several polynomials, which involves all filter coefficients, the precise positioning of the

filter zeros becomes a difficult task. Such high sensitivity of the zeros to coefficient

quantization constitutes the main drawback of the parallel forms for most practical

implementations.
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Cascade form

• The cascade connection of direct-form second-order sections, depicted in Figure 2,

has a transfer function given by

H(z) =

m∏

i=1

Hi(z) =

m∏

i=1

γ0iz
2 + γ1iz + γ2i

z2 + m1iz + m2i

(9)
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Figure 2: Cascade of direct-form sections.
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Cascade form

• In this structure, the scaling coefficients are calculated as

λi =
1

‖∏i−1

j=1 Hj(z)Fi(z)‖p

(10)

with

Fi(z) =
1

Di(z)
=

1

z2 + m1iz + m2i

(11)

as before.

• As illustrated in Figure 2, the scaling coefficient of each section can be incorporated

with the output coefficients of the previous section. This strategy leads not only to a

reduction in the multiplier count, but also to a possible decrease in the quantization

noise at the filter output, since the number of nodes to be scaled is reduced.
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Cascade form

• Assuming that the quantizations are performed before the additions, the output PSD

for the cascade structure of Figure 2 is given by

ΓY(e jω) = σ2
e



3 +
3

λ2
1

m∏

i=1

Hi(e jω)Hi(e− jω) + 5

m∑

j=2

1

λ2
j

m∏

i=j

Hi(e jω)Hi(e− jω)





(12)

• The relative noise variance is then

σ2 =
σ2

o

σ2
e

=






3 +

3

λ2
1

∥

∥

∥

∥

∥

m∏

i=1

Hi(e jω)

∥

∥

∥

∥

∥

2

2

+ 5

m∑

j=2

1

λ2
j

∥

∥

∥

∥

∥

∥

m∏

i=j

Hi(e jω)

∥

∥

∥

∥

∥

∥

2

2






(13)
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Cascade form

• For the case where quantizations are performed after additions, Py(z) becomes

ΓY(e jω) = σ2
e



1 +

m∑

j=1

1

λ2
j

m∏

i=j

Hi(e jω)Hi(e− jω)



 (14)

and then

σ2
o

σ2
e

=






1 +

m∑

j=1

1

λ2
j

∥

∥

∥

∥

∥

∥

m∏

i=j

Hi(e jω)

∥

∥

∥

∥

∥

∥

2

2






(15)
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Cascade form

• Two practical problems that need consideration in the design of cascade structures

are:

– Which pairs of poles and zeros will form each second-order section (the pairing

problem).

– The ordering of the sections.

• Both issues have a large effect on the output quantization noise. In fact, the roundoff

noise and the sensitivity of cascade form structures can be very high if an

inadequate choice for the pairing and ordering is made.
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Cascade form: Pole-zero pairing

• A rule of thumb for the pole-zero pairing in cascade form using second-order

sections is to minimize the Lp norm of the transfer function of each section, for either

p = 2 or p = ∞.

• The pairs of complex conjugate poles close to the unit circle, if not accompanied by

zeros which are close to them, tend to generate sections whose norms of Hi(z) are

high. As a result, a natural rule is to pair the poles closest to the unit circle with the

zeros that are closest to them.

• Then one should pick the poles second closest to the unit circle and pair them with

the zeros, amongst the remaining, that are closest to them, and so on, until all

sections are formed.

• Needless to say, when dealing with filters with real coefficients, most poles and zeros

come in complex conjugate pairs, and in those cases the complex conjugate poles

(and zeros) are jointly considered in the pairing process.
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Cascade form: Section ordering

• For section ordering, first we must notice that, for a given section of the cascade

structure, the previous sections affect its scaling factor, whereas the following

sections affect the noise gain.

• We then define a peaking factor that indicates how sharp the section frequency

response is

Pi =
‖Hi(z)‖∞

‖Hi(z)‖2

(16)
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Cascade form: Section ordering

• We now consider two separate cases:

– If we scale the filter using the L2 norm, then the scaling coefficients tend to be

large, and thus the signal-to-noise ratio at the output of the filter is in general not

problematic. In these cases, it is interesting to choose the section ordering so that

the maximum value of the output-noise PSD, ‖PSD‖∞ , is minimized. Section i

amplifies the ‖PSD‖∞ originally at its input by (λi‖Hi(e jω)‖∞ )
2

. Since in the

L2 scaling, λi = 1
‖Hi(e jω)‖2

, then each section amplifies the ‖PSD‖∞ by
(

‖Hi(e jω)‖∞
‖Hi(e jω)‖2

)2

= P2
i , the square of the peaking factor. Since the first sections

affect the least number of noise sources, one should order the sections in

decreasing order of peaking factors so as to minimize the maximum value of

output-noise PSD.
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Cascade form: Section ordering

• Second case:

– If we scale the filter using the L∞ norm, then the scaling coefficients tend to be

small, and thus the maximum peak value of the output-noise PSD is in general

not problematic. In these cases, it is interesting to choose the section ordering so

that the output signal-to-noise ratio is maximized, that is, the output-noise

variance σ2
o is minimized. Section i amplifies the output-noise variance at its

input by (λi‖Hi(e jω)‖2)
2

. Since in the L∞ scaling, λi = 1
‖Hi(e jω)‖∞

, then

each section amplifies the σ2
o by

(

‖Hi(e jω)‖2

‖Hi(e jω)‖∞

)2

= 1
P2

i

, the inverse of the

square of the peaking factor. Since the first sections affect the least number of

noise sources, one should order the sections in increasing order of peaking

factors so as to minimize σ2
o.

• For other types of scaling, both ordering strategies are considered equally efficient.
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Example 13.1

• Design an elliptic bandpass filter satisfying the following specifications:

Ap = 0.5 dB

Ar = dB

Ωr1
= 850 rad/s

Ωp1
= 980 rad/s

Ωp2
= 1020 rad/s

Ωr2
= 1150 rad/s

Ωs = 10 000 rad/s






(17)

• Realize the filter using the parallel and cascade forms of second-order direct-form

sections. Then scale the filters using L2 norm and quantize the resulting coefficients

to 9 bits, including the sign bit, and verify the results.
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Example 13.1 - Solution

• Using the ellipord and ellip commands in tandem, one can readily obtain

the direct-form filter in MATLAB. We may then use the residuez command, and

combine the resulting first-order sections, to determine the parallel structure, whose

coefficients are shown in Table 1.

Table 1: Parallel structure using direct-form second-order sections. Feedforward coeffi-

cient: h0 = −0.00015.

Coefficient Section 1 Section 2 Section 3

γ0 −0.0077 −0.0079 0.0159
γ1 0.0049 0.0078 −0.0128
m1 −1.6268 −1.5965 −1.6054
m2 0.9924 0.9921 0.9843
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Example 13.1 - Solution

• Using L2 norm, each block can be scaled by

λi =
1

‖ Fi(z) ‖2

=
1

‖ 1
Di(z)

‖2

(18)

which can be determined in MATLAB using the command lines

D_i = [1 m1i m2i];

F_i = freqz(1,D_i,npoints);

lambda_i = 1/sqrt(sum(abs(F_i).ˆ2)/npoints);

where npoints is the number of points used in the freqz command. Scaling

the second-order blocks using these factors, the resulting γ0 and γ1 coefficients are

as given in Table 2, whereas the denominator coefficients m1 and m2 for each

block remain unchanged.
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Table 2: Scaled parallel structure using direct-form second-order sections. Feedforward

coefficient: h0 = −0.00015.

Coefficient Section 1 Section 2 Section 3

λ 0.0711 0.0750 0.1039

γ0

λ
−0.1077 −0.1055 0.1528

γ1

λ
0.0692 0.1036 −0.1236

m1 −1.6268 −1.5965 −1.6054

m2 0.9924 0.9921 0.9843
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Example 13.1 - Solution

• Quantization of a given coefficient x using B bits (including the sign bit), can be

performed in MATLAB using the command line:

xQ = quant(x,2ˆ(-(B-1)));

Using this approach with (B-1) = 8 results in the coefficients shown in Table 3.

Table 3: Parallel structure using direct-form second-order sections quantized with 9 bits.

Feedforward coefficient: [h0]Q = 0.0000.

Coefficient Section 1 Section 2 Section 3

[λ]Q 0.0703 0.0742 0.1055
[

γ0

λ

]

Q
−0.1094 −0.1055 0.1523

[

γ1

λ

]

Q
0.0703 0.1055 −0.1250

[m1]Q −1.6250 −1.5977 −1.6055
[m2]Q 0.9922 0.9922 0.9844
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Example 13.1 - Solution

• The cascade form can be obtained from the direct form in MATLAB using the

tf2sos command. This yields the coefficients shown in Table 4.

Table 4: Cascade structure using direct-form second-order sections. Gain constant:

h0 = 1.4362 E − 04.

Coefficient Section 1 Section 2 Section 3

γ0 1.0000 1.0000 1.0000

γ1 0.0000 −1.4848 −1.7198

γ2 −1.0000 1.0000 1.0000

m1 −1.6054 −1.5965 −1.6268

m2 0.9843 0.9921 0.9924
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Example 13.1 - Solution

• After section reordering and coefficient scaling, (a detailed implementation of these

procedures is given in Experiment 13.1) the cascade realization is characterized as

given in Table 5.

Table 5: Reordered cascade structure after coefficient scaling. Gain constant: h ′
0 =

h0λ2 = 0.0750.

Coefficient Section 1 ′ Section 2 ′ Section 3 ′

γ ′
0 0.1605 0.1454 0.0820

γ ′
1 −0.2383 −0.2501 0.0000

γ ′
2 0.1605 0.1454 −0.0820

m ′
1 −1.5965 −1.6268 −1.6054

m ′
2 0.9921 0.9924 0.9843
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Example 13.1 - Solution

• The quantized coefficients are as shown in Table 6. Notice that in this case, the

structure gain is not quantized to avoid it to become zero.

Table 6: Reordered cascade structure after coefficient quantization. Gain constant:

[h ′
0]

Q
= 0.0742.

Coefficient Section 1 ′ Section 2 ′ Section 3 ′

[γ ′
0]

Q
0.1602 0.1445 0.0820

[γ ′
1]

Q
−0.2383 −0.2500 0.0000

[γ ′
2]

Q
0.1602 0.1445 −0.0820

[m ′
1]

Q
−1.5977 −1.6250 −1.6055

[m ′
2]

Q
0.9922 0.9922 0.9844
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Example 13.1 - Solution

• The magnitude responses for the ideal filter and the quantized parallel and cascade

realizations are depicted in Figure 3. Note that despite the reasonably large number

of bits used to represent the coefficients, the magnitude responses moved notably

away from the ideal ones.
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Figure 3: Coefficient-quantization effects in the cascade and parallel forms, using direct-

form second-order sections: (a) overall magnitude response; (b) passband de-

tail. (Solid line – initial design; dashed line – cascade of direct-form sections

(9 bits); dotted line – parallel of direct-form sections (9 bits).)
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Error spectrum shaping

• We now a technique to reduce the quantization noise effects on digital filters by

feeding back the quantization error. This technique is known as error spectrum

shaping (ESS) or error feedback.

• Consider every adder whose inputs include at least one nontrivial product which is

followed by a quantizer. The ESS consists of replacing all these adders by a

recursive structure, as illustrated in Figure 4, whose purpose is to introduce zeros in

the output-noise PSD.
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Error spectrum shaping

z–1

z–1

Q



x(n) y(n)

c1

c2

Digital network


–1


Figure 4: Error spectrum shaping structure (Q denotes quantizer).
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Error spectrum shaping

• Although Figure 4 depicts a second-order feedback network for the error signal, in

practice the order of this network can assume any value.

• The ESS coefficients are chosen to minimize the output-noise PSD. In some cases,

these coefficients can be made trivial and still achieve sufficient noise reduction.

• Overall, the ESS approach can be interpreted as a form of recycling the quantization

error signal, thus reducing the effects of signal quantization after a particular adder.

• In theory, ESS can be applied to any internal quantization node of any digital filter.

However, since it implies an implementation overhead, ESS should be applied only at

selected internal nodes, whose noise gains to the filter output are high.

• Structures having reduced number of quantization nodes, for instance, are

particularly suitable for ESS implementation. For example, the direct-form structure

requires a single ESS substitution for the whole filter.
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Error spectrum shaping

• For the cascade structure of direct-form second-order sections, as in Figure 2, each

section j requires an ESS substitution. Let each feedback network be of second

order. The values of c1,j and c2,j that minimize the output noise are calculated by

solving the following optimization problem:

min
c1,j,c2,j






∥

∥

∥

∥

∥

∥

(

1 + c1,jz
−1 + c2,jz

−2
)

m∏

i=j

Hi(e jω)

∥

∥

∥

∥

∥

∥

2

2





(19)
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Error spectrum shaping

• In this case, the optimal values of c1,j and c2,j are given by

c1,j =
t1t2 − t1t3

t2
3 − t2

1

; c2,j =
t2
1 − t2t3

t2
3 − t2

1

(20)

where

t1 =

∫π

−π

∣

∣

∣

∣

∣

∣

m∏

i=j

Hi(e jω)

∣

∣

∣

∣

∣

∣

2

cos ωdω (21)

t2 =

∫π

−π

∣

∣

∣

∣

∣

∣

m∏

i=j

Hi(e jω)

∣

∣

∣

∣

∣

∣

2

cos(2ω)dω (22)

t3 =

∫π

−π

∣

∣

∣

∣

∣

∣

m∏

i=j

Hi(e jω)

∣

∣

∣

∣

∣

∣

2

dω (23)
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Error spectrum shaping

• For a first-order ESS, the optimal value of c1,j would be

c1,j =
−t1

t3

. (24)

• Using ESS, with the quantization performed after summation, the output relative

power spectrum density (RPSD), which is independent of σ2
e for the cascade design,

is given by

RPSD = 1 +

m∑

j=1

∣

∣

∣

∣

∣

∣

1

λj

(

1 + c1,jz
−1 + c2,jz

−2
)

m∏

i=j

Hi(e jω)

∣

∣

∣

∣

∣

∣

2

(25)

where λj is the scaling factor of section j. This expression explicitly shows how the

ESS technique introduces zeros in the RPSD, thus allowing its subsequent reduction.
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Closed-form scaling

• In most types of digital filter implemented with fixed-point arithmetic, scaling is based

on the L2 and L∞ norms of the transfer functions from the filter inputs to the inputs

of the multipliers.

• Usually, the L2 norm is computed through summation of a large number of sample

points (of the order of 200 or more) of the squared magnitude of the scaling transfer

function.

• For the L∞ norm, a search for the maximum magnitude of the scaling transfer

function is performed over about the same number of sample points.

• It is possible, however, to derive simple closed-form expressions for the L2 and L∞

norms of second-order transfer functions. Such expressions are useful for scaling the

sections independently, and greatly facilitate the design of parallel and cascade

realizations of second-order sections.
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Closed-form scaling

• Consider, for example,

H(z) =
γ1z + γ2

z2 + m1z + m2

(26)

• Using, for instance, the pole-residue approach for solving circular integrals, the

corresponding L2 norm is given by

‖H(e jω)‖2
2 =

γ2
1 + γ2

2 − 2γ1γ2

m1

m2 + 1

(1 − m2
2)

[

1 −

(

m1

m2 + 1

)2
] (27)
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Closed-form scaling

• For the L∞ norm, we have to find the maximum of |H(z)|2. By noticing that

|H(e jω)|2 is a function of cos ω, and cos ω is limited to the interval [−1, 1], we

have that the maximum is either at the extrema ω = 0 (z = 1), ω = π (z = −1),

or at ω0 such that −1 ≤ cos ω0 ≤ 1.

• Therefore, the L∞ norm is given by

‖H(e jω)‖2
∞ = max

{
(

γ1+γ2

1+m1+m2

)2

,

(

−γ1+γ2

1−m1+m2

)2

,
γ2

1+γ2
2+2γ1γ2ζ

4m2

[

(ζ−η)
2
+υ
]

}

, (28)
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Closed-form scaling

• Where

η =
−m1(1 + m2)

4m2

; υ =

(

1 −
m2

1

4m2

)

(1 − m2)2

4m2

; ν =
γ2

1 + γ2
2

2γ1γ2

(29)

ζ =






sat(η), for γ1γ2 = 0

sat

{

ν

[

√

(

1 +
η

ν

)2

+
υ

ν2
− 1

]}

, for γ1γ2 6= 0
(30)

with sat(·) being defined as

sat(x) =






1, for x > 1

−1, for x < −1

x, for −1 ≤ x ≤ 1

(31)
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Example 13.2

• Given the transfer function below:

H(z) =
(0.5z2 − z + 1)

(z2 − z + 0.5)(z + 0.5)
(32)

1. Show cascade and parallel decompositions using Type 1 direct-form sections.

2. Scale the filters using L2 norm.

3. Calculate the output noise variances.
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Example 13.2 - Solution

• The cascade decomposition is

H(z) =
(0.5z2 − z + 1)

(z2 − z + 0.5)

1

z + 0.5
(33)

• The second-order section of the cascade design is an allpass so that we only have to

scale the internal nodes of the section.

• The result is obtained by employing equation (27), that is

||F1(z)||22 =

∣

∣

∣

∣

∣

∣

∣

∣

1

D(z)

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=
1

(1 − 0.25)
(

1 −
(

−1
1.5

)2
) = 1.44 (34)

so that

λ1 =

√

1

1.44
=

1

1.2
= 0.8333 (35)
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Example 13.2 - Solution

• For the second section the scaling factor should be

λ2 =
√

0.75 =

√

1 − (0.5)2 (36)

• The relative output noise variance for the cascade design is given by

σ2
y

σ2
e

= 3
1

λ2
1

1

0.75
+ 4

1

λ2
2

1

0.75
+ 1= 13.88 (37)
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Example 13.2 - Solution

• The parallel decomposition is

H(z) =

(

−8
5
z + 7

5

)

(2z2 − 2z + 1)
+

13
10

z + 0.5
(38)

• The scaling factors for the parallel realization are given by

λ1 =

√

1

1.44
=

1

1.2
= 0.8333 (39)

and

λ2 =
10

13

√
0.75 = 0.6667 (40)

respectively.
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Example 13.2 - Solution

• Using the result of equation (27) we can compute the L2 norm of the second-order

section in the parallel solution.

||H1(z)||22 =
1

4





64
25

+ 49
25

+ 2×8×7
25

× −1
1.5

(1 − 0.25)
(

1 −
(

−1
1.5

)2
)



 =
1

4

[

38.333
25

0.41666

]

= 0.92 (41)

so that the relative output noise variance for the parallel design is given by

σ2
y

σ2
e

= 3
1

λ2
1

||H1(z)||22 +
1

λ2
2

1

0.75
+ 4= 10.98 (42)
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State-space sections

• The state-space approach allows the formulation of a design method for IIR digital

filters with minimum roundoff noise. The theory behind this elegant design method

was originally proposed by Mullis and Roberts. For a filter of order N, the minimum

noise method leads to a realization entailing (N + 1)2 multiplications. This multiplier

count is very high for most practical implementations, which induced investigators to

search for realizations which could approach the minimum noise performance while

employing a reasonable number of multiplications. A good tradeoff is achieved if we

realize high-order filters using parallel or cascade forms, where the second-order

sections are minimum-noise state-space structures. In this section, we study two

commonly used second-order state-space sections suitable for such approaches.
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Optimal state-space sections

• The second-order state-space structure shown in Figure 5 can be described by

x(n + 1) = Ax(n) + Bu(n)

y(n) = CTx(n) + Du(n)





(43)

where x(n) is a column vector representing the outputs of the delays, y(n) is a

scalar, and

A =





a11 a12

a21 a22



 ; B =





b1

b2



 ; CT =
[

c1 c2

]

; D =
[

d

]

. (44)
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Optimal state-space sections

u(n) y (n)

c1

d

a22

a12

a11

b1

z–1

z–1

b2 a21
c2

Figure 5: Second-order state-space structure.
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Optimal state-space sections

• The overall transfer function, described as a function of the matrix elements related

to the state-space formulation, is given by

H(z) = CT [Iz − A]
−1

B + D. (45)

• The second-order state-space structure can realize transfer functions described by

H(z) = d +
γ1z + γ2

z2 + m1z + m2

. (46)

• Given H(z) in the form of equation (46), an optimal design in the sense of

minimizing the output roundoff noise can be derived, since the state-space structure

has more coefficients than the minimum required.
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Optimal state-space sections

• To explore this feature, we examine, without proof, a theorem first proposed by Mullis

and Roberts. The design procedure resulting from the theorem generates

realizations with a minimum-variance output noise, provided that the L2 norm is

employed to determine the scaling factor.

• It is interesting to notice that, despite being developed for filters using L2 scaling, the

minimum-noise design also leads to low-noise filters scaled using the L∞ norm.

• Note that, in the remainder of this subsection, primed variables will indicate filter

parameters after scaling.
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Optimal state-space sections

• Theorem 13.1: The necessary and sufficient conditions to obtain an output noise

with minimum variance in a state-space realization are given by

W′ = RK′R (47)

K′
iiW

′
ii = K′

jjW
′
jj (48)

for i, j = 1, 2, . . ., N, where N is the filter order, R is an N × N diagonal matrix,

and

K′ =

∞∑

k=0

A′kB′B′H(A′k)H (49)

W′ =

∞∑

k=0

(A′k)HC′HC′A′k (50)

where the H indicates the conjugate and transpose operations.
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Optimal state-space sections

• It can be shown that

K′
ii =

∥

∥F′i(e jω)
∥

∥

2

2
(51)

W′
ii =

∥

∥G′
i(e jω)

∥

∥

2

2
(52)

for i = 1, 2, . . ., N, where F′i(z) is the transfer function from the scaled filter input

to the state variable xi(k + 1), and G′
i(z) is the transfer function from the state

variable xi(k) to the scaled filter output.

• Then, from equations (51) and (52), we have that, in the frequency domain,

equation (48) is equivalent to

‖F′i(e jω)‖2
2‖G′

i(e jω)‖2
2 = ‖F′j(e jω)‖2

2‖G′
j(e jω)‖2

2 (53)
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Optimal state-space sections

• In the case of second-order filters, if the L2 scaling is performed, then

K′
11 = K′

22 = ‖F′1(e jω)‖2
2 = ‖F′2(e jω)‖2

2 = 1 (54)

and then, from Theorem 13.1, the following equality must hold

W′
11 = W′

22 (55)

• Similarly, we can conclude that we must have

‖G′
1(e jω)‖2

2 = ‖G′
2(e jω)‖2

2 (56)

indicating that the contributions of the internal noise sources to the output-noise

variance are identical.
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Optimal state-space sections

• The conditions K′
ii = ‖F′i(e jω)‖2

2 = 1 and W′
ii = W′

jj, for all i and j, show that

equation (47) can only be satisfied if

R = αI (57)

and, as a consequence, the optimality condition of Theorem 13.1 is equivalent to

W′ = α2K′ (58)

• For a second-order filter, since W′ and K′ are symmetric and their respective

diagonal elements are identical, equation (58) remains valid if we rewrite it as

W′ = α2JK ′J (59)

where J is the reverse identity matrix defined as

J =





0 1

1 0



 (60)
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Optimal state-space sections

• By employing the definitions of W′ and K′ in equations (49) and (50), equation (59) is

satisfied when

A′T = JA ′J (61)

C′T = αJB ′ (62)

or, equivalently

a′
11 = a′

22 (63)

b′
1

b′
2

=
c′2
c′1

(64)

• Then, the following procedure can be derived for designing optimal second-order

state-space sections.
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Optimal state-space sections

• Step 1: For filters with complex conjugate poles, choose an antisymmetric matrix A

such that

a11 = a22 = real part of the poles

−a12 = a21 = imaginary part of the poles





(65)

Note that the first optimality condition (equation (63)) is satisfied by this choice of A.

The coefficients of matrix A can be calculated as a function of the coefficients of the

transfer function H(z) using

a11 = −
m1

2

a12 = −

√

m2 −
m2

1

4

a21 = −a12

a22 = a11






(66)
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Optimal state-space sections

• Also, compute the parameters b1, b2, c1, and c2, using

b1 =

√

σ + γ2 + a11γ1

2a21

b2 =
γ1

2b1

c1 = b2

c2 = b1






(67)

where

σ =

√

γ2
2 − γ1γ2m1 + γ2

1m2 (68)
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Optimal state-space sections

• For real poles, the matrix A must be of the form

A =





a1 a2

a2 a1



 (69)

where

a1 = 1
2
(p1 + p2)

a2 = ±1
2
(p1 − p2)





(70)

with p1 and p2 denoting the real poles.
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• The elements of vectors B and C are given by

b1 = ±
√±σ + γ2 + a1γ1

2a2

b2 =
γ2

2b1

c1 = b2

c2 = b1






(71)

with σ as before.
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Optimal state-space sections

• Step 2: Scale the filter using L2 norm, through the following similarity transformation

(A′, B′, C′, d) = (T−1AT, T−1B, CT, d) (72)

where

T =





‖F1(e jω)‖2 0

0 ‖F2(e jω)‖2



 (73)
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Optimal state-space sections

• For the L∞ -norm scaling, use the following scaling matrix

T =





‖F1(e jω)‖∞ 0

0 ‖F2(e jω)‖∞



 (74)

In this case the resulting second-order section is not optimal in the L∞ sense.

Nevertheless, practical results indicate that the solution is close to the optimal one.
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Optimal state-space sections

• Defining the vectors f(z) = [F1(z), F2(z)]T and g(z) = [G1(z), G2(z)]T, the

effects of the scaling matrix on these vectors are

f ′(z) = [zI − A′]
−1

B′ = T−1f(z) (75)

g′(z) =
[

zI − A′T
]−1

C′T = (T−1)Tg(z) (76)
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Optimal state-space sections

• The transfer functions Fi(z) from the input node, where u(n) is inserted, to the

state variables xi(n) of the system (A, B, C, d) are given by

F1(z) =
b1z + (b2a12 − b1a22)

z2 − (a11 + a22)z + (a11a22 − a12a21)
(77)

F2(z) =
b2z + (b1a21 − b2a11)

z2 − (a11 + a22)z + (a11a22 − a12a21)
(78)

• The expressions for the transfer functions from the internal nodes, that is, from the

signals xi(n + 1) to the section output node are

G1(z) =
c1z + (c2a21 − c1a22)

z2 − (a11 + a22)z + (a11a22 − a12a21)
(79)

G2(z) =
c2z + (c1a12 − c2a11)

z2 − (a11 + a22)z + (a11a22 − a12a21)
(80)
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Optimal state-space sections

• The output roundoff-noise PSD, considering quantization before the adders, for the

section-optimal state-space structure in cascade form can be expressed as

ΓY(e jω) = 3σ2
e

m∑

j=1

m∏

l=j+1

Hl(e jω)Hl(e− jω)

(

1 +

2∑

i=1

G′
ij(e jω)G′

ij(e− jω)

)

(81)

where G′
ij, for i = 1, 2, are the noise transfer functions of the jth scaled section,

and we consider
∏m

l=m+1 Hl(z)Hl(z
−1) = 1.
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Optimal state-space sections

• The scaling in the state-space sections of the cascade form is performed internally,

using the transformation matrix T. In order to calculate the elements of matrix T, we

can use the same procedure as in the cascade direct form, taking the effect of

previous blocks into consideration.

• In the case of the parallel form, the expression for the output roundoff-noise PSD,

assuming quantization before additions, is

ΓY(e jω) = σ2
e



2m + 1 + 3

m∑

j=1

2∑

i=1

G′
ij(e jω)G′

ij(e− jω)



 (82)
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State-space sections without limit cycles

• This section presents a design procedure for a second-order state-space section that

is free from constant-input limit cycles.

• The transition matrix related to the section-optimal structure, described in the

previous subsection (see equation (63)), has the following general form

A =





a − ζ
σ

ζσ a



 (83)

where a, ζ, and σ are constants. This form is the most general for A that allows the

realization of complex conjugate poles and the elimination of zero-input limit cycles.
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State-space sections without limit cycles

• As studied in Subsection 7.6.3, one can eliminate zero-input limit cycles on a

recursive structure if there is a positive-definite diagonal matrix G, such that

(G − ATGA) is positive semidefinite.

• For second-order sections, this condition is satisfied if

a12a21 ≥ 0 (84)

or

a12a21 < 0 and |a11 − a22| + det{A} ≤ 1 (85)

• In the section-optimal structures, the elements of matrix A automatically satisfy

equation (84), since a11 = a22 and det(A) ≤ 1, for stable filters.
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State-space sections without limit cycles

• Naturally, the quantization performed at the state variables still must be such that

|[xi(k)]Q| ≤ |xi(k)|, for all k (86)

where [x]Q denotes the quantized value of x. This condition can be easily

guaranteed by using, for example, magnitude truncation and saturation arithmetic to

deal with overflow.

• If we also want to eliminate constant-input limit cycles, according to Theorem 11.3,

the values of the elements of pu0, where p = (I − A)−1b, must be machine

representable. In order to guarantee this condition independently of u0, the column

vector p must assume one of the forms

p =






[±1 0]
T

(Case I)

[0 ± 1]
T

(Case II)

[±1 ± 1]
T

(Case III)

(87)
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State-space sections without limit cycles

• For each case above, vector B of the state-space structure must be appropriately

chosen to ensure the elimination of constant-input limit cycles, as given by

– Case I:

b1 = ±(1 − a11)

b2 = ∓a21





(88)

– Case II:

b1 = ∓a12

b2 = ±(1 − a22)





(89)

– Case III:

b1 = ∓a12 ± (1 − a11)

b2 = ∓a21 ± (1 − a22)





(90)
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State-space sections without limit cycles

• Based on the values of b1 and b2, for each case, it is possible to generate three

structures, henceforth referred to as Structures I, II, and III. Figure 6 depicts

Structure I, where it can be seen that b1 and b2 are formed without actual

multiplications. As a consequence, the resulting structure is more economical than

the optimal second-order state-space structure. Similar results apply to all three

structures. In fact, Structures I and II have the same complexity, whereas Structure III

requires 5 extra additions, if we consider the adders needed for the elimination of

constant-input limit cycles. For that reason, in what follows, we present the design for

Structure I.
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State-space sections without limit cycles

u(n) y (n) 

d

a11

z –1

z –1

a21

a22

a12

c2

c1

–1

–1
1

Figure 6: State-space structure free from limit cycles.
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State-space sections without limit cycles

• For Structure I, we have that

a11 = a; a12 = −
ζ

σ
; a21 = σζ; a22 = a11 (91)

b1 = 1 − a11; b2 = −a21 (92)

c1 =
γ1 + γ2

1 + m1 + m2

; c2 = −
(m1 + 2m2)γ1 + (2 + m1)γ2

2σζ(1 + m1 + m2)
(93)

where

a = −
m1

2
; ζ =

√

(

m2 −
m2

1

4

)

(94)

and σ is a free parameter whose choice is explained below.
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State-space sections without limit cycles

• From the above equations,

b1

b2

= −
2 + m1

2σζ
(95)

c2

c1

= −
(m1 + 2m2)γ1 + (2 + m1)γ2

2σζ(γ1 + γ2)
(96)

• Therefore, in this case, the optimality condition derived from Theorem 13.1

(equations (63) and (64)) is only met if

γ1

γ2

=
m1 + 2

m2 − 1
(97)

71



Diniz, da Silva and Netto

State-space sections without limit cycles

• Usually, this condition is violated, showing that the state-space structure which is free

from constant-input limit cycles does not lead to minimum output noise.

• In practice, however, it is found that the performance of Structure I is very close to the

optimal. More specifically, in the case where the zeros of H(z) are placed at z = 1,

the values of γ1 and γ2 are

γ1 = −γ0(2 + m1)

γ2 = γ0(1 − m2)





(98)

which satisfy equation (97). Hence, in the special case of filters with zeros at z = 1,

Structure I also leads to minimum output noise.
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State-space sections without limit cycles

• Parameter σ is usually used to optimize the dynamic range of the state variables.

• For Structure I, the transfer functions from the input node u(k) to the state variables

xi(k) are given by

F1(z) =
(1 − a)z + (ζ2 − a + a2)

z2 − 2az + (a2 + ζ2)
; F2(z) = σF′′2(z) (99)

where

F′′2(z) =
−ζz + ζ

z2 − 2az + (a2 + ζ2)
(100)

• Equalization of the maximum signal level at the state variables is achieved by forcing

‖F1(z)‖p = ‖σF′′2(z)‖p (101)

where p = ∞ or p = 2. Consequently, we must have

σ =
‖F1(z)‖p

‖F′′2(z)‖p

(102)
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State-space sections without limit cycles

• The transfer functions from the state variables xi(k + 1) to the output in the

structure of Figure 6 can be expressed as

G1(z) =
c1

2

2z + (m1 + 2ξ)

z2 + m1z + m2

(103)

G2(z) =
c2

2

2z + (α1 + 2ζ2

ξ
)

z2 + α1z + α2

(104)

where

ξ =
−(α1 + 2α2)β1 + (2 + α1)β2

2(β1 + β2)
(105)
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State-space sections without limit cycles

• The RPSD expression for Structure I is then

RPSD = 2
∣

∣G′
1(e jω)

∣

∣

2
+ 2

∣

∣G′
2(e jω)

∣

∣

2
+ 3

= 2
1

λ2

∣

∣G′′
1(e jω)

∣

∣

2
+ 2

1

λ2σ2

∣

∣G′′
2(e jω)

∣

∣

2
+ 3 (106)

where G′
1(e jω) and G′

2(e jω) are the noise transfer functions for the scaled filter, λ

is the scaling factor, and G′′
1(e jω) and G′′

2(e jω) are functions generated from

G′
1(e jω) and G′

2(e jω), when we remove the parameters σ and λ from them.
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State-space sections without limit cycles

• We now show that choosing σ according to equation (102) leads to the minimization

of the output noise.

• From equation (106), we can infer that the output noise can be minimized when σ

and λ are maximized, with the scaling coefficient given by

λ =
1

max {‖F1(z)‖p, ‖F2(z)‖p}
(107)

• However, F1(z) is not a function of σ, and, as a consequence, the choice of

||F2(z)||p = ||F1(z)||p leads to a maximum value for λ.

• On the other hand, the maximum σ, without reducing λ, is

σ =
‖F1(e jω)‖p

‖F′′2(e jω)‖p

(108)

from which we can conclude that this choice for σ minimizes the roundoff noise at

the filter output.
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State-space sections without limit cycles

• In order to design a cascade structure without limit cycles which realizes

H(z) =

m∏

i=1

Hi(z) = H0

m∏

i=1

z2 + γ′
1iz + γ′

2i

z2 + α1iz + α2i

=

m∏

i=1

(di + H′
i(z)) (109)

with H′
i(z) described in the form of the first term of the right side of equation (45),

one must adopt the following procedure for Structure I:

• Step 1: Calculate σi and λi for each section using

σi =

∥

∥

∥
F1i(z)

∏i−1

j=1 Hj(z)
∥

∥

∥

p
∥

∥

∥F′′2i(z)
∏i−1

j=1 Hj(z)
∥

∥

∥

p

(110)

λi =
1

∥

∥

∥
F2i(z)

∏i−1

j=1 Hj(z)
∥

∥

∥

p

(111)
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State-space sections without limit cycles

• Step 2: Determine a and ζ from equations (94).

• Step 3: Compute the coefficients of A, B, and C using equations (91)–(93).

• Step 4: Calculate the multiplier coefficients di by

di =






1
∥

∥

∥

∥

∥

∥

i∏

j=1

Hj(z)

∥

∥

∥

∥

∥

∥

p

, for i = 1, 2, . . ., (m − 1)

H0

m−1∏

j=1

dj

, for i = m

(112)

in order to satisfy overflow constraints at the output of each section.
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State-space sections without limit cycles

• Step 5: Incorporate the scaling multipliers of sections 2, 3, . . ., m into the output

multipliers of sections 1, 2, . . ., (m − 1), generating

c′1i = c1i

λi+1

λi

c′2i = c2i

λi+1

λi

d′
i = di

λi+1

λi






(113)
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State-space sections without limit cycles

ua ub

ua ub

m odd:


combination

of previous


sections


combination

of following


sections


central

section


m even:


combination

of previous


sections


first

middle

section


second

middle

section


combination

of following


sections


Figure 7: Ordering of state-space sections.

80



Diniz, da Silva and Netto

State-space sections without limit cycles

• The cascade form design procedures employing the section-optimal and the

limit-cycle-free state-space structures use the same strategy for pairing the poles

and zeros as those employing direct-form sections.

• The section ordering depends on the definition of a parameter uj, given by

uj =

2∑

i=1

max {|Fij(e jω)|}

min {|Fij(e jω)|}
(114)

where the maximum is computed for all ω, while the minimum is calculated solely

within the passband.
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State-space sections without limit cycles

• According to Figure 7, for an odd number of sections, m, the ordering consists of

placing the section with highest value for uj to be the central section. For an even

number of sections, the two with largest uj are placed in the central positions, these

are called first and second middle sections. For odd m, the previous and following

sections to the central block are chosen from the remaining sections so as to

minimize the summation of ua and ub (see Figure 7), one referred to the

combination of the central section and all previous ones, and the other referred to the

combination of the central section and all the following ones. For even m, the

sections before and after the central sections are chosen, among the remaining

ones, in order to minimize the summation of ua and ub (see Figure 7), one referred

to the combination of the first middle section and all previous sections, and the other

referred to the combination of the second middle section and the sections following it.

This approach is continuously employed until all second-order blocks have been

ordered.
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State-space sections without limit cycles

• The output roundoff-noise PSD of the state-space structure without limit cycles in

cascade form is expressed by

ΓY(e jω) = σ2
e

m∑

i=1

1

λ2
i+1

(

2G′
1i(e jω)G′

1i(e− jω) + 2G′
2i(e jω)G′

2i(e− jω) + 3
)

(115)

where G′
1i(e jω) and G′

2i(e jω) are the noise frequency responses of the scaled

sections and λm+1 = 1.
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Example 13.3

• Repeat Example 13.1 using the cascade of optimal and limit-cycle-free state-space

sections. Quantize the coefficients to 9 bits, including the sign bit, and verify the

results.
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Example 13.3 - Solution

• In each case, all but the last section are scaled first to guarantee unit L2 norm at its

output.

• After this initial scaling, for the optimal state-space structure, the transformation

matrix T is determined as given in equation (73) considering also the effect of the

cumulative transfer function from previous blocks.

• Tables 7–10 list the coefficients of all the designed filters.

• Figure 8 depicts the magnitude responses obtained by the cascade of optimal

state-space sections and of state-space sections without limit cycles. In all cases the

coefficients were quantized to 9 bits including the sign bit.
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Example 13.3 - Solution

Table 7: Cascade structure using optimal state-space second-order sections.

Coefficient Section 1 Section 2 Section 3

a11 8.0271E−01 8.1339E−01 7.9823E−01
a12 −5.9094E−01 −5.7910E−01 −6.0685E−01
a21 5.7520E−01 5.7117E−01 5.8489E−01
a22 8.0271E−01 8.1339E−01 7.9823E−01
b1 8.0236E−02 6.4821E−03 2.9027E−02
b2 1.5745E−01 −1.8603E−02 8.8313E−03
c1 8.8747E−01 −8.8929E−01 2.5127E−02
c2 4.5225E−01 3.0987E−01 8.2587E−02
d 8.8708E−02 1.2396E−01 1.3061E−02
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Example 13.3 - Solution

Table 8: Cascade structure using optimal state-space second-order sections quantized

with 9 bits.

Coefficient Section 1 Section 2 Section 3

[a11]Q 8.0078E−01 8.1250E−01 7.9688E−01
[a12]Q −5.8984E−01 −5.7813E−01 −6.0547E−01
[a21]Q 5.7422E−01 5.7031E−01 5.8594E−01
[a22]Q 8.0078E−01 8.1250E−01 7.9688E−01
[b1]Q 8.2031E−02 7.8125E−03 2.7344E−02
[b2]Q 1.5625E−01 −1.9531E−02 7.8125E−03
[c1]Q 8.8672E−01 −8.9063E−01 2.3438E−02
[c2]Q 4.5313E−01 3.0859E−01 8.2031E−02
[d]Q 8.9844E−02 1.2500E−01 1.1719E−02
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Example 13.3 - Solution

Table 9: Cascade structure without limit cycles using optimal state-space second-order

sections. λ = 2.7202E−01.

Coefficient Section 1 Section 2 Section 3

a11 8.0272E−01 8.1339E−01 7.9822E−01
a12 −5.8289E−01 −5.7823E−01 −5.8486E−01
a21 5.8316E−01 5.7204E−01 6.0688E−01
a22 8.0272E−01 8.1339E−01 7.9822E−01
b1 1.9728E−01 1.8661E−01 2.0178E−01
b2 −5.8316E−01 −5.7204E−01 −6.0688E−01
c1 −9.2516E−03 −4.4228E−02 9.1891E−02
c2 −2.8600E−02 1.6281E−02 −2.5557E−02
d 9.2516E−03 1.8323E−01 2.9191E−01
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Example 13.3 - Solution

Table 10: Cascade structure without limit cycles using optimal state-space second-order

sections quantized with 9 bits. [λ]Q = 2.7344E−01.

Coefficient Section 1 Section 2 Section 3

[a11]Q 8.0078E−01 8.1250E−01 7.9688E−01
[a12]Q −5.8203E−01 −5.7812E−01 −5.8594E−01
[a21]Q 5.8203E−01 5.7031E−01 6.0547E−01
[a22]Q 8.0078E−01 8.1250E−01 7.9688E−01
[b1]Q 1.9922E−01 1.8750E−01 2.0313E−01
[b2]Q −5.8203E−01 −5.7031E−01 −6.0547E−01
[c1]Q −7.8125E−03 −4.2969E−02 9.3750E−02
[c2]Q −2.7344E−02 1.5625E−02 −2.7344E−02
[d]Q 7.8125E−03 1.8359E−01 2.9297E−01
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Example 13.3 - Solution
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Figure 8: Coefficient-quantization effects in the cascade forms, using state-space second-

order sections: (a) overall magnitude response; (b) passband detail. (Solid line

– initial design; dashed line – cascade of optimal state-space sections (9 bits);

dotted line – cascade of limit-cycle-free state-space sections (9 bits).)
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Lattice filters

• Consider a general IIR transfer function written in the form

H(z) =
NM(z)

DN(z)
=

M∑

i=0

bi,Mz−i

1 +

N∑

i=1

ai,Nz−i

(116)

• In the lattice construction, we concentrate first on the realization of the denominator

polynomial through an order-reduction strategy. For that, we define the auxiliary

Nth-order polynomial, obtained by reversing the order of the coefficients of the

denominator DN(z), as given by

zBN(z) = DN(z−1)z−N = z−N +

N∑

i=1

ai,Nzi−N (117)
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Lattice filters

• We can then calculate a reduced order polynomial as

(1−a2
N,N)DN−1(z) = DN(z)−aN,NzBN(z)

= (1−a2
N,N)+· · ·+(aN−1,N−aN,Na1,N)z−N+1

(118)

where we can also express DN−1(z) as 1 +
∑N−1

i=1 ai,N−1z−i.

• Note that the first and last coefficients of DN(z) are 1 and aN,N, whereas for the

polynomial zBN(z) they are aN,N and 1, respectively.

• This strategy to achieve the order reduction guarantees a monic DN−1(z), that is,

DN−1(z) having the coefficient of z0 equal to 1.
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Lattice filters

• By induction, this order-reduction procedure can be performed repeatedly, thus

yielding

zBj(z) = Dj(z
−1)z−j (119)

Dj−1(z) =
1

1 − a2
j,j

(Dj(z) − aj,jzBj(z)) (120)

for j = N, (N − 1), . . ., 1, with zB0(z) = D0(z) = 1.

• It can be shown that the above equations are equivalent to the following expression:




Dj−1(z)

Bj(z)



 =





1 −aj,j

aj,jz
−1 (1 − a2

j,j)z
−1









Dj(z)

Bj−1(z)



 (121)
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Lattice filters

• The previous equation can be implemented, for example, by the two-port network

TPj shown in Figure 9.

z–1

–aj,j


aj,j


Dj(z) Dj–1(z)

zBj(z) zBj–1(z)

+


+


✕

✕

Figure 9: Two-multiplier network TPj implementing equation (121).
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Lattice filters

• The advantage of this representation arises from the fact that, by cascading two-port

networks TPj as in Figure 10, for j = N, (N − 1), . . ., 1, we can implement
1

DN(z)
, where DN(z) is the denominator of the transfer function. This can be easily

understood by looking at the input X(z) as
X(z)DN(z)

DN(z)
. If we do so, then at the right

of TP1 we will end up having
X(z)D0(z)

DN(z)
=

X(z)

DN(z)
.

TPN TP2 TP2

x(n)


D2(z)X(z)


DN(z)

D1(z)X(z)


DN(z)

D0(z)X(z)


DN(z)

zB2(z)X(z)


DN(z)

zB1(z)X(z)


DN(z)

zB0(z)X(z)


DN(z)

DN(z)X(z)


DN(z)

zBN(z)X(z)


DN(z)

…


…


Figure 10: Generation of the denominator of the IIR lattice digital filter structure.
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Lattice filters

• Since at the lower branches of the two-port networks in Figure 10 we have the

signals
zBj(z)

DN(z)
available, then a convenient way to form the desired numerator is to

apply weights to the polynomials zBj(z), such that

NM(z) =

M∑

j=0

vjzBj(z) (122)

where the tap coefficients vj are calculated through the following order-reduction

recursion

Nj−1(z) = Nj(z) − zvjBj(z) (123)

for j = M, (M − 1), . . ., 1, with vM = bM,M and v0 = b0,0.

• Then, a way of implementing the overall IIR transfer function

H(z) =
N(z)

D(z)
=

∑
M
j=0

vjzBj(z)

DN(z)
is to use the structure in Figure 11, which is called

the IIR lattice realization.
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Lattice filters
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1
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D (z)
N
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0
(z)X(z)

D (z)N
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1
(z)X(z)
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(z)X(z)

D (z)
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N

(z)X(z)

D (z)
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✕✕✕✕

+
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…


Figure 11: General IIR lattice digital filter structure.
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Lattice filters

• From the above, we have a simple procedure for obtaining the lattice network given

the direct-form transfer function, H(z) =
NM(z)

DN(z)
:

(i) Obtain, recursively, the polynomials Bj(z) and Dj(z), as well as the lattice

coefficient aj,j, for j = N, (N − 1), . . ., 1, using equations (119) and (120).

(ii) Compute the coefficients vj, for j = N, (N − 1), . . ., 1, using the recursion in

equation (123).
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Lattice filters

• Conversely, if given the lattice realization we want to compute the direct-form transfer

function, we can use the following procedure:

(i) Start with zB0(z) = D0(z)=1.

(ii) Compute recursively Bj(z) and Dj(z) for j = 1, 2, . . ., N, using the following

relation:




Dj(z)

Bj(z)



 =





1 aj,j

aj,jz
−1 z−1









Dj−1(z)

Bj−1(z)



 (124)

(iii) Compute NM(z) using equation (122).

(iv) The direct-form transfer function is then H(z) =
NM(z)

DN(z)
.
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Lattice filters

• There are some important properties related to the lattice realization which should be

mentioned.

• If DN(z) has all the roots inside the unit circle the lattice structure will have all

coefficients aj,j with magnitude less than one. Otherwise, H(z) =
N(z)

D(z)
represents

an unstable system. This straightforward stability condition makes the lattice

realizations useful for implementing time-varying filters.

• In addition, the polynomials zBj(z), for j = 0, 1, . . ., M, form an orthogonal set.

This property justifies the choice of these polynomials to form the desired numerator

polynomial NM(z), as described in equation (123).
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Lattice filters

• Since, in Figure 10, the two-port system consisting of section TPj and all the

sections to its right, which relates the output signal
zBj(z)X(z)

DN(z)
to the input signal

Dj(z)X(z)

DN(z)
is linear, its transfer function remains unchanged if we multiply its input

signal by λj and divide its output by the same amount

• Therefore,
zBN(z)

DN(z)
will not change if we multiply the signal entering the upper-left

branch of section TPj by λj and divide the signal leaving the lower-left branch by λj.

• This is equivalent to scaling the section TPj by λj.
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Lattice filters

• If we do this for every branch j, the signals entering and leaving at the left of section

N remain unchanged, the signals entering and leaving at the left of section (N − 1)

will be scaled by λN, the signals entering and leaving at the left of section (N − 2)

will be multiplied by λNλN−1, and so on, leading to the scaled signals
Dj(z)X(z)

DN(z)

and
zBj(z)X(z)

DN(z)
at the left of section TPj, such that

Dj(z) =

(

j+1∏

i=N

λi

)

Dj(z) (125)

Bj(z) =

(

j+1∏

i=N

λi

)

Bj(z) (126)

for j = (N − 1), (N − 2), . . ., 1, with DN(z) = DN(z) and BN(z) = BN(z).
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Lattice filters

• Therefore, in order to maintain the transfer function of the scaled lattice realization

unchanged, we must make

vj =
vj

(

j+1∏

i=N

λi

)
(127)

for j = (N − 1), (N − 2), . . ., 1, with vN = vN.

• Based on the above property, we can derive a more economical two-port network

using a single multiplier, as shown in Figure 12, where the plus-or-minus signs

indicate that two different realizations are possible.
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Lattice filters

z–1

D
–

  (z)j

zB
–

  (z)j

D
–

     (z)j–1

zB
–

    (z)j–1+

a j,j

++
D(z)

D(z)

D(z)

D(z)

+ –

– +

✕

Figure 12: The one-multiplier network for equation (121).

• The choice of these signs can vary from section to section, aiming at the reduction of

the quantization noise at the filter output.

• This network is equivalent to the one in Figure 9 scaled using λj = 1 ± aj,j, and

therefore the coefficients vj should be computed using equation (127).
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Lattice filters

• Another important realization for the two-port network results when the scaling

parameters λi are chosen such that all the internal nodes of the lattice network have

a transfer function from the input of unit L2 norm. The appropriate scaling can be

derived by first noting that at the left of section TPj, the norms of the corresponding

transfer functions are given by

∥

∥

∥

∥

Dj(z)

DN(z)

∥

∥

∥

∥

2

=

∥

∥

∥

∥

zBj(z)

DN(z)

∥

∥

∥

∥

2

(128)

since, from equation (119), zBj(z) = Dj(z
−1)z−j.

• From the above equations, if we want unit L2 norm at the internal nodes of the lattice

network, we must have
∥

∥

∥

∥

zB0(z)

DN(z)

∥

∥

∥

∥

2

= · · · =

∥

∥

∥

∥

zBN−1(z)

DN(z)

∥

∥

∥

∥

2

=

∥

∥

∥

∥

zBN(z)

DN(z)

∥

∥

∥

∥

2

=

∥

∥

∥

∥

DN(z)

DN(z)

∥

∥

∥

∥

2

= 1 (129)
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Lattice filters

• Then, using λj from equations (124) to (126), it can be derived that

λj =

∥

∥

∥

∥

zBj(z)

DN(z)

∥

∥

∥

∥

2
∥

∥

∥

∥

zBj−1(z)

DN(z)

∥

∥

∥

∥

2

=
√

1 − a2
j,j (130)

• It is easy to show that section TPj of the normalized lattice can be implemented as

depicted in Figure 13. The most important feature of the normalized lattice

realization is that, since all its internal nodes have transfer function with unit L2

norm, it presents an automatic scaling in the L2-norm sense. This explains the low

roundoff noise generated by the normalized lattice realization as compared with the

other forms of the lattice realization. Note that the coefficients vj have to be

computed using equation (127).
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Lattice filters

z
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a
j,j


j,j

2
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)


1/2


j,j
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1/2
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+


–a
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✕

✕

✕✕
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Figure 13: The normalized network for equation (121).
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Example 13.4

• Repeat Example 13.1 using the one-multiplier, two-multiplier, and normalized lattice

forms. Quantize the coefficients of the normalized lattice using 9 bits, including the

sign bit, and verify the results.
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Example 13.4 - Solution

• The two-multiplier IIR lattice can be determined from the direct form using the

MATLAB command tf2latc . For the one-multiplier, we use λj = (1 + aj,j) in

equation (127) to determine the feedforward coefficients, whereas for the normalized

lattice, we use λj =
√

1 − a2
j,j. The resulting coefficients in each case are seen in

Tables 11–14.
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Example 13.4 - Solution

Table 11: Coefficients of two-multiplier lattice.

Section j aj,j vj

0 −2.1521E−06
1 8.0938E−01 −1.1879E−06
2 −9.9982E−01 9.3821E−06
3 8.0903E−01 3.4010E−06
4 −9.9970E−01 8.8721E−05
5 8.0884E−01 −2.3326E−04
6 −9.6906E−01 −1.4362E−04
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Example 13.4 - Solution

Table 12: Coefficients of one-multiplier lattice.

Section j aj,j vj

0 −2.1371E+02
1 8.0938E−01 −2.1342E+02
2 −9.9982E−01 3.0663E−01
3 8.0903E−01 2.0108E−01
4 −9.9970E−01 1.5850E−03
5 8.0884E−01 −7.5376E−03
6 −9.6905E−01 −1.4362E−04
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Example 13.4 - Solution

Table 13: Coefficients of normalized lattice.

Section j aj,j vj

0 −9.1614E−02
1 8.0938E−01 −2.9697E−02
2 −9.9982E−01 4.4737E−03
3 8.0903E−01 9.5319E−04
4 −9.9970E−01 6.1121E−04
5 8.0884E−01 −9.4494E−04
6 −9.6905E−01 −1.4362E−04
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Example 13.4 - Solution

Table 14: Coefficients of normalized lattice quantized with 9 bits.

Section j aj,j vj

0 −8.9844E − 02
1 8.0938E−01 −3.1250E − 02
2 −9.9982E−01 3.9063E − 03
3 8.0903E−01 0.0000E + 00
4 −9.9970E−01 0.0000E + 00
5 8.0884E−01 0.0000E + 00
6 −9.6905E−01 0.0000E + 00
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Example 13.4 - Solution

• In the quantization procedure, we must guarantee that the absolute value of all

feedback coefficients aj,j remain below 1 to guarantee stability of the resulting filter.

• From Tables 11–14, one observes that the three lattice forms have serious

quantization issues due to the wide range covered by their coefficients.

• It must be added that the normalized lattice performs much better than the two- and

one-multiplier lattices with respect to quantization effects.

• It is also worth mentioning that in the two-multiplier structure, the feedforward

coefficients assume very small values, forcing the use of more than 9 bits for their

representation. This normally happens when designing a filter having poles very

close to the unit circle, as is the case in this example.

114



Diniz, da Silva and Netto

Example 13.4 - Solution

• Figure 14 depicts the magnitude responses obtained by the original and quantized

normalized lattices. Note that the magnitude responses of the normalized lattice

structure are significantly different to the ideal one, especially when compared to the

results shown in previous examples.
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Figure 14: Coefficient-quantization effects in the normalized lattice form: (a) overall mag-

nitude response; (b) passband detail. (Solid line – initial design; dashed line –

normalized lattice (9 bits).)
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Doubly complementary filters

• In this section the class of doubly complementary filter is discussed as it plays an

important role in alias-free 2-band filter banks and some audio applications.

• Theorem: Two transfer functions H0(z) and H1(z) are referred to as doubly

complementary if their frequency responses are allpass complementary, that is,

|H0(e jω) + H1(e jω)|2 = 1 (131)

and also power complementary, such that

|H0(e jω)|2 + |H1(e jω)|2 = 1 (132)

for all ω.

117



Diniz, da Silva and Netto

Doubly complementary filters

• For doubly complementary filters, we can write that

H0(z) + H1(z) = F0(z) (133)

H0(z) − H1(z) = F1(z) (134)

where F0(z) and F1(z) are stable allpass transfer functions, and then

H0(z) =
1

2
(F0(z) + F1(z)) (135)

H1(z) =
1

2
(F0(z) − F1(z)) (136)

whose implementation can be as shown in Figure 15.

118



Diniz, da Silva and Netto

Doubly complementary filters
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Figure 15: Doubly complementary filters.
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Doubly complementary filters

• Proof: The doubly complementary frequency responses can be described in polar

form as follows:

H0(e jω) = r0(ω)e jφ0(ω) (137)

H1(e jω) = r1(ω)e jφ1(ω) (138)

• Using these expressions, the left-hand side L of equation (131) can be written as

L = |r0(ω)e jφ0(ω) + r1(ω)e jφ1(ω)|2

=
(

r0(ω)e jφ0(ω) + r1(ω)e jφ1(ω)
)(

r0(ω)e− jφ0(ω) + r1(ω)e− jφ1(ω)
)

= r2
0(ω)+r2

1(ω)+r0(ω)r1(ω)e j(φ0(ω)−φ1(ω))+r0(ω)r1(ω)e− j(φ0(ω)−φ1(ω))

= r2
0(ω) + r2

1(ω) + 2r0(ω)r1(ω) cos(φ0(ω) − φ1(ω)) (139)
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Doubly complementary filters

• Since equation (132) is equivalent to r2
0(ω) + r2

1(ω) = 1, then for allpass

complementary H0(e jω) and H1(e jω) we must have that

2r0(ω)r1(ω) cos(φ0(ω) − φ1(ω)) = 0 (140)

• By following the same procedure as the derivation of equation (139), it is possible to

show that

∣

∣H0(e jω)−H1(e jω)
∣

∣

2
= r2

0(ω)+r2
1(ω)−2r0(ω)r1(ω) cos(φ0(ω)−φ1(ω))

= 1 (141)
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Doubly complementary filters

• By applying the expressions of equations (135) and (136) in equation (132) and

using the polar representation, it is straightforward to show that

|F0(e jω)|2 + |F1(e jω)|2 = 2 (142)

Also applying equations (135) and (136) along with (140) in equation (131) it follows

that

|F0(e jω)|2 = r2
0(ω) + r2

1(ω) = 1 (143)

and then

|F1(e jω)|2 = r2
0(ω) + r2

1(ω) = 1 (144)

Therefore, F0(z) and F1(z) are both allpass filters.
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Doubly complementary filters

• Allpass transfer functions have the following general form

Fi(z) =

Ni∑

l=0

aNi−l,iz
−l

Ni∑

l=0

al,iz
−l

=
Di(z

−1)

z−NiDi(z)
= zNi

Di(z
−1)

Di(z)
(145)

for i = 0, 1 and Di(z) = a0,iz
Ni + a1,iz

Ni−1 + · · · + aNi,i.

• The phase responses of the allpass filters are given by

θi(ω) = −Niω + 2arctan















Ni∑

l=0

al,i sin(lω)

Ni∑

l=0

al,i cos(lω)















(146)
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Doubly complementary filters

• Given that F0(e jω) and F1(e jω) are allpass frequency responses they can be

expressed in polar form as

F0(e jω) = e jθ0(ω) (147)

F1(e jω) = e jθ1(ω) (148)

in such way that

|H0(e jω)| =
1

2

∣

∣

∣
e j(θ0(ω)−θ1(ω)) + 1

∣

∣

∣
(149)

|H1(e jω)| =
1

2

∣

∣

∣
e j(θ0(ω)−θ1(ω)) − 1

∣

∣

∣
(150)
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Doubly complementary filters

• Assuming that at frequency ω = 0 both allpass filters have zero phase, as a result

|H0(1)| = 1 and |H1(1)| = 0, which are typical features of lowpass and highpass

filters, respectively. On the other hand, for ω = π

|H0(e jπ)| =
1

2
|e j(N0−N1)π + 1| (151)

|H1(e jπ)| =
1

2
|e j(N0−N1)π − 1| (152)

so that if the difference (N0 − N1) is odd, then |H0(e jπ)| = 0 and |H1(e jπ)| = 1,

again a typical property of lowpass and highpass filters, respectively.
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Doubly complementary filters

• Let us consider a simple, and yet useful, choice for the allpass transfer functions, that

is

F0(z) = z−N0 (153)

F1(z) = z−1F′1(z) (154)

where F′1(z) is a standard allpass transfer function of order N0 of the form in

equation (145).

• With an odd (N0 − N1) = 1, it is possible to generate doubly complementary

transfer functions with lowpass and high shapes given by

H0(z) = z−N0 + z−1F′1(z) (155)

H1(z) = z−N0 − z−1F′1(z) (156)
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Doubly complementary filters

• The difference in the phase response of the allpass filters are given by

θ0(ω) − θ1(ω) = −N0ω + θ1(ω)

= (−N0 − 1)ω + ∠F′1(e jω)

= (−N0 − 1)ω + N0ω − 2arctan















N0∑

l=0

al,0 sin(lω)

N0∑

l=0

al,0 cos(lω)















= −ω − 2arctan















N0∑

l=0

al,0 sin(lω)

N0∑

l=0

al,0 cos(lω)















(157)
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Example 13.5

• Design doubly complementary filters H0(z) and H1(z) satisfying the specification

for the lowpass filter below:

Ar = 40 dB

Ωp = 0.5π rad/s

Ωr = 0.6π rad/s






(158)
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Example 13.5 - Solution

• In this solution we employ the simple choice for the first allpass filter F0(z) = z−N0 .

In this case, we start the solution by first designing an allpass filter F1(z) whose

phase response follows as close as possible the following specifications

θ1(ω) =






−N0ω, for 0 ≤ ω ≤ Ωp

−N0ω + π, for Ωr ≤ ω ≤ π

(159)

considering the sampling frequency Ωs = 2π.

• With this strategy the phase difference θ0(ω) − θ1(ω) = −N0ω − θ1(ω) in

equation (157) will be approximately zero at low frequencies and approximately π

after the frequency π
2

, thus enforcing the doubly complementary property.
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Example 13.5 - Solution

• There are several ways to design allpass filters satisfying prescribed phase

specifications such as those based on the Lp-norm minimization criteria described in

Section 6.5. Other specialized methods are described in the associated literature.

We employed them to design an allpass filter F1(z) whose coefficients are shown in

Table 15. A sixth-order allpass filter sufficed to generate a stopband attenuation of

about 40 dB.
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Example 13.5 - Solution

Table 15: F1(z) Allpass filter coefficients.

Coefficient aj,1

a0,1 = 1.0000

a1,1 = 0.0000

a2,1 = 0.4780

a3,1 = 0.0000

a4,1 = −0.0941

a5,1 = 0.0000

a6,1 = 0.0283
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Example 13.5 - Solution

• As can be observed, the even-order coefficients of the allpass filter are zero, a

property originated from the fact that the allpass filter has symmetric response

around the frequency π
2

as any half-band filter.

• Figure 16 depicts the magnitude and phase responses of the allpass filter F′1(z),

where from the phase response it is possible to observe the differences in the phase

delays at the low and high frequency ranges.

• Figure 17 depicts the magnitude and phase responses of the doubly complementary

filters H0(z) and H1(z), respectively, generated according to equations (155) and

(156).
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Figure 16: Allpass filter of order N = 6: (a) magnitude response of the allpass filter; (b)

unwrapped phase response.
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Figure 17: Doubly complementary filter of order N = 7: (a) magnitude responses of the

lowpass and highpass filters; (b) phase responses.
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QMF filter bank implementation

• We consider the case where H0(z) and H1(z) satisfy the doubly complementary

conditions, and they are chosen as the lowpass and highpass analysis filters from a

filter bank, respectively.

• The synthesis filters are selected according to the QMF conditions, namely

G0(z) = H1(−z) and G1(z) = −H0(−z), and the overall transfer function of

the 2-band QMF filter bank is given by

H(z) =
1

2
(H0(z)H1(−z) − H1(z)H0(−z)) (160)
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QMF filter bank implementation

• If H0(z) and H1(z) are chosen according to equations (135) and (136), then

H(z) =
1

2

[

1

4
(F0(z)+F1(z)) (F0(−z)−F1(−z))

−
1

4
(F0(z)−F1(z)) (F0(−z)+F1(−z))

]

=
1

2

[

1

2
(F0(z)F1(−z) − F0(−z)F1(z))

]

(161)
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QMF filter bank implementation

• The overall transfer function of a 2-band QMF filter bank whose analysis filters are

H0(z) and H1(z) is given by

H(z) = −
1

2
z−1F̂0(z2)F̂1(z2) (162)

where F0(z) = F̂0(z2) and F1(z) = z−1F̂1(z2), since F0(z) and F1(z) are half

band filters, given that the specifications of H0(z) and H1(z) are the symmetric of

each other around π
2

.

• It is possible to observe that the filter bank transfer function is alias free and has no

magnitude distortion as H(z) consists of a product of allpass functions.
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Wave filters

• In classical analog filter design, it is widely known that doubly terminated LC lossless

filters have zero sensitivity of the transfer function, with respect to the lossless L’s and

C’s components, at frequencies where the maximal power is transferred to the load.

• Filter transfer functions that are equiripple in the passband, such as Chebyshev and

elliptic filters, have several frequencies of maximal power transfer.

• Since the ripple values are usually kept small within the passband, the sensitivities of

the transfer function to variations in the filter components remain small over the

frequency range consisting of the entire passband. This is the reason why several

methods have been proposed to generate realizations that attempt to emulate the

internal operations of the doubly terminated lossless filters.
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Wave filters

• In digital-filter design, the first attempt to derive a realization starting from an analog

prototype consisted of applying the bilinear transformation to the continuous-time

transfer function, establishing a direct correspondence between the elements of the

analog prototype and of the resulting digital filter.

• However, the direct simulation of the internal quantities, such as voltages and

currents, of the analog prototype in the digital domain leads to delay-free loops, as

will be seen below. These loops can not be computed sequentially, since not all node

values in the loop are initially known.

• An alternative approach results from the fact that any analog n-port network can be

characterized using the concepts of incident and reflected waves’ quantities known

from distributed parameter theory.
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Wave filters

• Through the application of the wave characterization, digital filter realizations without

delay-free loops can be obtained from passive and active analog filters, using the

bilinear transformation, as originally proposed by Fettweis.

• The realizations obtained using this procedure are known as wave digital filters.

• The name wave digital filter derives from the fact that wave quantities are used to

represent the internal analog signals in the digital-domain simulation. The possible

wave quantities are voltage, current, and power quantities. The choice between

voltage or current waves is irrelevant, whereas power waves lead to more

complicated digital realizations. Traditionally, voltage wave quantities are the most

widely used, and, therefore, we base our presentation on that approach.
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Wave filters

• Another great advantage of the wave digital filters, when imitating doubly terminated

lossless filters, is their inherent stability under linear conditions (infinite-precision

arithmetic), as well as in the nonlinear case, where the signals are subjected to

quantization. Also, if the states of a wave digital filter structure, imitating a passive

analog network, are quantized using magnitude truncation and saturation arithmetic,

no zero-input or overflow limit cycles can be sustained.

• The wave digital filters are also adequate to simulate certain analog systems, such

as power systems, due to the topological equivalence with their analog counterparts.

• The transformation of a transfer function T(s) representing a continuous-time

system into a discrete-time transfer function H(z) may be performed using the

bilinear transformation in the following form

H(z) = T(s)|s= 2
T

z−1
z+1

(163)
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Wave filters

• Given the doubly terminated LC network depicted in Figure 18, if we use voltage and

current variables to simulate the analog components, we have that

I1 =
Vi − V2

R1

I2 =
V2

ZC

I3 =
V2

ZL

I4 =
V2

R2

I1 = I2 + I3 + I4






(164)
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Figure 18: Doubly terminated LC network.
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Wave filters

• The possible representations for an inductor in the z plane will be in one of the forms

shown in Figure 19, that is

V = sLI =
2L

T

z − 1

z + 1
I

I =
V

sL
=

T

2L

z + 1

z − 1
V






(165)
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+ +X z–1 IV

T
2L

(b)

Figure 19: Two possible inductor realizations.
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Wave filters

• For a capacitor, the resulting possible representations are depicted in Figure 20,

such that

V =
I

sC
=

T

2C

z + 1

z − 1
I

I = sCV =
2C

T

z − 1

z + 1
V






(166)
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Figure 20: Two possible capacitor realizations.
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Wave filters

• The sources and the loads are represented in Figure 21. Therefore, using

Figures 19–21, the digital simulation of the doubly terminated LC network of

Figure 18 leads to the digital network shown in Figure 22, where we notice the

existence of delayless loops.

• In the next subsection, we show how these loops can be avoided using the concept

of wave digital filters.
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Figure 21: Termination realizations.
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Figure 22: Digital network with delay-free loops.
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Wave elements

• As discussed in the previous subsection, the direct simulation of the branch elements

of the analog network introduces delayless loops, generating a non-computable

digital network. This problem can be circumvented by simulating the analog network

using the wave equations that represent multiport networks instead of representing

the voltages and currents in a straightforward manner.

• As shown in Figure 23, an analog one-port network can be described in terms of a

wave characterization as a function of the variables

a = v + Ri

b = v − Ri





(167)

where a and b are the incident and reflected voltage wave quantities, respectively,

and R is the port resistance assigned to the one-port network.
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Wave elements

One-
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network
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Figure 23: Convention for the incident and reflected waves.
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Wave elements

• In the frequency domain the wave quantities are A and B, such that

A = V + RI

B = V − RI





(168)

Notice how the voltage waves consist of linear combinations of the voltage and

current of the one-port network.

• The value of R is a positive parameter called port resistance. A proper choice of R

leads to simple multiport network realizations. In the following, we examine how to

represent several analog elements using the incident and reflected waves.
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One-port elements

• For a capacitor, the following equations apply

V =
1

sC
I

B = A
V − RI

V + RI






(169)

thus

B = A
1

sC
− R

1
sC

+ R
(170)

• By applying the bilinear transformation, we find

B =
T

2C
(z + 1) − R(z − 1)

T
2C

(z + 1) + R(z − 1)
A (171)
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One-port elements

• The value of R that leads to a significant simplification in the implementation of B as

a function of A, is

R =
T

2C
(172)

and then

B = z−1A (173)

• The realization of B as a function of A is done as shown in Figure 24.

+


–
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 A


B
 B


V
 Z

–1


I


Figure 24: Wave realization for a capacitor.
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One-port elements

• Following a similar reasoning, the digital representation of several other one-port

elements can be derived, along with the respective wave equations.

R'
i


A


A A

e
 e


or


+


–
B


e
 V


Figure 25: Wave realization for a series connection of a voltage source with resistor: e =

V − R ′I = V − RI = B, for R ′ = R.
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One-port elements
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Figure 26: Wave realization for a inductor: R = 2L/T .
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Figure 27: Wave realization for a resistor: B = 0, A = 2RI.
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One-port elements
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Figure 28: Wave realization for a short circuit: A = RI, B = −RI.
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Figure 29: Wave realization for an open circuit: A = V , B = V .
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One-port elements
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Figure 30: Wave realization for a voltage source: A = 2e − B.
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Voltage generalized immittance converter

• The voltage generalized immittance converter (VGIC), depicted in Figure 31, is a

two-port network characterized by

V1(s) = r(s)V2(s)

I1(s) = −I2(s)





(174)

where r(s) is the so-called conversion function, and the pairs (V1, I1) and (V2, I2)

are the VGIC voltages and currents at ports 1 and 2, respectively.

• The VGICs are not employed in the design of analog circuits due to difficulties in

implementation when using conventional active devices such as transistors and

operational amplifiers. However, there is no difficulty in utilizing VGICs in the design

of digital filters.
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Voltage generalized immittance converter
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Figure 31: VGIC: (a) analog symbol; (b) digital realization: r(s) = Ts/2.
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Voltage generalized immittance converter

• The VGIC of Figure 31 may be described in terms of wave equations by

A1 = V1 +
I1

G1

A2 = V2 +
I2

G2

B1 = V1 −
I1

G1

B2 = V2 −
I2

G2

V1(s) = r(s)V2(s)

I1(s) = −I2(s)






(175)

where Ai and Bi are the incident and reflected waves of each port, respectively, and

Gi represents the conductance of port i, for i = 1, 2.
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Voltage generalized immittance converter

• After some algebraic manipulation, we can calculate the values of B1 and B2, as

functions of A1, A2, G1, G2, and r(s), as

B1 =
r(s)G1 − G2

r(s)G1 + G2

A1 +
2r(s)G2

r(s)G1 + G2

A2

B2 =
2G1

r(s)G1 + G2

A1 +
G2 − r(s)G1

r(s)G1 + G2

A2






(176)

• By applying the bilinear transformation, and by choosing G2 = G1 and r(s) = T
2
s,

which lead to a simple digital realization, as seen in Figure 31b, the following

relations result:

B1 = −z−1A1 + (1 − z−1)A2

B2 = (1 + z−1)A1 + z−1A2





(177)
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Current generalized immittance converter

• The current generalized immittance converter CGIC is described by

V1 = V2

I1 = −h(s)I2





(178)

Choosing G1 = 2G2

T
and h(s) = s, a simple realization for the CGIC results, as

illustrated in Figure 32.
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Current generalized immittance converter
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Figure 32: CGIC: (a) analog symbol; (b) digital realization: h(s) = s.
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Transformer

• A transformer with a turn ratio of n : 1, and with port resistances R1 and R2, with
R2

R1
= 1

n2 , has a digital representation as shown in Figure 33.

n : 1
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1

1

1

B

A

V

I

R

2

2

2

2

2

B2

B1

A 1

A 2

R2R1
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✕

✕

(a) (b)

Figure 33: Transformer digital representation: (a) analog symbol; (b) digital realization:

R2/R1 = 1/n2.
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Gyrator

• A gyrator is a lossless two-port element described by

V1 = −RI2

V2 = RI1





(179)

• It can be easily shown in this case that B2 = A1 and B1 = −A2, with

R1 = R2 = R. The digital realization of a gyrator is depicted in Figure 34.
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Gyrator
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Figure 34: Gyrator digital representation.
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Wave elements

• We are now equipped with the digital representations of the main analog elements

which serve as the basic building blocks for the realization of wave digital filters.

• However, to achieve our goal, we still have to learn how to interconnect these

building blocks.

• To avoid delay-free loops, this must be done in the same way as these blocks are

interconnected in the reference analog filter.

• Since the port resistances of the various elements are different, there is also a need

to derive the so-called adaptors to allow the interconnection.

• Such adaptors guarantee that the current and voltage Kirchoff laws are satisfied at all

series and parallel interconnections of ports with different port resistances.
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Two-port adaptors

• Consider the parallel interconnection of two elements with port resistances given by

R1 and R2, respectively, as shown in Figure 35. The wave equations in this case are

given by

A1 = V1 + R1I1

A2 = V2 + R2I2

B1 = V1 − R1I1

B2 = V2 − R2I2






(180)
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Two-port adaptors
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Figure 35: Two-port adaptor.
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Two-port adaptors

• Since V1 = V2 and I1 = −I2, we have that

A1 = V1 + R1I1

A2 = V1 − R2I1

B1 = V1 − R1I1

B2 = V1 + R2I1






(181)

• Eliminating V1 and I1 from the above equations, we obtain

B1 = A2 + α (A2 − A1)

B2 = A1 + α (A2 − A1)





(182)

where α = (R1 − R2)/(R1 + R2). A realization for this general two-port adaptor is

depicted in Figure 36a.
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Two-port adaptors
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Figure 36: Possible digital realizations of the general two-port adaptors based on:

(a) equation (182); (b) equation (183); (c) equation (184); (d) equation (185).
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Two-port adaptors

• Expressing B1 as a function of B2 in equation (182), we get

B1 = B2 − A1 + A2

B2 = A1 + α (A2 − A1)





(183)

leading to a modified version of the two-port adaptor, as shown in Figure 36b.

• Other alternative forms of two-port adaptors are generated by expressing the

equations for B1 and B2 in different ways, such as

B1 = B2 − A1 + A2

B2 = A2 − α′ (A2 − A1)





(184)

where α′ = 2R2/(R1 + R2), generating the structure seen in Figure 36c.
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Two-port adaptors

• Or

B1 = A1 − α′′ (A1 − A2)

B2 = B1 + A1 − A2





(185)

where α′′ = 2R1/(R1 + R2), leading to the structure of Figure 36d.

• It is worth observing that the incident and reflected waves in any port could be

expressed in the time domain, that is, through the instantaneous signal values

(ai(k) and bi(k)), or in the frequency domain (Ai(z) and Bi(z)), corresponding

to the steady-state description of the wave signals.
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n-port parallel adaptor

• In cases where we need to interconnect n elements in parallel, with port resistances

given by R1, R2, . . ., Rn, it is necessary to use an n-port parallel adaptor. The

symbol to represent the n-port parallel adaptor is shown in Figure 37. Figure 38

illustrates a three-port parallel adaptor.
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n-port parallel adaptor

B2 A2

R2

Rn

An

A1

B1

R1

Bn

Figure 37: Symbol of the n-port parallel adaptor.
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n-port parallel adaptor
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Figure 38: The three-port parallel adaptor.
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n-port parallel adaptor

• The wave equation on each port of a parallel adaptor is given by

Ak = Vk + RkIk

Bk = Vk − RkIk





(186)

for k = 1, 2, . . ., n.

• As all ports are connected in parallel, we then have that

V1 = V2 = · · · = Vn

I1 + I2 + · · · + In = 0





(187)
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n-port parallel adaptor

• After some algebraic manipulation to eliminate Vk and Ik, we have that

Bk = (A0 − Ak) (188)

where

A0 =

n∑

k=1

αkAk (189)

with

αk =
2Gk

G1 + G2 + · · · + Gn

(190)

and

Gk =
1

Rk

(191)
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n-port parallel adaptor

• From equation 190, we note that

α1 + α2 + · · · + αn = 2 (192)

hence, one αi can be determined from the others.

• If we calculate αn as a function of the remaining αi, we can express A0 as

A0 =

n−1∑

k=1

αkAk + αnAn

=

n−1∑

k=1

αkAk + [2 − (α1 + α2 + · · · + αn−1)] An

= 2An +

n−1∑

k=1

αk (Ak − An) (193)

where only (n − 1) multipliers are required to calculate A0.
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n-port parallel adaptor

• In this case, port n is called the dependent port. It is also worth observing that if we

have several port resistances Rk with the same value, the number of multiplications

can be further reduced. If, however,
∑n−1

k=1 αk ≈ 2, the error in computing αn may

be very high due to quantization effects. In this case, it is better to choose another

port k, with αk as large as possible, to be the dependent one.

• In practice, the three-port adaptors are the most widely used in wave digital filters. A

possible implementation for a three-port parallel adaptor is shown in Figure 39a,

which corresponds to the direct realization of equation (188), with A0 calculated

using equation (193).
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n-port parallel adaptor
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Figure 39: Possible digital realizations of the three-port parallel adaptor based on: (a)

equation (193); (b) equation (194).
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n-port parallel adaptor

• Substituting equation (193) into equation (188), with k = n, then

Bn = (A0 − An) = An +

n−1∑

k=1

αk (Ak − An)

Bk = (A0 − Ak) = Bn + An − Ak






(194)

for k = 1, 2, . . ., (n − 1), and we end up with an alternative realization for the

three-port parallel adaptor, as seen in Figure 39b.

• Analyzing equation (194), we observe that the reflection wave Bi is directly

dependent on the incident wave Ai at the same port. Hence, if two arbitrary

adaptors are directly interconnected, a delay-free loop will appear between the two

adaptors, as shown in Figure 40.
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n-port parallel adaptor

• A solution to this problem is to choose one of the α in the adaptor to be equal to 1.

For example, αn = 1. In this case, according to equations (188), (190), and (193),

the equations describing the parallel adaptor become

Gn = G1 + G2 + · · · + Gn−1

Bn =

n−1∑

k=1

αkAk






(195)

and the expression for Bn becomes independent of An, thus eliminating the

delay-free loops at port n.

• In this case, equation (192) becomes

α1 + α2 + · · · + αn−1 = 1 (196)

which still allows one of the αi, for i = 1, 2, . . ., (n − 1), to be expressed as a

function of the others, thus eliminating one multiplication.
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n-port parallel adaptor
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Figure 40: Adaptor interconnection.
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n-port parallel adaptor

• It is worth observing that choosing an α = 1 does not imply any loss of generality in

the filter design. In fact, at the ports corresponding to these coefficients, the port

resistances can be chosen arbitrarily, since they are used only for interconnection,

and therefore they do not depend on any component value of the analog prototype.

• For example, the resistance of the ports common to two interconnected adaptors

must be the same but can have arbitrary values. For instance, in the case of a

three-port parallel adaptor, the describing equations would be

α2 = 1 − α1

B3 = α1A1 + (1 − α1)A2

B2 = (A0 − A2) = α1A1 + (1 − α1)A2 + A3 − A2 = α1 (A1 − A2) + A3

B1 = α1A1 + (1 − α1)A2 + A3 − A1 = (1 − α1) (A2 − A1) + A3






(197)

the realization of which is depicted in Figure 41.
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n-port parallel adaptor

• Note that the port with no possibility of delay-free loops is marked with (⊢), and is

known as the reflection-free port.

• A parallel adaptor, as illustrated in Figure 42, can be interpreted as a parallel

connection of n ports with (n − 2) auxiliary ports, which are introduced to provide

separation among several external ports. The same figure also shows the symbolic

representation of the n-port parallel adaptor consisting of several three-port

adaptors.
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n-port parallel adaptor
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Figure 41: Reflection-free parallel adaptor at port 3.
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n-port parallel adaptor
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Figure 42: The n-port parallel adaptor: (a) equivalent connection; (b) interpretation as

several three-port parallel adaptors.
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n-port series adaptor

• In the situation where we need to interconnect n elements in series with distinct port

resistances R1, R2, . . ., Rn, we need to use an n-port series adaptor, whose

symbol is shown in Figure 43.

• In this case, the wave equations for each port are

Ak = Vk + RkIk

Bk = Vk − RkIk





(198)

for k = 1, 2, . . ., n.
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n-port series adaptor

• We then must have that

V1 + V2 + · · · + Vn = 0

I1 = I2 = · · · = In = I





(199)

• Figure 44 depicts a possible three-port series adaptor.
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n-port series adaptor
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Figure 43: Symbol of the n-port series adaptor.
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n-port series adaptor
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Figure 44: The three-port series adaptor.
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n-port series adaptor

• Since
n∑

i=1

Ai =

n∑

i=1

Vi +

n∑

i=1

RiIi = I

n∑

i=1

Ri (200)

it follows that

Bk = Ak − 2RkIk = Ak −
2Rk

n∑

i=1

Ri

n∑

i=1

Ai = Ak − βkA0 (201)

where

βk = 2Rk
n∑

i=1

Ri

; A0 =

n∑

i=1

Ai





(202)
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n-port series adaptor

• From equation (202), we observe that

n∑

k=1

βk = 2 (203)

• Therefore, it is possible to eliminate a multiplication, as previously done for the

parallel adaptor, by expressing βn as a function of the remaining β, and then

Bn = An + (−2 + β1 + β2 + · · · + βn−1)A0 (204)
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n-port series adaptor

• Since from equation (11.165)

n−1∑

k=1

Bk =

n−1∑

k=1

Ak − A0

n−1∑

k=1

βk (205)

then

Bn = An − 2A0 +

n−1∑

k=1

Ak −

n−1∑

k=1

Bk = −A0 −

n−1∑

k=1

Bk (206)

where port n is the so-called dependent port.

• The three-port adaptor realized from the equations above is shown in Figure 45,

where

B1 = A1 − β1A0

B2 = A2 − β2A0

B3 = −(A0 + B1 + B2)






(207)

where A0 = A1 + A2 + A3.
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n-port series adaptor
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Figure 45: Digital realization of the three-port series adaptor.
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n-port series adaptor

• For the series adaptors, we avoid the delay-free loops by choosing one of the β

equal to 1. For example, if we choose βn = 1, we have that

Rn = R1 + R2 + · · · + Rn−1

Bn = (An − βnA0) = − (A1 + A2 + · · · + An−1)





(208)

• Equation (203) can now be replaced by

β1 + β2 + · · · + βn−1 = 1 (209)

which allows one of the βi to be calculated from the remaining ones.
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n-port series adaptor

• A three-port series adaptor having β3 = 1 and β2 described as a function of β1 is

described by

β2 = 1 − β1

B1 = A1 − β1A0

B2 = A2−(1−β1) A0 = A2−(A1+A2+A3)+β1A0 = β1A0−(A1+A3)

B3 = (A3 − A0) = − (A1 + A2)






(210)

and its implementation is depicted in Figure 46. Note again that the port which

avoids delay-free loops is marked with (⊢).
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n-port series adaptor
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Figure 46: Reflection-free series adaptor at port 3.
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n-port series adaptor

• Consider now a series connection with inverted odd-port orientations, starting from

port 3 and with (n − 2) auxiliary ports used for separation, as depicted in

Figure 47a. We can easily show that such a series connection can be implemented

through several elementary series adaptors, as shown in Figure 47b.
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n-port series adaptor
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Figure 47: The n-port series adaptor: (a) equivalent connection; (b) interpretation as sev-

eral three-port series adaptors.
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Lattice wave digital filters

• In some designs, it is preferable to implement a wave digital filter from a lattice

analog network rather than from a ladder analog network. This is because, when

implemented digitally, the lattice structures have low sensitivity in the filter passband

and high sensitivity in the stopband.

• There are two explanations for the sensitivity properties of the lattice realization.

First, any changes in the coefficients belonging to the adaptors of the lattice structure

do not destroy its symmetry, whereas in the symmetric ladder this symmetry can be

lost. The second reason applies to the design of filters with zeros on the unit circle.

• In the lattice structures, quantization usually moves these zeros away from the unit

circle, whereas in the ladder structures the zeros always move around the unit circle.
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Lattice wave digital filters

• Fortunately, all symmetric ladder networks can be transformed into lattice networks

by applying the so-called Bartlett bisection theorem. This subsection deals with the

implementation of lattice wave digital filters.

• Given the symmetric analog lattice network of Figure 48, where Z1 and Z2 are the

lattice impedances, it can be shown that the incident and reflected waves are related

by

B1 = S1

2
(A1 − A2) + S2

2
(A1 + A2)

B2 = −S1

2
(A1 − A2) + S2

2
(A1 + A2)





(211)

where

S1 =
Z1 − R

Z1 + R
; S2 =

Z2 − R

Z2 + R

}

(212)

with S1 and S2 being the reflectances of the impedances Z1 and Z2, respectively.
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Lattice wave digital filters

• That is, S1 and S2 correspond to the ratio between the reflected and incident waves

at ports Z1 and Z2 with port resistance R, since

B

A
=

V − RI

V + RI
=

Z − R

Z + R
(213)

• The lattice realization then consists solely of impedance realizations, as illustrated in

Figure 49. Note that, in this figure, since the network is terminated by a resistance,

then A2 = 0.
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Lattice wave digital filters

R


+


+


–


–


R


V
2


V
i


Z
1


Z
1


Z
2


Z
2


Figure 48: Analog lattice network.
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Lattice wave digital filters

++
–1

A1 2B2 2B1

S2

S1

A2 = 0

Figure 49: Wave digital lattice representation.
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Example 13.6

• Realize the lowpass filter represented in Figure 50, using a wave lattice network.

Vi

R1
L1 L1

C1 C2 C1 R1 V2

+


–


+


–


Figure 50: Lowpass RLC network.
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Example 13.6 - Solution

• The circuit in Figure 50 is a symmetric ladder network, as is made clear when it is

redrawn as in Figure 51.

2

Vi C1

C2
2


C2 C1

R1
L1

R1 V2

+


–


+


–


Figure 51: Symmetric ladder network.

210



Diniz, da Silva and Netto

Example 13.6 - Solution

Symmetric circuits


…



…



Figure 52: Generic symmetric ladder network.
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Example 13.6 - Solution

• Bartlett’s bisection theorem states that, when you have a two-port network composed

of two equal half networks connected by any number of wires, as illustrated in

Figure 52, then it is equivalent to a lattice network as in Figure 48.

• Figure 51 is a good example of a symmetric ladder network. The impedance Z1 is

equal to the input impedance of any half-network when the connection wires to the

other half are short circuited, and Z2 is equal to the input impedance of any

half-network when the connection wires to the other half are open.

• This is illustrated in Figure 53 below, where the determinations of the impedances

Z1 and Z2 of the equivalent lattice are shown.

• Figure 54 shows the computation of Z1 and Z2 for this example.
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Example 13.6 - Solution

Z1 Z2

…



…



Figure 53: Computation of the lattice’s impedances Z1 and Z2 for the generic case.
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Example 13.6 - Solution

2


Z1 Z2

C1 C1

L1 L1

C2

2


C2

Figure 54: Computation of the lattice’s impedances Z1 and Z2 for Example 13.4.

214



Diniz, da Silva and Netto

Example 13.6 - Solution

• From the resulting lattice network, the final wave filter is then as represented in

Figure 55, where

α1 =
2G1

G1 + 2C1

T
+ T

2L1

(214)

α2 =
22C1

T

G1 + 2C1

T
+ T

2L1

(215)
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with

α3 =
2G1

G1 + 2C1

T
+ G3

+
2G1

2G1 + 4C1

T

=
G1

G1 + 2C1

T

(216)

G3 = G1 +
2C1

T
(217)

β1 =
2R3

R3 + T
C2

+ 2L1

T

(218)

β2 =

2T
C2

R3 + T
C2

+ 2L1

T

(219)
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Example 13.6 - Solution

A1 –2B2


Z –1 Z –1

Z –1

Z –1Z –1

α2

α1

α3

β1

β2

–1


–1


–1


Figure 55: Resulting digital lattice network.
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Example 13.6 - Solution

• One should note that, since we want a network that generates the output voltage at

the load, then B2 is the only variable of interest to us, and therefore B1 does not

need to be computed.
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Example 13.6

• Realize the ladder filter represented in Figure 56 using a wave network.

+
+


–
–


Vi

R1

C1

C2 C4

C3
C5

L2 L3

R2 V2

L1

Figure 56: Ladder RLC network.
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Example 13.6 - Solution

• The connections among the elements can be interpreted as illustrated in Figure 57.

Figure 57: Component connections.
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Example 13.6 - Solution

• The resulting wave filter should be represented as in Figure 58, where the choice of

the reflection-free ports is arbitrary.

–1


–1

–1


Z –1

Z –1
Z –1

Z –1

Z –1

Z –1

Z –1 Z –1

α2

α3 β2

α4

α5 β3

β4

β1

α1

'R1

'R6

'R2
'R3

'R7

'R4
'R5

Figure 58: Resulting digital wave network.
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Example 13.6 - Solution

• The equations below describe how to calculate the multiplier coefficient of each

adaptor, and Figure 59 depicts the resulting wave digital filter realization.

G′
1 = G1 +

2C1

T
(220)

α1 =
2G1

G1 + 2C1

T
+ G′

1

=
2G1

2G1 + 4C1

T

=
G1

G1 + 2C1

T

(221)

G′
6 =

2C2

T
+

T

2L1

(222)

α2 =
22C2

T
2C2

T
+ T

2L1
+ G′

6

=
2C2

T
2C2

T
+ T

2L1

(223)

R′
2 = R′

1 + R′
6 (224)
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Example 13.6 - Solution

β1 =
R′

1

R′
1 + R′

6

=
1

1 +
G1+

2C1
T

2C2
T

+ T
2L1

(225)

G′
3 = G′

2 +
2C3

T
(226)

α3 =
G′

2

G′
2 + 2C3

T

(227)

G′
7 =

2C4

T
+

T

2L2

(228)

α4 =
2C4

T
2C4

T
+ T

2L2

(229)

R′
4 = R′

3 + R′
7 (230)
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Example 13.6 - Solution

β2 =
R′

3

R′
3 + R′

7

(231)

G′
5 = G′

4 +
2C5

T
(232)

α5 =
2G′

4

G′
4 + 2C5

T

(233)

β3 =
2R′

5

R′
5 + 2L3

T
+ R2

(234)

β4 =
2R2

R′
5 + 2L3

T
+ R2

(235)
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Example 13.6 - Solution

α

α β α

α4

β α β β4

Figure 59: Resulting wave filter realization.
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Do-it-yourself: Efficient IIR structures

• Experiment 13.1: Consider the elliptic bandpass filter designed in Example 13.1

satisfying the specifications:

Ap = 0.5 dB

Ar = dB

Ωr1
= 850 rad/s

Ωp1
= 980 rad/s

Ωp2
= 1020 rad/s

Ωr2
= 1150 rad/s

Ωs = 10 000 rad/s






(236)
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Experiment 13.1

• The resulting cascade realization is described below.

Table 16: Cascade structure using direct-form second-order sections. Gain constant:

h0 = 1.4362 E − 04.

Coefficient Section 1 Section 2 Section 3

γ0 1.0000 1.0000 1.0000

γ1 0.0000 −1.4848 −1.7198

γ2 −1.0000 1.0000 1.0000

m1 −1.6054 −1.5965 −1.6268

m2 0.9843 0.9921 0.9924
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Experiment 13.1

• Given the transfer function of each section in the form

Hi(z) =
Ni(z)

Di(z)
=

gamma0i z2 + gamma1i z + gamma2i

z2 + m1i z + m2i
(237)

the corresponding peaking factor, Pi , as defined in equation (16), can be

determined in MATLAB as

N_i = [gamma0i gamma1i gamma2i]; D_i = [1 m1i m2i];

npoints = 1000;

Hi = freqz(N_i,D_i,npoints);

Hi_infty = max(abs(Hi)) ;

Hi_2 = sqrt(sum(abs(Hi).ˆ2)/npoints);

Pi = Hi_infty/Hi_2;
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Experiment 13.1

• Using the coefficient values provided in Table 16, one gets

P1 = 11.2719

P2 = 13.4088

P3 = 12.5049






(238)

• If we scale the filter with the L2 norm, then, in order to minimize the maximum value

of the output-noise PSD, one should change the section order to get a decreasing

Pi sequence, as seen in Figure 60.
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Experiment 13.1

Section 2 Section 3 Section 1x(n) y(n)

Figure 60: New section ordering in cascade filter to minimize peak value of output-noise

PSD.

230



Diniz, da Silva and Netto

Experiment 13.1

• Scaling the old Section 2 using L2 norm, we get

λ2 =
1

‖ F2(z) ‖2

=
1

‖ h0

D2(z)
‖2

(239)

such that

D_2 = [1 m12 m22];

F_2 = freqz(h_0,D_2,npoints);

lambda_2 = 1/sqrt(sum(abs(F_2).ˆ2)/npoints);
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Experiment 13.1

• Scaling the old Section 3, taking into account that it now comes after the old

Section 2, we get

λ3 =
1

‖ H2(z)F3(z) ‖2

=
1

‖ h0N2(z)

D2(z)D3(z)
‖2

(240)

such that

N_2 = [gamma02 gamma12 gamma22];

D_3 = [1 m13 m23];

D_2D_3 = conv(D_2,D_3);

H_2F_3 = freqz(h_0N_2,D_2D_3,npoints);

lambda_3 = 1/sqrt(sum(abs(H_2F_3).ˆ2)/npoints);
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Experiment 13.1

• Finally, scaling the old Section 1, taking into account that it comes after the old

Sections 2 and 3, we get

λ1 =
1

‖ H2(z)H3(z)F1(z) ‖2

=
1

‖ h0N2(z)N3(z)

D2(z)D3(z)D1(z)
‖2

(241)

such that

N_3 = [gamma03 gamma13 gamma23];

D_1 = [1 m11 m21];

N_2N_3 = conv(N_2,N_3);

D_2D_3D_1 = conv(D_2D_3,D_1);

H_2H_3F_1 = freqz(h_0N_2N_3,D_2D_3D_1,npoints);

lambda_1 = 1/sqrt(sum(abs(H_2H_3F_1).ˆ2)/npoints);
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yielding

λ2 = lambda _2 = 522.2077

λ3 = lambda _3 = 83.8126

λ1 = lambda _1 = 12.1895






(242)
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