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Introduction

Discrete-time signal processing:

• Studies the rules governing the behavior of discrete-time signals

• Studies the systems that process them.

• Deals with the issues involved in processing continuous signals using digital

techniques

• Pervades modern life; for example, is used in:

– compact disc players

– computer tomography

– geological processing

– mobile phones

– electronic toys

and many others.
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Introduction

• Analog signal processing:

– Processes a continuously varying quantity (analog signal)

– Can be described by differential equations

• Digital signal processing:

– Processes sequences of numbers (discrete-time signals) using some sort of

digital hardware

– Its power comes from the fact that, once a sequence of numbers is available to an

appropriate digital hardware we can carry out any form of numerical processing

on it.
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Introduction

• For example, suppose we need to perform the following operation on a

continuous-time signal:

y(t) =
cosh

[

ln(|x(t)|) + x3(t) + cos3
(

√

|x(t)|
)]

5x5(t) + ex(t) + tan(x(t))
(1)

– This would be clearly very difficult to implement using analog hardware.

– However, if we sample the analog signal x(t) and convert it into a sequence of

numbers x(n), it can be input to a digital computer, which can perform the above

operation easily and reliably, generating a sequence of numbers y(n).

– If the continuous-time signal y(t) can be recovered from y(n), then the desired

processing has been successfully performed.
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Introduction

• This simple example highlights two important points.

– One is how powerful digital signal processing is.

– The other is that, if we want to process an analog signal using this sort of

resource, we must have a way of converting a continuous-time signal into a

discrete-time one, such that the continuous-time signal can be recovered from the

discrete-time signal.

• However, it is important to note that very often discrete-time signals do not come

from continuous-time signals, that is, they are originally discrete-time, and the results

of their processing are only needed in digital form.
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Discrete-time signals

• A discrete-time signal is one that can be represented by a sequence of numbers. For

example, the sequence

{x(n), n ∈ Z} (2)

where Z is the set of integer numbers, can represent a discrete-time signal where

each number x(n) corresponds to the amplitude of the signal at an instant nT .

• If xa(t) is an analog signal, we have that

x(n) = xa(nT), n ∈ Z (3)

Since n is an integer, T represents the interval between two consecutive points at

which the signal is defined.

– It is important to note that T is not necessarily a time unit.

– For example, if xa(t) is the temperature along a metal rod, then if T is a length

unit, x(n) = xa(nT) may represent the temperature at sensors placed

uniformly along this rod.
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Discrete-time signals

• Here, we usually represent a discrete-time signal using the notation in equation (2).

x(n) is referred to as the nth sample of the signal (or the nth element of the

sequence).

• An alternative notation, used in many texts, is to represent the signal as

{xa(nT), n ∈ Z} (4)

where the discrete-time signal is represented explicitly as samples of an analog

signal xa(t).

– In this case, the time interval between samples is explicitly shown, that is,

xa(nT) is the sample at time nT .
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Discrete-time signals

• Using the notation in equation (2), a discrete-time signal whose adjacent samples

are 0.03 seconds apart would be represented as

. . . x(0), x(1), x(2), x(3), x(4), . . . (5)

whereas, using equation (4), it would be represented as

. . . xa(0), xa(0.03), xa(0.06), xa(0.09), xa(0.12), . . . (6)
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Discrete-time signals

The graphical representation of a general discrete-time signal is shown below.

n

or  nT


x(
n)
  
or
  
x(
nT
)


…

…


In what follows, we describe some of the most important discrete-time signals.
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Discrete-time signals

Unit impulse: δ(n) =





1, n = 0

0, n 6= 0

x(n
)


n


1


2–1
 1–2
 3
–3


Delayed

unit impulse:
δ(n − m) =





1, n = m

0, n 6= m

x(n)

n


1


m


Unit step: u(n) =





1, n ≥ 0

0, n < 0

n

1

1–1–2–3–4–5–6 0 43 5 62

x(n)

…
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Discrete-time signals

Real exponential function: x(n) = ean

n

1 2 
3 4 
5
0


x(n)

…
…


Unit ramp: r(n) =





n, n ≥ 0

0, n < 0

n

1
–1
–2
–3
–4
–5
 2 3 
4
 5


x(n)

…
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Discrete-time signals

Cosine function: x(n) = cos(ωn)
n


1 2 
3 4 
–1
–2
–3
–4
 0
 …

…


x(n)

• The angular frequency of this sinusoid is ω rad/sample and its frequency is ω
2π

cycles/sample.

• For example, in the previous figure, the cosine function has angular frequency

ω = 2π
16

rad/sample. This means that it completes one cycle, that equals 2π

radians, in 16 samples.
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Discrete-time signals

• If the sample separation represents time, ω can be given in rad/(time unit). It is

important to note that, for k ∈ Z,

cos((ω + 2kπ)n) = cos(ωn + 2knπ) = cos(ωn) (7)

⇒ This implies that, in the case of discrete signals, there is an ambiguity in defining

the frequency of a sinusoid. In other words, when referring to discrete sinusoids,

ω and ω + 2kπ, k ∈ Z, are the same frequency.
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Discrete-time signals

• By examining the above figures, we notice that any discrete-time signal is equivalent

to a sum of shifted impulses multiplied by a constant, that is, the impulse shifted by k

samples is multiplied by x(k).

– This can also be deduced from the definition of a shifted impulse in equation (11).

• For example, the unit step u(n) in equation (11) can also be expressed as

u(n) =

∞∑

k=0

δ(n − k) (8)

Likewise, any discrete-time signal x(n) can be expressed as

x(n) =

∞∑

k=−∞

x(k)δ(n − k) (9)
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Discrete-time signals

Periodic sequences:

• An important class of discrete-time signals or sequences is that of periodic

sequences.

• A sequence x(n) is periodic if and only

There is N 6= 0 such that x(n) = x(n + N) for all n

N is called the period of the sequence.
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Discrete-time signals

• Using this definition, the period of the cosine function is an integer N such that

cos(ωn) = cos(ω(n + N)), for all n ∈ Z (10)

– This happens only if there is k ∈ N such that ωN = 2πk. The smallest period

is then

N = min
k∈N

2π
ω

k∈N

{
2π

ω
k

}
(11)

– Therefore, we notice that not all discrete cosine sequences are periodic, as

illustrated in Example 1.1 below.

– An example of a periodic cosine sequence with period N = 16 samples is given

in the illustration of the cosine function above.
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Discrete-time signals

Example 1.1

Determine if the discrete signals above are periodic; if they are, determine their periods.

(a) x(n) = cos
(

12π
5

n
)

(b) x(n) = 10 sin2
(

7π
12

n +
√

2
)

(c) x(n) = 2 cos (0.02n + 3)
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Discrete-time signals

Solution:

(a) x(n) = cos
(

12π
5

n
)

In this case, we must have

12π

5
(n + N) =

12π

5
n + 2kπ ⇒ N =

5k

6
(12)

This implies that the smallest N results for k = 6. Then the sequence is periodic

with period N = 5. Note that in this case

cos

(

12π

5
n

)

= cos

(

2π

5
n + 2πn

)

= cos

(

2π

5
n

)

(13)

and thus we have also that the frequency of this sinusoid, besides being ω = 12π
5

,

is also ω = 2π
5

, as indicated by equation (7).
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(b) x(n) = 10 sin2
(

7π
12

n +
√

2
)

In this case, periodicity implies that

sin2

(

7π

12
(n + N)

)

= sin2

(

7π

12
n

)

(14)

and then

sin

(

7π

12
(n + N)

)

= ± sin

(

7π

12
n

)

(15)

such that

7π

12
(n + N) =

7π

12
n + kπ ⇒ N =

12k

7
(16)

The smallest N results for k = 7. Then this discrete-time signal is periodic with

period N = 12.
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(c) x(n) = 2 cos (0.02n + 3)

The periodicity condition requires that

cos (0.02(n + N) + 3) = cos (0.02n + 3) (17)

such that

0.02(n + N) = 0.02n + 2kπ ⇒ N = 100kπ (18)

Since no integer N satisfies the above equation, then the sequence is not periodic.

△
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Discrete-time systems

• A discrete-time system maps an input sequence x(n) to an output sequence y(n),

such that

y(n) = H{x(n)} (19)

where the operator H{·} represents a discrete-time system.

Discrete-time
system

x(n) y (n)

• A discrete-time system can be classified as:

– linear or nonlinear

– time invariant or time variant

– causal or noncausal.
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Discrete-time systems

Linearity:

• It is usually desirable to have a system that

– When the amplitude of the input increases, the amplitude of the output increases

without being distorted.

– The output of a given combination of two signals is equivalent to the same

combination applied on the outputs of the individual signals.

• A system with such properties is referred to as being linear .

• In more precise terms, a discrete-time system is linear if and only if

H{ax(n)} = aH{x(n)} (20)

and

H{x1(n) + x2(n)} = H{x1(n)} + H{x2(n)} (21)

for any constant a, and any sequences x(n), x1(n), and x2(n).
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Discrete-time systems

Time invariance:

• It is sometimes desirable to have a system whose properties do not vary in time.

• Such a system is referred to as being time invariant .

• In more precise terms, a discrete-time system is time invariant if and only if, for any

input sequence x(n) and integer n0, given that

H{x(n)} = y(n) (22)

then

H{x(n − n0)} = y(n − n0) (23)

• Some texts refer to the time-invariance property as the shift-invariance property,

since a discrete system can process samples of a function not necessarily in time.
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Discrete-time systems

Causality:

• Since one cannot “see into the future”, in real-time applications one needs to have a

system whose output depends only on past inputs.

• Such a system is usually referred to as being causal .

• In more precise terms, a discrete-time system is causal if and only if, when

x1(n) = x2(n) for n < n0, then

H{x1(n)} = H{x2(n)}, for n < n0 (24)

In other words, causality means that the output of a system at instant n does not

depend on any input occurring after n.
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Discrete-time systems

• Usually, in the case of a discrete-time signal, a noncausal system is not

implementable in real time.

• This is because we would need input samples at instants of time greater than n in

order to compute the output at time n.

• However, this would be allowed only if the time samples were pre-stored, as in

off-line or batch implementations.

• If the signals to be processed do not consist of time samples acquired in real time,

then there might be nothing equivalent to the concepts of past or future samples.

⇒ In these cases, the role of causality is of a lesser importance.

• For example, for a discrete signal that corresponds to the temperature at sensors

uniformly spaced along a metal rod, a processor can have access to all its samples

simultaneously.

– In this case, even a noncausal system can be easily implemented.
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Discrete-time systems

Example 1.2

Characterize the following systems as being either linear or nonlinear, time invariant or

time varying, causal or noncausal:

(a) y(n) = (n + b)x(n − 4)

(b) y(n) = x2(n + 1)
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Discrete-time systems

Solution

(a) y(n) = (n + b)x(n − 4)

• Linearity:

H{ax(n)} = (n + b)ax(n − 4)

= a(n + b)x(n − 4)

= aH{x(n)} (25)

and

H{x1(n) + x2(n)} = (n + b)[x1(n − 4) + x2(n − 4)]

= (n + b)x1(n − 4) + (n + b)x2(n − 4)

= H{x1(n)} + H{x2(n)} (26)

and therefore the system is linear.
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• Time invariance:

y(n − n0) = [(n − n0) + b]x[(n − n0) − 4] (27)

and then

H{x(n − n0)} = (n + b)x[(n − n0) − 4] (28)

such that y(n − n0) 6= H{x(n − n0)}, and the system is time varying.
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• Causality: If

x1(n) = x2(n), for n < n0 (29)

then

x1(n − 4) = x2(n − 4), for n − 4 < n0 (30)

such that

x1(n − 4) = x2(n − 4), for n < n0 (31)

and then

(n + b)x1(n − 4) = (n + b)x2(n − 4), for n < n0 (32)

Hence, H{x1(n)} = H{x2(n)}, for all n < n0 and, consequently, the system

is causal.
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(b) y(n) = x2(n + 1)

• Linearity:

H{ax(n)} = a2x2(n + 1) 6= aH{x(n)} (33)

and therefore the system is nonlinear.

• Time invariance:

H{x(n − n0)} = x2[(n − n0) + 1] = y(n − n0) (34)

so the system is time invariant.
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• Causality:

H{x1(n)} = x2
1(n + 1) (35)

H{x2(n)} = x2
2(n + 1) (36)

Therefore, if x1(n) = x2(n), for n < n0, and x1(n0) 6= x2(n0), then, for

n = n0 − 1 < n0,

H{x1(n0 − 1)} = x2
1(n0) (37)

H{x2(n0 − 1)} = x2
2(n0) (38)

and we have that H{x1(n)} 6= H{x2(n)}, and the system is noncausal.

△

32



Diniz, da Silva and Netto

Impulse response and convolution sums

Suppose that H{·} is a linear system, and we apply an excitation x(n) to the system.

Since, from equation (9), x(n) can be expressed as a sum of shifted impulses

x(n) =

∞∑

k=−∞

x(k)δ(n − k) (39)

we can express its output as

y(n) = H
{

∞∑

k=−∞

x(k)δ(n − k)

}

=

∞∑

k=−∞

H {x(k)δ(n − k)} (40)

Since x(k) in the above equation is just a constant, the linearity of H{·} also implies that

y(n) =

∞∑

k=−∞

x(k)H{δ(n − k)} =

∞∑

k=−∞

x(k)hk(n) (41)

where hk(n) = H{δ(n − k)} is the response of the system to an impulse at n = k.
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Impulse response and convolution sums

If the system is also time invariant, and we define

H{δ(n)} = h0(n) = h(n) (42)

then H{δ(n − k)} = h(n − k), and the expression in equation (41) becomes

y(n) =

∞∑

k=−∞

x(k)h(n − k) (43)

indicating that a linear time-invariant system is completely characterized by its unit

impulse response h(n).

• Note that, when the system is linear but time varying, we would need, in order to

compute y(n), the values of hk(n), which depend on both n and k. This makes

the computation of the summation in equation (41) quite complex.

Equation (43) is called a convolution sum or a discrete-time convolution .
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Impulse response and convolution sums

If we make the change of variables l = n − k, equation (43) can be written as

y(n) =

∞∑

l=−∞

x(n − l)h(l) (44)

that is, we can interpret y(n) as the result of the convolution of the excitation x(n) with

the system impulse response h(n).

• A shorthand notation for the convolution operation, as described in equations (43)

and (44), is

y(n) = x(n) ∗ h(n) = h(n) ∗ x(n) (45)
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Impulse response and convolution sums

Suppose now that the output y(n) of a system with impulse response h(n) is the

excitation for a system with impulse response h′(n). In this case, we have

y(n) =

∞∑

k=−∞

x(k)h(n − k) (46)

y′(n) =

∞∑

l=−∞

y(l)h′(n − l) (47)

Substituting equation (46) in equation (47), we have that

y′(n) =

∞∑

l=−∞

(

∞∑

k=−∞

x(k)h(l − k)

)

h′(n − l)

=

∞∑

k=−∞

x(k)

(

∞∑

l=−∞

h(l − k)h′(n − l)

)

(48)
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Impulse response and convolution sums

By performing the change of variables l = n − r, the above equation becomes

y′(n) =

∞∑

k=−∞

x(k)

(

∞∑

r=−∞

h(n − r − k)h′(r)

)

=

∞∑

k=−∞

x(k) (h(n − k) ∗ h′(n − k))

=

∞∑

k=−∞

x(n − k) (h(k) ∗ h′(k)) (49)

• This shows that the impulse response of a linear time-invariant system formed by the

series (cascade) connection of two linear time-invariant subsystems is the

convolution of the impulse responses of the two subsystems.
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Impulse response and convolution sums

Example 1.3

Compute y(n) for the system depicted in the figure below as a function of the input

signal and of the impulse responses of the subsystems.

+





h1 (n)

h2 (n)

h3 (n)

x(n) y(n)

Solution From the previous results, it is easy to conclude that

y(n) = (h2(n) + h3(n)) ∗ h1(n) ∗ x(n) (50)

△
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Stability

A system is referred to as bounded-input bounded-output (BIBO) stable if, for every input

limited in amplitude, the output signal is also limited in amplitude. For a linear

time-invariant system, equation (44) implies that

|y(n)| ≤
∞∑

k=−∞

|x(n − k)||h(k)| (51)

The input being limited in amplitude is equivalent to

|x(n)| ≤ xmax <∞, for all n (52)

Therefore

|y(n)| ≤ xmax

∞∑

k=−∞

|h(k)| (53)
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Stability

Hence, we can conclude that a sufficient condition for a system to be BIBO stable is

∞∑

k=−∞

|h(k)| <∞ (54)

since this condition forces y(n) to be limited.

To prove that this condition is also necessary, suppose that it does not hold, that is, the

summation in equation (54) is infinite. If we choose an input such that

x(n0 − k) =





+1, for h(k) ≥ 0

−1, for h(k) < 0
(55)

we then have that

y(n0) = |y(n0)| =

∞∑

k=−∞

|h(k)| (56)

that is, the output y(n) is unbounded, showing that this condition is also necessary.
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Difference equations and time-domain response

• In most applications, discrete-time systems can be described by difference equations

• They are the equivalent, for the discrete-time domain, to differential equations for the

continuous-time domain.

• The input and output of a system described by a linear difference equation are

generally related by

N∑

i=0

aiy(n − i) −

M∑

l=0

blx(n − l) = 0 (57)

• This equation has an infinite number of solutions y(n).

• Suppose that a particular yp(n) satisfies equation (57), that is

N∑

i=0

aiyp(n − i) −

M∑

l=0

blx(n − l) = 0 (58)
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Difference equations and time-domain response

• Suppose also that yh(n) is a solution to the homogeneous equation, that is

N∑

i=0

aiyh(n − i) = 0 (59)

⇒ From equations (57)–(59), we can easily infer that y(n) = yp(n) + yh(n) is also

a solution to the same difference equation.

• The homogeneous solution yh(n) of a difference equation of order N, has N

degrees of freedom (depends on N arbitrary constants).

⇒ One can only determine a solution for a difference equation if one supplies N

auxiliary conditions.

– One example of a se of auxiliary conditions is given by the values of

y(−1), y(−2), . . ., y(−N).

– Any N independent auxiliary conditions are enough to solve a difference

equation. It is common to use N consecutive samples of y(n).
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Difference equations and time-domain response

Example 1.4

Find the solution for the following difference equation:

y(n) = ay(n − 1) (60)

as a function of the initial condition y(0).
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Difference equations and time-domain response

Solution

Running the difference equation y(n) = ay(n − 1) from n = 1 onwards, we have that

y(1) = ay(0)

y(2) = ay(1)

y(3) = ay(2)

...

y(n) = ay(n − 1)






(61)

Multiplying the above equations, we have that

y(1)y(2)y(3) . . . y(n) = any(0)y(1)y(2) . . . y(n − 1) (62)

and therefore, the solution of the difference equation is

y(n) = any(0) (63)
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Difference equations and time-domain response

Example 1.5

Solve the following difference equation:

y(n) = e−βy(n − 1) + δ(n) (64)

Solution

From the previous example, any function of the form yh(n) = Ke−βn satisfies

yh(n) = e−βyh(n − 1) (65)

and is therefore a solution of the homogeneous difference equation.

One can verify by substitution that yp(n) = e−βnu(n) is a particular solution.

Therefore, the general solution of the difference equation is given by

y(n) = yp(n) + yh(n) = e−βnu(n) + Ke−βn (66)

where the value of K is determined by the auxiliary conditions.
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Difference equations and time-domain response

First order difference equation: we need to specify only one condition.

If y(−1) = α, the solution to equation (64) becomes

y(n) = e−βnu(n) + αe−β(n+1) (67)

△
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Difference equations and time-domain response

• A linear system must satisfy H{αx} = αH{x}

⇒ for a linear system, H{0} = 0

• If we restrict ourselves to inputs that are null prior to a certain sample, that is,

x(n) = 0, for n < n0, there is an interesting relation between linearity, causality,

and the initial conditions of a system.

– If the system is causal, the output at n < n0 can not be influenced by any

sample of the input x(n) for n ≥ n0. Therefore, if x(n) = 0, for n < n0, then

H{0} and H{x(n)} must be identical for all n < n0. Since, if the system is

linear, H{0} = 0, then necessarily H{x(n)} = 0 for n < n0.

– This is equivalent to saying that the auxiliary conditions for n < n0 must be null.

Such a system is referred to as being initially relaxed .

– Conversely, if the system is not initially relaxed, one can not guarantee that it is

causal.
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Difference equations and time-domain response

Example 1.6

For the linear system described by

y(n) = e−βy(n − 1) + u(n) (68)

determine its output for the auxiliary conditions:

(a) y(1) = 0

(b) y(−1) = 0

and discuss the causality in both situations.
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Solution The homogeneous solution of equation (68) is the same as in the previous

example, that is

yh(n) = Ke−βn (69)

By direct substitution in equation (68), it can be verified that the particular solution is of

the form

yp(n) = (a + be−βn)u(n) (70)

where

a =
1

1 − e−β
; b =

−e−β

1 − e−β
(71)

Thus, the general solution of the difference equation is given by

y(n) =

(

1 − e−β(n+1)

1 − e−β

)

u(n) + Ke−βn (72)
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(a) For the auxiliary condition y(1) = 0, we have that

y(1) =

(

1 − e−2β

1 − e−β

)

+ Ke−β = 0 (73)

yielding K = −(1 + eβ), and the general solution becomes

y(n) =

(

1 − e−β(n+1)

1 − e−β

)

u(n) −
(

e−βn + e−β(n−1)
)

(74)

Since for n < 0, we have that u(n) = 0, then y(n) simplifies to

y(n) = −
(

e−βn + e−β(n−1)
)

(75)

Clearly, in this case, y(n) 6= 0, for n < 0, whereas the input u(n) = 0 for n < 0.

Thus, the system is not initially relaxed and therefore is noncausal.
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Another way of verifying that the system is noncausal is by noting that, if the input is

doubled, becoming x(n) = 2u(n) instead of u(n), then the particular solution is

also doubled. Hence, the general solution of the difference equation becomes

y(n) =

(

2 − 2e−β(n+1)

1 − e−β

)

u(n) + Ke−βn (76)

If we require that y(1) = 0, then K = 2 + 2eβ, and, for n < 0, this yields

y(n) = −2
(

e−βn + e−β(n−1)
)

(77)

Since this is different from the value of y(n) for u(n) as input, we see that the

output for n < 0 depends on the input for n > 0, and therefore the system is

noncausal.

(b) For the auxiliary condition y(−1) = 0, we have that K = 0, yielding the solution

y(n) =

(

1 − e−β(n+1)

1 − e−β

)

u(n) (78)

In this case, y(n) = 0, for n < 0, that is, the system is initially relaxed and,

therefore, causal, as discussed above. △
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Difference equations and time-domain response

• An initially relaxed system described by a linear difference equation, besides being

linear and causal, is also time invariant.

• Time invariance can be easily inferred if we consider that, for an initially relaxed

system, the history of the system up to the application of the excitation is the same

irrespective of the time sample position at which the excitation is applied.

– This happens because the outputs are all zero up to, but not including, the time of

the application of the excitation.

⇒ If time is measured having as a reference the time sample n = n0, at which the

input is applied, then the output will not depend on the reference n0, because the

history of the system prior to n0 is the same irrespective of n0.

– This is equivalent to saying that if the input is shifted by k samples, then the

output is just shifted by k samples, the rest remaining unchanged, thus

characterizing a time-invariant system.
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Recursive × non-recursive systems

• A general difference equation can be written as

y(n) = −

N∑

i=1

aiy(n − i) +

M∑

l=0

blx(n − l) (79)

• Here, the output signal y(n) depends on:

– Samples of the input, x(n), x(n − 1), . . ., x(n − M)

– Samples of the output, y(n − 1), y(n − 2), . . ., y(n − N)

• In this general case, we say that the system is recursive , since, in order to compute

the output, we need past samples of the output itself.

• When a1 = a2 = · · · = aN = 0, then the output at sample n depends only on

values of the input signal.

– In such case, the system is called nonrecursive .
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– It is characterized by a difference equation of the form

y(n) =

M∑

l=0

blx(n − l) (80)

• The above equation corresponds to a discrete system with impulse response

h(l) = bl.

– Since there is only a finite number of coefficients bl, such a system has a

finite-duration impulse response.

– Such discrete-time systems are often referred to as finite-duration

impulse-response (FIR) filters.

– In contrast, when y(n) depends on its past values, in general the impulse

response of the discrete system is not zero when n→∞.

– Therefore, recursive digital systems are often referred to as infinite-duration

impulse-response (IIR) filters.

• Note that there are cases in which a recursive system is FIR.
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Recursive × non-recursive systems

Example 1.7

Find the impulse response of the system

y(n) −
1

α
y(n − 1) = x(n) (81)

supposing that it is initially relaxed.
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Recursive × non-recursive systems

Solution

y(n) − 1
α

y(n − 1) = x(n)

Since the system is initially relaxed, then y(n) = 0, for n ≤ −1. Hence, for n = 0, we

have that

y(0) =
1

α
y(−1) + δ(0) = δ(0) = 1 (82)

For n > 0, we have that

y(n) =
1

α
y(n − 1) (83)

and, therefore, y(n) can be expressed as

y(n) =

(

1

α

)n

u(n) (84)

Note that y(n) 6= 0 for all n ≥ 0, that is, the impulse response has infinite length.

△
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Solving difference equations

Consider the following homogeneous difference equation:

N∑

i=0

aiy(n − i) = 0 (85)

Be y1(n) and y2(n) solutions to it. Then

N∑

i=0

aiy1(n − i) = 0 (86)

N∑

i=0

aiy2(n − i) = 0 (87)

Adding equation (86) multiplied by c1 to equation (87) multiplied by c2 we have that
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Solving difference equations

c1

N∑

i=0

aiy1(n − i) + c2

N∑

i=0

aiy2(n − i) = 0

⇒
N∑

i=0

aic1y1(n − i) +

N∑

i=0

aic2y2(n − i) = 0

⇒
N∑

i=0

ai(c1y1(n − i) + c2y2(n − i)) = 0 (88)

The above equation means that (c1y1(n) + c2y2(n)) is also a solution to

equation (85). This implies that, if yi(n), for i = 0, 1, . . . , (M − 1), are solutions of

an homogeneous difference equation, then

yh(n) =

M−1∑

i=0

ciyi(n) (89)

is also a solution.
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Solving difference equations

As we have seen in a previous Example, a difference equation may have solutions of the

form

y(n) = Kρn (90)

Supposing that y(n) from equation (90) is also a solution to the difference equation (85),

we have that
N∑

i=0

aiKρ(n−i) = 0 (91)

If we disregard the trivial solution ρ = 0 and divide the left-hand side of the above

equation by Kρn, we get
N∑

i=0

aiρ
−i = 0 (92)
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Solving difference equations

It has the same solutions of the following polynomial equation:

N∑

i=0

aiρ
(N−i) = 0 (93)

As a result, one can conclude that if ρ0, ρ1, . . . , ρM−1, for M ≤ N, are distinct zeros

of the so-called characteristic polynomial in equation (93), then there are M solutions for

the homogeneous difference equation given by

y(n) = ckρn
k , k = 0, 1, . . . , (M − 1) (94)

In fact, from equation (89), we have that any linear combination of these solutions is also

a solution for the homogeneous difference equation. Then a general homogeneous

solution can be written as

yh(n) =

M−1∑

k=0

ckρn
k (95)

where ck, for k = 0, 1, . . . , (M − 1), are arbitrary constants.
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Solving difference equations

Example 1.8

Find the general solution for the Fibonacci equation

y(n) = y(n − 1) + y(n − 2) (96)

with y(0) = 0 and y(1) = 1.
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Solving difference equations

Solution

y(n) = y(n − 1) + y(n − 2)

The characteristic polynomial to the Fibonacci equation is

ρ2 − ρ − 1 = 0 (97)

whose roots are ρ = 1±
√

5
2

, leading to the general solution

y(n) = c1

(

1 +
√

5

2

)n

+ c2

(

1 −
√

5

2

)n

(98)

Applying the auxiliary conditions y(0) = 0 and y(1) = 1 to the above equation, we

have that





y(0) = c1 + c2 = 0

y(1) =

(

1 +
√

5

2

)

c1 +

(

1 −
√

5

2

)

c2 = 1
(99)
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Solving difference equations

Thus, c1 = 1√
5

and c2 = − 1√
5

, and the solution to the Fibonacci equation becomes

y(n) =
1√
5

[(

1 +
√

5

2

)n

−

(

1 −
√

5

2

)n]

(100)

△
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If the characteristic polynomial in equation (93) has a pair of complex conjugate roots ρ

and ρ∗ of the form a ± jb = re± jφ, the associated homogeneous solution is given by

yh(n) = ĉ1(re jφ)n + ĉ2(re− jφ)n

= rn(ĉ1e jφn + ĉ2e− jφn)

= rn[(ĉ1 + ĉ2) cos(φn) + j(ĉ1 − ĉ2) sin(φn)]

= c1rn cos(φn) + c2rn sin(φn) (101)

If the characteristic polynomial in equation (93) has multiple roots, solutions distinct from

equation (94) are required. For example, if ρ is a double root, there also exists a solution

of the form

yh(n) = cnρn (102)

where c is an arbitrary constant.
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In general, if ρ is a root of multiplicity m, then the associated solution is of the form

yh(n) =

m−1∑

l=0

dln
lρn (103)

where dl, for l = 0, 1, . . . , (m − 1), are arbitrary constants.

From the above, we can conclude that the homogeneous solutions of difference

equations for each root type of the characteristic polynomial follow the rules summarized

in Table 1.
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Solving difference equations

Table 1: Typical homogeneous solutions.

Root type [Multiplicity] Homogeneous solution yh(n)

Real ρk [1] ckρn
k

Real ρk [mk]

mk−1∑

l=0

dln
lρn

k

Complex conjugates ρk, ρ∗
k = re± jφ [1] rn[c1 cos(φn) + c2 sin(φn)]

Complex conjugates ρk, ρ∗
k = re± jφ [mk]

mk−1∑

l=0

[

d1,ln
lrn cos(φn) + d2,ln

lrn sin(φn)
]
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Solving difference equations

Finding a particular solution

A widely used method to find a particular solution for a difference equation of the form

N∑

i=0

aiyp(n − i) =

M∑

l=0

blx(n − l) (104)

is the so-called method of undetermined coefficients. This method can be used when the

input sequence is the solution of a difference equation with constant coefficients. In order

to do so, we define a delay operator D{·} as follows

D−i{y(n)} = y(n − i) (105)

Such a delay operator is linear, since

D−i{c1y1(n) + c2y2(n)} = c1y1(n − i) + c2y2(n − i)

= c1D−i{y1(n)} + c2D−i{y2(n)} (106)
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Also, the cascade of delay operators satisfies the following

D−i{D−j{y(n)}} = D−i{y(n − j)} = y(n − i − j) = D−(i+j){y(n)} (107)

Using delay operators, equation (104) can be rewritten as

(

N∑

i=0

aiD
−i

)

{yp(n)} =

(

M∑

l=0

blD
−l

)

{x(n)} (108)

The key idea is to find a difference operator Q(D) of the form

Q(D) =

R∑

k=0

dkD−k =

R∏

r=0

(1 − αrD
−1) (109)

such that it annihilates the excitation, that is

Q(D){x(n)} = 0 (110)
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Applying Q(D) to equation (108) we get

Q(D)

{(
N∑

i=0

aiD
−i

)

{yp(n)}

}

= Q(D)

{(
M∑

l=0

blD
−l

)

{x(n)}

}

=

(

M∑

l=0

blD
−l

)

{Q(D){x(n)}}

= 0 (111)

This allows the non-homogeneous difference equation to be solved using the same

procedures used to find the homogeneous solutions.

For example, for a sequence x(n) = sn, we have that x(n − 1) = sn−1; then,

x(n) = sx(n − 1) ⇒ [1 − sD−1]{x(n)} = 0

and therefore the annihilator polynomial for x(n) = sn is Q(D) = (1 − sD−1). The

annihilator polynomials for some typical inputs are summarized in Table 2.
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Table 2: Annihilator polynomials for different input signals.

Input x(n) Polynomial Q(D)

sn 1 − sD−1

ni
(

1 − D−1
)i+1

nisn
(

1 − sD−1
)i+1

cos(ωn) or sin(ωn)
(

1 − e jωD−1
) (

1 − e− jωD−1
)

sn cos(ωn) or sn sin(ωn)
(

1 − se jωD−1
) (

1 − se− jωD−1
)

n cos(ωn) or n sin(ωn)
[(

1 − e jωD−1
) (

1 − e− jωD−1
)]2

Using the concept of annihilator polynomials, we can determine the form of the particular

solution for certain types of input signals, which may include some undetermined

coefficients. Some useful cases are shown in Table 3.
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Table 3: Typical particular solutions for different input signals.

Input x(n) Particular solution yp(n)

sn, s 6= ρk αsn

sn, s = ρk with multiplicity mk αnmksn

cos(ωn + φ) α cos(ωn + φ)
[

I∑

i=0

βin
i

]

sn

[

I∑

i=0

αin
i

]

sn

It is important to notice that there are no annihilator polynomials for inputs containing

u(n − n0) or δ(n − n0). Therefore, if a difference equation has inputs such as these,

the above techniques can only be used for either n ≥ n0 or n < n0, as discussed in

the following Example.
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Example 1.9

Solve the difference equation

y(n) + a2y(n − 2) = bn sin
(π

2
n
)

u(n) (112)

assuming that a 6= b and y(n) = 0, for n < 0.
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Solution

y(n) + a2y(n − 2) = bn sin
(

π
2
n
)

u(n)

Using operator notation the above equation becomes

(

1 + a2D−2
)

{y(n)} = bn sin
(π

2
n
)

u(n) (113)

The homogeneous equation is

yh(n) + a2yh(n − 2) = 0 (114)

Then, the characteristic polynomial equation from which we derive the homogeneous

solution is

ρ2 + a2 = 0 (115)

Since its roots are ρ = ae± j π
2 , then the two solutions for the homogeneous equation

are an sin
(

π
2
n
)

and an cos
(

π
2
n
)

, as given in Table 1.
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Then, the general homogeneous solution becomes

yh(n) = an
[

c1 sin
(π

2
n
)

+ c2 cos
(π

2
n
)]

(116)

• If one applies the correct annihilation to the excitation signals, the original difference

equation is transformed into a higher order homogeneous equation.

• The solutions of this higher order homogeneous equation include the homogeneous

and particular solutions of the original difference equation.

• However, there is no annihilator polynomial for bn sin
(

π
2
n
)

u(n).

⇒ One can only compute the solution to the difference equation for n ≥ 0, when the

term to be annihilated becomes just bn sin
(

π
2
n
)

.

Therefore, for n ≥ 0, according to Table 2, for the given input signal the annihilator

polynomial is given by

Q(D) =
(

1 − bej π
2 D−1

) (

1 − be−j π
2 D−1

)

= (1 + b2D−2) (117)
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Applying the annihilator polynomial on the difference equation, we obtain

(

1 + b2D−2
) (

1 + a2D−2
)

{y(n)} = 0 (118)

The corresponding polynomial equation is

(ρ2 + b2)(ρ2 + a2) = 0 (119)

It has four roots, two of the form ρ = ae± j π
2 and two of the form ρ = be± j π

2 . Since

a 6= b, for n ≥ 0 the complete solution is then given by

y(n) = bn
[

d1 sin
(π

2
n
)

+d2 cos
(π

2
n
)]

+an
[

d3 sin
(π

2
n
)

+d4 cos
(π

2
n
)]

(120)

the constants di, for i = 1, 2, 3, 4, are computed such that y(n) is a particular solution

to the non-homogeneous equation.

• Notice that the term involving an corresponds to the solution of the homogeneous

equation.
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⇒ We do not need to substitute it on the equation since it will be annihilated for every

d3 and d4.

One can then compute d1 and d2 by substituting only the term involving bn in the

non-homogeneous equation (112), leading to the following algebraic development:

bn
[

d1 sin
(π

2
n
)

+ d2 cos
(π

2
n
)]

+ a2bn−2
[

d1 sin
(π

2
(n − 2)

)

+ d2 cos
(π

2
(n − 2)

)]

= bn sin
(π

2
n
)

⇒
[

d1 sin
(π

2
n
)

+ d2 cos
(π

2
n
)]

+ a2b−2
[

d1 sin
(π

2
n − π

)

+ d2 cos
(π

2
n − π

)]

= sin
(π

2
n
)

⇒
[

d1 sin
(π

2
n
)

+ d2 cos
(π

2
n
)]

+ a2b−2
[

−d1 sin
(π

2
n
)

− d2 cos
(π

2
n
)]

= sin
(π

2
n
)

⇒ d1(1 − a2b−2) sin
(π

2
n
)

+ d2(1 − a2b−2) cos
(π

2
n
)

= sin
(π

2
n
)
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Therefore, we conclude that

d1 =
1

1 − a2b−2
; d2 = 0 (121)

and the overall solution for n ≥ 0 is

y(n) =
bn

1 − a2b−2
sin
(π

2
n
)

+ an
[

d3 sin
(π

2
n
)

+ d4 cos
(π

2
n
)]

(122)

• We now compute the constants d3 and d4 using the auxiliary conditions generated

by the condition y(n) = 0, for n < 0.

• This implies that we should use y(−1) = 0 and y(−2) = 0.

• However, one can not use equation (122) since it is valid only for n ≥ 0.
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⇒ We need to run the difference equation starting from the auxiliary conditions

y(−2) = y(−1) = 0 to compute y(0) and y(1):






n = 0 : y(0) + a2y(−2) = b0 sin
(π

2
× 0
)

u(0) = 0

n = 1 : y(1) + a2y(−1) = b1 sin
(π

2

)

u(1) = b

⇒





y(0) = 0

y(1) = b

(123)

Using these auxiliary conditions in equation (122), we get






y(0) =
1

1 − a2b−2
sin
(π

2
× 0
)

+
[

d3 sin
(π

2
× 0
)

+ d4 cos
(π

2
× 0
)]

= 0

y(1) =
b

1 − a2b−2
sin
(π

2

)

+ a
[

d3 sin
(π

2

)

+ d4 cos
(π

2

)]

= b

(124)
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and then






d4 = 0

b

1 − a2b−2
+ ad3 = b

⇒






d3 = −
ab−1

1 − a2b−2

d4 = 0

(125)

Substituting these values in equation (122), the general solution becomes





y(n) = 0, n < 0

y(n) =

(

bn − an+1b−1

1 − a2b−2

)

sin
(π

2
n
)

, n ≥ 0

(126)

which can be expressed in compact form as

y(n) =

(

bn − an+1b−1

1 − a2b−2

)

sin
(π

2
n
)

u(n) (127)
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An interesting case arises if the excitation is a pure sinusoid, that is, if a = 1, when the

above solution can de written as

y(n) =
bn

1 − b−2
sin
(π

2
n
)

u(n) −
b−1

1 − b−2
sin
(π

2
n
)

u(n) (128)

• If b > 1, for large values of n, the first term of the right-hand side grows without

bound (since bn tends to infinity), and therefore the system is unstable.

• If b < 1, then bn tends to zero as n grows, and therefore the solution becomes the

pure sinusoid

y(n) = −
b−1

1 − b−2
sin
(π

2
n
)

(129)

We refer to this as a steady-state solution of the difference equation. Such solutions

are very important in practice, and in Chapter 2 other techniques to compute them

will be studied. △
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Example 1.10

Determine the solution of the difference equation in the previous example supposing that

a = b (observe that the annihilator polynomial has common zeros with the

homogeneous equation).
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Solution

a = b ⇒ y(n) + a2y(n − 2) = an sin
(

π
2
n
)

u(n)

In this case there are repeated roots in the difference equation, and as a result the

complete solution has the following form for n ≥ 0:

y(n) = nan
[

d1 sin
(π

2
n
)

+ d2 cos
(π

2
n
)]

+ an
[

d3 sin
(π

2
n
)

+ d4 cos
(π

2
n
)]

(130)

As in the case for a 6= b, we notice that the right-hand side of the summation is the

homogeneous solution, and thus it will be annihilated for all d3 and d4.

For finding d1 and d2 one should substitute the left-hand side of the summation in the

original equation (112), for n ≥ 0. This yields
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nan
[

d1 sin
(π

2
n
)

+ d2 cos
(π

2
n
)]

+ a2(n − 2)an−2
[

d1 sin
(π

2
(n − 2)

)

+ d2 cos
(π

2
(n − 2)

)]

= an sin
(π

2
n
)

⇒ n
[

d1 sin
(π

2
n
)

+ d2 cos
(π

2
n
)]

+ (n − 2)
[

d1 sin
(π

2
n − π

)

+ d2 cos
(π

2
n − π

)]

= sin
(π

2
n
)

⇒ n
[

d1 sin
(π

2
n
)

+ d2 cos
(π

2
n
)]

+ (n − 2)
[

−d1 sin
(π

2
n
)

− d2 cos
(π

2
n
)]

= sin
(π

2
n
)

⇒ [nd1 − (n − 2)d1] sin
(π

2
n
)

+ [nd2 − (n − 2)d2] cos
(π

2
n
)

= sin
(π

2
n
)

⇒ 2d1 sin
(π

2
n
)

+ 2d2 cos
(π

2
n
)

= sin
(π

2
n
)

(131)

Therefore, we conclude that

d1 =
1

2
; d2 = 0 (132)
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Solving difference equations

The overall solution for n ≥ 0 is then

y(n) =
nan

2
sin
(π

2
n
)

+ an
[

d3 sin
(π

2
n
)

+ d4 cos
(π

2
n
)]

(133)

As in the case for a 6= b, in order to compute the constants d3 and d4 one must use

auxiliary conditions for n ≥ 0, since equation (130) is only valid for n ≥ 0. Since

y(n) = 0, for n < 0, we need to run the difference equation starting from the auxiliary

conditions y(−2) = y(−1) = 0 to compute y(0) and y(1).






n = 0 : y(0) + a2y(−2) = a0 sin
(π

2
× 0
)

u(0) = 0

n = 1 : y(1) + a2y(−1) = a1 sin
(π

2

)

u(1) = a

⇒





y(0) = 0

y(1) = a

(134)
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Solving difference equations

Using these auxiliary conditions in equation (133), we get





y(0) = d4 = 0

y(1) = a

[

1

2
sin
(π

2

)

]

+ a
[

d3 sin
(π

2

)

+ d4 cos
(π

2

)]

= a
(135)

and then

a

2
+ ad3 = a ⇒ d3 =

1

2
; d4 = 0 (136)

and since y(n) = 0, for n < 0, the solution is

y(n) =

(

n + 1

2

)

an sin
(π

2
n
)

u(n) (137)

△
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Computing impulse responses

If we want to find the impulse response of a system, we need to solve the following

difference equation:

N∑

i=0

aiy(n − i) = δ(n) (138)

For a linear system to be causal it must be initially relaxed, that is, the auxiliary conditions

prior to the input must be zero. For causal systems, since the input δ(n) is applied at

n = 0, we must have

y(−1) = y(−2) = · · · = y(−N) = 0 (139)

For n > 0, equation (138) becomes homogeneous, that is

N∑

i=0

aiy(n − i) = 0 (140)

and it can be solved using the techniques presented earlier in this section.
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Computing impulse responses

• In order to do so, we need N auxiliary conditions.

• However, since equation (140) is valid only for n > 0, we can not use the auxiliary

conditions from equation (139), but need N auxiliary conditions for n > 0 instead.

– For example, these conditions can be y(1), y(2), . . . , y(N), which can found,

starting from the auxiliary conditions in equation (139), by running the difference

equation (138) from n = 0 to n = N, leading to
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Computing impulse responses






n = 0 : y(0) =
δ(0)

a0

−
1

a0

N∑

i=1

aiy(−i) =
1

a0

n = 1 : y(1) =
δ(1)

a0

−
1

a0

N∑

i=1

aiy(1 − i) = −
a1

a2
0

...

n = N : y(N) =
δ(N)

a0

−
1

a0

N∑

i=1

aiy(N − i) = −
1

a0

N∑

i=1

aiy(N − i)

(141)
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Computing impulse responses

Example 1.11

Compute the impulse response of the system governed by the following difference

equation:

y(n) −
1

2
y(n − 1) +

1

4
y(n − 2) = x(n) (142)
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Computing impulse responses

Solution

y(n) − 1
2
y(n − 1) + 1

4
y(n − 2) = x(n)

For n > 0 the impulse response satisfies the homogeneous equation. The

corresponding polynomial equation is

ρ2 −
1

2
ρ +

1

4
= 0 (143)

whose roots are ρ = 1
2

e± j π
3 . Therefore, for n > 0, the solution is

y(n) = c12−n cos
(π

3
n
)

+ c22−n sin
(π

3
n
)

(144)
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Computing impulse responses

Considering the system to be causal, we have that y(n) = 0, for n < 0. Therefore, we

need to compute the auxiliary conditions for n > 0 as follows:






n = 0 : y(0) = δ(0) +
1

2
y(−1) −

1

4
y(−2) = 1

n = 1 : y(1) = δ(1) +
1

2
y(0) −

1

4
y(−1) =

1

2

n = 2 : y(2) = δ(2) +
1

2
y(1) −

1

4
y(0) = 0

(145)

Applying the above conditions to the solution in equation (144), we have





y(1) = c12−1 cos
(π

3

)

+ c22−1 sin
(π

3

)

=
1

2

y(2) = c12−2 cos

(

2π

3

)

+ c22−2 sin

(

2π

3

)

= 0

(146)
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Hence





1

4
c1 +

√
3

4
c2 =

1

2

−
1

8
c1 +

√
3

8
c2 = 0

⇒






c1 = 1

c2 =

√
3

3

(147)

and the impulse response becomes

y(n) =






0, n < 0

1, n = 0

1
2
, n = 1

0, n = 2

2−n
[

cos
(

π
3
n
)

+
√

3
3

sin
(

π
3
n
)

]

, n ≥ 2

(148)

which, by inspection, can be expressed in a compact form as

y(n) = 2−n

[

cos
(π

3
n
)

+

√
3

3
sin
(π

3
n
)

]

u(n) (149)
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Sampling of continuous-time signals

• In many cases, a discrete-time signal x(n) consists of samples of a continuous-time

signal xa(t), that is

x(n) = xa(nT) (150)

• If we want to process the continuous-time signal xa(t) using a discrete-time system,

we need to:

– Convert it using equation (150),

– Process the discrete-time input digitally,

– Convert the discrete-time output back to the continuous-time domain.

• In order for this operation to be effective, it is essential that we have capability of

restoring a continuous-time signal from its samples.

• In this section, we derive conditions under which a continuous-time signal can be

recovered from its samples, and devise ways of performing this recovery.
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Sampling of continuous-time signals

The Fourier transform of a continuous-time signal f(t) is given by

F( jΩ) =

∫∞

−∞
f(t)e− jΩtdt (151)

where Ω is referred to as the frequency and is measured in radians per second (rad/s).

The corresponding inverse relationship is expressed as

f(t) =
1

2π

∫∞

−∞
F( jΩ)e jΩtdΩ (152)

If x(t) = a(t)b(t), then its Fourier transform can be expressed as

X( jΩ) =
1

2π
A( jΩ) ∗ B( jΩ) =

1

2π

∫∞

−∞
A( jΩ − jΩ′)B( jΩ′)dΩ′ (153)

where X( jΩ), A( jΩ), and B( jΩ) are the Fourier transforms of x(t), a(t), and b(t),

respectively.
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Sampling of continuous-time signals

In addition, if a signal x(t) is periodic with period T , then we can express it by its Fourier

series defined by

x(t) =

∞∑

k=−∞

ake j 2π
T

kt (154)

where the aks are called the series coefficients which are determined as

ak =
1

T

∫ T
2

− T
2

x(t)e− jk 2π
T

tdt (155)
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Sampling of continuous-time signals

Given x(n) = xa(nT), we start by defining a continuous-time signal xi(t) consisting

of a train of impulses at t = nT , each of area equal to x(n), as follows:

xi(t) =

∞∑

n=−∞

x(n)δ(t − nT) (156)

t


x  (t )

a


n
1
 2 3 4 5 6 7 8 9 
0


x(n)

t


x  (t )


2T 3T 4T 5T 6T 7T 8T 9T0


i


1T





Since, from equation (150), x(n) = xa(nT), then equation (156) becomes

xi(t) =

∞∑

n=−∞

xa(nT)δ(t − nT) = xa(t)

∞∑

n=−∞

δ(t − nT) = xa(t)p(t) (157)
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Sampling of continuous-time signals

This indicates that xi(t) can also be obtained by multiplying the continuous-time signal

xa(t) by a train of impulses p(t) defined as

p(t) =

∞∑

n=−∞

δ(t − nT) (158)

In the equations above, we have defined a continuous-time signal xi(t) that can be

obtained from the discrete-time signal x(n) in a straightforward manner. In what follows,

we relate the Fourier transforms of xa(t) and xi(t), and study the conditions under

which xa(t) can be obtained from xi(t).

The Fourier transform of xi(t) is such that

Xi( jΩ) =
1

2π
Xa( jΩ) ∗ P( jΩ) =

1

2π

∫∞

−∞
Xa( jΩ − jΩ′)P( jΩ′)dΩ′ (159)

Therefore, in order to arrive at an expression for the Fourier transform of xi(t), we must

first determine the Fourier transform of p(t), P( jΩ).
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Sampling of continuous-time signals

p(t) is a periodic function with period T and that we can decompose it in a Fourier

series, as described in equations (154) and (155). Since, from equation (158), p(t) in

the interval [−T
2
, T

2
] is equal to just an impulse δ(t), the coefficients ak in the Fourier

series of p(t) are given by

ak =
1

T

∫ T
2

− T
2

δ(t)e− jk 2π
T

tdt =
1

T
(160)

and the Fourier series for p(t) becomes

p(t) =
1

T

∞∑

k=−∞

e j 2π
T

kt (161)
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Sampling of continuous-time signals

As the Fourier transform of f(t) = e jΩ0t is equal to F( jΩ) = 2πδ(Ω − Ω0), then,

from equation (161), the Fourier transform of p(t) becomes

P( jΩ) =
2π

T

∞∑

k=−∞

δ

(

Ω −
2π

T
k

)

(162)

Substituting this expression for P( jΩ) in equation (159), we have that

Xi( jΩ) =
1

2π
Xa( jΩ) ∗ P( jΩ)

=
1

T
Xa( jΩ) ∗

∞∑

k=−∞

δ

(

Ω −
2π

T
k

)

=
1

T

∞∑

k=−∞

Xa

(

jΩ − j
2π

T
k

)

(163)

where, in the last step, we used the fact that the convolution of a function F( jΩ) with a

shifted impulse δ(Ω − Ω0) is the shifted function F( jΩ − jΩ0).
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Sampling of continuous-time signals

Equation (163) shows that the spectrum of xi(t) is composed of infinite shifted copies of

the spectrum of xa(t), with the shifts in frequency being multiples of the sampling

frequency, Ωs = 2π
T

. The next figure shows examples of signals xa(t), p(t), and

xi(t), and their respective Fourier transforms.
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t


x  (t)
a

←→

Ω−Ωc Ωc

X  (jΩ)a

t

p(t)

2T1T 3T 4T 5T 6T 7T 8T 9T0

←→

Ω0−2Ωs 2Ωs−Ωs Ωs

P (jΩ)

t2T 3T 4T 5T 6T 7T 8T 9T0 1T

x  (t )
i


←→

c Ω−Ω Ωc 2ΩΩs s−Ωs−2Ωs

x (jΩ)
i
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Sampling of continuous-time signals

We then see that, in order to avoid the repeated copies of the spectrum of xa(t)

interfering with one another:

• The signal should be band-limited.

• Its bandwidth Ωc should be such that the upper edge of the spectrum centered at

zero is smaller than the lower edge of the spectrum centered at Ωs.

Referring to general complex case depicted below, we must have Ωs + Ω2 > Ω1, or

equivalently, Ωs > Ω1 − Ω2.

Ω1Ω2 Ωs−Ωs

Ω
Ωs + Ω1Ωs + Ω2−Ωs + Ω1−Ωs + Ω2

X(jΩ)
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Sampling of continuous-time signals

In the case of real signals, since the spectrum is symmetric around zero, the one-sided

bandwidth of the continuous-time signal Ωc is such that Ωc = Ω1 = −Ω2, and then

we must have Ωs > Ωc − (−Ωc), implying that

Ωs > 2Ωc (164)

that is, the sampling frequency must be larger than double the one-sided bandwidth of

the continuous-time signal. The frequency Ω = 2Ωc is called the Nyquist frequency

of the real continuous-time signal xa(t).

In addition, if the condition in equation (164) is satisfied, the original continuous signal

xa(t) can be recovered by isolating the part of the spectrum of xi(t) that corresponds

to the spectrum of xa(t). This can be achieved by filtering the signal xi(t) with an ideal

lowpass filter having bandwidth Ωs

2
.
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Sampling of continuous-time signals

• On the other hand, if the condition in equation (164) is not satisfied, the repetitions of

the spectrum interfere with one another, and the continuous-time signal can not be

recovered from its samples.

• This superposition of the repetitions of the spectrum of xa(t) in xi(t), when the

sampling frequency is smaller than 2Ωc, is commonly referred to as aliasing .

Figure 1b–d shows the spectra of xi(t) for Ωs equal to, smaller than, and larger than

2Ωc, respectively. The aliasing phenomenon is clearly identified in the next figure.
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X  (    )


Ω
−


j
a


Ω
c
 c
Ω


Ω


Ωji
X  (    )

−2Ωs −Ωs
−Ωc cΩ ΩΩs 2Ωs

(a) (b)

Ω

−3Ωs 3Ωs
Ω

Aliasing
i jX  (    )

−2Ωs −Ωs
−Ωc cΩ Ωs 2Ωs

Ω

Ω

i jX  (    )

−2Ωs −Ωs
−Ωc cΩ Ωs 2Ωs

(c) (d)

Figure 1: (a) Spectrum of the continuous-time signal. Spectra of xi(t) for: (b) Ωs =

2Ωc; (c) Ωs < 2Ωc; (d) Ωs > 2Ωc.
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Sampling of continuous-time signals

In fact, any of the spectrum repetitions have the full information about xa(t). However, if

we isolate a repetition of the spectrum not centered at Ω = 0, we get a modulated

version of xa(t), which should be demodulated. Since its demodulation is equivalent to

shifting the spectrum back to the origin, it is usually better to take the repetition of the

spectrum centered at the origin in the first place.

We are now ready to enunciate a very important result:

SAMPLING THEOREM

If a continuous-time signal xa(t) is band-limited, that is, its Fourier transform is such that

Xa( jΩ) = 0, for |Ω| > |Ωc|, then xa(t) can be completely recovered from the

discrete-time signal x(n) = xa(nT) if the sampling frequency Ωs satisfies

Ωs > 2Ωc.

⋄
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Sampling of continuous-time signals

Example 1.12

Consider the discrete-time sequence

x(n) = sin

(

6π

4
n

)

(165)

Assuming that the sampling frequency is fs = 40 kHz, find two continuous-time signals

that could have generated this sequence.
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Sampling of continuous-time signals

Solution

Supposing that the continuous-time signal is of the form

xa(t) = sin(Ωct) = sin(2πfct) (166)

We have that when sampled with sampling frequency fs = 1
Ts

it generates the following

discrete signal:

x(n) = xa(nTs)

= sin(2πfcnTs)

= sin

(

2π
fc

fs

n

)

= sin

(

2π
fc

fs

n + 2kπn

)

= sin

[

2π

(

fc

fs

+ k

)

n

]

(167)

for any integer k.
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Sampling of continuous-time signals

Therefore, in order to a sinusoid following equation (166), when sampled, yield the

discrete signal in equation (165), we must have that

2π

(

fc

fs

+ k

)

=
6π

4
⇒ fc =

(

3

4
− k

)

fs (168)

For example,

k = 0 ⇒ fc =
3

4
fs = 30 kHz ⇒ x1(t) = sin(60000πt) (169)

k = −1 ⇒ fc =
7

4
fs = 70 kHz ⇒ x2(t) = sin(140000πt) (170)

We can verify that by computing xi(t) for the two above signals according to

equation (157):
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x1i
(t) =

∞∑

n=−∞

x1(t)δ(t − nTs) =

∞∑

n=−∞

sin(60000πt)δ
(

t −
n

40000

)

=

∞∑

n=−∞

sin
(

60000π
n

40000

)

δ
(

t −
n

40000

)

=

∞∑

n=−∞

sin

(

3π

2
n

)

δ
(

t −
n

40000

)

(171)

x2i
(t) =

∞∑

n=−∞

x2(t)δ(t − nTs) =

∞∑

n=−∞

sin(140000πt)δ
(

t −
n

40000

)

=

∞∑

n=−∞

sin
(

140000π
n

40000

)

δ
(

t −
n

40000

)

=

∞∑

n=−∞

sin

(

7π

2
n

)

δ
(

t −
n

40000

)

(172)
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Sampling of continuous-time signals

Since

sin

(

7π

2
n

)

= sin

[(

3π

2
+ 2π

)

n

]

= sin

(

3π

2
n

)

(173)

then we have that the signals x1i
(t) and x2i

(t) are identical.

△
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Sampling of continuous-time signals

Example 1.13

In the figure below, assuming that Ω2 − Ω1 < Ω1 and Ω4 − Ω3 < Ω3:

Ω2Ω1−Ω4 −Ω3

ΩX(j   )

Ω

1. Using a single sampler, what would be the minimum sampling frequency such that

no information is lost?

2. Using an ideal filter and two samplers, what would be the minimum sampling

frequencies such that no information is lost? Depict the configuration used in this

case.
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Sampling of continuous-time signals

Solution

(a) By examining the above figure we see that:

• A sampling rate Ωs > Ω2 + Ω4 would avoid aliasing.

• However, since it is given that Ω2 − Ω1 < Ω1 and Ω4 − Ω3 < Ω3, then in the

empty spectrum between −Ω3 and Ω1 we can accommodate one copy of the

spectrum in the interval [Ω1, Ω2] and one copy of the spectrum in the interval

[−Ω4, −Ω3].

• According to equation (163), when a signal is sampled its spectrum is repeated at

multiples of Ωs.

• Therefore, we can choose Ωs so that the spectrum of the sampled signal would be

as in the lower part of the next figure.
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Ω2Ω1−Ω4 −Ω3

ΩX(j   )

Ω

Ω2
−Ω s

ΩsΩ1−Ω4 −Ω3
−2Ω s

Ω2−2Ωs

Ω1−2Ωs

Ω2+2Ωs

3−Ω s−Ω

4−Ω s−Ω 4−Ω s+Ω
3−Ω s+Ω

Ω1 s+2Ω

3−Ω +2Ωs

4−Ω +2Ωs

Ω2−Ω s
Ω1−Ω s( )

Ω

iX (j   )Ω

)(
( )

)(

( )
( )

( )
( ) ( )

( )

( )

( )

To avoid spectrum superposition, we must have




Ω1 − Ωs > −Ω3

−Ω4 + Ωs > Ω2 − Ωs

⇒
Ω2 + Ω4

2
< Ωs < Ω1 + Ω3 (174)

Therefore, the minimum sampling frequency would be Ωs =
Ω2 + Ω4

2
, provided that

Ωs < Ω1 + Ω3.
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(b) If we have an ideal filter as depicted below we can isolate both parts of the spectrum,

and then sample them at a much lower rate.

Ω2Ω1

H(j   )Ω

Ω

1

For example, we can sample the output of this filter with a frequency Ωs1
> Ω2 − Ω1.
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Sampling of continuous-time signals

If we use the scheme in the next figure, we take the filter output and subtract it from the

input signal. The result will have just the left side of the spectrum of the original signal,

which can be sampled with a frequency Ωs2
> Ω4 − Ω3.

Ω

Ω
Ω

Ω

2

If we use a single sampling frequency, its value should satisfy

Ωs > max{Ω2 − Ω1, Ω4 − Ω3} (175)

Note that the output is composed of one sample of each signal x1(n) and x2(n), and

therefore the effective sampling frequency is 2Ωs. △
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• As illustrated in the example above, for some bandpass signals x(t), sampling may

be performed below the limit 2Ωmax, where Ωmax represents the maximum absolute

value of the frequency present in x(t).

• Although one can not obtain a general expression for the minimum Ωs in these

cases, it must always satisfy Ωs > ∆Ω, where ∆Ω represents the net bandwidth

of x(t).
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• The original continuous-time signal xa(t) can be recovered from the signal xi(t) by

filtering xi(t) with an ideal lowpass filter having cutoff frequency Ωs

2
.

– More specifically, if the signal has bandwidth Ωc, then it suffices that the cutoff

frequency of the ideal lowpass filter is ΩLP , such that Ωc ≤ ΩLP ≤ Ωs

2
.

• Therefore, the Fourier transform of the impulse response of such a filter should be

H( jΩ) =





T, for |Ω| < ΩLP

0, for |Ω| ≥ ΩLP

(176)

where the passband gain T compensates for the factor 1
T

in equation (163). This

ideal frequency response is illustrated in Figure 2a.
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Sampling of continuous-time signals

Computing the inverse Fourier transform of H( jΩ) using equation (152), we see that the

impulse response h(t) of the filter is

h(t) =
T sin(ΩLPt)

πt
(177)

which is depicted in Figure 2b.
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Figure 2: Ideal lowpass filter: (a) frequency response; (b) impulse response.
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Then, given h(t), the signal xa(t) can be recovered from xi(t) by the following

convolution integral

xa(t) =

∫∞

−∞
xi(τ)h(t − τ)dτ (178)

Replacing xi(t) by its definition in equation (156), we have that

xa(t) =

∫∞

−∞

∞∑

n=−∞

x(n)δ(τ − nT)h(t − τ)dτ

=

∞∑

n=−∞

∫∞

−∞
x(n)δ(τ − nT)h(t − τ)dτ

=

∞∑

n=−∞

x(n)h(t − nT) (179)
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and using h(t) from equation (177),

xa(t) =

∞∑

n=−∞

x(n)
T sin(ΩLP(t − nT))

π(t − nT)
(180)

If we make ΩLP equal to half the sampling frequency, that is, ΩLP = Ωs

2
= π

T
, then

equation (180) becomes

xa(t) =

∞∑

n=−∞

x(n)

sin

(

Ωs

2
t − nπ

)

Ωs

2
t − nπ

=

∞∑

n=−∞

x(n)

sin

[

π

(

t

T
− n

)]

π

(

t

T
− n

) (181)

• Equations (180) and (181) represent interpolation formulas to recover the

continuous-time signal xa(t) from its samples x(n) = xa(nT).

• However, since, in order to compute xa(t) at any time t0, all the samples of x(n)

have to be known, these interpolation formulas are not practical.
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• This is the same as saying that the lowpass filter with impulse response h(t) is not

realizable.

• This is because it is noncausal and can not be implemented via any differential

equation of finite order.

• Clearly, the closer the lowpass filter is to the ideal, the smaller is the error in the

computation of x(t) using equation (180).

• In Chapters 4 and 5 methods to approximate such ideal filters will be extensively

studied.

From what we have studied in this section, we can develop a block diagram of the several

phases constituting the processing of an analog signal using a digital system. The next

figure depicts each step of the procedure.
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Sampling of continuous-time signals

• The first block in the diagram of Figure 122 is a lowpass filter, that guarantees the

analog signal is band-limited, with bandwidth Ωc ≤ Ωs

2
.

• The second block is a sample-and-hold system, which samples the signal xa(t) at

times t = nT and holds the obtained value for T seconds, that is, until the value for

the next time interval is sampled.

More precisely, x∗
a(t) = xa(nT), for nT < t < (n + 1)T .

• The third block, the encoder, converts each sample value output by the

sample-and-hold, x∗
a(t), for nT < t < (n + 1)T , to a number x(n). Since this

number is input to digital hardware, it must be represented with a finite number of

bits. This operation introduces an error in the signal, which gets smaller as the

number of bits used in the representation increases. The second and third blocks

constitute what we usually call the analog-to-digital (A/D) conversion.
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Sampling of continuous-time signals

• The fourth block carries out the digital signal processing, transforming the

discrete-time signal x(n) into a discrete-time signal y(n).

• The fifth block transforms the numbers representing the samples y(n) back into the

analog domain, in the form of a train of impulses yi(t), constituting the process

known as digital-to-analog (D/A) conversion.

• The sixth block is a lowpass filter necessary to eliminate the repetitions of the

spectrum contained in yi(t), in order to recover the analog signal ya(t)

corresponding to y(n).

– In practice, sometimes the fifth and sixth blocks are implemented in one

operation. For example, we can transform the samples y(n) into an analog

signal ya(t) using a D/A converter plus a sample-and-hold operation, similar to

the one of the second block.
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The sample-and-hold operation is equivalent to filtering the train of impulses

yi(t) =

∞∑

n=−∞

y(n)δ(t − nT) (182)

with a filter having impulse response

h(t) =





1, for 0 ≤ t ≤ T

0, otherwise
(183)

yielding the analog signal

yp(t) =

∞∑

n=−∞

y(n)h(t − nT) (184)

t2T 3T 4T 5T 6T 7T 8T 9T0 1T

y (t)
i

−→

t2T 3T 4T 5T 6T 7T 8T 9T0 1T

y (t)p

In this case, the recovery of the analog signal is not perfect, but is a good enough

approximation in some practical cases.
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Example 1.14

For the sample-and-hold operation described by equations (182) to (184), determine:

(a) An expression for the Fourier transform of yp(t) in equation (184) as a function of

the Fourier transform of xa(t) (suppose that y(n) = xa(nT)).

(b) The frequency response of an ideal lowpass filter that outputs xa(t) when yp(t) is

applied to its input. Such filter would compensate for the artifacts introduced by the

sample-and-hold operation in a D/A conversion.
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Solution

(a) The train of pulses given by

yp (t) =

∞∑

n=−∞

y (n) h (t − nT) (185)

is the result of the convolution of an impulse train with the given pulse as follows:

yp (t) = yi (t) ∗ h (t) (186)

Using equation (163), in the frequency domain the above equation becomes

Yp ( jΩ) = Yi ( jΩ)H ( jΩ) =
1

T

∞∑

k=−∞

Xa

(

jΩ − j
2π

T
k

)

H ( jΩ) (187)

Since, from equation (183),
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H ( jΩ) =

∫∞

−∞
h(t)e− jΩtdt

=

∫T

0

e− jΩtdt

=
1

jΩ

(

1 − e− jΩT
)

=
e− ΩT

2

jΩ

(

e
jΩT

2 − e− jΩT
2

)

=
e− ΩT

2

jΩ

[

2 j sin

(

ΩT

2

)]

= Te− ΩT
2









sin

(

ΩT

2

)

ΩT

2









(188)
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hence

Yp ( jΩ) = e− ΩT
2









sin

(

ΩT

2

)

ΩT

2









∞∑

k=−∞

Xa

(

jΩ − j
2π

T
k

)

(189)

(b) In order to recuperate signal xa(t), we have to compensate the distortion introduced

by the frequency spectrum of the pulse h(t). This can be done by processing yp(t)

with a lowpass filter with the following desirable frequency response:

G ( jΩ) =






0, |Ω| ≥ π
T

T

H ( jΩ)
= e

ΩT
2









ΩT

2

sin

(

ΩT

2

)









, |Ω| < π
T

(190)

△
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Example 1.15

• Cinema is a way of storing and displaying moving pictures.

• Before it was invented, all that was known was a way to store and display single

images, by taking photographs.

• Cinema was invented when one decided to capture a moving image as a series of

pictures equally spaced in time.

– For example, today, in a commercial movie one captures 24 pictures/second.

– This scheme works because the human visual system enjoys a property called

persistence of vision: When a light is flashed, one still sees the light for some time

after it is gone.

– Because of this, when displaying the pictures in sequence, a human viewer has

the illusion of continuous movement.
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Sampling of continuous-time signals

In more precise terms:

• A moving picture is a three-dimensional signal, with two continuous spatial

dimensions (representing, for instance, horizontal and vertical directions) and one

continuous time dimension.

• A photograph is a time sample of this three-dimensional signal.

• When one displays this sequence of time samples (photographs), the human visual

system sees it as a continuously moving picture, that is, as a continuous-time signal.

From what has been said, we can note that cinema can be regarded a discrete-time

signal processing system.

Identify in the cinema context which signal processing operation corresponds to each

step of the processes of recording and displaying moving pictures, highlighting the

associated design constraints.

132



Diniz, da Silva and Netto
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Solution The light field of a gray-scale moving picture can be described as a

three-dimensional function fa(x, y, t), where x and y are spatial coordinates and t is a

time coordinate, as represented in the figure below.

y

t

x
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Sampling of continuous-time signals

The light intensity (luminance) of a point of coordinates (x0, y0) is thus the

one-dimensional time signal

ga(t) = fa(x0, y0, t) (191)

as depicted below.

t

y

t

xx

y

0

0

aa 00g  (t) = f  (x  ,y  ,t)
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When one takes photographs of a moving picture every T time units, the

three-dimensional signal is sampled in time, generating the discrete-time signal

f(x, y, n) = fa(x, y, nT) (192)

The discrete-time one-dimensional signal corresponding to the intensity of the point

(x0, y0) is then

g(n) = ga(nT) = f(x0, y0, n) = fa(x0, y0, nT) (193)

as represented in the next figure.
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• In order to avoid aliasing, one should sample the signal ga(t) with a sampling

frequency larger than twice its bandwidth.

• Supposing that the bandwidth of ga(t) = fa(x0, y0, t) is Wx0,y0
, then in order

to avoid aliasing the time interval between photographs should be determined by the

largest time bandwidth among all coordinates of the picture, that is,

T <
2π

max
x0,y0

{2Wx0,y0
}

(194)
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• It is reasonable to think that the faster the objects in a scene move, the larger is the

time bandwidth of the light intensity of its points.

• Therefore, the above equation says that, in order to avoid aliasing, one should film

the scene by taking enough pictures per second such that the time interval between

them satisfies a maximum constraint.

– For example, when filming a hummingbird, if there is too long an interval between

photographs, it might flap its wings many times between photographs.

– Depending on the speed one takes the photographs, its wings may even be

approximately in the same position in every photograph.

∗ This would have the effect that its wings would appear static when playing the

film.

– This is a good example of the aliasing that occurs when a three dimensional

space-time signal is inadequately sampled in time.
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• We can see that the process of filming, that is, taking pictures of a moving scene

equally spaced in time, is equivalent to the “Sample and hold” and “Encoder” blocks.

• It is interesting to note that in this photograph-shooting context there can not be any

anti-aliasing filter.

– This is so because one can not change the way a scene varies in time before

filming it.

– Therefore, depending on how fast a scene is moving, aliasing can not be avoided.
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• Through the sampling process, one is able to represent a two-dimensional moving

picture (a three-dimensional signal) as a sequence of photographs.

– These photographs can be stored and processed.

– After that, one has to display a moving picture from these photographs.

• In the cinema, each photograph has to be in the form of a transparency.

• With the help of a system of lenses, one transparency can be projected on a screen

by turning on a lamp behind it.

• In order to display a sequence of transparencies on the screen, there must be a way

of replacing the transparency currently in front of the lamp by the next one.

– It is easier to do this if the lamp is turned off during the transparency replacement

process.

– This is the same as having a flashing light source projecting the transparencies

on the screen such that a different transparency is in front of the light source each

time it flashes.
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• By modeling the intensity of a flashing light as an impulse, a light flashing periodically

can be represented by a train of impulses, allowing one to depict the moving-picture

displaying process as given in Figure 3.

– There, the light intensity of a given point on the screen has been modeled as a

train of impulses, each impulse having as amplitude the intensity of the point at a

given time.

• If the light field projected on the screen is fi(x, y, t), we have that

fi(x, y, t) =

∞∑

n=−∞

fa(x, y, nT)δ(t − nT) (195)

• Thus, using equation (193), the intensity at point (x0, y0) is

gi(t) = fi(x0, y0, t) =

∞∑

n=−∞

fa(x0, y0, nT)δ(t−nT) =

∞∑

n=−∞

g(n)δ(t−nT)

(196)
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Figure 3: The film projector is equivalent to replacing the intensity of each sample in a

picture by an impulse.
141



Diniz, da Silva and Netto

Sampling of continuous-time signals

• The human visual system enjoys a property called persistence of vision.

• In a nutshell, if a light is flashed before your eyes, persistence of vision is the reason

why you keep seeing the light for some time after it goes off.

– This is depicted below, where h(t) represents the human visual system response

to a flash of light at t = 0.

t

h(t)

T
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• Due to the persistence of vision, when you look at a sequence of pictures flashing in

the screen, you do not actually see the pictures flashing provided that the flashes are

frequent enough.

– Instead, you have the impression that the picture is moving continuously.

• In mathematical terms, the function h(t) in Figure 142 is the response of the human

visual system to an impulse of light δ(t).

⇒ From equation (196), the response of the human visual system to a point (x0, y0)

flashing on the cinema screen is given by

gr(t) = gi(t)∗h(t) =

∞∑

n=−∞

g(n)h(t−nT) =

∞∑

n=−∞

fa(x, y, nT)h(t−nT)

(197)

which is equivalent to equations (178) and (179).
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• By referring to Figure 144, the human visual system replaces each impulse by a

function h(t), thus perceiving the sequence of light impulses as the right-hand side

signal in the figure below.
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With this interpretation, we can make interesting design considerations about the cinema

system.

• The time interval between photographs is limited by the aliasing effect.

• In a regular signal processing system, one would choose the impulse response of

the reconstructing filter according to equations (176) and (177),

h(t) =
T sin(ΩLPt)

πt
H( jΩ) =





T, for |Ω| < ΩLP

0, for |Ω| ≥ ΩLP

so that the spectrum repetitions are filtered out from the train of impulses and the

original analog signal is recovered.

145



Diniz, da Silva and Netto

Sampling of continuous-time signals

• However, in cinema, the impulse response of the reconstructing filter is given by the

persistence of vision, that is a physiological characteristic, and thus can not be

changed.

– Specifically in modern cinema, in order to avoid aliasing in most scenes of

interest, it is enough that we take pictures at a rate of 24 pictures per second, that

is, T ≤ 1/24 s.

– Therefore, in order to filter out the spectrum repetitions, the bandwidth of the time

impulse response of the human visual system h(t) should be ΩLP < 24 Hz.

– However, psychovisual tests have determined that, for the human visual system,

h(t) is a lowpass function with ΩLP ≈ 48 Hz.

⇒ With this natural cutoff frequency, the spectrum repetitions can not be filtered

out, and thus one loses the impression of a continuous movement.

– In this case, one perceives that the pictures are flashing, a phenomenon referred

to as flickering.
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• In order to avoid this, there are two options:

1. To halve the sampling period, matching T to ΩLP = 48 Hz.

– This solution has the disadvantage of requiring twice as much pictures as the

ones required to avoid aliasing. This is not cost effective, since only 24 pictures

per second are enough to avoid aliasing.

2. The solution employed by modern cinema, that is to repeat each picture twice so

that the interval between pictures is 1/48 s.

– This procedure avoids aliasing allowing one to filter out the spectrum repetitions

The whole movie generating process is summarized in the next figure.
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Random signals

• In nature, we are commonly forced to work with signals whose waveforms are not

exactly known at each time instant.

• Some examples may include the outcome of a die, the suit of a card randomly drawn,

a resistor value, or a stock price at a particular time.

• In such cases, even without knowing the exact signal value, one can still extract

valuable information about the process of interest using the mathematical tools

presented in this section.
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Random variable

• A random variable is a mapping of the result of an experiment onto the set of real

numbers.

• By doing so, we can extract numerical information about the problem at hand, as

indicated below.

• The cumulative distribution function (CDF) is determined by the probability of a given

random variable X to be less than or equal to a particular value x, that is

FX(x) = P{X ≤ x} (198)

where P{E} denotes the probability of the event E .

• The corresponding probability density function (PDF) is given by

fX(x) =
dFX(x)

dx
(199)
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Random variable

• From their definitions, it is simple to infer that the CDF and PDF present the following

properties:

– lim
x→−∞

FX(x) = 0

– lim
x→+∞

FX(x) = 1

– FX(x) is a nondecreasing function with x, such that 0 ≤ FX(x) ≤ 1

– fX(x) ≥ 0, for all x

–

∫∞

−∞
fX(x)dx = 1

• These two functions unify the statistical treatment of both discrete- and

continuous-valued random variables, despite the fact that each variable type has

probability functions with different characteristics (discrete random variables, for

instance, present impulsive PDFs).
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Random variable

• There is a plethora of PDFs in the associated literature to characterize all kinds of

random phenomena.

• For our purposes, the most interesting PDFs are the uniform (continuous uX,c(x)

and discrete uX,d(x)) and Gaussian φX(x) distributions, defined as

uX,c(x) =






1

a − b
, a ≤ x ≤ b

0, otherwise
(200)

uX,d(x) =






1

M
δ(x − xi), xi = x1, x2, . . . , xM

0, otherwise
(201)

φX(x) =
1√

2πσ2
e
−

(x−µ)2

2σ2 (202)

respectively, where a, b, M, µ, and σ2 are the corresponding parameters for these

distributions.
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Random variable

• Using the PDF, we can extract meaningful measures that characterize the statistical

behavior of a given random variable.

• In particular, we define the ith-order moment as

E{Xi} =

∫∞

−∞
xifX(x)dx (203)

where the two most important special cases are:

– The first-order moment (statistical mean or statistical expectation) µX = E{X}

– The second-order moment (energy or mean-squared value) E{X2}.

• If Y is a function of the random variable X, that is, Y = g(X), for the first-order

moment of Y, we can write that

µY = E{Y} =

∫∞

−∞
yfY(y) dy =

∫∞

−∞
g(x)fX(x) dx (204)
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Random variable

• We are often interested in measures that are not influenced by a random variable’s

mean value.

• For these cases, we may also define the so-called ith-order central moments as

E{(X − µX)i} =

∫∞

−∞
(x − µX)ifX(x)dx (205)

• By far, the most important central moment is the second-order one, also known as

the variance σ2
X = E{(X − µX)2}, the squared-root of which is referred to as the

standard deviation.

– Larger variances indicate that the value of the random variable is more spread

around the mean, whereas smaller σ2
X occurs when the values of X are more

concentrated around its mean.

– A simple algebraic development indicates that

σ2
X = E{(X − µX)2} = E{X2} − 2E{XµX} + µ2

X = E{X2} − µ2
X (206)
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Random Variable

Example 1.16

Determine the values for the statistical mean, energy, and variance of a random variable

X characterized by the discrete uniform PDF given in equation (201) with

xi = 1, 2, . . . , M.

Solution

Using the corresponding definitions, where the integral operations on the delta functions

degenerate in simple sums, we get

µX =

M∑

i=1

i
1

M
=

1

M

[

1

2
M(M + 1)

]

=
M + 1

2
(207)

E{X2} =

6∑

i=1

i2
1

M
=

1

M

[

M(M + 1)(2M + 1)

6

]

=
2M2 + 3M + 1

6
(208)
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The variance can be determined by the relationship expressed in equation (206), yielding

σ2
X =

M2 − 1

12
(209)

• All statistics presented above are based on the PDF of the random variable. In that

sense, we are exchanging the requirement of knowing the value of a variable by the

requirement of knowing its PDF.

• This may seem like trading one problem for another. However, in several cases, even

though we are not able to determine the value of X, we can still determine its PDF.

– One simple example is the outcome of casting a fair die, which can not be

predicted but whose associated PDF is easily determined.

– This allows one to know important statistics associated to the event, as illustrated

in this example by considering M = 6.

△
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Random variable

When dealing with two random variables X and Y simultaneously, we may define the

joint CDF by

FX,Y(x, y) = P{X ≤ x, Y ≤ y} (210)

and the corresponding joint PDF as

fX,Y(x, y) =
∂2FX,Y(x, y)

∂x∂y
(211)

The two variables are said to be statistically independent if we may write

fX,Y(x, y) = fX(x)fY(y) (212)

where independence indicates that the outcome of a given variable does not affect the

value of the other.
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Random variable

The concept of moments is easily extended to two random variables X and Y by defining

the joint moment of order (i, j) as

E{XiYj} =

∫∞

−∞

∫∞

−∞
xiyjfX,Y(x, y)dxdy (213)

and the joint central moment of order (i, j) as

E{(X−µX)i(Y−µY)j} =

∫∞

−∞

∫∞

−∞
(x−µX)i(y−µY)jfX,Y(x, y)dxdy (214)
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Random variable

When the orders are (1, 1), we get the cross-correlation rX,Y and the cross-covariance

cX,Y between X and Y, that is

rX,Y = E{XY}

=

∫∞

−∞

∫∞

−∞
xyfX,Y(x, y)dxdy (215)

cX,Y = E{(X − µX)(Y − µY)}

=

∫∞

−∞

∫∞

−∞
(x − µX)(y − EµY)fX,Y(x, y)dxdy (216)

• In the case of complex random variables, the cross-correlation is given by

rX,Y = E{XY∗}, where the superscript asterisk denotes the complex conjugation

operation.

• For the sake of simplicity, the remaining of this chapter is restricted to real signals.
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Random processes

• A random process is an ordered collection of random variables.

– The most common form of ordering the set of random variables is associating

each of them with different time-instants, giving rise to the common interpretation

of a random process as a set of random variables ordered in time.

• Consider the complete set of utterances of the vowel /A/ by a particular person:

– We refer to the mth discrete-time utterance as am(n), for m = 1, 2, . . .

– For a given m it can be regarded as a sample or a realization of the random

process {A}.

– The entire set of realizations is referred to as the ensemble.

– In the context of signal processing, a realization may also be referred to as a

random signal.
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– If we consider a particular time instant n1, the value of each random signal at n1

defines the random variable A(n1), that is,

A(n1) = {a1(n1), a2(n1), . . .} (217)

– Naturally, for the whole random process {A} we can define an infinite number of

random variables A(n), each one associated to a particular time instant n and

all of them obeying the intrinsic order established by the time variable.

• In a random process {X}, each random variable X(n) has its own PDF fX(n)(x),

which can be used to determine the ith-order moments of the associated random

variable.

• Similarly, two random variables X(n1) and X(n2) of the same random process

have a joint PDF defined through equation (211) from its joint CDF

FX(n1),X(n2)(x1, x2) = P{X(n1) ≤ x1, X(n2) ≤ x2} (218)
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Random processes

• Based on this function, we can define the so-called autocorrelation function of the

random process,

RX(n1, n2) = rX(n1),X(n2)

= E{X(n1)X(n2)}

=

∫∞

−∞

∫∞

−∞
x1x2fX(n1),X(n2)(x1, x2)dx1dx2 (219)

• As its name indicates, the autocorrelation function represents the statistical relation

between two random variables (associated to the time-instants n1 and n2) of a

given random process.
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Random processes

• A random process is called wide-sense stationary (WSS) if its mean value and

autocorrelation function present the following properties:

E{X(n)} = c, for all n (220)

RX(n, n + ν) = RX(ν), for all n, ν (221)

• The first relation indicates that the mean value of all random variables X(n) is

constant throughout the entire process.

• The second property means that the autocorrelation function of a WSS process

depends only on the time interval between two random variables and not on their

absolute time instants.

• Overall, the two relationships indicate that the first- and second-order statistics of the

random process do not change over time, indicating the (wide-sense) stationary

nature of the process from a statistical point of view.
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Random processes

• If the statistics of all orders are invariant in time, the process is referred to as

strict-sense stationary (SSS).

– Hence, SSS processes are also WSS, whereas the opposite is not necessarily

true.

• Since it is very hard to verify the invariance property for all orders, in practice we

often work with the WSS characterization, that only requires first- and second-order

invariance.

• Later, we verify that WSS random processes, for instance, can be well characterized

also in the frequency domain.

• The stationarity concept can be extended to two distinct processes {X} and {Y}

– They are said to be jointly WSS if their first-order moments are constant for all n

and if their cross-correlation function RXY(n, n + ν) = E{X(n)Y(n + ν)} is

only a function of ν.
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Random processes

Example 1.17

Consider the random process {X} described by its mth realization as

xm(n) = cos(ω0n + Θm) (222)

where Θ is a continuous random variable with uniform PDF within the interval [0, 2π].

Determine the statistical mean and the autocorrelation function for this process, verifying

whether or not it is WSS.
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Random processes

Solution By writing that X(n) = g(Θ), from equations (204) and (219), respectively,

we get

E{X(n)} =

∫2π

0

g(θ)fΘ(θ) dθ

=

∫2π

0

cos(ω0n + θ)
1

2π
dθ

=
1

2π
sin(ω0n + θ)

∣

∣

∣

∣

θ=2π

θ=0

=
1

2π
[sin(ω0n + 2π) − sin(ω0n)]

= 0, for all n (223)
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RX(n1, n2) = E{cos(ω0n1 + Θ) cos(ω0n2 + Θ)}

=
1

2
E{cos(ω0n1 − ω0n2)} +

1

2
E{cos(ω0n1 + ω0n2 + 2Θ)}

(224)

In this last development for RX(n1, n2), the first term is not random, and the

corresponding expected value operator can be dropped, whereas for the second term,

one has that

1

2
E{cos(ω0n1+ω0n2+2Θ)} =

1

2

∫2π

0

cos(ω0n1+ω0n2+2θ)
1

2π
dθ

=
1

8π
sin(ω0n1+ω0n2+2θ)

∣

∣

∣

∣

θ=2π

θ=0

=
1

8π
[sin(ω0n1+ω0n2+4π)−sin(ω0n1+ω0n2)]

= 0 (225)
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and thus

RX(n1, n2) =
1

2
cos(ω0n1 − ω0n2) =

1

2
cos[ω0(n1 − n2)], for all n1, n2

(226)

Therefore, from equations (223) and (226), we conclude that the random process {X} is

WSS.

△
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Random processes

The Nth-order autocorrelation matrix RX of a WSS random process {X} is defined as

RX =























RX(0) RX(1) RX(2) · · · RX(N − 1)

RX(−1) RX(0) RX(1) · · · RX(N − 2)

RX(−2) RX(−1) RX(0) · · · RX(N − 3)

...
...

...
. . .

...

RX(1 − N) RX(2 − N) RX(3 − N) · · · RX(0)























(227)

with RX(ν) = E{X(n)X(n + ν)} as before.
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Random processes

• We classify a random process as ergodic if all statistics of the ensemble can be

determined by averaging on a single realization across the different samples.

– For example, when the discrete variable corresponds to time, time averaging is

performed in order to determine the statistics.

• Despite being a quite strong assumption, ergodicity is commonly resorted to in

situations where only a few or possibly one realization(s) of the random process is

available.

– In such cases, we may drop the realization index m, denoting the available

random signal by just x(n).

– The mean value, variance, autocorrelation function, and so on, of the entire

process {X}, are estimated based solely on x(n).
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Filtering a random signal

Consider the input-output relationship of a linear time-invariant system, described by its

impulse response h(n), given by the convolution sum

y(n) =

∞∑

k=−∞

x(n − k)h(k) (228)

If x(n) is a random signal, the nature of the output signal shall also be random. Let us

proceed to characterize the output signal y(n) when x(n) is a WSS random signal.
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Filtering a random signal

Determining the mean value of y(n), one gets

E{y(n)} = E

{
∞∑

k=−∞

x(n − k)h(k)

}

=

∞∑

k=−∞

E{x(n − k)}h(k)

= E{x(n)}

∞∑

k=−∞

h(k) (229)

where we have used the facts that h(n) is a deterministic signal and that E{x(n)} is

constant for all n, since {X} is assumed to be WSS.
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Filtering a random signal

• An interesting interpretation of the above equation comes from the fact that the

output w(n) of a system to a constant input v(n) = c is

w(n) =

∞∑

k=−∞

h(k)v(n − k) = c

∞∑

k=−∞

h(k) (230)

– This means that the output of a linear system to a constant input is also constant,

and equal to the input multiplied by the constant

H0 =

∞∑

k=−∞

h(k) (231)

that can be regarded as the system DC gain.

– Hence, equation (229) indicates that the statistical mean of the output signal is

the mean value of the WSS input signal multiplied by the system DC gain, which

is quite an intuitive result.
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Filtering a random signal

The autocorrelation function of the output signal is given by

RY(n1, n2) = E{y(n1)y(n2)}

= E

{(
∞∑

k1=−∞

x(n1 − k1)h(k1)

)(

∞∑

k2=−∞

x(n2 − k2)h(k2)

)}

= E

{
∞∑

k1=−∞

∞∑

k2=−∞

x(n1 − k1)x(n2 − k2)h(k1)h(k2)

}

=

∞∑

k1=−∞

∞∑

k2=−∞

E{x(n1 − k1)x(n2 − k2)}h(k1)h(k2)

=

∞∑

k1=−∞

∞∑

k2=−∞

RX(n1 − k1, n2 − k2)h(k1)h(k2) (232)
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Filtering a random signal

Since {X} is WSS, then one may write that

RY(n1, n2) =

∞∑

k1=−∞

∞∑

k2=−∞

RX((n1 − n2) − k1 + k2)h(k1)h(k2) (233)

which is also a function of ν = (n1 − n2) for all time instants n1, n2

⇒ One can conclude that if the input {X} is WSS, then the output process {Y} to a

linear time-invariant system is also WSS.
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Random signals

• The scope of random variables and processes is quite vast, and this section has only

presented the tip of the iceberg on these matters.

• The main aspect that should be kept in mind is that even though it may not be

feasible to determine the exact value of a given signal, one can still determine its

PDF or autocorrelation function, and extract many pieces of information (statistical

mean, variance, stationarity behavior, and so on) about it using the methodology

introduced here.

• In several cases, the results from these analyzes are all that one needs to describe a

given signal or process, as will be verified in several parts of this book.
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Do-it-yourself: discrete-time signals and systems

Experiment 1.1:

In Example 1.7, we were able to determine a closed-form expression for the impulse

response associated to the difference equation

y(n) −
1

α
y(n − 1) = x(n)

A numerical solution for this problem can be determined, for α = 1.15 and

0 ≤ n ≤ 30, using the MATLAB commands:

alpha = 1.15; N = 30;

x = [1 zeros(1,N)];

y = filter(1,[1 -1/alpha],x);

stem(y);

which yield the plot seen in Figure 4.
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Do-it-yourself: discrete-time signals and systems

Figure 4: Solution of difference equation in Experiment 1.1.
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Do-it-yourself: discrete-time signals and systems

In general, the MATLAB command

y = filter([b_0 b_1 . . . b_M],[1 a_1 . . . a_N],x,Z_i);

determines the solution of the general difference equation

y(n)+a1y(n−1)+. . .+aNy(n−N) = b0x(n)+b1x(n−1)+. . .+bMx(n−M)

(234)

when the input signal is provided in the vector x and the vector Z_i contains its initial

conditions.
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Do-it-yourself: discrete-time signals and systems

Experiment 1.2:

The process of sampling can be seen as a mapping of a continuous-time function into a

set of discrete-time samples. In general, however, there are infinite functions that can

generate the same set of samples.

To illustrate such a notion, consider a general function f1(t). Using a sampling

frequency of fs samples per second, the sampling process yields the discrete-time

function f1(nTs), with Ts = 1/fs and integer n.

Sampling any function of the form f2(t) = f1(αt), with any positive α, using a

sampling frequency f ′s = αfs, we get T ′
s = 1/f ′s = Ts/α. Hence,

f2(nT ′
s) = f1(α(nT ′

s)) = f1(nTs), which corresponds to the same set of samples

as before.
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Do-it-yourself: discrete-time signals and systems

Therefore, in general, a given set of samples does not specify the original

continuous-time function in a unique way. To reduce this uncertainty, we must specify the

sampling frequency employed to generate the given samples. By doing so, the algebraic

reasoning above breaks down and we eliminate (almost) all continuous-time candidate

functions for a given sample set. There is, however, one last candidate that must be

eliminated to avoid duplicity. Let us illustrate such case by emulating a sampling

procedure using MATLAB.

Consider the 3−Hz cosine function f1(t) = cos(2π3t) sampled at Fs = 10 samples

per second, for a 1−s time interval, using the MATLAB command:

time = 0:0.1:0.9;

f_1 = cos(2*pi*3.*time)

An identical sample list can be obtained, with the same sampling rate and time interval,

from a 7−Hz cosine function f2(t) = cos(2π7t) as given by:

f_2 = cos(2*pi*7.*time)

with the variable time specified as above.
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Do-it-yourself: discrete-time signals and systems

The resulting samples are visualized in Figure 5, generated by the commands:

time_aux = 0:0.001:(1-0.001);

figure(1);

stem(time,f_1);

hold on;

plot(time_aux, cos(2*pi*3.*time_aux));

hold off;

figure(2);

stem(time,f_2);

hold on;

plot(time_aux, cos(2*pi*7.*time_aux));

hold off;

In this sequence, the hold on commands allow plotting more than one function in the

same figure and the time_aux variable is used to emulate a continuous time counter

in the plot commands to draw the background functions.
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(a) (b)

Figure 5: Sampling of cosine functions of frequency f using Fs = 10 samples per second:

(a) f = 3 Hz; (b) f = 7 Hz.

To eliminate the duplicity illustrated in Figure 5, we must refer to the Sampling Theorem.

That result indicates that a 7−Hz cosine function shall not be sampled with Fs = 10 Hz,

since the minimum sampling frequency in this case should be above Fs = 14 Hz.

Therefore, if Nyquist’s sampling criterion is satisfied, there is only one continuous-time

function associated to a given set of discrete-time samples and a particular sampling

frequency.
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Do-it-yourself: Discrete-time signals and systems

Experiment 1.3:

Suppose the signal x(t) = 5 cos(2π5t) + 2 cos(2π50t), sampled with Fs = 1000

samples per second, as shown in Figure 6a, is corrupted by a small amount of noise,

forming the signal shown in Figure 6b generated by the commands:

amplitude_1 = 5; freq_1 = 5;

amplitude_2 = 2; freq_2 = 50;

F_s = 1000; time = 0:1/F_s:(1-1/F_s);

sine_1 = amplitude_1*sin(2*pi*freq_1.*time);

sine_2 = amplitude_2*sin(2*pi*freq_2.*time);

noise = randn(1,length(time));

x_clean = sine_1 + sine_2;

x_noisy = x_clean + noise;

figure(1);

plot(time,x_clean);

figure(2);

plot(time,x_noisy);
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Do-it-yourself: Discrete-time signals and systems

In particular, the randn command generates the specified number of samples of a

pseudo-random signal with Gaussian distribution with zero mean and unit variance.

(a) (b)

Figure 6: Sum of two sinusoidal components: (a) clean signal; (b) noisy signal.

185



Diniz, da Silva and Netto

Do-it-yourself: Discrete-time signals and systems

We can minimize the noisy effect by averaging N successive samples of

x(n) =x_noisy, implementing the following difference equation

y(n) =
x(n) + x(n − 1) + . . . + x(n − N + 1)

N
(235)

As mentioned in Experiment .1, we can perform such processing by specifying the value

of N and using the MATLAB commands

b = ones(1,N);

y = filter(b,1,x_noisy);

which yield the plots shown in Figure 7 for N = 3, N = 6, N = 10, and N = 20.
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(a) (b)

(c) (d)

Figure 7: Averaged-in-time signals using N consecutive samples: (a) N = 3; (b) N = 6;

(c) N = 10; (d) N = 20.
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Do-it-yourself: Discrete-time signals and systems

• Figure 7 indicates that the averaging technique is quite effective on reducing the

amount of noise from the corrupted signal.

• In this case, the larger the value of N, the higher the ability to remove the noise

component.

• If, however, N is too large, as observed in Figure 7d, the averaging procedure almost

eliminates the high-frequency sinusoidal component.
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Do-it-yourself: Discrete-time signals and systems

• One then may argue if it is possible to reduce the noise component without affecting

significantly the original signal.

– Perhaps a more elaborate processing may preserve better the sinusoidal

components.

• The theory and design of tools for answering these types of questions is the main

subject of this signal processing course.

• In the following chapters several techniques for processing a wide range of signals

are investigated.

• Although intuition is important in some practical situations, as illustrated in this

experiment, our presentation follows a formal and technically justified path.

• In the end, the reader may be able not only to employ the methods presented

throughout the book, but also to understand them, selecting the proper tool for each

particular application.
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