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Wavelet transforms

• Wavelet transforms are a relatively recent development in functional analysis that

have attracted a great deal of attention from the signal processing community. The

wavelet transform of a function belonging to L2{R}, the space of the square

integrable functions, is its decomposition in a base formed by expansions,

compressions, and translations of a single mother functionψ(t), called a wavelet.

• The applications of wavelet transforms range from quantum physics to signal coding.

• It can be shown that for digital signals the wavelet transform is a special case of

critically decimated filter banks.

• In fact, its numerical implementation relies heavily on that approach.
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Hierarchical filter banks

• The cascading of 2-band filter banks can produce many different kinds of critically

decimated decompositions.

• For example, one can make a 2k-band uniform decomposition, as depicted in

Figure 1a, for k = 3.

• Another common type of hierarchical decomposition is the octave-band

decomposition, in which only the lowpass band is further decomposed.

• In Figure 1b, one can see a 3-stage octave-band decomposition.

• In these figures, the synthesis bank is not drawn, because it is entirely analogous to

the analysis bank.
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Figure 1: Hierarchical decompositions: (a) 8-band uniform; (b) 3-stage octave-band.
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Wavelets

• Consider the octave-band analysis and synthesis filter banks depicted in Figure 2,

where the lowpass bands are recursively decomposed into lowpass and highpass

channels.

• In this framework, the outputs of the lowpass channels after an (S+ 1)-stage

decomposition are xS,n, and the outputs of the highpass channels are cS,n, with

S ≥ 1.
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Figure 2: Octave-band analysis and synthesis filter banks.
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Wavelets

• Applying the noble identities to Figure 2, we arrive at Figure 3.

• After (S+ 1) stages, and before decimation by a factor of 2(S+1), the z transforms

of the analysis lowpass and highpass channels,H
(S)
low (z) andH

(S)
high(z), are

H
(S)
low (z) =

XS(z)

X(z)
=

S∏

k=0

H0(z
2k

) (1)

H
(S)
high(z) =

CS(z)

X(z)
= H1(z

2S

)H
(S−1)
low (z) (2)

respectively.
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Wavelets

• For the synthesis channels, the results are analogous, that is

G
(S)
low (z) =

S∏

k=0

G0(z
2k

) (3)

G
(S)
high(z) = G1(z

2S

)G
(S−1)
low (z) (4)
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Figure 3: Octave-band analysis and synthesis filter banks after the application of the noble

identities.
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Wavelets

• IfH0(z) has enough zeros at z = −1, it can be shown that the envelope of the

impulse response of the filters in equation (2) has the same shape for all S.

• In other words, this envelope can be represented by expansions and contractions of

a single functionψ(t), as seen in Figure 4 for the analysis filter bank.
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Figure 4: The impulse responses of the filters from equation (2) have the same shape for

every stage.
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Wavelets

• In fact, in this setup, the envelopes before and after the decimators are the same.

• However, it must be noted that, after decimation, we can not refer to impulse

responses in the usual way, because the decimation operation is not time invariant.

• IfΩs is the sampling rate at the input of the system in Figure 4, we have that this

system has the same output as the one in Figure 5, where the boxes represent

continuous-time filters with impulse responses equal to the envelopes of these

signals in Figure 4.

• Note that in this case, sampling with frequency Ωs

k
is equivalent to decimating by k.
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Figure 5: Equivalent system to the one in Figure 4.
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Wavelets

• We then observe that the impulse responses of the continuous-time filters of Figure 5

are expansions and contractions of a single mother functionψ(t), with the highest

sampling rate being Ωs

2
, as stated above.

• Then, each channel added to the right has an impulse response with double the

width, and a sampling rate half of the previous one.

• There is no impediment in adding channels also to the left of the channel with

sampling frequency Ωs

2
.

– In such cases, each new channel to the left has an impulse response with half the

width, and a sampling rate twice the one to the right.

• If we keep adding channels to both the right and the left indefinitely, we arrive at

Figure 6, where the input is x(t), and the output is referred to as the wavelet

transform of x(t).

• The mother functionψ(t) is called the wavelet, or, more specifically, the analysis

wavelet.
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Figure 6: Wavelet transform of a continuous signal x(t).
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Wavelets

• Assuming, without loss of generality, thatΩs = 2π (that is, Ts = 1), it is

straightforward to derive from Figure 6 that the wavelet transform of a signal x(t) is

given by

(Actually, in this expression, the impulse response of the filters are expansions and

contractions ofψ∗(−t). In addition, the constant 2− m
2 is included because, if ψ(t)

has unit energy, which can be assumed without loss of generality,

2− m
2 ψ(2−mt− n) will also have unit energy.)

cm,n =

∫∞

−∞
2− m

2 ψ∗(2−mt− n)x(t)dt (5)

• From Figures 3–6 and equation (2), one can see that the waveletψ(t) is a

bandpass function, because each channel is a cascade of several lowpass filters and

a highpass filter with superimposing passbands.
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Wavelets

• Also, when the wavelet is expanded in time by two, its bandwidth decreases by two,

as seen in Figure 7.

Ω0

Ω0
Ω/2

ψ(2Ω)

Ω0
Ω

ψ(Ω)

Ω2

ψ(Ω/2)
ψ(2t)

ψ(t/2)

ψ(t)

Figure 7: Expansions and contractions of the wavelet in the time and frequency domains.
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Wavelets

• Therefore, the decomposition in Figure 6 and equation (5) is, in the frequency

domain, as shown in Figure 8.

ΩΩ0Ω0/2Ω0/4

Figure 8: Wavelet transform in the frequency domain.

• In a similar manner, the envelopes of the impulse responses of the equivalent

synthesis filters after interpolation (see Figure 3 and equation (4)) are expansions

and contractions of a single mother functionψ(t).
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Wavelets

• Using similar reasoning to that leading to Figures 4–6, one can obtain the

continuous-time signal x(t) from the wavelet coefficients cm,n as

x(t) =

∞∑

m=−∞

∞∑

n=−∞

cm,n2
− m

2 ψ(2−mt− n) (6)

• Equations (5) and (6) represent the direct and inverse wavelet transforms of a

continuous-time signal x(t).

• The wavelet transform of the corresponding discrete-time signal x(n) is merely the

octave-band decomposition in Figures 2 and 3.

• A natural question to ask at this point is:

How are the continuous-time signal x(t) and the discrete-time signal x(n) related, if

they generate the same wavelet coefficients?

In addition, how can the analysis and synthesis wavelets be derived from the filter

bank coefficients and vice versa?

• These questions can be answered using the concept of scaling functions, seen next.
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Scaling functions

• By examining Figure 6 and equations (5) and (6), we observe that the values ofm

which are associated with the “width” of the filters range from −∞ to +∞.

• Since all signals encountered in practice are somehow band-limited, one can

assume, without loss of generality, that the output of the filters with impulse

responsesψ(2−mt) are zero, form < 0.

• Therefore, in practice,m can then vary only from 0 to +∞.

• Examining Figures 2–4, we observe thatm → +∞ means that the lowpass

channels will be indefinitely decomposed.

• However, in practice, the number of stages of decomposition is finite and, after S

stages, we have S bandpass channels and one lowpass channel.

• Therefore, if we restrict the number of decomposing stages in Figures 2–6, and add

a lowpass channel, we can modify equation (6) so thatm assumes only a finite

number of values.
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Scaling functions

• This can be done by noting that ifH0(z) has enough zeros at z = −1, the

envelopes of the analysis lowpass channels given in equation (1) will also be

expansions and contractions of a single function φ(t), which is called the analysis

scaling function.

• Likewise, the envelopes of the synthesis lowpass channels are expansions and

contractions of the synthesis scaling function φ(t).
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Scaling functions

• Therefore, if we make an (S+ 1)-stage decomposition, equation (6) becomes

x(t) =

S−1∑

m=0

∞∑

n=−∞

cm,n2
− m

2 ψ(2−mt− n) +

∞∑

n=−∞

xS,n2
− S

2φ(2−St− n)

(7)

where

xS,n =

∫∞

−∞
2− S

2φ∗(2−St− n)x(t)dt (8)

• Hence, the wavelet transform is, in practice, described as in equations (5), (7), and

(8).

• The summations in n will, in general, depend on the supports (that is, the regions

where the functions are nonzero) of the signal, wavelets, and scaling functions.
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Relation between x(t) and x(n)

• Equation (8) shows how to compute the coefficients of the lowpass channel after an

(S + 1)-stage wavelet transform.

• In Figure 2, xS,n are the outputs of a lowpass filterH0(z) after (S+ 1) stages.

• Since in Figure 3 the discrete-time signal x(n) can be regarded as the output of a

lowpass filter after “zero” stages, we can say that x(n) would be equal to x−1,n.

• In other words, equivalence of the outputs of the octave-band filter bank of Figure 2

and the wavelet transform given by equations (5) and (6) occurs only if the digital

signal input to the filter bank of Figure 2 is equal to x−1,n.

• From equation (8), this means

x(n) =

∫∞

−∞

√
2φ∗(2t− n)x(t)dt (9)

• Such an equation can be interpreted as x(n) being the signal x(t) digitized with a

band-limiting filter having
√
2φ(−2t) as its impulse response.
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Relation between x(t) and x(n)

• Therefore, a possible way to compute the wavelet transform of a continuous-time

signal x(t) is depicted in Figure 9, in which x(t) is passed through a filter having as

impulse response the scaling function contracted-in-time by 2 and sampled with

Ts = 1, or equivalentlyΩs = 2π.

• The resulting digital signal is then the input to the octave-band filter bank in Figure 2

whose filter coefficients will be as determined later on in Section 77 by

equations (125) and (127).

• At this point, it is important to note that, strictly speaking, the wavelet transform is

only defined for continuous-time signals.

• However, it is common practice to refer to the wavelet transform of a discrete-time

signal x(n) as the output of the filter bank in Figure 2.
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Relation between x(t) and x(n)

• One should also note that, in order for the output signals in Figures 4 and 5 to be

entirely equivalent, the input signal in Figure 4 must not be the discrete-time impulse,

but the sampled impulse response of the filter
√
2φ(−2t).

• This is nothing less than a sampled version of the scaling function contracted-in-time

by 2.

Octave−
band
filter
bank

c0,n

1,nc

c2,n

x(t) −2t2φ ( )

cS,n

xS,n

Ω =2πs
x(n)

...

*

Figure 9: Practical way to compute the wavelet transform of a continuous-time signal.
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Wavelet transforms and time-frequency analysis

• In time-frequency analysis one is interested to know how the frequency content of a

signal varies in time.

• Wavelet transforms are a powerful tool for that purpose, and here we approach the

wavelet transform from a time-frequency analysis point of view.

• We do so by first analyzing the short-time Fourier transform, highlighting its

limitations using the uncertainty principle.

• Then we introduce the continuous-time wavelet transform as a way to overcome

some of the limitations of the short-time Fourier transform.

• Finally, we arrive at the wavelet transform by sampling the continuous-time wavelet

transform.

27



Diniz, da Silva and Netto

The short-time Fourier transform

• A common form of signal representation and analysis is through its decomposition

into its frequency components.

• A classical way of doing so is through the Fourier transform X(Ω) of a function x(t)

defined as

X(Ω) =

∫∞

−∞
x(t)e− jΩtdt (10)

• The Fourier transform computes the frequency content of a signal taking into

consideration its entire duration, from t = −∞ to t = ∞.

• However, it is sometimes interesting to compute the frequency content of a signal

only around a certain time location.

• For example, if someone speaks “The baby wants a ball”, one may be interested in

analyzing the frequency content only of the article “a”, and not of the phrase as a

whole.
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The short-time Fourier transform

• Clearly, the Fourier transform is not suitable for such an analysis, for it will always

take into account the full duration of the signal.

• Therefore, a tool for analyzing the local frequency content of a signal is desirable.

• A generalization of the Fourier transform, the short-time Fourier transform (STFT) is

such a tool. It can be defined as:

XF(Ω0, b) =

∫∞

−∞
x(t)g(t− b)e− jΩ0tdt (11)

• The STFT is equivalent to the Fourier transform of the windowed function

x(t)g(t− b).

• The window function g(t) is in general “concentrated” around t = 0, and its

purpose is to isolate the values of the function x(t) around t = b prior to the

computation of the Fourier transform.

• Figure 10 shows a typical window g(t).
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The short-time Fourier transform

• The STFT has two independent variables, the frequencyΩ and the position b of the

data window.

• For each value of b, the STFT gives the spectral content XF(Ω,b) of x(t) around

t = b.

t

g(t)

Figure 10: Typical window function for the STFT.
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The short-time Fourier transform

• The STFT has also a dual interpretation. If G(Ω) is the Fourier transform of g(t),

one can use the Parseval’s theorem to show that equation (11) is equivalent to

XF(Ω0, b) =
1

2π

∫∞

−∞
X(Ω)G(Ω−Ω0)e− jΩbdΩ (12)

• Therefore, for eachΩ0, the STFT also gives how the frequency components of x(t)

aroundΩ = Ω0 (as filtered byG(Ω−Ω0)) evolve in time.

• Besides being concentrated around t = 0, the window function g(t) is in general

chosen such thatG(Ω) is also concentrated aroundΩ = 0.

• A common choice for g(t) is a Gaussian function, which is concentrated around

zero in both the time and frequency domains.

• A good estimate of the “width” of both g(t) andG(Ω) is provided, respectively, by

their standard deviations σb and σΩ.
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The short-time Fourier transform

• The respective variances are given by:

σ2b =

∫∞

−∞
t2|g(t)|2dt

∫∞

−∞
|g(t)|2dt

(13)

σ2Ω =

∫∞

0

Ω2|G(Ω)|2dΩ

∫∞

0

|G(Ω)|2dΩ

(14)

• Examining equation (11), one can observe that the computation of XF(Ω0, b)

depends mainly on the values of x(t) in the interval t ∈ [b− σb, b+ σb].

• Alternatively, equation (12) shows that XF(Ω0, b) depends mainly on the values of

X(Ω) in the interval [Ω− σΩ,Ω+ σΩ].
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The short-time Fourier transform

• This is equivalent to saying that the STFT analyzes slices of the signal, having

duration 2σb, through filters of constant bandwidth, equal to 2σΩ.

• From the above, we can conclude that, the smaller the σb, the better a feature can

be localized in the time domain; in other words, the better the time resolution of the

STFT.

• Alternatively, the smaller the σΩ, the better the frequency resolution of the STFT.

• This implies that the time and frequency resolutions of the STFT depend only on

g(t), and are therefore fixed, independent of the particular point (b,Ω) in the

time-frequency space, as illustrated in Figure 11.

33



Diniz, da Silva and Netto

The short-time Fourier transform

σb σb

σbσb

σΩ σΩ

σΩσΩ

Ω

Ω2

Ω1

bb1 b2

Figure 11: Resolution cells in the time × frequency plane for the STFT.

• It is important to point out that the time and frequency resolutions of the STFT, as

defined in equations (13) and (14), can not be arbitrarily small, as stated below.
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The short-time Fourier transform

UNCERTAINTY PRINCIPLE

Whenever g(t) decays faster than 1√
t

for t → ±∞, then

σ2Ωσ
2
b ≥ 1

4
(15)

• This result implies that there is a maximum resolution that can be jointly achieved in

frequency and time by any linear transform.

• The equality holds for Gaussian signals, that is, for

g(t) = αe−κt2

(16)
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The short-time Fourier transform

Outline of the Proof

• Using the Schwartz inequality,

∣

∣

∣

∣

∫∞

−∞
tg(t)

dg(t)

dt
dt

∣

∣

∣

∣

2

≤
∫∞

−∞
|tg(t)|2dt

∫∞

−∞

∣

∣

∣

∣

dg(t)

dt

∣

∣

∣

∣

2

dt (17)

• Since the Fourier transform of
dg(t)

dt
is jΩG(Ω), one can apply Parseval’s theorem

in the third integral to get

∫∞

−∞

∣

∣

∣

∣

dg(t)

dt

∣

∣

∣

∣

2

dt =
1

2π

∫∞

−∞
|ΩG(Ω)|

2
dΩ (18)

and therefore equation (17) becomes

∣

∣

∣

∣

∫∞

−∞
tg(t)

dg(t)

dt
dt

∣

∣

∣

∣

2

≤ 1

2π

∫∞

−∞
|tg(t)|2dt

∫∞

−∞
|ΩG(Ω)|

2
dΩ (19)
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The short-time Fourier transform

Since

2g(t)
dg(t)

dt
=

d[g2(t)]

dt
(20)

we have that
∫∞

−∞
tg(t)

dg(t)

dt
dt =

1

2

∫∞

−∞
t

d[g2(t)]

dt
dt

=
1

2
tg2(t)

∣

∣

∣

∣

∞

−∞
−
1

2

∫∞

−∞
g2(t)dt (21)

• Since g(t) decays faster than 1√
t

for t → ±∞, we have that

lim
t→±∞

tg2(t) = 0 (22)

and then, supposing g(t) real, equation (21) becomes
∫∞

−∞
tg(t)

dg(t)

dt
dt = −

1

2

∫∞

−∞
g2(t)dt = −

1

2

∫∞

−∞
|g(t)|2dt (23)
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The short-time Fourier transform

• Substituting the above equation in equation (19), we get
∣

∣

∣

∣

1

2

∫∞

−∞
|g(t)|2dt

∣

∣

∣

∣

2

≤ 1

2π

∫∞

−∞
|tg(t)|2dt

∫∞

−∞
|ΩG(Ω)|

2
dΩ (24)

• Using again Parseval’s theorem we have that
∫∞

−∞
|g(t)|2dt =

1

2π

∫∞

−∞
|G(Ω)|

2
dΩ (25)

and therefore
∣

∣

∣

∣

∫∞

−∞
|g(t)|2dt

∣

∣

∣

∣

2

=
1

2π

∫∞

−∞
|G(Ω)|

2
dΩ

∫∞

−∞
|g(t)|2dt (26)

• Replacing the above expression into equation (24), we conclude that

1

8π

∫∞

−∞
|g(t)|2dt

∫∞

−∞
|G(Ω)|2dΩ ≤ 1

2π

∫∞

−∞
|tg(t)|2dt

∫∞

−∞
|ΩG(Ω)|

2
dΩ

(27)
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The short-time Fourier transform

and therefore








∫∞

−∞
|t|2|g(t)|2dt

∫∞

−∞
|g(t)|2dt

















∫∞

−∞
|Ω|2|G(Ω)|2dΩ

∫∞

−∞
|G(Ω)|2dΩ









≥ 1

4
(28)

which, from the definitions of equations (13) and (14), gives the desired result.

• If g(t) is a Gaussian, that is,

g(t) = αe−κt2

(29)

we have that

G(Ω) = α

√

π

κ
e− Ω2

4κ (30)

and then

g2(t) = α2e−2κt2

; G2(Ω) = α2
π

κ
e− Ω2

2κ (31)
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The short-time Fourier transform

• Since g2(t) andG2(Ω) are still Gaussian, then σ2b = 1
4κ

and σ2Ω = κ, in such a

way that

σ2bσ
2
Ω =

1

4
(32)

• Therefore, for the Gaussian window function, relationship (15) holds with the equality

sign, indicating that it represents the best possible time-frequency resolution

compromise.

• Note that the requirements of the window in this case are different from the ones in

Chapter 5.

• There, we want g(t) to be concentrated as much as possible in the frequency

domain, while having ripples with the smallest amplitude possible.

• This is so because in that case we are interested only in the frequency domain

properties, while in the STFT we want the best compromise between time- and

frequency-domain representations.
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The short-time Fourier transform

• In some cases, the fixed spatial and frequency resolutions of the STFT become in

general a major drawback.

• This usually happens with highly non-stationary signals, that have features of very

different sizes and in varying degrees of resolution.

• This is so because, once the function g(t) is fixed, its time and frequency

resolutions are also fixed, and only those features of size comparable to that of g(t)

can be conveniently analyzed.

• Therefore, it is desirable to have a transform with windows of different sizes, so that it

can adapt to the features to be analyzed.

• Wavelet transforms are a class of transforms that have exactly this property.
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The continuous-time wavelet transform

• The continuous wavelet transform of a signal x(t) belonging to L2{R}, the space of

square integrable functions in R, is its decomposition into a set of basis functions

comprising expansions and translations of a mother functionψ(t).

• Therefore, by defining the basis functionsψa,b(t) as

ψa,b(t) =
1√
a
ψ

(

t− b

a

)

(33)

the continuous wavelet transform can be written as

XW(a, b) =

∫∞

−∞
x(t)ψ∗

a,b(t)dt (34)

where “∗” denotes complex conjugation.

• Throughout this discussion, wavelets will be assumed to be real, and so

ψ(t) = ψ∗(t).
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The continuous-time wavelet transform

• Alternatively, if the Fourier transform ofψa,b(t) is Ψa,b(ω), equation (34) can be

rewritten in the frequency domain, using Parseval’s theorem, as

XW(a, b) =
1

2π

∫∞

−∞
Ψ∗
a,b(ω)X(ω)dω (35)

• It can be shown that x(t) can be recovered from its wavelet transform XW(a, b)

using the following expression:

x(t) = C−1
ψ

∫∞

0

da

a2

∫∞

−∞
XW(a, b)ψa,b(t)db (36)

where the constantCψ is such that

Cψ = 2π

∫∞

0

|Ψ(ω)|2

|ω|
dω = 2π

∫0

−∞

|Ψ(ω)|2

|ω|
dω < ∞ (37)
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The continuous-time wavelet transform

• If ψ(t) is continuous, equation (37) can only be satisfied if
∫∞

−∞
ψ(t)dt = 0 (38)

• The above equation is equivalent to Ψ(0) = 0, which implies thatψ(t) must be a

band-pass function.

• The factor a is called the scale of the basis function.

– The larger it is, the wider the basis function is in the time domain, and therefore

the narrower it is in the frequency domain.

– Conversely, the smaller the scale a, the narrower the basis function is in the time

domain and the wider it is in the frequency domain.

• Figure 7 illustrates this point.

• From this, one can infer that in the wavelet transform time and frequency resolutions

vary, and there is a trade-off between both.
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The continuous-time wavelet transform

• In order to be more precise, we first note that, from equation (38),ψ(t) must be

band-pass.

• Supposing thatψ(t) is real, then Ψ(Ω) is conjugate symmetric.

• Now let t0 andΩ0 be such that
∫∞

−∞
(t− t0)|ψ(t)|2dt = 0 (39)

∫∞

0

(Ω−Ω0)|Ψ(Ω)|2dΩ = 0 (40)
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The continuous-time wavelet transform

• We can define, similarly to equations (13) and (14), the variances ofψ(t) and of the

positive frequencies of its Fourier transformΨ(ω) as:

σ2b =

∫∞

−∞
(t− t0)

2|ψ(t)|2dt

∫∞

−∞
|ψ(t)|2dt

(41)

σ2Ω =

∫∞

0

(Ω−Ω0)
2|Ψ(Ω)|2dΩ

∫∞

0

|Ψ(Ω)|2dΩ

(42)

• Note thatψ(t) is usually chosen such that t0 = 0.

• The above equations imply that the standard deviations ofψa,b(t) and its Fourier

transform are aσb and σΩ

a
, respectively.

• Also, the center frequency of Ψa,b(Ω) is Ω0

a
.
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The continuous-time wavelet transform

• Therefore, from equation (34), the wavelet transform XW(a, b) depends mainly on

the values of x(t) in the interval t ∈ [b− aσb, b+ aσb].

• From equation (35), XW(a, b) depends mainly on the values of X(Ω) in the

frequency intervalΩ ∈ [Ω0

a
− σΩ

a
, Ω0

a
+ σΩ

a
].

• This implies that for large a, that is, for small frequencies, the wavelet transform has

low time resolution and high frequency resolution.

• Conversely, for small values of a, which correspond to large frequencies, the wavelet

transform has high time resolution and low frequency resolution.

• This can be illustrated by the resolution cells in Figure 12, where one may note that

the uncertainty principle from relation (15) still holds.

47



Diniz, da Silva and Netto

1/2

a

2

2Ω0

σb

σb/2

σb

σb/2

2σb2σb

σΩ

2σΩ

σΩ

2σΩ

σΩ/2σΩ/2

Ω

Ω01

Ω0/2

bb1 b2

Figure 12: Resolution cells in the time × frequency plane for the wavelet transform.

• From the above analysis, one can see that the wavelet transform is adequate for

analyzing signals having features of different sizes.

• For each feature size, there is a scale a in which it will be best analyzed or

represented.

• This is particularly useful in image processing, which is thoroughly explored later.
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The continuous-time wavelet transform

• There is another way of interpreting the fact that the wavelet transform depends

mainly on values of X(Ω) within the interval [Ω0

a
− σΩ

a
, Ω0

a
+ σΩ

a
].

• Since ψ(t) can be viewed as the impulse response of a band-pass filter, this is

equivalent to stating that the waveletψa,b(t) is the impulse response of a

band-pass filter having center frequency Ω0

a
and bandwidth 2σΩ

a
.

• Thus, theψa,b(t) functions represent a set of band-pass filters whose values of the

quality factor Q (defined as the ratio between the center frequencyΩ0 to the filter

bandwidth 2σΩ) are independent of the scale a.

• Therefore, a wavelet transform is equivalent to the analysis of a signal in the

frequency domain using band-pass filters having variable center frequencies, which

depend on the scale a, but with constant Q.
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Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• As can be seen from equation (34), the wavelet transform maps a one-dimensional

function into a two-dimensional function.

• This dimensionality increase makes it extremely redundant.

• Thus, it looks natural that the original signal can be recovered from the wavelet

transform computed only on a discrete grid.

• This is indeed the case, and Ingrid Daubechies has made an extensive investigation

of this problem.
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Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• By looking at the resolution cells in Figure 12, we can see that when the scale a

increases, the central frequency and the width of the resolution cells in the frequency

direction decrease, and so more resolution cells are needed to cover that region of

theΩ× b plane.

• Therefore, a natural choice for the discretization of a would be a = am0 , with

a0 > 1 andm ∈ Z.

• Since the discretization of b corresponds to a sampling in time, its sampling

frequency must be proportional to the bandwidth of the signal to be sampled, which

in turn is inversely proportional to the scale a.
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Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• Therefore, it is intuitive to choose b = nb0a
m
0 .

• With these choices of a and b, the discrete wavelet transform XW(m,n) of x(t)

becomes

XW(m,n) = a
−m/2

0

∫∞

−∞
ψ∗
m,n(t)x(t) dt (43)

ψm,n(t) = a
−m/2

0 ψ(a−m
0 t− nb0) (44)

• If a0 = 2 and b0 = 1, there are choices ofψ(t) such that the functionsψm,n(t),

form,n ∈ Z, form an orthonormal basis of L2{R}, the space of square integrable

functions in R.
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Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• This implies that any function x(t) ∈ L2{R} can be expressed as

x(t) =

∞∑

m=−∞

∞∑

n=−∞

cm,nψm,n(t) (45)

cm,n =

∫∞

−∞
ψ∗
m,n(t)x(t) dt (46)

• The cm,n are the wavelet transform coefficients of x(t). Note that the above

equations are the same as equations (5) and (6), in the case thatψ(t) = ψ(t).

• This is so because the diagram depicted in Figure 6 implements exactly the

discretization of the continuous-time wavelet transform given by equations (43) and

(44) when a0 = 2 and b0 = 1.
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Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• This implies that the samples of a continuous-time wavelet transform can be

computed using the scheme in Figure 9, provided that the envelopes of the iterated

filter banks in Figure 4 correspond to expansions and translations ofψ(t).

• It is interesting to observe that in this discretization of the wavelet transform, for every

increment inm, the value of a doubles.

• This implies doubling the width in the time domain and halving the width in the

frequency domain.

• The equivalent sampling grid is shown in Figure 13.

• By referring to equation (35), this is equivalent to having a signal analyzed in

frequency channels having widths of one octave, as illustrated in Figure 8.
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Figure 13: Discretization of the wavelet transform in equations (43) and (44) for a0 = 2

and b0 = 1.
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Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• If x(t) is equal to ψk,l(t), then equation (45) becomes

ψk,l(t) =

∞∑

m=−∞

∞∑

n=−∞

cm,nψm,n(t) (47)

• In order for the above equation to be valid, one must have

cm,n = δ(m− k)δ(n− l). In this case, equation (46) implies that

∫∞

−∞
ψ∗
m,n(t)ψk,l(t) dt = δ(m− k)δ(n− l) (48)

• This is equivalent to saying that the functionsψm,n(t), for allm,n ∈ Z, are

orthonormal.

56



Diniz, da Silva and Netto

Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• As detailed in Chapter 3, orthonormality is usually expressed using the inner product

notation as

〈ψk,l(t), ψm,n(t)〉 = δ(m− k)δ(n− l) (49)

where the inner product 〈g(t), f(t)〉 between the two functions f(t) and g(t) is

defined as

〈g(t), f(t)〉 =

∫∞

−∞
f∗(t)g(t) dt (50)

• Since equations (45) and (46) are valid for any function x(t) ∈ L2{R}, then it can be

said that the functionsψm,n(t), for allm,n ∈ Z, form an orthonormal basis of

L2{R}.

• Other choices of a0 can lead to other orthonormal bases. For example, Kovac̆ević

has described in some discrete wavelet transforms using fractional values of a0.
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Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• However, we will restrict our presentation to the dyadic cases, that is, to wavelet

transforms in which a0 = 2 and b0 = 1.

• The wavelet transform as defined by equations (5) and (6), that is,

x(t) =

∞∑

m=−∞

∞∑

n=−∞

cm,nψm,n(t) (51)

cm,n =

∫∞

−∞
x(t)ψ∗

m,n(t)dt (52)

where

ψm,n(t) = 2−m/2ψ(2−mt− n) (53)

ψm,n(t) = 2−m/2ψ(2−mt− n) (54)

is not orthogonal. In this case, we refer to it as a biorthogonal wavelet transform

(refer to Chapter 9 for a discussion on orthogonality and biorthogonality).
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Sampling the continuous-time wavelet transform: The discr ete
wavelet transform

• Biorthogonal wavelet transforms are characterized by two wavelets, the analysis

wavelet,ψ(t), and the synthesis one,ψ(t).

• Equations (51)–(54) indicate that any function x(t) ∈ L2{R} can be decomposed as

a linear combination of contractions, expansions and translations of the synthesis

wavelet,ψ(t).

• The weights of the expansion can be computed via the inner product of x(t) with

expansions, contractions, and translations of the analysis wavelet,ψ(t).

• Functionsψm,n(t) do not comprise an orthogonal set, so neither do the functions

ψm,n(t).

• However, functionsψm,n(t) are orthogonal to ψm,n(t)

• This means that

〈ψm,n(t), ψk,l(t)〉 = δ(m− k)δ(n− l) (55)
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Multiresolution representation

• The concept of multiresolution signal representation provides interesting insights on

wavelet transforms, as well as a deeper understanding of their connection with filter

banks.

• Suppose a functionφ(t) such that the set φ(t− n), for all n ∈ Z, is orthonormal.

• Define V0 as the space generated by this set. Analogously, define Vm as the space

generated by 2−m/2φ(2−mt− n).

• Suppose also that φ(t) is the solution of the following two-scale difference equation:

φ(t) =

∞∑

n=−∞

cn
√
2φ(2t− n) (56)

• Since the orthonormality of the setφ(t − n) along t implies the orthonormality of

the set
√
2φ(2t− n), we have that cn is related to φ(t) by the following equation:

cn =

∫∞

−∞
φ(t)

√
2φ∗(2t− n) dt (57)
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Multiresolution representation

• From equation (56), it follows immediately by induction that, if i, j ∈ Z, with i > j,

there are constants α
ij
n such that

φ(2−it) =

∞∑

n=−∞

αijnφ(2−jt− n) (58)

• This means that the functions that generate the space Vi are also in Vj.

• This implies that Vi ⊂ Vj, for i > j. By induction, then,

. . . ⊃ V−2 ⊃ V−1 ⊃ V0 ⊃ V1 ⊃ . . . (59)

• Interpreting V0 as the space of functions having resolution 20, V−1 can be

interpreted as the space of functions having the higher resolution 21, which contains

V0; V1 can be interpreted as the space of functions having the lower resolution 2−1,

which is contained in V0.

• Hence, the Vm, for increasingm, can be viewed as spaces of decreasing resolution.
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Multiresolution representation

• The function φ(t) in equation (56) must also be such that

∞
⋃

j=−∞

Vj = L2{R} (60)

∞
⋂

j=−∞

Vj = {0} (61)

• Defining nowWj as the orthogonal complement of Vj in Vj−1, that is,

Wj⊥Vj and Wj ⊕ Vj = Vj−1 (62)

where ⊕ denotes the orthogonal sum operation, which corresponds to the linear

closure of two orthogonal spaces. In this context,Wj can be seen as the amount of

“detail” added when going from resolution Vj to the larger resolution Vj−1. This

hierarchy of spaces is depicted in Figure 14.
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Figure 14: Geometric representation of multiresolution spaces.

• From equations (59) and (62), any function g(t) ∈W0 also belongs to V−1, as

also seen in Figure 14.

63



Diniz, da Silva and Netto

Multiresolution representation

• Therefore, such g(t) can be expressed as

g(t) =

∞∑

n=−∞

dn
√
2φ(2t− n) (63)

• If we defineψ(t) ∈ V−1 as

ψ(t) =

∞∑

n=−∞

(−1)nc1−n
√
2φ(2t − n) (64)

where the cn are as in equation (56), it can be shown thatψ(t) ∈W0, and

ψ(t− n), for all n ∈ Z, is an orthonormal basis forW0

• More generally, 2−m/2ψ(2−mt− n) is an orthonormal basis forWm.

• From equation (62), this implies that the functionsψ(t− n) are orthogonal to the

functions φ(t−m).
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Multiresolution representation

• Summarizing the orthogonality conditions, we have:

〈φ(t−m), φ(t− n)〉 = δ(m− n) (65)

〈ψ(t−m), ψ(t− n)〉 = δ(m− n) (66)

〈ψ(t−m), φ(t− n)〉 = 0 (67)

• From equations (60)–(62) one can derive that:

· · · ⊕W−2 ⊕W−1 ⊕W0 ⊕W1· · · = L2{R} (68)

• Thus, the functionsψm,n(t) = 2−m/2ψ(2−mt− n), for allm,n ∈ Z,

constitute an orthonormal basis of L2{R}.
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Multiresolution representation

• This is equivalent to saying that any f(t) ∈ L2{R} can be written as

f(t) =

∞∑

m=−∞

∞∑

n=−∞

αm,nψm,n(t) (69)

αm,n =

∫∞

−∞
ψ∗
m,n(t)f(t) dt (70)

• These equations are the same as equations (45) and (46), respectively, indicating

that they represent a discrete wavelet transform of f(t) with mother waveletψ(t).

• The wavelet transform coefficients αm,n correspond to the projection of f(t) onto a

“detail space”Wm of resolutionm.

• Therefore, a wavelet transform performs the decomposition of a signal into spaces of

different resolutions.

• In the literature, these kinds of decompositions are in general referred to as

multiresolution decompositions.
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Multiresolution representation

• They are another way of stating the property that wavelet transforms can

conveniently represent features of different sizes, that is, in different resolutions, as

discussed in Section 42.

• In the frequency domain the multiresolution decompositions can be understood in the

following way:

– V0 is the space generated by φ(t − n) and V−1 is the space generated by√
2φ(2t− n), which has double the bandwidth of φ(t− n).

– Therefore, V−1 also contains functions with double the frequency content than

V0, which means double the time resolution.

– W0 is composed by the functions that are in V−1 but not in V0, and is therefore

contained in the bandpass region between the passbands of φ(t − n) and√
2φ(2t− n), which should be the passband ofψ(t− n).

• This spectral reasoning is clarified in Figure 15.
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Figure 15: Multiresolution decomposition in the frequency domain.

• Note that the function φ(t) is the same as the scaling function defined earlier.

• It is often referred to as the scaling function of the multiresolution representation,

while ψ(t) is referred to as its wavelet.
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Multiresolution representation

• Despite having nice properties, orthogonal wavelet transforms have an important

limitation.

• As we have seen earlier, orthogonal filter banks can not have linear phase.

• Since wavelets are the envelope of the impulse response of iterated filter banks (see

Figures 2–6), the waveletψ(t) can not, at the same time, be orthogonal and be the

impulse response of a linear phase filter.

• This is particularly significant in image processing applications, because the phase of

an image signal carries very important information

• Thus, it is beneficial to use the biorthogonal wavelet transforms described in

equations (51)–(55), that can have linear phase.

• In the sequel we analyze the biorthogonal multiresolution representation.

69



Diniz, da Silva and Netto

Biorthogonal multiresolution representation

• Letψ(t) andψ(t) be the analysis and synthesis wavelets, respectively, and φ(t)

and φ(t) the corresponding analysis and synthesis scaling functions, respectively.

• Analogously to the orthogonal case, let φ(t) and φ(t) be such that

φ(t) =

∞∑

n=−∞

cn
√
2φ(2t− n) (71)

φ(t) =

∞∑

n=−∞

cn
√
2φ(2t− n) (72)

• Supposing also that
〈

2−m/2φ(2−mt− n), 2−m/2φ(2−mt− k)
〉

= δ(n− k) (73)
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Biorthogonal multiresolution representation

we have

cn =

∫∞

−∞
φ(t)

√
2φ

∗
(2t− n) dt (74)

cn =

∫∞

−∞
φ(t)

√
2φ∗(2t− n) dt (75)

• Functionsφ(t) andφ(t) defined this way generate two hierarchies of subspaces as

the one in equation (59):

φ(t) : . . . ⊃ V−2 ⊃ V−1 ⊃ V0 ⊃ V1. . . (76)

φ(t) : . . . ⊃ V−2 ⊃ V−1 ⊃ V0 ⊃ V1. . . (77)
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Biorthogonal multiresolution representation

• Suppose also that, for the Vj and Vj,

∞
⋃

j=−∞

Vj = L2{R} (78)

∞
⋂

j=−∞

Vj = {0} (79)

∞
⋃

j=−∞

Vj = L2{R} (80)

∞
⋂

j=−∞

Vj = {0} (81)
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Biorthogonal multiresolution representation

• DefiningWj andWj such that

Vj−1 = Vj +Wj (82)

Vj−1 = Vj +Wj (83)

Wj⊥Vj and Wj⊥Vj (84)

whereA+ B denotes the linear closure ofA and B, or the subspace generated by

all the linear combinations of functions inA and B.

• It must be noted that the linear closure + in equations (82) and (83) differs from the

orthogonal sum ⊕ operation in equation (62), because, in the biorthogonal

multiresolution representation considered here, Vj andWj are not orthogonal to

each other.

• Once again,Wj can be interpreted as the amount of “detail” added when going from

“resolution” Vj to Vj−1, andWj is the amount of “detail” added when going from

“resolution” Vj to Vj−1. However, unlike the orthogonal case, theWj in one set of

spaces is orthogonal only to the Vj in the other set of spaces, and not to Vj.
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Biorthogonal multiresolution representation

• Letψ(t) andψ(t) be bases forWj andWj, respectively. Since, from

equations (82) and (83),Wj ∈ Vj−1 andWj ∈ Vj−1, henceψ(t) andψ(t) can

be expressed as

ψ(t) =

∞∑

n=−∞

dn
√
2φ(2t− n) (85)

ψ(t) =

∞∑

n=−∞

dn
√
2φ(2t− n) (86)

where, from equation (73),

dn =

∫∞

−∞
ψ(t)

√
2φ

∗
(2t− n) dt (87)

dn =

∫∞

−∞
ψ(t)

√
2φ∗(2t− n) dt (88)
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Biorthogonal multiresolution representation

• The functionsφ(t), φ(t),ψ(t), andψ(t) defined as above satisfy the following

biorthogonality conditions:

〈

φ(t), φ(t−m)
〉

= δ(m) (89)
〈

ψ(t), ψ(t−m)
〉

= δ(m) (90)
〈

φ(t), ψ(t−m)
〉

= 0 (91)
〈

ψ(t), φ(t−m)
〉

= 0 (92)

• From equations (76)–(83), we also get that

· · · +W−2 +W−1 +W0 +W1+ · · · = L2{R} (93)

• The above equation together with equations (51) and (54) imply that, as in the

orthogonal case, a biorthogonal wavelet transform involves the projection of a

function onto the detail spacesWj.
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• Next we use the concept of multiresolution decomposition to present how wavelet

transforms of digital signals can be computed, as well as their relation to the 2-band

perfect reconstruction filter banks described earlier.
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• In the real world, every function is measured with a finite resolution.

• Without any loss of generality, we can assume that V0 is this resolution

(Since orthogonal wavelet transforms are a special case of the biorthogonal wavelet

transforms, only the biorthogonal case will be analyzed here..

• Since Vj is the space generated by the functions 2−j/2φ(2−jt− n), the

projection xj(t) of x(t) onto Vj is equal to

xj(t) =

∞∑

n=−∞

xj,n2
−j/2φ(2−jt− n) (94)

xj,n =

∫∞

−∞
x(t)2−j/2φ∗(2−jt− n)dt (95)

• Equation (95) can be interpreted as the coefficients xj,n being obtained by filtering

x(t) with a continuous-time filter having impulse response 2−j/2φ(−2−jt), and

sampling the resulting continuous-time function at the sampling times tn = 2jn.
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• Referring to Figure 15, the filtering process would serve to reduce the bandwidth of

x(t), and consequently its time resolution.

• Therefore, the resulting function xj(t), having limited resolution, can be represented

unambiguously by the coefficients xj,n.
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• Since, from equation (71), φ(t) =

∞∑

k=−∞

ck
√
2φ(2t− k), we have

2−j/2φ(2−jt− n) =

∞∑

k=−∞

ck2
1−j

2 φ(21−jt− 2n− k) (96)

which, when substituted into equation (95), results in

xj,n =

∫∞

−∞
x(t)

∞∑

k=−∞

c∗k2
1−j

2 φ∗(21−jt− 2n− k)dt

=

∞∑

k=−∞

c∗k

∫∞

−∞
x(t)2

1−j

2 φ∗(21−jt− 2n− k)dt (97)

• The comparison of the above expression with equation (95) implies that

xj,n =

∞∑

k=−∞

c∗kxj−1,2n+k (98)
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• By defining

h0(k) = c∗−k (99)

equation (98) can be rewritten as

xj,n =

∞∑

k=−∞

h0(k)xj−1,2n−k (100)

• This equation means that the coefficients xj,n of the approximation of x(t) at

resolution 2−j can be obtained, from the coefficients xj−1,n of the approximation of

x(t) at the higher resolution 21−j, by filtering them with a digital filter having impulse

response h0(k), with k ∈ Z, and sub-sampling the result by a factor of two, as

depicted in Figure 2.
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• This result is not surprising, because, since the resolution of the space Vj is half of

the one of the space Vj−1, then Vj should roughly have half of the frequency

content of Vj−1 (as determined by the filtering operation with h0(k)), and should

therefore be represented by a non-redundant transform with only half of the number

of coefficients (as yielded by the decimation-by-2 operation).
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• SinceWj is the space generated by the functions 2−j/2ψ(2−jt− n), the

projection x̌j(t) of x(t) ontoWj is equal to

x̌j(t) =

∞∑

n=−∞

x̌j,n2
−j/2ψ(2−jt− n) (101)

x̌j,n =

∫∞

−∞
x(t)2−j/2ψ∗(2−jt− n)dt (102)

• Similarly to equation (95), equation (102) can be interpreted as the coefficients x̌j,n

being obtained by filtering x(t) with a continuous-time filter having impulse response

2−j/2ψ(−2−jt), and sampling the resulting continuous-time function at the

sampling times tn = 2jn.
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• As, from equation (85),ψ(t) =

∞∑

k=−∞

dk
√
2φ(2t− k), we have

2−j/2ψ(2−jt− n) =

∞∑

k=−∞

dk2
1−j

2 φ(21−jt− 2n− k) (103)

which, when substituted in equation (102), results in

x̌j,n =

∫∞

−∞
x(t)

∞∑

k=−∞

d∗k2
1−j

2 φ∗(21−jt− 2n− k)dt

=

∞∑

k=−∞

d∗k

∫∞

−∞
x(t)2

1−j

2 φ∗(21−jt− 2n− k)dt (104)

• Comparing this expression to equation (102), we have that

x̌j,n =

∞∑

k=−∞

d∗kxj−1,2n+k (105)
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• By defining

h1(k) = d∗−k (106)

equation (105) can be rewritten as

x̌j,n =

∞∑

k=−∞

h1(k)xj−1,2n−k (107)

• This relationship indicates that the coefficients of the detail signal x̌j(t) can be

obtained from the coefficients of xj−1(t) by filtering them with h1(k) and

sub-sampling by a factor of two, as illustrated in Figure 2.

• Equations (100) and (107) show how to go from resolution 21−j to the smaller

resolution 2−j.
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• Assuming that the digital representation of x(t) is given by the coefficients x−1,n,

we have that the discrete wavelet transform of x(t), the coefficients x̌j,n, can be

computed recursively from equations (100) and (107).

• This is again illustrated in Figure 2, where x̌j,n = cj,n.
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• Now we will deal with the problem of going from resolution 2−j to the higher

resolution 21−j, with the help of the detail signal.

• Being able to do so is equivalent to being able to recover the digital representation of

the signal from its wavelet coefficients.

• From equation (83), the projection xj−1(t) of x(t) onto Vj−1 can be decomposed

as the sum of the projection xj(t) of x(t) onto Vj and the projection x̌j(t) of x(t)

onto the detail spaceWj, that is,

xj−1(t) = xj(t) + x̌j(t) (108)

• Then, substituting equations (94) and (101) into equation (108), we have

xj−1(t) =

∞∑

k=−∞

xj,k2
−j/2φ(2−jt− k) +

∞∑

k=−∞

x̌j,k2
−j/2ψ(2−jt− k)

(109)
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• However, since

xj−1(t) =

∞∑

l=−∞

xj−1,l2
1−j

2 φ(21−jt− l) (110)

from equation (75) and then from equation (109), we have that

xj−1,l =

∫∞

−∞
xj−1(t)2

1−j

2 φ∗(21−jt− l)dt

=

∞∑

k=−∞

xj,k

∫∞

−∞
2−j/2φ(2−jt− k)2

1−j

2 φ∗(21−jt− l)dt

+

∞∑

k=−∞

x̌j,k

∫∞

−∞
2−j/2ψ(2−jt− k)2

1−j

2 φ∗(21−jt− l)dt

(111)

87



Diniz, da Silva and Netto

Wavelet transforms and filter banks

• From equations (72) and (86),

2−j/2φ(2−jt− k) =

∞∑

n=−∞

cn2
1−j

2 φ(21−jt− 2k− n) (112)

2−j/2ψ(2−jt− k) =

∞∑

n=−∞

dn2
1−j

2 φ(21−jt− 2k− n) (113)

• Substituting the above equations into equation (111), we have

xj−1,l =

∞∑

k=−∞

xj,k

∫∞

−∞

∞∑

n=−∞

cn2
1−j

2 φ(21−jt−2k−n)2
1−j

2 φ∗(21−jt−l)dt

+

∞∑

k=−∞

x̌j,k

∫∞

−∞

∞∑

n=−∞

dn2
1−j

2 φ(21−jt−2k−n)2
1−j

2 φ∗(21−jt−l)dt

(114)
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• From equation (89),
〈

2
1−j

2 φ(21−jt− n), 2
1−j

2 φ(21−jt −m)
〉

= δ(m − n) (115)

then, equation (114) becomes

xj−1,l =

∞∑

k=−∞

xj,k

∞∑

n=−∞

cnδ(2k+ n− l) +

∞∑

k=−∞

x̌j,k

∞∑

n=−∞

dnδ(2k+ n− l)

=

∞∑

k=−∞

xj,kcl−2k +

∞∑

k=−∞

x̌j,kdl−2k (116)

• By defining

cn = g0(n) (117)

dn = g1(n) (118)
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equation (116) can be rewritten as

xj−1,l =

∞∑

k=−∞

xj,kg0(l− 2k) +

∞∑

k=−∞

x̌j,kg1(l− 2k) (119)

• This equation means that the coefficients of the approximation xj−1,l of a signal at

resolution 21−j can be obtained from the coefficients of the approximation of the

signal at the smaller resolution 2−j and the coefficients of the corresponding detail

signal.

• In order to accomplish this, it suffices to up-sample the coefficients of the

approximation xj,k by a factor of two and to filter them with a digital filter having

impulse response g0(k), summing the result to the coefficients of the detail signal,

x̌j,k, up-sampled by a factor of two and filtered by a digital filter with impulse

response g1(k), as represented in Figure 2.
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• Summarizing equations (99), (100), (106), (107), (118), and (119), we have

c∗n = h0(−n)

d∗n = h1(−n)

cn = g0(n)

dn = g1(n)

xj,n =

∞∑

k=−∞

h0(k)xj−1,2n−k

x̌j,n =

∞∑

k=−∞

h1(k)xj−1,2n−k

xj−1,n =

∞∑

k=−∞

xj,kg0(n− 2k) +

∞∑

k=−∞

x̌j,kg1(n− 2k)






(120)
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• From the above equations, we have that equations (71)–(75) and (85)–(88) become

φ(t) =

∞∑

n=−∞

h∗0(n)
√
2φ(2t+ n) (121)

φ(t) =

∞∑

n=−∞

g0(n)
√
2φ(2t− n) (122)

ψ(t) =

∞∑

n=−∞

h∗1(n)
√
2φ(2t+ n) (123)

ψ(t) =

∞∑

n=−∞

g1(n)
√
2φ(2t− n) (124)
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• Therefore, the filter coefficients can be obtained from the wavelets and scaling

functions by the following expressions:

h0(n) =

∫∞

−∞
φ∗(t)

√
2φ(2t+ n)dt (125)

g0(n) =

∫∞

−∞
φ(t)

√
2φ∗(2t− n)dt (126)

h1(n) =

∫∞

−∞
ψ∗(t)

√
2φ(2t+ n)dt (127)

g1(n) =

∫∞

−∞
ψ(t)

√
2φ∗(2t− n)dt (128)

• From the above equations, we can confirm that, in the orthogonal case, when

φ(t) = φ(t) andψ(t) = ψ(t), we have that h0(n) = g∗0(−n) and

h1(n) = g∗1(−n).

• Note that this is similar to the condition for orthogonality of filter banks seen earlier.
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• The Fourier transforms of the wavelets, scaling functions, and filters can be related

by taking the Fourier transforms of equations (121)–(124).

• In the case of equation (121) we have that

Φ(Ω) =

∞∑

n=−∞

h∗0(n)

√
2

2
e j Ω

2
nΦ

(

Ω

2

)

=
1√
2
Φ

(

Ω

2

) ∞∑

n=−∞

h∗0(n)e j Ω
2
n

=
1√
2
Φ

(

Ω

2

)

H∗
0(e j Ω

2 ) (129)
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• Analogously, taking the Fourier transforms of equations (122)–(124) we have

Φ(Ω) =
1√
2
Φ

(

Ω

2

)

G0(e j Ω
2 ) (130)

Ψ(Ω) =
1√
2
Φ

(

Ω

2

)

H∗
1(e j Ω

2 ) (131)

Ψ(Ω) =
1√
2
Φ

(

Ω

2

)

G1(e j Ω
2 ) (132)
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and then, solving the recursions in equations (129)–(132), we get

Φ(Ω) =

∞∏

n=1

1√
2
H∗
0(e j Ω

2n ) (133)

Φ(Ω) =

∞∏

n=1

1√
2
G0(e j Ω

2n ) (134)

Ψ(Ω) =
1√
2
H∗
1(e j Ω

2 )

∞∏

n=2

1√
2
H∗
0(e j Ω

2n ) (135)

Ψ(Ω) =
1√
2
G1(e j Ω

2 )

∞∏

n=2

1√
2
G0(e j Ω

2n ) (136)

• It is important to notice that, for the wavelet transform to be defined, the

corresponding filter bank must provide perfect reconstruction.

• Also, it is interesting to note the similarity of the above equations with

equations (1)–(4) for the iterated filters of an octave-band filter bank.
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• Substituting equations (121) and (122) in equation (89), we have
〈

∞∑

k=−∞

h∗0(k)
√
2φ(2t+ k),

∞∑

n=−∞

g0(n)
√
2φ(2t− 2m− n)

〉

= δ(m) (137)

and then

∞∑

k=−∞

∞∑

n=−∞

h0(k)g0(n)
〈√
2φ(2t+ k),

√
2φ(2t− 2m− n)

〉

= δ(m) (138)

leading to

∞∑

k=−∞

∞∑

n=−∞

h0(k)g0(n)δ(k + 2m+ n) = δ(m) (139)
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• This implies that
∞∑

n=−∞

h0(−2m− n)g0(n) = δ(m) (140)

which is the same as writing

(h0 ∗ g0)(−2m) = δ(m) (141)

where ∗ denotes the convolution operation between two discrete-time sequences.

• Equation (141) means that all the even indexed elements of (h0 ∗ g0) are equal to

zero with the exception of the 0th element, which is equal to 1.

• This is equivalent to stating that the even powers ofH0(z)G0(z) are equal to zero

with the exception of z0, which is equal to 1.

• This implies that

H0(z)G0(z) +H0(−z)G0(−z) = 2 (142)

98



Diniz, da Silva and Netto

Relations between the filter coefficients

• Now, substituting equations (123) and (124) in equation (90), we have
〈

∞∑

k=−∞

h∗1(k)
√
2φ(2t+ k),

∞∑

n=−∞

g1(n)
√
2φ(2t− 2m− n)

〉

= δ(m) ⇒

∞∑

k=−∞

∞∑

n=−∞

h1(k)g1(n)
〈√
2φ(2t+ k),

√
2φ(2t− 2m− n)

〉

= δ(m) ⇒

∞∑

k=−∞

∞∑

n=−∞

h1(k)g1(n)δ(k+ 2m+ n) = δ(m) (143)

this implies that
∞∑

n=−∞

h1(−2m− n)g1(n) = δ(m) (144)

which can be rewritten as

(h1 ∗ g1)(−2m) = δ(m) (145)
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• Equation (145) means that all the even powers ofH1(z)G1(z) are equal to zero

with the exception of z0, which is equal to 1, that is,

H1(z)G1(z) +H1(−z)G1(−z) = 2 (146)
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• Substituting equations (121) and (124) in equation (91), we have
〈

∞∑

k=−∞

h∗0(k)
√
2φ(2t+ k),

∞∑

n=−∞

g1(n)
√
2φ(2t− 2m− n)

〉

= 0 ⇒

∞∑

k=−∞

∞∑

n=−∞

h0(k)g1(n)
〈√
2φ(2t+ k),

√
2φ(2t− 2m− n)

〉

= 0 ⇒

∞∑

k=−∞

∞∑

n=−∞

h0(k)g1(n)δ(k+ 2m+ n) = 0 (147)

this implies that,
∞∑

n=−∞

h0(−2m − n)g1(n) = 0 (148)

which can be rewritten as

(h0 ∗ g1)(−2m) = 0 (149)
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• This is equivalent to saying that all the even powers ofH0(z)G1(z) are equal to

zero, that is,

H0(z)G1(z) +H0(−z)G1(−z) = 0 (150)
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• Finally, substituting equations (122) and (123) in equation (92), we have
〈

∞∑

k=−∞

h∗1(k)
√
2φ(2t+ k),

∞∑

n=−∞

g0(n)
√
2φ(2t− 2m− n)

〉

= 0 ⇒

∞∑

k=−∞

∞∑

n=−∞

h1(k)g0(n)
〈√
2φ(2t+ k),

√
2φ(2t− 2m− n)

〉

= 0 ⇒

∞∑

k=−∞

∞∑

n=−∞

h1(k)g0(n)δ(k+ 2m+ n) = 0 (151)

this implies that
∞∑

n=−∞

h1(−2m − n)g0(n) = 0 (152)

which can be rewritten as:

(h1 ∗ g0)(−2m) = 0 (153)
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• This is equivalent to saying that all the even powers ofH1(z)G0(z) are equal to

zero, that is,

H1(z)G0(z) +H1(−z)G0(−z) = 0 (154)

• Summarizing, equations (142), (146), (150), and (154) form the following system of

equations:

H0(z)G0(z) +H0(−z)G0(−z) = 2 (155)

H1(z)G0(z) +H1(−z)G0(−z) = 0 (156)

H0(z)G1(z) +H0(−z)G1(−z) = 0 (157)

H1(z)G1(z) +H1(−z)G1(−z) = 2 (158)
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which can be written in matrix form as




H0(z) H0(−z)

H1(z) H1(−z)









G0(z)

G0(−z)



 =





2

0



 (159)





H0(z) H0(−z)

H1(z) H1(−z)









G1(z)

G1(−z)



 =





0

2



 (160)

Then, from equation (159),




G0(z)

G0(−z)



 =
1

H0(z)H1(−z) −H0(−z)H1(z)





H1(−z) −H0(−z)

−H1(z) H0(z)









2

0





(161)
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and from equation (160),




G1(z)

G1(−z)



 =
1

H0(z)H1(−z) −H0(−z)H1(z)





H1(−z) −H0(−z)

−H1(z) H0(z)









0

2





(162)

• If one wants linear-phase filters, we should look for FIR filters, as thoroughly

discussed earlier.

• If the solutions forG0(z) andG1(z) in equations (161) and (162) have to be FIR,

the following condition must be satisfied

H0(z)H1(−z) −H0(−z)H1(z) = cz−r (163)
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in such a way that, from equation (161), we have

G0(z) =
2

c
zrH1(−z) (164)

G0(−z) =
2

c
zr (−H1(z)) (165)

• Comparing equation (164) with equation (165) we conclude that

(−1)r = −1 ⇒ r = 2l+ 1, with l ∈ Z (166)

equation (164) then becomes

G0(z) =
2

c
z2l+1H1(−z) (167)
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• Now, from equation (162),

G1(z) =
2

c
z2l+1 (−H0(−z)) (168)

G1(−z) =
2

c
z2l+1H0(z) (169)

• Therefore, the conditions that must satisfied by the filtersH0(z),H1(z),G0(z),

andG1(z), as given by equations (142), (167), and (168) can be summarized as

H0(z)G0(z) +H0(−z)G0(−z) = 2 (170)

G0(z) =
2

c
z2l+1H1(−z) (171)

G1(z) = −
2

c
z2l+1H0(−z) (172)

• Note that these equations are very similar to the perfect reconstruction equations

seen in Chapter 9.
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Relations between the filter coefficients

• One important difference is that, in the present derivation, the overall delay has been

forced to be zero by the biorthonormality of the wavelet transform.

• In fact, equations (171) and (172) can be obtained by making ∆ = −1
2

in the perfect

reconstruction equations of Chapter 9, corresponding to an overall delay of

(2∆+ 1) = 0.
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Relations between the filter coefficients

• These conditions are obviously valid for purely orthogonal systems, a special case of

biorthogonal ones. As we have seen earlier, for orthogonal wavelets one has that

φ(t) = φ(t) andψ(t) = ψ(t), and then

h0(n) = g∗0(−n) (173)

h1(n) = g∗1(−n) (174)

• In the z-transform domain, the above conditions correspond to

G0(z) = H∗
0((z

−1)∗) (175)

G1(z) = H∗
1((z

−1)∗) (176)

in such a manner that the conditions given by equations (170) to (172) then become

H0(z)H
∗
0((z

−1)∗) +H0(−z)H
∗
0(−(z−1)∗) = 2 (177)

H∗
0((z

−1)∗) = z2l+1H1(−z) (178)
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Relations between the filter coefficients

• Substituting z by e jω, equation (177) can be rewritten as

∣

∣H0(e
jω)

∣

∣

2
+

∣

∣

∣
H0(e

j(ω+π))
∣

∣

∣

2

= 2 (179)

• This is the power complementary condition that arises in the project of CQF filter

banks, as detailed in Chapter 9.

• This is not surprising, since CQF filter banks are orthogonal, and therefore generate

orthogonal wavelet transforms.
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Regularity

• From equations (133)–(136), one can see that the wavelets and scaling functions are

derived from the filter bank coefficients by infinite products.

• Therefore, in order for a wavelet to be defined, these infinite products must converge.

• In other words, a wavelet transform is not necessarily defined for every 2-band

perfect reconstruction filter bank.

• In fact, there are cases in which the envelope of the impulse responses of the

equivalent filters of equations (1)–(4) is not the same for every S.

• The regularity of a wavelet or scaling function is roughly speaking the number of

continuous derivatives that a wavelet has.

• It gives a measure of the extent of convergence of the products in

equations (133)–(136).

112



Diniz, da Silva and Netto

Regularity

• In order to define regularity more formally, we first define the following concept.

DEFINITION

A function f(t) is Lipschitz continuous of order α, with 0 < α ≤ 1, if for all

x, h ∈ R, we have

|f(x+ h) − f(x)| ≤ chα (180)

where c is a constant.

• Using this definition, we have the regularity concept.

DEFINITION

The Hölder regularity of a scaling function φ(t), such that
dNφ(t)

dtN is Lipschitz

continuous of order α, is r = (N+ α), whereN is integer and 0 < α ≤ 1.
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Regularity

• It can be shown that, in order for a scaling functionφ(t) to be regular,H0(z) must

have enough zeros at z = −1.

• In addition, supposing that φ(t) generated byH0(z), as given in equation (133),

has regularity r, if we take

H′
0(z) =

(

1+ z−1

2

)

H0(z) (181)

then φ′(t) generated byH′
0(z) will have regularity (r+ 1).

• The regularity of a wavelet is the same as the regularity of the corresponding scaling

function.
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Regularity

• If φ(t) and φ(t) are regular, the products in equations (133) and (134) must

converge.

• UsingΩ = 0 in equation (129), we have

Φ(0) =
1√
2
H∗
0(1)Φ(0) ⇒ H0(1) =

√
2 (182)

and then, from equation (133), we get

Φ(0) = 1 (183)

• Analogously, usingΩ = 0 in equation (130), we have that

G0(1) =
√
2 (184)

which, when substituted in equation (134), demands that

Φ(0) = 1 (185)
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Regularity

• Another condition can be imposed by substituting equations (182) and (184) in

equation (170) for z = 1, leading to

H0(−1)G0(−1) = 0 (186)

indicating that the productH0(z)G0(z) must have a zero at z = −1.

• In the orthogonal case, since from equation (175),G0(z) = H∗
0((z

−1)∗), it can be

concluded that the simple convergence of the product in equation (133) forces the

presence of one zero at z = −1. On the other hand, in the biorthogonal case,

equation (186) imposes a weaker condition, where only one of eitherH0(z) or

G0(z) must have a zero at z = −1.
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Regularity

• Below, however, we see that an additional constraint forcesH0(z) andG0(z) to

present a zero at z = −1 even in the biorthogonal case.

• As seen in equation (38), a waveletψ(t) must present a bandpass response in such

a way that its Fourier transform atΩ = 0 must be zero, that is Ψ(0) = 0.

• Thus, substitutingΩ = 0 in equations (131) and (132), we have

Ψ(0) =
1√
2
H∗
1(1)Φ(0)= 0 (187)

Ψ(0) =
1√
2
G1(1)Φ(0)= 0 (188)

• SinceΦ(0) = Φ(0) = 1, then bothH1(1) andG1(1) must be zero.
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Regularity

• Summarizing all results, for a regular wavelet, the filters must satisfy the following

extra conditions:

H0(−1) = 0 (189)

G0(−1) = 0 (190)

H0(1) =
√
2 (191)

G0(1) =
√
2 (192)

• Equations (189) and (190) imply that the filtersH0(z),H1(z),G0(z), andG1(z)

have to be normalized in order to generate a wavelet transform.

• Remember that when deriving the wavelet transform from the octave-band filter bank

in Section 6, it was supposed that the lowpass filters had enough zeros at z = −1.

• In fact, what was meant there was that the wavelets should be regular.
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Regularity

• It is interesting to note that the conditionsH0(1) =
√
2 andH0(−1) = 0 imply

thatH0(z) is a lowpass filter to a certain extent, the same being true forG0(z).

• These, together with equations (171) and (172), imply thatH1(z) andG1(z) are

highpass filters.

• Therefore, by referring once again to Figure 2, a wavelet transform can be viewed as

an octave band sub-band analysis/synthesis system, in which the low frequency

band is recursively divided in low and high frequency bands.

• This implies that, in the frequency domain, a wavelet transform is equivalent to the

frequency decomposition depicted in Figure 8
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A practical estimate of regularity

• There are several approaches to estimate the regularity of a scaling function or

wavelet.

• Next we describe how to estimate the regularity of the synthesis wavelet and scaling

function.

• The regularity of the analysis wavelet and scaling function follows by substituting

G0(z) byH0(z).

• Supposing thatG0(z) has at least (N+ 1) zeros at z = −1, the auxiliary function

FN(z) is defined such that

G0(z) = G0(1)

(

1+ z

2

)N

FN(z) (193)
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A practical estimate of regularity

• Let (f
j
N)n be the sequence whose z transform F

j
N(z) is given by the following

expression:

F
j
N(z) =

j∏

k=1

FN(z2
k−1

) (194)

• Define α
j
N such that

2−jα
j

N = max
0≤n≤2j−1

{
∞∑

k=−∞

∣

∣

∣(f
j
N)n+k2j

∣

∣

∣

}

(195)

• Then the Hölder regularity of the synthesis wavelet and scaling function is

r = N+ αN (196)

where αN = lim
j→∞

α
j
N.

• The main advantage of this estimate is that it can be easily implemented in a digital

computer, and it converges reasonably fast.
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Figure 16: Examples of wavelets with different regularities. (a) regularity = −1; (b) regu-

larity = 0; (c) regularity = 1; (d) regularity = 2.
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A practical estimate of regularity

• In Figure 16, we see examples of wavelets with different regularities.

– For example, Figure 16a corresponds to the analysis wavelet generated by the

filter bank described by equations (9.135)–(9.138), and Figure 16b corresponds

to the analysis wavelet generated by the filter bank described by

equations (9.20)–(9.23).

• From these figures, we notice that higher values of regularity correspond to smoother

wavelets, as described above.
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Number of vanishing moments

• The presence of zeros at z = −1 forH0(z) andG0(z) lends an interesting

property to the waveletsψ(t) andψ(t), respectively, regarding their number of

vanishing moments.

• Suppose thatH0(z) hasN zeros at z = −1, or, in an equivalent way,H0(e jω)

hasN zeros atω = π.

• From equation (172), this implies thatG1(z) hasN zeros at z = 1.

• Hence,G1(e jω) hasN zeros atω = 0, and then

dnG1(e jω)

dωn

∣

∣

∣

∣

ω=0

= 0, for n = 0, 1, . . ., (N− 1) (197)

124



Diniz, da Silva and Netto

Number of vanishing moments

• From equation (132), one has

dΨ(Ω)

dΩ
=

1

2
√
2

[

dG1(e j Ω
2 )

dΩ
Φ

(

Ω

2

)

+G1(e j Ω
2 )

dΦ
(

Ω
2

)

dΩ

]

(198)

it then follows that

dnΨ(Ω)

dΩn

∣

∣

∣

∣

Ω=0

= 0, for n = 0, 1, . . ., (N− 1) (199)

• By definition,

Ψ(Ω) =

∫∞

−∞
ψ(t)e− jΩtdt (200)

such that

dnΨ(Ω)

dΩn
=

∫∞

−∞
ψ(t)(− jt)ne− jΩtdt = (− j)n

∫∞

−∞
tnψ(t)e− jΩtdt (201)
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Number of vanishing moments

• Therefore, conditions (199) correspond to
∫∞

−∞
tnψ(t)dt = 0, for n = 0, 1, . . ., (N− 1) (202)

which are equivalent to the synthesis waveletψ(t) havingN vanishing moments.

• Applying a similar reasoning, one can conclude that ifG0(z) hasN zeros at

z = −1, the analysis waveletψ(t) hasN vanishing moments.

• Referring to equation (52), this means that the wavelet coefficients of any polynomial

function of degree less than or equal toN are zero.

• Also, by referring to equation (102), this implies that the coefficients x̌j,n of such a

polynomial are equal to zero, and therefore the polynomial function x(t) is

represented only by the lowpass coefficients xj,n, as given in equation (95).
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Number of vanishing moments

• If a function x(t) is analytic, it can be expanded into a Taylor series, as follows:

x(t) =

∞∑

k=0

1

k!

dkx(t)

dtk

∣

∣

∣

∣

t=t0

(t− t0)
k (203)

• Therefore, if the analysis wavelet hasN vanishing moments, only the terms of the

expansion for k > N will generate non-zero wavelet coefficients.

• If these terms are negligible, the wavelet coefficients x̌j,n will be very small.

• This property can be useful in signal compression applications, because such

functions could be represented by a few significant coefficients xj,n (equation (95)),

and negligible x̌i,n, for i ≤ j (equation (102).
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Examples of wavelets

• Every 2-band perfect reconstruction filter bank withH0(z) having enough zeros at

z = −1, has corresponding analysis and synthesis wavelets and scaling functions.

• For example, the filter bank described by equations (9.11–9.14), normalized such

that the CQF design equation,

H1(z) = −z−NH0(−z
−1)

is satisfied, generates the so-called Haar wavelet.

• It is the only orthogonal wavelet that has linear phase.

• The corresponding scaling function and wavelets are shown in Figure 17.
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Examples of wavelets

Wavelet
Scaling function

–0.5
 +0.5
 –0.5
 +0.5


Figure 17: Haar wavelet and scaling function.

• The wavelets and scaling functions corresponding to the symmetric short-kernel filter

bank, described by equations (9.20)–(9.23), are depicted in Figure 18.
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Figure 18: The “symmetric short-kernel” wavelet transform (equations (9.20–9.23)): (a)

analysis scaling function; (b) analysis wavelet; (c) synthesis scaling function;

(d) synthesis wavelet. 130
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Examples of wavelets

• A good example of an orthogonal wavelet is the Daubechies wavelet whose filters

have length 4.

– They are also an example of CQF banks, seen in Chapter 9. The filters are

H0(z) = +0.482 9629+ 0.836 5163z−1 + 0.224 1439z−2 − 0.129 4095z−3

(204)

H1(z) = −0.129 4095− 0.224 1439z−1 + 0.836 5163z−2 − 0.482 9629z−3

(205)

G0(z) = −0.129 4095+ 0.224 1439z−1 + 0.836 5163z−2 + 0.482 9629z−3

(206)

G1(z) = −0.482 9629+ 0.836 5163z−1 − 0.224 1439z−2 − 0.129 4095z−3

(207)

• Since the wavelet transform is orthogonal, the analysis and synthesis scaling

functions and wavelets are the same.
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Examples of wavelets

• These are depicted in Figure 19.

• It is important to notice that, unlike the biorthogonal wavelets in Figure 18, these

orthogonal wavelets are nonsymmetric, and, therefore, do not have linear phase.
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Figure 19: Daubechies wavelet transform of length 4 (equations (204)–(207)): (a) scaling

function; (b) wavelet.

• Figure 20 shows the basis functions of a Daubechies wavelet of length 4, with

several scales and displacements.

132



Diniz, da Silva and Netto

Figure 20: Basis functions of a Daubechies wavelet transform of length 4, showing several

scales and displacements.
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Examples of wavelets

• When implementing a wavelet transform using the scheme in Figure 2, it is essential

that the delay introduced by each analysis/synthesis stage is compensated.

• Failure to do so may result in the loss of the perfect reconstruction property.
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Wavelet transforms of images

• One application where wavelet transforms are extremely useful is image processing.

• The varying degrees of time and frequency resolutions provided by their basis

functions are well suited to images in general, since images tend to have features of

varying sizes.

– For example, in a picture of a house with a person at the window, the basis

function with a large scale will analyze conveniently the house as a whole.

– The person at the window will be best analyzed at a smaller scale, and the eyes

of the person at an even smaller scale.

• This property of images is illustrated in Figure 21.
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Figure 21: Image showing features of different sizes.
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Wavelet transforms of images

• For applying wavelet transforms to images, a two-dimensional wavelet transform

should be defined.

• This can be done in a variety of ways.

• The simplest form is the separable one, where a two-dimensional wavelet transform

is computed by applying one dimensional wavelet transforms to every row in the

image and then applying one-dimensional wavelet transforms to every column of the

result.

• It can therefore be implemented by using the filter banks, as in

equations (125)–(128), in the horizontal and vertical directions of an image.
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Wavelet transforms of images

• More precisely, the two-dimensional z transforms of the analysis and synthesis filter

banks,Hij(z1, z2) andGij(z1, z2), respectively, are defined as:

H00(z1, z2) = H0(z1)H0(z2) (208)

H01(z1, z2) = H0(z1)H1(z2) (209)

H10(z1, z2) = H1(z1)H0(z2) (210)

H11(z1, z2) = H1(z1)H1(z2) (211)

G00(z1, z2) = G0(z1)G0(z2) (212)

G01(z1, z2) = G0(z1)G1(z2) (213)

G10(z1, z2) = G1(z1)G0(z2) (214)

G11(z1, z2) = G1(z1)G1(z2) (215)

• In this framework, note that the variable z1 corresponds to filtering the rows of the

images, and z2 to filtering its columns.
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Wavelet transforms of images

• If the filter banks above are applied recursively to the sub-band resulting from the

lowpass filtering and subsampling in the horizontal and vertical directions, we get an

octave-band two-dimensional sub-band decomposition.

• Figure 22 below depicts the process of generating a 3-stage wavelet transform, that

is, an octave-band sub-band decomposition.
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Lowpass
horizontal

Lowpass
horizontal

Highpass
horizontal

Highpass
horizontal

Lowpass
Vertical

Highpass
Vertical

Figure 22: Process of generating a 3-stage wavelet transform of an image.
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Wavelet transforms of images

• Therefore, the resulting two-dimensional separable wavelet transform is defined by

one scaling function and three wavelets, for the analysis and synthesis cases.

• The analysis wavelets are then as below:

φ00(x1, x2) = φ(x1)φ(x2) (216)

ψ01(x1, x2) = φ(x1)ψ(x2) (217)

ψ10(x1, x2) = ψ(x1)φ(x2) (218)

ψ11(x1, x2) = ψ(x1)ψ(x2) (219)

where x1 corresponds to the horizontal direction and x2 to vertical direction.
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Wavelet transforms of images

• Similarly, the synthesis wavelets are:

φ00(x1, x2) = φ(x1)φ(x2) (220)

ψ01(x1, x2) = φ(x1)ψ(x2) (221)

ψ10(x1, x2) = ψ(x1)φ(x2) (222)

ψ11(x1, x2) = ψ(x1)ψ(x2) (223)

• The scaling functionsφ00(x1, x2) and φ00(x1, x2) are impulse responses of

two-dimensional filters that are lowpass both in the vertical and horizontal directions.

• The waveletsψ01(x1, x2) andψ01(x1, x2) are impulse responses of

two-dimensional filters that are lowpass in the horizontal direction and highpass in

the vertical direction.

• This makes the corresponding wavelet coefficients to be mainly related to image

information in the horizontal direction.
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Wavelet transforms of images

• Similarly, the coefficients corresponding to the waveletsψ10(x1, x2) and

ψ10(x1, x2) are related to image information in the vertical direction, and the

coefficients corresponding to the waveletsψ11(x1, x2) andψ11(x1, x2) are

related to image information in the diagonal direction.

• The frequency decomposition obtained through such a wavelet transform is

schematically represented in Figure 23, whereHi corresponds to coefficients in the

vertical direction and resolution i (waveletψ01(
x1

2i ,
x2

2i )).

• Analogously, Vi (waveletψ10
(

x1

2i ,
x2

2i

)

) andDi (waveletψ11
(

x1

2i ,
x2

2i

)

)

correspond to the horizontal and diagonal directions, respectively.
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V1

V2

V3

D3

D2

D1H1

H2

H3

ψ10(x/2,y/2)

ψ10(x/4,y/4)
ψ11(x/8,y/8)

ψ10 (x/8,y/8)

ψ01(x/8,y/8)

ψ11(x/4,y/4)ψ01(x/4,y/4)

ψ11(x/2,y/2)ψ01(x/2,y/2)

Ω y

Ωx

Figure 23: Frequency decomposition obtained with a two-dimensional separable wavelet

transform.
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Wavelet transforms of images

• The same reasoning can be extended to multiple dimensions, that is, a

one-dimensional wavelet transform can be applied in each dimension, generating

multidimensional separable wavelet transforms.

• The directionality of the sub-bands of a wavelet transform is represented

schematically in Figure 22, where the horizontal, vertical and diagonal bands can be

clearly identified.

• The original octagon image and its wavelet transform are shown in Figure 24. Note

that, besides the predominantly horizontal, vertical, and diagonal orientations, the

sub-bands of similar orientations tend to be similar to each other.
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(a) (b)

Figure 24: (a) Original octagon image; (b) corresponding wavelet transform.

146



Diniz, da Silva and Netto

Wavelet transforms of images

• Figure 25 shows the wavelet transform of the image shown in Figure 21.

– On the first plot, each scale has been normalized such that it occupies the full

dynamic range.

– On the second plot, its absolute value is displayed in logarithmic scale.

• We can note that the small scales (high frequency bands) tend to represent details

more well localized in space, while the large scales (low frequency bands) tend to

represent only larger objects, and therefore with worse localization in space.

• We can also note the directionality of the bands, as well as the similarity among the

bands of similar orientations.

• In addition, by looking at the bands in logarithmic scale in Figure 25b, we can see

that the wavelet transform is quite effective in concentrating the energy of an image

in a small number of coefficients.

• This is one of the main reasons why it has been successfully used in image

compression schemes.
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Figure 25:
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Figure 25
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Wavelet transforms of finite-length signals

• Often the signals that one wants to filter have finite length.

• One example has been given on Section 135, where we have computed wavelet

transforms of images, that are, by nature, finite-length.

• One problem that arises when one considers finite-length signals is that a length-N

signal, when filtered by a length-K impulse response FIR filter, yields an output

signal of length (N+ K− 1).

• As seen above, in wavelet transforms, a 2-band filter bank is recursively applied to

the lowpass band of the previous stage.

• Therefore, the lengths of the signals increase for each decomposition stage.

• As a consequence, the number of samples of the wavelet transform tends to be

larger than the number of samples of the signal.
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Wavelet transforms of finite-length signals

• This is particularly inconvenient when one uses wavelet transforms in order to

generate compact representations, as is the case, for example, of the JPEG2000

standard for image compression.

• Therefore, a way to overcome this problem of increased number of samples in the

wavelet transform is highly desirable.

• Here we analyze signal extensions as a way to compute wavelet transforms that

have as much coefficients as signal samples.
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Periodic signal extension

• The most straightforward way to avoid the increase in a signal length when it is

filtered is to consider that it is periodic.

• This is so because, when one filters a periodic signal of periodN, the filtered signal

also has periodN. Hence, for a periodic signal one needs to know the results for just

one period, and, in this way, the effective signal length is not increased after filtering.

• The periodic extension of a length-N signal x(n) is

x′(n) = x(n mod N) (224)

• Such a periodic extension is illustrated at the top of Figure 26.
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m = 0

m = N
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− 1
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Periodic extension

Even polyphase component Odd polyphase component

n = 0

n = N − 1

n = 0

n = N − 1 n = 0 n = N − 1

Upsampled even polyphase component Upsampled odd polyphase component

Figure 26:
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Periodic signal extension

• When computing the wavelet transform one performs subsampling of each band by a

factor of two.

• Therefore, for such a scheme to work, it is important that, besides the filtered signal

being periodic with periodN, its subsampled versions should also be periodic.

• In other words, its even and odd polyphase components

e′0(l) = x′(2l) (225)

e′1(l) = x′(2l+ 1) (226)

respectively, must be also periodic with periodN. From equation (224), ifN is even,

we have that,

e′0

(

l+
N

2

)

= x′(2l+N) = x′(2l) = e′0 (l) (227)

e′1

(

l+
N

2

)

= x′(2l+N+ 1) = x′(2l+ 1) = e′1 (l) (228)

and thus we conclude that the polyphase components are periodic with period N
2

.
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Periodic signal extension

• Since a sub-band is a filtered polyphase component, then the sub-bands are also

periodic with period N
2

, and thus the total number of samples in the two sub-bands is

also equal toN.

• This is illustrated in the second row of Figure 26.

• Note that, if the number of samplesN is odd, then the polyphase components are

only periodic with periodN, and thus the total number of samples in the sub-bands

is 2N.

• This is inefficient, and is one of the main reasons why periodic extensions of

odd-length signals are seldom used.

• Because of this, we restrict ourselves to extensions of even-length signals.

• In the synthesis part of the process, the sub-bands are upsampled and filtered.

• As can be seen in at the bottom of Figure 26, the upsampled polyphase components

are also periodic.
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Periodic signal extension

• Therefore, no matter which component is chosen during subsampling, the signal

resulting from synthesis is also periodic with periodN, having onlyN independent

samples.

• One drawback of the periodic extension can be understood by looking again at the

top of Figure 26, that shows the original signal extended periodically. We see that the

periodic extension will in general have discontinuities around n = 0 and

n = N− 1 that are not part of the original signal.

• These discontinuities tend to appear with large energy in the detail bands of its

wavelet transform (see Experiment 10.1), which is quite undesirable in many

applications.
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Periodic signal extension

• For example, as can be seen in Figure 25, the wavelet transform has the energy

concentrated in a relatively small number of coefficients, yielding compact

representations.

• However, if one uses periodic extensions, the discontinuities introduced will appear

as high energy coefficients in the details bands, thus diminishing the energy

compaction properties of the wavelet transform.

• Therefore, whenever possible, it is preferable to use symmetric extensions.

• Such extensions will be dealt with next.
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Symmetric signal extensions

• A commonly used form of signal extension is the symmetric extension.

• It avoids the discontinuities that arise when performing a periodic extension.

• Discrete-time signals have two types of symmetry: whole-sample symmetry and

half-sample symmetry.

– In whole-sample symmetry, the axis of symmetry intersects a sample, while in

half-sample symmetry it falls between samples.
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Symmetric signal extensions

• Mathematically, a signal x(n) is whole-sample symmetric around n = K if

x(K− n) = x(K+ n), for all n ∈ Z (229)

• On the other hand, a signal is half-sample symmetric around “sample” K− 1
2

, with

K ∈ Z, if

x(K− 1− n) = x(K+ n), for all n ∈ Z (230)

• Examples of the whole- and half-sample symmetries are depicted in Figures 27a and

27b, respectively.
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Symmetric signal extensions

n = 0

n = N − 1

n = 0

n = N − 1

(a) (b)

Figure 27: (a) Whole-sample symmetry; (b) half-sample symmetry.
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Symmetric signal extensions

• From equation (229), if a signal x(n) of lengthN is extended symmetrically with

whole-sample symmetry around both n = 0 and n = N− 1, the resulting signal

x′(n) is a periodic signal with period 2N− 2 that is given by

x′(n) =






x(n), 0 ≤ n ≤ N− 1

x(−n), −N+ 1 ≤ n ≤ 0
x(2N− 2− n), N− 1 ≤ n ≤ 2N− 2

(231)

• Likewise, from equation (230), if a signal x(n) of lengthN is extended symmetrically

with half-sample symmetry around both n = 0 and n = N− 1, the resulting signal

x′(n) is a periodic signal with period 2N such that

x′(n) =






x(n), 0 ≤ n ≤ N− 1

x(−n− 1), −N ≤ n ≤ −1

x(2N− 1− n), N ≤ n ≤ 2N− 1

(232)
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Symmetric signal extensions

• If the jth polyphase components of x(n) and x′(n) are ej(l) and e′j(l),

respectively, we have, from equation (231), that for whole-sample symmetry (as in

the periodic case, we restrict ourselves to the case thatN is even)

e′0(l) =






x(2l) = e0(l), 0 ≤ l ≤ N
2

− 1

x(−2l) = e0(−l), −N
2

+ 1 ≤ l ≤ 0
x(2N− 2− n) = e0(N− 1− l), N

2
− 1 ≤ l ≤ N− 1

(233)

e′1(l) =






x(2l+ 1) = e1(l), 0 ≤ l ≤ N
2

− 1

x(−2l− 1) = e1(−l), −N
2
≤ l ≤ −1

x(2N− 2l − 3) = e1(N− 2− l), N
2

− 1 ≤ l ≤ N− 2

(234)
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Symmetric signal extensions

• Therefore, the above equations, with the help of equations (229)–(232), imply that for

signals what are extended with whole-sample symmetry, the even polyphase

component, e′0(l), is whole-sample symmetric around zero and half-sample

symmetric around N
2

− 1.

• Likewise, the odd polyphase component, e′1(l), is half-sample symmetric around

zero and whole-sample symmetric around N
2

− 1.

• This situation is illustrated in Figure 28.
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Extended signal: whole sample symmetry
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Figure 28:
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Symmetric signal extensions

• On the other hand, we have, from equation (232), that for half-sample symmetry

(again,N is restricted to be even),

e′0(l) =






x(2l) = e0(l), 0 ≤ l ≤ N
2

− 1

x(−2l− 1) = e1(−l− 1), −N
2
≤ l ≤ −1

x(2N− 1− n) = e1(N− 1− l), N
2
≤ l ≤ N− 1

(235)

e′1(l) =






x(2l+ 1) = e1(l), 0 ≤ l ≤ N
2

− 1

x(−2l− 2) = e0(−l− 1), −N
2
≤ l ≤ −1

x(2N− 2l− 2) = e0(N− 1− l), N
2
≤ l ≤ N− 1

(236)

• Therefore, the above equations imply that, for signals what are extended with

half-sample symmetry, neither of its polyphase components is symmetric, as

illustrated in Figure 29.
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Extended signal: half sample symmetry

Even polyphase component Odd polyphase component

n = 0

n = N − 1
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m = N

2
− 1

Figure 29:
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Symmetric signal extensions

• In order for a symmetric extension to be usable for the computation of a wavelet

transform, three conditions must be satisfied:

(a) The signal must remain symmetric after the application of the analysis filter.

(b) The signal filtered by the analysis filters must remain symmetric after subsampling

by a factor of two.

(c) The upsampled signal must be symmetric before application of the synthesis

filters.

• Condition a above demands that the analysis filters have linear phase, since they are

the only ones that do not destroy the symmetry of signals input to it.

• As seen earlier, linear-phase filters can have either integer delays (even order) or an

integer plus 1
2

delay (odd order).

• It is important to notice that a signal with whole-sample symmetry, when delayed by

an integer number of samples, remains whole-sample symmetric.
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Symmetric signal extensions

• On the other hand, a signal with whole-sample symmetry becomes half-sample

symmetric when delayed by half sample.

• Likewise, a signal with half-sample symmetry becomes whole-sample symmetric

when delayed by half sample.

• Condition b demands that the output signals for the analysis filters have to be

whole-sample symmetric around both zero andN − 1.

• This is so because, as seen above and illustrated in Figures 28 and 29, the

polyphase components of half-sample symmetric signals are not symmetric.
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Symmetric signal extensions

• Therefore, since the output of an analysis filter must be whole-sample symmetric, we

have two cases, depending on the order of the analysis filters:

– If its delay is integer (even order), then the signal must be extended with

whole-sample symmetry;

– If its delay is an integer plus 1
2

(odd order), then the signal must be extended with

half-sample symmetry.

• Condition c is automatically satisfied provided that the subsampled signals input to

the interpolators are symmetric.

• This is illustrated in Figure 30.
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Symmetric signal extensions

n = 0

n = N − 1 n = 0 n = N − 1

Upsampled even polyphase component Upsampled odd polyphase component

Figure 30:

• Note that for both polyphase components the symmetry of their interpolated versions

is whole-sample.
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Symmetric signal extensions

• From the design restrictions for the 2-band linear-phase filter banks, as presented

earlier, we have that useful 2-band linear-phase filter banks should have either all

filters with even orders or all filters with odd orders.

• Table 1 summarizes how the symmetric extensions in each stage of the 2-band filter

bank process should be in the two cases. Note that once again we restrict ourselves

to the case when the signal lengthN is even.
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Symmetric signal extensions

Table 1: Types of symmetric extension in the two-band analysis and synthesis process for

both even order and odd order filter banks.

Stage of the filtering Symmetry

process Even order Odd order

Before analysis filter whole (0) / whole (N− 1) half (0) / half (N− 1)

After analysis filter whole (0) / whole (N− 1) whole (0) / whole (N− 1)

Even polyphase component whole (0) / half (N
2

− 1) whole (0) / half (N
2

− 1)

Odd polyphase component half (0) / whole (N
2

− 1) half (0) / whole (N
2

− 1)

After upsampling whole (0) / whole (N− 1) whole (0) / whole (N− 1)

After synthesis whole (0) / whole (N− 1) half (0) / half (N− 1)
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Symmetric signal extensions

• It is important to note that in wavelet transforms we have to apply a 2-band filter bank

recursively to the lowpass bands.

• In the even-order case, for instance, if we take the even polyphase component as the

signal after subsampling, it is whole-sample symmetric around zero and half-sample

symmetric around N
2

− 1.

• Although this is the signal that we must upsample to perform the synthesis stage, in

order for us to further decompose it we have to generate a slightly different signal.

• For example, if we are going to use an even-order filter bank for the next stage, we

must first generate from it a signal that is whole-sample symmetric at both ends.

• We do so by first taking its samples fromm = 0 tom = N
2

− 1 and extending

them using whole-sample symmetry at both ends.
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Do-it-yourself: Wavelet transforms

Experiment 10.1:

• Here we see how wavelets can be used to analyze nonstationary signals.

• We start by generating a signal composed of a sequence of five sinusoids of different

frequencies, corrupted by spikes.

– The beginning of each sinusoid is specified in pos_sin variable and the

corresponding period is defined in T_sin .

– For the spikes, their amplitude and time positions are as given by the amp_imp

and pos_imp variables, respectively.
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Do-it-yourself: Wavelet transforms

• The MATLAB code to generate it is as follows:

N = 2000; t = [0:N];

x = zeros(size(t));

pos_sin = [0 600 1080 1380 1680 2000];

T_sin = [100 40 20 10 5];

for i = 1:5,

m = 1 + pos_sin(i); n = pos_sin(i+1);

x(m:n) = sin(2 * pi * t(1:n-m+1)/T_sin(i));

end;

amp_imp = [3 -2 2 2.5 -2.5];

pos_imp = [200 372 1324 1343 1802];

T_imp = [5 25 5 5 5 ];

for i = 1:5,

m = 1 + pos_imp(i); n = 1 + pos_imp(i)+fix(T_imp(i)/2);

x(m:n) = x(m:n) +

amp_imp(i) * sin(2 * pi * t(1:n-m+1)/T_imp(i)).ˆ2;

end;
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Do-it-yourself: Wavelet transforms

• The resulting signal x has (N+1) =2001 samples, and the sinusoids have, in

sequence, periods of 100, 40, 20, 10 and 5 samples.

• The spikes consist of one period of a sine-squared waveform.

• Four of them have duration of 3 samples, and another one (the second from left to

right) has a period of 23 samples.

• The third and fourth spikes are very close, only 19 samples apart. The signal is

depicted in Figure 31.
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Do-it-yourself: Wavelet transforms

Figure 31: Signal for Experiment 10.1.
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Do-it-yourself: Wavelet transforms

• In this experiment, we decompose the signals with the wavelet bior4.4 , which is

the biorthogonal linear-phase wavelet used in the JPEG2000 standard for image

compression, also referred to as the 9-7 wavelet.

• The coefficients of the analysis and synthesis filters are shown in Table 2.
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Do-it-yourself: Wavelet transforms

Table 2: Coefficients of the analysis and synthesis 9-7 (bior4.4 ) wavelet.

h0(0) = 0.0378 h1(0) = −0.0645 g0(0) = −0.0645 g1(0) = −0.0378

h0(1) = −0.0238 h1(1) = 0.0407 g0(1) = −0.0407 g1(1) = −0.0238

h0(2) = −0.1106 h1(2) = 0.4181 g0(2) = 0.4181 g1(2) = 0.1106

h0(3) = 0.3774 h1(3) = −0.7885 g0(3) = 0.7885 g1(3) = 0.3774

h0(4) = 0.8527 h1(4) = 0.4181 g0(4) = 0.4181 g1(4) = −0.8527

h0(5) = 0.3774 h1(5) = 0.0407 g0(5) = −0.0407 g1(5) = 0.3774

h0(6) = −0.1106 h1(6) = −0.0645 g0(6) = −0.0645 g1(6) = 0.1106

h0(7) = −0.0238 g1(7) = −0.0238

h0(8) = 0.0378 g1(8) = −0.0378
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Do-it-yourself: Wavelet transforms

• In order to load the analysis and synthesis filters we use the MATLAB command

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(’bior4.4’);

and compute the 5-stage wavelet transform using

[C,S] = wavedec(x,5,Lo_D,Hi_D);

• Following this approach, vector Cstores the wavelet coefficients and vector S stores

the lengths of the sub-bands. We compute the detail sub-bands using the command

detcoef , and the approximation coefficients (lowpass bands for each scale) using

the command appcoef , as follows:
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Do-it-yourself: Wavelet transforms

D1 = detcoef(C,S,1);

D2 = detcoef(C,S,2);

D3 = detcoef(C,S,3);

D4 = detcoef(C,S,4);

D5 = detcoef(C,S,5);

A1 = appcoef(C,S,Lo_R,Hi_R,1);

A2 = appcoef(C,S,Lo_R,Hi_R,2);

A3 = appcoef(C,S,Lo_R,Hi_R,3);

A4 = appcoef(C,S,Lo_R,Hi_R,4);

A5 = appcoef(C,S,Lo_R,Hi_R,5);

• The plots of the detail bands are shown in Figure 32, and the plots of the

approximation bands are shown in Figure 33.

• Note that the sample scale has been normalized in order to make the comparison

easier along the time axis.
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Figure 32: Detail bands for the signal from Experiment 10.1. The top plot corresponds

to the original signal, and the details bands are shown, from top to bottom, in

increasing scale (decreasing frequency) order.
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Figure 33: Approximation bands for the signal from Experiment 10.1. The top plot corre-

sponds to the original signal, and the approximation bands are shown, from top

to bottom, in increasing scale (decreasing frequency) order.
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Do-it-yourself: Wavelet transforms

• By observing Figure 32, we can see that the highest frequency detail band (second

plot from top) contains essentially the spikes of 3 samples duration.

• The wider spike does not appear in this band, since its resolution is not high enough

for that.

• Note that, although some of the 5 sample period sinusoid is still present, by

performing a simple thresholding in this band, one can easily have a signal

composed only of these short duration spikes, and their locations can be easily

determined.

• In addition, although there are traces of these spikes up to the fourth detail band, the

two spikes that are closer together can only be distinguished up to the second band.

• Also, the wider spike can only be detected from the third band onwards. From these

observations, we can see that the wavelet transform is good to detect transient

phenomena.
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Do-it-yourself: Wavelet transforms

• A good way to perform this is to look for correlation across bands.

• All the spikes in the signal tend to appear at least in three consecutive detail bands.

• Note also that each band shows preferentially one sinusoid, highlighting the

bandpass nature of the detail bands.

• Figure 33 shows the approximation bands.

– There, we can see the decreasing levels of details present in these bands as the

scale increases (frequency decreases).

• This highlights the lowpass nature of these bands.
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Do-it-yourself: Wavelet transforms

• The reader is encouraged to try different wavelets with this signal, and also different

number of decomposition stages.

• The MATLAB Wavelet toolbox has several other signals that can be used for

processing.

• They are usually under the directory wavedemo in the wavelet toolbox.

• Using these signals, the reader can play around with the wavelet transforms.

• This will help develop a good feeling of this important signal processing tool.
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Do-it-yourself: Wavelet transforms

Experiment 10.2:

• In this experiment, we investigate the use of wavelet analysis to perform denoising of

a given signal.

• We use as example the signal leleccum from the MATLAB wavelet toolbox. It can

be loaded with the command

load leleccum;

which creates a variable leleccum of length 4320, as depicted in Figure 34.
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Do-it-yourself: Wavelet transforms
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Figure 34: Signal for Experiment 10.
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Do-it-yourself: Wavelet transforms

• This signal is corrupted by noise.

• Wavelet transforms can be successfully used to perform signal denoising.

• Since noise is usually wideband, the mere lowpass filtering of the corrupted signal is

not the most effective way of reducing the noise.

• Let us start by computing the 5 stage wavelet transform of the signal, using the

Daubechies 4 orthogonal filter bank.

• Its analysis and synthesis filters are shown in Table 3.

189



Diniz, da Silva and Netto

Do-it-yourself: Wavelet transforms

Table 3: Coefficients of the analysis and synthesis Daubechies 4 wavelet (db4 ).

h0(0) = −0.0106 h1(0) = −0.2304 g0(0) = 0.2304 g1(0) = −0.0106

h0(1) = 0.0329 h1(1) = 0.7148 g0(1) = 0.7148 g1(1) = −0.0329

h0(2) = 0.0308 h1(2) = −0.6309 g0(2) = 0.6309 g1(2) = 0.0308

h0(3) = −0.1870 h1(3) = −0.0280 g0(3) = −0.0280 g1(3) = 0.1870

h0(4) = −0.0280 h1(4) = 0.1870 g0(4) = −0.1870 g1(4) = −0.0280

h0(5) = 0.6309 h1(5) = 0.0308 g0(5) = 0.0308 g1(5) = −0.6309

h0(6) = 0.7148 h1(6) = −0.0329 g0(6) = 0.0329 g1(6) = 0.7148

h0(7) = 0.2304 h1(7) = −0.0106 g0(7) = −0.0106 g1(7) = −0.2304
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Do-it-yourself: Wavelet transforms

• In order to load the analysis and synthesis filters we use the MATLAB command

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(’db4’);

and compute the 5-stage wavelet transform using

[C,S] = wavedec(leleccum,5,Lo_D,Hi_D);

• The detail bands as well as the fifth level approximation band can be computed using

the following commands:

A5 = appcoef(C,S,Lo_R,Hi_R,5);

D1 = detcoef(C,S,1);

D2 = detcoef(C,S,2);

D3 = detcoef(C,S,3);

D4 = detcoef(C,S,4);

D5 = detcoef(C,S,5);

• The results from these commands are plotted on the left-hand side of Figure 35, with

the scale increasing from top to bottom.
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Do-it-yourself: Wavelet transforms

• The bottommost plot corresponds to the approximation band of the fifth stage.

• By looking at these plots, one can see that if we apply a magnitude threshold of

around 20, then most of the noisy coefficients can be made null.

• We can perform this using the commands

Ct = zeros(size(C));

Ct(find(abs(C)>20)) = C(find(abs(C)>20));

xt = waverec(Ct,S,Lo_R,Hi_R);

• The reconstructed bands can be computed by

At5 = appcoef(Ct,S,Lo_R,Hi_R,5);

Dt1 = detcoef(Ct,S,1);

Dt2 = detcoef(Ct,S,2);

Dt3 = detcoef(Ct,S,3);

Dt4 = detcoef(Ct,S,4);

Dt5 = detcoef(Ct,S,5);
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Figure 35: Fifth stage approximation band and detail bands for the signals from Experi-

ment 10.2. Details bands are shown, from top to bottom, in increasing scale

order. The bottommost plot corresponds to the approximation band. Left: orig-

inal signal; right: denoised signal.
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Do-it-yourself: Wavelet transforms

• The right-hand side of Figure 35 shows the sub-bands after applying the threshold.

• Figure 36 shows the denoised signal.
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Figure 36: Denoised signal from Experiment 10.2.
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Do-it-yourself: Wavelet transforms

• One can see that the wavelet is able to perform effective denoising.

• Note that while the thresholding process sets to zero most noisy coefficients, it can

also set to zero some signal coefficients, which may lead to a quality loss in the

reconstructed signal.

• Therefore, in wavelet denoising it is an important matter to find a threshold that gives

a good trade-off between noise elimination and quality of the reconstructed signal.

• The reader is encouraged to further explore this Experiment by trying out different

threshold values, as well as different wavelets.

• In the MATLAB wavelet toolbox there are several signals corrupted with noise.

Examples are the signals cnoislop, ex1nfix, ex2nfix, ex3nfix,

heavysin, mishmash, nbumpr1, nelec, ndoppr1,

noischir, wnoislop , and wntrsin , among others. The reader is also

encouraged to experiment with them.
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