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Introduction

• This chapter deals with the design methods in which a desired frequency response is

approximated by a transfer function consisting of a ratio of polynomials. In general,

this type of transfer function yields an impulse response of infinite duration.

Therefore, the systems approximated in this chapter are commonly referred to as

infinite-duration impulse-response (IIR) filters.

• In general, IIR filters are able to approximate a prescribed frequency response with

fewer multiplications than FIR filters. For that matter, IIR filters can be more suitable

for some practical applications, especially those ones involving real-time signal

processing.
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Introduction

• In Section 6.2, we study the classical methods of analog filter approximation, namely

the Butterworth, Chebyshev, and elliptic approximations. These methods are the

most widely used for approximations meeting prescribed magnitude specifications.

They originated in the continuous-time domain and their use in the discrete-time

domain requires an appropriate transformation.

• We then address, in Section 6.3, two approaches that transform a continuous-time

transfer function into a discrete-time transfer function, the impulse-invariance and

bilinear transformation methods.

• Section 6.4 deals with frequency transformation methods in the discrete-time

domain. These methods allow the mapping of a given filter type to another, for

example the transformation of a given lowpass into a desired bandpass filter.
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Introduction

• In applications where magnitude and phase specifications are imposed, we can

approximate the desired magnitude specifications by one of the classical transfer

functions and design a phase equalizer to meet the phase specifications. As an

alternative, we can carry out the design entirely in the digital domain, by using

optimization methods to design transfer functions satisfying the magnitude and

phase specifications simultaneously. Section 6.5 covers a procedure to approximate

a given frequency response iteratively, employing a nonlinear optimization algorithm.

• In Section 6.6, we address the situations where an IIR digital filter must present an

impulse response similar to a given discrete-time sequence. This problem is

commonly known as time-domain approximation.

• Finally, we present some hands-on experiments with IIR filters in the Do-it-yourself

section.
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Analog filter approximations

• This section covers the classical approximations for normalized-lowpass analog

filters.

• Normalized filters are derived from standard ones through a simple variable scaling.

The original filter is then determined by reversing the frequency transformation

previously applied.

• In this section, to avoid any source of confusion, a normalized analog frequency is

always denoted by a primed variable such as Ω′.

• The other types of filters, such as the denormalized-lowpass, highpass, bandstop,

and bandpass filters, are obtained from the normalized-lowpass prototype through

frequency transformations, which are also addressed in this section.
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Analog filter specification

• An important step in the design of an analog filter is the definition of the desired

magnitude and/or phase specifications that should be satisfied by the filter frequency

response.

• Usually, a classical analog filter is specified through a region of the Ω × H( jΩ)

plane where its frequency response must be contained.

• This is illustrated in Figure 1 for a lowpass filter.

• In this figure, Ωp and Ωr denote the passband and stopband edge frequencies,

respectively.

• The frequency region between Ωp and Ωr is the so-called transition band where no

specification is provided.

• In addition, the maximum ripples in the passband and the stopband are denoted by

δp and δr, respectively.
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Analog filter specification
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Figure 1: Typical gain specifications of a lowpass filter.

9



Diniz, da Silva and Netto

Analog filter specification

• Alternatively, the specifications can be given in decibels (dB), as shown in Figure 2a,

in the case of gain specifications.

• Figure 2b shows the same filter specified in terms of attenuation instead of gain.

• The relationships between the parameters of these three representations are given

in Table 1.

• For historical reasons, in this chapter, we work with the attenuation specifications in

dB. Using the relationships given in Table 1, readers should be able to transform any

other format into the set of parameters that characterize the attenuation in dB.
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Analog filter specification
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Figure 2: Typical specifications of a lowpass filter in dB: (a) gain; (b) attenuation.
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Analog filter specification

Table 1: Relationships among the parameters for the gain, gain in dB, and attenuation in

dB specification formats.

Ripple Gain [dB] Attenuation [dB]

Passband δp Gp = 20 log10(1 − δp) Ap = −Gp

Stopband δr Gr = 20 log10 δr Ar = −Gr
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Butterworth approximation

• Usually, the attenuation of an all-pole normalized-lowpass filter (that is, with

Ω′
p = 1), is expressed by an equation of the following type:

|A( jΩ′)|
2

= 1 + |E( jΩ′)|
2

(1)

where A(s′) is the desired attenuation function and E(s′) is a polynomial which has

low magnitude at low frequencies and large magnitude at high frequencies.

• The Butterworth approximation is characterized by a maximally flat magnitude

response at Ω′ = 0.

• In order to achieve this property, we choose E( jΩ′) as

E( jΩ′) = ǫ ( jΩ′)
n

(2)

where ǫ is a constant and n is the filter order.
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Butterworth approximation

• Equation (1) then becomes

|A( jΩ′)|
2

= 1 + ǫ2 (Ω′)
2n

(3)

resulting in the fact that the first (2n − 1) derivatives of the attenuation function at

Ω′ = 0 are equal to zero, as desired in the Butterworth approximation.

• The parameter ǫ depends on the passband maximum attenuation Ap.

• In that manner, since

AdB(Ω
′) = 20 log10 |A ( jΩ′)| = 10 log10

[

1 + ǫ2 (Ω′)
2n
]

(4)

at Ω′ = Ω′
p =1, we must have that

Ap = AdB(1) = 10 log10

(

1 + ǫ2
)

(5)

and then

ǫ =
√

100.1Ap − 1 (6)
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Butterworth approximation

• To determine the filter order required to meet the attenuation specification, Ar, in the

stopband, at Ω′ = Ω′
r we must have that

Ar = AdB(Ω
′
r) = 10 log10

[

1 + ǫ2 (Ω′
r)

2n
]

(7)

• Therefore, n should be smallest integer such that

n ≥
log10

(

100.1Ar −1
ǫ2

)

2 log10 Ω′
r

(8)

with ǫ as in equation (6).

• With n and ǫ available, one has to find the transfer function A(s′). We can factor

|A( jΩ′)|2 in equation (3) as

|A( jΩ′)|2 = A(− jΩ′)A( jΩ′) = 1 + ǫ2Ω′2n
= 1 + ǫ2[−( jΩ′)2]n (9)
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Butterworth approximation

• Using the analytical continuation for complex variables, that is, replacing jΩ′ by s′,

we have that

A(s′)A(−s′) = 1 + ǫ2(−s′
2
)n (10)

• In order to determine A(s′), we must then find the roots of [1 + ǫ2(−s′
2
)n] and

then choose which ones belong to A(s′) and which ones belong to A(−s′).

• The solutions of

1 + ǫ2(−s′
2
)n = 0 (11)

are

si = ǫ− 1
n e j π

2
( 2i+n+1

n
) (12)

with i = 1, 2, . . ., 2n.
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Butterworth approximation

• These 2n roots are located at equally spaced positions on the circumference of

radius ǫ− 1
n centered at the origin of the s plane.

• In order to obtain a stable filter, we choose the n roots pi on the left-hand side of the

s plane to belong to the polynomial A(s′).

• As a result, the normalized transfer function is obtained as

H′(s′) =
H′

0

A(s′)
=

H′
0

n∏

i=1

(s′ − pi)

(13)

where H′
0 is chosen so that |H′( j0)| = 1, and thus

H′
0 =

n∏

i=1

(−pi) (14)
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Butterworth approximation

• An important characteristic of the Butterworth approximation is that its attenuation

increases monotonically with frequency.

• In addition, it increases very slowly in the passband and quickly in the stopband.

• In the Butterworth approximation, if one wants to increase the attenuation one has to

increase the filter order.

• However, if one sacrifices the monotonicity of the attenuation, a higher attenuation in

the stopband can be obtained for the same filter order.

• A classic example of one such approximation is the Chebyshev approximation.
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Chebyshev approximation

• The attenuation function of a normalized-lowpass Chebyshev filter is characterized

by

|A( jΩ′)|
2

= 1 + ǫ2C2
n(Ω′) (15)

where Cn(Ω′) is a Chebyshev function of order n, which can be written in its

trigonometric form as

Cn(Ω′) =






cos(n cos−1 Ω′), 0 ≤ Ω′ ≤ 1

cosh(n cosh−1 Ω′), Ω′ > 1
(16)

• These functions Cn(Ω′) have the following properties





0 ≤ C2
n(Ω′) ≤ 1, 0 ≤ Ω′ ≤ 1

C2
n(Ω′) > 1, Ω′ > 1

(17)
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Chebyshev approximation

• As a consequence, for the attenuation function defined in equation (15), the

passband is placed in the frequency range 0 ≤ Ω′ ≤ Ω′
p = 1, the rejection band

is in the range Ω′ ≥ Ω′
r > 1, as desired, and the parameter ǫ once again

determines the maximum passband ripple.

• The Chebyshev functions defined above can also be expressed in polynomial form as

Cn+1(Ω′) + Cn−1(Ω′) = cos[(n + 1) cos−1 Ω′] + cos[(n − 1) cos−1 Ω′]

= 2 cos(cos−1 Ω′) cos(n cos−1 Ω′)

= 2Ω′Cn(Ω′) (18)

with C0(Ω′) = 1 and C1(Ω′) = Ω′.
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Chebyshev approximation

• We can then generate higher order Chebyshev polynomials through the recursive

relation above, that is

C2(Ω′) = 2Ω′2 − 1

C3(Ω′) = 4Ω′3 − 3Ω′

...

Cn+1(Ω′) = 2Ω′Cn(Ω′) − Cn−1(Ω′)






(19)

• Figure 3 depicts the Chebyshev functions for several values of n.
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Chebyshev approximation
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Figure 3: Chebyshev functions for n = 1, 2, . . ., 5.
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Chebyshev approximation

• Since Cn(Ω′) = 1 at Ω′ = Ω′
p =1, we have that

Ap = AdB(1) = 10 log10(1 + ǫ2) (20)

and then

ǫ =
√

100.1Ap − 1 (21)

• From equations (15) and (16), when Ω′ = Ω′
r, we find

Ar = AdB(Ω
′
r) = 10 log10

[

1 + ǫ2 cosh2
(

n cosh−1 Ω′
r

)]

(22)

and thus the order of the normalized-lowpass Chebyshev filter that satisfies the

required stopband attenuation is the smallest integer number that satisfies

n ≥
cosh−1

√

100.1Ar − 1

ǫ2

cosh−1 Ω′
r

(23)
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Chebyshev approximation

• Similarly to the Butterworth case (see equation (9)), we can now continue the

approximation process by evaluating the zeros of A(s′)A(−s′), with s′ = jΩ′.

• Since zero attenuation can never occur in the stopband, these zeros are in the

passband region 0 ≤ Ω′ ≤ 1, and thus, from equation (16), we have

cos

(

n cos−1 s′

j

)

= ± j

ǫ
(24)

• The above equation can be solved for s′ by defining a complex variable p as

p = x1 + jx2 = cos−1

(

s′

j

)

(25)

• Replacing this value of p in equation (24), we arrive at

cos n(x1 + jx2) = (cos nx1 cosh nx2) − j(sin nx1 sinh nx2) = ± j

ǫ
(26)
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Chebyshev approximation

• By equating the real parts of both sides of the above equation, we can deduce that

cos nx1 cosh nx2 = 0 (27)

and considering that

cosh nx2 ≥ 1, for all n, x2 (28)

we then have

cos nx1 = 0 (29)

which yields the following 2n solutions:

x1i =
2i + 1

2n
π (30)

for i = 0, 1, . . ., (2n − 1).
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Chebyshev approximation

• Now, by equating the imaginary parts of both sides of equation (26) and using the

values of x1i obtained in equation (30), it follows that

sin nx1i = ±1 (31)

x2 =
1

n
sinh−1

(

1

ǫ

)

(32)

• Since, from equations (32) and (25), the zeros of A(s′)A(−s′) are given by

s′i = σ′
i ± jΩ′

i = j cos(x1i + jx2) = sin x1i sinh x2 + j cos x1i cosh x2 (33)

for i = 0, 1, . . ., (2n − 1), we have, from equations (25) and (30), that

σi = ± sin

[

π

2

(

2i + 1

n

)]

sinh

(

1

n
sinh−1 1

ǫ

)

(34)

Ωi = cos

[

π

2

(

2i + 1

n

)]

cosh

(

1

n
sinh−1 1

ǫ

)

(35)
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Chebyshev approximation

• The calculated zeros belong to A(s′)A(−s′). Analogously to the Butterworth case,

we associate the n zeros, pi, with negative real part to A(s′), in order to guarantee

the filter stability.

• The above equations indicate that the zeros of a Chebyshev approximation are

placed on an ellipse in the s plane, since equation (34) implies the following relation:

[

σi

sinh( 1
n

sinh−1 1
ǫ
)

]2

+

[

Ωi

cosh( 1
n

sinh−1 1
ǫ
)

]2

= 1 (36)

27



Diniz, da Silva and Netto

Chebyshev approximation

• The transfer function of the Chebyshev filter is then given by

H′(s′) =
H′

0

A(s′)
=

H′
0

n∏

i=1

(s′ − pi)

(37)

where H′
0 is chosen so that A(s′) satisfies equation (15), that is (see also Figure 3)

H′
0 =






n∏

i=1

(−pi), for n odd

10−0.05Ap

n∏

i=1

(−pi), for n even

(38)
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Chebyshev approximation

• It is interesting to note that in the Butterworth case the frequency response is

monotone in both passband and stopband, and is maximally flat at Ω = 0.

• In the case of the Chebyshev filters, the smooth passband characteristics are

exchanged for steeper transition bands for the same filter orders.

• In fact, for a given prescribed specification, Chebyshev filters usually require

lower-order transfer functions than Butterworth filters, owing to their equiripple

behavior in the passband.
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Elliptic approximation

• The two approximations discussed so far, namely the lowpass Butterworth and

Chebyshev approximations, lead to transfer functions whose numerator is a constant

and the denominator is a polynomial in s.

• These are called all-pole filters, because all their zeros are located at infinity.

• When going from the Butterworth to the Chebyshev filters, we have traded-off

monotonicity and maximal flatness in the passband for higher attenuation in the

stopband.

• At this point, it is natural to wonder whether we could also exchange the monotonicity

in the stopband possessed by the Butterworth and Chebyshev filters for an even

steeper transition band without increasing the filter order.

• This is indeed the case, as approximations with finite-frequency zeros can have

transition bands with very steep slopes.
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Elliptic approximation

• In practice, there are transfer function approximations with finite zeros which have

equiripple characteristics in the passband and in the stopband, with the advantage

that their coefficients can be computed using closed formulas.

• These filters are usually called elliptic filters, as their closed-form equations are

derived based on elliptic functions, but they are also known as Cauer or Zolotarev

filters.

• This section covers the lowpass elliptic filter approximation (the derivations are not

detailed here, as they are beyond the scope of this book).

• In the following, we describe an algorithm to calculate the coefficients of elliptic filters

which is based on the procedure described in the benchmark book by Antoniou.
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Elliptic approximation

• Consider the following lowpass filter transfer function:

|H( jΩ ′)| =
1

√

1 + R2
n(Ω ′)

(39)

where

Rn(Ω′) =






Ce

n
2∏

i=1











Ω′2 −

(

Ω′2
r

Ω′2
i

)2

Ω′2 − Ω′2
i











, for n even

CoΩ′

n−1
2∏

i=1











Ω′2 −

(

Ω′2
r

Ω′2
i

)2

Ω′2 − Ω′2
i











, for n odd

(40)

• The computation of Rn(Ω′) requires the use of some elliptic functions.
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Elliptic approximation

• All frequencies in equation (39) are normalized. The normalization procedure for the

elliptic approximation is rather distinct from the one for the Butterworth and

Chebyshev filters.

• Here, the frequency normalization factor is given by

Ωc =
√

ΩpΩr (41)

• In that manner, we have that

Ω′
p =

Ωp

Ωc

=

√

Ωp

Ωr

(42)

Ω′
r =

Ωr

Ωc

=

√

Ωr

Ωp

(43)
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Elliptic approximation

• Defining

k =
Ω′

p

Ω′
r

=
1

Ω′2
r

(44)

q0 =
1

2

[

1 − (1 − k2)
1
4

1 + (1 − k2)
1
4

]

(45)

q = q0 + 2q5
0 + 15q9

0 + 150q13
0 (46)

ǫ =

√

100.1Ap − 1

100.1Ar − 1
(47)

the specifications are satisfied if the filter order n is chosen through:

n ≥
log10

16

ǫ2

log10

1

q

(48)
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Elliptic approximation

• Having the filter order n, we can then determine the following parameters before

proceeding with the computation of the filter coefficients:

Θ =
1

2n
ln

100.05Ap + 1

100.05Ap − 1
(49)

σ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2q
1
4

∞∑

j=0

(−1)jqj(j+1) sinh[(2j + 1)Θ]

1 + 2

∞∑

j=1

(−1)jqj2

cosh(2jΘ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(50)

W =

√

(1 + kσ2)

(

1 +
σ2

k

)

(51)
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Elliptic approximation

• Also, for i = 1, 2, . . ., l, where l = n
2

for n even and l = n−1
2

for n odd, we

compute

Ω′
i =

2q
1
4

∞∑

j=0

(−1)jqj(j+1) sin
(2j + 1)πu

n

1 + 2

∞∑

j=1

(−1)jqj2

cos
2 jπu

n

(52)

Vi =

√

√

√

√(1 − kΩ′
i
2
)

(

1 −
Ω′

i
2

k

)

(53)

where

u = i, for n odd

u = i − 1
2
, for n even





(54)
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Elliptic approximation

• The infinite summations in equations (50) and (52) converge extremely quickly, and

only two or three terms are sufficient to reach a very accurate result.

• The transfer function of a normalized-lowpass elliptic filter can be written as

H′(s′) =
H′

0

(s′ + σ)m

l∏

i=1

s′
2

+ b2i

s′2 + a1is′ + a2i

(55)

where

m = 0 and l = n
2
, for n even

m = 1 and l = n−1
2

, for n odd





(56)
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Elliptic approximation

• The coefficients of the above transfer function are calculated based on the

parameters obtained from equations (44)–(53) as

b2i =
1

Ω′
i
2

(57)

a2i =
(σVi)

2 + (Ω′
iW)2

(1 + σ2Ω′
i
2
)2

(58)

a1i =
2σVi

1 + σ2Ω′
i
2

(59)

H′
0 =






σ

l∏

i=1

a2i

b2i

, for n odd

10−0.05Apσ

l∏

i=1

a2i

b2i

, for n even

(60)
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Elliptic approximation

• Following this procedure, the resulting minimum stopband attenuation is slightly

better than the specified value, being precisely given by

Ar = 10 log10

(

100.1Ap − 1

16qn
+ 1

)

(61)
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Frequency transformations

• The approximation methods presented so far are meant for designing

normalized-lowpass filters.

• In this subsection, we address the issue of how a transfer function of a general

lowpass, highpass, symmetric bandpass, or symmetric bandstop filter can be

transformed into a normalized-lowpass transfer function, and vice versa.

• The procedure used here, the so-called frequency transformation technique, consists

of replacing the variable s′ in the normalized-lowpass filter by an appropriate function

of s.

• In the following, we make a detailed analysis of the normalized-lowpass ↔

bandpass transformation. The analyses of the other transformations are similar, and

their expressions are summarized in Table 2.
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Frequency transformations

• A normalized-lowpass transfer function H′(s′) can be transformed into a symmetric

bandpass transfer function by applying the following substitution of variables

s′ ↔
1

a

s2 + Ω2
0

Bs
(62)

where Ω0 is the central frequency of the bandpass filter, B is the filter passband

width, and a is a normalization parameter that depends upon the filter type.
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Frequency transformations

• The parameters Ω0, B, and a are determined as follows:

Ω0 =
√

Ωp1
Ωp2

(63)

B = Ωp2
− Ωp1

(64)

a =
1

Ω′
p

=






1, for any Butterworth or Chebyshev filter
√

Ωr

Ωp

, for a lowpass elliptic filter

√

Ωp

Ωr

, for a highpass elliptic filter
√

Ωr2
− Ωr1

Ωp2
− Ωp1

, for a bandpass elliptic filter

√

Ωp2
− Ωp1

Ωr2
− Ωr1

, for a bandstop elliptic filter

(65)
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Frequency transformations

• The value of a is different from unity for the elliptic filters because in this case the

normalization is not Ω′
p = 1, but

√

Ω′
pΩ′

r = 1 (see equations (41)–(6.43)).

• The frequency transformation in equation (62) has the following properties:

– The frequency s′ = j0 is transformed into s = ± jΩ0.

– Any complex frequency s′ = − jΩ′, corresponding to an attenuation of AdB in

the normalized-lowpass filter, is transformed into the two distinct frequencies

Ω1 = −
1

2
aBΩ′ +

√

1

4
a2B2Ω′2 + Ω2

0 (66)

Ω1 = −
1

2
aBΩ′ −

√

1

4
a2B2Ω′2 + Ω2

0 (67)

where Ω1 is a positive frequency and Ω1 is a negative frequency, both

corresponding to the attenuation AdB.
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Frequency transformations

• (cont.)

– In addition, a complex frequency s′ = jΩ′, which also corresponds to an

attenuation of AdB, is transformed into two frequencies with the same attenuation

level, that is,

Ω2 =
1

2
aBΩ′ +

√

1

4
a2B2Ω′2 + Ω2

0 (68)

Ω2 =
1

2
aBΩ′ −

√

1

4
a2B2Ω′2 + Ω2

0 (69)

and it can be seen that Ω1 = −Ω2 and Ω2 = −Ω1.
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Frequency transformations

• (cont.)

– The positive frequencies Ω1 and Ω2 are the ones we are interested in analyzing.

They can be expressed in a single equation as follows:

Ω1,2 = ∓1

2
aBΩ′ +

√

1

4
a2B2Ω′2 + Ω2

0 (70)

from which we get

Ω2 − Ω1 = aBΩ′ (71)

Ω1Ω2 = Ω2
0 (72)

– These relationships indicate that, in this kind of transformation, for each frequency

with attenuation AdB there is another frequency geometrically symmetric with

respect to the central frequency Ω0 with the same attenuation.
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Frequency transformations

• (cont.)

– From the above the cutoff frequency of the normalized-lowpass filter Ω′
p is

mapped into the frequencies

Ωp1,2
= ∓1

2
aBΩ′

p +

√

1

4
a2B2Ω′

p
2 + Ω2

0 (73)

such that

Ωp2
− Ωp1

= aBΩ′
p (74)

Ωp1
Ωp2

= Ω2
0 (75)
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Frequency transformations

• (cont.)

– Similarly, the stopband edge frequency Ω′
r of the normalized-lowpass prototype

is transformed into the frequencies

Ωr1,2
= ∓1

2
aBΩ′

r +

√

1

4
a2B2Ω′

r
2 + Ω2

0 (76)

such that

Ωr2
− Ωr1

= aBΩ′
r (77)

Ωr1
Ωr2

= Ω2
0 (78)

47



Diniz, da Silva and Netto

Frequency transformations

• The above analysis leads to the conclusion that this normalized-lowpass ↔

bandpass transformation works for bandpass filters which are geometrically

symmetric with respect to the central frequency.

• However, bandpass filter specifications are not usually geometrically symmetric.

• We can generate geometrically symmetric bandpass specifications satisfying the

minimum stopband attenuation requirements by the following procedure (see

Figure 4):

– (i) Compute Ω2
0 = Ωp1

Ωp2
.

– (ii) Compute Ωr1
=

Ω2
0

Ωr2

, and if Ωr1
> Ωr1

, replace Ωr1
with Ωr1

, as

illustrated in Figure 4.

– (iii) If Ωr1
≤ Ωr1

, then compute Ωr2
=

Ω2
0

Ωr1

, and replace Ωr2
with Ωr2

.

– (iv) If Ar1
6= Ar2

, choose Ar = max{Ar1
, Ar2

}.
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Frequency transformations

Ap

| A(jΩ) |dB

Ωr1
Ω
_

r1
Ωr2

Ar2

Ar1

Ω

Figure 4: Nonsymmetric bandpass filter specifications.
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Frequency transformations

• Once the geometrically symmetric bandpass filter specifications are available, we

need to determine the normalized frequencies Ω′
p and Ω′

r, in order to have the

corresponding normalized-lowpass filter completely specified.

• According to equations (74) and (77), they can be computed as follows:

Ω′
p =

1

a
(79)

Ω′
r =

1

a

Ωr2
− Ωr1

Ωp2
− Ωp1

(80)

• It is worth noting that bandstop filter specifications must also be geometrically

symmetric. In this case, however, in order to satisfy the minimum stopband

attenuation requirements, the stopband edges must be preserved, while the

passband edges should be modified analogously to the procedure described above.

• A summary of all types of transformations are shown in Table 2.
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Frequency transformations

Table 2: Analog frequency transformations.

Transformation Normalization Denormalization

lowpass(Ω) ↔ lowpass(Ω′) Ω′

p =
1

a
; Ω′

r =
1

a

Ωr

Ωp

s′ ↔
1

a

s

Ωp

highpass(Ω) ↔ lowpass(Ω′) Ω′

p =
1

a
; Ω′

r =
1

a

Ωp

Ωr

s′ ↔
1

a

Ωp

s

bandpass(Ω) ↔ lowpass(Ω′) Ω′

p =
1

a
s′ ↔

1

a

s2 +Ω2
0

Bs

Ω′

r =
1

a

Ωr2
−Ωr1

Ωp2
−Ωp1

bandstop(Ω) ↔ lowpass(Ω′) Ω′

p =
1

a
s′ ↔

1

a

Bs

s2 +Ω2
0

Ω′

r =
1

a

Ωp2
−Ωp1

Ωr2
−Ωr1
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Frequency transformations

• The general procedure to approximate a standard analog filter using frequency

transformations can be summarized as follows:

• – (i) Determine the specifications for the lowpass, highpass, bandpass, or bandstop

analog filter.

– (ii) When designing a bandpass or bandstop filter, make sure the specifications

are geometrically symmetric following the proper procedure described earlier in

this subsection.

– (iii) Determine the normalized-lowpass specifications equivalent to the desired

filter, following the relationships seen in Table 2.

– (iv) Perform the filter approximation using the Butterworth, Chebyshev, or elliptic

methods.

– (v) Denormalize the prototype using the frequency transformations given on the

right-hand side of Table 2.

52



Diniz, da Silva and Netto

Frequency transformations

• Sometimes the approximation of analog filters can present poor numerical

conditioning, especially when the desired filter has a narrow transition and/or

passband.

• In this case, design techniques employing transformed variables are available, which

can improve the numerical conditioning by separating the roots of the polynomials

involved.
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Example 6.1

• Design a bandpass filter satisfying the specification below using the Butterworth,

Chebyshev, and elliptic approximation methods:

Ap = 1.0 dB

Ar = 40 dB

Ωr1
= 1394π rad/s

Ωp1
= 1510π rad/s

Ωp2
= 1570π rad/s

Ωr2
= 1704π rad/s






(81)
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Example 6.1 - Solution

• Since Ωp1
Ωp2

6= Ωr1
Ωr2

, the first step in the design is to determine the

geometrically symmetric bandpass filter following the procedure described earlier in

this subsection.

• In that manner, we get

Ωr2
= Ω̄r2

=
Ω2

0

Ωr1

= 1700.6456π rad/s (82)
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Example 6.1 - Solution

• Finding the corresponding lowpass specifications based on the transformations in

Table 2, we have

Ω′
p =

1

a
(83)

Ω′
r =

1

a

Ω̄r2
− Ωr1

Ωp2
− Ωp1

=
1

a
5.1108 (84)

where

a =






1, for the Butterworth and Chebyshev filters

2.2607, for the elliptic filter
(85)
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Example 6.1 - Solution

• (a) Butterworth approximation: from the specifications above, we can compute ǫ

from equation (6), and, having ǫ, the minimum filter order required to satisfy the

specifications from equation (8):

ǫ = 0.5088 (86)

n = 4 (87)

• From equation (12), the zeros of the normalized Butterworth polynomial when n = 4

are given by

s′1,2 = −1.0939 ± j0.4531

s′3,4 = −0.4531 ± j1.0939

s′5,6 = 1.0939 ± j0.4531

s′7,8 = 0.4531 ± j1.0939






(88)
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Example 6.1 - Solution

• Selecting the ones with negative real part to be the poles of H′(s′), this normalized

transfer function becomes

H′(s′) = 1.9652
1

s′4 + 3.0940s′3 + 4.7863s′2 + 4.3373s′ + 1.9652
(89)

• The design is completed by applying the lowpass to bandpass transformation in

Table 2.

• The resulting bandpass transfer function is then given by

H(s) = H0

s4

a8s8+a7s7+a6s6+a5s5+a4s4+a3s3+a2s2+a1s+a0

(90)

where the filter coefficients and poles are listed in Table 3.
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Example 6.1 - Solution

Table 3: Characteristics of the Butterworth bandpass filter. Gain constant: H0 =

2.4809 × 109.

Denominator coefficients Filter poles

a0 = 2.9971 × 1029 p1 = −41.7936 + j4734.9493

a1 = 7.4704 × 1024 p2 = −41.7936 − j4734.9493

a2 = 5.1331 × 1022 p3 = −102.1852 + j4793.5209

a3 = 9.5851 × 1017 p4 = −102.1852 − j4793.5209

a4 = 3.2927 × 1015 p5 = −104.0058 + j4878.9280

a5 = 4.0966 × 1010 p6 = −104.0058 − j4878.9280

a6 = 9.3762 × 107 p7 = −43.6135 + j4941.1402

a7 = 5.8320 × 102 p8 = −43.6135 − j4941.1402

a8 = 1.0
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Example 6.1 - Solution

• Figure 5 depicts the frequency response of the designed Butterworth bandpass filter.
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Figure 5: Bandpass Butterworth filter: (a) magnitude response; (b) phase response.
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Example 6.1 - Solution

• (b) Chebyshev approximation: from the normalized specifications in equations (81)

and (82), one can compute ǫ and n based on equations (21) and (23), respectively,

resulting in

ǫ = 0.5088 (91)

n = 3 (92)

• Then, from equations (24)–(35), we have that the poles of the normalized transfer

function are:

s′1,2 = −0.2471∓ j0.9660

s′3 = −0.4942 − j0.0





(93)
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Example 6.1 - Solution

• This implies that the normalized-lowpass filter has the following transfer function:

H′(s′) = 0.4913
1

s′3 + 0.9883s′2 + 1.2384s′ + 0.4913
(94)

• The denormalized design is obtained by applying the lowpass to bandpass

transformation.

• The resulting transfer function is of the form

H(s) = H0

s3

a6s6 + a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0

(95)

where all filter coefficients and poles are listed in Table 4.
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Example 6.1 - Solution

Table 4: Characteristics of the Chebyshev bandpass filter. Gain constant: H0 =

3.2905 × 106.

Denominator coefficients Filter poles

a0 = 1.2809 × 1022 p1 = −22.8490 + j4746.8921

a1 = 1.0199 × 1017 p2 = −22.8490 − j4746.8921

a2 = 1.6434 × 1015 p3 = −46.5745 + j4836.9104

a3 = 8.7212 × 109 p4 = −46.5745 − j4836.9104

a4 = 7.0238 × 107 p5 = −23.7255 + j4928.9785

a5 = 1.8630 × 102 p6 = −23.7255 − j4928.9785

a6 = 1.0
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Example 6.1 - Solution

• Figure 6 depicts the frequency response of the resulting Chebyshev bandpass filter.
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Figure 6: Bandpass Chebyshev filter: (a) magnitude response; (b) phase response.
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Example 6.1 - Solution

• Elliptic approximation: from equation (6.85), for this elliptic approximation, we have

that a = 2.2607, and then the normalized specifications are

Ω′
p = 0.4423 (96)

Ω′
r = 2.2607 (97)

• From equation (48), the minimum order required for the elliptic approximation to

satisfy the specifications is n = 3. Therefore, from equations (55)–(60), the

normalized-lowpass filter has the transfer function

H′(s′) = 6.3627 × 10−3 s′
2

+ 6.7814

s′3 + 0.4362s′2 + 0.2426s′ + 0.0431
(98)
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Example 6.1 - Solution

• The denormalized-bandpass design is then obtained by applying the lowpass to

bandpass transformation given in Table 2, with a = 2.2607. The resulting bandpass

transfer function is given by

H(s) = H0

b5s5 + b3s3 + b1s

a6s6 + a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0

(99)

where all filter coefficients, zeros, and poles are listed in Table 5.
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Example 6.1 - Solution

Table 5: Characteristics of the elliptic bandpass filter. Gain constant: H0 = 2.7113 106.

Numerator coefficients Denominator coefficients

b0 = 0.0 a0 = 1.2809× 1022

b1 = 5.4746× 1014 a1 = 1.0175× 1017

b2 = 0.0 a2 = 1.6434× 1015

b3 = 4.8027× 107 a3 = 8.7008× 109

b4 = 0.0 a4 = 7.0238× 107

b5 = 1.0 a5 = 1.8586× 102

b6 = 0.0 a6 = 1.0

Filter zeros Filter poles

z1 = + j4314.0061 p1 = −22.4617 + j4746.6791
z2 = − j4314.0061 p2 = −22.4617 − j4746.6791
z3 = + j5423.6991 p3 = −47.1428 + j4836.9049
z4 = − j5423.6991 p4 = −47.1428 − j4836.9049
z5 = 0.0 p5 = −23.3254 + j4929.2035

p6 = −23.3254 − j4929.2035
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Example 6.1 - Solution

• Figure 7 depicts the frequency response of the resulting elliptic bandpass filter.
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Figure 7: Bandpass elliptic filter: (a) magnitude response; (b) phase response.
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Continuous-time to discrete-time transformations

• As mentioned at the beginning of this chapter, a classical procedure for designing IIR

digital filters is to design an analog prototype first and then transform it into a digital

filter.

• In this section, we study two methods of carrying out this transformation, namely, the

impulse-invariance method and the bilinear transformation method.
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Impulse-invariance method

• The intuitive way to implement a digital filtering operation, having an analog

prototype as starting point, is the straightforward digitalization of the convolution

operation, as follows.

• The output ya(t) of an analog filter having impulse response ha(t) when excited

by a signal xa(t) is

ya(t) =

∫∞

−∞

xa(τ)ha(t − τ)dτ (100)

• One possible way to implement this operation in the discrete-time domain is to divide

the time axis into slices of size T , replacing the integral by a summation of the areas

of rectangles of width T and height xa(mT)ha(t − mT), for all integers m.
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Impulse-invariance method

• Equation (100) then becomes

ya(t) =

∞∑

m=−∞

xa(mT)ha(t − mT)T (101)

• The sampled version of ya(t) is obtained by substituting t by nT , yielding

ya(nT) =

∞∑

m=−∞

xa(mT)ha(nT − mT)T (102)

• This is clearly equivalent to obtaining the samples ya(nT) of ya(t) by filtering the

samples xa(nT) with a digital filter having impulse response h(n) = ha(nT).

• That is, the impulse response of the equivalent digital filter would be a sampled

version of the impulse response of the analog filter, using the same sampling rate for

the input and output signals.
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Impulse-invariance method

• Roughly speaking, if the Nyquist criterion is met by the filter impulse response during

the sampling operation, the discrete-time prototype has the same frequency

response as the continuous-time one.

• In addition, a sampled version of a stable analog impulse response is clearly also

stable. These are the main properties of this method of generating IIR filters, called

the impulse-invariance method.

• In what follows, we analyze the above properties more precisely, in order to get a

better understanding of the main strengths and limitations of this method.
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Impulse-invariance method

• We can begin by investigating the properties of the digital filter with impulse response

h(n) = ha(nT) in the frequency domain.

• From equation (102), the discrete-time Fourier transform of h(n) is

H(e jΩT ) =
1

T

∞∑

l=−∞

Ha( jΩ + jΩsl) (103)

where Ha(s), s = σ + jΩ, is the analog transfer function, and Ωs = 2π
T

is the

sampling frequency.

• That is, the digital frequency response is equal to the analog one replicated at

intervals lΩs.

• One important consequence of this fact is that if Ha( jΩ) has much energy for

Ω > Ωs/2, there will be aliasing, and therefore the digital frequency response will

be a severely distorted version of the analog one.
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Impulse-invariance method

• Another way of seeing this is that the digital frequency response is obtained by

folding the analog frequency response, for −∞ < Ω < ∞, on the unit circle of the

z = esT plane, with each interval [σ + j(l − 1
2
)Ωs, σ + j(l + 1

2
)Ωs], for all

integers l, corresponding to one full turn over the unit circle of the z plane.

• This limits the usefulness of the impulse-invariance method to the design of transfer

functions whose magnitude responses decrease monotonically at high frequencies.

• For example, its use in the direct design of highpass, bandstop, or even elliptic

lowpass and bandpass filters is strictly forbidden, and other methods should be

considered for designing such filters.
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Impulse-invariance method

• Stability of the digital filter can also be inferred from the stability of the analog

prototype by analyzing equation (103).

• In fact, based on that equation, we can interpret the impulse-invariance method as a

mapping from the s domain to the z domain such that each slice of the s plane given

by the interval [σ + j(l − 1
2
)Ωs, σ + j(l + 1

2
)Ωs], for all integers l, where

σ = Re {s}, is mapped into the same region of the z plane.

• Also, the left side of the s plane, that is, where σ < 0, is mapped into the interior of

the unit circle, implying that if the analog transfer function is stable (all poles on the

left side of the s plane), then the digital transfer function is also stable (all poles

inside the unit circle of the z plane).
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Impulse-invariance method

• In practice, the impulse-invariance transformation is not implemented through

equation (103), as a simpler procedure can be deduced by expanding an Nth-order

Ha(s) as follows:

Ha(s) =

N∑

l=1

rl

s − pl

(104)

where it is assumed that Ha(s) does not have multiple poles.

• The corresponding impulse response is given by

ha(t) =

N∑

l=1

rlepltu(t) (105)

where u(t) is the unit step function.
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Impulse-invariance method

• If we now sample that impulse response, the resulting sequence is

hd(n) = ha(nT) =

N∑

l=1

rleplnTu(nT) (106)

and the corresponding discrete-time transfer function is given by

Hd(z) =

N∑

l=1

rlz

z − eplT
(107)

• This equation shows that a pole s = pl of the continuous-time filter corresponds to

a pole of the discrete-time filter at z = eplT .

• In that way, if pl has negative real part, then eplT is inside the unit circle, generating

a stable digital filter when we use the impulse-invariance method.
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Impulse-invariance method

• In order to obtain the same passband gain for the continuous- and discrete-time

filters, for any value of the sampling period T , we should use the following expression

for Hd(z):

Hd(z) =

N∑

l=1

T
rlz

z − eplT
(108)

which corresponds to

hd(n) = Tha(nT) (109)

• Thus, the overall impulse-invariance method consists of writing the analog transfer

function Ha(s) in the form of equation (104), determining the poles pl and

corresponding residues rl, and generating Hd(z) according to equation (108).
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Example 6.2

• Transform the continuous-time lowpass transfer function given by

H(s) =
1

s2 + s + 1
(110)

into a discrete-time transfer function using the impulse-invariance transformation

method with Ωs = 10 rad/s. Plot the corresponding analog and digital magnitude

responses.
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Example 6.2 - Solution

• A second-order lowpass transfer function can be written as

H(s) =
Ω2

0

s2 +
Ω0

Q
s + Ω2

0

=
Ω2

0
r

Ω2
0

Q2 −4Ω2
0

0

B

@

1

s+
Ω0

2Q
−

r

Ω2
0

4Q2 −Ω2
0

−
1

s+
Ω0

2Q
+

r

Ω2
0

4Q2 −Ω2
0

1

C

A

(111)

• Its poles are located at

p1 = p∗
2 = −

Ω0

2Q
+ j

√

Ω2
0 −

Ω2
0

4Q2
(112)

and the corresponding residues are given by

r1 = r∗2 =
− jΩ2

0
√

4Ω2
0 −

Ω2
0

Q2

(113)
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• Applying the impulse-invariance method with T = 2π/10, the resulting discrete-time

transfer function is given by

H(z) =
2 jTr1 sin(Im{p1}T)eRe{p1}Tz

z2 − 2 cos(Im{p1}T)eRe{p1}Tz + e2Re{p1}T

=
0.274 331 03 z

z2 − 1.249 825 52 z + 0.533 488 09
(114)

• The magnitude responses corresponding to the analog and digital transfer functions

are depicted in Figure 8.

• As can be seen, the frequency responses are similar except for the limited stopband

attenuation of the discrete-time filter which is due to the aliasing effect.
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Example 6.2 - Solution
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Figure 8: Magnitude responses obtained with the impulse-invariance method: (a)

continuous-time filter; (b) discrete-time filter.
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Impulse-invariance method

• We should again emphasize that the impulse-invariance method is suitable only for

continuous-time prototypes with frequency responses that decrease monotonically at

high frequencies, which limits its applicability a great deal.

• In the next section, we analyze the bilinear transformation method, which overcomes

some of the limitations of the impulse-invariance method.
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Bilinear transformation method

• The bilinear transformation method, like the impulse-invariance method, basically

consists of mapping the left-hand side of the s plane into the interior of the unit circle

of the z plane.

• The main difference between them is that in the bilinear transformation method the

whole analog frequency range −∞ < Ω < ∞ is squeezed into the unit circle

−π ≤ ω ≤ π, while in the impulse-invariance method the analog frequency

response is folded around the unit circle indefinitely.

• The main advantage of the bilinear transformation method is that aliasing is avoided,

thereby keeping the magnitude response characteristics of the continuous-time

transfer function when generating the discrete-time transfer function.

• The bilinear mapping is derived by first considering the key points of the s plane and

analyzing their corresponding points in the z plane after the transformation.

• Hence, the left-hand side of the s plane should be uniquely mapped into the interior

of the unit circle of the z plane, and so on, as given in Table 6.
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Bilinear transformation method

Table 6: Correspondence of key points of the s and z planes using the bilinear transfor-

mation method.

s plane → z plane

σ ± jΩ → re± jω

j0 → 1

j∞ → −1

σ > 0 → r > 1

σ = 0 → r = 1

σ < 0 → r < 1

jΩ → e jω

−∞ < Ω < ∞ → −π < ω < π
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Bilinear transformation method

• In order to satisfy the second and third requirements of Table 6, the bilinear

transformation must have the following form

s → k
f1(z) − 1

f2(z) + 1
(115)

where f1(1) = 1 and f2(−1) = −1.

• Sufficient conditions for the last three mapping requirements to be satisfied can be

determined as follows:

s = σ + jΩ = k
(Re{f1(z)} − 1) + jIm{f1(z)}

(Re{f2(z)} + 1) + jIm{f2(z)}
(116)
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Bilinear transformation method

• Equating the real parts of both sides of the above equation, we have that

σ = k
(Re{f1(z)} − 1)(Re{f2(z)} + 1) + Im{f1(z)}Im{f2(z)}

(Re{f2(z)} + 1)2 + (Im{f2(z)})2
(117)

and since σ = 0 implies that r = 1, the following relation is valid:

Re{f1(e jω)} − 1

Im{f1(e jω)}
= −

Im{f2(e jω)}

Re{f2(e jω)} + 1
(118)

• The condition σ < 0 is equivalent to

Re{f1(re jω)} − 1

Im{f1(re jω)}
< −

Im{f2(re jω)}

Re{f2(re jω)} + 1
, r < 1 (119)

• The last two lines of Table 6 show the correspondence between the analog

frequency and the unit circle of the z plane.
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Bilinear transformation method

• If we want the orders of the discrete-time and continuous-time systems to remain the

same after the transformation, then f1(z) and f2(z) must be first-order polynomials.

• In addition, if we wish to satisfy the conditions imposed by equation (115), we must

choose f1(z) = f2(z) = z.

• It is straightforward to verify that equation (118), as well as the inequality (119), are

automatically satisfied with this choice for f1(z) and f2(z).
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Bilinear transformation method

• The bilinear transformation is then given by

s → k
z − 1

z + 1
(120)

which, for s = jΩ and z = e jω, is equivalent to

jΩ → k
e jω − 1

e jω + 1
= k

e
jω
2 − e

− jω
2

e
jω
2 + e

− jω
2

= jk
sin ω

2

cos ω
2

= jk tan
ω

2
(121)

that is

Ω → k tan
ω

2
(122)
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Bilinear transformation method

• For small frequencies, tan ω
2
≈ ω

2
. Hence, to keep the magnitude response of the

digital filter approximately the same as the prototype analog filter at low frequencies,

we should have for small frequencies Ω = ωΩs

2π
, and therefore we should choose

k = Ωs

π
= 2

T
.

• In conclusion, the bilinear transformation of a continuous-time transfer function into a

discrete-time transfer function is implemented through the following mapping:

H(z) = Ha(s)|s= 2
T

z−1
z+1

(123)

and therefore, the bilinear transformation maps analog frequencies into digital

frequencies as follows:

Ω →
2

T
tan

ω

2
(124)
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Bilinear transformation method

• For high frequencies, this relationship is highly nonlinear, as seen in Figure 9a,

corresponding to a large distortion in the frequency response of the digital filter when

compared to the analog prototype.

• The distortion in the magnitude response, also known as the warping effect, can be

visualized as in Figure 9b.
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Bilinear transformation method
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Figure 9: Bilinear transformation method: (a) relation between the analog and digital fre-

quencies; (b) warping effect in the magnitude response of a bandstop filter.
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Bilinear transformation method

• The warping effect caused by the bilinear transformation can be compensated for by

prewarping the frequencies given at the specifications before the analog filter is

actually designed.

• For example, suppose we wish to design a lowpass digital filter with cutoff frequency

ωp and stopband edge ωr.

• The prewarped specifications Ωap
and Ωar

of the lowpass analog prototype are

then given by

Ωap
=

2

T
tan

ωp

2
(125)

Ωar
=

2

T
tan

ωr

2
(126)
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Bilinear transformation method

• Following the same line of thought, we may apply prewarping to as many frequencies

of interest as specified for the digital filter.

• If these frequencies are given by ωi, for i = 1, 2, . . ., n, then the frequencies to be

included in the analog filter specifications are

Ωai
=

2

T
tan

ωi

2
(127)

for i = 1, 2, . . ., n.
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Bilinear transformation method

• Hence, the design procedure using the bilinear transformation method can be

summarized as follows:

– (i) Prewarp all the prescribed frequency specifications ωi, obtaining Ωai
, for

i = 1, 2, . . ., n.

– (ii) Generate Ha(s), following the procedure given in Subsection 6.2.5, satisfying

the specifications for the frequencies Ωai
.

– (iii) Obtain Hd(z), by replacing s with 2
T

z−1
z+1

in Ha(s).
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Bilinear transformation method

• With the bilinear transformation, we can design Butterworth, Chebyshev, and elliptic

digital filters starting with a corresponding analog prototype.

• The bilinear transformation method always generates stable digital filters as long as

the prototype analog filter is stable.

• Using the prewarping procedure, the method keeps the magnitude characteristics of

the prototype but introduces distortions to the phase response.
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Example 6.3

• Design a digital elliptic bandpass filter satisfying the following specifications:

Ap = 0.5 dB

Ar = 65 dB

Ωr1
= 850 rad/s

Ωp1
= 980 rad/s

Ωp2
= 1020 rad/s

Ωr2
= 1150 rad/s

Ωs = 10 000 rad/s






(128)
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Example 6.3 - Solution

• First, we have to normalize the frequencies above to the range of digital frequencies

using the expression ω = Ω 2π
Ωs

.

• Since Ωs = 10 000 rad/s, we have that

ωr1
= 0.5341 rad/sample

ωp1
= 0.6158 rad/sample

ωp2
= 0.6409 rad/sample

ωr2
= 0.7226 rad/sample






(129)
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Example 6.3 - Solution

• Then, by applying equation (127), the prewarped frequencies become

Ωar1
= 870.7973 rad/s

Ωap1
= 1012.1848 rad/s

Ωap2
= 1056.4085 rad/s

Ωar2
= 1202.7928 rad/s






(130)

• By making Ωar1
= 888.9982 rad/s to obtain a geometrically symmetric filter, from

Table 2, we have that

Ω0 = 1034.0603 rad/s (131)

B = 44.2237 rad/s (132)

a = 2.6638 (133)

Ω′
p = 0.3754 (134)

Ω′
r = 2.6638 (135)
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• From the filter specifications, the required order for the analog elliptic

normalized-lowpass filter is n = 3, and the resulting normalized transfer function is

H′(s′) = 4.0426 × 10−3 s′
2

+ 9.4372

s′3 + 0.4696s′2 + 0.2162s′ + 0.0382
(136)

• The denormalized design is then obtained by applying the lowpass-to-bandpass

transformation given in Table 2, with a = 2.6638.

• After applying the bilinear transformation the resulting digital bandpass transfer

function becomes

H(z) = H0

b6z6 + b5z5 + b4z4 + b3z3 + b2z2 + b1z + b0

a6z6 + a5z5 + a4z4 + a3z3 + a2z2 + a1z + a0

(137)

where all filter coefficients, zeros, and poles are listed in Table 7.

• Figure 10 depicts the frequency response of the resulting digital elliptic bandpass

filter.
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Example 6.3 - Solution

Table 7: Characteristics of the digital elliptic bandpass filter. Gain constant: H0 =

1.3461 × 10−4.

Numerator coefficients Denominator coefficients

b0 = −1.0 a0 = 0.9691

b1 = 3.2025 a1 = −4.7285

b2 = −3.5492 a2 = 10.6285

b3 = 0.0 a3 = −13.7261

b4 = 3.5492 a4 = 10.7405

b5 = −3.2025 a5 = −4.8287

b6 = 1.0 a6 = 1.0

Filter zeros Filter poles

z1 = 0.7399+ j0.6727 p1 = 0.7982+ j0.5958

z2 = 0.7399− j0.6727 p2 = 0.7982− j0.5958

z3 = 0.8613+ j0.5081 p3 = 0.8134+ j0.5751

z4 = 0.8613− j0.5081 p4 = 0.8134− j0.5751

z5 = 1.0+ j0.0 p5 = 0.8027+ j0.5830

z6 = −1.0+ j0.0 p6 = 0.8027− j0.5830

101



Diniz, da Silva and Netto

Example 6.3 - Solution
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Figure 10: Digital elliptic bandpass filter: (a) magnitude response; (b) phase response.

102



Diniz, da Silva and Netto

Bilinear transformation method

• We can then observe that, as we perform the mapping s → z, either opting for the

impulse-invariance method or the bilinear transformation method, we are essentially

folding the continuous-time frequency axis around the z-domain unit circle.

• Hence, any digital frequency response is periodic, and the interval

−Ωs

2
≤ Ω ≤ Ωs

2
, or equivalently, −π ≤ ω ≤ π, is the so-called fundamental

period.

• We should bear in mind that in the expressions developed in this subsection the

unfolded analog frequencies Ω are related to the digital frequencies ω, which are

restricted to the interval −π ≤ ω ≤ π.

• Therefore, all specifications should be normalized to the interval [−π, π] using

ω = Ω
2π

Ωs

(138)

• In the discussion that follows, we assume that Ωs = 2π rad/s.
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Frequency transformation in the discrete-time domain

• Usually, in the approximation of a continuous-time filter, we begin by designing a

normalized lowpass filter and then, through a frequency transformation, the filter with

the specified magnitude response is obtained.

• In the design of digital filters, we can also start by designing a digital lowpass filter

and then apply a frequency transformation in the discrete-time domain.

• The procedure consists of replacing the variable z by an appropriate function g(z) to

generate the desired magnitude response.
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Frequency transformation in the discrete-time domain

• The function g(z) needs to meet some constraints to be a valid transformation,

namely:

– The function g(z) must be a ratio of polynomials, since the digital filter transfer

function must remain a ratio of polynomials after the transformation.

– The mapping z → g(z) must be such that the filter stability is maintained, that is,

stable filters generate stable transformed filters and unstable filters generate

unstable transformed filters. This is equivalent to saying that the transformation

maps the interior of the unit circle onto the interior of the unit circle and the

exterior of the unit circle onto the exterior of the unit circle.
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Frequency transformation in the discrete-time domain

• It can be shown that a function g(z) satisfying the above conditions is of the form

g(z) = ±
[

n∏

i=1

(z − αi)

(1 − zα∗
i )

(z − α∗
i )

(1 − zαi)

](

m∏

i=n+1

z − αi

1 − zαi

)

(139)

where α∗
i is complex conjugate of αi, and αi is real for n + 1 ≤ i ≤ m.

• In the following subsections, we analyze special cases of g(z) that generate

lowpass-to-lowpass, lowpass-to-highpass, lowpass-to-bandpass, and

lowpass-to-bandstop transformations.
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Lowpass-to-lowpass transformation

• One necessary condition for a lowpass-to-lowpass transformation is that a

magnitude response must keep its original values at ω = 0 and ω = π after the

transformation.

• Therefore, we must have

g(1) = 1 (140)

g(−1) = −1 (141)
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Lowpass-to-lowpass transformation

• Another necessary condition is that the frequency response should only be warped

between ω = 0 and ω = π, that is, a full turn around the unit circle in z must

correspond to a full turn around the unit circle in g(z).

• One possible g(z) in the form of equation (139) that satisfies these conditions is

g(z) =
z − α

1 − αz
(142)

where α is real such that |α| < 1.
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Lowpass-to-lowpass transformation

• Assuming that the passband edge frequency of the original lowpass filter is given by

ωp, and that we wish to transform the original filter into a lowpass filter with cutoff

frequency at ωp1
, that is, g(e jωp1 ) = e jωp , the following relation must be valid:

e jωp =
e jωp1 − α

1 − αe jωp1

(143)

and then

α =
e
− j

“

ωp−ωp1
2

”

− e
j
“

ωp−ωp1
2

”

e
− j

“

ωp+ωp1
2

”

− e
j
“

ωp+ωp1
2

” =
sin
(

ωp−ωp1

2

)

sin
(

ωp+ωp1

2

) (144)

• The desired transformation is then implemented by replacing z by g(z) given in

equation (142), with α calculated as indicated in equation (144).
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Lowpass-to-highpass transformation

• If ωp1
is the highpass filter band edge and ωp is the lowpass filter cutoff frequency,

the lowpass-to-highpass transformation function is given by

g(z) = −
z + α

αz + 1
(145)

where

α = −
cos
(

ωp+ωp1

2

)

cos
(

ωp−ωp1

2

) (146)
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Lowpass-to-bandpass transformation

• The lowpass-to-bandpass transformation is accomplished if the following mappings

occur

g(1) = −1 (147)

g(e− jωp1 ) = e jωp (148)

g(e jωp2 ) = e jωp (149)

g(−1) = −1 (150)

where ωp1
and ωp2

are the band edges of the bandpass filter, and ωp is the band

edge of the lowpass filter.

• Since the bandpass filter has two passband edges, we need a second-order function

g(z) to accomplish the lowpass-to-bandpass transformation.
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Lowpass-to-bandpass transformation

• After some manipulation, it can be inferred that the required transformation and its

parameters are given by

g(z) = −
z2 + α1z + α2

α2z2 + α1z + 1
(151)

with

α1 = −
2αk

k + 1
; α2 =

k − 1

k + 1
(152)

where

α =
cos
(

ωp2
+ωp1

2

)

cos
(

ωp2
−ωp1

2

) (153)

k = cot

(

ωp2
− ωp1

2

)

tan
(ωp

2

)

(154)
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Lowpass-to-bandstop transformation

• The lowpass-to-bandstop transformation function g(z) is given by

g(z) =
z2 + α1z + α2

α2z2 + α1z + 1
(155)

with

α1 = −
2α

k + 1
; α2 =

1 − k

1 + k
(156)

where

α =
cos
(

ωp2
+ωp1

2

)

cos
(

ωp2
−ωp1

2

) (157)

k = tan

(

ωp2
− ωp1

2

)

tan
(ωp

2

)

(158)
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Variable-cutoff filter design

• An interesting application for the frequency transformations is to design highpass

and lowpass filters with variable cutoff frequency with the cutoff frequency being

directly controlled by a single parameter α.

• This method can be best understood through an example, as given below.
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Example 6.4

• Consider the lowpass notch filter

H(z) = 0.004
z2 −

√
2z + 1

z2 − 1.8z + 0.96
(159)

whose zeros are located at z =
√

2
2

(1 ± j). Transform this filter into a highpass

notch with a zero at frequency ωp1
= π

6
rad/sample.

• Plot the magnitude responses before and after the frequency transformation.

115



Diniz, da Silva and Netto

Example 6.4 - Solution

• Using the lowpass-to-highpass transformation given in equation (145), the highpass

transfer function is of the form

H(z) = H0

(α2+
√

2α+1)(z2+1)+(
√

2α2+4α+
√

2)z

(0.96α2+1.8α+1)z2+(1.8α2+3.92α+1.8)z+(α2+1.8α+0.96)

(160)

with H0 = 0.004.

• The parameter α can control the position of the zeros of the highpass notch filter.
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Example 6.4 - Solution

• For instance, in this example, as the original zero is at ωp = π
4

rad/sample and the

desired zero is at ωp1
= π

6
rad/sample, the parameter α should be, as given in

equation (146), equal to

α = −
cos
(

π
4

+ π
6

2

)

cos
(

π
4

− π
6

2

) = −0.8002 (161)

• The magnitude responses corresponding to the lowpass and highpass transfer

functions are seen in Figure 11. Notice how the new transfer function has indeed a

zero at the desired position.
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Example 6.4 - Solution
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Figure 11: Magnitude responses of notch filters: (a) lowpass notch filter; (b) highpass

notch filter.
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Magnitude and phase approximation

• In this section, we discuss the approximation of IIR digital filters using optimization

techniques aimed at the simultaneous approximation of the magnitude and phase

responses.

• The same approach is useful in designing continuous-time filters and FIR filters.

• However, in the case of FIR filters more efficient approaches exist, as we have seen

in Subsections 5.6.2 and 5.6.3.
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Basic principles

• Assume that H(z) is the transfer function of an IIR digital filter. Then H(e jω) is a

function of the filter coefficients, which are usually grouped into a single vector γ,

and of the independent variable θ = ω.

• The frequency response of a digital filter can be expressed as a function of the filter

parameters γ and θ, that is F(γ, θ), and a desired frequency response is usually

referred to as f(θ).

• The complete specification of an optimization problem involves: definition of an

objective function (also known as a cost function), determination of the form of the

transfer function H(z) and its coefficients γ, and the solution methods for the

optimization problem.
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Basic principles

• These three items are further discussed below.

• (a) Choosing the objective function: a widely used type of objective function in filter

design is the weighted Lp norm, defined as

‖L(γ)‖p =

(∫π

0

W(θ)|F(γ, θ) − f(θ)|pdθ

)
1
p

(162)

where W(θ) > 0 is the so-called weight function.

• Problems based on the Lp-norm minimization criteria with different values of p lead,

in general, to different solutions.

• An appropriate choice for the value of p depends on the type of error which is

acceptable for the given application.

• For example, when we wish to minimize the mean-square value of the error between

the desired and the designed responses, we should choose p = 2.
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Basic principles

• Another problem is the minimization of the maximum deviation between the desired

specification and the designed filter by searching the space of parameters.

• This case, which is known as the Chebyshev or minimax criterion, corresponds to

p → ∞. This important result derived from the optimization theory can be stated

more formally as:

• Theorem: For a given coefficient space P and a given angle space Xθ, there is a

unique optimal minimax approximation F(γ∗
∞ , θ) for f(θ). In addition, if the best Lp

approximation for the function f(θ) is denoted by F(γ∗
p, θ), then it can be

demonstrated that

lim
p→∞

γ∗
p = γ∗

∞ (163)
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Basic principles

• This result shows that we can use any minimization program based on the Lp norm

to find a minimax (or approximately minimax) solution, by progressively calculating

the Lp optimal solution with, for instance, p = 2, 4, 6, and so on, indefinitely.

• Specifically, the minimax criterion for a continuous frequency function is best defined

as

‖L(γ∗)‖∞ = min
γ∈P

{ max
θ∈Xθ

{W(θ)|F(γ, θ) − f(θ)|}} (164)
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Basic principles

• In practice, due to several computational aspects, it is more convenient to use a

simplified objective function given by

L2p(γ) =

K∑

k=1

W(θk) (F(γ, θk) − f(θk))
2p

(165)

where, by minimizing L2p(γ), we also minimize ‖L(γ)‖2p. In this case, the

minimax solution is obtained by minimizing L2p(γ), for p = 1, 2, 3, and so on,

indefinitely.

• The points θk are the angles chosen to sample the desired and the prototype

frequency responses. These points, lying on the unit circle do not need to be equally

spaced. In fact, we usually choose θk such that there are denser grids in the regions

where the error function has more variations.
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Basic principles

• The sort of filter designs described here can be applied to a large class of problems,

in particular the design of filters with arbitrary magnitude response, phase equalizers,

and filters with simultaneous specifications of magnitude and phase responses. The

last two classes are illustrated below.
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Basic principles

• (cont.)

– Phase equalizer: the transfer function of a phase equalizer is (see Section 4.7.1)

Hl(z) =

M∏

i=1

a2iz
2 + a1iz + 1

z2 + a1iz + a2i

(166)

Since its magnitude is 1, the objective function becomes

L2pτ(γ, τ0) =

K∑

k=1

W(θk) (τl(γ, θk) − τs(θk) + τ0)
2p

(167)

where τs is the group delay of the original digital filter, τl(γ, θk) is the equalizer

group delay and τ0 is a constant delay, whose value minimizes
∑K

k=1(τs(θk) − τ0)2p.
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Basic principles

• (cont.)

– Simultaneous approximation of magnitude and group-delay responses: for this

type of approximation, the objective function can be given by

L2p,2qM, τ(γ, τ0) = δ

K∑

k=1

WM(θk) (M(γ, θk) − f(θk))
2p

+(1 − δ)

R∑

r=1

Wτ(θk) (τ(γ, θr) + τ(θr) − τ0)
2p

(168)

where 0 ≤ δ ≤ 1 and τ(θr) is the group delay which we wish to equalize.

Usually, in the simultaneous approximation of magnitude and group-delay

responses, the numerator of H(z) is forced to have zeros on the unit circle or in

reciprocal pairs, such that the group delay is a function of the poles of H(z) only.

The task of the zeros would be to shape the magnitude response.
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Basic principles

• (b) Choosing the form of the transfer function: one of the most convenient ways to

describe an IIR H(z) is the cascade form decomposition, because the filter stability

can be easily tested and controlled.

• In this case, the coefficient vector γ is of the form

γ = (γ′
11, γ′

21, m11, m21, . . ., γ′
1i, γ

′
2i, m1i, m2i, . . ., H0) (169)

• Unfortunately, the expressions for the magnitude and group delay of H(z), as a

function of the coefficients of the second-order sections, are very complicated.

• The same comment holds for the expressions of the partial derivatives of H(z) with

respect to the coefficients, which are also required in the optimization algorithm.

• An alternative solution is to use the poles and zeros of the second-order sections

represented in polar coordinates as parameters.
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• In this case, the coefficient vector γ becomes

γ = (rz1, φz1, rp1, φp1, . . ., rzi, φzi, rpi, φpi, . . ., k0) (170)

and the magnitude and group-delay responses are respectively expressed as

M(γ, ω) = k0

m∏

i=1






ˆ

1−2rzi cos(ω−φzi)+r2
zi

˜
1
2

ˆ

1−2rpi cos(ω−φpi)+r2
pi

˜ 1
2






×






ˆ

1−2rzi cos(ω+φzi)+r2
zi

˜
1
2

ˆ

1−2rpi cos(ω+φpi)+r2
pi

˜ 1
2





(171)

τ(γ, ω) =

N∑

i=1

"

1−rpi cos(ω−φpi)

1−2rpi cos(ω−φpi)+r2
pi

+
1−rpi cos(ω+φpi)

1−2rpi cos(ω+φpi)+r2
pi

−
1−rzi cos(ω−φzi)

1−2rzi cos(ω−φzi)+r2
zi

−
1−rzi cos(ω+φzi)

1−2rzi cos(ω+φzi)+r2
zi

–

(172)
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Basic principles

• In an optimization problem such as this, the first- and second-order derivatives should

be determined using closed-form formulas to speed up the convergence process.

• In fact, the use of numerical approximation to calculate such derivatives would make

the optimization procedure too complex.
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Basic principles

• The partial derivatives of the magnitude and group delay with respect to the radii and

angles of the poles and zeros, that are required in the optimization processes, are:

∂M

∂rzi

= M(γ, ω)

»

rzi −cos(ω−φzi)

1−2rzi cos(ω−φzi)+r2
zi

+
rzi −cos(ω+φzi)

1−2rzi cos(ω+φzi)+r2
zi

–

(173)

∂M

∂φzi

= −M(γ, ω)

»

rzi sin(ω−φzi)

1−2rzi cos(ω+φzi)+r2
zi

−
rzi sin(ω+φzi)

1−2rzi cos(ω+φzi)+r2
zi

–

(174)

∂τ

∂rpi

=

{
(1+r2

pi) cos(ω−φpi)−2rpi
ˆ

1−2rpi cos(ω−φpi)+r2
pi

˜2
+

(1+r2
pi) cos(ω+φpi)−2rpi

ˆ

1−2rpi cos(ω+φpi)+r2
pi

˜2

}

(175)

∂τ

∂φpi

=

{
rpi(1−r2

pi) sin(ω−φpi)
ˆ

1−2rpi cos(ω−φpi)+r2
pi

˜2
−

rpi(1−r2
pi) sin(ω+φpi)

ˆ

1−2rpi cos(ω+φpi)+r2
pi

˜2

}

(176)
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Basic principles

• We also need ∂M
∂rpi

, ∂M
∂φpi

, ∂τ
∂rzi

, and ∂τ
∂φzi

, which are similar to the expressions

above.

• These derivatives are part of the expressions of the partial derivatives of the

objective function with respect to the filter poles and zeros which are the derivatives

used in the optimization algorithms employed.

• These derivatives are:

∂L2pM(γ)

∂rzi

=

K∑

k=1

2pWM(θk)
∂M

∂rzi

(M(γ, θk) − f(θk))
2p−1

(177)

∂L2pτ(γ)

∂rzi

=

K∑

k=1

2pWτ(θk)
∂τ

∂rzi

(τ(γ, θk) − f(θk))
2p−1

(178)
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Basic principles

• Analogously, we need the expressions for
∂L2pM(γ)

∂φzi
,

∂L2pM(γ)

∂rpi
,

∂L2pM(γ)

∂φpi
,

∂L2pτ(γ)

∂φzi
,

∂L2pτ(γ)

∂rpi
, and

∂L2pτ(γ)

∂φpi
, which are similar to the expressions given

above.

• It is important to note that we are interested only in generating stable filters. Since we

are performing a search for the minimum of the error function on the parameter

space Γ , the region in which the optimal parameter should be searched is a

restricted subspace Γs = {γ | rpi < 1, ∀i}.
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Basic principles

• (c) Choosing the optimization procedure: there are several optimization methods

suitable for solving the problem of filter approximation. Choosing the best method

depends heavily on the designer’s experience in dealing with this problem and on the

available computer resources.

• The optimization algorithms used are such that they will converge only if the error

function has a local minimum in the interior of the subspace Γs and not on the

boundaries of Γs.

• In the present case, this is not a cause for concern because the magnitude and group

delay of digital filters become large when a pole approaches the unit circle, and, as a

consequence, there is no local minimum corresponding to poles on the unit circle.
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Basic principles

• In this manner, if we start the search from the interior of Γs, that is, with all the poles

strictly inside the unit circle, and constrain our search to the subspace Γs, a local

minimum not located at the boundary of Γs will be reached for certain.

• Due to the importance of this step for setting up a procedure for designing IIR digital

filters, for the sake of completeness and clarity of presentation, its discussion is left to

the next subsection, which is devoted exclusively to it.
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Multi-variable function minimization method

• An n-variable function F(x) can be approximated by a quadratic function in a small

region around a given operating point.

• For instance, in a region close to a point xk, we can write that

F(xk + δk) ≈ F(xk) + gT(xk)δk +
1

2
δ

T
kH(xk)δk (179)

where

gT(xk) =

[

∂F

∂x1

,
∂F

∂x2

, . . .,
∂F

∂xn

]

(180)

is the gradient vector of F(x) at the operating point xk.
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Multi-variable function minimization method

• The Hessian matrix H(xk) of F(x) defined as

H(xk) =

























∂2F

∂x2
1

∂2F
∂x1∂x2

· · · ∂2F
∂x1∂xn

∂2F
∂x2∂x1

∂2F

∂x2
2

· · · ∂2F
∂x2∂xn

...
...

. . .
...

∂2F
∂xn∂x1

∂2F
∂xn∂x2

· · · ∂2F
∂x2

n

























(181)

• Clearly, if F(x) is a quadratic function, the right-hand side of equation (179) is

minimized when

δk = −H−1(xk)g(xk) (182)
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Multi-variable function minimization method

• If, however, the function F(x) is not quadratic and the operating point is far away from

a local minimum, we can devise an algorithm which iteratively searches the minimum

in the direction of δk as

xk+1 = xk + δk = xk − αkH−1(xk)g(xk) (183)

where the convergence factor, αk, is a scalar that minimizes, in the kth iteration,

F(xk + δk) in the direction of δk.

• There are several procedures for determining the value of αk, which can be

considered as two classes: exact and inexact line searches.

138



Diniz, da Silva and Netto

Multi-variable function minimization method

• As a general rule of thumb, an inexact line search should be used when the

operating point is far from a local minimum, because in these conditions it is

appropriate to trade accuracy for faster results.

• However, when the parameters approach a minimum, accuracy becomes an

important issue, and an exact line search is the best choice.

• The minimization procedure described above is widely known as the Newton

method. The main drawbacks related to this method are the need for computation of

the second-order derivatives of the objective function F(x) with respect to the

parameters in x and the necessity of inverting the Hessian matrix.
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Multi-variable function minimization method

• Due to these two reasons, the most widely used methods for the solution of the

simultaneous approximation of magnitude and phase are the so-called quasi-Newton

methods.

• These methods are characterized by an attempt to build the inverse of the Hessian

matrix, or an approximation of it, using the data obtained during the optimization

process.

• The updated approximation of the Hessian inverse is used in each step of the

algorithm in order to define the next direction in which to search for the minimum of

the objective function.

• A general structure of an optimization algorithm suitable for designing digital filters is

given below, where Pk is used as an estimate of the Hessian inverse.
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Multi-variable function minimization method

• Algorithm:

– (i) Algorithm initialization:

Set the iteration counter as k = 0.

Choose the initial vector x0 corresponding to a stable filter.

Use the identity as the first estimate of the Hessian inverse, that is, Pk = I.

Compute F0 = F(x0).

– (ii) Convergence check:

Check if convergence was achieved by using an appropriate criterion. For

example, a criterion would be to verify if Fk < ǫ where ǫ is a pre-defined error

threshold. An alternative criterion is to verify that ‖ xk − xk−1 ‖2< ǫ′.

If the algorithm has converged, go to step (iv), otherwise go on to step (iii).

141



Diniz, da Silva and Netto

Multi-variable function minimization method

• (cont.):

– (iii) Algorithm iteration:

Compute gk = g(xk).

Set sk = −Pkgk.

Compute αk that minimizes F(x) in the direction of sk.

Set δk = αksk.

Upgrade the coefficient vector, xk+1 = xk + δk.

Compute Fk+1 = F(xk+1).

Update Pk, generating Pk+1 (see discussion below).

Increment k and return to step (ii).

– (iv) Data output:

Display x∗ = xk and F∗ = F(x∗).
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Multi-variable function minimization method

• We should note that the way that the estimate Pk of the Hessian inverse is updated

was omitted from the above algorithm. In fact, what distinguishes the different

quasi-Newton methods is solely the way that Pk is updated.

• The most widely known quasi-Newton method is the Davidson-Fletcher-Powell

method. Such an algorithm updates Pk in the form

Pk+1 = Pk +
δkδ

T
k

δ
T
k∆gk

−
Pk∆gk∆gT

kPk

∆gT
kPk∆gk

(184)

where ∆gk = gk − gk−1.
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Multi-variable function minimization method

• However, our experience has shown that the Broyden-Fletcher-Goldfarb-Shannon

(BFGS) method is more efficient. This algorithm updates Pk in the form

Pk+1 = Pk +

(

1 +
∆gT

kPk∆gk

∆gT
kδk

)

δkδ
T
k

∆gT
kδk

−
δk∆gT

kPk + Pk∆gkδ
T
k

∆gT
kδk

(185)

with ∆gk as before.

• It is important to notice that, in general, filter designers do not need to implement an

optimization routine as they can employ optimization routines already available in a

number of computer packages.

• What the designers are required to do is to express the objective function and

optimization problem in a way that can be input to the chosen optimization routine.
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Example 6.5

• Design a bandpass filter satisfying the specifications below:

M(ω) = 1, for 0.2π < ω < 0.5π

M(ω) = 0, for 0 < ω < 0.1π and 0.6π < ω < π

τ(ω) = L, for 0.2π < ω < 0.5π






(186)

where L is constant.

145



Diniz, da Silva and Netto

Example 6.5 - Solution

• Since it is a simultaneous magnitude and phase approximation, the objective function

is given by equation (168), with the expressions for magnitude and group delay, and

their derivatives given in equations (171)–(178).

• We can start the design with an eighth-order transfer function with the characteristics

given in Table 8.

• This initial filter is designed with the objective of approximating the desired

magnitude specifications, and its average delay in the passband is used to estimate

an initial value for L.
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Example 6.5 - Solution

Table 8: Characteristics of the initial bandpass filter. Gain constant: H0 = 0.0588.

Filter zeros (rzi
; φzi

[rad]) Filter poles (rpi
; φpi

[rad])

rz1
= 1.0; φz1

= 0.1740 rp1
= 0.8182; φp1

= 0.3030

rz2
= 1.0; φz2

= −0.1740 rp2
= 0.8182; φp2

= −0.3030

rz3
= 0.7927; φz3

= 0.5622 rp3
= 0.8391; φp3

= 0.4837

rz4
= 0.7927; φz4

= −0.5622 rp4
= 0.8391; φp4

= −0.4837

rz5
= 1.0; φz5

= 0.9022 rp5
= 0.8346; φp5

= 0.6398

rz6
= 1.0; φz6

= −0.9022 rp6
= 0.8346; φp6

= −0.6398

rz7
= 1.0; φz7

= 2.6605 rp7
= 0.8176; φp7

= 0.8053

rz8
= 1.0; φz8

= −2.6605 rp8
= 0.8176; φp8

= −0.8053
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Example 6.5 - Solution

• In order to solve this optimization problem, we used a quasi-Newton program based

on the BFGS method.

• Keeping the order of the starting filter at n = 8, we ran 100 iterations without

obtaining noticeable improvements.

• We then increased the numerator and denominator orders by two, that is, we made

n = 10, and after a few iterations the solution described in Table 9 was achieved.
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Example 6.5 - Solution

Table 9: Characteristics of the resulting bandpass filter. Gain constant: H0 =

0.058 772 50.

Filter zeros (rzi
; φzi

[rad]) Filter poles (rpi
; φpi

[rad])

rz1
= 1.0; φz1

= 0.1232 rp1
= 0.0; φp1

= 0.0

rz2
= 1.0; φz2

= −0.1232 rp2
= 0.0; φp2

= 0.0

rz3
= 0.7748; φz3

= 0.5545 rp3
= 0.9072; φp3

= 0.2443

rz4
= 0.7748; φz4

= −0.5545 rp4
= 0.9072; φp4

= −0.2443

rz5
= 1.2907; φz5

= 0.5545 rp5
= 0.8654; φp5

= 0.4335

rz6
= 1.2907; φz6

= −0.5545 rp6
= 0.8654; φp6

= −0.4335

rz7
= 1.0; φz7

= 1.0006 rp7
= 0.8740; φp7

= 0.6583

rz8
= 1.0; φz8

= −1.0006 rp8
= 0.8740; φp8

= −0.6583

rz9
= 1.0; φz9

= 2.0920 rp9
= 0.9152; φp9

= 0.8604

rz10
= 1.0; φz10

= −2.0920 rp10
= 0.9152; φp10

= −0.8604
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Example 6.5 - Solution

• Figure 12 illustrates the resulting frequency response.

• The attenuation at the first stopband edges are 18.09 dB and 18.71 dB, respectively.

• The attenuation at the second stopband edges are 18.06 dB and 19.12 dB,

respectively.

• The passband attenuation at the edges are 0.69 dB and 0.71 dB, the two passband

peaks have gains of 0.50 dB and 0.41 dB, whereas the attenuation at the passband

minimum point is 0.14 dB.

• The group-delay values at the beginning of the passband, at the passband minimum,

and at the end of the passband are 14.02 s, 12.09 s, and 14.38 s, respectively.
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Example 6.5 - Solution
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Figure 12: Optimized bandpass filter: (a) magnitude response; (b) phase response.
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Time-domain approximation

• In some applications, time-domain specifications are given to the filter designer. In

these cases the objective is to design a transfer function H(z) such that the

corresponding impulse response hn is as close as possible to a given sequence gn,

for n = 0, 1, . . ., (K − 1), where

H(z) =
b0 + b1z−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N
= h0 + h1z−1 + h2z−2 + · · · (187)

• Since H(z) has (M + N + 1) coefficients, if K = (M + N + 1) there is at least

one transfer function available which satisfies the specifications. This solution can be

obtained through optimization, as follows.
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Time-domain approximation

• By equating

H(z) = g0 + g1z−1 + · · · + gM+Nz−(M+N) + · · · (188)

and considering the z-transform products as convolutions in the time domain, we can

write, from equations (187) and (188), that

N∑

n=0

angi−n =






bi, for i = 0, 1, . . ., M

0, for i > M
(189)
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Time-domain approximation

• Now, assuming that gn = 0, for all n < 0, this equation can be rewritten in matrix

form as









































b0

b1

b2

...

bM

0

...

0









































=









































g0 0 0 · · · 0

g1 g0 0 · · · 0

g2 g1 g0 · · · 0

...
...

...
. . .

...

gM gM−1 gM−2 · · · gM−N

...
...

...
. . .

...

...
...

...
. . .

...

gM+N gM+N−1 gM+N−2 · · · gM



















































































1

a1

a2

...

...

...

...

aN











































(190)
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Time-domain approximation

• Which can be partitioned as






















b0

b1

b2

...

bM























=























g0 0 0 · · · 0

g1 g0 0 · · · 0

g2 g1 g0 · · · 0
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gM gM−1 gM−2 · · · gM−N
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




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


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















0

0

...

0

















=











gM+1 · · · gM−N+1

...
. . .

...
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...

aN























(192)

155



Diniz, da Silva and Netto

Time-domain approximation

• Or, equivalently,




b

0



 =





G1

g2 G3









1

a



 (193)

where g2 is a column vector and G3 is an N × N matrix.

• If G3 is nonsingular, the coefficients a are given by

a = −G−1
3 g2 (194)

• If G3 is singular of rank R < N, there are infinite solutions, one of which is obtained

by forcing the first (N − R) entries of a to be null.

156



Diniz, da Silva and Netto

Time-domain approximation

• With a available, b can be computed as

b = G1





1

a



 (195)

• The main differences between the filters designed with different values of M and N,

while keeping K = (M + N + 1) constant, are the values of hk, for k > K.
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Time-domain approximation - Approximate approach

• A solution that is in general satisfactory is obtained by replacing the null vector in

equation (193) by a vector ǫ̂ whose magnitude should be minimized.

• In that manner, equation (193) becomes




b

ǫ̂



 =





G1

g2 G3









1

a



 (196)

• Given the prescribed gn and the values of N and M, we then have to find a vector a

such that (ǫ̂T
ǫ̂) is minimized, with

ǫ̂ = g2 + G3a (197)
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Time-domain approximation - Approximate approach

• The value of a which minimizes (ǫ̂T
ǫ̂) is the normal equation solution,

GT
3G3a = −GT

3g2 (198)

• If the rank of G3 is N, then the rank of GT
3G3 is also N, and, therefore, the solution

is unique, being given by

a = −[GT
3G3]−1GT

3g2 (199)

• On the other hand, if the rank of G3 is R < N, we should force ai = 0, for

i = 0, 1, . . ., (R − 1), as before, and redefine the problem.
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Time-domain approximation - Approximate approach

• It is important to point out that the procedure described above does not lead to a

minimum squared error in the specified samples.

• In fact, the squared error is given by

eTe =

K∑

n=0

(gn − hn)
2

(200)

where gn and hn are the desired and obtained impulse responses, respectively.

• In order to obtain b and a which minimize eTe, we need an iterative process. The

time-domain approximation can also be formulated as a system identification

problem.

160



Diniz, da Silva and Netto

Example 6.6

• Design a digital filter characterized by M = 3 and N = 4 such that its impulse

response approximates the following sequence:

gn =
1

3

[

1

4n+1
+ e−n−1 +

1

(n + 2)

]

u(n) (201)

for n = 0, 1, . . ., 7.
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Example 6.6 - Solution

• Using M = 3 and N = 4, one gets

G1 =















g0 0 0 0 0

g1 g0 0 0 0

g2 g1 g0 0 0

g3 g2 g1 g0 0















(202)

g2 =
[

g4 g5 g6 g7

]T

(203)

G3 =















g3 g2 g1 g0

g4 g3 g2 g1

g5 g4 g3 g2

g6 g5 g4 g3















(204)
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Example 6.6 - Solution

• As G3 is nonsingular, we can use equations (197) and (195) to determine

H(z) =
0.3726z3 − 0.6446z2 + 0.3312z − 0.0466

z4 − 2.2050z3 + 1.6545z2 − 0.4877z + 0.0473
(205)

which has the exact desired impulse response for n = 0, 1, . . ., 7.

• The impulse response corresponding to the transfer function above is depicted in

Figure 13, together with the prescribed impulse response.

• The responses are the same in the first few iterations, and they become distinct for

n > 7, as expected, because we have only eight coefficients to adjust.
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Example 6.6 - Solution
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Figure 13: Impulse responses: desired (solid line) and obtained (dotted line).
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Do-it-yourself: IIR filter approximations

• Experiment 6.1: The elliptic bandstop filter specified in Example 6.3 can be readily

designed in MATLAB as follows:

Ap = 0.5; Ar = 65;

wr1 = 850/5000; wr2 = 1150/5000;

wp1 = 980/5000; wp2 = 1020/5000;

wp = [wp1 wp2]; wr = [wr1 wr2];

[n,wn] = ellipord(wp,wr,Ap,Ar);

[b,a] = ellip(n,Ap,Ar,wp);

• In this script, commands ellipord and ellip require a frequency

normalization such that the Ω̄s = 2, thus explaining all divisions by Ωs

2
= 5000.

• Similar Butterworth or Chebyshev filters can be designed using

butterord-butter or chebyord-cheby commands, respectively.
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Do-it-yourself: IIR filter approximations

• The group delay response, determined with the grpdelay command, for the

elliptic filter is seen in Figure 14.

• This figure indicates that two similar frequencies within the filter passband can suffer

quite different delays.

• For instance, frequencies f1 = 980 rad/s and f2 = 990 rad/s are delayed in

approximately 300 and 150 samples, respectively, corresponding in this case to a

difference of about

∆t =
300 − 150

Fs

=
150
Ωs

2π

= 94 ms
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Do-it-yourself: IIR filter approximations
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Figure 14: Group delay response in passband of elliptic filter.
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Do-it-yourself: IIR filter approximations

• Figure 15 compares the input and output signals for each frequency f1 and f2 as

determined by the following script:

Fs = 10000/(2*pi); Ts = 1/Fs; time = 0:Ts:(1-Ts);

f1 = 980; f2 = 990;

x1 = cos(f1.*time); y1 = filter(b,a,x1);

x2 = cos(f2.*time); y2 = filter(b,a,x2);

• When the input signal presents a richer spectral component, this delay difference

may cause severe distortion on the output signal.

• In such cases, a delay equalizer must be employed or the designer should opt for an

FIR filter with perfectly linear phase.
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Do-it-yourself: IIR filter approximations
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Figure 15: Input (solid line) and output (dashed line) signals for elliptic bandpass filter: (a)

f1 = 980 rad/s; (b) f2 = 990 rad/s.
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Do-it-yourself: IIR filter approximations

• Experiment 6.2: Consider the analog transfer function of the normalized-lowpass

Chebyshev filter in Example 6.1, repeated here for convenience

Ha(s) = 0.4913
1

s3 + 0.9883s2 + 1.2384s + 0.4913
(206)

• The corresponding discrete-time transfer function H(z) obtained with the bilinear

transformation method with Fs = 2 Hz can be determined in MATLAB using the

command lines

b = [0.4913]; a = [1 0.9883 1.2384 0.4913]; Fs = 2;

[bd,ad] = bilinear(b,a,Fs);

where bd and ad receive the numerator and denominator coefficients, respectively,

of H(z) such that

H(z) =
0.0058(z3 + 3z2 + 3z + 1)

z3 − 2.3621z2 + 2.0257z − 0.6175
(207)
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Do-it-yourself: IIR filter approximations

• The magnitude responses of Ha(s) and H(z) are shown in Figure 16.
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Figure 16: Analog (solid line) and digital (dashed line) magnitude responses related by

bilinear transformation method with Fs = 2 Hz.
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Do-it-yourself: IIR filter approximations

• Interesting enough, the bilinear transformation can be implemented as a coefficient

mapping between the two transfer functions.

• If we write

Ha(s) =
b̂Nsn + b̂N−1sN−1 + · · · + b̂1s + b̂0

âNsn + âN−1sN−1 + · · · + â1s + â0

(208)

H(z) =
bNzn + bN−1zN−1 + · · · + b1z + b0

aNzn + aN−1zN−1 + · · · + a1z + a0

(209)

and define the coefficient vectors

â = [âN âN−1 . . . â0]
T
; b̂ =

[

b̂N b̂N−1 . . . b̂0

]T
(210)

a = [aN aN−1 . . . a0]
T
; b = [bN bN−1 . . . b0]

T
(211)
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Do-it-yourself: IIR filter approximations

• One may then write that:

a = PN+1∆N+1â (212)

b = PN+1∆N+1b̂ (213)

where

∆N+1 = diag

[

(

2

T

)N

,

(

2

T

)N−1

, . . . ,

(

2

T

)

, 1

]

(214)
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Do-it-yourself: IIR filter approximations

• And PN+1 is an (N + 1) × (N + 1) Pascal matrix with the following properties:

– All elements in the first row are equal to 1.

– Elements of first column are determined, for i = 1, 2, . . . , (N + 1), as

Pi,1 = (−1)i−1 N!

(N − i + 1)!(i − 1)!
(215)

– The remaining elements, for i, j = 2, 3, . . . , (N + 1), are given by

Pi,j = Pi−1,j + Pi−1,j−1 + Pi,j−1 (216)
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Do-it-yourself: IIR filter approximations

• In this experiment, since Fs = 2 and N = 3 we get

PN+1 =















1 1 1 1

−3 −1 1 3

3 −1 −1 3

−1 1 −1 1















; ∆N+1 =















43 0 0 0

0 42 0 0

0 0 4 0

0 0 0 1















(217)

175



Diniz, da Silva and Netto

Do-it-yourself: IIR filter approximations

• Such that

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(218)
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(219)

which correspond to the same discrete-time transfer function as before, after proper

normalization forcing aN = 1.

176


