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Introduction

The most widely used realizations for IIR filters are the cascade and parallel forms of
second-order, and, sometimes, first-order, sections. The main advantages of these
realizations come from their inherent modularity, which leads to efficient VLSI
implementations, to simplified noise and sensitivity analyses, and to simple limit-cycle

control.

We also deal with other interesting realizations such as the doubly-complementary filters,
made from allpass blocks, and IIR lattice structures, whose synthesis method is
presented. A related class of realizations are the wave digital filters, which have very low

sensitivity and also allow the elimination of zero-input and overflow limit cycles.
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IR parallel and cascade filters

e The Nth-order IIR direct forms seen in Chapter 4 have roundoff-noise transfer
functions Gy (z) and scaling transfer functions F;(z) whose L, or Lo, norms
assume significantly high values, because these transfer functions do not present the

filter zeros to attenuate the gain introduced by the filter poles close to the unit circle.

e Also, in an Nth-order IIR direct-form filter, a variation in a single coefficient causes
variation on all the polynomial roots, leading to high sensitivity to coefficient

guantization.

e To deal with these issues, it is wise to implement high-order transfer functions
through the cascade or parallel connection of second-order building blocks, instead
of using the direct-form realization. Such a structures also have the advantage of

modularity, making them suitable for VLSI implementation.
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Parallel form

e A canonic parallel realization is shown in Figure 1, where the corresponding transfer

function is given by

m m 2
_ Proy YoiZ® +Y1iZ
H(z) =ho + ) HI (Z)_ho—l_zzz—l—mnz—l—mﬁ (1)
i=1 i=1
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Figure 1: Parallel structure with direct-form sections.
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Parallel form

® |t is easy to show that the scaling coefficients to avoid internal signal overflow in the

form seen in Figure 1 are given by

B 1
IR

Ai (2)

where

1 1
Di(z) z?+myiz+ my

Fi(z) = (3)

e Naturally, the numerator coefficients of each section must be divided by A, so that

the overall filter transfer function remains unchanged.
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Parallel form

e The PSD of the output roundoff noise for the structure in Figure 1 is

My (el®) =02 | 2m + 1 +3Z —HP (e HP (e71) (4)

111

when guantizations are performed before the additions.
® In this case, the output-noise variance, or the average power of the output noise, is

0‘(2) = 0% 2m+ 1 —|—3Z }\2 HH1D er HZ (5)

i=1 1

e And the relative noise variance becomes

2
O-O E ]I (U

i=1 "1
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Parallel form

e For the cases where quantization is performed after the additions, the PSD becomes

m
. ] . .
Py(e) = o2 {14 3 SHP () HD (e ) ™)
i=1"1
and then
2_0%_ 1 m] Hp(jw)z 3
O'—O_—%— ‘|‘1Z1EH ie HZ ()

e Although only even-order structures have been discussed so far, expressions for

odd-order structures (containing one first-order section) are obtained in a similar way.

e In the parallel forms, as the positions of the zeros depend on the summation of
several polynomials, which involves all filter coefficients, the precise positioning of the
filter zeros becomes a difficult task. Such high sensitivity of the zeros to coefficient
guantization constitutes the main drawback of the parallel forms for most practical
implementations.
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Cascade form

® The cascade connection of direct-form second-order sections, depicted in Figure 2,

has a transfer function given by

= YOiZz +Y1iZ + Y21
z2 + myiz + moy

H(z) =] [ Hilz) = ©)
i=1

1=1

x(n)

y(n)

Figure 2: Cascade of direct-form sections.

10
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Cascade form

® In this structure, the scaling coefficients are calculated as

1

}\i — 11 (10)
I TLi=1 Hj(2)Fi(2)lp
with
1 1
]:i — — 11
2) Di(z)  z%+miiz+myy -
as before.

e As illustrated in Figure 2, the scaling coefficient of each section can be incorporated
with the output coefficients of the previous section. This strategy leads not only to a
reduction in the multiplier count, but also to a possible decrease in the quantization

noise at the filter output, since the number of nodes to be scaled is reduced.

11
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Cascade form

e Assuming that the quantizations are performed before the additions, the output PSD

for the cascade structure of Figure 2 is given by

| 3 15 _ i UL, L . i
My (e*) = o2 3—I—EHH1(GWJH1(€ ) +5% — | [Hi(e)Hi(e™)
o . L

2
j=2 }\j 1=)
(12)
e The relative noise variance is then
5 2
0_2 3 m m .] m
2 Yo __ ~ (aj L NS
of =S =3+ [ [He)] +5) S| [He)|| | a3
€ T li=1 2 j=2 "9 ||i=j 5

12
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Cascade form

e For the case where quantizations are performed after additions, P, (z) becomes

| LI (L | B
My(e®) =02 |1+ Z 2 HHi(e’w)Hi(e ) (14)
i=1 " i=j
and then
2
o2 LA I | Pl |

== +) = [ [Hi(e) (15)

e i—=1 "9 ||i=j 5

13
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Cascade form

e Two practical problems that need consideration in the design of cascade structures

are:

— Which pairs of poles and zeros will form each second-order section (the pairing

problem).

— The ordering of the sections.

e Both issues have a large effect on the output quantization noise. In fact, the roundoff
noise and the sensitivity of cascade form structures can be very high if an

inadequate choice for the pairing and ordering is made.

14
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Cascade form: Pole-zero pairing

e A rule of thumb for the pole-zero pairing in cascade form using second-order
sections is to minimize the Lp norm of the transfer function of each section, for either

P =2o0rp = 00.

e The pairs of complex conjugate poles close to the unit circle, if not accompanied by
zeros which are close to them, tend to generate sections whose norms of H; (z) are
high. As a result, a natural rule is to pair the poles closest to the unit circle with the

zeros that are closest to them.

e Then one should pick the poles second closest to the unit circle and pair them with
the zeros, amongst the remaining, that are closest to them, and so on, until all

sections are formed.

e Needless to say, when dealing with filters with real coefficients, most poles and zeros
come in complex conjugate pairs, and in those cases the complex conjugate poles

(and zeros) are jointly considered in the pairing process.

15
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Cascade form: Section ordering

® For section ordering, first we must notice that, for a given section of the cascade

structure, the previous sections affect its scaling factor, whereas the following

sections affect the noise gain.

e \We then define a peaking factor that indicates how sharp the section frequency

response is

_ Hu(2)]ls .

P =
Hi(z)]]2

16
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Cascade form: Section ordering

e \We now consider two separate cases:

— If we scale the filter using the L, norm, then the scaling coefficients tend to be
large, and thus the signal-to-noise ratio at the output of the filter is in general not
problematic. In these cases, it is interesting to choose the section ordering so that
the maximum value of the output-noise PSD, ||PSD ||, , is minimized. Section 1

amplifies the ||PSD||« originally at its input by (A¢ |Hi (e/%)||s0 )*. Since in the
1

L5 scaling, A; = T (e then each section amplifies the |PSD|| by
W 2
(H||Fklf,((e;,-w))”|f; ) = Piz, the square of the peaking factor. Since the first sections

affect the least number of noise sources, one should order the sections in
decreasing order of peaking factors so as to minimize the maximum value of

output-noise PSD.

17



w2 CAMBRIDGE

Diniz, da Silva and Netto “§> UNIVERSITY PRESS

Cascade form: Section ordering

e Second case:

— If we scale the filter using the L, norm, then the scaling coefficients tend to be
small, and thus the maximum peak value of the output-noise PSD is in general
not problematic. In these cases, it is interesting to choose the section ordering so

that the output signal-to-noise ratio is maximized, that is, the output-noise

2
o

input by (A¢|[Hi (e!®)||2)°. Since in the Ly scaling, A

is minimized. Section 1 amplifies the output-noise variance at its
o 1
v [[Hi(el )]
jw 2
[Hi(e"™)]l2 _ 1
IHi (el )]loo p2’
square of the peaking factor. Since the first sections affect the least number of

variance O

. then
o0

each section amplifies the O% by ( the inverse of the

noise sources, one should order the sections in increasing order of peaking
2

factors so as to minimize 075

e For other types of scaling, both ordering strategies are considered equally efficient.

18
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Example 13.1

e Design an elliptic bandpass filter satisfying the following specifications:

A, = 05dB

A, = dB

Q,, = 850rad/s
Q,, = 980rad/s 0 (17)
Q,, = 1020 rad/s

Q,, = 1150rad/s
Q¢ = 10000rad/s )

e Realize the filter using the parallel and cascade forms of second-order direct-form
sections. Then scale the filters using L, norm and quantize the resulting coefficients

to 9 bits, including the sign bit, and verify the results.

19
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Example 13.1 - Solution

e Using the ellipord and ellip  commands in tandem, one can readily obtain
the direct-form filter in MATLAB. We may then use the residuez  command, and
combine the resulting first-order sections, to determine the parallel structure, whose

coefficients are shown in Table 1.

Table 1: Parallel structure using direct-form second-order sections. Feedforward coeffi-

cient: hg = —0.00015.

Coefficient Section1l Section2  Section 3

Yo —0.0077 —0.0079 0.0159
Y1 0.0049 0.00/78 —0.0128
my —1.6268 —1.5965 —1.6054
mp 0.9924 0.9921 0.9843

20
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Example 13.1 - Solution

e Using Ly norm, each block can be scaled by

1 1
IF@ 2~ | o 12

which can be determined in MATLAB using the command lines
= [1 mli m2i];
_I = freqz(1,D_i,npoints);
lambda_1 = 1/sqrt(sum(abs(F_i).”2)/npoints);
where NpPoINtS  is the number of points used in the freqz command. Scaling

A = (18)

the second-order blocks using these factors, the resulting Yo and 'y coefficients are
as given in Table 2, whereas the denominator coefficients 1 and m, for each

block remain unchanged.

21
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Table 2: Scaled parallel structure using direct-form second-order sections. Feedforward
coefficient: hg = —0.00015.

Coefficient Section1l Section2  Section 3
A 0.0711 0.0750 0.1039
o —0.1077 —0.1055  0.1528
VT] 0.0692 0.1036 —0.1236
my —1.6268 —1.5965 —1.6054
my 0.9924 0.9921 0.9843

22
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Example 13.1 - Solution

e Quantization of a given coefficient X using B bits (including the sign bit), can be
performed in MATLAB using the command line:
XQ = quant(x,2°(-(B-1)));

Using this approach with (B-1) = 8 results in the coefficients shown in Table 3.

Table 3: Parallel structure using direct-form second-order sections quantized with 9 bits.
Feedforward coefficient: [ho}Q = 0.0000.

Coefficient Section1l Section2 Section 3

[

0.0703 0.0742 0.1055
—0.1094  —0.1055 0.1523
0.0703 0.1055 —0.1250
—1.6250 —1.5977 —1.6055
0.9922 0.9922 0.9844

2>

Q
0

EIEITS
55

|

23
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Example 13.1 - Solution

e The cascade form can be obtained from the direct form in MATLAB using the

tf2S0S command. This yields the coefficients shown in Table 4.

Table 4: Cascade structure using direct-form second-order sections. Gain constant:
ho = 1.4362E — 04.

Coefficient  Section 1 Section 2 Section 3

Yo 1.0000 1.0000 1.0000
Y1 0.0000 —1.4848 —1.7198
Y2 —1.0000 1.0000 1.0000
my —1.6054 —1.5965 —1.6268
m; 0.9843 0.9921 0.9924

24
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Example 13.1 - Solution

e After section reordering and coefficient scaling, (a detailed implementation of these
procedures is given in Experiment 13.1) the cascade realization is characterized as

given in Table 5.

Table 5: Reordered cascade structure after coefficient scaling. Gain constant: h(’) =

hoA> = 0.0750.
Coefficient Section1’ Section2’ Section 3’
Y 0.1605 0.1454 0.0820
Vi —0.2383 —0.2501 0.0000
Y5 0.1605 0.1454  —0.0820
mj —1.5965 —1.6268 —1.6054
m) 0.9921 0.9924 0.9843

25
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Example 13.1 - Solution

e The quantized coefficients are as shown in Table 6. Notice that in this case, the

structure gain is not quantized to avoid it to become zero.

Table 6: Reordered cascade structure after coefficient quantization. Gain constant:

hylg = 0.0742.

Coefficient Section 1’ Section2’ Section 3’

Yoo 0.1602  0.1445  0.0820
vilg —0.2383  —0.2500  0.0000
v5lg 0.1602  0.1445  —0.0820
mi{l,  —1.5977 —1.6250 —1.6055
milg 0.9922  0.9922  0.9844

26
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Example 13.1 - Solution

® The magnitude responses for the ideal filter and the quantized parallel and cascade
realizations are depicted in Figure 3. Note that despite the reasonably large number
of bits used to represent the coefficients, the magnitude responses moved notably

away from the ideal ones.

27



CAMBRIDGE

Diniz, da Silva and Netto ” UNIVERSITY PRESS

v

-1.5¢

Magnitude response [dB]
Magnitude response [dB]
AN

F
r
¥
r
3
3
F
3

3
3
E
r
t
£
L
t
[
!
t
i

I

[ 4
[
L
E
£
| | | | | | L | Lz
700 800 900 1000 1100 1200 1300 1400 960 980 1000 1020 1040
Frequency [rad/s] Frequency [rad/s]

(a) (b)

Figure 3: Coefficient-quantization effects in the cascade and parallel forms, using direct-
form second-order sections: (a) overall magnitude response; (b) passband de-
tail. (Solid line — initial design; dashed line — cascade of direct-form sections

(9 bits); dotted line — parallel of direct-form sections (9 bits).)
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Error spectrum shaping

e \We now a technique to reduce the quantization noise effects on digital filters by
feeding back the quantization error. This technique is known as error spectrum

shaping (ESS) or error feedback.

e Consider every adder whose inputs include at least one nontrivial product which is
followed by a quantizer. The ESS consists of replacing all these adders by a
recursive structure, as illustrated in Figure 4, whose purpose is to introduce zeros in

the output-noise PSD.

29
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Error spectrum shaping

x(n) Digital network y(n)

Figure 4: Error spectrum shaping structure (Q denotes quantizer).

30
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Error spectrum shaping

e Although Figure 4 depicts a second-order feedback network for the error signal, in

practice the order of this network can assume any value.

e The ESS coefficients are chosen to minimize the output-noise PSD. In some cases,

these coefficients can be made trivial and still achieve sufficient noise reduction.

e Overall, the ESS approach can be interpreted as a form of recycling the quantization

error signal, thus reducing the effects of signal quantization after a particular adder.

e In theory, ESS can be applied to any internal quantization node of any digital filter.
However, since it implies an implementation overhead, ESS should be applied only at

selected internal nodes, whose noise gains to the filter output are high.

e Structures having reduced number of quantization nodes, for instance, are
particularly suitable for ESS implementation. For example, the direct-form structure

requires a single ESS substitution for the whole filter.

31
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Error spectrum shaping

e For the cascade structure of direct-form second-order sections, as in Figure 2, each
section j requires an ESS substitution. Let each feedback network be of second

order. The values of C1 ; and C; ; that minimize the output noise are calculated by

solving the following optimization problem:

( 7Y
m
| iz .72 I | (alw
C1,rjn,|22,]- < (] TC152 "+ 252 ) e Hi(e!™) ’ (19)
\ o 2)

32
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Error spectrum shaping

e In this case, the optimal values of €1 j and C, j are given by

it —tits B t%—tztg
C1,; = t% — _t% y €25 = t% — t% (20)
where
2
p m
tq :J HHi(ejw) cos wdw (21)
S bte
2
7T m
t) = J HHi(e‘w) cos(2w)dw (22)
e bl
2
7T m
ty = J [ [Hi(e)] dw (23)
— 17T

33
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Error spectrum shaping

e For a first-order ESS, the optimal value of 1 ; would be

b (24)
Cl1; = —.
1, ts
e Using ESS, with the quantization performed after summation, the output relative
power spectrum density (RPSD), which is independent of 0% for the cascade design,

IS given by

RPSD =1+ ) }\l (1 +cijz ' +e25z %) | [ Hi(e) (25)
j=1]" i=]

where 7\)- is the scaling factor of section j. This expression explicitly shows how the

ESS technique introduces zeros in the RPSD, thus allowing its subsequent reduction.

34
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Closed-form scaling

® In most types of digital filter implemented with fixed-point arithmetic, scaling is based
on the L, and L, norms of the transfer functions from the filter inputs to the inputs

of the multipliers.

e Usually, the L, norm is computed through summation of a large number of sample
points (of the order of 200 or more) of the squared magnitude of the scaling transfer

function.

e For the L, norm, a search for the maximum magnitude of the scaling transfer

function is performed over about the same number of sample points.

e |tis possible, however, to derive simple closed-form expressions for the L, and L
norms of second-order transfer functions. Such expressions are useful for scaling the
sections independently, and greatly facilitate the design of parallel and cascade

realizations of second-order sections.

35
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Closed-form scaling

e Consider, for example,
Y1Z+Y2
H(z) = —
zc+mijz+ my

(26)

e Using, for instance, the pole-residue approach for solving circular integrals, the

corresponding L, norm is given by

m
Y2 +v2 = 2y1y———
w2 my + 1
|[H(e')||2 = (27)

2
1—m2) |1 = _ M1
(1-m2) <m2—|—1>

36
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Closed-form scaling

e For the L., norm, we have to find the maximum of |H(z)|%. By noticing that
IH(el*)|? is a function of cos w, and cos w is limited to the interval [—1, 1], we
have that the maximum is either atthe extremaw =0(z=1), w =T (z = —1),

or at Wq suchthat —1 < coswyo < 1.

e Therefore, the L., norm is given by

2 2 2 2
_ - 2
IH(e™)|12 = max ( Y1172 ) ( Y1+Y2 ) Yitvat YZWZC 28
I+mq+m; I—my+m; 4mz[(C—ﬂ) —I—v}

37
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Closed-form scaling

e Where
. 1 2 1 — 2 2 2
4m2 4m2 4m2 2Y1Y2
,
sat(n), for y1y2 =0
G =< 2 (30)
sat{v [\/(1+n> +v2—1]}, fory1y2 # 0
\ v v
with sat(-) being defined as
)
1, forx > 1
sat(x) =<¢ —1, forx < —1 (31)
x, for—1<x<1]

\

38
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Example 13.2

e Given the transfer function below:

(0522 —z+1)

H(z) = (22 —z+0.5)(z + 0.5)

(32)

1. Show cascade and parallel decompositions using Type 1 direct-form sections.
2. Scale the filters using L norm.

3. Calculate the output noise variances.

39
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Example 13.2 - Solution

e The cascade decomposition is

(0522 —z+1) 1

H —
) (z2—2z+0.5) z+0.5

(33)

e The second-order section of the cascade design is an allpass so that we only have to

scale the internal nodes of the section.

e The result is obtained by employing equation (27), that is

17 ‘
IF1(2)l5 = H— B S
D) [, (1-0.25) (1 - (%)2)
so that
1 1
M= =g = 08333 (35)
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Example 13.2 - Solution

e For the second section the scaling factor should be

A, = v0.75 = \/1 —(0.5)2 (36)
e The relative output noise variance for the cascade design is given by
03 1 1 1
2 =3~ —+4—— 4+1=13.88 37
02 °N075 " A075 57)

41
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Example 13.2 - Solution

e The parallel decomposition is

24D . B

H(z) —
(z) 22 —2z2+1) ' 2405

e The scaling factors for the parallel realization are given by

1 1
M= V144 " 12 = 0.8333

10
Ay = EVOJS = 0.6667

and

respectively.

42
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Example 13.2 - Solution

e Using the result of equation (27) we can compute the L, norm of the second-order

section in the parallel solution.

] 64 +4 49 24 2><8><7 —_1 ] 38.333
H; (2)]5 = L2 = | =22 =092 @
so that the relative output noise variance for the parallel design is given by
o2 T 1
Y =35 |H(2)I3 4=10.98 42
> Azu 12+ 57575 + (42

43
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State-space sections

e The state-space approach allows the formulation of a design method for IIR digital
filters with minimum roundoff noise. The theory behind this elegant design method
was originally proposed by Mullis and Roberts. For a filter of order N, the minimum
noise method leads to a realization entailing (N + 1)2 multiplications. This multiplier
count is very high for most practical implementations, which induced investigators to
search for realizations which could approach the minimum noise performance while
employing a reasonable number of multiplications. A good tradeoff is achieved if we
realize high-order filters using parallel or cascade forms, where the second-order
sections are minimum-noise state-space structures. In this section, we study two

commonly used second-order state-space sections suitable for such approaches.

44
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Optimal state-space sections

e The second-order state-space structure shown in Figure 5 can be described by

x(n+ 1) =Ax(n) +Bu(n)
(43)
y(n) =c™x(n) + bu(n)

where x(m) is a column vector representing the outputs of the delays, y(n) is a

scalar, and
aj; a2 by .
A = ,B: ,C — C1 Co ,D: d (44)
a; azz b;

45
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Optimal state-space sections

b, €1

A\ RS2

u(n) o oy(n)

Figure 5: Second-order state-space structure.
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Optimal state-space sections

e The overall transfer function, described as a function of the matrix elements related

to the state-space formulation, is given by

H(z) =Cc"[iz—A] ' B +D. (45)

e The second-order state-space structure can realize transfer functions described by

Y1Z+ Y2
zZZ+miz+my

H(z) =d+ (46)

e Given H(z) in the form of equation (46), an optimal design in the sense of
minimizing the output roundoff noise can be derived, since the state-space structure

has more coefficients than the minimum required.
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Optimal state-space sections

e To explore this feature, we examine, without proof, a theorem first proposed by Mullis
and Roberts. The design procedure resulting from the theorem generates
realizations with a minimum-variance output noise, provided that the L, norm is

employed to determine the scaling factor.

e It is interesting to notice that, despite being developed for filters using L, scaling, the

minimum-noise design also leads to low-noise filters scaled using the Lo, norm.

e Note that, in the remainder of this subsection, primed variables will indicate filter

parameters after scaling.
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Optimal state-space sections

e Theorem 13.1: The necessary and sufficient conditions to obtain an output noise

with minimum variance in a state-space realization are given by

W = RK'R (47)
/ / / /
fori,j = 1,2,..., N, where N is the filter order, Ris an N x N diagonal matrix,

and

ZA/k / /H ) (49)

o0
w =Y (A)Hcea’ (50)

k=0

where the H indicates the conjugate and transpose operations.
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Optimal state-space sections

e It can be shown that
/! / joo 2
Kii = HFi(e )Hz (51)
- 2
Wi = [[Gi(e™)][; (52)
fori=1,2,..., N, where F’i(z) is the transfer function from the scaled filter input

to the state variable x; (k 4+ 1), and G/ (z) is the transfer function from the state

variable x; (k) to the scaled filter output.

e Then, from equations (51) and (52), we have that, in the frequency domain,

equation (48) is equivalent to

IFL (121G (e )]|12 = [IFj(e™)[|2]1 G5 (") 13 (53)
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Optimal state-space sections

e In the case of second-order filters, if the L, scaling is performed, then
11 =Ky = [[Fi(e)])7 = [[Fa ()3 =1 (54)
and then, from Theorem 13.1, the following equality must hold
11 =W, (55)
e Similarly, we can conclude that we must have
|G (e™)]IZ = 1GL ()13 (56)

indicating that the contributions of the internal noise sources to the output-noise

variance are identical.
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Optimal state-space sections

e The conditions Ki; = ||F}(e!’)[|3 = 1 and W}; = W/, for all i and j, show that

equation (47) can only be satisfied if
R = «al (57)
and, as a conseqguence, the optimality condition of Theorem 13.1 is equivalent to
W = o?K’ (58)

e For a second-order filter, since W' and K’ are symmetric and their respective

diagonal elements are identical, equation (58) remains valid if we rewrite it as
W = a?IK'J (59)

where J is the reverse identity matrix defined as

J = (60)
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Optimal state-space sections

e By employing the definitions of W' and K’ in equations (49) and (50), equation (59) is

satisfied when

AT = A’ (61)
"= oB’ (62)
or, equivalently

ajy = aj; (63)

b’ c’

1 _ %2
v, o o4

2 1

e Then, the following procedure can be derived for designing optimal second-order

state-space sections.
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Optimal state-space sections

e Step 1: For filters with complex conjugate poles, choose an antisymmetric matrix A
such that
11 = ap2 — real part of the poles
(65)
—@a12 = Az = imaginary part of the poles
Note that the first optimality condition (equation (63)) is satisfied by this choice of A.
The coefficients of matrix A can be calculated as a function of the coefficients of the

transfer function H(z) using

m )
ayr = ——F5—

2

mj

Ajp = —\/ M) — —
12 4 (66)
az1 = —aiz
az2 = ai
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Optimal state-space sections

e Also, compute the parameters b1, b, c1, and ¢2, using

b _\/G+Yz+a1ﬂ/1 )
‘l p—
2a;z7
A
b2 = 5%, > (67)
c1 =Dby
Cr = b] )
where
0 = \/Y% —Y1y2my +yim, (68)
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Optimal state-space sections

e For real poles, the matrix A must be of the form

aj az
A= (69)
a> Qaj
where
1 )
a; = 5(p1 +p2)
0 (70)
az =+3(p1—p2) |

with p1 and p, denoting the real poles.
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e The elements of vectors B and C are given by

with 0 as before.

+
b1:i\/ o+7v2+ aryi

2(12
Y2
by = 2
=7 2b;
c1 =by
c2 = by

57
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Optimal state-space sections

e Step 2: Scale the filter using L, norm, through the following similarity transformation
(A",B',c’,d) = (T 'AaT, T "B, CT, d) (72)

where

Fi(e“)]l2 0
| IR | .
0 |F2(e')||2
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Optimal state-space sections

e For the L4, -norm scaling, use the following scaling matrix

[F1(e")]lec O
T= | (74)
0 [F2(e") o

In this case the resulting second-order section is not optimal in the L., sense.

Nevertheless, practical results indicate that the solution is close to the optimal one.
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Optimal state-space sections

e Defining the vectors f(z) = [F1(z), F2(z)]" and g(z) = [G1(z), G2(2)]", the

effects of the scaling matrix on these vectors are
(z) = [zl —A] B =T '{(2) (75)

= T
o'(z) = [z1—A"| "= (1) g(2) (76)
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Optimal state-space sections

e The transfer functions F; (z) from the input node, where u(n) is inserted, to the

state variables x; (1) of the system (A, B, C, d) are given by

Fi(z) = — biz + (b2ajz —brazz) )
z- — (a1 + az2)z+ (aj1a22 —arzazy)

b b — b
Faz) = 2z + (brazr —baaqy) 78)
z2 — (a1 + az22)z+ (aj1a22 — ajzazy)

e The expressions for the transfer functions from the internal nodes, that is, from the

signals xi(n + 1) to the section output node are

ci1z+ (cpaz1 —crazz)
Gi(g) — 79
1( ) ZZ—(aH _|_a22)z—|—((111(122—(112(121) (79)

c2z+ (craj2 —cz2aq1)
o () — 80
Z( ) Zz—(aﬂ _|_a22)z—|—(a]1(122—a12a21) (80)
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Optimal state-space sections

e The output roundoff-noise PSD, considering quantization before the adders, for the

section-optimal state-space structure in cascade form can be expressed as

Fy(ej‘”) :30%2 H Hl(ejw)Hl(e_jw 1—|—ZG er G/ ( —jw)

i=11=j+1
(81)
where GQJ, fori = 1, 2, are the noise transfer functions of the jth scaled section,

and we consider H{lmﬂ Hi(z)Hi(z7 ') =1.
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Optimal state-space sections

e The scaling in the state-space sections of the cascade form is performed internally,
using the transformation matrix T. In order to calculate the elements of matrix T, we

can use the same procedure as in the cascade direct form, taking the effect of

previous blocks into consideration.

® In the case of the parallel form, the expression for the output roundoff-noise PSD,

assuming quantization before additions, is

My(e®) =02 | 2m+1 +3ZZG () GY;(e ) (82)

=1 1=1
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State-space sections without limit cycles

e This section presents a design procedure for a second-order state-space section that

is free from constant-input limit cycles.

e The transition matrix related to the section-optimal structure, described in the

previous subsection (see equation (63)), has the following general form
_ ]

a R
A = © (83)
(o a

where a, ¢, and o are constants. This form is the most general for A that allows the

realization of complex conjugate poles and the elimination of zero-input limit cycles.
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State-space sections without limit cycles

® As studied in Subsection 7.6.3, one can eliminate zero-input limit cycles on a
recursive structure if there is a positive-definite diagonal matrix G, such that

(G — ATGA) is positive semidefinite.
e For second-order sections, this condition is satisfied if
ajpazr >0 (84)
or

ajpaz1 <0 and |aj1 — azz2| +det{A} <1 (85)

e In the section-optimal structures, the elements of matrix A automatically satisfy

equation (84), since a11 = azz and det(A) < 1, for stable filters.
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State-space sections without limit cycles

e Naturally, the quantization performed at the state variables still must be such that
[xi(k)lol < [xi(k)], forall k (86)

where [x]o denotes the quantized value of x. This condition can be easily
guaranteed by using, for example, magnitude truncation and saturation arithmetic to

deal with overflow.

e If we also want to eliminate constant-input limit cycles, according to Theorem 11.3,
the values of the elements of pug, where p = (I — A) b, must be machine
representable. In order to guarantee this condition independently of wg, the column

vector p must assume one of the forms

[+10]" (Case )
p=< [0 +1] (Case II) (87)
[+1 +1]" (Case IlI)

\
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State-space sections without limit cycles

e For each case above, vector B of the state-space structure must be appropriately

chosen to ensure the elimination of constant-input limit cycles, as given by

— Case I:
by = (1 —aqq)
(88)
by = Fay;
— Case ll:
b1 =Fain
(89)
by = (1 — ay2)
— Case llI:
by =Fai2 £ (1 —a)
(90)

by = Fay = (1 — azy)
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State-space sections without limit cycles

e Based on the values of by and b, for each case, it is possible to generate three
structures, henceforth referred to as Structures I, Il, and Ill. Figure 6 depicts
Structure |, where it can be seen that by and b» are formed without actual
multiplications. As a consequence, the resulting structure is more economical than
the optimal second-order state-space structure. Similar results apply to all three
structures. In fact, Structures | and Il have the same complexity, whereas Structure Il
requires D extra additions, if we consider the adders needed for the elimination of
constant-input limit cycles. For that reason, in what follows, we present the design for

Structure |I.
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State-space sections without limit cycles

y(n)

Figure 6: State-space structure free from limit cycles.
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State-space sections without limit cycles

e For Structure |, we have that

i =05 a2 = ——5 621 = o, az; = ayq (91)

by =1—ajr; by = —as; (92)
mi +2m 24+m

¢ = Y1 ‘sz—( 1+ 2ma)yr +(2+mq)ys (93)

T4+my+my’ 20C¢(14+m7 +m;y)

2
a:_%; C:\/(ﬂlz—%) (94)

and o is a free parameter whose choice is explained below.

where
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State-space sections without limit cycles

e From the above equations,

b 2
AR (95)
bz ZO'C
c2 _ (my+2mo)yr +(2+m)y2 (96)
C1 20C(vy1 +v2)
e Therefore, in this case, the optimality condition derived from Theorem 13.1
(equations (63) and (64)) is only met if
my + 2
Y1 Mg+ (97)

v2 moy—1
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State-space sections without limit cycles

e Usually, this condition is violated, showing that the state-space structure which is free

from constant-input limit cycles does not lead to minimum output noise.

® |In practice, however, it is found that the performance of Structure | is very close to the
optimal. More specifically, in the case where the zeros of H(z) are placed at z = 1,
the values of Y1 and 'y, are

— o2
Y1 Yo(2+my) 98)

Y2 =Yo(l —m2)

which satisfy equation (97). Hence, in the special case of filters with zeros at z = 1,

Structure | also leads to minimum output noise.
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State-space sections without limit cycles

e Parameter O is usually used to optimize the dynamic range of the state variables.

e For Structure |, the transfer functions from the input node w(k) to the state variables

xi (k) are given by

1 — 2 2
Filz) = o LB ST b = ofla (%9)

where

Fi(z2) = —(z+C
2T 22 _2az+ (a2 + ¢?)

(100)

e Equalization of the maximum signal level at the state variables is achieved by forcing
IF1 (2)[lp = loF2(2)]ly (101)

where p = oo or p = 2. Consequently, we must have

G — [F1(2) ]| (102)

IF5 () [l
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State-space sections without limit cycles

e The transfer functions from the state variables x; (k 4+ 1) to the output in the

structure of Figure 6 can be expressed as

c12z+ (my + 2&)

G = 103
1(2) Zzz—l—m1z—|—m2 ( )
2z 4+ (1 + ﬁ)
C2 3
G = 104
2(2) 2 224+ oz+ (109
where

— 2 2

£ _ (1 +202)B1 + (2 + x1)B2 (105)

2(31 + B2)
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State-space sections without limit cycles

e The RPSD expression for Structure | is then

RPSD = 2 |G} (e"“‘))\2 +2 |G| ej“’)\2 +3
1 .
=255 |6 ()| +2

)\ZGZ G5 (e!) \ +3 (106)

where G/ (e!) and G (e!?’) are the noise transfer functions for the scaled filter, A

is the scaling factor, and G7 (e’) and G (e!’) are functions generated from

G’ (') and G (e!), when we remove the parameters o and A from them.
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State-space sections without limit cycles

e \We now show that choosing 0 according to equation (102) leads to the minimization

of the output noise.

e From equation (106), we can infer that the output noise can be minimized when o

and A are maximized, with the scaling coefficient given by

]
A — 107
e (T DT T2 2T 4on

e However, F;(z) is not a function of 0, and, as a consequence, the choice of

IF2(z)]l, = ||F1(2)]l, leads to a maximum value for A.

e On the other hand, the maximum o, without reducing A, is

jao
G — [F1(e!)]], (108)

IF5 (el

from which we can conclude that this choice for 0 minimizes the roundoff noise at

the filter output.
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State-space sections without limit cycles

e In order to design a cascade structure without limit cycles which realizes

m m

m 2 / /
H(z) = [ Hi(2) = Ho [ [ 52 Y28 _ T (di + Hi(z)  (109)
i=1 i

e z? + X1iZ + K24 i

with H} (z) described in the form of the first term of the right side of equation (45),

one must adopt the following procedure for Structure I:

e Step 1: Calculate o; and A; for each section using

Fri(z) [T;Z1 Hj(2)
oy = — L (110)
2:1(2) ] Lj=1 H;(z) ,
1
A = (111)

[P T Ry @)
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State-space sections without limit cycles

e Step 2: Determine a and ( from equations (94).
e Step 3: Compute the coefficients of A, B, and C using equations (91)—(93).

e Step 4: Calculate the multiplier coefficients d; by

( 1
: , fori=12,...,(m—1)
] [Hi=)
d; = )= 112
\ Ho 12 | (112)
— fort=m
[I4d
\ J=1

in order to satisfy overflow constraints at the output of each section.
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State-space sections without limit cycles

e Step 5: Incorporate the scaling multipliers of sections 2, 3, . . ., m into the output

multipliers of sections 1,2, ..., (m — 1), generating

LY )
/ 141
C11 = C14
t }\7\1
i41
chi = C2i —;\ ¢ (113)
A 1
i+1
d = d;—=F
t v }\i /
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State-space sections without limit cycles

combination
of following
sections

ua
m odd:
combination central
of previous section
sections
ua
m even:
combination first
of previous middle
sections section

second combination
middle of following
section sections

Figure 7: Ordering of state-space sections.
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State-space sections without limit cycles

e The cascade form design procedures employing the section-optimal and the
limit-cycle-free state-space structures use the same strategy for pairing the poles

and zeros as those employing direct-form sections.

e The section ordering depends on the definition of a parameter u;, given by

(114)

o max{[Fy (e!)[}
o ; min {[F; ()]}

where the maximum is computed for all w, while the minimum is calculated solely

within the passband.
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State-space sections without limit cycles

e According to Figure 7, for an odd number of sections, m, the ordering consists of
placing the section with highest value for u; to be the central section. For an even
number of sections, the two with largest 1; are placed in the central positions, these
are called first and second middle sections. For odd m, the previous and following
sections to the central block are chosen from the remaining sections so as to
minimize the summation of u, and uy (see Figure 7), one referred to the
combination of the central section and all previous ones, and the other referred to the
combination of the central section and all the following ones. For even m, the
sections before and after the central sections are chosen, among the remaining
ones, in order to minimize the summation of u, and uy (see Figure 7), one referred
to the combination of the first middle section and all previous sections, and the other
referred to the combination of the second middle section and the sections following it.
This approach is continuously employed until all second-order blocks have been

ordered.

82



8- CAMBRIDGE

Diniz, da Silva and Netto P UNIVERS IR

State-space sections without limit cycles

e The output roundoff-noise PSD of the state-space structure without limit cycles in

cascade form is expressed by

Iy (e!®) = o2 Z VI (2G71(e')GY (7)) + 2G5 (') Ghi (7)) + 3)

m
i=1 i+

(115)

where G;(e!“) and G5, (e!’) are the noise frequency responses of the scaled

sectionsand A1 = 1.
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Example 13.3

e Repeat Example 13.1 using the cascade of optimal and limit-cycle-free state-space
sections. Quantize the coefficients to 9 bits, including the sign bit, and verify the

results.
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Example 13.3 - Solution

e In each case, all but the last section are scaled first to guarantee unit L, norm at its

output.

e After this initial scaling, for the optimal state-space structure, the transformation
matrix T is determined as given in equation (73) considering also the effect of the

cumulative transfer function from previous blocks.
e Tables 7-10 list the coefficients of all the designed filters.

e Figure 8 depicts the magnitude responses obtained by the cascade of optimal
state-space sections and of state-space sections without limit cycles. In all cases the

coefficients were quantized to 9 bits including the sign bit.
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Example 13.3 - Solution

Table 7: Cascade structure using optimal state-space second-order sections.

Coefficient Section 1 Section 2 Section 3
a 8.0271E—01 8.1339E—01 7.9823E—01
a2 —5.9094E—-01 —5.7910E—01 —6.0685E—01
ar1 5.7520E—01 5.7117E—01 5.8489E—01
aro 8.0271E—01 8.1339E—01 7.9823E—01
b; 8.0236E—02 6.4821E—03 2.9027E—02
b, 1.5745e—01 —1.8603E—02 8.8313E—03
Cq 8.8747E—01 —8.8929E—01 2.5127E—02
C2 4.5225E—01 3.0987E—01 8.2587E—02
d 8.8708E—02 1.2396E—01 1.3061E—02
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Example 13.3 - Solution

Table 8: Cascade structure using optimal state-space second-order sections quantized

with 9 bits.
Coefficient Section 1 Section 2 Section 3
[aq1] 0 8.0078E—01 8.1250E—01 7.9688E—01
[a72] 0 —5.8984E—01 —5.7813E—01 —6.0547E—01
[ar1] 0 5.7422E—01 5.7031E—01 5.8594E—01
[azz]Q 8.0078E—01 8.1250E—01 7.9688E—01
b1] 0 8.2031E—02 7.8125E—03 2.7344E—02
[bz]Q 1.5625E—01 —1.9531E—02 7.8125E—03
[c1] 0 8.8672E—01 —8.9063E—01 2.3438E—02
[Cz]Q 4.5313E—01 3.0859E—01 8.2031E—02
[d] 0 8.9844E—02 1.2500E—01 1.1719E—02
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Example 13.3 - Solution

Table 9: Cascade structure without limit cycles using optimal state-space second-order

sections. A = 2.7202E—01.

Coefficient Section 1 Section 2 Section 3
a 8.0272E—01 8.1339E—01 7.9822E—01
a2 —5.8289E—01 —5.7823E—01 —5.8486E—01
ar1 5.8316E—01 5.7204E—01 6.0688E—01
aro 8.0272E—01 8.1339E—01 7.9822E—01
b 1.9728E—01 1.8661E—01 2.0178E—01
by —5.8316E—01 —5.7204E—01 —6.0688E—01
Cq —9.2516E—03 —4.4228E—02 9.1891E—02
C2 —2.8600E—02 1.6281E—02 —2.5557E—02
d 9.2516E—03 1.8323E—01 2.9191E—-01
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Example 13.3 - Solution

Table 10: Cascade structure without limit cycles using optimal state-space second-order
sections quantized with 9 bits. [?\]Q = 2.7344E—01.

Coefficient Section 1 Section 2 Section 3
8.0078E—01 8.1250E—01 7.9688E—01

—5.8203E—01 —5.7812E—01 —5.8594E—01

5.8203E—01 5.7031E—01 6.0547E—01

8.0078E—01 8.1250E—01 7.9688E—01

1.9922E—01 1.8750E—01 2.0313E—01

—5.8203E—01 —5.7031E—01 —6.0547E—01
—7.8125E—03 —4.2969E—02 9.3750E—02
—2.7344E—02 1.5625E—02 —2.7344E—02

7.8125E—03 1.8359E—01 2.9297E—01
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Example 13.3 - Solution
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Figure 8: Coefficient-quantization effects in the cascade forms, using state-space second-
order sections: (a) overall magnitude response; (b) passband detail. (Solid line
— initial design; dashed line — cascade of optimal state-space sections (9 bits);

dotted line — cascade of limit-cycle-free state-space sections (9 bits).)
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Lattice filters

e Consider a general IIR transfer function written in the form

M
E bi)]\/[Z_1
1=0

H(z) = = (116)

B N
1+ E (11)]\]2_1
i=1

e [n the lattice construction, we concentrate first on the realization of the denominator

polynomial through an order-reduction strategy. For that, we define the auxiliary
Nth-order polynomial, obtained by reversing the order of the coefficients of the

denominator D (z), as given by

N
zBn(z) =Dn(z Nz N =2"N¢ Z ai N 7AL (117)
i=1
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e \We can then calculate a reduced order polynomial as

(1—af n)Dn-1(z) = Dn(z)—an,nzBn(z)
= (1 _azN,N)‘F‘ ' ‘"|'(aN—1,N —aN,N (11,N)Z_N+1
(118)
where we can also express Dn_1(z) as 1T + Z]i\;] ai N—_T z b

e Note that the first and last coefficients of Dy (z) are 1 and an, N, Whereas for the

polynomial zBn (z) they are an N and 1, respectively.

e This strategy to achieve the order reduction guarantees a monic Dn_1(z), that is,

Dn_1(2) having the coefficient of z° equal to 1.
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e By induction, this order-reduction procedure can be performed repeatedly, thus

yielding
zBj(z) = D; (z7 1)z (119)

Dj_1(z) = —— (Dj(z) — q;,;zB;(z)) (120)

for j =N, (N—1),...,1,withzBg(z) = Do(z) = 1.

e |t can be shown that the above equations are equivalent to the following expression:

D)’_] (Z) _ ] —Clj . D]' (Z) (121)
I Bj(Z) | I aj,)-z_1 (1 —(11-2,1-)2_1 11 Bj_1(Z) ]
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e The previous equation can be implemented, for example, by the two-port network

TP; shown in Figure 9.

Dj(Z) —  p(+

> D, _1(2)

sz(z) 4—@4

Figure 9: Two-multiplier network TP; implementing equation (121).

27! [&—o 7B, (2)
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e The advantage of this representation arises from the fact that, by cascading two-port

networks TP; as in Figure 10, for j = N, (N —1),...; 1, we can implement

—D]\](z) , where Dy (z) is the denominator of the transfer function. This can be easily

. . X(z)D .
understood by looking at the input X(z) as (é)N (2)(7‘) . If we do so, then at the right
. . X(z)Do(z) _ X(z)
of TP1 we will end up having Dulz)  — Dnl(2)
Dy (2)X(2) D,(z)X(z) D,(z)X(z) Dy(z)X(2)
Dy (2) Dn(2) Dy (2) Dy (2)
X(n) e—» — —» >
TPy TP, TP,
<« —— ... -« < <
ZB\(2)X(2) 2B,(2)X(2) 2B,(2)X(@Z)  zBy@)X(2)
Dn(2) Dn(2) Dn (@) Dn (@)

Figure 10: Generation of the denominator of the IIR lattice digital filter structure.
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e Since at the lower branches of the two-port networks in Figure 10 we have the

Bj(2)

signals %Nj—é) available, then a convenient way to form the desired numerator is to

apply weights to the polynomials zBj (z), such that

M
Nm(z) = ) vjzBj(z) (122)
j=0

where the tap coefficients v; are calculated through the following order-reduction

recursion
N;_1(z) = Nj(z) — zv; Bj(z) (123)
for j =M, (M —1),..., 1, withvapm = bam.m and vp = by o.

e Then, a way of implementing the overall IIR transfer function

M
. 7B
H(z) = gg - Z’_I%:’é) i (2) is to use the structure in Figure 11, which is called

the IIR lattice realization.
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D (2)X(2) D,(2)X(2) D,(2)X(2) D,(2)X(2)
D@ D(2) D,(2) D(2)
X(N) e——«—» I > - »
TP TP, TR
<

28 (2)X()
D)

ZB(2)X(2) zB,(2)X(2) zB{2)X(2)
D,(2) D,@) Dy(2)

y(n)

Figure 11: General IIR lattice digital filter structure.
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e From the above, we have a simple procedure for obtaining the lattice network given

the direct-form transfer function, H(z) = E’:‘—((ZZ)):

(i) Obtain, recursively, the polynomials B;(z) and Dj(z), as well as the lattice
coefficient a; j, for j = N, (N —1),..., 1, using equations (119) and (120).
(i) Compute the coefficients v;, for j = N, (N — 1), ..., 1, using the recursion in

equation (123).
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e Conversely, if given the lattice realization we want to compute the direct-form transfer

function, we can use the following procedure:
() Startwith zBo(z) = Do(z)=1.

(i) Compute recursively B;(z) and Dj(z) for j = 1,2, ..., N, using the following

relation:

Dj(Z) _ 1 aj.j Dj_1 (Z) (124)
Bj (Z) aj,qu 77! Bj_1 (Z)

(i) Compute N (z) using equation (122).

(iv) The direct-form transfer function is then H(z) =
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e There are some important properties related to the lattice realization which should be

mentioned.

e If Dn(2) has all the roots inside the unit circle the lattice structure will have all
coefficients a; ; with magnitude less than one. Otherwise, H(z) = % represents
an unstable system. This straightforward stability condition makes the lattice

realizations useful for implementing time-varying filters.

e In addition, the polynomials zBj(z), for j = 0,1, ..., M, form an orthogonal set.
This property justifies the choice of these polynomials to form the desired numerator

polynomial Npq (2), as described in equation (123).
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e Since, in Figure 10, the two-port system consisting of section TP; and all the

sections to its right, which relates the output signal ZBI")(:)(Z)(Z) to the input signal

D;(z)X(z)
Dn (z)

signal by A; and divide its output by the same amount

is linear, its transfer function remains unchanged if we multiply its input

e Therefore, % will not change if we multiply the signal entering the upper-left

branch of section TP; by 7\)- and divide the signal leaving the lower-left branch by 7\)-.

e This is equivalent to scaling the section TP; by 7\)-.
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e If we do this for every branch j, the signals entering and leaving at the left of section
N remain unchanged, the signals entering and leaving at the left of section (N — 1)
will be scaled by AN, the signals entering and leaving at the left of section (N — 2)

(z)X

will be multiplied by ANNAN— 1, and so on, leading to the scaled signals DBN)(Z()Z)

zB; (z)X(z2)
and [))N(Z)

at the left of section TP;, such that

- j+1

Dj(z) = (H )\i> Dj(z) (125)
1=N

B j+1

B;i(z) = (H )\i> B;(z) (126)
1=N

for j = (N —=1),(N—=2),.... 1, with Dn(z) = Dn(2) and B (2) = Bn (2).
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e Therefore, in order to maintain the transfer function of the scaled lattice realization

unchanged, we must make
Vj

Vi = 5 (127)

[
i=N

for j=(N—1),(N—2),...,1, withvn = VN.

e Based on the above property, we can derive a more economical two-port network
using a single multiplier, as shown in Figure 12, where the plus-or-minus signs

indicate that two different realizations are possible.
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D, (2) —— Dj_1(2)
D(z)

—

D(2)

zB; (2)
D(z)

| zl§j 4@
D(z)

Figure 12: The one-multiplier network for equation (121).

e The choice of these signs can vary from section to section, aiming at the reduction of

the quantization noise at the filter output.

e This network is equivalent to the one in Figure 9 scaled using A; = 1 & a; ;, and

therefore the coefficients v; should be computed using equation (127).
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e Another important realization for the two-port network results when the scaling
parameters A; are chosen such that all the internal nodes of the lattice network have
a transfer function from the input of unit L, norm. The appropriate scaling can be
derived by first noting that at the left of section TP;, the norms of the corresponding

transfer functions are given by

i
ﬁN (z)

zB;(z)
Dn(z)

2

(128)

2
since, from equation (119), zB;(z) = D;(z~ ")z 7.

e From the above equations, if we want unit L, norm at the internal nodes of the lattice

network, we must have

zBo(z)
ﬁN (z)

zZBN_1 (z)
ﬁN (z)

zZBN (z)
ﬁN (z)

2

— 1(129)
2

_ H ﬁN (z)
ﬁN (z)

2 2
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e Then, using ?\j from equations (124) to (126), it can be derived that

zB;(z)

. DN(Z) 2 2
A = B 0] 1— a2, (130)

Dni(z)

2

e |t is easy to show that section TP; of the normalized lattice can be implemented as
depicted in Figure 13. The most important feature of the normalized lattice
realization is that, since all its internal nodes have transfer function with unit L»
norm, it presents an automatic scaling in the L-norm sense. This explains the low
roundoff noise generated by the normalized lattice realization as compared with the
other forms of the lattice realization. Note that the coefficients v; have to be

computed using equation (127).
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(a-ai)™
5. (2 @ () Bi_1(2)
D(2) D(2)
—4jj
zB | @ @ Sl zl§j_1(z)
D(z) " D(2)
(1-ap)

Figure 13: The normalized network for equation (121).
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Example 13.4

e Repeat Example 13.1 using the one-multiplier, two-multiplier, and normalized lattice
forms. Quantize the coefficients of the normalized lattice using 9 bits, including the

sign bit, and verify the results.
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Example 13.4 - Solution

e The two-multiplier lIR lattice can be determined from the direct form using the
MATLAB command tf2latc . For the one-multiplier, we use A; = (1 + a; ;) in

equation (127) to determine the feedforward coefficients, whereas for the normalized

lattice, we use ?\j — /1 —a?..The resulting coefficients in each case are seen in

J,J
Tables 11-14.
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Example 13.4 - Solution

Table 11: Coefficients of two-multiplier lattice.

Section ] a; ; Vj
0 —2.1521E—06
1 8.0938E—01 —1.1879E—06
2 —9.9982E—01 9.3821E—06
3 8.0903E—01 3.4010E—06
4 —9.9970E—01 8.8721E—05
S 8.0884E—01 —2.3326E—04
6 —9.6906E—01 —1.4362E—04
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Example 13.4 - Solution

Table 12: Coefficients of one-multiplier lattice.

Section ] a; ; Vj
0 —2.1371E+02
1 8.0938E—01 —2.1342E+-02
2 —9.9982E—01 3.0663E—01
3 8.0903E—01 2.0108E—01
4 —9.9970E—01 1.5850E—03
S 8.0884E—01 —7.5376E—03
6 —9.6905E—01 —1.4362E—04
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Example 13.4 - Solution

Table 13: Coefficients of normalized lattice.

Section j aj ; Vj
0 —9.1614E—02
1 8.0938E—01 —2.9697/E—02
2 —9.9982E—01 4.4737E—03
3 8.0903E—01 9.5319E—04
4 —9.9970E—01 6.1121E—04
) 8.0884E—01 —9.4494E—-04
6 —9.6905E—01 —1.4362E—04
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Table 14: Coefficients of normalized lattice quantized with 9 bits.

Section j a;j ; Vj
0 —8.9844E — 02
1 8.0938E—01 —3.1250E — 02
2 —9.9982E—01 3.9063E — 03
3 8.0903E—01 0.0000E + 00
4 —9.9970E—01 0.0000E + 00
5 8.0884E—01 0.0000E + 00
6 —9.6905E—01 0.0000E + 00

113



“B- CAMBRIDGE

Diniz, da Silva and Netto SfF UNIVERSEEY BeEss

Example 13.4 - Solution

® |In the quantization procedure, we must guarantee that the absolute value of all

feedback coefficients a; ; remain below 1 to guarantee stability of the resulting filter.

e From Tables 11-14, one observes that the three lattice forms have serious

guantization issues due to the wide range covered by their coefficients.

e |t must be added that the normalized lattice performs much better than the two- and

one-multiplier lattices with respect to quantization effects.

e It is also worth mentioning that in the two-multiplier structure, the feedforward
coefficients assume very small values, forcing the use of more than 9 bits for their
representation. This normally happens when designing a filter having poles very

close to the unit circle, as is the case in this example.
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e Figure 14 depicts the magnitude responses obtained by the original and quantized
normalized lattices. Note that the magnitude responses of the normalized lattice
structure are significantly different to the ideal one, especially when compared to the

results shown in previous examples.
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Magnitude response [dB]
|
SN
o
Magnitude response [dB]
|
N

-60f =37
-80f -4
-100 ; ; ‘ ‘ ‘ ‘ -5 : L ‘ A
700 800 900 1000 1100 1200 1300 1400 960 980 1000 1020 1040
Frequency [rad/q] Frequency [rad/g]
(a) (b)

Figure 14: Coefficient-quantization effects in the normalized lattice form: (a) overall mag-
nitude response; (b) passband detail. (Solid line — initial design; dashed line —

normalized lattice (9 bits).)
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® In this section the class of doubly complementary filter is discussed as it plays an

important role in alias-free 2-band filter banks and some audio applications.

e Theorem: Two transfer functions Ho(z) and Hj (z) are referred to as doubly

complementary if their frequency responses are allpass complementary, that is,
Ho(e') + Hy (e))> =1 (131)
and also power complementary, such that
Ho (e)[* + [Hy (e")]* =1 (132)

for all w.
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e For doubly complementary filters, we can write that

Ho(z) + Hi(z) = Folz) (133)
Ho(z) —Hi(z) = Fi(z) (134)

(Fo(z) + F1(z)) (135)

(Fo(z) — F1(z)) (136)

N — N —

whose implementation can be as shown in Figure 15.
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Doubly complementary filters

— Fo(2) yo(n)

z(n) g

—  Fi(?) y1(n)

Figure 15: Doubly complementary filters.
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Doubly complementary filters

e Proof. The doubly complementary frequency responses can be described in polar

form as follows:

Ho(e') = ro(w)el®o(w) (137)
Hi(e®) = 1(w)el® (@) (138)

e Using these expressions, the left-hand side L of equation (131) can be written as
[ = ITo(w)ejd’O(w) + 11 (w)ejd” (w)|2
(To(w)ejd)"(w)+T1(w)ej¢1(w)> (To(w)e_jd"’(w)+T1(w)e_j¢1(w)>
( )—I—T%(w)—l—ro(w)ﬁ(w)ej(‘b"(w)%'”(w))+ro(w)r1(w)e_j(‘b"(w)ﬁb‘(w”

(W) + 15 (w) + 2ro(w)T1 (W) cos(Po(w) — P (w)) (139)

=T

S

2
0
TS
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e Since equation (132) is equivalent to r%(w) + T%(w) — 1, then for allpass

complementary Ho (/) and H1 (e!* ) we must have that
2ro(w)ry (W) cos(po(w) — b1 (w)) =0 (140)

e By following the same procedure as the derivation of equation (139), it is possible to

show that
!H<>(e"‘“)—H1(e"”)!2 = 15(w)+77(w)—2ro(w)ry (w) cos(do(w)—d1(w))

— ] (141)
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e By applying the expressions of equations (135) and (136) in equation (132) and

using the polar representation, it is straightforward to show that
Fo(e!)* + [Fi ()] =2 (142)

Also applying equations (135) and (136) along with (140) in equation (131) it follows
that

Fo(e!)]* =1§(w) +17(w) =1 (143)
and then

F1(e")]* =r5(w) + 17 (w) =1 (144)

Therefore, Fo(z) and F1(z) are both allpass filters.
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e Allpass transfer functions have the following general form

Fi(z) = =2 - L Nl (145)

fori =0,1and Dy(z) = ao,iZNi + ajy ,izNi” + -+ an; i

e The phase responses of the allpass filters are given by

Ny
( Z ay i sin(lw) \
0i(w) = —Njw + 2arctan | =2 (146)

N
Z ar i COS(I(U)

= /
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Doubly complementary filters

e Given that Fo(e/®) and Fq (e/®) are allpass frequency responses they can be

expressed in polar form as

Fo(el?) = elfo(w) (147)
Fi(el?) = elo1(w) (148)
in such way that
Ho(e)| = 1 [ell%0(e)=0rte)) 41 (149)
Hi(e)) = 5 fel®oter-orien) (150
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Doubly complementary filters

e Assuming that at frequency w = 0O both allpass filters have zero phase, as a result
IHo(1)| = 1and |H(1)| = 0, which are typical features of lowpass and highpass

filters, respectively. On the other hand, for w = 7t

. 1

Ho(e™)| = §|e“N°‘N””+H (151)
. 1 .

Hq(e™)] = §|e“N°‘N””—H (152)

so that if the difference (Ng — N7 ) is odd, then |[Hp (/)| = 0 and |H{ (/)| =1,

again a typical property of lowpass and highpass filters, respectively.
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® Let us consider a simple, and yet useful, choice for the allpass transfer functions, that
IS
Fo(z) = z No (153)
Filz) = 2z 'Fi(2) (154)
where F’1 (z) is a standard allpass transfer function of order N of the form in
equation (145).

e With anodd (Ng — N7) = 1, itis possible to generate doubly complementary

transfer functions with lowpass and high shapes given by

Ho(z) = z No42z7TF (2) (155)
Hi(z) = z Noe—z7TF (2) (156)
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e The difference in the phase response of the allpass filters are given by

Go(w

) — 01 (w

)

—Now + 07 (w)
(—No — Dw + LF; (')

(—No — 1)w + Now — 2arctan

(Zalosm lw) \

ar o cos(lw)
\é el

—Ww — 2arctan
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Example 13.5

e Design doubly complementary filters Hy(z) and Hy (z) satisfying the specification

for the lowpass filter below:

A, =40dB
Q, =0.5mrad/s (158)
Q, =0.6mtrad/s |
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