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Introduction

• In this chapter, alternative realizations to those introduced in Chapter 5 for FIR filters

are discussed.

• We first present the lattice realization, highlighting its application to the design of

linear-phase perfect reconstruction filter banks. Then, the polyphase structure is

revisited, discussing its application in parallel processing. We also present an

FFT-based realization for implementing the FIR filtering operation in the frequency

domain. Such a form can be very efficient in terms of computational complexity, and

is particularly suitable for off-line processing, although widely used in real-time

implementations. Next, the so-called recursive running sum is described as a special

recursive structure for a very particular FIR filter, which has applications in the design

of FIR filters with low arithmetic complexity.
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Introduction

• In the case of FIR filters, the main concern is to examine methods which aim at

reducing the number of arithmetic operations. These methods lead to more

economical realizations with reduced quantization effects. In this chapter, we also

present the prefilter, the interpolation, and the frequency response masking

approaches for designing lowpass and highpass FIR filters with reduced arithmetic

complexity. The frequency response masking method can be seen as a

generalization of the other two schemes, allowing the design of passbands with

general widths. For bandpass and bandstop filters, the quadrature approach is also

introduced.
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Lattice form

• Figure 1 depicts the block diagram of a nonrecursive lattice filter of order M, which is

formed by concatenating basic blocks of the form shown in Figure 2.
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Figure 1: Lattice form realization of nonrecursive digital filters.
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Lattice form
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Figure 2: Basic block of the nonrecursive lattice form.

6



Diniz, da Silva and Netto

Lattice form

• To obtain a useful relation between the lattice parameters and the filter impulse

response, we must analyze the recurrent relationships that appear in Figure 2.

These equations are

ei(n) = ei−1(n) + kiẽi−1(n − 1) (1)

ẽi(n) = ẽi−1(n − 1) + kiei−1(n) (2)

for i = 1, 2, . . ., M, with e0(n) = ẽ0(n) = k0x(n) and eM(n) = y(n).

• In the frequency domain, equations (1) and (2) become




Ei(z)

Ẽi(z)



 =





1 kiz
−1

ki z−1









Ei−1(z)

Ẽi−1(z)



 (3)

with E0(z) = Ẽ0(z) = k0X(z) and EM(z) = Y(z).
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Lattice form

• Defining the auxiliary polynomials

Ni(z) = k0

Ei(z)

E0(z)
(4)

Ñi(z) = k0

Ẽi(z)

Ẽ0(z)
(5)

one can demonstrate by induction, using equation (3), that these polynomials obey

the following recurrence formulas:

Ni(z) = Ni−1(z) + kiz
−iNi−1(z−1) (6)

Ñi(z) = z−iNi(z
−1) (7)

for i = 1, 2, . . ., M, with N0(z) = Ñ0(z) = k0 and NM(z) = H(z).
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Lattice form

• Therefore, from equations (3) and (7), we have that

Ni−1(z) =
1

1 − k2
i

(

Ni(z) − kiz
−iNi(z

−1)
)

(8)

for i = 1, 2, . . ., M.

• Note that the recursion in equation (3) implies that Ni(z) has degree i. Therefore,

Ni(z) can be expressed as

Ni(z) =

i∑

m=0

h′

m,iz
−m (9)
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Lattice form

• Since Ni−1(z) has degree (i − 1) and Ni(z) has degree i, in equation (8) the

highest degree coefficient of Ni(z) must be canceled by the highest degree

coefficient of kiz
−iNi(z

−1). This implies that

h′

i,i − kih
′

0,i = 0 (10)

• Since, from equation (9), h′
0,i = Ni(∞), and, from equation (6),

Ni(∞) = Ni−1(∞) = · · · = N0(∞) = 1, we have that equation (10) is

equivalent to h′
i,i = ki. Therefore, given the filter impulse response, the ki

coefficients are determined by successively computing the polynomials Ni−1(z)

from Ni(z) using equation (8) and making

ki = h′

i,i (11)

for i = M, . . ., 1, 0.
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Lattice form

• To determine the filter impulse response NM(z) = H(z) =
∑M

m=0 hmz−m from

the set of lattice coefficients ki, we must first use equation (6) to compute the

auxiliary polynomials Ni(z), starting with N0(z) = k0. The desired coefficients

are then given by

hm = h′

m,M (12)

for m = 0, 1, . . . , M.
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Filter banks using the lattice form

• Structures similar to the lattice form are useful for the realization of critically

decimated filter banks. They are referred to as lattice realizations of filter banks.

• As discussed in Chapter 9, using orthogonal filter banks one can only design trivial

2-band filter banks with linear-phase analysis/synthesis filters. Hence, for a more

general case, the solution is to employ biorthogonal filter banks. We now show one

example of such structures, which implement linear-phase 2-band perfect

reconstruction filter banks.
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Filter banks using the lattice form

• In order for a 2-band filter bank to have linear phase, all its analysis and synthesis

filters, H0(z), H1(z), G0(z), and G1(z), must have linear phase. From

Subsection 4.2.3, if we suppose that all the filters in the filter bank have the same

odd order 2M + 1, then they have linear phase if

Hi(z) = ±z−2M−1Hi(z
−1)

Gi(z) = ±z−2M−1Gi(z
−1)





(13)

for i = 0, 1.
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Filter banks using the lattice form

• The perfect reconstruction property holds if the analysis and synthesis polyphase

matrices are related by

R(z) = z−∆E−1(z) (14)

where the analysis and synthesis polyphase matrices are defined by




H0(z)

H1(z)



 = E(z2)





1

z−1



 (15)





G0(z)

G1(z)



 = RT(z2)





z−1

1



 (16)
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Filter banks using the lattice form

• For perfect reconstruction the synthesis filters with c = −1 should satisfy

G0(z) = z2(l−∆)H1(−z) (17)

G1(z) = −z2(l−∆)H0(−z) (18)

• Recall from the discussions in Section 9.5 that

P(z) − P(−z) = H0(z)H1(−z) − H0(−z)H1(z) = 2z−2l−1 (19)

• Hence, P(z) has linear phase, and has to be symmetric with all odd-index

coefficients equal to zero, except the central coefficient of index 2l + 1 which must

be equal to 1.

• In addition, the end terms of P(z) have to be of an even index, in order to cancel in

P(z) − P(−z).
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Filter banks using the lattice form

• All these restrictions on P(z) lead to one of the following constraints on the order of

the analysis filters H0(z) and H1(z) (see details in Section 9.5):

– If both filter orders are even, they must differ by an odd multiple of 2 and the filter

impulse responses must be symmetric.

– If both orders are odd, they must differ by a multiple of 4 (which includes the case

where both filters are of the same order) and one filter must be symmetric and the

other antisymmetric.

– If one filter order is even and the other is odd, one filter must be symmetric and

the other antisymmetric, and the filter P(z) degenerates into only 2 non-zero

coefficients with all zeros on the unit circle.
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Filter banks using the lattice form

• Suppose, now, that we define the polyphase matrix of the analysis filters, E(z), as

having the following general form:

E(z) = KM





1 1

−1 1









1∏

i=M





1 0

0 z−1









1 ki

ki 1







 (20)

with

KM =
1

2

M∏

i=1

(

1

1 − k2
i

)

(21)
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Filter banks using the lattice form

• If we define the polyphase matrix of the synthesis filters, R(z), as

R(z) =





M∏

i=1





1 −ki

−ki 1









z−1 0

0 1













1 −1

1 1



 (22)

we then have that

R(z) = z−ME−1(z) (23)

and perfect reconstruction is guaranteed irrespective of the values of ki.
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Filter banks using the lattice form

• Also, from equations (15) and (16), as well as equations (20) and (22), we have that

H0(z) = z−2M−1H0(z−1)

H1(z) = −z−2M−1H1(z−1)

G0(z) = z−2M−1G0(z−1)

G1(z) = −z−2M−1G1(z−1)






(24)

and linear phase is also guaranteed irrespective of the values of ki.
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Example 12.1

• Prove by induction that the formulation of equation (20) leads to linear-phase

analysis filters.
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Example 12.1 - Solution

• For M = 1, the expression for the analysis filter bank, from equations (15) and (20),

becomes




H0(z)

H1(z)





M=1

= K1





1 1

−1 1









1 0

0 z−2









1 κ1

κ1 1









1

z−1





= K1





1 + κ1z−1 + κ1z−2 + z−3

−1 − κ1z−1 + κ1z−2 + z−3



 (25)

• Since H0(z) and H1(z) are symmetric and antisymmetric, respectively, the filter

bank is linear-phase for M = 1. Now, in order to finish the proof, we need to show

that if the filter bank is linear-phase for a given M, then it is also linear-phase for

M + 1.
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Example 12.1 - Solution

• For a lattice structure with (M + 1) stages, we have that

S =





H0(z)

H1(z)





M+1

= KM+1





1 1

−1 1









1∏

i=M+1





1 ki

kiz
−2 z−2













1

z−1





= KM+1





1 1

−1 1









1 kM+1

kM+1z−2 z−2









1∏

i=M





1 ki

kiz
−2 z−2













1

z−1





=
1

1−k2
M+1





1 1

−1 1









1 kM+1

kM+1z−2 z−2



KM





1∏

i=M





1 ki

kiz
−2 z−2













1

z−1





(26)
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Example 12.1 - Solution

• Hence

S =





H0(z)

H1(z)





M+1

=
1

1−k2
M+1





1 1

−1 1









1 kM+1

kM+1z−2 z−2









1 1

−1 1





−1



H0(z)

H1(z)





M

=
1

2(1−k2
M+1)





(1+kM+1)(1+z−2) (1−kM+1)(−1+z−2)

(1+kM+1)(−1+z−2) (1−kM+1)(1+z−2)









H0(z)

H1(z)





M

=
1

2











1+z−2

1−kM+1

−1+z−2

1+kM+1

−1+z−2

1−kM+1

1+z−2

1+kM+1















H0(z)

H1(z)





M

(27)
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Example 12.1 - Solution

• Assuming that [H0(z)]M is symmetric and [H1(z)]M is antisymmetric of equal

orders (2M + 1) and similar coefficients, as given in equation (25) for the case

M = 1, we may write that

[H0(z)]M = z−2M−1
[

H0(z−1)
]

M
(28)

[H1(z)]M = −z−2M−1
[

H1(z−1)
]

M
(29)

• Therefore, for finishing the proof, we must show that [H0(z)]M+1 is symmetric and

[H1(z)]M+1 is antisymmetric. Since their orders are equal to

(2(M + 1) + 1) = (2M + 3), we must show, according to equations (28) and

(29), that

[H0(z)]M+1 = z−2M−3
[

H0(z−1)
]

M+1
(30)

[H1(z)]M+1 = −z−2M−3
[

H1(z−1)
]

M+1
(31)
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Example 12.1 - Solution

• From equation (27) we have that

z−2M−3





H0(z−1)

H1(z−1)





M+1

=
z−2M−3

2











1 + z2

1 − kM+1

−1 + z2

1 + kM+1

−1 + z2

1 − kM+1

1 + z2

1 + kM+1















H0(z−1)

H1(z−1)





M

(32)
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Example 12.1 - Solution

• Substituting [H0(z−1)]M and [H1(z−1)]M from equations (28) and (29) in the

above equation we get

P = z−2M−3





H0(z−1)

H1(z−1)





M+1

=
z−2M−3

2











1 + z2

1 − kM+1

−1 + z2

1 + kM+1

−1 + z2

1 − kM+1

1 + z2

1 + kM+1











z2M+1





H0(z)

−H1(z)





M

=
1

2











1 + z−2

1 − kM+1

1 − z−2

1 + kM+1

1 − z−2

1 − kM+1

1 + z−2

1 + kM+1















H0(z)

−H1(z)





M

(33)
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Example 12.1 - Solution

• And then

P = z−2M−3





H0(z−1)

H1(z−1)





M+1

=
1

2











1 + z−2

1 − kM+1

−1 + z−2

1 + kM+1

−
−1 + z−2

1 − kM+1

−
1 + z−2

1 + kM+1















H0(z)

H1(z)





M

=





H0(z)

−H1(z)





M+1

(34)

where the last step derives from equation (27).
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Example 12.1 - Solution

• Comparing the above equation with equations (30) and (31) we see that the lowpass

and highpass filters for (M + 1) stages are also symmetric and antisymmetric,

which completes the proof by induction.

• The realizations of the analysis and synthesis filters are shown in Figures 3a and 3b,

respectively, for the same-order case, as developed in Example 12.1 above.
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Example 12.1 - Solution
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Figure 3: Lattice form realization of a linear-phase filter bank: (a) analysis filters; (b) syn-

thesis filters.
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Example 12.1 - Solution

• Obs: There are rare cases of perfect reconstruction FIR filter banks where the

corresponding lattices can not be synthesized as some coefficient ki may be equal

to 1.

• As seen above, one important property of such realizations is that both perfect

reconstruction and linear phase are guaranteed irrespective of the values of ki.

• They are often referred to as having structurally induced perfect reconstruction and

linear phase. Therefore, one possible design strategy for such filter banks is to carry

out a multi-variable optimization on ki, for i = 1, 2, . . ., M, using a chosen

objective function.
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Example 12.1 - Solution

• For example, one could minimize the L2 norm of the deviation of both the lowpass

filter H0(z) and the highpass filter H1(z) in both their passbands and stopbands

using the following objective function:

ξ(k1, k2, . . . , kM) =

∫ωp

0

(

1 −
∣

∣H0(e jω)
∣

∣

)2
dω +

∫π

ωr

∣

∣H0(e jω)
∣

∣

2
dω

+

∫π

ωr

(

1 −
∣

∣H1(e jω)
∣

∣

)2
dω +

∫ωp

0

∣

∣H1(e jω)
∣

∣

2
dω

(35)

which corresponds essentially to a least-squares error function.
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Example 12.2

• Implement the transfer function below using a lattice structure:

H1(z) = z−5 + 2z−4 + 0.5z−3 − 0.5z−2 − 2z−1 − 1 (36)

• Determine H0(z) and the synthesis filters obtained.
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Example 12.2 - Solution

• Using M = 2 into equation (20), the polyphase matrix of the analysis filter bank is

then given by

E(z) = K2





1 1

−1 1









1 0

0 z−1









1 κ2

κ2 1









1 0

0 z−1









1 κ1

κ1 1





= K2





1 1

−1 1









1 κ2

κ2z−1 z−1









1 κ1

κ1z−1 1



 (37)

• Hence, from equation (15), the highpass filter becomes

H1(z) = K2

[

−1−κ1z−1+κ2(1−κ1)z−2−κ2(1−κ1)z−3+κ1z−4+z−5
]

(38)
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Example 12.2 - Solution

• Equating this expression to the given transfer function, one gets

κ1 = 2

κ2 = 0.5





(39)

• Note that with this lattice structure the resulting filter banks are equal to the desired

H0(z) and H1(z) up to a constant, since the value of K2 must be given by

equation (21), which, in this case, is

K2 =

(

1

2

)(

1

1 − 22

) (

1

1 − (0.5)2

)

= −
2

9
(40)
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Example 12.2 - Solution

• Therefore, the filter H1(z) becomes

H1(z) = −
2

9

(

−1−2z−1−0.5z−2−0.5z−3+2z−4+z−5
)

(41)

• The polyphase components of the highpass filter of the analysis filter bank are such

that

E10(z) = K2

[

−1−κ2(κ1−1)z−1+κ1z−2
]

= −2
9

(

−1−0.5z−1+2z−2
)

E11(z) = K2

[

−κ1−κ2(1−κ1)z−1+z−2
]

= −2
9

(

−2+0.5z−1+z−2
)






(42)

35



Diniz, da Silva and Netto

Example 12.2 - Solution

• And for the lowpass filter, we have that

E00(z) = K2

[

1+κ2(1+κ1)z−1+κ1z−2
]

= −2
9

(

1+1.5z−1+2z−2
)

E01(z) = K2

[

κ1+κ2(1+κ1)z−1+z−2
]

= −2
9

(

2+1.5z−1+z−2
)






(43)

• The lowpass filter of the analysis filter bank has the following expression

H0(z) = E00(z2) + z−1E01(z2)

= −
2

9

(

1+2z−1+1.5z−2+1.5z−3+2z−4+z−5
)

(44)
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Example 12.2 - Solution

• The determinant of the matrix E(z) has the following expression:

det [E(z)] = E00(z)E11(z) − E10(z)E01(z)

=

(

2

9

)2
[(

1 + 1.5z−1 + 2z−2
) (

−2 + 0.5z−1 + z−2
)

−
(

−1 − 0.5z−1 + 2z−2
) (

2 + 1.5z−1 + z−2
)]

= −
2

9
z−2 (45)
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Example 12.2 - Solution

• As a result, from equation (23), the polyphase matrix of the synthesis filter is given by

R(z) =
z−2

det [E(z)]





E11(z) −E01(z)

−E10(z) E00(z)





=





(

−2 + 0.5z−1 + z−2
) (

−2 − 1.5z−1 − z−2
)

(

1 + 0.5z−1 − 2z−2
) (

1 + 1.5z−1 + 2z−2
)



 (46)

• And the synthesis filters are, from equation (16),

G0(z) = 1 − 2z−1 + 0.5z−2 + 0.5z−3 − 2z−4 + z−5

G1(z) = 1 − 2z−1 + 1.5z−2 − 1.5z−3 + 2z−4 − z−5





(47)
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Polyphase form

• A nonrecursive transfer function of the form H(z) =
∑N−1

n=0 h(n)z−n when

N = KN (as seen in Section 8.8), can also be expressed as

H(z) =

N−1∑

n=0

h(Kn)z−Kn +

N−1∑

n=0

h(Kn + 1)z−Kn−1 + · · ·

+

N−1∑

n=0

h(Kn + K − 1)z−Kn−K+1

=

N−1∑

n=0

h(Kn)z−Kn + z−1

N−1∑

n=0

h(Kn + 1)z−Kn + · · ·

+z−K+1

N−1∑

n=0

h(Kn + K − 1)z−Kn (48)
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Polyphase form

• This last form of writing H(z) can be directly mapped onto the realization shown in

Figure 4, where each Hi(z) is given by

Hi(z
K) =

N−1∑

n=0

h(Kn + i)z−Kn (49)

for i = 0, 1, . . ., (K − 1).

• Such a realization is referred to as the polyphase realization and it finds a large

range of applications in the study of multirate systems and filter banks, as seen in

Chapter 9.

40



Diniz, da Silva and Netto

Polyphase form

H (z)

0


H (z)
1


H    (z)
K–1


z

–1


z

–1


z

–1


x(n)

y(n)

…



…



Figure 4: Block diagram of realization of equation (48).
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Frequency-domain form

• The output of an FIR filter corresponds to the linear convolution of the input signal

with the finite-length impulse response of the filter h(n).

• Therefore, from Section 3.4 we have that, if the input signal x(n) of a nonrecursive

digital filter is known for all n, and null for n < 0 and n > L, an alternative approach

to computing the output y(n) can be derived using the fast Fourier transform (FFT).

• If the filter length is N, by completing these sequences with the necessary number of

zeros (zero-padding procedure) and determining the resulting (N + L)-element

FFTs of h(n), x(n), and y(n), we have that

FFT{y(n)} = FFT{h(n)}FFT{x(n)} (50)

and then

y(n) = FFT−1 {FFT{h(n)}FFT{x(n)}} (51)
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Frequency-domain form

• Using this approach, we are able to compute the entire sequence y(n) with a

number of arithmetic operations per output sample proportional to log2(L + N).

• In the case of direct evaluation, the number of operations per output sample is of the

order of L. Clearly, for large values of L and not too large values of N, the FFT

method is the most efficient one.

• In the above approach, the entire input sequence must be available to allow one to

compute the output signal. In this case, if the input is extremely long, the complete

computation of y(n) can result in a long computational delay, which is undesirable in

several applications. For such cases, the input signal can be sectioned and each

data block processed separately using the so-called overlap-and-save and

overlap-and-add methods, as described in Chapter 3.
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Recursive running sum form

• The direct realization of the transfer function

H(z) =

M∑

i=0

z−i (52)

where all the multiplier coefficients are equal to one, requires a large number of

additions for large M.

• An alternative way to implement such a transfer function results from interpreting it

as the sum of the terms of a geometric series. This yields

H(z) =
1 − z−M−1

1 − z−1
(53)

This equation leads to the realization in Figure 5, widely known as the recursive

running sum (RRS).
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Recursive running sum form

–1

z–1z

x (n) y (n)

–M

+

+

Figure 5: Block diagram of the recursive running sum (RRS) realization.
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Recursive running sum form

• The RRS corresponds to a very simple lowpass filter, comprising (M + 1) delays

and only 2 additions per output sample. The RRS bandwidth can be controlled by

appropriately choosing the value of M, as illustrated in Example 12.3 below.

• The RRS DC gain is equal to (M + 1). To compensate for that, a scaling factor of
1

(M+1)
should be employed at the filter input, which generates an output roundoff

noise with variance of about [(M + 1)q]2/12.

• To reduce this effect, one may eliminate the input scaling and perform the RRS

internal computations with higher dynamic range, by increasing the internal binary

wordlength accordingly.

• In this case, the output-noise variance is reduced to q2/12, since the signal is

quantized only at the output. To guarantee this, the number of extra bits must be the

smallest integer larger than or equal to log2(M + 1).
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Example 12.3

• Determine the magnitude responses and pole-zero constellations for the RRS blocks

with M = 5, 7, 9.
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Example 12.3 - Solution

• The RRS has a pole at z = 1 that is canceled by a zero at the same position,

leading to an FIR filter with a recursive realization.

• By examining the numerator polynomial of the RRS filter its zeros are equally spaced

on the unit circle, placed at z = e
2π

M+1 .

• The magnitude responses of the RRS for M = 5, 7, 9 are depicted in Figure 6a,

whereas the pole-zero constellation when M = 9 is seen in Figure 6b.
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Example 12.3 - Solution
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Figure 6: RRS characteristics: (a) magnitude response for M = 5 (dotted line), M = 7

(dashed line), and M = 9 (solid line); (b) pole-zero constellation for M = 9.
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Modified-sinc filter

• The RRS filter is certainly one of the most widely used lowpass filter with very

efficient implementation. The main drawback of the RRS filter is its low stopband

attenuation, that can not be increased in a straightforward manner.

• A simple and yet efficient extension of the RRS is the modified-sinc filter, which has

the following general transfer function:

H(z) =
1

(M+1)3

(

1 − bz−(M+1) + bz−2(M+1) − z−3(M+1)

1 − az−1 + az−2 − z−3

)

=
1

(M+1)3

(

1−2 cos(M+1)ω0z−(M+1)+z−2(M+1)

1−2 cos ω0z−1+z−2

)(

1−z−(M+1)

1−z−1

)

(54)

where a = (1 + 2 cos ω0) and b = [1 + 2 cos(M + 1)ω0].
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Modified-sinc filter

• Figure 7 shows a canonic structure for the modified-sinc filter, that is, utilizing the

minimum number of multipliers, delays, and adders.

• The modified-sinc filter places equally spaced triplets of zeros on the unit circle. The

first triplet is located around DC (one zero at DC and two at ±ω0), and is cancelled

by the filter poles, generating an improved lowpass filter, as compared to the RRS

filter, as long as ω0 < π
M+1

.
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Modified-sinc filter
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Figure 7: Canonic realization of the modified-sinc filter.
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Modified-sinc filter

• Figure 8 depicts the frequency response of the modified-sinc filter for M = 8 and

ω0 = π
50

.
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Figure 8: Characterization of modified-sic filter for M = 8 and ω0 = π
50

: (a) magnitude

response; (b) pole-zero constellation.
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Realizations with reduced number of arithmetic operations

• The main drawback of FIR filters is the large number of arithmetic operations

required to satisfy practical specifications. However, especially in the case of filters

with narrow passbands or transition bands, there is a correlation among the values of

filter multiplier coefficients.

• This fact can be exploited in order to reduce the number of arithmetic operations

required to satisfy such specifications.

• This section presents some of the most widely used methods for designing FIR filters

with reduced computational complexity.
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Prefilter approach

• The main idea of the prefilter method consists of generating a simple FIR filter, with

reduced multiplication and addition counts, whose frequency response approximates

the desired response as far as possible.

• Then this simple filter is cascaded with an amplitude equalizer, designed so that the

overall filter satisfies the prescribed specifications.

• The reduction in the computational complexity results from the fact that the prefilter

greatly relieves the specifications for the equalizer.

• This happens because the equalizer has wider transition bands to approximate, thus

requiring a lower order.
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Prefilter approach

• Several prefilter structures are given in the literature, and choosing the best one for a

given specification is not an easy task.

• A very simple lowpass prefilter is the RRS filter, seen in Section 12.5.

• From equation (53), the frequency response of the Mth-order RRS filter is given by

H(e jω) =
sin

[

ω(M+1)

2

]

sin
(

ω
2

) e− jωM
2 (55)
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Prefilter approach

• This indicates that the RRS frequency response has several ripples at the stopband

with decreasing magnitudes as ω approaches π. The first zero in the RRS

frequency response occurs at

ωz1 =
2π

M + 1
(56)

• Using the RRS as a prefilter, this first zero must be placed above and as close as

possible to the stopband edge ωr. In order to achieve this, the RRS order M must

be such that

M =

⌊

2π

ωr

− 1

⌋

(57)

where ⌊x⌋ represents the largest integer less than or equal to x.
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Prefilter approach

• More efficient prefilters can be generated by cascading several RRS sections. For

example, if we cascade two prefilters, so that the first one satisfies equation (57), and

the second is designed to cancel the secondary ripples of the first, we could expect a

higher stopband attenuation for the resulting prefilter.

• This would relieve the specifications for the equalizer even further. In particular, the

first stopband ripple belonging to the first RRS must be attenuated by the second

RRS, without introducing zeros in the passband.

• Although the design of prefilters by cascading several RRS sections is always

possible, practice has shown that there is little to gain in cascading more than three

sections. The modified-sinc filter is also a very efficient prefilter.
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Prefilter approach

• We show now that the Chebyshev (minimax) approach for designing optimal FIR

filters presented in Chapter 5 can be adapted to design the equalizer, by modifying

the error function definition, in the following way.

• The response obtained by cascading the prefilter with the equalizer is given by

H(z) = Hp(z)He(z) (58)

where Hp(z) is the prefilter transfer function, and only the coefficients of He(z) are

to be optimized.
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Prefilter approach

• The error function can then be rewritten as

|E(ω)| =
∣

∣W(ω)
(

D(ω) − Hp(e jω)He(e jω)
)∣

∣

=

∣

∣

∣

∣

W(ω)Hp(e jω)

(

D(ω)

Hp(e jω)
− He(e jω)

)∣

∣

∣

∣

=
∣

∣W′(ω)
(

D′(ω) − He(e jω)
)∣

∣ (59)
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Prefilter approach

• where

D′(ω) =






1

Hp(e jω)
, ω ∈ passbands

0, ω ∈ stopbands

(60)

W′(ω) =






|Hp(e jω)| , ω ∈ passbands

δp

δr

∣

∣Hp(e jω)
∣

∣ , ω ∈ stopbands
(61)

• It is worth mentioning that Hp(e jω) often has zeros at some frequencies, which

causes problems to the optimization algorithm. One way to circumvent this is to

replace |Hp(e jω)| in the neighborhoods of its zeros by a small number such as

10−6.
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Example 12.4

• Design a highpass filter using the standard minimax and the prefilter methods

satisfying the following specifications:

Ar = 40 dB

Ωr = 6600 Hz

Ωp = 7200 Hz

Ωs = 16 000 Hz






(62)
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Example 12.4 - Solution

• The prefilter approach described above applies only to narrowband lowpass filters.

However, it requires only a slight modification in order to be applied to narrowband

highpass filter design.

• The modification consists of designing the lowpass filter approximating D(π − ω)

and then replacing z−1 by −z−1 in the realization.

• Therefore, the lowpass specifications are

Ω′

p =
Ωs

2
− Ωp = 8000 − 7200 = 800 Hz (63)

Ω′

r =
Ωs

2
− Ωr = 8000 − 6600 = 1400 Hz (64)

• Using the minimax approach, the resulting direct-form filter has order 42, thus

requiring 22 multiplications per output sample.
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Example 12.4 - Solution

• Using the prefilter approach, with an RRS of order 10, the resulting equalizer has

order 34, requiring only 18 multiplications per output sample. Only half of the

equalizer coefficients are shown in Table 1, as the other coefficients can be obtained

as h(34 − n) = h(n).

Table 1: Equalizer coefficients.

h(0) to h(17)

h(0) = −5.7525E−03 h(6) = 3.9039E−03 h(12) = −2.9552E−03
h(1) = 1.4791E−04 h(7) = −5.3685E−03 h(13) = 7.1024E−03
h(2) = −1.4058E−03 h(8) = 6.1928E−03 h(14) = −1.1463E−02
h(3) = 6.0819E−04 h(9) = −5.9842E−03 h(15) = 1.5271E−02
h(4) = 6.3692E−04 h(10) = 4.4243E−03 h(16) = −1.7853E−02
h(5) = −2.2099E−03 h(11) = 9.1634E−04 h(17) = 1.8756E−02
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Example 12.4 - Solution

• The magnitude responses of the direct-form and the prefilter-equalizer filters are

depicted in Figure 9.

–100

–80

–60

–40

–20

0

0 1000 2000 3000 4000 5000 6000 7000 8000

M
ag

ni
tu

de
 r

es
po

ns
e 

[d
B

]

Frequency [Hz]

–100


–80


–60


–40


–20


0


0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000


M
ag

ni
tu

de
 r

es
po

ns
e 

[d
B

]
Frequency [Hz]


(a) (b)

Figure 9: Magnitude responses: (a) direct-form minimax approach; (b) prefilter approach.

65



Diniz, da Silva and Netto

Example 12.4 - Solution

• With the prefilter approach we can also design bandpass filters centered at ω0 = π
2

and with band edges at (π
2

−
ωp

2
), (π

2
+

ωp

2
), (π

2
− ωr

2
), and (π

2
+ ωr

2
). This

can be done by noting that such bandpass filters can be obtained from a lowpass

filter with band edges at ωp and ωr, by applying the transformation z−1 → −z−2.

• There are also generalizations of the prefilter approach that allow the design of

narrow bandpass filters with central frequency away from π
2

, as well as narrow

stopband filters.

• Due to the reduced number of multipliers, filters designed using the prefilter method

tend to generate less roundoff noise at the output than minimax filters implemented

in direct form. Their sensitivity to coefficient quantization is also reduced when

compared to direct-form minimax designs.
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Interpolation approach

• FIR filters with narrow passband and transition bands tend to have adjacent multiplier

coefficients, representing their impulse responses, with very close magnitude. This

means there is a correlation among them that could be exploited to reduce

computational complexity.

• Indeed, we could think of removing some samples of the impulse response, by

replacing them with zeros, and approximating their values by interpolating the

remaining nonzero samples. That is, using the terminology of Chapter 8, we would

decimate and then interpolate the filter coefficients. This is the main idea behind the

interpolation approach.
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Interpolation approach

• Consider an initial filter with frequency and impulse responses given by Hi(e jω) and

hi(n), respectively. If hi(n) is interpolated by L, then (L − 1) null samples are

inserted after each sample of hi(n), and the resulting sequence h′
i(n) is given by

h′

i(n) =






hi

(

n
L

)

, for n = kL, with k = 0, 1, 2, . . .

0, for n 6= kL
(65)

• The corresponding frequency response, H′
i(e jω), is periodic with period 2π/L. For

example, Figure 10 illustrates the form of H′
i(e jω) generated from a lowpass filter

with frequency response Hi(e jω), using L = 3.
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Interpolation approach
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Figure 10: Effects of inserting (L − 1) = 2 zeros in a discrete-time impulse response.
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Interpolation approach

• The filter with frequency response H′
i(e jω), commonly referred to as the

interpolated filter, is then connected in cascade with an interpolator G(e jω),

resulting in a transfer function of the form

H(z) = H′

i(z)G(z) (66)

• The function of the interpolator is to eliminate undesirable bands of H′
i(z) (see

Figure 10), while leaving its lowest frequency band unaffected.

• As can be observed, the initial filter has passband and stopband which are L times

larger than the ones of the interpolated filter (in Figure 10, L = 3). As a

consequence, the number of multiplications in the initial filter tends to be

approximately L times smaller than the number of multiplications of a filter directly

designed with the minimax approach to satisfy the narrowband specifications.
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Interpolation approach

• An intuitive explanation for this is that a filter with larger passbands, stopbands, and

transition bands is easier to implement than one with narrow bands.

• For lowpass filters, the maximum value of L such that the initial filter satisfies the

specifications in the passband and in the stopband is given by

Lmax =

⌊

π

ωr

⌋

(67)

where ωr is the lowest rejection band frequency of the desired filter. This value for L

assures that ωri
< π.
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Interpolation approach

• For highpass filters, Lmax is given by

Lmax =

⌊

π

π − ωr

⌋

(68)

whereas for bandpass filters, Lmax is the largest L such that
πk
L

≤ ωr1
< ωr2

≤ π(k+1)

L
, for some k. In practice, L is chosen smaller than

Lmax in order to relieve the interpolator specifications.

• Naturally, to achieve reduction in the computational requirements of the final filter, the

interpolator must be as simple as possible, not requiring too many multiplications.

• For instance, the interpolator can be designed as a cascade of subsections, in which

each subsection places zeros on an undesirable passband.

• For the example in Figure 10, if we wish to design a lowpass filter, G(e jω) should

have zeros at e± j 2π
3 .
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Interpolation approach

• Alternatively, we can use the minimax method to design the interpolator, with the

passband of G(e jω) coinciding with the specified passband, and with the stopbands

located in the frequency ranges of the undesired passband replicas of the

interpolated filter.

• Once the value of L and the interpolator are chosen, the interpolated filter can be

designed such that

(1 − δp) ≤
∣

∣

∣Hi(e jω)G(e
jω
L )

∣

∣

∣ ≤ (1 + δp), for ω ∈ [0, Lωp]
∣

∣

∣
Hi(e jω)G(e

jω
L )

∣

∣

∣
≤ δr, for ω ∈ [Lωr, π]





(69)

where the minimax method to design optimal FIR filters can be directly used.
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Example 12.5

• Design the filter specified in Example 12.1 using the interpolation method.
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Example 12.5 - Solution

• Using L = 2, we obtain the initial filter of order 20, thus requiring 11 multiplications

per output sample, whose coefficients are listed in Table 2. The required interpolator

is given by G(z) = (1 − z−1)4, and the resulting magnitude response of the

cascade of the initial filter and the interpolator is seen in Figure 11.
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Example 12.5 - Solution

Table 2: Initial filter coefficients.

h(0) to h(10)

h(0) = 1.0703E−03 h(4) = −2.8131E−03 h(8) = 9.5809E−03
h(1) = 7.3552E−04 h(5) = −3.3483E−03 h(9) = 1.4768E−02
h(2) = 3.9828E−04 h(6) = −1.2690E−03 h(10) = 1.6863E−02
h(3) = −1.2771E−03 h(7) = 3.3882E−03
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Example 12.5 - Solution
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Figure 11: Response of the interpolated model filter in cascade with the interpolator.
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Interpolation approach

• It is worth observing that the prefilter and the interpolation methods were initially

described as effective methods to design narrowband filters of the types lowpass,

highpass, and bandpass.

• However, we can also design both wideband and narrow stopband filters with the

interpolation method by noting they can be obtained from a narrowband filter H(z)

which is complementary to the desired filter, using

HFL(z) = z− M
2 − H(z) (70)

where M is the even order of H(z).
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Frequency response masking approach

• Another interesting application of interpolation appears in the design of wideband

sharp cutoff filters using the so-called frequency response masking approach. A brief

introduction to it was given in Subsection 8.10.2.

• Such an approach makes use of the concept of complementary filters, which

constitute a pair of filters, Ha(z) and Hc(z), whose frequency responses add to a

constant delay, that is

∣

∣Ha(e jω) + Hc(e jω)
∣

∣ = 1 (71)

• If Ha(z) is a linear-phase FIR filter of even order M, its frequency response can be

written as

Ha(e jω) = e− j M
2

ωA(ω) (72)

where A(ω) is a trigonometric function of ω, as given in Section 5.6.
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Frequency response masking approach

• Therefore, the frequency response of the complementary filter must be of the form

Hc(e jω) = e− j M
2

ω (1 − A(ω)) (73)

and the corresponding transfer functions are such that

Ha(z) + Hc(z) = z− M
2 (74)

• Hence, given the realization of Ha(z), its complementary filter Hc(z) can easily be

implemented by subtracting the output of Ha(z) from the (M/2)th delayed version

of its input, as seen in Figure 12.
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Frequency response masking approach

M
2–


z

X (z)

–


Ha(z)X(z)

Hc(z)X(z)
+

Ha(z)

Figure 12: Realization of the complementary filter Hc(z).
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Frequency response masking approach

• For an efficient implementation of both filters, the tapped delay line of Ha(z) can be

used to form Hc(z), as indicated in Figure 13, in which either the symmetry or

antisymmetry of Ha(z) is exploited, as we are assuming that this filter has linear

phase.
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Figure 13: Efficient realization of the complementary filter Hc(z).
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Frequency response masking approach

• The overall structure of the filter designed with the frequency response masking

approach is seen in Figure 14.

• The basic idea is to design a wideband lowpass filter and compress its frequency

response by using an interpolation operation.

• A complementary filter is obtained, following the development seen above.

• We then use masking filters, HMa(z) and HMc(z), to eliminate the undesired

bands in the interpolated and complementary filters, respectively.

• The corresponding outputs are added together to form the desired lowpass filter.
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Frequency response masking approach

ML
2–


z

X (z)

–


X(z) H(z)

HMc(z)

HMa(z)

+
+

Ha(zL)

Figure 14: Block diagram of the frequency response masking approach.
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Frequency response masking approach

• To understand the overall procedure in the frequency domain, consider Figure 15.

• Suppose that Ha(z) corresponds to a lowpass filter of even order M, designed with

the standard minimax approach, with passband edge θ and stopband edge φ, as

seen in Figure 15a.

• We can then form Hc(z), corresponding to a highpass filter, with θ and φ being the

respective stopband and passband edges.

• By interpolating both filters by L, two complementary multiband filters are generated,

as represented in Figures 15b and 15c, respectively.

85



Diniz, da Silva and Netto

Frequency response masking approach

• We can then use two masking filters, HMa(z) and HMc(z), characterized as in

Figures 15d and 15e, to generate the magnitude responses shown in Figures 15f

and 15g.

• Adding these two components, the resulting desired filter seen in Figure 15h can

have a passband of arbitrary width with a very narrow transition band.

• In Figure 15, the positions of the transition band edges are dictated by the HMa(z)

masking filter.

• An example of the frequency response masking approach where the transition band

edges are determined by the HMc(z) masking filter, is shown in Figure 16.
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Figure 15: Frequency response masking design of a lowpass filter with the HMa(z) mask determining the

passband: (a) base filter; (b) interpolated filter; (c) complementary to the interpolated filter; (d)

masking filter HMa(z); (e) masking filter HMc(z); (f) cascade of Ha(zL) with masking filter

HMa(z); (g) cascade of Hc(zL)with masking filter HMc(z); (h) frequency response masking

filter.
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Figure 16: Frequency response masking design of a lowpass filter with the HMc(z) mask determining the

passband: (a) base filter; (b) interpolated filter; (c) complementary to the interpolated filter; (d)

masking filter HMa(z); (e) masking filter HMc(z); (f) cascade of Ha(zL) with masking filter

HMa(z); (g) cascade of Hc(zL)with masking filter HMc(z); (h) frequency response masking

filter.
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Frequency response masking approach

• From Figure 14, it is easy to see that the product ML must be even to avoid a

half-sample delay. This is commonly satisfied by forcing M to be even, as above,

thus freeing the parameter L from any constraint.

• In addition, HMa(z) and HMc(z) must have the same group delay, so that they

complement each other appropriately in the resulting passband when added together

to form the desired filter H(z).

• This means that they must be both of even order or both of odd order, and that a few

delays may be appended before and after either HMa(z) or HMc(z), if necessary,

to equalize their group delays.

• For a complete description of the frequency response masking approach, we must

characterize the filters Ha(z), HMa(z), and HMc(z).
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Frequency response masking approach

• When the resulting magnitude response is determined mainly by the masking filter

HMa(z), as exemplified in Figure 15, then we can conclude that the desired band

edges are such that

ωp =
2mπ + θ

L
(75)

ωr =
2mπ + φ

L
(76)

where m is an integer less than L.
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Frequency response masking approach

• Therefore, a solution for the values of m, θ, and φ, such that 0 < θ < φ < π, is

given by

m =

⌊

ωpL

2π

⌋

(77)

θ = ωpL − 2mπ (78)

φ = ωrL − 2mπ (79)

where ⌊x⌋ indicates the largest integer less than or equal to x.
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Frequency response masking approach

• With these values, from Figure 15, we can determine the band edges for the masking

filters as given by

ωp,Ma =
2mπ + θ

L
(80)

ωr,Ma =
2(m + 1)π − φ

L
(81)

ωp,Mc =
2mπ − θ

L
(82)

ωr,Mc =
2mπ + φ

L
(83)

where ωp,Ma and ωr,Ma are the passband and stopband edges for the HMa(z)

masking filter, respectively, and ωp,Mc and ωr,Mc are the passband and

stopband edges for the HMc(z) masking filter, respectively.
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Frequency response masking approach

• When HMc(z) is the dominating masking filter, as seen in Figure 16, we have that

ωp =
2mπ − φ

L
(84)

ωr =
2mπ − θ

L
(85)

and a solution for m, θ, and φ, such that 0 < θ < φ < π, is given by

m =

⌈

ωrL

2π

⌉

(86)

θ = 2mπ − ωrL (87)

φ = 2mπ − ωpL (88)

where ⌈x⌉ indicates the smallest integer greater than or equal to x.
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Frequency response masking approach

• In this case, from Figure 16, the band edges for the masking filters are given by

ωp,Ma =
2(m − 1)π + φ

L
(89)

ωr,Ma =
2mπ − θ

L
(90)

ωp,Mc =
2mπ − φ

L
(91)

ωr,Mc =
2mπ + θ

L
(92)
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Frequency response masking approach

• Given the desired ωp and ωr, each value of L may allow one solution such that

θ < φ, either in the form of equations (77)–(79) or of equations (86)–(88).

• In practice, the determination of the best L, that is the one which minimizes the total

number of multiplications per output sample, can be done empirically with the aid of

the order estimation given in Exercise 5.25.

• The passband ripples and attenuation levels used when designing Ha(z),

HMa(z), and HMc(z) are determined based on the specifications of the desired

filter. As these filters are cascaded, their frequency responses will be added in dB,

thus requiring a certain margin to be used in their designs.

95



Diniz, da Silva and Netto

Frequency response masking approach

• For the base filter Ha(z), one must keep in mind that its passband ripple δp

corresponds to the stopband attenuation δr of its complementary filter Hc(z), and

vice versa.

• Therefore, when designing Ha(z) one should use the smallest value between δp

and δr, incorporating an adequate margin.

• In general, a margin of 50% in the values of the passband ripples and stopband

attenuations should be used, as in the example that follows.
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Example 12.6

• Design a lowpass filter using the frequency response masking method satisfying the

following specifications:

Ap = 0.2 dB

Ar = 60 dB

Ωp = 0.6π rad/s

Ωr = 0.61π rad/s

Ωs = 2π rad/s






(93)

Compare your results with the filter obtained using the standard minimax scheme.
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Example 12.6 - Solution

• Table 3 shows the estimated orders for the base filter and the masking filters for

several values of the interpolation factor L.

• Although these values are probably slight underestimates, they allow a quick decision

as to the value of L that minimizes the total number of multiplications required.

• In this table MHa
is the order of the base filter Ha(z), MHMa

is the order of the

masking filter HMa(z), and MHMc
is the order of the masking filter HMc(z).
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Example 12.6 - Solution

• Also,

Π = f(MHa
) + f(MHMa

) + f(MHMc
) (94)

indicates the total number of multiplications required to implement the overall filter,

where

f(x) =






x + 1

2
, if x is odd

x

2
+ 1, if x is even

(95)

and

M = LMHa
+ max{MHMa

, MHMc
} (96)

is the effective order of the overall filter designed with the frequency response

masking approach.
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Example 12.6 - Solution

Table 3: Filter characteristics for several values of the interpolation factor L.

L MHa
MHMa

MHMc
Π M

2 368 29 0 200 765
3 246 11 49 155 787
4 186 21 29 120 773
5 150 582 16 377 1332
6 124 29 49 103 793
7 108 28 88 115 844
8 94 147 29 137 899
9 84 61 49 99 817

10 76 32 582 348 1342
11 68 95 51 109 843

• From this table, we predict that L = 9 should yield the most efficient filter with

respect to the total number of multiplications per output sample.

100



Diniz, da Silva and Netto

Example 12.6 - Solution

• Using L = 9 in equations (77)–(92), the corresponding band edges for all filters are

given by

θ = 0.5100π

φ = 0.6000π

ωp,Ma = 0.5111π

ωr,Ma = 0.6100π

ωp,Mc = 0.6000π

ωr,Mc = 0.7233π






(97)
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Example 12.6 - Solution

• From the filter specifications, we have that δp = 0.0115 and δr = 0.001.

Therefore, the value of δr with a margin of 50% was used as the passband ripple

and the stopband gain for the base filter to generate Table 3, that is

δp,a = δr,a = min{δp, δr} × 50% = 0.0005 (98)

corresponding to a passband ripple of 0.0087 dB, and a stopband attenuation of

66.0206 dB.

• As δp,a = δr,a the relative weights for the passband and stopband in the minimax

design of the base filter are both equal to 1.0000.
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Example 12.6 - Solution

• For the masking filters, we use

δp,Ma = δp,Mc = δp × 50% = 0.005 75 (99)

δr,Ma = δr,Mc = δr × 50% = 0.0005 (100)

corresponding to a passband ripple of 0.0996 dB, and a stopband attenuation of

66.0206 dB.

• In this case, the relative weights for the minimax design of both masking filters were

made equal to 1.0000 and 11.5124 in the passband and stopband, respectively.
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Example 12.6 - Solution

• The magnitude responses of the resulting filters for L = 9 are depicted in Figures 17

and 18.

• In Figures 17a and 17b, the base filter and its complementary filter are depicted, and

Figures 17c and 17d show the corresponding interpolated filters.

• Similarly, Figures 18a and 18b depict the two masking filters, HMa(z) and

HMc(z), respectively, and Figures 18c and 18d show the results at the outputs of

these filters, which are added together to form the desired filter.

• The overall frequency response masking filter is characterized in Figure 19 and

presents a passband ripple equal to Ap = 0.0873 dB and a stopband attenuation

of Ar = 61.4591 dB.
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Figure 17: Magnitude responses: (a) base filter Ha(z); (b) complementary to the base

filter Hc(z); (c) interpolated base filter Ha(zL); (d) complementary to the

interpolated base filter Hc(zL).
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Figure 18: Magnitude responses: (a) masking filter HMa(z); (b) masking filter HMc(z);

(c) combination of Ha(zL)HMa(z); (d) combination of Hc(zL)HMc(z).
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Figure 19: Magnitude response of the frequency response masking filter: (a) passband

detail; (b) stopband detail; (c) overall response.
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Example 12.6 - Solution

• The resulting minimax filter is of order 504, thus requiring 253 multiplications per

output sample. Therefore, in this case, the frequency response masking design

represents a saving of about 60% of the number of multiplications required by the

standard minimax filter.
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Frequency response masking approach

• Example 12.3 above shows that a constant ripple margin throughout the whole

frequency range ω ∈ [0, π] is not required.

• In fact, with the ripple margin of 50% the passband ripple was considerably smaller

than necessary, as seen in Figure 19a, and the attenuation was higher than required

through most of the stopband, as seen in Figure 19b.

• A detailed analysis of the required margins in each band was performed by Y. C. Lim

who concluded that:

– The ripple margin must be of the order of 50% at the beginning of the stopbands

of each masking filter.

– For the remaining frequency values, the ripple margin can be set around 15–20%.

• It can be verified that such a distribution of the ripple margins results in a more

efficient design, yielding an overall filter with a smaller group delay and fewer

multiplications per output sample, as illustrated in the following example.
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Example 12.7

• Design the lowpass filter specified in Example 12.3 using the frequency response

masking method with an efficient assignment of the ripple margin. Compare the

results with the filter obtained in Example 12.3.
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Example 12.7 - Solution

• The design follows the same procedure as before, except that the relative weights at

the beginning of the stopbands of the masking filters is set to 2.5, whereas for the

remaining frequency the weight is set to 1.0.

• That corresponds to ripple margins proportional to 50% and 20% respectively, in

these two distinct frequency ranges.

• Table 4 shows the filter characteristics for several values of the interpolation factor L.

• As in Example 12.3, the minimum number of multiplications per output sample is

obtained when L = 9, and the band edges for the base and frequency response

masking filters are as given in equation (97).

• In this case, however, only 91 multiplications are required, as opposed to 99

multiplications in Example 12.3.
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• Figures 20a and 20b depict the magnitude responses of the two masking filters,

HMa(z) and HMc(z), respectively, and Figures 20c and 20d show the magnitude

responses which are added together to form the desired filter.

• From these figures, one can clearly see the effects of the more efficient ripple margin

distribution.

• The overall frequency response masking filter is characterized in Figure 21, and

presents a passband ripple equal to Ap = 0.1502 dB and a stopband attenuation

of Ar = 60.5578 dB. Notice how these values are closer to the specifications than

the values of the filter obtained in Example 12.3.
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Example 12.7 - Solution

• Table 5 presents the first half of the base filter coefficients before interpolation, and

the coefficients of the masking filters HMa(z) and HMc(z) are given in Tables 6

and 7, respectively.

• It must be noted that, as stated before, for a smooth composition of the outputs of the

masking filters when forming the filter H(z), both these filters must have the same

group delay.

• To achieve that in this design example, we must add 5 delays before and 5 delays

after the masking filter HMc(z), which has a smaller number of coefficients.
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Table 4: Filter characteristics for several values of the interpolation factor L.

L MHa
MHMa

MHMc
Π M

2 342 26 0 186 710
3 228 10 44 144 728
4 172 20 26 112 714
5 138 528 14 343 1218
6 116 26 44 96 740
7 100 26 80 106 780
8 88 134 26 127 838
9 78 55 45 91 757

10 70 30 528 317 1228
11 64 86 46 101 790
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Figure 20: Magnitude responses: (a) masking filter HMa(z); (b) masking filter HMc(z);

(c) combination of Ha(zL)HMa(z); (d) combination of Hc(zL)HMc(z).
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Figure 21: Magnitude response of the frequency response masking filter: (a) passband

detail; (b) stopband detail; (c) overall response.
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Example 12.7 - Solution

Table 5: Base filter Ha(z) coefficients.

ha(0) to ha(39)

ha(0) = −3.7728E−04 ha(14) = −1.7275E−03 ha(28) = 7.7616E−03
ha(1) = −2.7253E−04 ha(15) = −4.3174E−03 ha(29) = −2.6954E−02
ha(2) = 6.7027E−04 ha(16) = 3.9192E−03 ha(30) = 5.0566E−04
ha(3) = −1.1222E−04 ha(17) = 4.0239E−03 ha(31) = 3.5429E−02
ha(4) = −8.2895E−04 ha(18) = −6.5698E−03 ha(32) = −1.4927E−02
ha(5) = 4.1263E−04 ha(19) = −2.5752E−03 ha(33) = −4.3213E−02
ha(6) = 1.1137E−03 ha(20) = 9.3182E−03 ha(34) = 3.9811E−02
ha(7) = −1.0911E−03 ha(21) = −3.4385E−04 ha(35) = 4.9491E−02
ha(8) = −1.1058E−03 ha(22) = −1.1608E−02 ha(36) = −9.0919E−02
ha(9) = 1.9480E−03 ha(23) = 4.9074E−03 ha(37) = −5.3569E−02
ha(10) = 7.4658E−04 ha(24) = 1.2712E−02 ha(38) = 3.1310E−01
ha(11) = −2.9427E−03 ha(25) = −1.1084E−02 ha(39) = 5.5498E−01
ha(12) = 1.7063E−04 ha(26) = −1.1761E−02
ha(13) = 3.8315E−03 ha(27) = 1.8604E−02
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Example 12.7 - Solution

Table 6: Masking filter HMa(z) coefficients.

hMa(0) to hMa(27)

hMa(0) = 3.9894E−03 hMa(10) = −1.5993E−02 hMa(20) = 1.8066E−02
hMa(1) = 5.7991E−03 hMa(11) = −4.4088E−03 hMa(21) = −4.8343E−02
hMa(2) = 9.2771E−05 hMa(12) = 1.6123E−02 hMa(22) = −1.2214E−02
hMa(3) = −6.1430E−03 hMa(13) = 4.5664E−03 hMa(23) = 6.7391E−02
hMa(4) = −2.5059E−03 hMa(14) = −1.5292E−02 hMa(24) = −1.3277E−02
hMa(5) = 3.1213E−03 hMa(15) = 1.7599E−03 hMa(25) = −1.1247E−01
hMa(6) = −8.6700E−04 hMa(16) = 1.5389E−02 hMa(26) = 1.0537E−01
hMa(7) = −3.8008E−03 hMa(17) = −1.1324E−02 hMa(27) = 4.7184E−01
hMa(8) = 2.1950E−03 hMa(18) = −7.2774E−03
hMa(9) = −3.8907E−03 hMa(19) = 3.7826E−02
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Example 12.7 - Solution

Table 7: Masking filter HMc(z) coefficients.

hMc(0) to hMc(22)

hMc(0) = 1.9735E−04 hMc(8) = −1.3031E−02 hMc(16) = 2.3092E−02
hMc(1) = −7.0044E−03 hMc(9) = 3.5921E−03 hMc(17) = −5.8850E−02
hMc(2) = −7.3774E−03 hMc(10) = −4.7280E−03 hMc(18) = 7.3208E−03
hMc(3) = 1.9310E−03 hMc(11) = −2.5730E−02 hMc(19) = 5.5313E−02
hMc(4) = −3.0938E−04 hMc(12) = 6.5528E−03 hMc(20) = −1.2326E−01
hMc(5) = −7.1047E−03 hMc(13) = 1.1745E−02 hMc(21) = 9.7698E−03
hMc(6) = 3.0039E−03 hMc(14) = −3.2147E−02 hMc(22) = 5.4017E−01
hMc(7) = 5.8004E−04 hMc(15) = 7.8385E−03
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Frequency response masking approach

• So far, we have discussed the use of the frequency response masking filters to

design wideband lowpass filters.

• The design of narrowband lowpass filters can also be performed by considering that

only one masking filter is necessary. Usually, we consider the branch formed by the

base filter Ha(z) and its corresponding masking filter HMa(z), greatly reducing

the overall complexity of the designed filter.

• In such cases, the frequency response masking approach becomes similar to the

prefilter and interpolation approaches seen in previous subsections. The design of

highpass filters can be inferred from the design for lowpass filters, or can be

performed using the concept of complementary filters seen in the beginning of this

subsection.

• The design of bandpass and bandstop filters with reduced arithmetic complexity is

addressed in the next subsection.
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Quadrature approach

• In this subsection, a method for designing symmetric bandpass and bandstop filters

is introduced. For narrowband filters, the so-called quadrature approach uses an FIR

prototype of the form:

Hp(z) = Ha(zL)HM(z) (101)

where Ha(z) is the base filter and HM(z) is the masking filter or interpolator, which

attenuates the undesired spectral images of the passband of Ha(zL), commonly

referred to as the shaping filter.

• Such a prototype can be designed using prefilter, interpolation, or simplified

one-branch frequency response masking approaches seen above.

• The main idea of the quadrature approach is to shift the frequency response of the

base filter to the desired central frequency ωo, and then apply the masking filter

(interpolator) to eliminate any other undesired passbands.
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Quadrature approach

• Consider a linear-phase lowpass filter Ha(z) with impulse response ha(n), such

that

Ha(z) =

M∑

n=0

ha(n)z−n (102)

• Let the passband ripple and stopband gain be equal to δ′p and δ′r, and the passband

and stopband edges be ω′
p and ω′

r, respectively.

• If ha(n) is interpolated by a factor L, and the resulting sequence is multiplied by

e jωon, we generate an auxiliary H1(zL) as

H1(zL) =

M∑

n=0

ha(n)e jωonz−nL (103)

122



Diniz, da Silva and Netto

Quadrature approach

• This implies that the passband of Ha(z) is squeezed by a factor of L, and becomes

centered at ωo. Analogously, using the interpolation operation followed by the

modulating sequence e− jωon, we have another auxiliary function such that

H2(zL) =

M∑

n=0

ha(n)e− jωonz−nL (104)

with the corresponding squeezed passband centered at −ωo.

• We can then use two masking filters, HM1(z) and HM2(z), appropriately centered

at ωo and −ωo to eliminate the undesired bands in H1(zL) and H2(zL),

respectively.

• Clearly, although the two-branch overall bandpass filter will have real coefficients,

each branch in this case will present complex coefficients.

• To overcome this problem, first note that H1(zL) and H2(zL) have complex

conjugate coefficients.
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Quadrature approach

• If we design HM1(z) and HM2(z) so that their coefficients are complex

conjugates of each other, it is easy to verify that

H1(zL)HM1(z) =
(

H1,R(zL) + jH1,I(z
L)

)

(HM1,R(z) + jHM1,I(z))

=
(

H1,R(zL)HM1,R(z) − H1,I(z
L)HM1,I(z)

)

+ j
(

H1,R(zL)HM1,I(z) + H1,I(z
L)HM1,R(z)

)

(105)

H2(zL)HM2(z) =
(

H2,R(zL) + jH2,I(z
L)

)

(HM2,R(z) + jHM2,I(z))

=
(

H1,R(zL) − jH1,I(z
L)

)

(HM1,R(z) − jHM1,I(z))

=
(

H1,R(zL)HM1,R(z) − H1,I(z
L)HM1,I(z)

)

− j
(

H1,R(zL)HM1,I(z) + H1,I(z
L)HM1,R(z)

)

(106)

where the subscripts R and I indicate the parts of the corresponding transfer function

with real and imaginary coefficients, respectively.
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• Therefore,

H1(zL)HM1(z)+H2(zL)HM2(z) = 2
(

H1,R(zL)HM1,R(z)−H1,I(z
L)HM1,I(z)

)

(107)

and the structure seen in Figure 22 can be used for the real implementation of the

quadrature approach for narrowband filters.

• Disregarding the effects of the masking filters, the resulting quadrature filter is

characterized by

δp = δ′p + δ′r

δr = 2δ ′
r

ωr1
= ωo − ω′

r

ωp1
= ωo − ω′

p

ωp2
= ωo + ω′

p

ωr2
= ωo + ω′

r






(108)
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Quadrature approach
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Figure 22: Block diagram of the quadrature approach for narrowband filters.
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Quadrature approach

• For wideband filters, the prototype filter should be designed with the frequency

response masking approach.

• In that case, we have two complete masking filters, and the quadrature

implementation involving solely real filters is seen in Figure 23, with H1(zL) as

defined in equation (103), and HMa(z) and HMc(z) corresponding to the two

masking filters, appropriately centered at ωo and −ωo, respectively.

• For bandstop filters, we may start with a highpass prototype and apply the quadrature

design, or design a bandpass filter and then determine its complementary filter.
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Quadrature approach
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Example 12.8

• Design a bandpass filter using the quadrature method satisfying the following

specifications:

Ap = 0.2 dB

Ar = 40 dB

Ωr1
= 0.09π rad/s

Ωp1
= 0.1π rad/s

Ωp2
= 0.7π rad/s

Ωr2
= 0.71π rad/s

Ωs = 2π rad/s






(109)
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Example 12.8 - Solution

• Given the bandpass specifications, the lowpass prototype filter must have a

passband half the size of the desired passband width, and a transition bandwidth

equal to the minimum transition bandwidth for the bandpass filter.

• For the passband ripple and stopband attenuation, the values specified for the

bandpass filter can be used with a margin of about 40%. Therefore, in this example,

the lowpass prototype is characterized by

δ′p = 0.0115 × 40% = 0.0046

δ′r = 0.01 × 40% = 0.004

ω′

p =
ωp2

− ωp1

2
= 0.3π

ω′
r = ω′

p + min {(ωp1
− ωr1

), (ωr2
− ωp2

)} = 0.31π






(110)
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Example 12.8 - Solution

• This filter can be designed using the frequency response masking approach with an

efficient ripple margin assignment, seen in the previous subsection. In this case, the

interpolation factor that minimizes the total number of multiplications is L = 8 and

the corresponding filter characteristics are given in Table 8, with the resulting

magnitude response in Figure 24.

Table 8: Filter characteristics for the interpolation factor L = 8.

L MHa
MHMa

MHMc
Π M

8 58 34 42 70 506
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Example 12.8 - Solution
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Figure 24: Lowpass prototype designed with the frequency response masking approach

for the quadrature design of a bandpass filter.
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Example 12.8 - Solution

• The resulting bandpass filter using the quadrature method is shown in Figure 25.

• For the complete quadrature realization, the total number of multiplications is 140,

twice the number of multiplications necessary for the prototype lowpass filter. For this

example, the minimax filter would be of order 384, thus requiring 193 multiplications

per output sample. Therefore, in this case, the quadrature design represents a saving

of about 30% of the number of multiplications required by the standard minimax filter.
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Figure 25: Magnitude responses of the bandpass filter designed with the quadrature ap-

proach: (a) overall filter; (b) passband detail; (c) lower stopband detail; (d)

upper stopband detail.
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Do-it-yourself: Efficient FIR structures

• Experiment 12.1: A base-band telephone speech signal occupies the frequency

range around 300–3600 Hz. Let us emulate such a signal as a sum of four sinusoids

as given by

Fs = 40000; Ts = 1/Fs; time = 0:Ts:(1-Ts);

f1 = 300; f2 = 1000; f3 = 2500; f4 = 3600;

s1 = sin(2 * pi * f1 * time); s2 = sin(2 * pi * f2 * time);

s3 = sin(2 * pi * f3 * time); s4 = sin(2 * pi * f4 * time);

x = s1 + s2 + s3 + s4;

• Using the modulation theorem, we can shift the spectrum of x of fc by multiplying

this signal by a cosine function, that is

fc = 10000;

xDSB = x. * cos(2 * pi * fc * time);
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Do-it-yourself: Efficient FIR structures

• In this way, several speech signals can fit in a single communication channel by using

distinct values of fc for each one. The spectral representations of x before and after

modulation are seen in Figure 26.

• It this figure, one clearly notices that the spectrum of xDSBoccupies twice the band

of the spectrum of x , thus originating the double sideband (DSB) nomenclature for

that signal.
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Do-it-yourself: Efficient FIR structures
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Figure 26: Spectra of emulated speech signal: (a) base-band x ; (b) modulated xDSB.
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Do-it-yourself: Efficient FIR structures

• For a single speech signal, doubling the band does not seem much of a problem, as

the additional 4 kHz can be easily dealt with in most communications systems.

• However, when you think of millions of users of the telephone system, this doubling

effect can generate an unwelcome overload on the given channel. Therefore, we

consider here the elimination of the so-called upper part of the spectrum of xDSB,

within 10.3–13.6 kHz.

• In this illustrative experiment, one can design a Chebyshev filter using firpm

command in MATLAB, for instance, using the frequency range between

ωp = 2π9700 rad/s and ωr = 2π10300 rad/s as the filter transition band.
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Do-it-yourself: Efficient FIR structures

• However, in more demanding cases, of higher sampling frequency or even narrower

transition bands, an efficient FIR structure must be employed, as exemplified here.

• A frequency response masking filter for this application can be designed in MATLAB

such as

wp = (fc-f1) * 2* pi/Fs; wr = (fc+f1) * 2* pi/Fs;

• Using L = 5, the HMa(z) masking filter defines the transition band, and therefore,

from equations (77)–(79), we have that

L = 5; m = floor(wp * L/(2 * pi));

theta = wp * L-m* 2* pi; phi = wr * L-m* 2* pi;
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Do-it-yourself: Efficient FIR structures

• It must be emphasized that different specifications may force the reader to employ

equations (86)–(88) instead.

• Setting the passband ripple and attenuation levels to Ap = 0.1 dB and Ar = 50

dB, respectively, we get

Ap = 0.1; delta_p = (10ˆ(Ap/20)-1)/(10ˆ(Ap/20)+1);

Ar = 50; delta_r = 10ˆ(-Ar/20);

and then the firpmord and firpm commands can be used in tandem to design

the FRM base filter, as given by

Fvec_b = [theta phi]./pi;

[M,f_b,m_b,w_b] = firpmord(Fvec_b,[1 0],[delta_p

delta_r]);

hb = firpm(M,f_b,m_b,w_b);
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Do-it-yourself: Efficient FIR structures

• In this stage, as discussed above, one must remember to enforce an even base-filter

order M, increasing it by 1 if necessary. In the script above, M=32 and no order

increment is required.

• The interpolated base filter can be formed as

hbL = [hb; zeros(L-1,M+1)];

hbL = reshape(hbL,1,L * (M+1));

and the corresponding complementary filter as

hbLc = -hbL;

hbLc(M * L/2 + 1) = 1-hbL(M * L/2 + 1);
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Do-it-yourself: Efficient FIR structures

• The positive masking filter, as specified in equations (80) and (81), is designed as

wp_p = (2 * m* pi+theta)/L; wr_p = (2 * (m+1) * pi-phi)/L;

Fvec_p = [wp_p wr_p]./pi;

[M_p,f_p,m_p,w_p] = firpmord(Fvec_p,[1 0],[delta_p

delta_r]);

hp = firpm(M_p,f_p,m_p,w_p);

• And the negative masking filter, as given by equations (82) and (81), may be

determined as

wp_n = (2 * m* pi-theta)/L; wr_n = (2 * m* pi+phi)/L;

Fvec_n = [wp_n wr_n]./pi;

[M_n,f_n,m_n,w_n] = firpmord(Fvec_n,[1 0],[delta_p

delta_r]);

hn = firpm(M_n,f_n,m_n,w_n);
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Do-it-yourself: Efficient FIR structures

• The magnitude responses for the interpolated base filter hbL , complementary filter

hbLc , positive masking filter hp , and negative masking filter hn are shown in

Figure 27 for the entire 0–Fs frequency range.

• The impulse response for the general frequency response masking filter can be

obtained as

hFRM = conv(hbL,hp)+conv(hbLc,hm);

which corresponds to the magnitude response shown in Figure 28.

143



Diniz, da Silva and Netto

Do-it-yourself: Efficient FIR structures
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Figure 27: Magnitude responses of FRM subfilters: (a) interpolated base filter hbL ; (b)

complementary filter hbLc ; (c) positive masking filter hp ; (d) negative mask-

ing filter hn .
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Do-it-yourself: Efficient FIR structures
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Figure 28: Magnitude response of frequency response masking filter.
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Do-it-yourself: Efficient FIR structures

• Applying the xDSBto the input of the frequency response masking filter designed

above yields the single sideband (SSB) xSSB modulated signal

xSSB = filter(hFRM,1,xDSB);

which presents the same bandwidth as the original base-band signal x , as depicted

in Figure 29.

• In practical real-time applications, hFRMshould not be employed to perform the

desired filtering operation, since it does not benefit from the modular frequency

response masking internal structure.

• In such case, signal processing should be based directly on the individual hbL , hp ,

and hmfilters to reduce the computational effort in determining each output sample.
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Figure 29: Spectrum of xSSBsignal.
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