
Diniz, da Silva and Netto

Finite-Precision Digital Signal Processing

Paulo S. R. Diniz

Eduardo A. B. da Silva

Sergio L. Netto

diniz,eduardo,sergioln@lps.ufrj.br

September 2010

1

Diniz, da Silva and Netto

Contents

• Binary number representation

– Fixed-point representation

– Signed power-of-two representation

– Floating-point representation

• Basic elements

– Properties of the two’s-complement representation

– Serial adder

– Serial multiplier

– Parallel adder

– Parallel multiplier

2

Diniz, da Silva and Netto

Contents (cont.)

• Distributed arithmetic implementation

• Product quantization

• Signal scaling

• Coefficient quantization

– Deterministic sensitivity criterion

– Statistical forecast of the wordlength

3

Diniz, da Silva and Netto

Contents (cont.)

• Limit cycles

– Granular limit cycles

– Overflow limit cycles

– Elimination of zero-input limit cycles

– Elimination of constant-input limit cycles

– Forced-response stability of digital filters with nonlinearities due to overflow

• Do-it-yourself: Finite-precision digital signal processing

4

Diniz, da Silva and Netto

Introduction

• This chapter starts by addressing some implementation methods for digital filtering

algorithms and structures.

• The implementation of any building block of digital signal processing can be

performed using a software routine on a simple personal computer.

• In this case, the designer’s main concern becomes the description of the desired

filter as an efficient algorithm that can be easily converted into a piece of software. In

such cases, the hardware concerns tend to be noncritical, except for some details

such as memory size, processing speed, and data input/output.

5

Diniz, da Silva and Netto

Introduction

• Another implementation strategy is based on specific hardware, especially suitable

for the application at hand.

• In such cases, the system architecture must be designed within the speed

constraints at a minimal cost.

• This form of implementation is mainly justified in applications that require high

processing speed or in large-scale production.

6

Diniz, da Silva and Netto

Introduction

• The four main forms of appropriate hardware for implementing a given system are:

– The development of a specific architecture using basic commercial electronic

components and integrated circuits.

– The use of programmable logic devices (PLD), such as field-programmable gate

arrays (FPGA), which represent an intermediate integrated stage.

– The design of a dedicated integrated circuit for the application at hand using

computer-automated tools for a very large scale integration (VLSI) design. The

basic goal in designing application-specific integrated circuits (ASIC) is to obtain a

final design satisfying specifications with respect to chip area, power

consumption, processing speed, testability, and overall production cost.

– The use of a commercially available general-purpose digital signal processor

(DSP). There are several commercial DSPs available today, which include

features such as fixed- or floating-point operation, several ranges of clock speed

and price, internal memory, and very fast multipliers.

7

Diniz, da Silva and Netto

Introduction

• The state-of-the-art implementation of digital signal processing systems falls beyond

the scope of this book. Instead we address some fundamental concepts related to

hardware implementation.

• This chapter starts by discussing the most widely used binary number

representations in digital signal processing.

• Then, we introduce the basic elements necessary for the implementation of systems

for digital signal processing, in particular the digital filters extensively covered by this

book.

• Distributed arithmetic is presented as a design alternative for digital filters that

eliminates the necessity of multiplier elements. These very basic implementation

concepts illustrate issues related to hardware implementation of digital signal

processing systems.

8

Diniz, da Silva and Netto

Introduction

• It is certain that in practice a digital signal processing system is implemented by

software on a digital computer, either using a general-purpose digital signal

processor, or using dedicated hardware for the given application.

• In either case, quantization errors are inherent due to the finite-precision arithmetic.

These errors are of the following types:

– Errors due to the quantization of the input signals into a set of discrete levels,

such as the ones introduced by the analog-to-digital converter.

– Errors in the frequency response of filters, or in transform coefficients, due to the

finite-wordlength representation of multiplier constants.

– Errors made when internal data, like outputs of multipliers, are quantized before

or after subsequent additions.

9

Diniz, da Silva and Netto

Introduction

• All these error forms depend on the type of arithmetic utilized in the implementation.

• If a digital signal processing routine is implemented on a general-purpose computer,

since floating-point arithmetic is in general available, this type of arithmetic becomes

the most natural choice.

• On the other hand, if the building block is implemented on a special-purpose

hardware or a fixed-point digital signal processor, fixed-point arithmetic may be the

best choice, because it is less costly in terms of hardware and simpler to design. A

fixed-point implementation usually implies a lot of savings in terms of chip area as

well.

• For a given application, the quantization effects are key factors to be considered

when assessing the performance of a digital signal processing algorithm.

10

Diniz, da Silva and Netto

Introduction

• In this chapter, the various quantization effects are introduced along with the most

widely used formulations for their analyses.

• In particular, the product and coefficient quantization effects are discussed in some

detail along with the techniques to scale the internal signals in order to avoid frequent

overflows.

• The chapter also discusses strategies to eliminate zero-input and constant-input

granular limit cycles and to avoid sustained overflow oscillations.

• The Do-it-yourself section illustrates some finite precision issues in a practical

example.

11

Diniz, da Silva and Netto

Binary number representation

• In this section, we consider three numerical representations using binary codes:

– Fixed-point representations

– Signed power-of-two representation

– Floating-point representation

• In the following subsections we define each of these representations, emphasizing

their advantages and numerical properties.

12

Diniz, da Silva and Netto

Fixed-point representations

• In most of the cases when digital signal processing systems are implemented using

fixed-point arithmetic, the numbers are represented in one of the following forms:

sign-magnitude, one’s-complement, and two’s-complement formats.

• These representations are described in this subsection, where we implicitly assume

that all numbers have been previously scaled to the interval x ∈ (−1, 1).

• In order to clarify the definitions of the three types of number representation given

below, we associate, for every positive number x such that x < 2, a function that

returns its representation in base 2, B(x), which is defined by the equations below:

B(x) = x0.x1x2 · · · xn (1)

and

x = B−1(x0.x1x2 · · ·xn) = x0 + x12−1 + x22−2 + · · · + xn2−n (2)

13

Diniz, da Silva and Netto

Fixed-point representations - Sign-magnitude truncation

• The sign-magnitude representation of a given number consists of a sign bit followed

by a binary number representing its magnitude. That is

[x]M = sx.x1x2x3 · · ·xn (3)

where sx is the sign bit, and x1x2x3 · · · xn represents the magnitude of the

number in base 2, that is, in binary format.

• Here, we use sx = 0 for positive numbers, and sx = 1 for negative numbers. This

means that the number x is given by

x =





B−1(0.x1x2 · · ·xn) = x12−1 + x22−2 + · · · + xn2−n, for sx = 0

−B−1(0.x1x2 · · ·xn) = −(x12−1 + x22−2 + · · · + xn2−n), for sx = 1

(4)

14

Diniz, da Silva and Netto

Fixed-point representations - One’s-complement represen tation

• The one’s-complement representation of a number is given by

[x]1c =





B(x), if x ≥ 0

B(2 − 2−n − |x|), if x < 0
(5)

where B is defined by equations (1) and (2).

• Notice that in the case of positive numbers, the one’s-complement and the

sign-magnitude representations are identical.

• However, for negative numbers, the one’s complement is generated by changing all

the 0s to 1s and all the 1s to 0s in the sign-magnitude representation of its absolute

value.

• As before sx = 0 for positive numbers and sx = 1 for negative numbers.

15

Diniz, da Silva and Netto

Fixed-point representations - Two’s-complement represen tation

• The two’s-complement representation of a number is given by

[x]2c =





B(x), if x ≥ 0

B(2 − |x|), if x < 0
(6)

where B is defined by equations (1) and (2).

• Again, for positive numbers, the two’s-complement representation is identical to the

sign-magnitude representation.

• The representation of a negative number in two’s complement can be obtained by

adding 1 to the least significant bit of the number represented in one’s complement.

• Then, as in the one’s-complement case, sx = 0 for positive numbers and sx = 1 for

negative numbers.

16

Diniz, da Silva and Netto

Fixed-point representations - Two’s-complement represen tation

• If the two’s-complement representation of a number x is given by

[x]2c = sx.x1x2 · · · xn (7)

then, from equation (6), we have that

– For sx = 0, then

x = B−1([x]2c) = B−1(0.x1x2 · · ·xn) = x12−1 + x22−2 + · · · + xn2−n (8)

– For sx = 1, then

2 − |x| = 2 + x = B−1([x]2c) = B−1(sx.x1x2 · · ·xn) (9)

and then

x = −2 + B−1(1.x1x2 · · ·xn)

= −2 + 1 + x12−1 + x22−2 + · · · + xn2−n

= −1 + x12−1 + x22−2 + · · · + xn2−n (10)

17

Diniz, da Silva and Netto

Fixed-point representations - Two’s-complement represen tation

• From equations (8) and (10), we have that x can be generally expressed as

x = −sx + x12−1 + x22−2 + · · · + xn2−n (11)

• This short notation is very useful for introducing the multiplication operation of binary

numbers represented in two’s-complement format, as given in Section 11.3.

• The one’s-complement and two’s-complement representations are more efficient for

addition implementations, whereas the sign-magnitude representation is more

efficient for the implementation of multiplications. Overall, the most widely used

binary code is the two’s-complement representation.

18

Diniz, da Silva and Netto

Example 11.1

• Represent the number −0.1875 using 8 bits (including the sign bit) in

one’s-complement and two’s-complement representations.

19

Diniz, da Silva and Netto

Example 11.1 - Solution

• We first obtain the standard binary representation for the absolute value of the

number, using the following procedure: Multiply 0.1875 by 2 and associate a bit 0, if

the product is less than 1.0, or a bit 1, if the product is greater than or equal to 1.0.

• In this last case, subtract 1.0 from the product, to bring the partial result back to

below 1.0.

20

Diniz, da Silva and Netto

Example 11.1 - Solution

• Repeat this process for each required bit, yielding, in this case, the computations:

Multiplication by 2 Bit

0.1875 × 2 = 0.375 0

0.375 × 2 = 0.75 0

0.75 × 2 = 1.5 1

0.5 × 2 = 1.0 1

0.0 × 2 = 0 0

0.0 × 2 = 0 0

0.0 × 2 = 0 0






(12)

• Hence, the binary representation of 0.1875 is 0.0011000. By changing all bits 0 by

bits 1 and vice versa, we obtain the one’s-complement representation 1.1100111 of

−0.1875. The two’s-complement representation is computed by adding 1 to the

least significant bit of the one’s-complement representation, yielding 1.1101000.

21

Diniz, da Silva and Netto

Signed power-of-two representation

• An alternative representation of a number consisting of weighted sums and

subtractions is referred to as the signed-digit (SD) representation. The main

particular case of SD is the signed power-of-two (SPT) representation, also known

as radix-two signed-digit code.

• The SPT representation allows a multiplication to be performed as a very simple

sequence of shifts, additions, and subtractions, which is very attractive from the

hardware implementation point of view.

• A given number x is represented in SPT as

x = x0 + x12−1 + x22−2 + · · · + xn2−n (13)

where xi ∈ {−1, 0, 1} = {1̄, 0, 1}.

22

Diniz, da Silva and Netto

Signed power-of-two representation

• Note that no sign digit is required in the SPT format. For instance, the number

−0.1875 can be represented in SPT format as

x0x1x2x3x4 =






0001̄1̄

001̄01

001̄11̄

01̄101

01̄111̄

(14)

• Since the SPT representation of a number is not unique, representations with the

maximum number of 0 digits, which may also not be unique, are desirable from the

computational point of view.

• If, in addition, we avoid two consecutive nonzero digits, the so-called canonic

signed-digit (CSD) representation arises, which can be shown to be unique.

23

Diniz, da Silva and Netto

Signed power-of-two representation

• For instance, the second SPT representation in equation (14) is the corresponding

CSD code for −0.1875.

• Given an (n + 1)-bit two’s-complement representation [x]2c = sx.x1x2 · · · xn of

a number, it can be transformed into a CSD representation [x′]CSD = x′
0x′

1 · · ·x′
n

through the following algorithm:

(i) Initialization: Set the auxiliary variables x−1 = sx and xn+1 = δn+1 = 0.

(ii) For i = n, (n − 1), . . . , 0 determine, in sequence,

θi = xi ⊕ xi+1 (15)

δi = δi+1 × θi (16)

x′
i = (1 − 2xi−1)δi (17)

where [·], ×, and ⊕ represent the binary complement, AND, and exclusive-OR

operations, respectively.

24

Diniz, da Silva and Netto

Signed power-of-two representation

• The main advantage of the SPT representation over the two’s-complement is that the

inclusion of signed-digits leads to a reduction in the number of nonzero digits,

simplifying subsequent arithmetic operations.

• Using the CSD representation, for instance, the number of nonzero digits tends to
3n+4

9
as n increases.

• The hardware reduction property of the CSD representation has been exploited in

several specialized filter design approaches.

25

Diniz, da Silva and Netto

Floating-point representation

• Using floating-point representation, a number is represented as

x = xm2c (18)

where xm is the mantissa and c is the number exponent, with 1
2
≤ |xm| < 1.

• For example, the number −0.001875 can be represented in floating point by

1.1101000 × 2−2 where the mantissa has a two’s-complement representation.

• When compared to fixed-point representations, the main advantage of the

floating-point representation is its large dynamic range. Its main disadvantage is that

its implementation is more complex.

• For example, in floating-point arithmetic, the mantissa must be quantized after both

multiplications and additions, whereas in fixed-point arithmetic quantization this is

required only after multiplications.

• In this text, we deal with both fixed- floating-point arithmetics, with more focus on the

fixed-point case, which is more prone to errors and requires more attention.

26

Diniz, da Silva and Netto

Basic elements

• In this section, we study four basic elements for digital signal processing, namely:

serial adder, parallel adder, serial multiplier, and parallel multiplier.

• Before that, we introduce some properties of the two’s-complement representation.

27

Diniz, da Silva and Netto

Properties of the two’s-complement representation

• Since the two’s-complement representation is vital to the understanding of the

arithmetic operations described in the following sections, here we supplement the

introduction given in Section 11.2, giving some other properties of the

two’s-complement representation.

• We start by repeating equation (11), which states that if the two’s-complement

representation of x is given by

[x]2c = sx.x1x2 · · · xn (19)

then, the value of x is determined by

x = −sx + x12−1 + x22−2 + · · · + xn2−n (20)

28

Diniz, da Silva and Netto

Properties of the two’s-complement representation

• One of the advantages of the two’s-complement representation is that, if A and B

are represented in two’s complement, then C = A − B, represented in two’s

complement, can be computed by adding A to the two’s complement of B. Also,

given x as in equation (20), we have that

x

2
= −sx2−1 + x12−2 + x22−3 + · · · + xn2−n−1 (21)

and since −sx2−1 = −sx + sx2−1, then equation (21) can be rewritten as

x

2
= −sx + sx2−1 + x12−2 + x22−3 + · · · + xn2−n−1 (22)

29

Diniz, da Silva and Netto

Properties of the two’s-complement representation

• That is, the two’s-complement representation of x
2

is given by

[x

2

]

2c
= sx.sxx1x2 · · · xn (23)

• This property implies that dividing a number represented in two’s complement by 2 is

equivalent to shifting all of its bits one position to the right, with the extra care of

repeating the sign bit.

• This property is very important in the development of the multiplication algorithm,

which involves multiplications by 2−j.

30

Diniz, da Silva and Netto

Serial adder

• A very economic implementation of digital filters is achieved through the use of

so-called serial arithmetic. Such an approach performs a given operation by

processing the bits representing a given binary number one by one serially.

• The overall result tends to be very efficient in terms of required hardware, power

consumption, modularity, and ease of interconnection between serial-bit cells.

• The main drawback is clearly the associated processing speed, which tends to be

very slow, when compared with other approaches.

• An important basic element for the implementation of all signal processing systems is

the full adder whose symbol and respective logic circuit are shown in Figure 1.

• Such a system presents two output ports, one equal to the sum of the two input bits

A and B, and the other, usually referred to as the carry bit, corresponding to the

possible extra bit generated by the addition operation.

31

Diniz, da Silva and Netto

Serial adder

• A third input port Ci is used to allow the carry bit from a previous addition to be taken

into account in the current addition.

• A simple implementation of a serial adder for the two’s-complement arithmetic, based

on the full adder, is illustrated in Figure 2a.

• In such a system, the two input words A and B must be serially fed to the adder

starting with their least-significant bit.

• A D-type flip-flop (labeled D) is used to store the carry bit from a given 1-bit addition,

saving it to be used in the addition corresponding to the next significant bit.

• A reset signal is used to clear this D-type flip-flop before starting the addition of two

other numbers, forcing the carry input to be zero at the beginning of the summation.

32

Diniz, da Silva and Netto

Serial adder

FA

A

S

C
i

C
0

B

A

S

C
i

C
0

B

(a) (b)

Figure 1: Full adder: (a) symbol; (b) logic circuit.

33

Diniz, da Silva and Netto

Serial adder

FA

A

S

clock

D

reset

B
 FA

A

S

clock

D

reset

B

(a) (b)

Figure 2: Serial implementations using the full adder as a basic block: (a) adder; (b) sub-

tractor.

34

Diniz, da Silva and Netto

Serial adder

• Figure 2b depicts the serial subtractor for the two’s-complement arithmetic.

• This structure is based on the fact that A − B can be computed by adding A to the

two’s complement of B, which can be determined by inverting B and summing 1 in

the least-significant bit.

• The representation of B in two’s complement is commonly done with an inverter at

the input of B and with a NAND gate, substituting the AND gate, at the carry input.

• Then, at the beginning of the summation, the signal reset is asserted, and the

carry input becomes 1.

• An extra inverter must be placed at the carry output because, with the use of the

NAND gate, the carry output fed back to the D-type flip-flop must be inverted.

35

Diniz, da Silva and Netto

Serial multiplier

• The most complex basic element for digital signal processing is the multiplier.

• In general, the product of two numbers is determined as a sum of partial products, as

performed in the usual multiplication algorithm.

• Naturally, partial products involving a bit equal to zero do not need to be performed or

taken into account.

• For that matter, there are several filter designs in the literature that attempt to

represent all filter coefficients as the sum of a minimum number of nonzero bits.

36

Diniz, da Silva and Netto

Serial multiplier

• Let A and B be two numbers of m and n bits, respectively, that can be represented

using two’s-complement arithmetic as

[A]2c = sA.a1a2 · · ·am (24)

[B]2c = sB.b1b2 · · ·bn (25)

such that, from equation (20), A and B are given by

A = −sA + a12−1 + a22−2 + · · · + am2−m (26)

B = −sB + b12−1 + b22−2 + · · · + bn2−n (27)

37

Diniz, da Silva and Netto

Serial multiplier

• Using two’s-complement arithmetic, the product P = AB is given by

P = (−sA + a12−1 + · · · + am2−m)(−sB + b12−1 + · · · + bn2−n)

= (−sA + a12−1 + · · · + am2−m)bn2−n

+(−sA + a12−1 + · · · + am2−m)bn−12−n+1

...

+(−sA + a12−1 + · · · + am2−m)b12−1

−(−sA + a12−1 + · · · + am2−m)sB (28)

38

Diniz, da Silva and Netto

Serial multiplier

• We can perform this multiplication in a step-by-step manner by first summing the

terms multiplied by bn and bn−1, taking the result and adding to the term multiplied

by bn−2, and so on.

• Let us develop this reasoning a bit further: The sum of the first two terms can be

written as

C = bn2−nA + bn−12−n+1A

= (−sA + a12−1 + · · · + am2−m)bn2−n

+ (−sA + a12−1 + · · · + am2−m)bn−12−n+1

= 2−n+1[bn2−1(−sA + a12−1 + · · · + am2−m)

+ bn−1(−sA + a12−1 + · · · + am2−m)] (29)

39

Diniz, da Silva and Netto

Serial multiplier

• From equation (22), the above equation becomes

C = 2−n+1
[

bn(−sA + sA2−1 + a12−2 + · · · + am2−m−1)

+ bn−1(−sA + a12−1 + · · · + am2−m)
]

(30)

which can be represented in the form of the multiplication algorithm as

(sA sA a1 . . . am−1 am) × bn

+ (sA a1 a2 . . . am) × bn−1

sC c1 c2 c3 . . . cm+1 cm+2

• And then

C = 2−n+2(−sC+c12−1+c22−2+c32−3+· · ·+cm+12−m−1+cm+22−m−2)

(31)

40

Diniz, da Silva and Netto

Serial multiplier

• Note that the sum of two positive numbers is always positive, and the sum of two

negative numbers is always negative.

• Therefore, sC = sA. In fact, since in two’s-complement arithmetic the sign has to be

extended, the more compact representation for the summation above would be

(. . . sA sA sA sA a1 . . . am−1 am) × bn

+ (. . . sA sA sA a1 a2 . . . am) × bn−1

. . . sA sA c1 c2 c3 . . . cm+1 cm+2

41

Diniz, da Silva and Netto

Serial multiplier

• In the next step, C should be added to bn−22−n+2A. This yields

D = (−sA + c12−1 + · · · + cm+22−m−2)2−n+2

+(−sA + a12−1 + · · · + am2−m)bn−22−n+2 (32)

which can be represented in the compact form of the multiplication algorithm as

(. . . sA sA c1 c2 . . . cm cm+1 cm+2)

+ (. . . sA sA a1 a2 . . . am) × bn−2

. . . sA d1 d2 d3 . . . dm+1 dm+2 dm+3

• This is equivalent to

D = 2−n+3(−sA + d12−1 + d22−2 + · · ·+ dm+22−m−2 + dm+32−m−3)

(33)

42

Diniz, da Silva and Netto

Serial multiplier

• This process goes on until we obtain the next-to-last partial sum, Y.

• If B is positive, sB is zero, and the final product, Z, is equal to Y, that is

Z = Y = −sA+y12−1+· · ·+ym2−m+ym+12−m−1+· · ·+ym+n2−m−n

(34)

such that the two’s complement of Z is given by

[Z]2c = sA.z1z2 · · · zmzm+1 · · · zm+n = sA.y1y2 · · ·ymym+1 · · ·ym+n

(35)

• On the other hand, if B is negative, then sB = 1, and Y still needs to be subtracted

from sBA.

43

Diniz, da Silva and Netto

Serial multiplier

• This can be represented as

(sA y1 y2 . . . ym ym+1 . . . ym+n)

− (sA a1 a2 . . . am) × sB

sZ z1 z2 . . . zm zm+1 . . . zm+n

• The full precision two’s-complement multiplication of A, with (m + 1) bits, by B,

with (n + 1) bits, should be represented with (m + n + 1) bits.

44

Diniz, da Silva and Netto

Serial multiplier

• If we want to represent the final result using just the same number of bits as A, that

is, (m + 1), we can use either rounding or truncation.

• For truncation, it suffices to disregard the bits zm+1, zm+2, . . ., zm+n.

• For rounding, we must add to the result, prior to truncation, a value equal to

∆ = 2−m−1, such that

[∆]2c = 0. 0 · · · 0︸ ︷︷ ︸
m zeros

1 (36)

45

Diniz, da Silva and Netto

Serial multiplier

• By looking at the algorithmic representation of the last partial sum above, one sees

that to add ∆ to the result is equivalent to summing bit 1 at position (m + 1), which

is the nth position from the rightmost bit, zm+n.

• Since it does not matter whether this bit is summed in the last or the first partial sum,

it suffices to sum this bit during the first partial sum.

• Then the rounding can be performed by summing the number

[Q]2c = 1. 0 · · · 0︸ ︷︷ ︸
n−1 zeros

(37)

to the first partial sum. In addition, since only (m + 1) bits of the product will be

kept, we need to keep, from each partial sum, its (m + 1) most significant bits.

46

Diniz, da Silva and Netto

Serial multiplier

Delay

SA Delay SA
serial
output

Delay

SA Delay

bn bn−1 sB

A

Q

First partial sum Second partial sum

Figure 3: Schematic representation of a serial multiplier.

47

Diniz, da Silva and Netto

Serial multiplier

• The main idea behind a serial multiplier is to perform each partial sum using a serial

adder such as the one depicted in Figure 1, taking care to introduce proper delays

between the serial adder (SA) blocks, to align each partial sum properly with bjA.

• This scheme is depicted in Figure 3, where the rounding signal Q is introduced in

the first partial sum, and the least significant bits of A and Q are input first.

• In the scheme of Figure 3, depending on the values of the delay elements, one serial

adder can begin to perform one partial sum as soon as the first bit of the previous

partial sum becomes available.

• When this happens, we have what is called a pipelined architecture. The main idea

behind the concept of pipelining is to use delay elements at strategic points of the

system that allow one operation to start before the previous operation has finished.

48

Diniz, da Silva and Netto

Serial multiplier

• Figure 4 shows a pipelined serial multiplier. In this multiplier, the input A is in

two’s-complement format, while the input B is assumed to be positive.

• In this figure, the cells labeled D are D-type flip-flops, all sharing the same clock line,

which is omitted for convenience, and the cells labeled SA represent the serial adder

depicted in Figure 2a.

• The latch element used is shown in Figure 5. In this case, if the enable signal is

high, after the clock, the output y becomes equal to the input x; otherwise, the

output y keeps its previous value.

• In Figure 4, since B is assumed to be positive, then sB = 0. Also, the rounding

signal Q is such that

[Q]2c =






00 · · · 00, for truncation

· · · 01 0 · · · 0︸ ︷︷ ︸
n+1 zeros

, for rounding (38)

49

Diniz, da Silva and Netto

Serial multiplier

• In the case of rounding, it is important to note that [Q]2c has two more zeros to the

right than the one in equation (37). This is so because this signal must be

synchronized with input bnA, which is delayed by two bits before entering the serial

adder of the first cell.

• Finally, the control signal CT is equal to

CT = 00 1 · · · 1︸ ︷︷ ︸
m ones

0 (39)

• It should be noticed that all signals A, B, Q, CT should be input from right to left,

that is, starting from their least-significant bits.

• Naturally, the output signal is generated serially, also starting from its least-significant

bit, the first bit coming out after (2n + 3) clock cycles and the entire word taking a

total of (2n + m + 3) cycles to be calculated.

50

Diniz, da Silva and Netto

Serial multiplier

D

DD

en
Latch

reset

S
B

A
SA Latch

en

DD

Basic Cell 1

P1

ct1 ct’1

S1 S’1

D

DD

en
Latch

reset

S
B

A
SA Latch

en

DD

D

DD

en
Latch

reset

S
B

A
SA Latch

en

DD

serial
output

A

B

CT

Q

Basic Cell 2

P2

ct2 ct’2

S2 S’2

Basic Cell n+1

ct ct’n+1 n+1

S’n+1Sn+1
Pn+1

Figure 4: Basic architecture of the pipelined serial multiplier. Clock lines have been sup-

pressed for convenience.

51

Diniz, da Silva and Netto

Serial multiplier

• In the literature, it has been shown that the multiplication of two words of lengths

(m + 1) and (n + 1) using a serial or serial-parallel multiplier takes at least

(m + n + 2) clock cycles, even in the cases where the final result is quantized with

(m + 1) bits.

• Using a pipelined architecture, it is possible to determine the (m + 1)-bit quantized

product at every (m + 1) clock cycles.

• In the serial multiplier of Figure 4, each basic cell performs one partial sum of the

multiplication algorithm. As the result of cell j is being generated, it is directly fed to

cell (j + 1), indicating the pipelined nature of the multiplier.

52

Diniz, da Silva and Netto

Serial multiplier

• A detailed explanation of the behavior of the circuit is given below:

– (i) After the (2j + 1)th clock cycle, bm−j will be at the input of the upper latch of

cell j + 1. The first 0 of the control signal CT will be at input ctj+1 at this time,

which will reset the serial adder and enable the upper latch of cell j + 1.

Therefore, after the (2j + 2)th clock cycle, bm−j will be at the output of the

upper latch, and will remain there for m clock cycles (number of 1s of CT).

– (ii) After the (2j + 2)th clock cycle, am will be at the input of the AND gate of cell

j + 1, and therefore ambm−j will be the Pj+1 input of the serial adder. Since at

this time the first 0 of the control signal CT will be at input ct′j+1, the lower latch

becomes on hold. Therefore, although the first bit of the (j + 1)th partial sum is

at Sj+1 after the (2j + 2)th clock cycle, it will not be at S′
j+1 after the (2j + 3)th

clock cycle, and it will be discarded. Since in the next m + 1 clock cycles the bit

1 will be at ct′j+1, the remaining m + 1 bits of the (j + 1)th partial sum will pass

from Sj+1 to S′
j+1, which is input to the next basic cell.

53

Diniz, da Silva and Netto

Serial multiplier

D

enable

x

y
 Latch
x
 y

enable

enable≡

Figure 5: Latch element.

54

Diniz, da Silva and Netto

Serial multiplier

• (cont.)

– (iii) After the (2j + 2 + k)th clock cycle, am−kbm−j will be the Pj+1 input of

the serial adder of cell j + 1. Therefore, after the (2j + 2 + m)th clock cycle,

sAbm−j will be at the Pj+1 input of the serial adder of cell j + 1. This is

equivalent to saying that the last bit of the (j + 1)th partial sum will be at the input

of the lower latch of cell j + 1 at this time. Since then ct′j+1 is still 1, then, after

the (2j + 3 + m)th clock cycle the last bit of the partial sum of cell j + 1 will be

at the output of the lower latch of cell j + 1. But from this time on, ct′j+1 will be

zero, and therefore the output of the latch of cell j + 1 will hold the last bit of the

(j+1)th partial sum. Since this last bit represents the sign of the (j+1)th partial

sum, it performs the sign extension necessary in two’s-complement arithmetic.

55

Diniz, da Silva and Netto

Serial multiplier

• (cont.)

– (iv) Since there is no need to perform sign extension of the last partial sum, the

lower latch of the last cell is always enabled, as indicated in Figure 4.

– (v) Since each basic cell but the last one only outputs m bits apart from the sign

extensions, then the serial output at the last cell will contain the product either

truncated or rounded to m + 1 bits, depending on the signal Q.

56

Diniz, da Silva and Netto

Example 11.2

• Verify how the pipelined serial multiplier depicted in Figure 4 processes the product

of the binary numbers A = 1.1001 and B = 0.011.

57

Diniz, da Silva and Netto

Example 11.2 - Solution

• We have that m = 4 and n = 3. Therefore, the serial multiplier has four basic cells.

• We expect the least-significant bit of the truncated product to be output after

(2n + 3) = 9 clock cycles and its last bit after (2n + m + 3) = 13 clock cycles.

• Supposing that the quantization signal Q is zero, which corresponds to a truncated

result, we have that (the variable t indicates the clock cycle after which the values of

the signals are given; t = 0 means the time just before the first clock pulse):

58

Diniz, da Silva and Netto

Example 11.2 - Solution

t 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P1 0 0 0 0 0 0 0 1 1 0 0 1 0 0
S1 0 0 0 0 0 0 0 1 1 0 0 1 0 0
ct′1 0 0 0 0 0 0 0 1 1 1 1 0 0 0
S′

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
P2 0 0 0 0 0 1 1 0 0 1 0 0 0 0
S2 0 0 0 0 0 1 0 1 0 1 0 0 0 0
ct′

2
0 0 0 0 0 1 1 1 1 0 0 0 0 0

S′

2 1 1 1 1 1 0 1 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S3 1 1 1 1 1 0 1 0 0 0 0 0 0 0
ct′

3
0 0 0 1 1 1 1 0 0 0 0 0 0 0

S′

3
1 1 1 1 0 1 0 0 0 0 0 0 0 0

P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S4 1 1 1 1 0 1 0 0 0 0 0 0 0 0
ct′4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S′

4
1 1 1 0 1 0 0 0 0 0 0 0 0 0

• And the computed product is 1.1101.

59

Diniz, da Silva and Netto

Example 11.2 - Solution

• For rounding, since n = 3, we have, from equation (38), that

[Q]2c = · · · 0010000. Thus, the operation of the serial multiplier is as follows:

t 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Q 0 0 0 0 0 0 0 0 0 1 0 0 0 0
P1 0 0 0 0 0 0 0 1 1 0 0 1 0 0
S1 0 0 0 0 0 0 0 1 1 1 0 1 0 0
ct′1 0 0 0 0 0 0 0 1 1 1 1 0 0 0
S′

1
1 1 1 1 1 1 1 1 1 0 0 0 0 0

P2 0 0 0 0 0 1 1 0 0 1 0 0 0 0
S2 0 0 0 0 0 1 0 1 1 1 0 0 0 0
ct′2 0 0 0 0 0 1 1 1 1 0 0 0 0 0
S′

2
1 1 1 1 1 0 1 1 0 0 0 0 0 0

P3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S3 1 1 1 1 1 0 1 1 0 0 0 0 0 0
ct′

3
0 0 0 1 1 1 1 0 0 0 0 0 0 0

S′

3 1 1 1 1 0 1 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S4 1 1 1 1 0 1 0 0 0 0 0 0 0 0
ct′

4
1 1 1 1 1 1 1 1 1 1 1 1 1 1

S′

4
1 1 1 0 1 0 0 0 0 0 0 0 0 0

• That is, the rounded product is also 1.1101.

60

Diniz, da Silva and Netto

Serial multiplier

• The general multiplier for two’s-complement arithmetic (without the positive

restriction in one of the factors) can be obtained from the multiplier seen in Figure 4

by a slight modification of the connections between the last two basic cells.

• In fact, from the representation given in equation (20), we note that the general

multiplication of any two numbers represented in two’s complement is equal to the

multiplication of a positive number and a two’s-complement number, except that in

the last step we must perform the subtraction of the product between the data and

the coefficient sign bit from the partial result obtained at that point.

• Then, we must perform a subtraction to obtain Sn+1 = S′
n − sAA.

61

Diniz, da Silva and Netto

Serial multiplier

• It can be shown that, using two’s-complement arithmetic, X − Y = Y + X, where X

represents the inversion of all bits of X.

• Therefore, in the last cell, we should invert S′
n before it is input to the (n + 1)th

serial adder, and then invert its output.

• Thus, the connections to the last basic cell should be modified as shown in Figure 6.

62

Diniz, da Silva and Netto

Serial multiplier

D

D
D

enable
Latch

reset

S

B

A

SA
 Latch

enable

D
D

serial

output

Basic cell n +1

ct
 ctn+1
 n+1

Sn+1
S
n+1

P
n+1

Figure 6: Tail-end of the modified general multiplier for two’s-complement arithmetic.

63

Diniz, da Silva and Netto

Serial multiplier

• An alternative implementation for the rounding quantization, instead of using the Q

signal, consists of forcing the carry signal in serial adder of the nth basic cell to 1

while it is performing the addition of amb1 to the (n − 1)th partial sum.

• So far, we have focused on single-precision multipliers, that is, the final product is

quantized, either by rounding or truncation.

• As seen in previous chapters, in many cases it is desirable that the final product

presents double precision to avoid, for instance, nonlinear oscillations.

• Such operations can be easily performed with the basic multipliers seen so far,

artificially doubling the precision of the two multiplying factors by juxtaposing the

adequate number of bits 0 to the right of each input number.

64

Diniz, da Silva and Netto

Serial multiplier

• For example, the exact multiplication of two inputs with (n + 1) bits each is obtained

by doubling the number of bits in each input by adding (n + 1) bits 0 to the right of

each number.

• Naturally, in this case, we need (n+ 1) more basic cells, and the complete operation

takes twice as long to be implemented as basic single-precision multiplication.

• For binary representations other than the two’s complement, the implementation of

the corresponding serial multipliers can be found in the associated literature.

65

Diniz, da Silva and Netto

Parallel adder

• Parallel adders can be easily constructed by interconnecting several full adders as

shown in Figure 7, where we can observe that the carry signal in each cell

propagates to the next cell through the overall adder structure.

• The main time-consuming operation in this realization is the propagation of the carry

signal that must go through all the full adders to form the desired sum.

• This problem can be reduced at the cost of an increase in the hardware complexity.

66

Diniz, da Silva and Netto

Parallel adder

a
0
 a
1
 a
2
 a
m
b
0
 b
1
 b
2
 b
m

C
00
 C
i0
 C
01
 C
i1
 C
02
 C
0m
 C
im
C
i2

s
0
 s
1
 s
2
 s
m

F F F F…

Figure 7: Block diagram of the parallel adder.

67

Diniz, da Silva and Netto

Parallel multiplier

• A parallel multiplier is usually implemented as a matrix of basic cells, in which the

internal data propagates horizontally, vertically, and diagonally in an efficient and

ordered way.

• In general, such multipliers occupy a very large area of silicon and consume

significant power.

• For these reasons they are only used in cases where time is a major factor in the

overall performance of the given digital processing system, as in major DSP chips of

today.

• Since a digital filter is basically composed of delays, adders, and multipliers (using

serial or parallel arithmetic), we now have all the tools necessary to

implement a digital filter.

68

Diniz, da Silva and Netto

Parallel multiplier

• The implementation is carried out by properly interconnecting such elements

according to a certain realization, which should be chosen from among the ones

seen in the previous chapters.

• If in the resulting design, the sampling rate multiplied by the number of bits used to

represent the signals is below the reachable processing speed, multiplexing

techniques can be incorporated to optimize the use of hardware resources.

69

Diniz, da Silva and Netto

Parallel multiplier

• There are two main multiplexing approaches.

• In the first one, a single filter processes several input signals that are appropriately

multiplexed.

• In the second one, the filter coefficients are multiplexed, resulting in several distinct

transfer functions.

• It is always possible to combine both approaches, if desired, as suggested in

Figure 8, where a memory element stores several sets of coefficients corresponding

to different digital filters to be multiplexed.

70

Diniz, da Silva and Netto

Parallel multiplier

Shift
register
LN bits

Basic
filter

(order N)

ROM

(coefficients)

s
1

s
2

s
L

s
1

s
2

s
L

Figure 8: Fully multiplexed realization of digital filters.

71

Diniz, da Silva and Netto

Distributed arithmetic implementation

• An alternative approach for implementing digital filters, the so-called distributed

arithmetic, avoids the explicit implementation of the multiplier element.

• Such a concept first appeared in the open literature in 1974, although a patent

describing it had been issued in December 1973.

• The basic idea behind the concept of distributed arithmetic is to perform the

summation of the products between filter coefficients and internal signals without

using multipliers.

• For example, suppose one wishes to calculate the following expression:

y =

N∑

i=1

ciXi (40)

where ci are the filter coefficients and Xi are a set of signals represented in two’s

complement with (b + 1) bits.

72

Diniz, da Silva and Netto

Distributed arithmetic implementation

• Assuming that the Xi are properly scaled such that |Xi| < 1, we can rewrite

equation (40) as

y =

N∑

i=1

ci





b∑

j=1

xij
2−j − xi0



 (41)

where xij
corresponds to the jth bit of xi, and xi0

to its sign.

• By reversing the summation order in this equation, the following relationship applies

y =

b∑

j=1

(

N∑

i=1

cixij

)

2−j −

N∑

i=1

cixi0
(42)

73

Diniz, da Silva and Netto

Distributed arithmetic implementation

• If we define the function s(·) of N binary variables z1, z2, . . ., zN, as

s(z1, z2, . . ., zN) =

N∑

i=1

cizi (43)

then equation (42) can be written as

y =

b∑

j=1

s(x1j
, x2j

, . . ., xNj
)2−j − s(x10

, x20
, . . ., xN0

) (44)

• Using the notation sj = s(x1j
, x2j

, . . ., xNj
), then the above equation can be

written as

y = {. . . [(sb2−1 + sb−1)2−1 + sb−2]2−1 + · · · + s1}2−1 − s0 (45)

74

Diniz, da Silva and Netto

Distributed arithmetic implementation

• The value of sj depends on the jth bit of all signals that determine y. Equation (45)

gives a methodology to compute y: we first compute sb, then divide the result by 2

with a right-shift operation, add the result to sb−1, then divide the result by 2, add it

to sb−2, and so on. In the last step, s0 must be subtracted from the last partial

result.

• Overall, the function s(·) in equation (43) can assume at most 2N possible distinct

values, since all of its N variables are binary.

• Thus, an efficient way to compute s(·) is to pre-determine all its possible values,

which depend on the values of the coefficients ci, and store them in a memory unit

whose addressing logic must be based on the synchronized data content.

75

Diniz, da Silva and Netto

Distributed arithmetic implementation

• The distributed arithmetic implementation of equation (40) is as shown in Figure 9.

• In this implementation, the words X1, X2, . . ., XN are stored in shift-registers SR1,

SR2, . . .,SRN, respectively, each one with (b + 1) bits.

• The N outputs of the shift-registers are used to address a ROM unit.

• Then, once the words are loaded in the shift-registers, after the jth right-shift, the

ROM will be addressed with x1b−j
x2b−j

· · · xNb−j
, and the ROM will output sb−j.

76

Diniz, da Silva and Netto

Distributed arithmetic implementation

• This value is then loaded into register A to be added to the partial result from

another register, B, which stores the previous accumulated value.

• The result is divided by 2 (see equation (45)).

• For each calculation, register A is initialized with sb and register B is reset to

contain only zeros.

• Register C is used to store the final sum, obtained from the subtraction of s0 from

the next-to-last sum.

• Naturally, all the above calculations could have been implemented without register A,

whose importance lies in the possibility of accessing the memory unit simultaneously

to the adder/subtractor operation, thus forming a pipelined architecture.

77

Diniz, da Silva and Netto

Distributed arithmetic implementation

SR 1

SR 2

SR N

Register A Register B

Register C

y

Adder/subtractor

xNj

x2j

x1j

ROM

Arithmetic logic unit
(ALU)

Sj

…

Figure 9: Basic architecture for implementing equation (40) using distributed arithmetic.

78

Diniz, da Silva and Netto

Distributed arithmetic implementation

• Using the implementation illustrated in Figure 9, the complete time interval for

computing one sample of the output y entails (b + 1) clock cycles, and therefore

depends solely on the number of bits of each word, and is not a function of the

number, N, of partial products involved to form y.

• The duration of the clock cycle, in this case, is determined by the maximum value

between the times of a memory access and a computation of an addition or

subtraction operation.

• The number of bits, b, used to represent each word greatly affects the memory size,

along with the number, N, of partial sums, which should not be made too large in

order to limit the memory access time.

79

Diniz, da Silva and Netto

Distributed arithmetic implementation

• The value of b depends basically on the dynamic range necessary to represent |sj|

and the precision required to represent the coefficients ci to avoid large coefficient

quantization effects.

• We can greatly increase the overall processing speed for computing y as in

equation (40), by reading the desired values of sj in parallel, and using several

adders in parallel to determine all necessary partial sums.

• This distributed arithmetic can be used to implement several of the digital filter

structures presented in this book.

80

Diniz, da Silva and Netto

Distributed arithmetic implementation

• For instance, the second-order direct-form realization implementing the following

transfer function

H(z) =
b0z2 + b1z + b2

z2 + a1z + a2

(46)

which corresponds to the following difference equation

y(n) = b0x(n)+b1x(n−1)+b2x(n−2)−a1y(n−1)−a2y(n−2) (47)

that can be mapped onto the implementation seen in Figure 10, where the present

and past values of the input signal are used in conjunction with the past values of the

output signal to address the memory unit.

81

Diniz, da Silva and Netto

Distributed arithmetic implementation

• In other words, we make Xi = x(n − i), for i = 0, 1, 2, X3 = y(n − 1), and

X4 = y(n − 2). The function s(·), which determines the content of the memory

unit, is then given by

s(z1, z2, z3, z4, z5) = b0z1 + b1z2 + b2z3 − a1z4 − a2z5 (48)

• Therefore, at a given instant, the quantity sj is

sj = b0xj(n)+b1xj(n−1)+b2xj(n−2)−a1yj(n−1)−a2yj(n−2) (49)

• As the number of partial sums required to calculate y is N = 5, the memory unit in

this example should have 32 positions of L bits, where L is the number of bits

established to represent sj.

82

Diniz, da Silva and Netto

Distributed arithmetic implementation

ALU

xj(n)

xj(n –1)

xj(n –2)

yj(n) yj(n –1) yj(n –2)

SR1

SRC SR3 SR4

SR2

Figure 10: Second-order direct-form filter implemented with distributed arithmetic.

83

Diniz, da Silva and Netto

Distributed arithmetic implementation

• In general, all coefficients bi and ai in equation (48) should be already quantized.

• This is because it is easier to predict the quantization effects at the stage of filter

design, following the theory presented later in this chapter, than to analyze such

effects after quantizing sj as given in equation (48).

• In fact, performing the quantization on sj can even introduce nonlinear oscillations at

the output of a given structure which was initially shown to be immune to limit cycles.

• Limit cycles are dealt with in Section 11.8, and such quantization effect is illustrated

in Example 11.13.

84

Diniz, da Silva and Netto

Distributed arithmetic implementation

• For the second-order state-variable realization (as given in Figure 13.5 of the book),

the distributed arithmetic implementation is shown in Figure 11.

• In this case, the contents of the memory units are generated by

s1j = a11x1j(n) + a12x2j(n) + b1xj(n); for the ROM of the ALU1 (50)

s2j = a22x2j(n) + a21x1j(n) + b2xj(n); for the ROM of the ALU2 (51)

s3j = c1x1j(n) + c2x2j(n) + dxj(n); for the ROM of the ALU3 (52)

• Each memory unit has 8 × L words, where L is the established wordlength for the

given sij.

85

Diniz, da Silva and Netto

Distributed arithmetic implementation

SR1 SR2 SR3

x(n)

y (n)

x1(n)

yj (n – 2)

x2(n)

ALU1

ALU3

ALU2

Figure 11: Second-order state-space filter implemented with distributed arithmetic.

86

Diniz, da Silva and Netto

Distributed arithmetic implementation

• The implementation of high-order filters using distributed arithmetic is simple when

the parallel and cascade forms seen in Chapter 4 are used.

• Both forms can be implemented using a single block realization, whose coefficients

are multiplexed in time to perform the computation of a specific second-order block.

• The cascade version of this type of implementation is represented in Figure 12. Such

an approach is very efficient in terms of chip area and power consumption.

• Faster versions, however, are possible using both the parallel and cascade forms.

• For instance, the fast parallel approach is depicted in Figure 13, where all numerical

calculations can be performed in parallel.

• The fast cascade form can be made more efficient if delay elements are added in

between the blocks to allow pipelined processing.

87

Diniz, da Silva and Netto

Distributed arithmetic implementation

ALU

of a

second-order
filter

SR

Section

number

1st
section

Last
section

Data from
1st section

2nd section

Last section

Multiplex

M

u

l

t

i

p

l

e

x

…

Figure 12: Implementation of the cascade form using distributed arithmetic.

88

Diniz, da Silva and Netto

Distributed arithmetic implementation

Section
1

Section
2

Section
m

xj(n) y1j(n)

y2j(n)

ymj(n)

y(n)

ALU

Register

…

…
…

Figure 13: Fast implementation of the parallel form using distributed arithmetic.

89

Diniz, da Silva and Netto

Distributed arithmetic implementation

• The distributed arithmetic technique presented in this section can also be used to

implement other digital filter structures, as well as some specific processors for the

computation of the FFT.

90

Diniz, da Silva and Netto

Product quantization

• A finite-wordlength multiplier can be modeled in terms of an ideal multiplier followed

by a single additive noise source e(n), as shown in Figure 14.

m

e
(n
)

x
(n
)
 y
(n
)
+
✕

Figure 14: Noise model for multiplier.

91

Diniz, da Silva and Netto

Product quantization

• Three distinct approximation schemes can be employed after a multiplication,

namely: rounding, truncation, and magnitude truncation. We analyze their effects in

numbers represented in two’s complement.

• Product quantization by rounding leads to a result in finite precision whose value is

the closest possible to the actual value.

• If we assume that the dynamic range throughout the digital filter is much larger than

the value of the least significant bit q = 2−b (b corresponds to n in

equations (1)–(11)), the probability density function of the quantization error is

depicted in Figure 15a.

92

Diniz, da Silva and Netto

(a) e

P
(e
)

1/
q

q
=
2

–b

–q /2 q /2

(b) e
–q

1/
q

P
(e
)

–q /2

(c)

P
(e
)

e
–q
 0
 q

2
q

1

Figure 15: Probability density functions for the product-quantization error: (a) rounding;

(b) truncation; (c) magnitude truncation.

93

Diniz, da Silva and Netto

Product quantization

• The mean or expected value of the quantization error due to rounding is zero, that is

E{e(n)} = 0 (53)

• Also, it is easy to show that the variance of the noise e(n) is given by

σ2
e =

q2

12
=

2−2b

12
(54)

• In the case of truncation of a number, where the result is always less than the original

value, the probability density function is as shown in Figure 15b, the expected value

for the quantization error is

E{e(n)} = −
q

2
(55)

and the error variance amounts to

σ2
e =

2−2b

12
(56)

94

Diniz, da Silva and Netto

Product quantization

• This type of quantization is not adequate, in general, because the errors associated

with a nonzero mean value, although small, tend to propagate through the filter, and

their effect can be sensed at the filter output.

• If we apply magnitude truncation, which necessarily implies reducing the magnitude

of the number, the probability density function has the form depicted in Figure 15c.

• In this case, the mean value of the quantization error is

E{e(n)} = 0 (57)

and the variance is

σ2
e =

2−2b

3
(58)

95

Diniz, da Silva and Netto

Product quantization

• Due to these results, it is easy to understand why rounding is the most attractive form

of quantization, since it generates the smallest noise variance while maintaining the

mean value of the quantization error equal to zero.

• Magnitude truncation, besides having a noise variance four times greater than

rounding, leads to a higher correlation between the signal and quantization noise (for

example, when the signal is positive/negative, the quantization noise is also

positive/negative), which is a strong disadvantage, as will soon be clear.

• However, the importance of magnitude truncation can not be overlooked, since it can

eliminate granular limit cycles in recursive digital filters, as will be shown later in this

chapter.

• At this point, it is interesting to study how the signal quantization affects the output

signal.

96

Diniz, da Silva and Netto

Product quantization

• In order to simplify the analysis of roundoff-noise effects, the following assumptions

are made regarding the filter internal signals:

– Their amplitude is much larger than the quantization error.

– Their amplitude is small enough that overflow never occurs.

– They have a wide spectral content.

These assumptions imply that:

– (i) The quantization errors at different instants are uncorrelated, that is, ei(n) is

uncorrelated with ei(n + l), for l 6= 0.

– (ii) Errors at different nodes are uncorrelated, that is, ei(n) is uncorrelated with

ej(n), for i 6= j.

97

Diniz, da Silva and Netto

Product quantization

• From the above considerations, the contributions of different noise sources can be

accounted for separately and added to determine the overall roundoff error at the

filter output.

• However, one should note that (i) and (ii) do not hold when magnitude truncation is

used, due the inherent correlation between the signal and the quantization error.

• Therefore, one should bear in mind that, for the magnitude truncation scheme, the

analysis that follows does not lead to accurate results.

• Denoting the error variance due to each internal signal quantization by σ2
e, and

assuming that the quantization error is the outcome of a white noise process, the

power spectral density (PSD) of a given noise source is

ΓE(e jω) = σ2
e (59)

98

Diniz, da Silva and Netto

Product quantization

• In Chapter 2, we showed that a linear system having transfer function H(z), if a

stationary signal with PSD ΓX(e jω) is input, then the PSD of the output is

ΓY(e jω) = H(e jω)H(e− jω)ΓX(e jω).

• Therefore, in a fixed-point digital-filter implementation, the PSD of the output noise

y(n) is given by

ΓY(ejω) = σ2
e

K∑

i=1

Gi(e jω)Gi(e− jω) (60)

where K is the number of multipliers of the filter, and Gi(e jω) is the frequency

response associated to the transfer function Gi(z) from each multiplier output,

gi(n), to the output of the filter, as indicated in Figure 16.

99

Diniz, da Silva and Netto

Product quantization

m
i

G
i
(z
)

g
i
 (n
)

y(n)x(n)

✕

Figure 16: Noise transfer function for a digital filter.

100

Diniz, da Silva and Netto

Product quantization

• A common figure of merit for evaluating the performance of digital filters is the

relative power spectral density (RPSD) of the output noise, defined in dB as

RPSD = 10 log
ΓY(e jω)

ΓE(e jω)
= 10 log

K∑

i=1

∣

∣Gi(e jω)
∣

∣

2
(61)

• This figure eliminates the dependence of the output noise on the filter wordlength,

thus representing a true measure of the extent to which the output noise depends on

the internal structure of the filter.

101

Diniz, da Silva and Netto

Product quantization

• A simpler but useful performance criterion to evaluate the roundoff noise generated

in digital filters is the noise gain or the relative noise variance, defined by

σ2
y

σ2
e

=
1

π

∫π

0

K∑

i=1

(

Gi(z)Gi(z
−1)
)2

z=e jω dω

=
1

π

∫π

0

K∑

i=1

∣

∣Gi(e jω)
∣

∣

2
dω

=
1

π

K∑

i=1

∫π

0

∣

∣Gi(e jω)
∣

∣

2
dω

=

K∑

i=1

∥

∥Gi(e jω)
∥

∥

2

2
(62)

102

Diniz, da Silva and Netto

Product quantization

(a)

γ
1

γ
0

e
γ 0

e
γ1

e
γ2

e
m2
e
m1

γ
2

–m
1

–m
2

z

–1

z

–1

+
+
 y(n)x(n) ✕

✕

✕

✕

✕

(b)

e
m
1
 e
m
2

–m
1
 –m
2

–1

y(n
)

x
i
(n
)

z
–1

z
–1

+

+

+
✕✕

Figure 17: Second-order networks.

103

Diniz, da Silva and Netto

Product quantization

• Another noise source that must be accounted for in digital filters is the roundoff noise

generated when the input-signal amplitude is quantized in the process of

analog-to-digital conversion.

• Since the input-signal quantization is similar to product quantization, it can be

represented by including a noise source at the input of the digital filter structure.

104

Diniz, da Silva and Netto

Example 11.3

• Compute the quantization noise PSD at the output of the networks shown in

Figure 17, assuming that fixed-point arithmetic is employed.

105

Diniz, da Silva and Netto

Example 11.3 - Solution

• For the structure of Figure 17a, we have that

Gm1
(z) = Gm2

(z) = H(z) (63)

Gγ0
(z) = Gγ1

(z) = Gγ2
(z) = 1 (64)

where

H(z) =
γ0z2 + γ1z + γ2

z2 + m1z + m2

(65)

• The output PSD is then

ΓY(e jω) = σ2
e

(

2H(e jω)H(e− jω) + 3
)

(66)

106

Diniz, da Silva and Netto

Example 11.3 - Solution

• In the case of the structure shown in Figure 17b, the transfer functions from the

multiplier outputs to the filter output can be readily computed from the results of

Exercise 4.3, considering that for −m1

b =





1

0



 ; d = 0 (67)

and for −m2

b =





0

1



 ; d = 0 (68)

107

Diniz, da Silva and Netto

Example 11.3 - Solution

• The required transfer functions are given by

Gm1
(z) =

z + 1

D(z)
(69)

Gm2
(z) =

−(z − 1)

D(z)
(70)

where

D(z) = z2 + (m1 − m2)z + (m1 + m2 − 1) (71)

• The PSD at the output is then given by

ΓY(e jω) = σ2
e

(

Gm1
(e jω)Gm1

(e− jω) + Gm2
(e jω)Gm2

(e− jω)
)

(72)

108

Diniz, da Silva and Netto

Product quantization

• In floating-point arithmetic, quantization errors are introduced not only in products but

also in additions.

• In fact, the sum and product of two numbers x1 and x2, in finite precision, have the

following characteristics

Fl{x1 + x2} = x1 + x2 − (x1 + x2)na (73)

Fl{x1x2} = x1x2 − (x1x2)np (74)

where na and np are random variables with zero mean, which are independent of

any other internal signals and errors in the filter.

109

Diniz, da Silva and Netto

Product quantization

• Their variances are approximately given by

σ2
na

≈ 0.165 × 2−2b (75)

σ2
np

≈ 0.180 × 2−2b (76)

respectively, where b is the number of bits in the mantissa representation, not

including the sign bit.

• Using the above expressions, the roundoff-noise analysis for floating-point arithmetic

can be done in the same way as for the fixed-point case.

• A variant of floating-point arithmetic is the so-called block-floating-point arithmetic,

which consists of representing several numbers with a shared exponent term.

• Block floating point is a compromise between the high complexity hardware of

floating-point arithmetic and the short dynamic range inherent to the fixed-point

representation.

110

Diniz, da Silva and Netto

Signal scaling

• It is possible for overflow to occur in any internal node of a digital filter structure.

• In general, input scaling is often required to reduce the probability of overflow

occurring to an acceptable level.

• Particularly in fixed-point implementations, signal scaling should be applied to make

the probability of overflow the same at all internal nodes of a digital filter.

• In such cases, the signal-to-noise ratio is maximized.

• In a practical digital filter, however, a few internal signals are critical, and they should

not exceed the allowed dynamic range for more than some very short periods of time.

111

Diniz, da Silva and Netto

Signal scaling

• For these signals, if overflow frequently occurs, serious signal distortions will be

observed at the filter output.

• If either the one’s- or the two’s-complement representation is used, an important fact

greatly simplifies the scaling in order to avoid overflow distortions: if the sum of two

or more numbers is within the available range of representable numbers, the

complete sum will always be correct irrespective of the order in which they are

added, even if overflow occurs in a partial operation.

• This implies that the overflow distortions which are due to signal additions can be

recovered by subsequent additions.

112

Diniz, da Silva and Netto

Signal scaling

• As a consequence, when using either one’s- or two’s-complement arithmetic, one

only needs to avoid overflow at the multiplier inputs.

• Therefore, they are the only points that require scaling.

• In this case, in order to avoid frequent overflows, we should calculate the upper limit

for the magnitude of each signal xi(n), for all possible types of filter inputs u(n).

• This is shown by the analysis of the decimation-in-time FFT algorithm in the example

below.

113

Diniz, da Silva and Netto

Example 11.4

• Perform a roundoff-noise analysis of FFT algorithms.

114

Diniz, da Silva and Netto

Example 11.4 - Solution

• Each distinct FFT algorithm requires a specific analysis of the corresponding

quantization effects.

• In this example, we perform a roundoff-noise analysis on the radix-2 FFT algorithm

with decimation in time.

• The basic cell of the radix-2 FFT algorithm based on the decimation-in-time method

is shown in Figure 18.

115

Diniz, da Silva and Netto

Example 11.4 - Solution

X (k)io

X (k)
ie

W

L

k

X (k)i

X (k + L)
i

2

1

–1

1

1

1

Figure 18: Basic cell of the radix-2 FFT algorithm using decimation in time.

116

Diniz, da Silva and Netto

Example 11.4 - Solution

• From Figure 18, we have that

|Xi(k)| ≤ 2 max{|Xie(k)|, |Xio(k)|} (77)

∣

∣

∣

∣

Xi

(

k +
L

2

)∣

∣

∣

∣

≤ 2 max{|Xie(k)|, |Xio(k)|} (78)

• Therefore, to avoid overflow in such structure, using fixed-point arithmetic, a factor of
1
2

on each cell input should be employed, as seen in Figure 19.

• There, one can clearly discern the two noise sources that result from both signal

scaling and multiplication by Wk
L .

117

Diniz, da Silva and Netto

Example 11.4 - Solution

e
1

e
2

–1

1

1

1

W

k

L

1

2

1

2

Figure 19: Basic cell with input scaling.

118

Diniz, da Silva and Netto

Example 11.4 - Solution

• In the common case of rounding, the noise variance, as given in equation (54), is

equal to

σ2
e =

2−2b

12
(79)

where b is the number of fixed-point bits.

• In Figure 19, the noise source e1 models the scaling noise on a cell input which is a

complex number.

• By considering the real and imaginary noise contributions to be uncorrelated, we

have that

σ2
e1

= 2σ2
e =

2−2b

6
(80)

• Meanwhile, the noise source, e2, models the scaling noise due to the multiplication

of two complex numbers, which involves four different terms.

119

Diniz, da Silva and Netto

Example 11.4 - Solution

• By considering these four terms to be uncorrelated, we have that

σ2
e2

= 4σ2
e =

2−2b

3
(81)

This completes the noise analysis in a single basic cell.

• To extend these results to the overall FFT algorithm, let us assume that all noise

sources in the algorithm are uncorrelated.

• Therefore, the output-noise variance can be determined by the addition of all

individual noise variances, from all the basic cells involved.

• Naturally, the noise generated in the first stage appears at the output scaled by

(1
2
)(l−1), where l is the overall number of stages, and the noise generated at stage

k is multiplied by (1
2
)(l−k).

120

Diniz, da Silva and Netto

Example 11.4 - Solution

• To determine the total number of cells, we note that each FFT output is directly

connected to one basic cell in the last stage, two in the next-to-last stage, and so on,

up to 2(l−1) cells in the first stage, with each cell presenting two noise sources

similar to e1 and e2, as discussed above.

• Each stage then has 2(l−k) cells, and their output-noise contribution is given by

2(l−k)

(

1

2

)(2l−2k)
(

σ2
e1

+ σ2
e2

)

(82)

• Consequently, the overall noise variance in each FFT output sample is given by

σ2
o =

(

σ2
e1

+σ2
e2

)

l∑

k=1

2l−k

(

1

2

)2l−2k

= 6σ2
e

l∑

k=1

(

1

2

)l−k

= 6σ2
e

(

2−
1

2l−1

)

(83)

• A similar analysis for other FFT algorithms can be determined in an analogous way.

121

Diniz, da Silva and Netto

Signal scaling

• The general case of scaling analysis is illustrated in Figure 20, where Fi(z) and

F′i(z) represent the transfer functions before and after scaling, respectively, from the

input node to the input of the multiplier mi, such that

F′i(z) = λFi(z) (84)

which also holds for the corresponding impulse responses, that is

f′i(n) = λfi(n) (85)

for all n.

• Assuming zero initial conditions, we have that

xi(n) =

∞∑

k=0

f′i(k)u(n − k) = λ

∞∑

k=0

fi(k)u(n − k) (86)

122

Diniz, da Silva and Netto

Signal scaling

m
i

P
i

X
i
(n
)

F
i
(z
)

F
'i
(z
)

λ

y(n)u(n)

✕

✕

Figure 20: Signal scaling.

123

Diniz, da Silva and Netto

Signal scaling

• If u(n) is bounded in magnitude by um, for all n, the above equation implies that

|xi(n)| ≤ um

∞∑

k=0

|f′i(k)| = umλ

∞∑

k=0

|fi(k)| (87)

• If we want the magnitude of the signal xi(n) to also be upper bounded by um, for

all types of input sequences, then the associated scaling must ensure that

∞∑

k=0

|f′i(k)| ≤ 1 (88)

and therefore

λ ≤ 1
∞∑

k=0

|fi(k)|

(89)

• This is a necessary and sufficient condition to avoid overflow for any input signal.

124

Diniz, da Silva and Netto

Signal scaling

• However, the condition in equations (88) and (89) is not useful in practice, as it can

not be easily implemented. In addition, for a large class of input signals, it leads to a

very stringent scaling.

• A more practical scaling strategy, aimed at more specific classes of input signals, is

presented in the following. Since

U(z) =

∞∑

n=−∞

u(n)z−n (90)

and

Xi(z) = F′i(z)U(z) = λFi(z)U(z) (91)

then, in the time domain, xi(n) is given by

xi(n) =
1

2π j

∮

C

Xi(z)z
n−1dz (92)

where C is in the convergence region common to Fi(z) and U(z).

125

Diniz, da Silva and Netto

Signal scaling

• Accordingly, in the frequency domain, xi(n) is given by

xi(n) =
λ

2π

∫2π

0

Fi(e jω)U(e jω)e jωndω (93)

• Let, now, the Lp norm be defined for any periodic function F(e jω) as follows:

‖F(e jω)‖p =

(

1

2π

∫2π

0

|F(e jω)|pdω

)
1
p

(94)

for all p ≥ 1, such that

∫2π

0

|F(e jω)|pdω ≤ ∞.

• If F(e jω) is continuous, the limit when p → ∞ of equation (94) exists, and is given

by

‖F(e jω)‖∞ = max
0≤ω≤2π

{
|F(e jω)|

}
(95)

126

Diniz, da Silva and Netto

Signal scaling

• Assuming that |U(e jω)| is upper bounded by Um, that is, ‖U(e jω)‖∞ ≤ Um, it

clearly follows from equation (93) that

|xi(n)| ≤ Umλ

2π

∫2π

0

|Fi(e jω)|dω (96)

that is

|xi(n)| ≤ λ‖Fi(e jω)‖1‖U(e jω)‖∞ (97)

• Following a similar reasoning, we have that

|xi(n)| ≤ λ‖Fi(e jω)‖∞‖U(e jω)‖1 (98)

127

Diniz, da Silva and Netto

Signal scaling

• Also, from the Schwartz inequality

|xi(n)| ≤ λ‖Fi(e jω)‖2‖U(e jω)‖2 (99)

• Equations (97)–(99) are special cases of a more general relation, known as the

Hölder inequality, which states that, if 1
p

+ 1
q

= 1, then

|xi(n)| ≤ λ‖Fi(e jω)‖p‖U(e jω)‖q (100)

• If |u(n)| ≤ um, for all n, and if its Fourier transform exists, then there is Um such

that ‖U(e jω)‖q ≤ Um, for any q ≥ 1.

• If we then want |xi(n)| to be upper limited by Um, for all n, equation (100) indicates

that a proper scaling factor should be such that

λ ≤ 1

‖Fi(e jω)‖p

(101)

128

Diniz, da Silva and Netto

Signal scaling

• In practice, when the input signal is deterministic, the most common procedures for

determining λ are:

– When U(e jω) is bounded, and therefore ‖U(e jω)‖∞ can be precisely

determined, one may use λ as in equation (101), with p = 1.

– When the input signal has finite energy, that is,

E =

∞∑

n=−∞

u2(n) = ‖U(e jω)‖2
2 < ∞ (102)

then λ can be obtained from equation (101) with p = 2.

– If the input signal has a dominant frequency component, such as a sinusoidal

signal, this means that it has an impulse in the frequency domain. In this case,

neither ‖U(e jω)‖∞ nor ‖U(e jω)‖2 are defined, and thus only the L1 norm can

be used. Then the scaling factor comes from equation (101) with p = ∞, which

is the most strict case for λ.

129

Diniz, da Silva and Netto

Signal scaling

• For the random-input case, the above analysis does not apply directly, since the z

transform of u(n) is not defined. In this case, if u(n) is stationary, the PSD of an

internal signal xi(n) is given by

ΓXi
(e jω) = F′i(e jω)F′i(e− jω)ΓU(e jω) = λ2Fi(e jω)Fi(e− jω)ΓU(e jω) (103)

where ΓU(e jω) is the input signal PSD.

130

Diniz, da Silva and Netto

Signal scaling

• Hence, the variance of the internal signal xi(n) is given by

σ2
xi

= RXi
(0)

=
1

2π

∫2π

0

ΓXi
(e jω)e jων dω

∣

∣

∣

∣

∣

ν=0

=
1

2π

∫2π

0

ΓXi
(e jω) dω

=
1

2π

∫2π

0

|F′i(e jω)|2ΓU(e jω) dω

=
λ2

2π

∫2π

0

|Fi(e jω)|2ΓU(e jω) dω (104)

131

Diniz, da Silva and Netto

Signal scaling

• Applying the Hölder inequality (equation (100)) to the above equation, we have that,

if 1
p

+ 1
q

= 1, then

σ2
xi

≤ λ2‖F2
i (e jω)‖p‖ΓU(e jω)‖q (105)

or, alternatively,

σ2
xi

≤ λ2‖Fi(e jω)‖2
2p‖ΓU(e jω)‖q (106)

132

Diniz, da Silva and Netto

Signal scaling

• For random processes, the most interesting cases in practice are:

– If we consider q = 1, then p = ∞, and noting that σ2
u = ‖ΓU(e jω)‖1, we

have, from equation (106), that

σ2
xi

≤ λ2‖Fi(e jω)‖2
∞σ2

u (107)

and a λ, such that σ2
xi

≤ σ2
u, is

λ =
1

‖Fi(e jω)‖∞
(108)

133

Diniz, da Silva and Netto

Signal scaling

• (cont.)

– If the input signal is a white noise, ΓU(e jω) = σ2
u, for all ω, and then, from

equation (103),

σ2
xi

= λ2‖Fi(e jω)‖2
2σ2

u (109)

and an appropriate λ is

λ =
1

‖Fi(e jω)‖2

(110)

134

Diniz, da Silva and Netto

Signal scaling

• In practical implementations, the use of powers of two to represent the scaling

multiplier coefficients is a common procedure, as long as these coefficients satisfy

the constraints to control overflow.

• In this manner, the scaling multipliers can be implemented using simple shift

operations.

• In the general case when we have m multipliers, the following single scaling can be

used at the input:

λ =
1

max {‖F1(e jω)‖p, ‖F2(e jω)‖p, . . ., ‖Fm(e jω)‖p}
(111)

135

Diniz, da Silva and Netto

Signal scaling

• For cascade and parallel realizations, a scaling multiplier is employed at the input of

each section.

• For some types of second-order sections, used in cascade realizations, the scaling

factor of a given section can be incorporated into the output multipliers of the previous

section. general, this procedure leads to a reduction in the output quantization noise.

• In the case of second-order sections, it is possible to calculate the L2 and L∞ norms

of the internal transfer functions in closed form, as given in Chapter 13.

136

Diniz, da Silva and Netto

Example 11.5

• Scale the filter shown in Figure 21 using the L2 norm, aiming at a possible

implementation in a fixed-point machine, and determine the relative noise variance at

the scaled filter output.

137

Diniz, da Silva and Netto

Example 11.5

z
−1

y(n)

m1

−1

x(n)

Figure 21: Filter structure in Example 11.5.

138

Diniz, da Silva and Netto

Example 11.5 - Solution

• Denoting the delay input as s(n + 1), one can easily infer that

s(n + 1) = x(n) + m1(x(n) − s(n))

y(n) = s(n) + m1(x(n) − s(n))





(112)

or equivalently

s(n + 1) = −m1s(n) + (1 + m1)x(n)

y(n) = (1 − m1)s(n) + m1x(n)





(113)

which corresponds to the state-space description characterized by

A = −m1; B = (1 + m1); C = (1 − m1); d = m1 (114)

139

Diniz, da Silva and Netto

Example 11.5 - Solution

• The transfer function for this example is then

H(z) =
(1 − m1)(1 + m1)

(z + m1)
+ m1 =

m1z + 1

z + m1

(115)

which happens to be an all-pass first-order transfer function such that

‖H(z)‖2
2 = 1 (116)

• For scaling, it is required the computation of the transfer function from the filter input

to the input of the m1 multiplier, obtained, in this case, by setting C = −1 and

d = 1, such that

F1(z) = −
1 + m1

z + m1

+ 1 =
z − 1

z + m1

(117)

140

Diniz, da Silva and Netto

Example 11.5 - Solution

• In order to determine the scaling factor, we need to compute

‖F1(z)‖2 =

√

1

2π

∫2π

0

|F1(ejω)|2dω =

√

1

2πj

∮

C

F1(z)F1(z−1)z−1dz (118)

where the integral contour C is the z-domain unit circle.

• Therefore, using the residue theorem, one can write that

‖F1(z)‖2
2 =

∑

residues

[

F1(z)F1(z−1)z−1
]

(119)

where the residues are determined for all poles of F1(z)F1(z−1)z−1 within C.

141

Diniz, da Silva and Netto

Example 11.5 - Solution

• In this example, assuming |m1| < 1, we get

‖F1(z)‖2
2 =

∑

residues

(z − 1)(1 − z)

(z + m1)(1 + zm1)z

=
(−m1 − 1)(1 + m1)

(1 − m2
1)(−m1)

−
1

m1

=
2

1 − m1

(120)

leading to a scaling factor of

λ =

√

1 − m1

2
(121)

which shall be compensated in the filter output by a gain g =
√

2
1−m1

.

142

Diniz, da Silva and Netto

Example 11.5 - Solution

• The calculation of the output noise variance requires the transfer function from the

multiplier output to the filter output, which, in this case, can be obtained by

substituting B = d = 1 in the state-space representation, such that

G1(z) =
1 − m1

z + m1

+ 1 =
z + 1

z + m1

(122)

• Again, by employing the residue theorem, we get

‖G1(z)‖2
2 =

∑

residues

[

G1(z)G1(z−1)z−1
]

=
∑

residues

(1 + z)2

(z + m1)(1 + zm1)z

=
(1 − m1)2

(1 − m2
1)(−m1)

+
1

m1

=
2

1 + m1

(123)

143

Diniz, da Silva and Netto

• Hence,

σ2
y

σ2
e

= ‖H(z)‖2
2g2 + ‖G1(z)‖2

2g2 + 1

=
2

1 − m1

+
2

1 + m1

2

1 − m1

+ 1

=
−m2

1 + 2m1 + 7

m2
1 − 1

(124)

already taking into account the scaling multiplier at the filter input and the

compensating gain at the filter output.

144

Diniz, da Silva and Netto

Coefficient quantization

• During the approximation step, the coefficients of a digital filter are calculated with

the high accuracy inherent to the computer employed in the design.

• When these coefficients are quantized for practical implementations, commonly

using rounding, the time and frequency responses of the realized digital filter deviate

from the ideal response.

• In fact, the quantized filter may even fail to meet the prescribed specifications.

• The sensitivity of the filter response to errors in the coefficients is highly dependent

on the type of structure.

• This fact is one of the motivations for considering alternative realizations having low

sensitivity, such as those presented in Chapter 13.

145

Diniz, da Silva and Netto

Coefficient quantization

• Among the several sensitivity criteria that evaluate the effect of the fixed-point

coefficient quantization on the digital filter transfer function, the most widely used are

IS
H(z)
mi

(z) =
∂H(z)

∂mi

(125)

IIS
H(z)
mi

(z) =
1

H(z)

∂H(z)

∂mi

(126)

• For the floating-point representation, the sensitivity criterion must take into account

the relative variation of H(z) due to a relative variation in a multiplier coefficient. We

then must use

IIIS
H(z)
mi

(z) =
mi

H(z)

∂H(z)

∂mi

(127)

146

Diniz, da Silva and Netto

Coefficient quantization

• With such a formulation, it is possible to use the value of the multiplier coefficient to

determine IIIS
H(z)
m (z).

• A simple example illustrating the importance of this fact is given by the quantization

of the system

y(n) = (1 + m)x(n); for |m| ≪ 1 (128)

• Using equation (125), IS
H(z)
mi

(z) = 1, regardless of the value of m, while using

equation (127), IIIS
H(z)
mi

(z) = m/(m + 1), indicating that a smaller value for the

magnitude of m leads to a smaller sensitivity of H(z) with respect to m.

• This is true for the floating-point representation, as long as the number of bits in the

exponent is enough to represent the exponent of m.

147

Diniz, da Silva and Netto

Example 11.6

• Determine the possible pole positions for a direct-form second-order section with

denominator

D(z) = z2 + a1z + a2 (129)

when the filter coefficients a1 and a2 are represented with 6 bits, including the sign

bit, using standard binary representation.

• Repeat your analysis using a state-space structure characterized by

a11 = a22 = a and a21 = −a12 = ζ, when a and ζ are represented with 6 bits.

Such a structure, when the values of at least two different coefficients are dependent

on a single parameter, is referred to as a coupled-form state-space structure.

148

Diniz, da Silva and Netto

Example 11.6 - Solution

• Figure 22a depicts the possible pole placements in the first quadrant within the

z-domain unit circle for the direct-form second-order section.

• In the remaining quadrants, pole placements are symmetric mirrored copies of the

ones seen in this figure.

• As can be observed, the pole grid becomes very sparse around to the real axis,

particularly close to z = 0 or z = 1.

• This explains the implementation inaccuracy achieved by this section type in

applications with high sampling rate, since these cases often require a filter with

poles close to the real axis.

• The same phenomenon occurs if the poles are required to be close to z = 1 or

z = −1.

149

Diniz, da Silva and Netto

Example 11.6 - Solution

Real part

Im
ag

in
ar

y
pa

rt

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y
pa

rt

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 22: Pole grid for second-order sections with 6-bit coefficients: (a) direct-form; (b)

state-space coupled form.

150

Diniz, da Silva and Netto

Example 11.6 - Solution

• For the coupled form, the denominator polynomial becomes

D(z) = z2 − 2az + a2 + ζ2 (130)

where a represents the real part of the complex conjugate poles and ζ their

imaginary part.

• The pole-placement analysis for the coefficient quantization in this structure is shown

in Figure 22b, where we observe a uniform grid distribution around the entire

quadrant.

• This result implies that there is no preferred region for this structure to place the

poles, which is an attractive feature obtained at the cost of four multiplier coefficients

to position a single pair of complex conjugate poles.

151

Diniz, da Silva and Netto

Deterministic sensitivity criterion

• In practice, one is often interested in the variation of the magnitude of the transfer

function, |H(e jω)|, with coefficient quantization. Taking into account the

contributions of all multipliers, a useful figure of merit related to this variation would

be

S(e jω) =

K∑

i=1

∣

∣

∣

∣

S
|H(e jω)|
mi

(e jω)

∣

∣

∣

∣

(131)

where K is the total number of multipliers in the structure, and S
|H(e jω)|
mi

(e jω) is

computed according to one of the equations (125)–(127), depending on the case.

• However, in general, the sensitivities of H(e jω) to coefficient quantization are much

easier to derive than the ones of |H(e jω)|, and thus it would be convenient if the first

one could be used as an estimate of the second.

152

Diniz, da Silva and Netto

Deterministic sensitivity criterion

• In order to investigate this possibility, we write the frequency response in terms of its

magnitude and phase as

H(e jω) =
∣

∣H(e jω)
∣

∣ e jΘ(ω) (132)

• Then the sensitivity measures, defined in equations (125)–(127), can be written as

∣

∣

∣IS
H(e jω)
mi

(e jω)
∣

∣

∣=

√

(

IS
|H(e jω)|
mi

(e jω)
)2

+ |H(e jω)|
2

(

∂Θ(ω)

∂mi

)2

(133)

∣

∣

∣IIS
H(e jω)
mi

(e jω)
∣

∣

∣=

√

(

IIS
|H(e jω)|
mi

(e jω)
)2

+

(

∂Θ(ω)

∂mi

)2

(134)

∣

∣

∣IIIS
H(e jω)
mi

(e jω)
∣

∣

∣
=

√

(

IIIS
|H(e jω)|
mi

(e jω)
)2

+ |mi|2
(

∂Θ(ω)

∂mi

)2

(135)

• From equations (133)–(135), one can see that |S
H(e jω)
mi

(e jω)| ≥ |S
|H(e jω)|
mi

(e jω)|.

153

Diniz, da Silva and Netto

Deterministic sensitivity criterion

• Thus, |S
H(e jω)
mi

(e jω)| can be used as a conservative estimate of |S
|H(e jω)|
mi

(e jω)|,

in the sense that it guarantees that the transfer function variation will be below a

specified tolerance.

• Moreover, it is known that low sensitivity is more critical when implementing filters

with poles close to the unit circle, and, in such cases, for ω close to a pole frequency

ω0, we can show that |S
H(e jω)
mi

(e jω)| ≈ |S
|H(e jω)|
mi

(e jω)|.

• Therefore, we can rewrite equation (131), yielding the following practical sensitivity

figure of merit:

S(e jω) =

K∑

i=1

∣

∣

∣S
H(e jω)
mi

(e jω)
∣

∣

∣ (136)

where, depending on the case, S
H(e jω)
mi

(e jω) is given by one of the

equations (125)–(127).

154

Diniz, da Silva and Netto

Example 11.7

• Design a lowpass elliptic filter with the following specifications:

Ap = 1.0 dB

Ar = 40 dB

ωp = 0.3π rad/sample

ωr = 0.4π rad/sample






(137)

• Perform the fixed-point sensitivity analysis for the direct-order structure, determining

the variation on the ideal magnitude response for an 11-bit quantization of the

fractional part, including the sign bit.

155

Diniz, da Silva and Netto

Example 11.7 - Solution

• The coefficients of the lowpass elliptic filter are given in Table 1.

Table 1: Filter coefficients for the specifications (137).

Numerator Denominator

coefficients coefficients

b0 = 0.028 207 76 a0 = 1.000 000 00

b1 = −0.001 494 75 a1 = −3.028 484 73

b2 = 0.031 747 58 a2 = 4.567 772 20

b3 = 0.031 747 58 a3 = −3.900 153 49

b4 = −0.001 494 75 a4 = 1.896 641 38

b5 = 0.028 207 76 a5 = −0.418 854 19

156

Diniz, da Silva and Netto

Example 11.7 - Solution

• For the general direct-form structure described by

H(z) =
B(z)

A(z)
=

b0 + b1z−1 + · · · + bNz−N

1 + a1z−1 + · · · + aNz−N
(138)

it is easy to find that the sensitivities as defined in equation (125) with respect to the

numerator and denominator coefficients are given by

IS
H(z)

bi
(z) =

z−i

A(z)
; IS

H(z)
ai

(z) = −
z−iH(z)

A(z)
(139)

respectively.

• The magnitude of these functions for the designed fifth-order elliptic filter are seen in

Figure 23.

157

Diniz, da Silva and Netto

Example 11.7 - Solution

(a)
0
 0.5 1
 1.5 2
 2.5 3

0

10

20

30

40

50

60

Frequency [rad/sample]

| S

 b i(ω

)
|

(b)
0
 0.5 1
 1.5 2
 2.5 3

0

10

20

30

40

50

60

Frequency [rad/sample]

| S

 a i(ω

)
|

Figure 23: Magnitudes of the sensitivity functions of H(z) with respect to: (a) numerator

coefficients bi; (b) denominator coefficients ai.

158

Diniz, da Silva and Netto

Example 11.7 - Solution

• The figure of merit S(e jω), as given in equation (136), for the general direct-form

realization can be written as

S(e jω) =
(N + 1) + N|H(z)|

|A(z)|
(140)

• For this example, the function is depicted in Figure 24a.

• We can then estimate the variation of the ideal magnitude response using the

approximation

∆|H(e jω)| ≈ ∆miS(e jω) (141)

• For a fixed-point 11-bit rounding quantization, including the sign bit,

max{∆mi} = 2−11.

• In this case, Figure 24b depicts the ideal magnitude response of a fifth-order elliptic

filter, satisfying the specifications in equation (137), along with the corresponding

worst-case margins due to the coefficient quantization.

159

Diniz, da Silva and Netto

Example 11.7 - Solution

0
 0.5 1
 1.5 2
 2.5 3

0

100

200

300

400

500

600

Frequency [rad/sample]

S
(
e

jω
)

0
 0.5 1
 1.5 2
 2.5 3

–70

–60

–50

–40

–30

–20

–10

0

Frequency [rad/sample]

M
ag

ni
tu

de
 r

es
po

ns
e

[d
B

]

(a) (b)

Figure 24: Finite-precision analysis: (a) sensitivity measurement S(e jω); (b) worst-case

variation of |H(e jω)| with an 11-bit fixed-point quantization.

160

Diniz, da Silva and Netto

Deterministic sensitivity criterion

• It is worth noting that the sensitivity measurement given by equation (136) is also

useful as a figure of merit if one uses the so-called pseudo-floating-point

representation, that consists of implementing multiplication between a signal and a

coefficient with small magnitude in the following form, as depicted in Figure 25

[x × mi]Q = [(x × mi × 2L) × 2−L]Q (142)

where L is the exponent of mi when represented in floating point.

• Note that in the pseudo-floating-point scheme, all operations are actually performed

using fixed-point arithmetic.

161

Diniz, da Silva and Netto

Deterministic sensitivity criterion

–m
i

2
L
 2

–L

y(n)x(n)

✕

Figure 25: Implementation of a multiplication in a pseudo-floating-point representation.

162

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• In the previous subsection we computed the worst case variation in the frequency

response of a digital filter with the quantization of coefficients. By worst case we

meant the supposition that quantization made all the coefficients to vary the

maximum possible amount, and in the worst direction.

• However, since it is unlikely that all coefficients will undergo a worst-case

quantization error, and their quantization effects will accumulate in the worst possible

way with respect to the resulting frequency response.

• Thus, it is useful to perform a more realistic, statistical analysis of the deviation in the

frequency response.

163

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• In this subsection we perform a statistical forecast of the wordlength necessary for a

filter to satisfy a given specification.

• Suppose we have designed a digital filter with frequency response H(e jω), and that

the ideal magnitude response is Hd(e jω), with a tolerance given by ρ(ω).

• When the filter coefficients are quantized, we can express the resulting magnitude

response as
∣

∣HQ(e jω)
∣

∣ =
∣

∣H(e jω)
∣

∣+ ∆
∣

∣H(e jω)
∣

∣ (143)

164

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• Obviously, for a meaningful design, |HQ(e jω)| must not deviate from Hd(e jω) by

more than a frequency-dependent tolerance ρ(ω), that is

∣

∣

(∣

∣HQ(e jω)
∣

∣− Hd(e jω)
)∣

∣ =
∣

∣

∣

∣H(e jω)
∣

∣+ ∆
∣

∣H(e jω)
∣

∣− Hd(e jω)
∣

∣ ≤ ρ(ω)

(144)

or, more strictly,

∣

∣∆
∣

∣H(e jω)
∣

∣

∣

∣ ≤ ρ(ω) −
∣

∣

∣

∣H(e jω)
∣

∣− Hd(e jω)
∣

∣ (145)

• The variation in the magnitude response of the digital filter due to the variations in the

multiplier coefficients mi can be approximated by

∆
∣

∣H(e jω)
∣

∣ ≈
K∑

i=1

∂ |H(e jω)|

∂mi

∆mi (146)

165

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• If we consider that:

– the multiplier coefficients are rounded;

– the quantization errors are statistically independent;

– all ∆mi are uniformly distributed;

then the variance of the error in each coefficient, based on equation (54), is given by

σ2
∆mi

= σ2
∆m =

2−2b

12
, for i = 1, 2, . . ., K (147)

where b is the number of bits not including the sign bit.

166

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• With the assumptions above, the mean of ∆|H(e jω)| is zero and its variance is

given by

σ2
∆|H(e jω)| ≈ σ2

∆m

K∑

i=1

(

∂ |H(e jω)|

∂mi

)2

= σ2
∆mS2(e jω) (148)

where S2(e jω) is given by equations (125) and (136).

• If we further assume that ∆ |H(e jω)| is Gaussian, we can estimate the probability of

∆ |H(e jω)| being less than or equal to xσ∆|H(e jω)| by

Pr
{∣
∣∆H(e jω)

∣

∣ ≤ xσ∆|H(e jω)|

}
=

2√
π

∫ x√
2

0

e−x′2

dx′ (149)

167

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• To guarantee that equation (145) holds with a probability less than or equal to the

one given in equation (149), it suffices that

xσ∆mS(e jω) ≤ ρ(ω) −
∣

∣

∣

∣H(e jω)
∣

∣− Hd(e jω)
∣

∣ (150)

• Now, assume that the wordlength, including the sign bit, is given by

B = I + F + 1 (151)

where I and F are the numbers of bits in the integer and fractional parts, respectively.

• The value of I depends on the required order of magnitude of the coefficient, and F

can be estimated from equation (150) to guarantee that equation (145) holds with

probability as given in equation (149).

168

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• To satisfy the inequality in (150), the value of 2−b, from equation (147), should be

given by

2−b =
√

12 min
ω∈C

{∣
∣

∣

∣

ρ(ω) − ||H(e jω)| − Hd(e jω)|

xS(e jω)

∣

∣

∣

∣

}
(152)

where C is the set of frequencies not belonging to the filter transition bands.

• Then, an estimate for F is

F ≈ b = − log2

(√
12 min

ω∈C

{∣
∣

∣

∣

ρ(ω) − ||H(e jω)| − Hd(e jω)|

xS(e jω)

∣

∣

∣

∣

})
(153)

169

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• This method for estimating the wordlength is also useful in iterative procedures to

design filters with minimum wordlength.

• An alternative procedure that is widely used in practice to evaluate the design of

digital filters with finite-coefficient wordlength, is to design the filters with tighter

specifications than required, quantize the coefficients, and check if the prescribed

specifications are still met.

• Obviously, in this case, the success of the design is highly dependent on the

designer’s experience.

170

Diniz, da Silva and Netto

Example 11.8

• Determine the total number of bits required for the filter designed in Example 11.3 to

satisfy the following specifications, after coefficient quantization:

Ap = 1.2 dB

Ar = 39 dB

ωp = 0.3π rad/sample

ωr = 0.4π rad/sample






(154)

171

Diniz, da Silva and Netto

Example 11.8 - Solution

• Using the specifications in equation (154), we determine

δp = 1–10−Ap/20 = 0.1482 (155)

δr = 10−Ar/20 = 0.0112 (156)

and define

ρ(ω) =






δp, for 0 ≤ ω ≤ 0.3π

δr, for 0.4π ≤ ω ≤ π
(157)

Hd(e jω) =






1, for 0 ≤ ω ≤ 0.3π

0, for 0.4π ≤ ω ≤ π
(158)

172

Diniz, da Silva and Netto

Example 11.8 - Solution

• A reasonable certainty margin is about 90%, yielding, from equation (149),

x√
2

= erfinv (0.9) = 1.1631 ⇒ x = 1.6449 (159)

• We use the filter designed in Example 11.3 as H(e jω), with the corresponding

sensitivity function S(e jω), as given in equation (140) and depicted in Figure 24a.

• Based on these values, we can compute the number of bits F for the fractional part,

using equation (153), resulting in F ≈ 12.0993, which we round to F = 12 bits.

• From Table 1, we observe that I = 3 bits are necessary to represent the integer part

of the filter coefficients which fall in the range −4 to +4. Therefore, the total number

of bits required, including the sign bit, is

B = I + F + 1 = 16 (160)

173

Diniz, da Silva and Netto

Example 11.8 - Solution

• Table 2 shows the filter coefficients after quantization.

Table 2: Quantized filter coefficients for specifications (154).

Numerator Denominator

coefficients coefficients

b0 = 0.028 320 31 a0 = 1.000 000 00

b1 = −0.001 464 84 a1 = −3.028 564 45

b2 = 0.031 738 28 a2 = 4.567 871 09

b3 = 0.031 738 28 a3 = −3.900 146 48

b4 = −0.001 464 84 a4 = 1.896 728 52

b5 = 0.028 320 31 a5 = −0.418 945 31

174

Diniz, da Silva and Netto

Example 11.8 - Solution

• Table 3 includes the resulting passband ripple and stopband attenuation for several

values of F, from which we can clearly see that using the predicted F = 12, the

specifications in equation (154) are satisfied, even after quantization of the filter

coefficients.

Table 3: Filter characteristics as a function of the number of fractional bits F.

F Ap [dB] Ar [dB]

15 1.0100 40.0012
14 1.0188 40.0106
13 1.0174 40.0107
12 1.1625 39.7525
11 1.1689 39.7581
10 1.2996 39.7650
9 1.2015 40.0280
8 2.3785 40.2212

175

Diniz, da Silva and Netto

Limit cycles

• A serious practical problem that affects the implementation of recursive digital filters

is the possible occurrence of parasitic oscillations.

• These oscillations can be classified, according to their origin, as either granular or

overflow limit cycles, as presented below.

176

Diniz, da Silva and Netto

Granular limit cycles

• Any stable digital filter, if implemented with idealized infinite-precision arithmetic,

should have an asymptotically decreasing response when the input signal becomes

zero after a given instant of time n0T .

• However, if the filter is implemented with finite-precision arithmetic, the noise signals

generated at the quantizers become highly correlated from sample to sample and

from source to source.

• This correlation can cause autonomous oscillations, referred to as granular limit

cycles, originating from quantization performed in the least significant signal bits, as

indicated in the example that follows.

177

Diniz, da Silva and Netto

Example 11.9

• Suppose the filter of Figure 26 has the following input signal:

x(n) =





0.111, for n = 1

0.000, for n 6= 1
(161)

where the numbers are represented in two’s complement. Determine the output

signal in the case when the quantizer performs rounding, for n = 1, 2, . . ., 40.

178

Diniz, da Silva and Netto

Example 11.9

0.
111
=
a

1.
001
=
b

[Q
]

z
–1

z
–1

+
 y(n)x(n)

✕

✕

Figure 26: Second-order section with a quantizer.

179

Diniz, da Silva and Netto

Example 11.9 - Solution

• The output in the time domain, assuming that the quantizer rounds the signal, is

given in Table 4, where one can easily see that an oscillation is sustained at the

output, even after the input becomes zero.

• In many practical applications, where the signal levels in a digital filter can be

constant or very low, even for short periods of time, limit cycles are highly

undesirable, and should be eliminated or at least have their amplitude bounds strictly

limited.

180

Diniz, da Silva and Netto

Example 11.9 - Solution

Table 4: Output signal of network shown in Figure 26.

n y(n)

1 0.111
2 Q(0.110001+0.000000) = 0.110
3 Q(0.101010+1.001111) = 1.111
4 Q(1.111001+1.010110) = 1.010
5 Q(1.010110+0.000111) = 1.100
6 Q(1.100100+0.101010) = 0.010
7 Q(0.001110+0.011100) = 0.101
8 Q(0.100011+1.110010) = 0.011
9 Q(0.010101+1.011101) = 1.110

10 Q(1.110010+1.101011) = 1.100
11 Q(1.100100+0.001110) = 1.110
12 Q(1.110010+0.011100) = 0.010
13 Q(0.001110+0.001110) = 0.100
14 Q(0.011100+1.110010) = 0.010
15 Q(0.001110+1.100100) = 1.110
16 Q(1.110010+1.110010) = 1.100
17 Q(1.100100+0.001110) = 1.110
18 Q(1.110010+0.011100) = 0.010
19 Q(0.001110+0.001110) = 0.100
20 Q(0.011100+1.110010) = 0.010
21 Q(0.001110+1.100100) = 1.110
22 Q(1.110010+1.110010) = 1.100

.

.

.
.
.
.

181

Diniz, da Silva and Netto

Overflow limit cycles

• Overflow limit cycles can occur when the magnitudes of the internal signals exceed

the available register range.

• In order to avoid the increase of the signal wordlength in recursive digital filters,

overflow nonlinearities must be applied to the signal.

• Such nonlinearities influence the most significant bits of the signal, possibly causing

severe distortion.

• An overflow can give rise to self-sustained, high-amplitude oscillations, widely known

as overflow limit cycles.

• Overflow can occur in any structure in the presence of an input signal, and

input-signal scaling is crucial to reduce the probability of overflow to an acceptable

level.

182

Diniz, da Silva and Netto

Example 11.10

• Consider the filter of Figure 27 with a = 0.9606 and b = 0.9849, where the

overflow nonlinearity employed is the two’s complement with 3-bit quantization (see

Figure 27).

• Its analytic expression is given by

Q(x) =
1

4
[(⌈4x − 0.5⌉ + 4) mod 8] − 1 (162)

where ⌈x⌉ means the smallest integer larger than or equal to x.

• Determine the output signal of such a filter for zero input, given the initial conditions

y(−2) = 0.50 and y(−1) = −1.00.

183

Diniz, da Silva and Netto

Example 11.10

x
3
–1
–3
 1

1

–1

Q(x)

+

Z

–1

Z

–1

X

X

y(n)
x(n)

a

b

Figure 27: Second-order section with an overflow quantizer.

184

Diniz, da Silva and Netto

Example 11.10 - Solution

• With a = 0.9606, b = −0.9849, y(−2) = 0.50 and y(−1) = −1.00, we have

that

y(0)=Q[1.9606(−1.00) − 0.9849(0.50)] = Q[−2.4530] = −0.50

y(1)=Q[1.9606(−0.50) − 0.9849(−1.00)] = Q[0.0046] = 0.00

y(2)=Q[1.9606(0.00) − 0.9849(−0.50)] = Q[0.4924] = 0.50

y(3)=Q[1.9606(0.50) − 0.9849(0.00)] = Q[0.9803] = −1.00

...

(163)

• Since y(2) = y(−2) and y(3) = y(−1), we have that, although there is no

excitation, the output signal in nonzero and periodic with a period of 4, thus indicating

the existence of overflow limit cycles.

185

Diniz, da Silva and Netto

Overflow limit cycles

• A digital filter structure is considered free from overflow limit cycles if the error

introduced in the filter after an overflow decreases with time in such a way that the

output of the nonlinear filter (including the quantizers) converges to the output of the

ideal linear filter.

• In practice a quantizer incorporates nonlinearities corresponding to both granular

quantization and overflow.

• Figure 28 illustrates a digital filter using a quantizer that implements rounding as the

granular quantization and saturation arithmetic as the overflow nonlinearity.

• Note that although this overflow nonlinearity is different from the one depicted in

Figure 27, both are classified as overflow.

186

Diniz, da Silva and Netto

Overflow limit cycles

a

b

z
–1

z
–1

1–1 x

Q (x)

y(n)x(n)

✕

✕

Figure 28: Second-order section with a rounding and saturating quantizer.

187

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• A general IIR filter can be depicted as in Figure 29a, where the linear N-port network

consists of interconnections of multipliers and adders.

• In a recursive filter implemented with fixed-point arithmetic, each internal loop

contains a quantizer.

• Assuming that the quantizers are placed at the delay inputs (the state variables), as

shown in Figure 29b, we can describe the digital filter, including the quantizers, using

the following state-space formulation:

x(n + 1) = [Ax(n) + bu(n)]Q

y(n) = cTx(n) + du(n)
(164)

where [x]Q indicates the quantized value of x, A is the state matrix, b is the input

vector, c is the output vector, and d represents the direct connection between the

input and output of the filter.

188

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

(a)

z–1 z–1 z–1

N21

Linear N-port y(n)u(n)

x1(n + 1) x2(n + 1) xN(n + 1)x1(n) x2(n) xN(n)

…

(b)

[[[

]]]

Q Q Q

N21

Linear N-port y(n)u(n)

z–1 z–1 z–1
x1(n + 1)

x'1(n + 1)

x2(n + 1)

x'2(n + 1)

xN(n + 1)

x'N(n + 1)

x1(n) x2(n) xN(n)

…

Figure 29: Digital filter networks: (a) ideal; (b) with quantizers at the state variables.

189

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• In order to analyze zero-input limit cycles, it is sufficient to consider the recursive part

of the state equation given by

x(k + 1) = [Ax(k)]Q = [x′(k + 1)]Q (165)

where the quantization operations [·]Q are nonlinear operations such as truncation,

rounding, or overflow.

190

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• The basis for the elimination of nonlinear oscillations is given by Theorem 11.1 below.

• Theorem: If a stable digital filter has a state matrix A and, for any N × 1 vector x̂

there exists a diagonal positive-definite matrix G, such that

x̂T(G − ATGA)x̂ ≥ 0 (166)

then the granular zero-input limit cycles can be eliminated if the quantization is

performed through magnitude truncation.

• Proof: Consider a non-negative pseudo-energy Lyapunov function given by

p(x(n)) = xT(n)Gx(n) (167)

191

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• The energy variation in a single iteration can be defined as

∆p(n+1) = p(x(n + 1)) − p(x(n))

= xT(n + 1)Gx(n + 1) − xT(n)Gx(n)

= [x′T(n + 1)]QG[x′(n + 1)]Q − xT(n)Gx(n)

= [Ax(n)]TQG[Ax(n)]Q − xT(n)Gx(n)

= [Ax(n)]TG[Ax(n)] − xT(n)Gx(n)

−

N∑

i=1

(x′2
i (n + 1) − x2

i (n + 1))gi

= xT(n)[ATGA − G]x(n) −

N∑

i=1

(x′2
i (n + 1) − x2

i (n + 1))gi(168)

where gi are the diagonal elements of G.

192

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• If quantization is performed through magnitude truncation, then the errors due to

granular quantization and overflow are such that

|xi(n + 1)| ≤ |x′
i(n + 1)| (169)

for all i and n. Therefore, if equation (166) holds, from equation (168), we have that

∆p(n + 1) ≤ 0 (170)

• If a digital filter is implemented with finite-precision arithmetic, within a finite number

of samples after the input signal becomes zero, the output signal will become either a

periodic oscillation or zero.

193

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• Periodic oscillations, with nonzero amplitude, can not be sustained if

∆p(n + 1) ≤ 0, as shown above.

• Therefore, equations (166) and (169) are sufficient conditions to guarantee the

elimination of granular zero-input limit cycles on a recursive digital filter.

• Note that the condition given in equation (166) is equivalent to requiring that F be

positive semidefinite, where

F = (G − ATGA) (171)

• It is worth observing that for any stable state matrix A, its eigenvalues are inside the

unit circle, and there will always be a positive-definite and symmetric matrix G such

that F is symmetric and positive semidefinite.

194

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• However, if G is not diagonal, the quantization process required to eliminate

zero-input limit cycles is extremely complicated, as the quantization operation in each

quantizer is coupled to the others.

• On the other hand, if there is a matrix G which is diagonal and positive definite such

that F is positive semidefinite, then zero-input limit cycles can be eliminated by

simple magnitude truncation.

• In the following theorem, we will state more specific conditions regarding the

elimination of zero-input limit cycles in second-order systems.

195

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• Theorem: Given a 2 × 2 stable state matrix A, there is a diagonal positive-definite

matrix G, such that F is positive semidefinite, if and only if

a12a21 ≥ 0 (172)

or

a12a21 < 0

|a11 − a22| + det(A) ≤ 1





(173)

196

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• Proof: Let G = (T−1)2 be a diagonal positive-definite matrix, such that T is a

diagonal nonsingular matrix.

• Therefore, we can write F as

F = T−1T−1 − ATT−1T−1A (174)

and then

TTFT = TTT−1T−1T − TTATT−1T−1AT

= I − (T−1AT)T(T−1AT)

= I − M (175)

with M = (T−1AT)T(T−1AT), as TT = T.

• Since the matrix (I − M) is symmetric and real, its eigenvalues are real.

197

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• This matrix is then positive semidefinite if and only if its eigenvalues are

non-negative, or, equivalently, if and only if its trace and determinant are

non-negative. We then have that

det{I − M}=1 + det{M} − tr{M} = 1 + (det{A})2 − tr{M} (176)

tr{I − M}=2 − tr{M} (177)

• For a stable digital filter, it is easy to verify that det{A} < 1, and then

tr{I − M} > det{I − M} (178)

• Hence, the condition det{I − M} ≥ 0 is necessary and sufficient to guarantee that

(I − M) is positive semidefinite.

198

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• From the definition of M, and using α = t22/t11, then

det{I − M} = 1 + (det{A})2 −

(

a2
11 + α2a2

12 +
a2

21

α2
+ a2

22

)

(179)

• By calculating the maximum of the equation above with respect to α, we get an

optimal α⋆ such that

(α⋆)2 =

∣

∣

∣

∣

a21

a12

∣

∣

∣

∣

(180)

and then

det⋆{I − M} = 1 + (det{A})2 − (a2
11 + 2|a12a21| + a2

22)

= (1 + det{A})2 − (tr{A})2 + 2(a12a21 − |a12a21|) (181)

where det⋆ denotes the maximum value of the respective determinant.

199

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• We now analyze two separate cases to guarantee that det⋆{I − M} ≥ 0.

– If

a12a21 ≥ 0 (182)

then

det⋆{I − M} = (1 + det{A})2 − (tr{A})2

= (1 + α2)2 − (−α1)2

= (1 + α1 + α2)(1 − α1 + α2) (183)

where α1 = −tr{A} and α2 = det{A} are the filter denominator coefficients. It

can be verified that, for a stable filter, (1 + α1 + α2)(1 − α1 + α2) > 0, and

then equation (182) implies that (I − M) is positive definite.

200

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• (cont.)

– If

a12a21 < 0 (184)

then

det⋆{I − M} = 1 + (det{A})2 − (a2
11 − 2a12a21 + a2

22)

= (1 − det{A})2 − (a11 − a22)2 (185)

This equation is greater than or equal to zero, if and only if

|a11 − a22| + det{A} ≤ 1 (186)

201

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• Therefore, either equation (182) or equations (184) and (186) are the necessary and

sufficient conditions for the existence of a diagonal matrix

T = diag {t11 t22} (187)

with

t22

t11

=

√

∣

∣

∣

∣

a21

a12

∣

∣

∣

∣

(188)

such that F is positive semidefinite.

202

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• It is worth observing that the above theorem gives the conditions for the matrix F to

be positive semidefinite for second-order sections.

• In the example below, we illustrate the limit-cycle elimination process by showing,

without resorting to Theorem 11.2, that a given second-order structure is free from

zero-input limit cycles.

• The reader is encouraged to apply the theorem to show the same result.

203

Diniz, da Silva and Netto

Example 11.11

• Examine the possibility of eliminating limit cycles in the network of Figure 30.

+
 +

+

+

+
 +

+
 z
–1

z
–1
 +

P
4

P
3
 C
0

y
BP
(n
)

y
N
(n
)

C
1
 C
2
P
5

–1

y
HP
(n)

–m
2
–m
1

P
2
P
1

x
2
(n)

x
1
(n)

y
LP
(n)

y(n)

✕

✕ ✕

✕ ✕

Figure 30: General-purpose network.

204

Diniz, da Silva and Netto

Example 11.11 - Solution

• The structure in Figure 30 realizes lowpass, bandpass, and highpass transfer

functions simultaneously (with subscripts LP, BP, and HP, respectively).

• The structure also realizes a transfer function with zeros on the unit circle, using the

minimum number of multipliers.

• The characteristic polynomial of the structure is given by

D(z) = z2 + (m1 − m2)z + m1 + m2 − 1 (189)

• In order to guarantee stability, the multiplier coefficients m1 and m2 should fall in

the range

m1 > 0

m2 > 0

m1 + m2 < 2





(190)

205

Diniz, da Silva and Netto

Example 11.11 - Solution

• Figure 31 depicts the recursive part of the structure in Figure 30, including the

quantizers.

+

+

+

z
–1

z
–1

[Q
] [Q]

x1(n + 1)
 x2(n + 1)

x'1(n + 1)

x1(n)

–x
2
(n
)

–1

–m
2
–m
1

✕ ✕

Figure 31: Recursive part of the network in Figure 30.

206

Diniz, da Silva and Netto

Example 11.11 - Solution

• The zero-input state-space equation for the structure in Figure 31 is

x′(n + 1) =





x′
1(n + 1)

x′
2(n + 1)



 = A





x1(n)

x2(n)



 (191)

with

A =





(1 − m1) m2

−m1 (m2 − 1)



 (192)

• By applying quantization to x′(n + 1), we find

x(n + 1) = [x′(n + 1)]Q = [Ax(n)]Q (193)

207

Diniz, da Silva and Netto

Example 11.11 - Solution

• A quadratic positive-definite function can be defined as

p(x(n)) = xT(n)Gx(n) =
x2

1

m2

+
x2

2

m1

(194)

with

G =





1
m2

0

0 1
m1



 (195)

which is positive definite, since from equation (190), m1 > 0 and m2 > 0.

208

Diniz, da Silva and Netto

Example 11.11 - Solution

• An auxiliary energy increment is then

∆p0(n + 1) = p(x′(n + 1)) − p(x(n))

= x′T(n + 1)Gx′(n + 1) − xT(n)Gx(n)

= xT(n)[ATGA − G]x(n)

= (m1 + m2 − 2)

(

x1(n)

√

m1

m2

− x2(n)

√

m2

m1

)2

(196)

209

Diniz, da Silva and Netto

Example 11.11 - Solution

• Since from equation (190), m1 + m2 < 2, then

∆p0(n + 1) = 0, for x1(n) = x2(n)
m2

m1

∆p0(n + 1) < 0, for x1(n) 6= x2(n)
m2

m1





(197)

• Now, if magnitude truncation is applied to quantize the state variables, then

p(x(n)) ≤ p(x′(n)), which implies that

∆p(x(n)) = p(x(n + 1)) − p(x(n)) ≤ 0 (198)

and then p(x(n)) is a Lyapunov function.

• Overall, when no quantization is applied in the structure of Figure 30, no

self-sustained oscillations occur if the stability conditions of equation (190) are

satisfied.

210

Diniz, da Silva and Netto

Example 11.11 - Solution

• If, however, quantization is applied to the structure, as shown in Figure 31,

oscillations may occur.

• Using magnitude truncation, then |xi(n)| ≤ |x′
i(n)|, and under these

circumstances, p(x(n)) decreases during the subsequent iterations, and eventually

the oscillations disappear, with

x(n) =





0

0



 (199)

being the only possible equilibrium point.

211

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• As seen above, the sufficient conditions for the elimination of zero-input limit cycles

are well established.

• However, if the system input is a nonzero constant, limit cycles may still occur.

• It is worth observing that the response of a stable linear system to a constant input

signal should also be a constant signal.

• In the associated literature, a theorem is presented that establishes how

constant-input limit cycles can also be eliminated in digital filters in which zero-input

limit cycles are eliminated. This theorem is as follows.

212

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• Theorem: Assume that the general digital filter in Figure 29b does not sustain

zero-input limit cycles and that

x(n + 1) = [Ax(n) + Bu(n)]Q

y(n) = CTx(n) + du(n)





(200)

• Constant-input limit cycles can also be eliminated, by modifying the structure in

Figure 29b, as shown in Figure 32, where

p = [p1 p2 · · ·pn]T = (I − A)−1B (201)

and pu0 must be representable in the machine wordlength, where u0 is a constant

input signal.

213

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

z
–1

z
–1

z
–1

–1–1–1

[[[

]]]

Q Q Q
+ + +

+++

P1 P2
PN

Linear N-port

N21

y(n)u(n)

✕ ✕ ✕

Figure 32: Modified Nth-order network for the elimination of constant-input limit cycles.

214

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• Proof: Since the structure of Figure 29b is free from zero-input limit cycles, the

autonomous system

x(n + 1) = [Ax(n)]Q (202)

is such that

lim
n→∞

x(n) = [0 0 . . . 0]T (203)

• If p is as given in equation (201), the modified structure of Figure 32 is described by

x(n + 1) = [Ax(n) − pu0 + Bu0]Q + pu0

= [Ax(n) − I(I − A)−1Bu0 + (I − A)(I − A)−1Bu0]Q + pu0

= [A(x(n) − pu0)]Q + pu0 (204)

215

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• Defining

x̂(n) = x(n) − pu0 (205)

then, from equation (204), we can write that

x̂(n + 1) = [Ax̂(n)]Q (206)

• Which is the same as equation (202), except for the transformation in the state

variable. Hence, as pu0 is machine representable (that is, pu0 can be exactly

calculated with the available wordlength), equation (206) also represents a stable

system free from constant-input limit cycles.

• If the quantization of the structure depicted in Figure 29b is performed using

magnitude truncation, the application of the strategy of Theorem 11.3 leads to the

so-called controlled rounding method.

216

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• The constraints imposed by requiring that pu0 be machine representable reduce the

number of structures in which the technique described by Theorem 11.3 applies.

• However, there are a large number of second-order sections and wave digital filter

structures in which these requirements are automatically met.

• In fact, a large number of research papers have been published proposing new

structures which are free from zero-input limit cycles, and free from constant-input

limit cycles.

• However, the analysis procedures for the generation of these structures are not

unified and here we have aimed to provide a unified framework leading to a general

procedure to generate structures which are free from granular limit cycles.

217

Diniz, da Silva and Netto

Example 11.12

• Show that by placing the input signal at the point denoted by x1(n), the structure in

Figure 30 is free from constant-input limit cycles.

218

Diniz, da Silva and Netto

Example 11.12 - Solution

• The second-order section of Figure 30, with a constant input x1(n) = u0, can be

described by

x(n + 1) = Ax(n) +





−m1

−m1



u0 (207)

with p such that

p =





m1 −m2

m1 2 − m2





−1 



−m1

−m1



 =





−1

0



 (208)

• Therefore, pu0 is clearly machine representable, for any u0, and the constant-input

limit cycles can be eliminated, as depicted in Figure 33.

219

Diniz, da Silva and Netto

Example 11.12 - Solution

+

+
 +

+
+
+

z
–1

z

–1

[Q] [Q]

x
1
(n
)
 –1

–1

u
0
 –m
2
–m
1

✕ ✕

Figure 33: Elimination of constant-input limit cycles in the structure of Figure 30.

220

Diniz, da Silva and Netto

Example 11.13

• For the second-order state-variable realization as given in Figure 4.23 of the book,

discuss the elimination of constant-input limit-cycles in a distributed arithmetic

implementation as the one in Section 11.4.

221

Diniz, da Silva and Netto

Example 11.13 - Solution

• In a regular implementation, as the one in Figure 11, to eliminate zero-input limit

cycles in the state-space realization, the state variables x1(n) and x2(n) must be

calculated by ALU1 and ALU2 in double precision, and then properly quantized,

before being loaded into the shift-registers SR2 and SR3.

• However, it can be shown that no double-precision computation is necessary to avoid

zero-input limit cycles when implementing the state-space realization with the

distributed arithmetic approach.

• To eliminate constant-input limit cycles, the state-space realization shown in

Figure 34 requires that the state variable x1(n) must be computed by ALU1 in

double precision, and then properly quantized to be subtracted from the input signal.

222

Diniz, da Silva and Netto

Example 11.13 - Solution

• To perform this subtraction, register A in Figure 9 must be multiplexed with another

register that contains the input signal x(n), in order to guarantee that the signal

arriving at the adder, at the appropriate instant of time, is the complemented version

of x(n), instead of a signal coming from the memory.

• In such a case, the content of the ROM of ALU1 must be generated as

s′1j = a11x1j(n) + a12x2j(n) + a11xj(n); for the ROM of the ALU1 (209)

while ALU3 is filled in the same fashion as given in equation (52) and for ALU2 the

content is the same as in equation (51) with b2 replaced by a21.

223

Diniz, da Silva and Netto

Example 11.13 - Solution

x1(n)

c1

c2

a12

a22

a21

y (n)x(n)

d

a
11

z
–1

z
–1

1

1

–1

[Q]

[Q]

Figure 34: State-space realization immune to constant-input limit cycles.

224

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

• The stability analysis of the forced response of digital filters that include nonlinearities

to control overflow must be performed considering input signals for which in the ideal

linear system the overflow level is never reached after a given instant n0.

• In this way, we can verify whether the real system output will recover after an

overflow has occurred before instant n0.

• Although the input signals considered are in a particular class of signals, it can be

shown that if the real system recovers for these signals, it will also recover after each

overflow, for any input signal, if the recovery period is shorter than the time between

two consecutive overflows.

• Consider the ideal linear system as depicted in Figure 35a and the real nonlinear

system as depicted in Figure 35b.

225

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

(a)

N21

Linear N-port y(n)u1(n)

z–1 z–1 z–1
f1(n) x1(n) f2(n) x2(n) fN(n) xN(n)

…

(b)

[
 [
 [

]
]
]

0
 0
 0

N21

Linear N-port y(n)u2(n)

z–1 z–1 z–1

f'1(n) f'2(n) f'N(n)

x'1(n) x'2(n) x'N(n)

Q Q Q

x'1(n + 1) x'2(n + 1) x'N(n + 1)

…

Figure 35: General digital filter networks: (a) ideal; (b) with quantizers at the state vari-

ables.

226

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

• The linear system illustrated in Figure 35a is described by the equations

f(n) = Ax(n) + Bu1(n) (210)

x(n) = f(n − 1) (211)

and the nonlinear system illustrated in Figure 35b is described by the equations

f ′(n) = Ax ′(n) + Bu2(n) (212)

x′(n) = [f ′(n − 1)]Q0
(213)

where [u]Q0
denotes quantization of u, in the case where an overflow occurs.

• We assume that the output signal of the nonlinear system is properly scaled so that

no oscillation due to overflow occurs if it does not occur at the state variables.

227

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

• The response of the nonlinear system of Figure 35b is stable if, when

u1(n) = u2(n), the difference between the outputs of the linear N-port system of

Figure 35a, f(n), and the outputs of the linear N-port system of Figure 35b, f ′(n),

tends to zero as n → ∞.

• In other words, if we define an error signal e(n) = f ′(n) − f(n), then

lim
n→∞

e(n) = [0 0 . . . 0]T (214)

• If the difference between the output signals of the two linear N-port systems

converges to zero, this implies that the difference between the state variables of both

systems will also tend to zero.

228

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

• This can be deduced from equations (210) and (212), which yield

e(n) = f ′(n) − f(n) = A[x′(n) − x(n)] = Ae′(n) (215)

where e′(n) = x′(n) − x(n) is the difference between the state variables of both

systems.

• Equation (215) is equivalent to saying that e(n) and e′(n) are the output and input

signals of a linear N-port system described by matrix A, which is the transition

matrix of the original system.

• Then, from equation (214), the forced-response stability of the system in Figure 35b

is equivalent to the zero-input response of the same system, regardless of the

quantization characteristics [·]Q0
.

229

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

• Substituting equations (211) and (213) in equation (215), we have that

e′(n) = [f ′(n−1)]Q0
− f(n−1) = [e(n−1)+ f(n−1)]Q0

− f(n−1) (216)

• By defining the time-varying vector v(e(n), n) as

v(e(n), n) = [e(n) + f(n)]Q0
− f(n) (217)

equation (216) can be rewritten as

e′(n) = v(e(n − 1), (n − 1)) (218)

• The nonlinear system described by equations (215)–(218) is depicted in Figure 36.

230

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

z
–1

z
–1

z
–1

2

V

N

V

e (n)
2

1

V

e (n)
1

e' (n)
1

e' (n)
2

e (n)
N

e' (n)
N

Linear N-port

…

Figure 36: Nonlinear system relating the signals e′(n) and e(n).

231

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

• As we saw in Subsection 11.8.3, a system such as the one in Figure 36 is free from

zero-input nonlinear oscillations if the nonlinearity v(·, n) is equivalent to the

magnitude truncation, that is

|v(ei(n), n)| < |ei(n)|, for i = 1, 2, . . ., N (219)

• If we assume that the internal signals are such that |fi(n)| ≤ 1, for n > n0, then it

can be shown that equation (219) remains valid whenever the quantizer Q0 has

overflow characteristics within the hatched region of Figure 37.

232

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

1

Q
0
(x
i
(n
))

x
i
(n
)

–1

–1
 1
 2
 3

–2

–3

Figure 37: Region for the overflow nonlinearity which guarantees forced-response stability

in networks which satisfy Theorem 11.1.

233

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinea rities due to
overflow

• Figure 37 can be interpreted as follows:

– If −1 ≤ xi(n) ≤ 1, then there should be no overflow.

– If 1 ≤ xi(n) ≤ 3, then the overflow nonlinearity should be such that

2 − xi(n) ≤ Q0(xi(n)) ≤ 1.

– If −3 ≤ xi(n) ≤ −1, then the overflow nonlinearity should be such that

−1 ≤ Q0(xi(n)) ≤ −2 − xi(n).

– If xi(n) ≥ 3 or xi(n) ≤ −3, then −1 ≤ Q0(xi(n)) ≤ 1.

• It is important to note that the overflow nonlinearity of the saturation type

(equation (162)) satisfies the requirements in Figure 37.

• Summarizing the above reasoning, one can state that a digital filter which is free of

zero-input limit cycles, according to the condition of equation (166), is also

forced-input stable, provided that the overflow nonlinearities are in the hatched

regions of Figure 37.

234

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• Experiment 11.1: Let us play around digital representation in MATLAB. We

concentrate our efforts here in the case −1 < x < 0, which yields different

(n + 1)-bit standard, one’s-complement, two’s-complement, and CSD

representations.

• The standard sign-magnitude binary representation xbin can be obtained making

sx = 1 and following the procedure performed in equation (12), such that

x = abs(x); xbin = [1 zeros(1,n)];

for i=2:n+1,

x = 2 * x;

if x >= 1,

xbin(i) = 1; x = x-1;

end;

end;

235

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• The one’s-complement xbin1 representation of x can be determined as

xbin1 = [1 ˜xbin(2:n+1)];

where the ˜x operator determines the binary complement of x in MATLAB.

• For the two’s-complement representation xbin2 , we must add 1 to the least

significant bit of xbin1 . This can be performed, for instance, by detecting the last

0-bit in xbin1 , which indicates the final position of the carry-over bit, such that

xbin2 = xbin1;

b = max(find(xbin1 == 0));

xbin2(b:n+1) = ˜xbin2(b:n+1);

236

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• We can then obtain the CSD representation xCSDfrom xbin2 , following the

algorithm described in Subsection 11.2.2:

delta = zeros(1,n+2); theta = zeros(1,n+1); xCSD =

theta;

x2aux = [xbin2(1) xbin2 0];

for i = n:-1:1,

theta(i) = xor(x2aux(i+1),x2aux(i+2));

delta(i) = and(˜delta(i+1),theta(i));

xCSD(i) = (1-2 * x2aux(i)) * delta(i);

end;

237

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• Using n = 7 and x = −0.6875 with the scripts above, results in the numerical

representations seen in Table 5.

Table 5: Numerical 8-digit representations of x = −0.6875 in Experiment 11.1.

Numerical Format [x]

Standard binary 1.1011000

One’s complement 1.0100111

Two’s complement 1.0101000

CSD 1̄0101000

238

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• Experiment 11.2: Consider the digital filter structure depicted in Figure 38, whose

state-space description is given by

x(n + 1) =





(1−m1) −m2

m1 (m2−1)



 x(n) +





(2−m1−m2)

−(2−m1−m2)



u(n) (220)

y(n) =
[

−m1 −m2

]

x(n) + (1−m1−m2)u(n)(221)

239

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

Figure 38: Digital filter structure.

240

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• The corresponding transfer function is

H(z) =
[

−m1 −m2

]





(z−1+m1) m2

−m1 (z−m2+1)





−1 



(2−m1−m2)

−(2−m1−m2)





+(1−m1−m2) (222)

which, after some cumbersome algebraic development, becomes

H(z) =
N(z)

D(z)
= −

(m1 + m2 − 1)z2 + (m1 − m2)z + 1

z2 + (m1 − m2)z + (m1 + m2 − 1)
(223)

corresponding to an all-pass second-order block.

241

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• The transfer function from the filter input to the −m1 multiplier is given by

F1(z) =
z2 + 2(1 − m2)z + 1

z2 + (m1 − m2)z + (m1 + m2 − 1)
(224)

and the transfer function from the filter input to the −m2 multiplier is

F2(z) =
z2 + 2(m1 − 1)z + 1

z2 + (m1 − m2)z + (m1 + m2 − 1)
(225)

242

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• Determining the L2 norm for each scaling transfer function in a closed form is quite

computationally intensive. Using MATLAB, however, this can be done numerically

using few commands, such as:

m1 = 0.25; m2 = 1.25;

N1 = [1 2 * (1-m2) 1]; N2 = [1 2 * (m1-1) 1];

D = [1 (m1-m2) (m1+m2-1)];

np = 1000;

[F1,f] = freqz(N1,D,np); F1_2 =

sqrt((sum(abs(F1).ˆ2))/np);

[F2,f] = freqz(N2,D,np); F2_2 =

sqrt((sum(abs(F2).ˆ2))/np);

243

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• As a result, F1_2 and F2_2 are equal to 1.7332 and 1.1830, respectively.

• Then, we should scale the filter input by a factor of

λ =
1

max
i=1,2

[‖Fi(z)‖2]
=

1

max [1.7332, 1.1830]
= 0.5770 (226)

and compensate for this by multiplying the filter output by g = 1
λ

= 1.7332.

244

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal process ing

• The transfer functions from the outputs of both multipliers −m1 and −m2 to the

filter output are expressed as

G1(z) = G2(z) = H(z) (227)

such that

‖G1(z)‖2 = ‖G2(z)‖2 = 1 (228)

as H(z) represents an all-pass filter with unit gain.

• Therefore, considering the scaling operation performed as above, the output noise

variance is given by

σ2
y = 3g2σ2

e + σ2
e = 10.0120σ2

e (229)

where the factor 3 accounts for the noise sources in the input scaling, −m1, and

−m2 multipliers.

245

