
CN Chapter 5

CT Supplement: Derivation of the basic
Boyd-Kleinman expression for SHG
with circular Gaussian beams

The derivation of the “Boyd-Kleinman focusing formula” is long and tedious and was
mercifully omitted from the text of “Compact Blue–Green Lasers.” However, some
particularly intrepid readers may wish to see how this formula can be derived, rather
than accepting it uncritically. In this chapter of the supplement, the derivation of
Equation 2.32 in the text is presented.

Boyd and Kleinman [Boyd and Kleinman (1968)] examined the case of Type I second-
harmonic generation using a focused, circular Gaussian beam in a material that exhibits
walkoff. The treatment given here closely follows their analysis, although the notation
is slightly different and we will use SI, rather than cgs, units. (Some of the symbols
and notation used here differs from that used by Boyd and Kleinman, in order that the
usage here be consistent with the rest of “CBGL”).

We begin with an input electric field which is a Gaussian beam:

E1(r, z, t) = Eo
wo

w (z)
e−α1ze

−
r2

w2 (z) cos (ω1t− k1z + Ψ (r, z) + Φ (z)) (5.1)

where α1 is the attenuation coefficient, and ω1 and k1 are as previously defined. Since
we assume that the beam is radially symmetric about the z axis, we specify the distance

perpendicular to the z-axis by r = [x2 + y2]
1
2 . At a distance r = w (z) from the axis,

the amplitude of the electric field has fallen to 1/e of its value on the z-axis. This value
w (z) is called the 1/e radius of the beam. The minimum value of this 1/e radius
occurs at z = 0 and is designated as wo, the “beam waist”. The 1/e radius of the beam
varies as:
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w (z) = wo

1 +

(
λz

πnw2
o

)2


1
2

(5.2)

The term
wo

w (z)
in Eq. 5.1 indicates that as the beam propagates away from z = 0 and

the beam expands, the peak amplitude falls.
In a plane wave, the phase is constant on any given plane perpendicular to the

direction of propagation. However, in a Gaussian beam, the surfaces of constant
phase are curved; this curvature is described by the term:

Ψ (r, z) =
kr2

2R(z)
(5.3)

where R(z) is given by:

R (z) = z

1 +

(
πnw2

o

λz

)2
 (5.4)

At z = 0, R(z) = ∞, i.e., the surface of constant phase is a plane. At z = ∞, we also
have R(z) = ∞, i.e., sufficiently far away from the waist, the beam behaves as a plane

wave does. At a distance z =
πnw2

o

λ
, the curvature of the wavefronts is maximum.

This distance is called the Rayleigh range, zr. An important related quantity is the
confocal parameter b = 2zr. The far-field divergence angle of the beam is θo = λ/πnwo.

Finally, in Eq. 5.1, there is a z-dependent phase shift term, given by:

Φ (z) = tan−1
(
z

zr

)
(5.5)

The approach underlying the Boyd-Kleinman treatment is illustrated in Figure S-5-1
(which is the same as Figure 2.15 in “CBGL”). We conceptually divide up the crystal
into slices of infinitesimal width. In each slice, the interaction of the fundamental
beam with the nonlinear crystal generates second-harmonic light. This second-harmonic
light propagates through the crystal to arrive at the “observation plane”. To deter-
mine the total second-harmonic field produced by the crystal, we must coherently add
all the contributions from these infinitesimal slices.

However, a complication arises for anisotropic media. Here we will treat the case
of so-called “Type-I” phasematching, in which the fundamental and second-harmonic
waves have orthogonal linear polarizations. As discussed in Chapter 2 of “Compact
Blue–Green Lasers,” many advantages accrue if the direction of propagation lies along
a crystallographic axis, so that non-critical phasematching is achieved. However,
it is very often the case that phasematching cannot be achieved for the wavelengths
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Figure 5.1: Figure S-5-1. Geometry for the Boyd-Kleinman analysis of SHG by a focused Gaussian
beam.

of interest unless propagation is at some angle to the crystallographic axes (critical
phasematching). When propagation is not along a crystallographic axis, the effect of
birefringent walkoff must be taken into account. Thus, as shown in Figure S-5-1, the
generated second-harmonic wave propagates through the crystal at an angle ρ relative
to the fundamental wave. The result of this walkoff is that the SH contribution
from slices near the input end of the crystal are spatially displaced to a greater degree
than the SH contributions arising from near the output end of the crystal. This
lateral spatial displacement results in an output SH beam which may no longer have a
Gaussian distribution.

We now apply the procedure just described in a more quantitative way. We can
write the Gaussian beam of Eq. 5.1 as:

E1(r, z, t) =
Eo

2

wo

w (z)
e−α1ze

− r2

w2(z)
{
ejω1te−jk1zejΨ(r,z)ejΦ(z) + c.c.

}
(5.6)

If we take the Fourier transform of this expression, we obtain:

E1 (r, z, ω) = 2πe−α1z
[
Ẽ1 (r, z) δ (ω − ω1) + Ẽ∗

1 (r, z) δ (ω + ω1)
]

(5.7)

where

Ẽ1 (r, z) =
Eo

2

wo

w (z)
e−

α1

2
ze

− r2

w2(z) e−jk1zejΨ(r,z)ejΦ(z) (5.8)
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Looking at Eqs. 5.2 and 5.4, we see that the quantity
λz

πnw2
o

=
z

zr
=

2z

b
or its

reciprocal appears frequently. In order to compact our notation we introduce ζ =
2z

b
.

Then we can write:

w (z) = wo

[
1 + ζ2

]1
2 (5.9)

ejΨ(r,z) = e
j

kr2

2R(z) = e
j

ζr2

w2
o(1+ζ2) (5.10)

ejΦ(z) =
1 − jζ√
1 + ζ2

(5.11)

and Equation 5.8 becomes:

Ẽ1 (r, z) =
Eo

2
e−

α1

2
z 1√

1 + ζ2
e
− r2

w2
o(1+ζ2) e−jk1ze

j
ζr2

w2
o(1+ζ2)

1 − jζ√
1 + ζ2

(5.12)

=
Eo

2
e−

α1

2
z 1

1 + jζ
e
− r2

w2
o(1+jζ) e−jk1z (5.13)

The Gaussian beam as we have written it here has its waist at z = 0, which is
normally where we consider the input face of the crystal to be. We can make our
expression more general by placing the waist at some position z = f , and we can
achieve this change in Equation 5.12 simply by now making ζ = 2 (z − f) /b. The
induced polarization is given by:

P̃ (ω3) = 2εodeff
[
Ẽ(ω1)

]2
= εodeff

E2
o

2
e−α1z

(
1

1 + jζ

)2

e
− 2r2

w2
o(1+jζ) e−2jk1z (5.14)

and we can write Equation ?? as

dẼ3 (x) =
−j

2εon2
3

k3e
jk3zP̃ (ω3)dz (5.15)

=
−jk3

2n2
3

ej∆kzdeff
E2

o

2
e−α1z

1

1 + jζ

{
1

1 + jζ
e
− 2r2

w2
o(1+jζ)

}
dz (5.16)

This expression gives the contribution to the second-harmonic field from a slab of the
nonlinear crystal with width dz, located at a position z inside the crystal (0 < z < l).

4



CHAPTER 5 — MANUSCRIPT

Note by comparing Eq.5.16 to Eq. 5.13 that the quantity in the braces has the form
appropriate to a Gaussian beam with spotsize wo/

√
2, confocal parameter b, and focus

at z = f.
We would like to determine the contribution of this increment on the total second-

harmonic field detected by a remote observer, stationed outside the crystal at location
x

′
, y

′
, z

′
. In order to avoid having to deal with reflection and refraction at the ends

of the crystal, we will consider the crystal to be immersed in a medium having the
same refractive index. Because of walkoff (which we assume to occur in the x − z
plane), the contribution generated at the point x, y, z contributes to the detected field
at the point x

′
= x + ρ (l − z) and y

′
= y.The Gaussian portion in the braces above

can be “propagated” to the observer’s location by substituting for ζ the quantity ζ
′
=

2
(
z
′ − f

)
/b and by using the relationship between x and x

′
and y and y

′
given above:

dẼ3

(
r
′
, z

′)
=

−jk3

2n2
3

ej∆kzdeff
E2

o

2
e−α1ze−

α3

2
(l−z) 1

1 + jζ


1

1 + jζ ′ e
−

2

{[
x
′−ρ(l−z)

]2
+

[
y
′
]2}

w2
o(1+jζ

′)


dz

(5.17)
where we have included a term to account for loss of the second-harmonic as it propa-
gates from its point of origin to the observation plane. Note that the exponent no longer
contains a simple r2, circularly-symmetric dependence. The spatial variation of the field
in the transverse plane is now more complicated, due to the effects of walkoff. In order
to determine the total amplitude at point x

′
, y

′
, z

′
, we integrate all the contributions

from the different z locations:

Ẽ3

(
r
′
, z

′)
=

−jk3

2n2
3

deff
E2

o

2
e−

α3

2
l

l∫
0

e−αzej∆kz

1 + jζ


1

1 + jζ ′ e
−

2

{[
x
′−ρ(l−z)

]2
+

[
y
′
]2}

w2
o(1+jζ′)


dz

(5.18)
where α = α1 − 1

2
α3.We now let the observation point approach an infinite distance

from the crystal, i.e., ζ
′ → ∞. Then:

1

w2
o (1 + jζ ′)

=
1 − jζ

′

w2
o (1 + ζ ′2)

=
1 − jζ

′

w2
oζ

′2

(
1

ζ ′2
+ 1

) → 1 − jζ
′

w2
oζ

′2
(5.19)
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We define some additional normalized spatial coordinates:

u =
x

′ − ρ (l − f)

woζ
′ (5.20)

v =
y

′

woζ
′ (5.21)

β =
ρ

θo
(5.22)

We can then show that[
x

′ − ρ (l − z)
]2

w2
o (1 + jζ ′)

≈

(
1 − jζ

′
) [
x

′ − ρ (l − z)
]2

w2
oζ

′2
=
(
1 − jζ

′) [
u + β

ζ

ζ ′

]2

≈ u2
(
1 − jζ

′)−2juβζ

(5.23)
where, in dropping some terms from the last portion of the expression, we have explicitly
let ζ

′ → ∞.Note that ζ
′
depends on z

′
rather than z, so that terms involving it can be

taken outside the integral. Then we have:

Ẽ3

(
r
′
, z

′)
=

−k3

2n2
3

deff
E2

o

2ζ ′ e
−α3

2
le

−2

(
1−jζ

′
)
(u2+v2)

l∫
0

e−αzej∆kze4juβζ

1 + jζ
dz (5.24)

If we make a change of variables in the integral, using ζ = 2 (z − f) /b, and therefore
dζ = 2 dz/b, we obtain for the integral:

l∫
0

e−αzej∆kze4juβζ

1 + jζ
dz =

2(l−f)
b∫

−2f
b

b

2

e−
αbζ
2 e−αfej

∆kbζ
2 ej∆kfe4juβζ

1 + jζ
dζ (5.25)

If we define κ =
αb

2
, σ =

∆kb

2
, σ

′
= σ + 4βu, µ =

l − 2f

l
, and ξ =

l

b
, we can write the

integral as:

b

2
e−αfej∆kf

ξ(1+µ)∫
−ξ(1−µ)

e−κζejσ
′
ζ

1 + jζ
dζ (5.26)

We define

H
(
σ

′
, κ, ξ, µ

)
=

1

2π

ξ(1+µ)∫
−ξ(1−µ)

e−κζejσ
′
ζ

1 + jζ
dζ (5.27)
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Substituting into Eq. 5.24 gives:

Ẽ3

(
r
′
, z

′)
=

−k3

2n2
3

deff
E2

o

2ζ ′ e
−α3

2
le

−2

(
1−jζ

′
)
(u2+v2) b

2
e−αfej∆kf

[
2πH

(
σ

′
, κ, ξ, µ

)]
(5.28)

The second-harmonic intensity is:

I3
(
r
′
, z

′)
=

1

8η3

k2
3

n4
3

d2
eff

E4
o

ζ ′2
e−α3le−4(u2+v2)b2π2e−2αf

∣∣∣H (
σ

′
, κ, ξ, µ

)∣∣∣2 (5.29)

We can determine the total power in the SH beam by integrating the intensity over
area. The result is:

P3 =
1

8η3

k2
3

n4
3

d2
eff

E4
o

ζ ′2
e−α3lb2π2e−2αf

∫
dx dye−4(u2+v2)

∣∣∣H (
σ

′
, κ, ξ, µ

)∣∣∣2 (5.30)

=
1

8η3

k2
3

n4
3

d2
eff

E4
o

ζ ′2
e−α3lb2π2e−2αf

woζ
′

∞∫
−∞

du e−4u2
∣∣∣H (

σ
′
, κ, ξ, µ

)∣∣∣2
woζ

′
∞∫

−∞

dv e−4v2

(5.31)

We define the quantities:

F (σ, β, κ, ξ, µ) =
2√
π

∞∫
−∞

du e−4u2 |H (σ + 4βu, κ, ξ, µ)|2 (5.32)

and

h(σ, β, κ, ξ, µ) =
π2

ξ
eµαlF (σ, β, κ, ξ, µ) (5.33)

We can then write the SH power, after some simplification, as:

P3 =
1

32η3

k2
3

n4
3

d2
effE

4
ob

2πw2
oe

−α
′
lξh(σ, β, κ, ξ, µ) (5.34)

where α
′
= α1 + 1

2
α3. We can calculate the power in the fundamental beam to be:

P1 =
E2

o

2η1

πw2
o

2
(5.35)

After further simplification, we arrive at the result:

P3 =
16π2d2

eff

εocλ3
1n3n1

P 2
1 e

−α
′
llh(σ, β, κ, ξ, µ) (5.36)

which is Equation 2.32 of “CBGL”.
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