
Examples, Exercises and Extension

Material

The following text includes examples, exercises and extension material for the book Foun-

dations of Radio for Scientists and Technologists by Christopher Coleman. This online
resource will be supplemented by additional material at future dates in response to reader
interests.

Realistic Tuned Circuits
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Figure 1: Realistic tuned circuits.

Although it is possible to make high quality capacitors with very low loss, it is difficult
to make low loss inductors. In reality, the losses in realistic inductors can be quite large.
A realistic inductor can modelled as a parasitic resistance rs in series with a perfect (no
loss) inductor L. Such loss is often expressed in terms of the unloaded quality factor
QU = ωL/rs. Consider the circuit of Figure 1a, this shows a realistic parallel tuned
circuit. The impedance Z of the tuned circuit will be given by

Z = (jωL+ rs) ‖
(

1

jωC

)

=
jωL+ rs

1 + jωC(jωL+ rs)

=
(r2s + ω2L2)

rs − jωL+ jωC(r2s + ω2L2)
(1)

1
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The circuit will be resonant when r2s+ω2L2 = L/C, i.e. at a frequency ω0 =
√

1/LC + r2s/L
2.

Unlike the ideal case (rs = 0), however, the impedance has a finite value QU/ω0C at reso-
nance. Obviously, a high QU is essential for the efficient transfer of power from the source
to the load. Now consider the admittance (i.e. Y = 1/Z) of the the tuned circuit

Y =
rs

r2s + ω2L2
+ j

(

ωC − ωL

r2s + ω2L2

)

(2)

For impedances in parallel, their admittances are additive and so we essentially have a
resistance (r2s +ω2L2)/rs in parallel with capacitance C and inductance (r2s +ω2L2)/ω2L.
For large QU (i.e. ωL ≫ rs), this will mean that the effect of rs is to add a resistor
rp = ω2L2/rs in parallel with the ideal tuned circuit. The effect will be a lower circuit Q
and a consequent increase in bandwidth.

If we consider frequencies close to to the resonant frequency ω0, i.e. ω = ω0 + δω,
then r2s + ω2L2 ≈ L/C + 2ω0L

2δω and hence 1/(r2s + ω2L2) ≈ C/L − 2ω0C
2δω. As a

consequence

Y =
rsC

L
− 2δω

(

rsω0C
2 − jω2

0
LC2

)

(3)

and for large QU , Y ≈ 1/rp+2jCδω. In terms of the source voltage VS, the voltage across
the load can be written as

VL = VS
Z ‖ RL

RS + Z//RL

= VS
1

1 +RS

(

1

RL
+ Y

) (4)

For large QU , we then have that

VL ≈ VS
1

1 +RS

(

1

RL‖rs
+ 2jCδω

)

= VS
RL ‖ rs

RL ‖ rs +RS + 2jRS(RL ‖ rs)Cδω

= VS
RL ‖ rs

RL ‖ rs +RS

1

1 + 2jQ δω
ω0

(5)

where Q = (RS ‖ RL ‖ rs)ω0C = (RS ‖ RL ‖ rs)/ω0L. The bandwidth of the circuit will
now be B = ω0/Q and the maximum voltage across the load will be VSRL ‖ rs/(RL ‖
rs + RS). As a consequence, the effect of the intrinsic resistance of the conductor is to
reduce the level of peak voltage and to increase the bandwidth.

Exercise

Repeat the the above analysis for the case of the series tuned circuit of Figure 1b.
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Practical Inductors

The design of inductors is an important part of practical RF engineering. One of the
simplest inductors is the solenoid (see Figure 2a) for which the inductance (in micro
Henries or µH) is given by

L =
.0985D2N2

4.5D + 10l
(6)

where D is the solenoid diameter in cm, l is the length of the solenoid in cm and N is
the number of turns. The inductor is often made of fairly thick wire so that it can be self
supporting. However, if large inductances are required, the number of turns needs to be
large and the wire will need to be thin, and/or closely spaced, if the length is not to be
excessive. If the wire is closely spaced, there will be parasitic capacitance between the
windings and this can cause a self resonance at quite low frequencies. If the wire is thin,
this will increase the resistance per unit length and hence the parasitic resistance rs. As
a consequence, such inductors will have low QU . At high frequencies the situation is even
worse since the current will only flow through a layer that is close to the surface of the
conducting wire. This is known as the skin effect, a phenomenon whereby RF frequency
currents can only penetrate a short distance δ =

√

2/ωµ0σ into a conducting material
(δ = 0.0066mm for a copper wire at 100MHz). As a consequence, rs = d/2πaδσ where d
is the total length of wire and a is the radius of the wire. From the above considerations,
it can be seen that solenoids will be problematic at high frequencies if large inductances
are required.
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Figure 2: Practical Inductors.

To overcome the above problems, it is common to wind an inductor on a core with a
high relative permeability. However, such cores will need to be low loss otherwise they
will add additional parasitic resistance. Commonly, cores are made of iron. However, this
is usually in the form of iron dust that is bound together by an epoxy resin. This avoids
the eddy currents that would be induced in solid iron and lead to ohmic losses. Cores
can also be made of ferrites, ceramic compounds containing iron oxide. These are non
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conducting materials with high relative permeability. Such cores can greatly increase the
inductance of solenoids that are wound over them. However, they will also enhance the
magnetic field of the solenoid and this could cause unwanted transformer like interactions
between different parts of an RF circuit. To avoid this the inductor is often wound on a
toroid core. This will produce a closed magnetic field that will isolate itself from other
components. A toroid inductor (see Figure 2b) will have an inductance

L = ALN
2 (7)

where AL is known as the inductance index and is usually given as nano Henries per
turns squared (a number normally supplied by the toroid manufacturer). This equation
assumes that the windings are spread out uniformly around the toroid. In terms of more
fundamental quantities

AL =
0.004µπA

l
(8)

where A is the cross sectional area of the toroid, µ is its permeability and l is the effective
length of the winding (l = π(Do+Di)/2 for a winding that is spread out uniformly around
the toroid).

We will consider the design of a simple bandpass filter using a parallel capacitor
and inductance (see Figure 1a). We will assume that both the source and loads have
impedances of 200Ω (i.e. RL = RS = 200Ω) and that we require a filter with bandwidth
4MHz at a centre frequency of 10MHz. We assume, for the moment, that the parasitic
resistance is zero and so the bandwidth is B = ω0/Q where Q = (RS ‖ RL)/ω0L. Since
ω2

0
LC = 1, we have that B = 1/RS ‖ RLC. As a consequence, 2π × 4 × 106 = 1/100C,

i.e. C = 1.25× 10−9/π Farads. Then L = 1/Cω2 = π × 10−6/5 Henries. We consider the
design of a solenoid with suitable inductance (i.e. L = .628µH). If we consider a solenoid
with a diameter of 2cm and length 2cm, 6 implies that the inductor will need just under
7 turns. If we build an inductor with 7 turns, we can adjust it to the correct inductance
by slightly opening out the windings. We now need to choose the wire thickness so that
there is sufficient spacing between the windings. For 7 turns over 2cm, we will need a
thickness that is less than 3mm and so, if we choose a thickness of 1mm, we will easily
satisfy this and have a wire that is thick enough to be self supporting. We now need
analyse whether we were justified in ignoring the parasitic resistance rs. The length d of
wire is approximately NπD where D is the diameter of the solenoid and so d = 440mm.
We will assume the wire to be made of copper and the the skin depth δ will be 0.021mm.
Consequently, since rs = d/2πaδσ where a is the radius of the wire and σ its conductivity
(5.5 × 107s/m in the case of copper), rs = 0.121Ω. This value is considerably less than
than the source or load impedances and so the parasitic resistance can safely be ignored.

Exercise

Design a band pass filter with the same characteristics using a series resonant tuned circuit
(see Figure 1b).
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L Network Matching

An L network can be used to match impedances as shown in Figure 3.
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Figure 3: L network matching.

Figure 3 shows L matching networks that will allow the the matching of resistive
sources and loads for RL > RS. We first calculate Q =

√

RL/RS − 1 and then reactance
XL follows from XL = ±RL/Q. The arbitrary sign follows allows the choice of capacitive
(+ sign) or inductive (- sign) reactance. We can calculate XS using the relation XS =
−XLQ

2/(1 + Q2). If we choose XL to be negative this will be realised by a capacitor C
and XS will be realised by an inductor L. Obviously, we choose the values of C and L
to give the correct XL and XS at the desired operating frequency ω0. This implies that
C = Q/ω0RL and L = (RL/ω0)Q/(1 +Q2).

We consider the example of matching a 50Ω source to a 100+ j100Ω impedance load.
The load is equivalent to a 200Ω resistance in parallel with a 200Ω reactance. For the
moment we ignore the reactance and design the network as if the load is 200Ω alone. We
have that Q =

√

200/50− 1 =
√
3. Then XL = ±200/

√
3 and XS = −3

4
XL. It will now

be noted that the real load will generate some of the required XL and so we adjust its
value to X ′

L such that 1/X ′
L + 1/200 = 1/XL. If we choose XL to be capacitive, we have

that X ′
L = −200/(1 +

√
3) and XS = 150/

√
3. If the matching is required to operate

at a frequency of 10MHz we have ω0 = 6.283 × 107, then the capacitor C that realises
X ′

L will be given by C = (1 +
√
3)/200 × 6.83 × 107 = .2 × 10−9, i.e. 200pF. We will

also have that XS = 200/
√
3 and so L = XS/ω0, i.e. L = 1.8936µH . The fairly large

value of inductance will make a toroid inductor a natural choice. For the frequency range
1 to 30MHz, the Amidon toroid T-86-2 is appropriate. This has an outer diameter of
1.75cm and an inductance index AL = 57nH per turns squared. The toroid requires just
under 6 turns to reach the required inductance with the winding uniformly spaced around
the toroid. However, the length of the windings can be adjusted to achieve the exact
inductance.
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Exercise

Use an L network to match a source with impedance 5 + j10Ω to a 50Ω load.

Capacitive Transformers
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Figure 4: Capacitive transformer.

Figure 4 shows a circuit that uses a capacitive voltage divider as a transformer. Such a
transformer is frequency selective and is useful when both impedance transformation and
filtering is desirable. The transformer will only pass signals at, or around , the resonant
frequency ω0 = 1/

√
LC where C = C1C2/(C1 + C2). For small deviations in frequency

δω around this resonance, the voltage across the load is

VL ≈ VS
1/n

1 + j2Q δω
ω0

(9)

where n = (C1 + C2)/C1 and Q = RS/ω0L. We have a transformer with turns ratio n
and filter with bandwidth B = ω0/Q.

We design a capacitive transformer to match a source impedance of RS = 800Ω to
a load impedance RL = 50Ω and to act as a band pass filter of bandwidth 1MHz at
frequency 15MHz. The impedance transformation will require a turns ratio n of 4 and
the bandwidth a Q of 15. A Q of 15 will imply that L = 800/15ω0 and, since a resonant
frequency of 10MHZ will imply ω0 = 6.283× 107, we have that L = .849µH . For a turns
ratio 4 we must have C2 = 3C1, so that C = 3C1/4 and hence ω2

0
= 1/LC implies that

C1 = 4/3Lω2

0
. As consequence C1 = 398pF and hence C2 = 1194pF .

Exercise

Design a capacitive transformer to match a 200Ω source to a 50Ω load to operate at a
frequency of 30MHz with a bandwidth of 2MHz.
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Bandpass Filter Design

Consider the situation where a direct digitising receiver is required for the frequency range
range from fL = 6.5MHz to fU = 9MHz. We can build a bandpass filter for this frequency
range by first designing a low pass filter with bandwidth B = fU − fL (i.e. 2.5MHz) and
then resonating the elements at the centre frequency f0 =

√
fLfU (i.e. 7.6485MHz). We

C

L

a)

C

filter

C

L

C
L L

Cres

resres

filter

b)

Figure 5: A 3 element low pass filter and its conversion to a bandpass filter.

first design the low pass filter and note that ωB = 2πB = 15.708 × 106rad/sec. We will
design a .5dB ripple Chebyshev filter. For such a filter, L = αR/ωB and C = β/RωB

where β = 1.5963 and α = 1.0967. From this we have that L = 3.49µH and C = 2nF .
In order to convert the filter into a bandpass filter based on the frequency 7.6485MHz,

we need to resonate the capacitances and inductor at this frequency. We require that
CLres = 1/ω2

0
and CresL = 1/ω2

0
where Cres and Lres are the resonating capacitance and

inductance. We then find that Cres = 124pF and Lres = 0.2165µH .

Exercise

The above filter is of fairly low order and will not sufficiently attenuate strong signals that
are within a few MHz of the pass band (the attenuation is only down by 20dB at 2.5MHz
from the band edges). The bandpass filter in a digital receiver will act as an anti alias filter
and will often need to have much greater attenuation, especially if the rate of digitisation
is low. Figure 6 shows a 9 element Chebyshev filter with much better performance (
the attenuation is more than 80db at a bandwidth away from the band edges). For
terminating impedances R and a passband ripple of .122 (a .5dB ripple), the values of
the capacitances will be C1 = 1.7504ω0/R, C2 = 26678ω0/R and C3 = 2.7939ω0/R. The
values of the inductances will be L1 = 1.269R/ω0 and L2 = 1.3673R/ω0. Using this
information, design a 9 element filter Chebyshev filter with a bandwidth 2.5MHz and
then convert this into a bandpass filter with centre frequency f0 = 7.6485MHz.
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Figure 6: A 9 element low pass Chebyshev filter with 0.122 passband ripple.

Notch Filters

A series resonant circuit can also be used to create a notch filter (sometimes called a band
stop filter), i.e. a filter that blocks out a range of frequencies. Consider the circuit of
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Figure 7: Notch (band stop) filters.

Figure 7a. The voltage drop across the load will be given by

VL = VS

(

jωL+ 1

jωC

)

‖ RL
(

jωL+ 1

jωC

)

‖ RL +RS

= VS
RL(1− ω2LC)

(RL +RS)(1− ω2LC) + jωCRLRS
(10)

From which the power dissipated in the load will be

PL =
VLV̄L

RL
=

VSV̄S

RL

(

RL

RL +RS

)2
(1− ω2LC)2

(1− ω2LC)2 + ω2C2(RL ‖ RS)2
(11)

Note that zero signal is passed to the load at the series resonant frequency ω0 = 1/
√
LC

and that for frequencies well away from this the full signal is passed to the load.
The frequencies where the signal is reduced to 3dB of the maximum will occur when

(1− ω2LC)2

(1− ω2LC)2 + ω2C2(RL ‖ RS)2
=

1

2
(12)
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which implies that
1− ω2LC = ±ωC(RL ‖ RS) (13)

From this, the 3dB frequencies are given by

ω =
∓C(RL ‖ RS) +

√

C2(RL ‖ RS)2 + 4LC

2LC
(14)

i.e. the bandwidth of the notch filter will be B = (RL ‖ RS)/L. If we define Q =
ω0L/(RL ‖ RS), then the performance of the filter with different Q is illustrated in
Figure 8 and from which it will be noted that Q now controls the sharpness of the filter.
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Figure 8: Performance of a notch filter.

In a digital receiver, dynamic range is is often a problem. Strong in band signals can
exhaust the dynamic range of the A to D converters and overload the receiver. In the case
of the receiver of example 6, the bandwidth contains the 41m broadcast band (7.2MHz
to 7.6MHz) which itself contains several extremely strong broadcast signals. We can use
the above notch filter to reduce the strength of these broadcast signals to an acceptable
level. The broadcast signals will be AM with a bandwidth of about 10kHz and so we will
need a filter of width 100kHz if the signal is to be attenuated by 20dB (we assume this
to be sufficient otherwise the bandwidth of the above notch will need to be even wider).
If the terminating impedances are 50Ω, B = (RL ‖ RS)/L implies that L = 250µH (the
high inductance will require a toroid with large AL). To notch out an AM signal centred
on frequency ωAM , we will need C = 1/Lω2

AM . If we need to notch out several signals, we
can place several notch filters in parallel (see Figure 7b).



10

Exercise

Design a notch for use in the 60m broadcast band.

Designing a Common Emitter Amplifier
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Figure 9: Biasing an NPN BJT amplifier.

We will consider the design of a simple BJT common emitter amplifier that is based
upon an single silicon NPN transistor (see Figure 9a) with a current gain β = 100 (typical
of a BF224). We assume that VCC = 6V and will need the quiescent IQ to place the vari-
ation in output well away from the region of nonlinearity in the transistor characteristics
(see Figure 10). A good rule of thumb is for there to be a quiescent voltage drop VCC/3
across the collector resistor, the transistor and the emitter resistor (this is sometimes
known as the 1/3 rule). For a 2V drop across the collector resistor we need RCIQ = 2 and
for a 2V drop across the emitter resistor we need REIQ (note that the collector and emitter
currents are approximately equal). This choice allows a reasonable voltage swing at the
collector and plenty of feedback at the emitter to stabilise the operation of the transistor.
With the collector voltage fixed, we then need to choose a quiescent current IQ such that
the the transistor operates as linearly as possible about this current, i.e. we choose oper-
ating point O in Figure 10. Once we know the operating point, resistance RC follows as
the slope of the load line. (Note that it is sometimes necessary to lower the voltage drop
across RE , especially when the supply voltage VCC is low). We will assume that such an
analysis of the transistor characteristics has suggested a current of 2mA and and hence a
load resistor of 1kΩ. As a consequence we will also have an emitter resistance of 1kΩ. The
voltage between the emitter and base will be approximately the diffusion voltage Vd (0.3V
for germanium and 0.8V for silicon) and so the voltage at the base will be approximately
REIQ+Vd. We will assume the base current is negligible in comparison to the current that
flows through the biasing resistors (R1 and R2) and then REIQ+ Vd = VCCR1/(R1+R2),
i.e. 103 × 2 × 10−3 + 0.8 = 6R1/(R1 + R2) from which R2 = 1.143R1. We still, however,
need another condition to determine the bias resistors. It will be noted, however, the the
emitter feedback mechanism requires that any change in emitter voltage arising from a
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change in quiescent current ∆IQ is much greater than the accompanying change in base
voltage. This will mean that ∆IQRE ≫ ∆IQ(R1 ‖ R2)/(β+1), i.e. (β+1)RE ≫ R1 ‖ R2.
It is usually sufficient to choose R1 ‖ R2 = 10RE, sometimes known as the one tenth rule.
We will now have that and R1R2/(R1 + R2) = 10RE, i.e. R1R2 = 10 × 103(R1 + R2),
and from which R1 = 18.75kΩ using the relation R2 = 1.143R1. Finally, we have that
R2 = 21.43kΩ.

IC

VCEVCC

VCC /R

time

vCE

VBE

time

Ci

C

IQ
O

Figure 10: Input/output relationship for a biased amplifier.

The transconductance of the amplifier will be given by gm = IQ/VT = .08Ω−1 and
so the unloaded voltage gain of the amplifier will be A = −gmRC = −80, the output
impedance will be 1kΩ (note that ro can be neglected) and the input impedance is rπ =
(β+1)/gm = 1.26kΩ. This is all fine at low frequencies, but as frequency rises the parasitic
capacitances of the BJT become a problem (see Figure 9b for a more realistic model of the
BJT at higher frequencies). For a BF224, typical values for the parasitic capacitances are
Cµ = 0.28pF and Cπ = 2pF . This will mean that, taking into account the Miller result,
there will be an effective shunt capacitance at the input of Ci = 2 + 81× 0.28 = 24.7pF .
Consequently, at a frequency of 10MHz, the effective input capacitance will behave as a
shunt reactance of magnitude 640Ω and, at a frequency of a 100MHz, as a shunt reactance
of 64Ω. Clearly, as frequency rises, more and more RF will be shunted to ground by the
Miller capacitance. It will be noted that the bias and collector resistances, can influence
the the input and output resistances of the amplifier. In particular, for amplifiers at higher
powers, we cannot afford a large power dissipation in the collector resistance. In this case,
we can isolate the bias through RF chokes (inductances with a very large reactance at
the desired operating frequency). This is illustrated in Figure 11a.
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Figure 11: Alternative biasing circuits.

Exercise

By adjusting the quiescent current IQ, and relaxing the 1/3 rule, redesign the amplifier
to have a gain of −50 at low frequencies.

Alternative Bias Circuits

An alternative biasing system is shown in Figure 11b, but is not as stable as that shown in
Figure 9a. If a quiescent collector current IQ is required, then the base current will need
to be IB = IQ/β and the total current through the collector resistance will be IQ(1+1/β).
As a consequence, VCC − VCE = RCIQ(β + 1) and hence RC = (VCC − VCE)/IQ(β + 1).
It will also be noted that VCE − VBE = RF IB and so RF = (VCE − VBE)/IQ (once again
Vd can be used as a first approximation VBE). To provide for maximum swing in the RF
signal, we usually VCE = VCC/2.

Although not as stable as the the biasing of the previous example, the circuit of
Figure 11b does provide some stabilising feedback. If IQ increases, then the quiescent
collector voltage will decrease and, as a consequence, the current flowing through the
feedback resistor will decrease. This will result in lower quiescent base current and hence
a lower IQ.

Exercise

Bias a BJT with β = 100 for a quiescent current of 2mA and with maximum swing
available for the RF component.

Designing a Common Source Amplifier

Using a Fairchild BS170 NMOS transistor, we will design a common source amplifier (see
Figure 12) with a unloaded voltage gain of -100 (to within 20 percent) and harmonics at
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Figure 12: NMOS amplifier and biasing.

least -20dB below the fundamental for a 100mV amplitude input signal. (We will assume
a supply voltage of 12V.) The relation between the source to gate voltage VGS and the
drain current ID is given by

ID = K(VGS − VT )
2 (15)

where, for a typical BS170 NMOS, K = 80mA/V 2 and VT = 2.1V . The parasitic capaci-
tances are typically CGS = 24pF , CDS = 17pF and CGD = 7pF .

The drain voltage of the amplifier will be related to the input voltage vo through

vo = VD −RLK(VGS + vi − VT )
2 (16)

where VGS is now taken to be the quiescent source to gate voltage. Consequently,

vo = VD −RLK(VGS − VT )
2 − 2RLK(VGS − VT )vi − RLKv2i (17)

Let vi = Vi cos(ωt) then v2i = V 2

i (1+cos(2ωt))/2 and so, for the harmonic (frequency 2ω)
to be 20dB below the fundamental, we must have

Vi

4(VGS − VT ))
<

1

10
(18)

on noting that a 20dB drop in power is equivalent to a voltage drop by a factor of 10.
Since IDQ = K(VGS − VT )

2, this condition implies that IDQ > K25V 2

i /4 where IDQ is the
quiescent current through the transistor, i.e. IDQ > 5mA. We will choose IDQ = 6mA.

The transistor transconductance is given by gm = 2
√

KIDQ and the voltage gain by

A = −gmRD = −2RD

√

KIDQ (we have neglected rd in calculating the gain). If the

current varies by ∆I the gain will vary by ∆A = −RD

√
K∆I/

√

IDQ and so ∆A/A =
∆I/2IDQ. Consequently, since we must have ∆A/A < 1/5, then ∆ID < IDQ/2.5. From
the data sheets for the BS170, the threshold voltage can vary between 0.8V and 3V and
so the range of variation in VGS will be ∆VGS = 2.2V . Referring to Figure 12, we must
choose RS such that ∆IDQ > ∆VGS/RS, i.e. RS > ∆VGS/∆IDQ. Since ∆ID < IDQ/2.5
and ∆VGS = 2.2V , we must have that RS > 5.5/IDQ. We will choose RS = 1kΩ.
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For the a voltage gain of -100, we will need gmRD = 100, i.e. 2RD

√

KIDQ = 100

and therefore RD = 50/
√

KIDQ. For quiescent current IDQ = 6mA we will now have
that RD = 2.28kΩ. In order to generate the quiescent current IDQ, we need to choose
appropriate values of the divider resistors R1 and R2. The input resistance of the FET is
very large (in the region of many MΩ) and so the resistances can be chosen to be of the
order of several hundred kΩ. We will need a quiescent VGS such thatK(VGS−VT )

2 = 6mA,
i.e. VGS − VT = 0.274V . Since VGS = R1VDD/(R1 + R2) − RSIDQ, we have VT + .274 =
R1VDD/(R1+R2)−RSIDQ and so 2.374 = VDDR1/(R1+R2)−103×6×10−3. If we assume
a value of 200kΩ for R2 then 6.+2.374 = 12R1/(R1+R2) from which 8.374R2 = 3.626R1,
i.e. R1 = 462Ω.

For this amplifier the Miller effect will cause an additional shunt capacitance (1 −
A)CGS = 567pF and so the total capacitance at the amplifier input will be Ci = (1 −
A)CGS + CGS = 592pF . As a consequence, a lot of the input power will be shunted to
ground by this capacitance. If the RF source has impedance Rsource, the power will be
reduced by 3dB when ω = 1/CiRsource. For a source impedance of 100Ω this will imply
a frequency of 2.7Mhz as the effective upper limit of operation. This is not a very good
RF amplifier.

Exercise

Redesign the amplifier for a gain of -40 and harmonics at least -26dB below the funda-
mental.

Combating the Miller Effect
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Figure 13: Amplifiers that do not suffer from the Miller Effect.
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We have seen in the above example that the Miller effect can have an extremely
detrimental effect upon the operation of an amplifier at RF frequencies. Figure 13 shows
two examples of amplifiers that do not suffer from the Miller effect. Figure 13a shows a
common drain (sometimes known as a source follower) amplifier. This amplifier only has
a voltage gain of about 1 (the reason for its lack of Miller effect), but very lightly loads
the signal source due to its high input impedance. However, it can have a low impedance
output and therefore is useful as a buffer (it can be used to buffer an oscillator for example).
The amplifier shown in Figure 13 is based on a JFET, a typical example of which is the
J309. This transistor has a threshold voltage VT = −2.5V and K = 6 × 10−3A/V 2.
Because of the large negative value of VT , we have the option of self bias, i.e. the gate
is grounded through a large gate resistance (a value of 500kΩ is appropriate) and the
current through the source resistor makes the source negative with respect to the gate.
The quiescent drain current IDQ will satisfy

IDQ = K(−IDQRS − VT )
2 (19)

We will design an amplifier with an output impedance of 100Ω. The output impedance is
given by g−1

m ‖ RS = RS/(1+ gmRS). If we assume RS ≫ g−1

m then the output impedance
is approximately g−1

m and, since gm = 2
√

KIDQ, we will need 2
√

KIDQ = 1/100, i.e.
IDQ = 1/4K × 104 = 4.17mA.From 19 we now obtain that RS = 400Ω.

Although this amplifier does not suffer from the Miller effect, there is still the gate
source capacitance CGS to deal with. If the RF source has impedance Rsource, the power
will be reduced by 3dB when ω = 1/CGSRsource. In the case of a J309 CGS = 5pF and
so, for a source impedance of 1kΩ, this will imply a frequency of 32Mhz as the effective
upper limit of operation. In the case that the amplifier is used as a buffer for a Colpitts
oscillator, however, CGS can be incorporated into the oscillator capacitance and does not
cause a problem.

Figure 13b shows the circuit of a cascode amplifier that is based on a dual gate
MOSFET. This has a similar behaviour to the common source amplifier, but without the
Miller effect. The circuit consists of a common source amplifier follow by a common gate
amplifier whose input impedance is g−1

m also serves as the load to the common source
amplifier. As a consequence, the first amplifier has a voltage gain of 1 (if we ignore
rd), i.e. no Miller effect. The common gate amplifier will suffer from the Miller effect,
but the reactance due to the Miller capacitance will be negligible in comparison to the
input impedance. We will design an amplifier that has a gain of A = −10 (to within
30 percent) that is based on 40673 MOSFET and has a supply voltage of 15V. We will
normally set the bias at the upper gate several volts above that at the lower gate to
ensure that both the FETs in the device run in their saturation region and the current
will therefore be controlled by the source resistor. From example 9 we find that the
variation ∆I in quiescent drain current IDQ is related to the variation ∆A in voltage gain
through ∆A/A = ∆I/2IDQ and, since ∆A/A < 3/10, we have ∆I < 3IDQ/5. For the
40673, VT varies between -4V and -1V with a typical value of -2.5V, i.e. the variation is
∆VT = 3V . We will need to choose an RS that ensures that ∆IDQ > ∆VGS/RS and so
RS > ∆VT/∆I and, since ∆I < 3IDQ/5, RS > 5/IDQ. We have that the voltage drop
across RS will need to be greater than 5 and so we choose it to be 6V, i.e. RSIDQ = 6.
This voltage drop will leave us with a 9V drop across the transistor and drain resistance
RD. We will choose the voltage drop across RD to be 6V and therefore RD = RS.



16

For a 40673, with the upper biased so that both FETs are in saturation,

ID = K(VGS1 − VT )
2 (20)

where K = 2.5mA/V 2 for a typical device and VGS1 is the voltage between the source
the lower gate. The voltage gain is given by A = gmRD if we neglect rd and so we must
have that gmRD = 10. Since gm = 2

√

KIDQ, we have that
√

KIDQRD = 5. However,

we also have that RDIDQ = 6 and so
√
K/

√

IDQ = 5/6, i.e. IDQ = 3.6mA. As a
consequence RD = RS = 1.67kΩ. From 20 we now obtain that VGS1 − VT = 1.2 from
which VGS1 = −1.3. As a consequence the voltage at gate 1 will need to be 4.7V and we
will choose the voltage at gate 2 to be 10V to ensure both FETs are in saturation. We
can generate this bias if we choose R1 = 94kΩ, R2 = 106kΩ and R3 = 100kΩ.
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Figure 14: Dual gate MOSFET amplifier with voltage controlled gain.

A particularly useful application of the dual gate MOSFET is as an amplifier with
voltage controlled gain (see Figure 14). Instead of fixing the voltage at the upper gate,
we now place a control voltage at this gate. For several volts above that of the source,
the transistor will exhibit full gain. As this voltage drops, however, the gain will reduce
until it reaches zero at negative voltages.

Exercise

Redesign the source follower amplifier for an output impedance of 50Ω.

Exercise

Design an NPN BJT emitter follower amplifier with an output impedance 50Ω.
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Figure 15: The common gate amplifier.

The Common Gate Amplifier

Figure 15 is the the circuit of what is known as a common gate amplifier. This amplifier
still suffers from the Miller effect, but the input impedance is of low impedance (g−1

m ‖ RS)
and the reactance due to the Miller capacitance is negligible by comparison. However,
such amplifiers are useful when they are to be driven by a low impedance source (an
antenna for example). The figure shows an amplifier using a JFET and for which self
biasing is an option, i.e. we can remove the biasing resistor R2 and make R1 a short
circuit (we can obviously also remove its bypass capacitor). Bias is set by choosing a
suitable value of the source resistor RS. For the amplifier of Figure 15, find values of RS

and RD to produce an unloaded voltage gain of -10 and an input impedance of 50Ω (you
can assume RS ≫ g−1

m ).

Designing a Colpitts Oscillator

Consider the design of an FET Colpitts oscillator based on a common drain JFET am-
plifier (see Figure 16). We will design around a 2N3819 JFET for which Vt = −3V ,
K = 10−3A/V 2 and CGS = 4pF . At oscillation, the theory implies that

ω =

√

C1 + C2

LC1C2

and gm = ω2C2C1rs (21)

Resistor rs is the series resistance of the inductor and is related to QU , its unloaded Q,
through QU = ωL/rs. To reduce the effect of transistor capacitance, C1 and C2 should
have values much greater than the input capacitance (4pF ). We need to choose the bias
such that gm = ω2C2C1rs is satisfied. However, due to the high variation in component
manufacture, it is almost impossible to exactly satisfy this relation. Consequently, we
instead choose bias such that gm > ω2C2C1R in order to ensure that oscillations start.
Then, as the oscillations grow in amplitude, the value of gm will fall due to gain compres-
sion and the condition of equality will be satisfied at some point. We will assume that
C1 = C2 = C, but note that for C1, C must be then increased by CGS in any calculation
in order to take into account the parasitic capacitance of the transistor. It is normal to
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Figure 16: A simple JFET common drain Colpitts oscillator.

choose C1 ≫ CGS in order to ensure that the design is not overly affected by variations
in transitor characteristics (a problem with real transistors). We will choose a value of
500pF for C, and then C1 = 504pF and C2 = 500pF. In order the circuit to oscillate at
10MHz, we will need a value of L = (C1+C2)/C1C2ω

2 = 1.01µH . Then, in order to start
oscillation, we will need

gm > (C1 + C2)rs/L = ω(C1 + C2)/QU (22)

If we assume an unloaded Q of 50 (a value that is well within the range of practical
inductors), we will need gm > .0013. We choose gm = .002 in order that the oscillation
condition is well satisfied and note that gm = 2

√

KIDQ where IDQ is the quiescent current.
As a consequence,IDQ = g2m/4K = 1mA. Since IDQ = K(VGS − VT )

2, we will need
VGS = VT + 1 for the desired current to flow. As a consequence there will need to be a
voltage drop of 2 volts across the source resistor RS, i.e. this resistor will need to have
a value of 2kΩ. As the amplitude of oscillations rise, the transistor will stop conducting
for large negative voltage swings and this will lead to a drop in gm and the desired gain
compression leading to equilibrium.

Exercise

Redesign the above oscillator to run on a frequency of 7Mhz.

The Dual Gate MOSFET mixer

The ability to control gain through the second gate of a dual gate MOSFET makes it
a useful device for mixing purposes. Figure 17 shoes a typical mixer circuit. The lower
half of the MOSFET is configured as a self biasing amplifier, with the upper gate used
to control gain. However, it will be noted that the bias of this gate set to the source
voltage. This makes it possible to switch the transistor on and off with relatively low
local oscillator voltages. At the MOSFET drain there is a parallel tuned circuit that
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Figure 17: A dual gate MOSFET mixer.

selects the desired mixer product. A suitable dual gate MOSFET for such a mixer is the
NPX BF995.

A Simple Direct Conversion Receiver
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Figure 18: A simple direct conversion receiver based on a dual gate MOSFET mixer.

We can bring the above oscillator and mixer designs together to form a simple direct
conversion receiver, as shown in Figure 18. Since the relevant output at the drain of the
mixer will be the base band, the tuned circuit has been replaced by a parallel combination
of resistor and capacitor to act as a low pass filter. From the data sheets for the BF995,
we need the quiescent lower gate voltage VGS1 to be well above the pinch off voltage VT

(about −1.6V for the BF995) in order to obtain large drain current variations when the
upper gate voltage VGS is varied. However, VGS1 should not be so high that it could cause
the current to fall outside the limits of the device. From the data sheets, a reasonable
compromise is −.2V for which the quiescent drain current is 2mA. In order to achieve
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the required bias we will need a source resistor R1 of value 100Ω. We will assume supply
voltage VD of 8V and choose a value of the drain resistor R2 such that we can have
maximum possible voltage swing at the drain. We set the drain at a quiescent voltage
5V so that R2 will need to drop a voltage of 3V. Consequently, will have the value of
1.5kΩ for R2. If the baseband is BHz wide, capacitor C3 now needs to be chosen to be
C3 = 1/R2πB. For a 4kHz baseband, this will imply that C3 = 53nF .

Exercise

Design a 3 element Chebyshev filter to replace the capacitor C3.

A Simple Regenerative Receiver
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Figure 19: A simple regenerative receiver.

Another simple receiver architecture is that based upon regeneration. Regeneration
has the dual advantages of increasing both the sensitivity and selectivity of a receiver.
Further, such receivers (in their valve form) were the staple of early consumer radio.
Figure 20 shows a simple realisation of a regenerative receiver. The receiver consists of a
dual gate MOSFET amplifier that is configured as a Colpitts oscillator in order to produce
positive feedback. The gain however is set just before the point of oscillation. The RF
input is fed into the MOSFET source via a source follower amplifier which isolates any
accidental oscillations from the antenna. In addition, this feature can act as an active
antenna (a device we will discuss later).

Exercise

Generate suitable values for C1, C2 and L for a receiver to operate at a frequency of
14MHz.
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Crystal Ladder Filters
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Figure 20: Butterworth low pass and band pass filters.

Figures 20 a shows a simple 3 element Butterworth low pass filter (bandwidth B in
Hz and terminating impedances R) where L = 2R/ωB and C = 1/RωB (ωB = 2πB).
This can be transformed into a bandpass filter with bandwidth B, and centre frequency
fc, by adding inductances Lr and capacitance Cr that resonate with C and L respectively
at this frequency. We then obtain the bandpass filter shown in Figure 20b. The parallel
resonant circuits in the above filter can be inconvenient and so we now looks at ways of
converting this into a series resonant circuit. Key to this is the impedance inverting circuit
shown in Figure 20c. The impedance W looking into this circuit is given by 1/ω2Cx2Z.
Unfortunately, the circuit requires a negative capacitance. However, we will find in our
target application that this negative capacitance is cancelled by real capacitance and
therefore does not pose a problem for circuit realisation. Figure 20d shows the the parallel
resonant circuit of the filter output in parallel with the filter load R (similar considerations
apply at the source end). We claim that this equivalent to the circuit on the right. It
must be emphasised that this is only the case for frequencies around resonance, but for
narrow band filters this is not a problem. The admittance looking into the right hand
circuit will be given by

Y = ω2C2

X

(

1

jωCr
+ jωL+ 2R

)

(23)

By the definition of Cr, we know that L = 1/ω2

cCr and so

Y = ω2C2

X

(

jωcL

(

ω

ωc
− ωc

ω

)

+R

)

(24)

where ω is the angular frequency (ω = 2πf). However, around resonance frequency ωc,
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this must look like the admittance looking into the circuit on the left, i.e.

Y ≈ jωC − 1

jωLr
+

1

R

= jωcC

(

ω

ωc
− ωc

ω

)

+
1

R
(25)

For susceptances and conductances to be approximately equal we will need CX =
√
CCr

and R = 1/ωcCX . We finally arrive at the filter in Figure 20e, where Ls = L and
Cs = Cr − 2CX .
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Figure 21: Conversion of a Butterworth band pass filter.

We will now see how the above rearrangement of a bandpass filter can be used to
produce what is known as a crystal ladder filter. A Crystal can be described by the
model in Figure 21a. However, around resonance, this can simply be approximated by
the inductance Ls in series with the capacitance Cs. As a consequences, we can replace
the series resonators in Figure 20e by crystal resonators, i.e. the filter in Figure 21b.
However, it will be noted that Ls and Cs are not under the designers control and Ls has
a typical value of about 10mH for a crystal with resonant frequency fc = 10MHz. From
the design of the filter in Figure 20b, we have that L = R/πB and so there is a direct
relation between bandwidth and terminating impedance. For a filter with bandwidth
around 10KHz, this will mean terminating impedances of the order of about 316Ω and a
value of 50pF for CX . It is possible to replace the series capacitors by shunt capacitances,
but in this case the capacitance must be halved and the terminating resistances doubled
(note that CX = 1/ωcR around resonance).

Exercise

Find out the changes that will need to be made if the bandpass crystal filter is to be
based on a Chebyshev filter with 1dB ripple in the pass band (L = 0.994R/ωB and
C = 2.024/RωB).
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Designing a Power Amplifier

We will consider the design of a class C BJT power amplifier. In class C amplifiers, the
conduction angle is less than 180◦ and this is usually achieved by either no bias or a
reverse bias. As a consequence, the waveform will be highly distorted, i.e. there is no
possibility of regenerating the original waveform. However, class C amplifiers can be very
efficient and can be very useful for angle modulation (phase and frequency modulation).
The design procedure is as follows :

1) For given supply voltage VCC , and the output power PRF , choose load according to

RL =
V 2

CC

2Po
in order to ensure that the transistor can make the maximum possible voltage

swing. (To make full use of expensive power transistor capacity, we tend to design power
amplifiers for maximum swing rather than optimum power transfer.) If this impedance
does not match the desired load (R′

L), we can transform it using a suitable matching
network.

2) Choose a transistor that can handle a maximum voltage, i.e. 2VCC , the maximum
current and the maximum power dissipation.

3) The transistor should be biased for the required conduction angle (less than 180◦).
Unfortunately, the major constraint on class C amplifiers is the current carrying capacity
of the transistor and the required conduction angle might not be possible. Since the
the maximum current increases as the conduction angle falls, we normally design for the
minimum conduction angle that is consistent with the current capacity of the transistor.

Consider an SD1143 bipolar device, a transistor that has a gain of 10dB. We will
design a class C amplifier that provides approximately 5.0 watts into a 50Ω load from
a 50Ω source at a frequency of 220MHz and uses an 12 volt power supply. The input
impedance of this device is approximately 1.3 + 2jΩ at 220MHz (i.e. the input exhibits
some inductance) and the output impedance is approximately 8.5−2.5jΩ (i.e. the output
exhibits some capacitance). For maximum swing (a maximum RF voltage amplitude of
VCC),

RL =
V 2

CC

2PRF
=

122

2× 5
= 14.4Ω

We require an output network that transforms the 50Ω of the specified load into 14.4Ω and,
at the input, we will require a network that transforms the transistor input impedance
1.3+ 2.jΩ into the 50Ω of the source. The total circuit is shown in Figure 23. (Note that
the blocking capacitors that isolate transistor biases from external circuits.)

We need to check that the dissipation and maximum current are within the limits of
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the transistor. At maximum voltage swing, the maximum current is given by

Imax =
2πVCC(1− cos θ)

RL(2θ − sin 2θ)
(26)

the power dissipation by

PD = PDC − PRF = PRF (
4(sin θ − θ cos θ)

2θ − sin 2θ
− 1) (27)

and the efficiency by

efficiency =
PRF

PDC
=

2θ − sin 2θ

4(sin θ − θ cos θ)
(28)

where 2θ is the conduction angle (see chapter 5). The maximum current that an SD1143
can handle is 2.0A and this will limit the values of θ to satisfy

2π × 8

16

1− cos θ

2θ − sin 2θ
< 2.0 (29)

This condition is satisfied if θ > 66◦. At this conduction angle, a power PD = .7W
is dissipated in the transistor, well within the capacity of the transistor (37W). The
maximum possible efficiency will be 87.7%.

The output network transforms a 50Ω load into the 14.4Ω that is required for maximum
swing. The network reactances are calculated from the design formulas of chapter 3. At
the transistor output

XCO
= −RL

Q
and XLO

= −XCO
Q2

Q2 + 1
(30)

where Q =
√

R′
L/RL − 1. We will have Q = 1.57 from which XCO

= −31.8Ω and
XLO

= 22.6Ω. The output reactance of the transistor will form part of XLO
and so we

need to use an effective reactance X ′
LO

= 22.6 + 2.5 = 25.1Ω when calculating LO. Since
ω = 2π × 2.2 × 108rad/sec and ωLO = 20.1, LO = 18.2nH. Further, since X ′

CO
= −1

ωCO
,

CO = 23pF.
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At the input, ignoring the reactance of the transistor,

XCI
= −RS

Q
and XLI

= −XCI
Q2

Q2 + 1
(31)

where Q =
√

R′
S/RT − 1 and RT is the input resistance of the transistor. We need

to transform the resistance of the source (RS = 50Ω) into RT = 2.2. From the above
network design formulas, we find that Q = 4.66 and from which XCI

= −10.73Ω and
XLI

= 10.26Ω. The input reactance will form part of XLI
and so we will use an effective

value of X ′
LI

= 8.46Ω. The final values for the input network components will then be
CI = 67pF and LI = 6.1nH.

A class C amplifier will only be useful for amplifying angle modulated signals and we
will need to go to at least class B (θ = 90◦) operation if we are to retain amplitude data.
In studying power amplifiers, we have assumed a linear transistor characteristic and that
the transistor switches on as soon as the base voltage becomes positive. The reality is
that there will need to be a small positive bias at the base if the transistor is to switch on
for all positive swings of the input voltage. An amplifier with such a bias is often known
as a class AB amplifier. A simple means of achieving this bias is shown in Figure 24. The
diode mirrors the behaviour of the emitter-base junction and generates a bias voltage so
that the transistor is just into conduction. An advantage of such a bias system is that
the diode itself can be placed next to the transistor body and respond to the transistor
if it overheats. The heating will increase the current flow through the diode and this,
in turn, will cause a voltage drop at the base and hence a reduction in current through
the transistor. Such a thermal feedback mechanism is important since power transistors
are prone to thermal runaway. A further problem for signals with amplitude data is that
full swing at the output will require the collector voltage to become zero at some point
in a cycle. However, it will be noted that the transistor characteristics become highly
nonlinear close to zero voltage and this will severely diminish the quality of the amplitude
data. To combat this, the maximum amplitude at the output of a class AB amplifier is
often limited to slightly below VCC .
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Figure 24: Bias for class AB operation.
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Exercise

Redesign the above class C amplifier for a frequency of 150MHz. At this frequency the
transistor input impedance is 1.5− j0.9Ω and output impedance is 5.2 + j0.4Ω.

A Class E Amplifier

In theory, the class D amplifier achieves high efficiency by acting as an ideal switch. In
the ideal case, the drain voltage is zero when the transistor is on, i.e. current flows, and
the supply voltage when the transistor is off, i.e. no current flows. As a consequence
there will be no dissipation (IV is always zero) and hence 100% efficiency. However,
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C
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Figure 25: Class E amplifier.

the transition between conduction and non conduction will not be instantaneous and
there will be some dissipation during the transition. In the transition to an off state, the
dissipation can be reduced by means of a shunt capacitance C1 across the FET output
(the parasitic capacitance at the output is often sufficient). This will then slow down the
rise of the drain voltage while there is still current flow. In the transition to an on state,
the dissipation is reduced by choosing the resonant frequency of L and C2 to be just below
the drive frequency. At the drive frequency there will be a phase shift between the voltage
and current that causes the voltage to tail off to zero before there is significant current flow
in the transistor. A class D amplifier with the above modifications is commonly known
as a class E amplifier. It can be shown (see N.O.Sokal and A.D.Sokal, IEEE Journal of
Solid-state Circuits, SC-10, N0.3, pp. 168-176, 1975) that the appropriate values of C1,
C2 and L can be calculated according to

C1 ≈
1

5.447ωRL

, L =
QRL

ω

and C2 ≈ C1

5.447

Q
(1 +

1.42

Q− 2.08
)

where RL = 0.577VDD

Po
, Po is the desired output power and Q is calculated from the

desired bandwidth B (Q = ω0/B where ω0 is the desired operating frequency). RL will
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not necessarily be equal to the desired load and so it is possible that matching, possibly an
L network, will be required to match the desired load. Unfortunately, the above formulas
do not take into account the fact that a real inductor will also have some resistance
rp = QUω0L where QU is the unloaded Q of the inductor. This resistance will be in series
with the load and so the load resistance will need to be adjusted if rp is significant in
comparison with RL (see N.O.Sokal, ARRL QEX magazine, Jan/Feb, 2001).

Exercise

Design a class E amplifier to produce 10W of output power at a frequency of 10MHz,
with a bandwidth of 3kHz and a drain voltage of 10V. Design an L network that allows
this amplifier to feed a 50Ω load whilst reducing the harmonic content.

Receiver Performance Calculations
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IIP3=1000dBm

Figure 26: Direct digitising software radio.

For frequencies below about 60MHz, there are now readily available A to D converters
that can directly digitise the RF and, as a consequence, all of the receiver functions can
be performed digitally. According to the Nyquist sampling theorem, this will require
sampling at a rate of 120MHz. Further, the ADC must be preceded by a filter that will
remove frequencies above 60MHz so that they cannot alias into the desired frequency
range. It is possible, however, to use the phenomenon of aliasing to digitise signals at
higher frequencies through undersampling. If fS is the sampling rate of the ADC we can
digitise any bandwidth B = fs/2 by filtering out all signals outside this bandwidth. Then,
as long as the sample and hold of the ADC has sufficiently fast response, this band will
be moved down in frequency by a multiple of the sample rate.

The key to the success of the undersampling approach is to have suitable bandpass
filtering and suitable amplification to bring the signals up to a level that is compatible
with the A to D converter. Figure 26 shows such a system with typical for the relevant key
performance parameters of gain, noise figure and intercept point (all given in logarithmic
scales). Since the first amplifier affects noise the most, this has a very low noise figure
(the performance figures are approximately those of a low noise E-PHEMT transistor
amplifier such as the Mini-Circuits PSA4-5043). The second amplifier, however, has a
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higher intercept point, but larger noise figure (the performance figures are approximately
those of a Mini-Circuits GAL74). Finally, the filters have a fairly high loss which is a
hallmark of the high order filters that are required for strong out of band rejection (the
performance figures are approximately those of a Temwell four chamber helical filter).
(Note that for passive devices, such as filters, the noise figure is equal to the device loss.)

We now calculate the performance figures of the total system that feeds into the ADC.
The total gain is obtained by adding the gains and so is 30dB. For a 2 device system the
total noise factor is

F = F1 +
F2 − 1

G1

(32)

where F1 and F2 are the noise factors for the 1st and second devices. By repeated
application, we obtain

F = F1 +
F2 − 1

G1

+
F3 − 1

G1G2

+
F4 − 1

G1G2G3

(33)

for a four device system. For a two device system the total IIP3 is given by

1

IIP3
=

1

IIP31
+

G1

IIP32
(34)

and, by repeated application,

1

IIP3
=

1

IIP31
+

G1

IIP32
+

G1G2

IIP33
+

G1G2G3

IIP34
(35)

for a four device system. It will be noted that linearity requirement on the later devices
needs to be more stringent, hence the use of a GALI74 as the second amplifier. In general,
the early devices need to have good noise performance and the later devices need to have
good linearity performance.

Labelling the devices 1 to 4 from the left, we will have G1 = 100, G2 = 0.316, G3 = 100,
G4 = 0.316, F1 = 1.175, F2 = 3.162, F3 = 1.862, F4 = 3.162, IIP1 = 15.85mW ,
IIP2 = 1W , IIP3 = 50.12mW and IIP4 = 1W . From these numbers, we obtain that
F = 1.225 (i.e. 0.88dB) and IIP3 = 1.377mW (i.e. IIP3 = 1.389dBm).

We now ask how the performance figures, i.e. G,F and IIP3, relate to the actual per-
formance of the radio. The noise floor Nf is the most important measure of performance
as it tells us the actual level of signal below which the signal is hidden amongst the noise.
In terms of noise factor,

Nf = F = kTAB + (F − 1)kTB (36)

where TA is the antenna temperature, B is the bandwidth and T is the ambient tempera-
ture (taken to be 290K). The next important figure is the SFDR (spurious free dynamic
range) as this tells us the range of input powers over which the spurious signals caused
by nonlinearities remain hidden in the noise. In terms of Nf and IIP3,

SFDR =

(

IIP3

Nf

)2/3

(37)
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We first assume an antenna temperature of 10000k and a bandwidth B = 1MHz.
Then, Nf = 2.28 × 10−15W and SFDR = 7.15 × 107 or 78.5dB. The dynamic range is
compatible with that of a typical 14 bit ADC. However, it should be noted that the level
of amplification before the ADC needs to be controlled in order to prevent the largest
signals being clipped at the maximum level of the ADC. If the signal environment is
dynamic, this usually requires AGC (automatic gain control). The system will monitor
the maximum signal level and feed this back to control a variable gain amplifier.

Exercise

What will be the effect upon performance of interchanging the amplifiers.

The Tayloe Mixer

R

DC bias

CC C C

0 90 180 270

RF source at frequency f

RFC

phase shifted outputs

input drives
switching at
frequency 4F

Figure 27: Basic Tayloe mixer and its operation.

The advent of high speed digital devices has introduced many possibilities for RF
electronics. One possibility is the use of high speed digital switches for mixing. As we
have seen in chapter 5, we can achieve the mixing function by treating transistors as
switches. Figure 27 shows a more sophisticated switching mixer circuit that is known
as a Tayloe mixer after its designer (Dan Tayloe, Letters to the editor in ARRL QEX
magazine, March/April, 2001). The mixer switches the RF input sequentially between
four outputs, the switch being triggered at a frequency of 4F where F is the centre
frequency of the band of interest. Consequently, each output will only sample the input
signal for a quarter of a period of the centre frequency. For output N, the output signal
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will be given by the
sN = sRFH(2πFt− (N − 2)π/2) (38)

where sRF is the input RF signal. H is a periodic function (repeats itself every 2π) with

H(θ) = 0 0 < θ <
3π

4

= 1
3π

4
< θ <

5π

4

= 0
5π

4
< θ < 2π (39)

It is clear that H(2πFt− (N −2)π/2) is non zero for a quarter of a period, which quarter
depending on the value of N . We can be expand H(θ) in Fourier series as

H(θ) =
1

4
− 2

π

(

1√
2
cos(θ)− 1

2
cos(2θ) +

1

3
√
2
cos(3θ)− ...

)

(40)

Assuming a sinusoidal RF source, i.e. sRF = s0 cos(ωt) where ω = 2πf , we obtain that

sN =
1

4
s0 cos(ωt)−

s0√
2π

(cos(Ωt− (N − 2)π/2− ωt) + cos(Ωt− (N − 2)π/2 + ωt))

+
s0
2π

(cos(2Ωt− (N − 2)π − ωt) + cos(2Ωt− (N − 2)π + ωt)) + ... (41)

where Ω = 2πF . The capacitors in the circuit will filter out all the higher frequency terms
and so we will be left with

sN ≈ +
s0

π
√
2
cos((Ω− ω)t−Nπ/2) (42)

i.e. the output a port N is the baseband signal with phase phase shift Nπ/2.
The switch in the Tayloe mixer can be realised using a high speed digital multiplexer

circuit, or MUX as it is known. A MUX is a device that switches an input between
different outputs according to the value of a digital control input. Figure 28 shows a
practical circuit of a Tayloe mixer (G.Youngblood, ARRL QEX magazine, Jul/Aug, 2002)
that uses a 4:1 MUX. The position of the switch in the 4:1 MUX is controlled by a 2 bit
binary number, the inputs A and B representing the bits of this number. Input clock
pulses at frequency 4F are converted to control signals through a device that counts the
input pulses (those at frequency 4F ) in binary (00, 01, 10, 11, etc). However, since the
counter is only 2 bit, after its output reaches the binary value 11 it goes back to 00, i.e.
it counts modulo 4. This will cause the MUX to cycle round round its outputs in the
desired manner. The counter in Figure 28 is known as a Johnson counter and achieves
its purpose through a pair of D flip-flops (these are contained within a single 74AC74
integrated circuit). A single D flip-flop has a single input D and two outputs Q and Q
(Q being the logical conjugate of Q). The value of Q then becomes that of D at the rising
edge of a clock pulse.

Since each channel of the switch is only on for a quarter of a cycle, the effective source
resistance is 4R. Consequently, the capacitance C will filter each channel with with band-
width 1/4πRC. The outputs with 0◦ and 180◦ phase shifts are combined differentially
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Figure 28: Practical receiver based on a single balanced Tayloe mixer.

to give the in phase output (I) and the outputs with 90◦ and 270◦ phase shifts combined
differentially to give the quadrature output (Q). This combination occurs through oper-
ation amplifiers that will also amplify these signals. The voltage gain of each amplifier is
given by A = Rf/4R where Rf is the feedback resistance. A feedback capacitor Cf can
be added in order to improve the removal of the high frequency components mentioned
above. The simplest software radio receivers feed the I and Q outputs into the stereo
microphone inputs of a computer where they are digitised and can then be processed in
the manner described in chapter 6.

In the IC of Figure 28 there are two MUX switches, but these are configured in parallel.
However, these two switches can be separated and reconfigured to form a mixer of the
double balanced variety. Figure 29 shows the receiver with the mixer reconfigured. The
two MUX are fed anti-phase from a balun and the outputs are combined anti-phase. The
result is that the non product are cancelled and, as a consequence, the output filtering
requirements severely reduced. The Tayloe mixer can also be used in the generation of
signals and Figure 29 shows the generation process (note that a circle at the end of the
input amplifiers represents a 180◦ phase shift). In this design, the the I and Q signals will
be computer generated (possibly at the stereo outputs of a computer) and the output will
be fed through a bandpass filter in order to remove any unwanted mixer products.
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Stabilising Oscillators
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Figure 31: Frequency generation using phase locked loop stabilisation.

In chapter 5 we have seen that phase locked loops can used to provide a means of
stabilising free running oscillators (see Figure 31). The key to such loops is an effective
means of phase comparison. In chapter 5 we considered a simple mixer as a phase com-
parator, but digital electronics has opened up other possibilities for phase comparators.
Figure 33 shows an example of a comparator based on a D flip flop together with a NAND
gate. The running average of the output is a measure of the difference between the VCO
and reference signal phases and provides a simple, but effective, phase comparator.

a) b)

V

V

V
RV

D

V
D

VV

V
R

c)

V

0 180 360 540

A

Phase Difference720

Figure 32: XOR gate as a digital phase comparator.

The phase comparator allows a free running oscillator to be locked onto a stable ref-
erence. However, as mentioned in chapter 5, there can be a problem in initially achieving
lock, i.e. initially guiding the reference and VCO signals onto the same frequencies. This
problem can be overcome by a device that can compare the frequencies of the reference
and VCO signals. If the frequencies are different, this device will generate a voltage that
makes the VCO move closer to the reference in frequency. Such a frequency compara-
tor is easily created using digital electronics and Figure 33 shows a particular example.
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This circuit also has the advantage that, for signals with the same frequency, its output
is a voltage that is proportional to their pase difference. Such a circuit is known as a
phase/frequency comparator. Frequency coincident oscillators are kept in frequency lock
by the phase comparator aspect of the circuit. The circuit consists of two edge triggered
D flip flops. However, at the output there is NAND gate that resets both of the flip flops
when their Q outputs are logic 1. As a consequence, the output of either flip flop is only
triggered to logic level 1 when the outputs of both flip flops are at different logic levels.
Figure 33 also shows the effect of the reference signal when compared with two different
VCO frequencies. I will be noted that the average of the output, i.e. the output after low
pass filtering by the capacitor, is less for the VCO signal at the higher frequency. It this
voltage the guides the VCO onto the reference signal.
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Figure 33: Phase/frequency comparator.
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Figure 34: The HUFF-PUFF frequency stabiliser based on a type D flip flop.

An ingenious method of stabilising a free running VCO is known as HUFF-PUFF and
was invented by Klaus Spaargaren (see Technical Topics in Radio Communication, July,
1973). The key to this approach is the circuit shown in Figure 34. By means of a D
type flip flop that is triggered on the leading edge of the clock pulse, the output of a
VFO running at frequency f is compared with the output of stable fixed clock running at
frequency F . After low pass filtering (the result of the capacitor on the output) the output
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voltage V will vary with oscillator frequency as shown in Figure 34. Consider the circuit
of Figure 35. If the VFO frequency is just below the harmonic NF of the clock, and its
frequency f is drifting upwards, the output voltage V will rise with the drift and further
enhance the drift towards frequency NF . However, if the frequency f is just above NF ,
upwards drift in f will cause the voltage V to fall and hence push the frequency f back
to NF . In this fashion, the feedback in the circuit will stabilise the VCO. It will be noted
that there is an countable infinity of frequencies at which the oscillator could be stable,
separated by the frequency of the clock. However, in reality, the number of frequencies at
which the oscillator can be stable will be dictated by the capacitance range of the diode.
If the VFO is tuned to a new frequency, using the variable capacitor, the VFO will settle
into the closest multiple of frequency F and then be locked onto that frequency until the
VFO is retuned.
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Figure 35: A HUFF-PUFF stabilised VFO.

An increasingly popular method for providing stable signals is known as direct digital
synthesis (DDS). In a DDS system, a highly detailed waveform is stored in memory as a
long sequence of waveform samples. On each tick of the clock, the address accumulator
moves on by a preassigned number N and this address is fed into the waveform sample
memory from where the associated wave sample is fed to a DAC (digital to analogue
converter). The DAC output will be the stored waveform (albeit as a highly refined
step function representation) with frequency proportional to N . The analogue output is
then low passed filtered at the highest frequency required in order to provide a smooth
waveform. It is clear that the stability of the signal will depend on the stability of the
clock and so a great deal of care needs to be invested in this aspect (a GPS disciplined
clock is often used in the most demanding cases).

The Design of Microstrip Transmission Lines

Complex microwave circuits can be built on double sided printed circuit board (copper on
both sides of the substrate). The copper on one side of the board will remain continuous
(the ground plane) and the circuit will be built up on the other side. The basic building
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Figure 37: A microstrip transmission line.

block in such a circuit is the microstrip transmission line (see Figure 37a) For a microstrip
transmission line with characteristic impedance Z0, w/h ≈ Z0/η where η is the impedance
of the substrate. However, this assumes that the substrate thickness is small in comparison
to the microstrip width, i.e. the electric field can be approximated as shown in the top
panel of Figure 37b. In reality, due to edge effects, the fields will be more like those shown
in the bottom panel of Figure 37b. A more accurate expression is

w

h
=

8

A

√

7ǫr + 4

11ǫr
A+

ǫr + 1

0.81ǫr
(43)

where

A = exp

((

Z0

42.4

)√
ǫr + 1

)

− 1 (44)

and ǫr is the relative permittivity of the substrate. It will be noted that the wave speed
on a transmission line is less than that in free space, i.e. c = c0/

√
ǫeff where c0 is the wave
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speed in free space (i.e. 3 × 108m/s) and ǫeff ≈ (ǫr + 1)/2 + ((ǫr − 1)/2)/
√

1 + 12h/w
is the effective relative permittivity of the substrate under the microstrip. If λ0 the
wavelength at a given frequency in free space, the wavelength on the transmission line for
that frequency is λ = λ0/

√
ǫeff.

We will design a microstrip transmission line with characteristic impedance 50Ω for a
1.56mm thick substrate with ǫr = 4.4. From the above expressions A = 14.492 and then
w/h = 1.9071, i.e. w = 2.975mm. Now consider a frequency of 900Mz and for which
the wavelength in free space will be λ0 = 333.3mm. For the above transmission line,
ǫeff = 3.33 and so the physical wavelength on the transmission line will be λ = 182.6mm.

Exercise

Design a microstrip transmission line with characteristic impedance 100Ω for a 3mm thick
substrate with ǫr = 4.4. Calculate the physical length of a wavelength at 900MHz.

A Transmission Line Notch Filter

source load
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open circuit TL

Figure 38: A transmission line notch filter.

An open circuited transmission line behaves like a series resonant circuit with a reso-
nance at a frequency ω0 for which the line is a quarter wavelength. The impedance of such

a resonator is given by Z = −jZ0 cot
(

π
2

ω
ω0

)

. If we use the resonator in the configuration

shown in Figure 38, the voltage drop across the load resistor is given by

VL = VS
ZRL

RSZ +RLZ +RSRL
= VS

RL

RS +RL

cot
(

π
2

ω
ω0

)

cot
(

π
2

ω
ω0

)

+ jRS‖RL

Z0

(45)

As with the shunt series capacitor/inductor combination, this will also act as a notch filter
(see example 6) around ω0. However, as with other transmission line filters, this will also
have similar behaviour around frequencies that are harmonically related to ω0.
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Exercise

Plot the insertion gain as a function of frequency for a variety of Q = πRS ‖ RL/4Z0.

Stub Matching Using Microstrip Transmission Lines
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 input

b)a)

S

L

S

W W

Figure 39: Matching using microstrip transmission lines.

As mentioned in chapter 7, lengths of transmission line, together with stubs, can be
used to transform impedances. Figure 39a shows the situation where this approach is
used to couple an arbitrary load W into a microstrip transmission line with characteristic
impedance Z0 = 50Ω. We will consider the problem in terms of the admittances Y = 1/W
and Y0 = 1/Z0 = .02. The admittance transforms along the transmission line according
to

Yin = Y0

Y cos(βS) + jY0 sin(βS)

Y0 cos(βS) + jY sin(βS)
(46)

For a matching to occur, we need Yin to equal Y0 and so we first choose the length S such
that ℜ{Yin} = ℜ{Y0}. Then, if ℑ{Yin} 6= 0, we manufacture a stub reactance X such
that

ℑ{Yin} −
1

X
= 0 (47)

(note that the admittances of parallel impedances add). Although we have shown the
stub as open circuit, it could equally well be an short circuit stub and it usual to choose
the type of stub that has the shortest length. In the case of a shorted stub, the end of the
microstrip stub will need to be connected to the ground plane through a suitably large
capacitor, i.e. an RF short circuit. In the case that there is no room for the stub, it could
be replaced by the equivalent discrete component reactance (see Figure 39b).

We will consider the transformation of the impedance W = 7 + j5Ω into 50Ω. If we
join the load W to the 50Ω microstrip transmission line, then the admittance Yin will
vary along the transmission line as shown in Figure 40 (wavelengths are measured as
wavelengths on the transmission line). For a 50Ω transmission line, ℜ{Yin} will be 0.02 at
a distance of S = 0.0405λ along the transmission line at which point ℑ{Yin} = −0.0463.
In order to cancel out the reactance at this point we will need to add a microstrip stub
with reactance X = −1/0.0463 = −21.6Ω. The reactance is capacitive and so we will need
a open circuit stub with length L that satisfies X = −Z0 cot(2πL/λ), i.e. L = 0.1851λ.
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Figure 40: Variation of admittance along the transmission line.

We will assume a printed circuit board with 1.56mm substrate and ǫr = 4.4. Assuming
all transmission lines to be 50Ω, then w = 2.975mm and λ = 182.6mm. As a consequence,
S = 32.34mm and L = 33.8mm. Unfortunately, open ended stubs will suffer from end
effects that cause the effective length to be increased by

∆ = 0.412
ǫeff + 0.3

ǫeff − 0.258

w + 0.264h

w + 0.8h
h (48)

and this amount will need to be removed from the calculated length L of the stub. For
the above 50/Omega transmission line ∆ = 0.61mm and so L = 33.19mm.

Exercise

Design a stub matching system that transforms the impedance for 100 + j20Ω into 50Ω.

Design of Amplifiers Based on Microstrip Transmis-

sion Lines

We will now consider the design of a power amplifier for the frequency of 900MHz using
a Philips BLT81 BJT transistor. The transistor can handle over 1W of power and we
will design for 50Ω load and source. From the data sheet of the BLT81, it will present
a W = 7 + j5Ω input impedance and a require a load of W = 18 + j4Ω. We will
transform the input and output impedance using microstrip transmission line matching.
Consequently, we can use a printed circuit construction of the form shown in Figure 41.
If we assume a 1.56mm substrate with ǫr = 4.4, then we have already designed the input
matching circuit in the example above, i.e. S1 = 32.34mm and L1 = 33.19mm. The
output of the amplifier will need to look into a load 18 + j4Ω and this is equivalent to
the problem of matching a 18− j4Ω source to 50Ω. In the same fashion as above, we find
that the transmission line connected to the 50Ω load will have a conductance of 0.02 at
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distance S2 = 0.1λ from the load with susceptance -0.0215. To cancel the susceptance
we will need a reactance X = −46.5Ω. This is capacitive and is achieved with a open
stub of length L2 = 0.181λ. As a consequence S2 = 33.33mm and L2 = 33.05mm. As
for the input L network, we will need to remove ∆ = 0.61mm from the end of the stub
to account for end effects, i.e. L2 = 32.66mm.

To complete the design, we need to add base bias and collector supply. Further, these
supplies need to be isolated RF wise from the transistor. In a low frequency design, this
is normally achieved through RF chokes. In the case of a high frequency design, however,
there is the option of using short circuited λ/4 transmission lines. At the open end of
such transmission lines, there will be infinite impedance and so no RF current will flow
into the line, i.e. they will act like a choke. In the circuit of Figure 41, the base bias and
supply voltage are isolated by this means.
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b c

L1
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50ohm
 input
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/4
/4 choke /4 choke

e

e

VccVbe

Figure 41: A UHF power amplifier with microstrip matching.

Exercise

Redesign the above amplifier for a frequency of 800Mhz.

Feeding Dipole Antennas

Arguably the simplest antenna is the electrical dipole, but there are important factors to
be recognised in its practical implementation. Firstly, a dipole is a balanced device and so,
if we need to feed it with an unbalanced transmission line (a coaxial cable for example),
we will need to interface it with a BALUN (see Figure 42a). Commonly available cable
has an impedance of 50Ω and so, even after interfacing with a 1:1 BALUN, there will still
be a mismatch due to the 73Ω impedance of the dipole. In fact, there will be a reflection
coefficient of 0.19. Fortunately, however, this only amounts to reflected power of a few
percent. We need not feed the dipole at the middle, but the antenna input resistance Rd
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Figure 42: Dipole antennas fed by BALUNS.

rises as we move out along the dipole. At distance d from the centre,

Rd = Rm
1

cos2
(

π d
λ

) (49)

where Rm is the resistance at the centre. Consequently, for an offset feed, we clearly need
a BALUN that also transforms impedance (see Figure 42b) and a typical broadband 4:1
BALUN (4 to 1 impedance conversion) is shown in Figure 43.

Balanced

Unbalanced

Figure 43: A 4:1 BALUN.

T and Gamma Matching

A dipole, when driven by a T match, consists of an unbroken dipole rod (length 2l)
and a parallel shorter rod (length 2s) that is fed at its centre by a balanced feeder (see
Figure 44a). (Note that the shorter rod is connect to the dipole at its ends and that the
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Figure 44: Dipole antennas fed with various feeds.

feed includes capacitors that cancel out the inductance that is generated by the match.)
If we split the antenna in the middle (see Figure 45), we can replace one half by an
imaginary perfectly conducting plane (i.e. the missing half of the dipole is the image in
the plane). Essentially, we will have a monopole that is fed against a perfectly conducting
plane. The two parallel rods form a transmission line stub on which there are both even
and odd modes. The odd mode (this is the standard mode for a transmission line) will
have equal magnitude currents travelling in opposite directions (Io and −Io). This will
be the result of voltage sources Vo and −Vo that drive the monopole rods. There will
also be an even mode with currents Ie and Ie flowing into each rod. Together, these flows
constitute the current in the monopole and result from the voltage sources Vo and Ve that
drive the monopole rods. However, the centre of the dipole is at zero volts (it is connected
to the imaginary conducting plane) and so we must have Ve = Vo. For the odd mode (the
transmission line mode) we will have Io = 2Vo/Ztl where Ztl is the impedance looking into
the the transmission line. For the even mode, we note that the total current flowing into
the monopole is 2Ie and that the impedance looking into the monopole is Zdip/2 where
Zdip is the impedance looking into the dipole. The voltage between between the monopole
and the imaginary plane is Ve and so Ve/2Ie = Zdip/2, i.e. Ie =

Ve

Zdip
. The current flowing

from the feedline into the gamma match will be

I = Ie + Io =
Ve

Zdip
+ 2

Vo

Ztl
(50)

On noting that Ve = Vo, the voltage drop between the feedline and the plane will be 2Ve

and hence the impedance looking into monopole with gamma match will be

ZG =
2Ve

I
=

2Ve

Ve

Zdip
+ 2 Vo

Ztl

=
2ZdipZtl

2Zdip + Ztl
(51)

The impedance is essentially that of twice the antenna impedance in parallel with the
stub transmission line impedance. Looking into a dipole with T match, we essentially
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Figure 45: Dipole antenna fed with a gamma match when analysed as a monopole.

have back to back monopoles with T gamma matches and the impedance will simply be
2ZG, i.e. the impedance

ZT =
4ZdipZtl

2Zdip + Ztl
(52)

The impedance is essentially that of four time the antenna impedance in parallel with
twice the stub transmission line impedance. Consequently, by choosing Ztl correctly, we
can transform the input impedance of a dipole to that which matches the feed. If the
antenna has an unbalanced feed (typically a coaxial cable), we can use the arrangement
shown in Figure 44b. Essentially, we treat the antenna as a monopole with the right hand
half of the dipole generating an effective conducting plane. The input impedance that
this arrangement presents to the feed will then be the ZG above.

As an example, consider a dipole for which we have slightly shortened in length so
that its centre impedance is 73Ω (to do this we need to shorten a λ/2 dipole by about 5
percent). We want to match this to a 50Ω coaxial cable by means of a gamma match and
first note that Ztl can be calculated from expression 51. However, the transmission line
can only produce a reactive impedance, i.e. Ztl = jXtl, and so the transmission line alone
cannot produce a ZG that is purely resistive, i.e. ZG = 50+ jXG. Noting that Zdip = 73,
51 will imply that

(50 + jXG)(2× 73 + jXtl) = j2× 73Xtl (53)

and from which XGXtl = 7300 and XG = 96Xtl/146. As a consequence, Xtl = 105Ω
and XG = 69Ω. However, the reactive part of ZG can now be canceled by choosing the
capacitor C in Figure 44 such that C = 1/XGω.

In order to produce a suitable Xtl, we need to know its relationship to the physical
properties of the transmission. We assume both rods have the same radius a and a spacing
of D. For a short circuit transmission line of length s and characteristic impedance
Z0, we have Xtl = Z0 tan(βs). For a parallel wire transmission line, we have Ztl =
120 cosh−1(D/2a) and β = 2π/λ where λ is the free space wavelength. We will normally
have that D ≫ a and so we will have that Ztl ≈ 120 log(D/a). If the rods of the
transmission line have unequal radius, we replace a by the geometric mean of their radii.
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Exercise

Design a Dipole for use at 14MHz for use with a 50Ω coaxial feed.

Folded Dipoles and Full Wave Loops

/2

/4

/4

a) folded dipole b) full wave loop

Figure 46: Folded dipole and large loop antennas.

We now consider the special case of a T match (see the previous example) for which
the the stubs each have length λ/4. The reactance looking into the stubs will be Xtl =
Z0 tan(βλ/4) = ∞ and hence, from 52, ZT = 4Zdip. This form of the dipole is known
as a folded dipole and has an input impedance of 292Ω and a much wider bandwidth
than the standard dipole. Essentially, the folded dipole is a loop antenna with sides of
total length λ. However, two sides of the loop are so close together, and with matching
currents, that they have the same total current distribution as a λ/2 dipole and hence
the same radiation pattern. Another loop of interest is a square with sides of length λ/4.
This can be regarded as a pair of two elements arrays (the sides parallel to the feed side
and the sides orthogonal to the feed side). The radiation from the sides orthogonal to
the feed side will cancel. However, the feed side, and the other side parallel to it, will
combine to form a broadside array with strongest radiation in the directions orthogonal
to the loop and with maximum gain of about 4dB. The loop will have an input resistance
of around 100Ω, but needs to have a total length that is about 10 percent greater than a
wavelength in order to eliminate the reactive part of its input impedance.
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Dipole Chokes and Choke Dipoles
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/4

/4

/4

a) dipole choke b) choke dipole

Figure 47: A transmission line choke BALUN and a choke dipole.

Consider a dipole that is fed by a coaxial cable. A BALUN can be formed at the dipole
centre by using the coaxial outer as part of a transmission line, as shown in Figure 47a.
This will be a parallel wire transmission line with unequal radius wires, the outer of the
coax and a parallel wire. Without the λ/4 parallel wire, current will flow up the cable
inner and into both the left dipole arm and down the cable outer. However, for the right
hand arm the current will simply flow from the dipole arm into the cable inner. This can
cause an imbalance of current on the dipole which is removed by choking off the flowing on
the dipole outer. We have seen before that this can be achieved by wrapping the coaxial
cable round a ferrite ring. With a λ/4 parallel wire in place, however, a current flows up
the wire from the cable outer that balances the current flowing down the cable. Since the
wire and cable outer constitute a shorted λ/4 transmission line, it will present an infinite
impedance at the dipole centre and hence not affect the dipole operation. It should be
noted that the parallel wire is sometimes replace by a λ/4 metal tube that surrounds the
cable and in this case we have what is known as a Bazooka BALUN.

One of the problems with a dipole is that, unless the feed can be kept orthogonal to
the dipole, it can interact with the dipole and change both its radiation pattern and input
impedance. Fortunately, we can use the idea of a choke in order to overcome this problem.
In figure 47b we show a dipole that is fed by a coaxial cable. In this configuration, the
lower dipole arm forms a choke with infinite impedance at its lower end and therefore no
current will flow along the outer of the feed cable. As with the dipole choke, the parallel
wire can be replaced by a tube that surrounds the cable and in this case will be a coaxial
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transmission line with its inner conductor being the outer of the feed cable.

Helical Dipoles

D

balanced
feedline

L

Figure 48: Shortened dipole with arms consisting of helical windings.

At low frequencies the size of a dipole (or even a monopole) can become too large for
practical purposes and we need to find ways of shortening the antenna. As mentioned
in chapter 9, we can shorten an antenna by using a helical winding instead of a straight
wire. In the case of a helical wire, the wave speed c will be given by

c =
c0

√

1 + 20(nD)2.5
(

D
λ0

)

(54)

where λ0 is the free space wavelength, n is the number of turns per centimetre and D is
the helix diameter in centimetres (see Kandoian and Sichel in IRE National Convention

Record, part 2, Antennas and Components, 1953, pages 42-47). It will be noted that
λ/λ0 = c/c0 where λ is a wavelength on the helix and λ0 is the wavelength in free space,
i.e. the slower the wave on the winding the shorter the effective wavelength. In theory, we
could make very small resonant antennas using helical windings, but there is a downside.
Wheelers result tells us that the smaller we make an antenna,the smaller will be its
bandwidth. Consequently, bandwidth is an important issue when miniaturising antennas.

Exercise

A dipole is to operate at a frequency of 14MHz, but should not exceed 4m in length.
Design a suitable helical dipole with winding diameter no greater than 10cm (made from
slinky springs perhaps).
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Active Monopoles and Dipoles

C

C

BP

BL

 active
antenna
 output

VDD   short
monopole

V=Eheff

antC

CGS

R

Rrad

loss

a) b)

VGS

1/g

VGS

m

VDD

VDD

CBP

CBP

c)

CBL

CBL

differential amplifier short
dipole

BALUN

out

Vout

Figure 49: Active monopole and dipole antennas.

As we have noted in chapter 8, an electrically small antenna has an extremely high Q
and therefore a small bandwidth. However, the advent of high frequency semiconductors
has opened up another possibility, the active antenna. Figure 49a shows an example of a
simple active antenna that is based upon a short monopole and source follower amplifier.
Figure 49b, shows a model of this amplifier. The antenna is represented as a voltage
source Vant with impedance

Zant = Rrad +Rloss + jXant = 40

(

πl

λ

)

+
l

6πaδσ
− j

60

βl

(

ln

(

l

a

)

− 1

)

(55)

where l is the rod length, a is its radius and β = ω/c0. The antenna impedance has
resistive parts (the radiation and ohmic losses) and a capacitive reactive part Cant =
l/60c0

(

ln
(

l
a

)

− 1
)

. It will be noted that the input to the JFET is also capacitive and
so the voltage is fed into the amplifier through a capacitive voltage divider. For a short
dipole, we will have a high Q and can therefore neglect the voltage drop across antenna
resistance in comparison with the voltage drop across its reactance. Further, Vant = heffE
where E is the electric field the is incident upon the antenna and heff is the effective length
(half the physical length for a short monopole). As a consequence, the voltage appearing
at the open circuit output of the source follower will be approximately

Vout ≈ Eheff
Cant

Cant + CGS
(56)

and is clearly independent of frequency. Consequently, by means of electronics, we have
turned an inherently narrow band antenna into a frequency independent antenna. The
electronics will bring its own problems, intermodulation for example, but extremely effect
active antennas are possible with modern transistors. Obviously, it is also possible to
build an active dipole and Figure 49c shows an example of such an antenna.
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Exercise

Design a simple active monopole using a J310 FET (VT = −3V and K = 5× 10−3A/V 2)
for an output impedance of 50Ω.

Active Loop Antennas
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Figure 50: Active loop antennas.

Small loops can also be made into effective frequency independent antennas, but their
operation is very different. Figure 50a shows the equivalent circuit of a loop that is con-
nected to a load RL. The antenna is represented as a voltage source Vant with impedance

Zant = Rrad +Rloss + jXant = 20β4A2 +
l

2πaδσ
+ j

ωµ0

2π
l

(

ln

(

4l

πa

)

− 1.75

)

(57)

where A is the area of the loop, β = ω/c0, l is the length of the loop wire and a is its
radius. Further, the loop is excited by the magnetic field B of the incoming wave such
that Vant = jωAB (note that we have assumed that the loop is oriented so that the
magnetic field is orthogonal to its plane). As we have seen in chapter 5, we can rearrange
the antenna voltage source into a current source, as shown in Figure 50a. For a small
loop, the Q will be high and so Zant ≈ jXant and from this

Iant =
Vant

Zant
≈ 2πAB

µ0l

1

ln
(

4l
πa

)

− 1.75
(58)

i.e., the current source is frequency independent. The trick now is to make the load
impedance as low as is practical and then the lions share of this frequency independent
current will flow into the load. A possible implementation of these ideas is shown in
Figure 50b. The low load impedance is achieved by the use of common base amplifiers.
Once again, electronics has turned an inherently narrow band antenna into a frequency
independent antenna. In the figure, the outputs of the two common base amplifiers are
combined through a transformer, but this could also be achieved through a differential
amplifier with the appropriate bandwidth.
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Design of a Patch Antenna

b
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Figure 51: A rectangular patch antenna with microstrip feed.

We will consider the design of a patch antenna for operation at 1.5GHz and with input
impedance 50Ω (see Figure 51). We assume that the antenna is built from printed circuit
board with 1.56mm FR4 substrate (ǫr = 4.4) and has a microstrip feed. For frequency
f = 1.5GHz, will need the length a to be half a wavelength with respect to the substrate,
i.e. a = co/2f

√
ǫr = 3× 108/2× 1.5× 109 ×

√
4.4 = 0.0477 metres (4.77cm). Due to end

effects, the value of a will need to be shortened by ∆ ≈ 0.42h(ǫr + 0.3)/(ǫr − 0.258), i.e.
∆ = 0.74mm. As a consequence a = 4.62cm. To prevent lateral modes forming under
the patch, we need to choose b to be significantly less than a (we will choose b = 4cm
in the current design). For a microstrip feed of 50Ω, we will need a width 5.7mm. The
impedance at the edge of the patch is given by Redge = 60λo/b. Then, since λ0 = 20cm
and b = 4cm, we obtain that Redge = 300Ω. At distance d from the edge of the patch, a
feed will encounter an impedance

Rin = Redge cos
2

(π

a
d
)

(59)

Consequently, the feed will need to penetrate a distance d into the patch where d satisfies
50 = 300 cos2(πd/4.77) (i.e. d = 1.69cm). Since the microstrip feed penetrates into the
patch, this will require a gap (i.e. no metal) between the microstrip feed and the patch
itself. A gap equal to the substrate thickness is usually sufficient.

Exercise

Redesign the above patch antenna for a frequency of 2.5GHz.
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Figure 52: The effect of ground reflections upon propagation.

Extensions of the Friis Equation

If the communication between two radio stations involve ground reflections, Friis equation
needs to be modified, i.e.

PR = PTGRGT

(

λ

4πD

)2
∣

∣

∣

∣

1 +Rg exp

(

−4jπ
H1H2

λD

)
∣

∣

∣

∣

2

(60)

The reflection coefficient Rg will depend not only on the angle θ, but also on the polari-
sation and the properties of the ground. For vertical polarisation,

Rg =

cos θ
η2r

−
√

1

η2r
− sin2 θ

cos θ
η2r

+
√

1

η2r
− sin2 θ

(61)

where ηr is the relative impedance of the ground. In most propagation problems, the
angle θ is close to π/2 and so the above expression can be approximated by

Rg ≈
φ− ηr

√

1− η2r

φ+ ηr
√

1− η2r
(62)

where φ = π/2 − θ. It is clear that at low elevations (i.e. low values of φ) Rg ≈ −1.
However, as φ rises, there comes a point where Rg changes sign and heads towards a
value of 1 (i.e. the reflection coefficient for a perfectly conducting plane). The angle at
which the sign changes is known as the Brewster’s angle. In the case of lossy ground,
the impedance in the above formulas will need to be replaced by the effective relative
impedance

ηer = ηr
1

√

1− j σ
ωǫ

(63)

where σ is the conductivity of the ground and ǫ is its permittivity. For typical pastoral
land, we have σ = 0.01S/m and ǫ = 8.854 × 10−11F/m and so ηer = 0.316/

√

1− j18/f
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where f is the frequency in MHz. To a first approximation, φ ≈ (H1 + H2)/D and so,
for most terrestrial propagation, a value of −1 for Rg is appropriate. The exception is at
very low frequencies where the effective impedance can become very small. However, at
these frequencies the surface wave propagation will far exceed the space wave propagation

(the propagation that is described by the Friis equation). Another way of writing the
Friis equation for space wave propagation is

PR = PTGRGT
1

Lfs

1

Lrefl
(64)

where Lfs = (4πD/λ)2 is the loss in free space and Lrefl = 1/
∣

∣1 +Rg exp
(

−4jπH1H2

λD

)
∣

∣

2

is the additional loss due to ground reflections.
We would also like a Friis equstion for surface wave propagation. As we have seen

in chapter 9, an alternative way of looking at the propagation problem is as a 2 port
network. In chapter 8, we saw that the mutual impedance between receive and transmit
antennas in free space is given by

Z0

TR = jωµ0h
T
effh

R
eff

exp(−2jπD
λ
)

4πD
(65)

However, in chapter 8, we also found that the mutual impedance through surface wave
propagation is

ZTR ≈ η0h
R
eff
hT

eff

2πη̃r
2D2

exp(−2jπ
D

λ
) = Z0

TR

2c0
jωη̃2rD

(66)

where η̃r = ηr
√

1− η2r . Noting that VR = ZTRIT , it can be seen that the Friis equation
for surface waves will take the form

PR = PTGRGT
1

Lfs

1

Lsw

(67)

where Lsw = |ωη̃2rD/2c0|2 is the additional loss due to the surface wave mode (note that
ηr will need to be replaced by the effective permittivity ηer in the case of a ground with
non zero conductivity).

Exercise

For antennas at heights of 10m, and the pastoral land described above, compare the
propagation loss of the space and ground wave modes for a variety of distances D and
frequencies f .

System Calculations for Passive Radar

In our current radio rich environment, a possible approach to radar is to use target
illuminations by existing transmitter (a broadcast transmitter for example). This is what
is known as passive bistatic radar since its operator does not require the radar to produce
its own illuminations. In deciding whether such a radar can detect a target, the major
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Figure 53: Passive bistatic radar.

calculation will be that of the SNR of the radar return at the receiver. From the radar
equation

SNR =
PT

N
GRGT

(

λ

4πRT

)2 (

λ

4πRR

)2
4πσ

λ2
(68)

where N is the total noise being received through the antenna (we assume the receiver
has been designed to be externally noise limited). An example of a suitable illuminator
of opportunity is the DAB transmitters that have now mainly replaced FM transmitters.
Most of these transmitters operate around a frequency of 200MHz (λ = 1.5m) and have
a bandwidth of about 1.5MHz. Their large bandwidth makes them ideal for aircraft
observation as they will exhibit range resolution of the order of 200m. For a typical DAB
transmitter we will have an effective radiated power (i.e. PTGT ) of the order of 10kw and
we will assume the receive antenna has a gain of 10dB. For DAB frequencies, a typical
level of noise is 10−20W/Hz and so the radar returns will need to compete with a noise
level of 1.5× 10−14W . Consider a target consisting of a small jet for which 4πσ/λ2 = 100
is a typical value. If we assume that RT = 12km and RR = 10km, the radar equation
will yield an SNR of 9.4 and detection is possible.

Although the above calculation suggests that the target can be detected, there is a
major problem with passive radar in that the direct signal from the illuminator can swamp
the radar receiver. Such signal are known as direct signal interference (DSI). At VHF
frequencies, the space wave will dominate over the surface wave and so the power in the
DSI will be

PDSI
R = 4PTGRGT

(

λ

4πD

)2

sin2

(

β
HTHR

D

)

≈ PTGRGT

(

λ

4πD

)2
16π2H2

RH
2

T

λ2D2
(69)

where D is the distance between transmitter and receiver and HT and HR are the heights
of the transmitter and receiver respectively.

To reduce the direct signal, the antennas of both receiver and transmitter will normally
be designed so they they have a null in each others direction. However, it is sometimes
possible to use an obstruction, a hill or a building, to hide the transmitter from the
receiver. Although this will reduce the direct wave, there will still be power that reaches
the receiver through the mechanism of diffraction. From chapter 9, the mutual impedance
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Figure 54: Reduction of DSI through an obstruction.

between the receive and transmit antennas will be

ZDSI
TR =

jωµ0

4πD

√

j

π
hT

eff
hR

eff
(70)

× exp (−jβRTR)

∫ ∞

ν

exp
(

−jY 2
)

dY

where ν =
√

β/2DTDRD (DThR +DRhT ), hT is the height of the obstruction above the
transmitter, hR is the height of the obstruction above the receiver, DT is the distance
of the transmitter from the obstruction, DR is the distance of the receiver from the
obstruction, D = DT + DR and RTR is the distance between the antennas. We will
consider the simplified situation where the receiver and transmitter are at ground level,
the obstruction is midway between transmitter and receiver and h is the height of the
obstruction above the ground. We will also assume h ≫

√
λD and then ν = 2h

√

π/λD
will be large. For large ν,

∫∞

ν
exp (−jY 2) dY ≈ exp (−jν2) /2jν and so

ZDSI
TR = Z0

TR

exp (−jν2)

2
√
jπν

(71)

and from this we see that

PDSI
R = PTGRGT

1

Lfs

1

Ldiff
(72)

where Ldiff ≈ 16π2h2/λD and Ldiff is the additional loss that is caused by the obstruc-
tion.

Exercise

Calculate the level of DSI at the Receiver site and determine what height of obstacle is
required for the DSI to be reduced to the level of the target return. (Note that DSI does
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not need to be completely removed as it can be discriminated from the target in range-
Doppler space. The main issue is the dynamic range that the DSI will demand of the
radar receiver.) Investigate the effect of moving the receiver much closer to the obstacle
(DR ≪ DT ).


