Solutions to exercises in chapter 8

1. Diffusion of molecules

a) From the Einstein relation and the friction coefficient we obtain: D = kgT/f = kgT/(87nL).
Numerically: D = Sﬂlo,éilfgﬁgpams = Sﬁﬂg:i%’;}m =1/2-1072110"%m?/s = 5-10712m? /s =
5(um)?/s.

b) We are looking at relative errors: 0%,/D? = o2/n? + 07 /L? = 0.01% + 0.01> = 2 % 0.01°. Hence:
op/D =+/2-0.01 = 0.014 = 1.4%. This gives: op ~7-10"*m?/s

2. Diffusion of molecules 2

a) We are looking for the time after which ¢ = 1/(22) = 10 m. From the mean square displacement,
we know t = (22)/(6D) = ¢2/(6D). Using the numerical values given: t1g,, = 100m?/(96mm?/s)
:%~106521065212days.

b) Now we are doing the same as in a), but for a distance £ = 500 m = 5 -10~* m. Hence,
t500um = 25-107% m?/(96 - 1075 m?/s) = 221072 s ~ 2.5 ms.

¢) In both cases, the diffusivity is the only value with an uncertainty, where the relative error is
1/16 ~ 6%. Therefore the times we obtain also have a relative error of 6%. Hence oy,,,,, ~ 0.7
days and o} ~ (.15 ms.
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3. Diffusion and Brownian motion

_ SN;Aw; _ 84-9242.46—2.3243-8—3.1544.3-4.245.0-5-1 ,  _ 84024092 64+24-45412-8-5,  _
a) (Az) = =55 = 400 pm = 200 Hm =
_9 _
Toom = —bnm
2\ _ ENiAz? _ 8440244.46+4-3249-849-154+16:3+16-2425-0425-1 , 2 _ 8440241844128+ 72+135+48432425 , 2 _
(Az®) = =55+ = 400 pme = 400 pm= =
800 2 _ 2
a00 KM = 2pm

The diffusivity is defined via (Ax?) = 2Dt, such that we have D = <A23§2> , where ¢ is the observation
time of 2 s. Thus we obtain a diffusivity of D = 0.5u m?/s.

b) Einstein says: D = kgT/f, or otherwise put kg = Df/T, where f = 6mnr is the friction coeffi-
_ 6m(Ax®)n

cient of the droplet. Inserting this, as well as D from b), we obtain: kg = TT or numerically:
_ 670.5:1072m? /51073 Pa-50.4-10 %m __ 3.0.47x10"2'J __ —23 _ —23
kg =" e T = 200K =0.4710"**J/K =1.26 - 10*°J/K

¢) We have errors in n, T, t,r, that all enter the relation with an exponent of +1. We can therefore

simply add all of the relative errors in squares, i.e. 1y, = (/72 4 72 4 77, + r7. With the respective

numerical values: r, = 0.05;7, = 0.1;rp = 0.01;7, = 0.05,we obtain ry, = V151% ~ 12%.
Our proper result for the Boltzmann constant fore is kg = 1.26(15) - 10723.J/K, which is in good
agreement with the official value of 1.38 - 10723.J /K.

4. Air pressure

a) If the fridge seals completely, the number of particles as well as the volume are constant. In
that case, we have p/T = const from the ideal gas law. This means that the pressure in the cooled
down fridge is pa = p1T>/T1, the pressure difference then is Ap = p1(1 — T»/T}). The force needed
is the pressure difference multiplied by the area of the door, hence F' = ApA = pbh(1 — T5/T1).
Numerically: F = 10° Pa 2 m?(1 —270/300) = 2-10°(1 — 0.9) N = 2.10* N

b) If the fridge does not seal properly, pressure and volume are constant, and we have NT = const
from the ideal gas law. Hence AN = N;(1 — Ty1/T3). For a volume of V = 1m?, we have initially
Ny = k’;‘% = 4»11855]11 = 2.5-10%% molecules in the fridge. With (1 —Ty/T») = —0.1, the number of
molecules decreases by AN = 2.5 - 1024, With Ny = 6 - 102 molecules per mole this corresponds
to roughly 4 moles disappearing out of the fridge.




5. Heating a room

a) The internal energy is given by U = gN kT = ng, where we have used the ideal gas law
(NkpT = pV). Neither pressure nor volume change in a room, such that U actually remains
constant. The increase in temperature comes from a decrease in the number of particles (the room
is not actually completely sealed).

b) As pressure remains constant, we obtain the heat required using specific heat at constant pressure,
ie. 0Q =(1+ %)NkBAT =1+ %)pVAT/T using the ideal gas law. Air is a bi-atomic gas, such
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that f =5 and we end up with: 6Q = (7/2)pVAT/T = =557 = 1.7510° J

¢) Errors are in p and V with relative errors of 2%, , i.e. the relative error in the heat required is

V2-2% = 2.8%

6. Thermal equilibrium

a) Temperature equalize in thermal equilibrium, i.e. 7] = Ty, for a fixed wall, the volumes must
stay the same, i.e. V] = V5 and Vj = V5. As volume and number of particles stay the same, the
pressures have to change in response to the change in temperature, i.e. pj > p; and phy < po if
Tl < Tg)

b) The temperatures equalize (see a) T] = Ty. Because of the moveable wall, so do the pressures,
ie. pi = ps. Hence the volumes have to change is response to these V{ > V; and Vj < V4 if
Tl < Tg)

¢) Temperature equalize in thermal equilibrium, i.e. T] = Ty, for a fixed wall, the volumes must
stay the same, i.e. V/ =V} and V§ = V5. As the wall is permeable to particles, the molecules
distribute such that the pressures in both halves are equal.

7. Thermal expansion

: _ 10V _ .y — LOWNkgT/p) _ Nkp _ Nkp _ 1
With a = 3 57 and pV = NkgT we have: a = y; 5T V= NEST = T

8. Maxwell-Boltzmann distribution

(a) We obtain the maximum from taking the derivative and setting this zero. Taking the derivative of

P(v) gives: dP/dv = const* (2vexp(— 2’,?;;) Jerezp(f;Z;;) *(— o)) = constxexp(— 51~ T)(2v

3
2’;”;). Setting this zero means: 2v,4: — % 0. Which can be solved to give: vpmar =
\/2kgT /m. This is the most probable speed of molecules in the gas.

(b) The second moment of the distribution, (v?) = [v2P(v)dv is a measure of the width of the
probability distribution, i.e. over what speed interval the speeds are distributed. For the Maxwell-
Boltzmann distribution:

v?) = ([ v2P(v)dv) /(] P(v)dv

(v%) = ([ vheap(— 2 )dv) /(| vPexp(— ) dv)

(v2) = BT ([ (me2)2ep(— e )q(, (2 ) /([ (122 )eap(—gmer)d(y [ (222)))

(v?) = £8T ([ ateap(~a?/2)de)/ ([ xexp(—a?/2)dx) = K2L(3/7/2)/(\/7]2) = &L

To compare with a) we take the square root: /(v?) = /3kgT/m. This is larger by a factor of
3/2.

9. Maxwell-Boltzmann distribution 2

a) At temperature T} we have k = kg exp(—AFE/(kpT1)). We are looking for the temperature Ty at
which k' = 2k = ko exp(—AE/(kgT>)), hence k’/k: =2 =exp(—AE/(kgTy)+AE/(kgTy)). Taking
the log on both sides gives In(2) = AE/k:B(— - —) This gives: In(2)kgTi/AE = (Tx — T1)/Tx.
Solving for Ty we have finally: Ty = Tlm using the approximation In(2)kpT/AE =
0.07 <« 1 we can Taylor-expand this to find: Tp = T1 (1+In(2)kgTi/AE). Numerically kgT1/AE =
0.1, hence To, = 71 (1.07) = 321K.
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b) Starting with the result of a): T = T1(1+In(2)kpTi/AE). To get the uncertainty of 75 we need
the derivatives with respect to 77 and AFE respectively. These are: g—% =1+42in(2)kpT1/AE und
aag% = —In(2)kpT}E/AE?, which gives for the uncertainty in Th: 07, = (1+2In(2)kgTi/AE)*c7, +
(In(2)kpTE/AE?)?0%, = (1+2In(2)kpTy /AE)*0F, + (In(2)kpTy/AE)*rETE. Numerically we have
rg = 0.1, kgT1/AE = 0.1, oy, = 3K and Ty = 300K, which gives: 0%2 = (1.14)?9K? + 9(0.5 -
0.01)0.01 - 10*K2 = 9(1.14% + 0.5) K2 = 9 - 1.8 K? and hence o7, = 3v/1.8K ~ 4.5K.

Specific heat

(a) In a two-atomic ideal gas, there is kinetic as well as rotational energies. there are three directions
for kinetic energy and two rotational axes for rotational energy, hence five degrees of freedom.
Therefore according to equipartition, the total internal energy is U = 5/2NkgT. At constant
volume there is no work being performed, hence a change in energy corresponds to a change in
heat, such that the specific heat is given by Cy = 5/2Nkp or C' = 5/2R for one mole.

(b) For a process at constant pressure, there is not only heat but also work being performed. The
first law of Thermodynamics stipulates for this: AU = §Q—AW. We know AU = f/2NkpgAT from
equipartition and the ideal gas law tells us AW = pAV = NkgAT for the work performed. Taking
all of this together gives for the change in heat: AQ = f/2NkgAT + NkpAT = (1+ f/2)NkpAT
and hence for the specific heat: Cp, = (1 + f/2)Nkp. For a mono-atomic gas f = 3, hence
Cp, =5/2Nkp.

Elastic properties of DNA

(a) The slope of the curve at large extension is roughly 70(5) pN/0.20(2)um. This gives a spring
constant of k = 3.5(5) - 107% N/m. The spring constant and the elastic modulus are connected via
E = kL/A. Treating DNA as a cylinder with a diameter of 2.0(1) nm , we have A = 7 nm? with
an uncertainty of 10%. This finally gives £ = 3.5-107%-1.6-1075 /7 - 10—18 Pa = 1.75 GPa, where
we have used a length of 16 pm.

(b) The relative error is given by the squared sum of the relative errors, i.e. \/(5/35)2 + (1/10)2 =
V1749 + 17100 = 1/7+/T + 49/100 = 1/7,/3/2 = v/3/10 = 0.17. This gives o = 0.3 GPa.

(c) The initial slope is k = 0.3(3) pN /1u m. This gives {p = wkaT = 16;;3?’3];7\’[%m = 15nm.

(d) Here we only need to consider the uncertainty in k, which is 100%. This means that k has
a maximum value (twice the maximum error, i.e. value). The persistence length is inversely
proportional to the slope, we can only give a lower bound (or minimal value) for £p, which is about
10 nm. This means that any value larger than about 10 nm is compatible with the experiment. In
a case like this, where the errors are very substantial, we can actually no longer use normal error
propagation, since the assumption of small errors that are inherent in error propagation is actually
not true. A more exact measurement of the persistence length of DNA gives 50 nm.

5-m-4pNnmb50nm

(e) Rearranging gives F = %. Inserting values and using 7/2 ~ 1.6 we find £ = S

—12
502000 — Pa = 1 GPa.

Packing of long molecules

(a) A cell needs to be around twice the radius of gyration (Gaussian distribution 95% within 2 o),
ie. Reey = 2Rg. With RZ = &p - L/6 we find: Reey = 24/€pL/6 or R?,,/4 = £pL/6. Solving
for L: L = 3R%/(2¢p). Using the numerical values given: L = 3-5%-1072m?/(2-5-107%m) =
3/2-5-107* m = 0.75 mm. With a base pair distance of 3.4 A = 3.4-107!% m, this corresponds to
7.5/3.4-10% ~ 2. 10° base pairs.

(b) The relative error in L is 72 = 4r% + rg (Reen enters squared, £p linearly). With rg = 0.2 and
re = 0.1, this gives: r7 =4-(0.2)2+0.12 = 0.12(16 + 1) = 17- 0.12. Hence: rz, ~ 0.4 or 40%.

(c) With Epeng = TER*L/(87?) and ép = nERY/(4kpT) we obtain Epe,qg = kgTEpL/(2r?). Using
L = 27r for a circle, we obtain: Epeng = mkpTép/r. &p = 50(5) nm and r = 5.0(5) nm, also ist

&p/r = 10. Furthermore, we know that kT = 4pNnm, to obtain: Epenqg = mkgTEp/r = m4pN nm
10 = 4710712-1079 - 10 Nm =12-10720 J = 1.2- 10719 J.
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(d) We have errors in £p and r, both with a relative error of 10%. Hence the bending energy has
a relative error of (og/E) = V0.12+0.12 = v/2-0.12 = v/2- 0.1 = 0.14 or 14 % in other words,
op~0.2-10719 J.

Convection

a) The ideal gas law says N/V = p/(kpT), so we obtain for ¢: ¢ = —;;’ZZTP. Numerically: ¢ =
41072 J _ 107'J _ 107%m ., -7

37410 2’ 10°Pa = 3x10°N = zx = 1.5 107 m.

b) With v =n/p = (v)¢/3, we have = p(v)¢/3. Numerically: n = 1kg/m>500m/s1.5-10""m/3 =
5-1.5/310"%kg/(ms) = 5-0.5107°Pas = 2.5 - 10~° Pas.

¢) The criterion for convection is: Ra = QA%S‘XQOOO = Ra.. With the values from a) and b),
this gives a minimum layer thickness of: d,,;, = (%)1/ 3 = (%)

11032.10~5m2 /52-10~5m?2 /53 10~ %m3 _ _
(P00 Oy LSS0 1/3 (290 )13 — (2.4 1073m) Y/ = 2.41/% 107 m ~ 13em.

/3. Numerically: dpin =

d) According to dpin = (%)1/ 3 all variables enter with a power of 1/3. We can therefore

use relative errors for ease of calculation and obtain: 72 = (1/3)%(r%, + r2 + rZ + 12 + 73 1).
Numerically: rr, =1 = r, = rar = 0.1 and rp = 0.01. We thus neglect the error in T and get:
r2 = (1/3)%(4-0.1%) or rq = 2/3- 0.1 ~ 6.5%. This corresponds to o4 ~ lem.



