
Solutions to exercises in chapter 8

1. Diffusion of molecules

a) From the Einstein relation and the friction coefficient we obtain: D = kBT/f = kBT/(8πηL).

Numerically: D = 4pNnm
8π10−3π10−8Pams = 410−21Nm

8π210−11Ns/m = 1/2 · 10−211010m2/s = 5 · 10−12m2/s =

5(µm)2/s.

b) We are looking at relative errors: σ2
D/D

2 = σ2
η/η

2 + σ2
L/L

2 = 0.012 + 0.012 = 2 ∗ 0.012. Hence:

σD/D =
√

2 · 0.01 = 0.014 = 1.4%. This gives: σD ' 7 · 10−14m2/s

2. Diffusion of molecules 2

a) We are looking for the time after which ` =
√
〈x2〉 = 10 m. From the mean square displacement,

we know t = 〈x2〉/(6D) = `2/(6D). Using the numerical values given: t10m = 100m2/(96mm2/s)
= 100

96 · 106 s ' 106 s ' 12 days.

b) Now we are doing the same as in a), but for a distance ` = 500µ m = 5 ·10−4 m. Hence,
t500µm = 25 · 10−8 m2/(96 · 10−6 m2/s) = 25

96 · 10−2 s ' 2.5 ms.

c) In both cases, the diffusivity is the only value with an uncertainty, where the relative error is
1/16 ' 6%. Therefore the times we obtain also have a relative error of 6%. Hence σt100m ' 0.7
days and σt500µm ' 0.15 ms.

3. Diffusion and Brownian motion

a) 〈∆x〉 = ΣNi∆xi
ΣNi

= 84−92+2·46−2·32+3·8−3·15+4·3−4·2+5·0−5·1
400 µm = 84−92+92−64+24−45+12−8−5

400 µm =
−2
400µm = −5nm

〈∆x2〉 =
ΣNi∆x

2
i

ΣNi
= 84+92+4·46+4·32+9·8+9·15+16·3+16·2+25·0+25·1

400 µm2 = 84+92+184+128+72+135+48+32+25
400 µm2 =

800
400µm

2 = 2µm2

The diffusivity is defined via 〈∆x2〉 = 2Dt, such that we have D = 〈∆x2〉
2t , where t is the observation

time of 2 s. Thus we obtain a diffusivity of D = 0.5µ m2/s.

b) Einstein says: D = kBT/f , or otherwise put kB = Df/T , where f = 6πηr is the friction coeffi-

cient of the droplet. Inserting this, as well as D from b), we obtain: kB = 6π〈∆x2〉ηr
2tT or numerically:

kB = 6π0.5·10−12m2/s·10−3Pa·s0.4·10−6m
300K = 3·0.4π10−21J

300K = 0.4π10−23J/K = 1.26 · 10−23J/K

c) We have errors in η, T, t, r, that all enter the relation with an exponent of ±1. We can therefore

simply add all of the relative errors in squares, i.e. rkB =
√
r2
η + r2

r + r2
T + r2

t . With the respective

numerical values: rη = 0.05; rr = 0.1; rT = 0.01; rt = 0.05,we obtain rkB =
√

151% ' 12%.
Our proper result for the Boltzmann constant fore is kB = 1.26(15) · 10−23J/K, which is in good
agreement with the official value of 1.38 · 10−23J/K.

4. Air pressure

a) If the fridge seals completely, the number of particles as well as the volume are constant. In
that case, we have p/T = const from the ideal gas law. This means that the pressure in the cooled
down fridge is p2 = p1T2/T1, the pressure difference then is ∆p = p1(1− T2/T1). The force needed
is the pressure difference multiplied by the area of the door, hence F = ∆pA = pbh(1 − T2/T1).
Numerically: F = 105 Pa 2 m2(1− 270/300) = 2 · 105(1− 0.9) N = 2·104 N

b) If the fridge does not seal properly, pressure and volume are constant, and we have NT = const
from the ideal gas law. Hence ∆N = N1(1 − T1/T2). For a volume of V = 1m3, we have initially

N1 = pV
kBT1

= 105J
4·10−21J = 2.5 · 1025 molecules in the fridge. With (1−T1/T2) = −0.1, the number of

molecules decreases by ∆N = 2.5 · 1024. With NA = 6 · 1023 molecules per mole this corresponds
to roughly 4 moles disappearing out of the fridge.
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5. Heating a room

a) The internal energy is given by U = f
2NkBT = f

2 pV , where we have used the ideal gas law
(NkBT = pV ). Neither pressure nor volume change in a room, such that U actually remains
constant. The increase in temperature comes from a decrease in the number of particles (the room
is not actually completely sealed).

b) As pressure remains constant, we obtain the heat required using specific heat at constant pressure,
i.e. δQ = (1 + f

2 )NkB∆T = (1 + f
2 )pV∆T/T using the ideal gas law. Air is a bi-atomic gas, such

that f = 5 and we end up with: δQ = (7/2)pV∆T/T = 7·50·105Pam33K
2·300K = 1.75105 J

c) Errors are in p and V with relative errors of 2%, , i.e. the relative error in the heat required is√
2 · 2% = 2.8%

6. Thermal equilibrium

a) Temperature equalize in thermal equilibrium, i.e. T ′1 = T ′2, for a fixed wall, the volumes must
stay the same, i.e. V ′1 = V1 and V ′2 = V2. As volume and number of particles stay the same, the
pressures have to change in response to the change in temperature, i.e. p′1 > p1 and p′2 < p2 if
T1 < T2)

b) The temperatures equalize (see a) T ′1 = T ′2. Because of the moveable wall, so do the pressures,
i.e. p′1 = p′2. Hence the volumes have to change is response to these V ′1 > V1 and V ′2 < V2 if
T1 < T2)

c) Temperature equalize in thermal equilibrium, i.e. T ′1 = T ′2, for a fixed wall, the volumes must
stay the same, i.e. V ′1 = V1 and V ′2 = V2. As the wall is permeable to particles, the molecules
distribute such that the pressures in both halves are equal.

7. Thermal expansion

With α = 1
V
∂V
∂T and pV = NkBT we have: α = 1

V
∂(NkBT/p)

∂T = NkB
pV = NkB

NkBT
= 1

T .

8. Maxwell-Boltzmann distribution

(a) We obtain the maximum from taking the derivative and setting this zero. Taking the derivative of

P (v) gives: dP/dv = const∗ (2vexp(− mv2

2kBT
)+v2exp(− mv2

2kBT
)∗ (− mv

kBT
)) = const∗exp(− mv2

2kBT
)(2v−

mv3

kBT
). Setting this zero means: 2vmax − mv3max

kBT
= 0. Which can be solved to give: vmax =√

2kBT/m. This is the most probable speed of molecules in the gas.

(b) The second moment of the distribution, 〈v2〉 =
∫
v2P (v)dv is a measure of the width of the

probability distribution, i.e. over what speed interval the speeds are distributed. For the Maxwell-
Boltzmann distribution:

〈v2〉 = (
∫
v2P (v)dv)/(

∫
P (v)dv)

〈v2〉 = (
∫
v4exp(− mv2

2kBT
)dv)/(

∫
v2exp(− mv2

2kBT
)dv)

〈v2〉 = kBT
m (

∫
(mv

2

kBT
)2exp(− mv2

2kBT
)d(

√
(mv

2

kBT
)))/(

∫
(mv

2

kBT
)exp(− mv2

2kBT
)d(

√
(mv

2

kBT
)))

〈v2〉 = kBT
m (

∫
x4exp(−x2/2)dx)/(

∫
x2exp(−x2/2)dx) = kBT

m (3
√
π/2)/(

√
π/2) = 3kBT

m .

To compare with a) we take the square root:
√
〈v2〉 =

√
3kBT/m. This is larger by a factor of√

3/2.

9. Maxwell-Boltzmann distribution 2

a) At temperature T1 we have k = k0 exp(−∆E/(kBT1)). We are looking for the temperature T2 at
which k′ = 2k = k0 exp(−∆E/(kBT2)), hence k′/k = 2 = exp(−∆E/(kBT2)+∆E/(kBT1)). Taking
the log on both sides gives ln(2) = ∆E/kB( 1

T1
− 1

T2
). This gives: ln(2)kBT1/∆E = (T2 − T1)/T2.

Solving for T2 we have finally: T2 = T1
1

1−ln(2)kBT1/∆E
using the approximation ln(2)kBT/∆E =

0.07� 1 we can Taylor-expand this to find: T2 = T1(1+ln(2)kBT1/∆E). Numerically kBT1/∆E =
0.1, hence T2 = T1(1.07) = 321K.
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b) Starting with the result of a): T2 = T1(1+ ln(2)kBT1/∆E). To get the uncertainty of T2 we need
the derivatives with respect to T1 and ∆E respectively. These are: ∂T2

∂T1
= 1 + 2ln(2)kBT1/∆E und

∂T2

∂∆E = −ln(2)kBT
2
1 /∆E

2, which gives for the uncertainty in T2: σ2
T2

= (1+2ln(2)kBT1/∆E)2σ2
T1

+
(ln(2)kBT

2
1 /∆E

2)2σ2
E = (1+2ln(2)kBT1/∆E)2σ2

T1
+(ln(2)kBT1/∆E)2r2

ET
2
1 . Numerically we have

rE = 0.1, kBT1/∆E = 0.1, σT1
= 3K and T1 = 300K, which gives: σ2

T2
= (1.14)29K2 + 9(0.5 ·

0.01)0.01 · 104K2 = 9(1.142 + 0.5)K2 = 9 · 1.8K2 and hence σT2
= 3
√

1.8K ' 4.5K.

10. Specific heat

(a) In a two-atomic ideal gas, there is kinetic as well as rotational energies. there are three directions
for kinetic energy and two rotational axes for rotational energy, hence five degrees of freedom.
Therefore according to equipartition, the total internal energy is U = 5/2NkBT . At constant
volume there is no work being performed, hence a change in energy corresponds to a change in
heat, such that the specific heat is given by CV = 5/2NkB or C = 5/2R for one mole.

(b) For a process at constant pressure, there is not only heat but also work being performed. The
first law of Thermodynamics stipulates for this: ∆U = δQ−∆W . We know ∆U = f/2NkB∆T from
equipartition and the ideal gas law tells us ∆W = p∆V = NkB∆T for the work performed. Taking
all of this together gives for the change in heat: ∆Q = f/2NkB∆T +NkB∆T = (1 + f/2)NkB∆T
and hence for the specific heat: Cp = (1 + f/2)NkB . For a mono-atomic gas f = 3, hence
Cp = 5/2NkB .

11. Elastic properties of DNA

(a) The slope of the curve at large extension is roughly 70(5) pN/0.20(2)µm. This gives a spring
constant of k = 3.5(5) · 10−4 N/m. The spring constant and the elastic modulus are connected via
E = kL/A. Treating DNA as a cylinder with a diameter of 2.0(1) nm , we have A = π nm2 with
an uncertainty of 10%. This finally gives E = 3.5 · 10−4 · 1.6 · 10−5/π · 10−18 Pa = 1.75 GPa, where
we have used a length of 16 µm.

(b) The relative error is given by the squared sum of the relative errors, i.e.
√

(5/35)2 + (1/10)2 =√
1/49 + 1/100 = 1/7

√
1 + 49/100 = 1/7

√
3/2 =

√
3/10 = 0.17. This gives σE = 0.3 GPa.

(c) The initial slope is k = 0.3(3) pN /1µ m. This gives ξP = 18·kBT
Lk = 18·4pNnm

16µm0.3pN/µm = 15nm.

(d) Here we only need to consider the uncertainty in k, which is 100%. This means that k has
a maximum value (twice the maximum error, i.e. value). The persistence length is inversely
proportional to the slope, we can only give a lower bound (or minimal value) for ξP , which is about
10 nm. This means that any value larger than about 10 nm is compatible with the experiment. In
a case like this, where the errors are very substantial, we can actually no longer use normal error
propagation, since the assumption of small errors that are inherent in error propagation is actually
not true. A more exact measurement of the persistence length of DNA gives 50 nm.

(e) Rearranging gives E = 16kBTξP
πR4 . Inserting values and using π/2 ' 1.6 we find E = 5·π·4pNnm50nm

π14nm4 =
50·20·10−12

1·10−18 Pa = 1 GPa.

12. Packing of long molecules

(a) A cell needs to be around twice the radius of gyration (Gaussian distribution 95% within 2 σ),
i.e. Rcell = 2RG. With R2

G = ξP · L/6 we find: Rcell = 2
√
ξPL/6 or R2

cell/4 = ξPL/6. Solving
for L: L = 3R2

Z/(2ξP ). Using the numerical values given: L = 3 · 52 · 10−12m2/(2 · 5 · 10−8m) =
3/2 · 5 · 10−4 m = 0.75 mm. With a base pair distance of 3.4 Å = 3.4·10−10 m, this corresponds to
7.5/3.4 · 106 ' 2 · 106 base pairs.

(b) The relative error in L is r2
L = 4r2

R + r2
ξ (Rcell enters squared, ξP linearly). With rR = 0.2 and

rξ = 0.1, this gives: r2
L = 4 · (0.2)2 + 0.12 = 0.12(16 + 1) = 17 · 0.12. Hence: rL ' 0.4 or 40%.

(c) With Ebend = πER4L/(8r2) and ξP = πER4/(4kBT ) we obtain Ebend = kBTξPL/(2r
2). Using

L = 2πr for a circle, we obtain: Ebend = πkBTξP /r. ξP = 50(5) nm and r = 5.0(5) nm, also ist
ξP /r = 10. Furthermore, we know that kBT = 4pNnm, to obtain: Ebend = πkBTξP /r = π4pN nm
10 = 4π10−12 · 10−9 · 10 Nm =12 · 10−20 J = 1.2 · 10−19 J.

3



(d) We have errors in ξP and r, both with a relative error of 10%. Hence the bending energy has

a relative error of (σE/E) =
√

0.12 + 0.12 =
√

2 · 0.12 =
√

2 · 0.1 = 0.14 or 14 % in other words,
σE ' 0.2 · 10−19 J.

13. Convection

a) The ideal gas law says N/V = p/(kBT ), so we obtain for `: ` = kBT
2πd2p . Numerically: ` =

4·10−21J
2π4·10−20m2105Pa = 10−1J

2π105N = 10−6m
2π ' 1.5 · 10−7m.

b) With ν = η/ρ = 〈v〉`/3, we have η = ρ〈v〉`/3. Numerically: η = 1kg/m3500m/s1.5 · 10−7m/3 =
5 · 1.5/310−5kg/(ms) = 5 · 0.510−5Pas = 2.5 · 10−5Pas.

c) The criterion for convection is: Ra = g∆Td3α
κν 2000 = Rac. With the values from a) and b),

this gives a minimum layer thickness of: dmin = (Racκνg∆Tα )1/3 = (RacκνTg∆T )1/3. Numerically: dmin =

( 2·1032·10−5m2/s2·10−5m2/s300K
10m/s210−2K )1/3 = ( 24·10−5m3

10−1 )1/3 = (2.4 · 10−3m3)1/3 = 2.41/3 · 10−1m ' 13cm.

d) According to dmin = (RakritκνTg∆T )1/3 all variables enter with a power of 1/3. We can therefore

use relative errors for ease of calculation and obtain: r2
d = (1/3)2(r2

Ra + r2
κ + r2

ν + r2
T + r2

∆T ).
Numerically: rRa = rκ = rν = r∆T = 0.1 and rT = 0.01. We thus neglect the error in T and get:
r2
d = (1/3)2(4 · 0.12) or rd = 2/3 · 0.1 ' 6.5%. This corresponds to σd ' 1cm.
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