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0BExercise: concepts from chapter 2  
 

Reading: Fundamentals of Structural Geology, Ch 2 

 

1) Develop a MATLAB script that plots the spherical datum (Fig. 2.1a) with unit radius as 

a wire-frame diagram using lines of constant latitude and longitude. An example is given 

here as Figure 1. 

 

 
 

Figure 1. Matlab plot of the spherical datum. 

 

2) The mathematical datum used for the Global Positioning System (GPS) is the World 

Geodetic System datum for 1984 (WGS-84). The standard physical datum, usually 

referenced to local mean sea level at the coastline, is the geoid (Fig. 2.2). Explain what is 

meant by a ‘datum’ and describe the general differences between WGS-84 and the geoid. 

 

3) Investigate the gnomonic projection (Fig. 2.3) from a spherical datum with radius 

taken as the appropriate semi-axis of the GRS-80 ellipsoid. Consider two cases, O(0, 0) 

and O(/2, 0), for the position of the origin O(, ) where the projection plane is 
tangent to the sphere. Use MATLAB and equations (2.2) to plot lines of constant latitude 

and longitude in order to illustrate the distortion that is inherent to this projection. 

Describe these distortions. 
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4) Investigate the transverse Mercator projection (Fig. 2.4) from a spherical datum with 

radius taken as the appropriate semi-axis of the GRS-80 ellipsoid. Place the origin at the 

Greenwich meridian on the equator, O(, ) = O(0, 0), and let both the latitude and 

longitude extend ±/4 to either side of the origin. To accomplish this projection use the 

following equations (Bugayevskiy and Snyder, 1995, p. 158): 
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Note that equations (2.3) in the text plot the projection with origin at the pole, but X and Y 

are interchanged (see Errata). Use MATLAB and equations (1) to plot lines of constant 

latitude and longitude on the projection at the equator in order to illustrate the distortion 

that is inherent to it. Describe these distortions. 

 

5) Most GPS receivers have onboard computers that are capable of reporting locations 

using the Universal Transverse Mercator (UTM) projection (Fig. 2.4). Explain, using a 

sketch, how the UTM projection is accomplished. Also, describe the UTM metric grid 

and how it is overlaid on this projection. In doing so explain what is meant by the 

following UTM coordinates of a location near Ship Rock, New Mexico, taken as the 

origin of a local coordinate system for mapping the northeastern dike (Fig. 2.5a): 

 

    Northern Hemisphere 

    Zone M12 

    Datum NAD-29 

    Easting: 694,000 m 

    Northing: 4,063,000 m 

    Elevation: 1,675 m 

 

6) Rearrange the two-dimensional transformation equations for a rotation of axes about a 

common origin, as recorded in equations (2.13) to solve for the old coordinates, x and y, 

and derive equations (2.16). Draw a carefully labeled figure to identify the coordinates 

and angles, and show all the steps of the derivation. 

 

7) Using the table of direction cosines (2.28) for the three dimensional transformation of 

coordinates, reduce the transformation equations to the two dimensional equivalent forms 

for a counterclockwise rotation through angle  about the z-axis in the (x, y)-plane (Fig. 

2-8a). Some of the direction angles will have special values such as 0 or /2: give the 

values for all direction angles and direction cosines. Draw a figure showing the relations 

among the direction angles and the angle  in the (x, y)-plane. Derive equations (2.13) 
from this more general three-dimensional form. 

 

8) Consider the three dimensional rotational transformation of coordinates about the 

origin as described in the following table (2.27) for the position vector p. 
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Here the vector components referred to the old (x, y, z) and the new (x’, y’, z’) coordinate 

systems (Fig. 2.9a) are (px, py, pz) and (px’, py’, pz’) respectively, and the mij are the 

direction cosines of the direction angles between the i
th

 axis and the j
th

 axis.  

a) Write down the matrix of direction cosines corresponding to the interior of table 

(2) for a rotation of coordinates about the z-axis given by the angle z. Confirm 
your result by comparison to the two-dimensional example (2.14). 

b) Compose a MATLAB script (m-file) that computes the vector components (px’, py’, 

pz’) referred to the new coordinate system for a rotation of coordinates about the z-

axis given by z = /6. Define the position vector with components of unit value: 

 

 1 1 1x x y y z z x y zp p p     p e e e e e e  (3) 

 

c) Continue developing your MATLAB script so that it transforms the components of 

p found in part b) according to a rotation about the y’-axis by y’ = /4 to give 
new components (px”, py”, pz”). Then transform these components according to a 

rotation about the x”-axis by x” = /3 to give components (px”’, py”’, pz”’). For 

each transformation print the matrix of direction cosines corresponding to the 

interior of table (2) and print the components of the position vector after the final 

rotation. 

d) Calculate the matrix of direction cosines that accomplishes all three rotations of 

coordinates in one transformation. Write this matrix and the resulting vector 

components of p and compare these to your result from part c). Now alter the 

order of rotation so you rotate first about the z-axis, then the x-axis and finally the 

y-axis. Compare the outcomes and comment upon the importance of order in 

these calculations. 

e) In general the rotation matrix is not symmetric: the transpose is not equal to the 

matrix itself. On the other hand the rotation is orthogonal: the transpose is equal 

to the inverse of the matrix. Show by example that the rotation matrix you have 

derived in part d) is not symmetric but is orthogonal. Recall that the product of a 

matrix and the inverse of that matrix yields the identity matrix. 

f) Demonstrate by calculation that the following equations (2.49) are true for the 

rotation matrix in part d). 

 

 ,  ki kj ij ik jk ijm m m m    (4) 

 

g) Draw a sketch of the Cartesian coordinate system (x, y, z) and illustrate the 

positive sense of each rotation angle (z = /2, y = /2, x = /2). Write down 
the general rule that describes this sense of rotation. 
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9) Figure 2.12 shows a dike segment from the northeast Ship Rock dike (Delaney and 

Pollard, 1981) and the elliptical coordinate system used in mechanical models of dikes. 

 

a) Use equations (2.32) to derive the standard equations for the set of ellipses and the 

set of orthogonal hyperbolae that define the elliptical coordinate system with 

common foci on the x-axis at x = ±f as pictured in Figure 2.12b.  

b) Derive the transformation equations for the elliptical coordinates of a point P(, ) 
given the Cartesian coordinates P(x, y) of that point. Hint: consider the triangle 

formed by the line between the two foci and the line c drawing from any point P(x, 

y) on the ellipse to the focus at x = -f and the line d drawn to the focus at x = +f . 

Make two right triangles by dropping a perpendicular from P(x, y) to the x-axis and 

solve for the lengths of the two sides, c and d, in terms of x and y. Then recall that 

for any ellipse the length of the semi-major axis is a = (c+d)/2. Use this and the 

standard equation for the ellipse from part a). 

c) Use MATLAB to plot a set of curves of constant  and a second set of curves of 

constant  to construct an illustration of the elliptical coordinate system (Fig. 
2.12b).  

d) Describe the relationship between these curves and the lines of constant x and 

constant y for the Cartesian coordinate system in the limit as  → 0, and in the limit 

as  → 0. 
 

10) On the equal-angle stereonet (Fig. 2.19) the orientation of planar elements may be 

defined by strike and dip (s, d) and the orientation of linear elements lying in such a 

plane may be defined by the rake angle (r). Derive the following equations for the 

azimuth of plunge and plunge angle (p, p) of the linear element lying in the planar 

element: 
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 (5) 

 

Draw a carefully labeled diagram that shows all the angles and elements in relation to one 

another.  

 

11) Use MATLAB to construct an equal-angle stereonet that includes the reference circle 

and the region inside the reference circle (e.g. Fig. 2.17b). An example stereonet is shown 

in Figure 2 below from the script stereo_plot_ex11.m. Download this script and study 

each line of code to understand how the stereonet is constructed from the equations 

presented in section 2.3.2 of the textbook. Use % at the beginning of lines to suppress 

computation and plotting of the sample point and great circle, and then run the modified 

code to construct and print the equal-angle stereonet for this exercise.  

 

Plot the following planar and linear elements and determine the related angles using the 

stereonet. For the first pass through this exercise use a transparent overlay on your 

printed stereonet and construct the elements and angles by hand. For the second pass 
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through this exercise let MATLAB do the plotting of each linear and planar element. Label 

your plots carefully so each point and great circle are identified. 

 

a) Planar element with strike and dip (155, 72). What is the dip direction? 

b) Linear element with plunge direction and plunge (291, 24). What is the strike of a 

vertical planar element that contains this linear element? What is the rake of the 

linear element with reference to this strike direction? Plot the planar element.  

c) Normal to the planar element with strike and dip (155, 72). What are the plunge 

direction and plunge of the pole (normal) to the planar element? 

d) The rake is 142
o
 for a linear element in the planar element with strike and dip (155, 

72). What are the plunge direction and plunge of this linear element? Hint: equation 

(5) in question 10 above gives the azimuth of plunge direction and plunge for a 

linear element lying in a planar element. 

 
Figure 2. Equal-angle stereonet for region inside the reference circle. 

 

12) You are given a Cartesian coordinate system with axes (x, y, z) that correspond to the 

Geographic coordinates (E, N, Up). Use MATLAB to calculate the direction cosines and 

direction angles for the normal to a planar element with strike and dip (026, 15)? Check 

your script by running the inverse transformation and recovering the strike and dip. 

 

13) The GPS data for normal faults from the Chimney Rock area were gathered using a 

data dictionary that prompted the geologist to record the following information for each 

data station along the faults: 

 

 Easting   Northing   Elevation   strike   dip   rake   quality   size   formation  (6) 
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Here strike and dip refer to the fault surface and rake refers to slickenlines on the fault 

surface. Two tab-delimited text files contain these data for the Blueberry fault and the 

Glass fault (numbers in parentheses are the number of data stations): 

 

 Blueberry_fault.txt   (92) 

 Glass_fault.txt   (60) 

 

Write a MATLAB script that reads each text data file into a data array and parses the 

orientation data to extract local strike and dip (s, d,) of the faults. Plot the great circles 
representing these local orientations. Describe the orientations of the two faults, noting 

how consistent these are, and pointing out any outliers. 

 

Convert the orientations into azimuth of plunge and plunge angle (p, p) of the normals 

(poles) to the faults and plot these normals on a new stereonet.  

 

Transform the azimuth of plunge and plunge angles (p, p) to direction cosines and use 
these to compute the mean orientation for each fault.  Write down the magnitude and 

components for the resultant vectors. Compare the vector magnitudes to the number of 

data stations for each fault. Plot the mean orientations on the stereographic projection 

along with all the normals. 

 

Compute the spherical variance of the normals for the Blueberry fault and for the Glass 

fault. Evaluate your results indicating how tightly the data are clustered and how reliable 

the definition of each fault is, given the number of data stations, the spherical variance, 

and the number of outliers. Selectively remove outliers and recomputed the spherical 

variances. Comment on your results and on the appropriateness of ignoring selected field 

data. 

 

 

 

  

 

 


