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1 Introduction

Additional material related to the development of particle distribution functions

for ‘Tallents, G. (2018). An Introduction to the Atomic and Radiation Physics of

Plasmas. Cambridge: Cambridge University Press’ is presented here. The text of

the book develops the physics of emission, absorption and interaction of light in

astrophysics and in laboratory plasmas from first principles using the physics of

various fields of study including quantum mechanics, electricity and magnetism,

and statistical physics. This text can be regarded as an additional Appendix to

the book. References to Equations and Sections given with decimal numbering

refer to those presented in the book.

2 The Boltzmann and Fermi-Dirac distributions

In Section 8.1 we show that particles can be designated as fermions, where only

a maximum of one particle can occupy a quantum state, or as bosons where any

number of particles can occupy a quantum state. In a book on atomic and radia-

tion physics, we are mainly concerned with electron quantum states (representing

fermions) or the quantum states associated with photons (representing bosons).

The probability P (E) of finding a particle in a quantum state of energy E

at a temperature T is given by Equation 1.19. By including the number N of

particles allowed to occupy the quantum state of energy E, Equation 1.19 enables

a presentation in the same expression of the probability of having either fermions

or bosons in a quantum state. The Pauli exclusion principle (see section 8.1) allows

fermions to have either N = 0 or N = 1 particles in the same quantum state, while

bosons can have have N = 0, 1, 2, ... (up to any integer). Equation 1.19 is given as

a probability proportionality:

P (E) ∝ exp

(
N(µ− E)

kBT

)

where µ is the chemical potential. The chemical potential is the energy per particle

required to add more particles into the available quantum states.

Equation 1.19 is used to determine the Maxwellian distribution of speeds in

Section 1.2 and then to derive the Saha-Boltzmann ratio of the populations of

different ionisation stages at low density in Section 1.4.1. In later chapters, the
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probability of having a particle in a quantum state is employed in the deriva-

tion of the Planck black-body radiation distribution, enabling a calculation of

the probability of the number of photons in a mode (Section 4.1.2). Finally, the

Boltzmann ratio of populations is utilised to derive the high density form of the

Saha-Boltzmann equation (Section 13.4).

To derive Equation 1.19, we need to consider the change ∆U of the total

energy U of an assumed large number ntot of particles distributed into a number

of quantum states. From equilibrium thermodynamics, we have for a constant

temperature T and constant chemical potential µ that any change in the total

energy U of a collection of quantum states arises from a change in the entropy S

plus any energy change due to the addition of ∆ntot more particles. We have

∆U = T∆S + µ∆ntot. (1)

In thermodynamics, entropy change ∆S is defined by the first term on the right in

Equation 1. There is additional energy associated with an increase in the ‘disorder’

represented by the entropy.

The total energy U is determined by adding up the energy of each quantum

state multiplied by the number of particles in the state, so that

U =
∑
i

NiniEi (2)

where Ni is the number of particles allowed in the ith quantum state and ni is

the number of quantum states in the system with an energy Ei. We discussed

previously that for fermions, Ni is either zero or one, where for bosons Ni can

range from 0, 1, 2, ... up to any integer. So as not violate the Pauli exclusion

principle, we are assuming that the different quantum states with the same energy

are separated into different atoms (for bound electrons) or satisfy the possible

density of quantum states (for free electrons, see section 1.3).

The total number of particles is determined from a summation of the particle

number over all the quantum states. We have

ntot =
∑
i

Nini. (3)

In statistical physics, the entropy S of a system is determined by the number

of ways Q that particles can be arranged in the collection of quantum states of the
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system. We have that

S = kB lnQ. (4)

We show below that this definition of entropy is consistent with the thermodynamic

definition stated in terms of the change ∆U of total energy of the particles due to

increasing entropy ∆S:

∆S =
∆U

T
.

The logarithm in Equation 4 is useful in obtaining an approximate value for

the entropy. Fortunately, the approximation we will use becomes very accurate

when the number ntot of particles is large. The number of distinct arrangments of

ntot indistinguishable particles into quantum states (which we are labelling as i) is

given by probability theory. We have that the number of distinct arrangements Q

is given by the factorial of the total number ntot of particles divided by the product

of factorials of the number ni of particles in each quantum state i of the system1:

Q =
ntot!∏
i ni!

. (5)

The total number of ways that ntot particles can be arranged is ntot!. We are

not concerned with the order of ‘placing’ the particles in each of the quantum

states i as we assume that they are indistinguishable, so Equation 5 divides the

total number of arrangements by the number of ways ni! that ni particles can be

arranged in each quantum state i. This is done for each quantum state i giving

rise to the product in the denominator.

Taking the logarithm of Q gives

lnQ = ln(ntot!)−
∑
i

lnni.

The Stirling approximation is a convenient simplification for the factorial of ntot.

For large x, we have

ln(x!) ≈ x lnx− x.
1Equation 5 assumes that particles have sufficient time and sufficient interaction for all the

quantum states to be accessible. For fermions, collisions between particles often ensure equal

accessibility, leading to equilibrium distributions where, for example, Equation 1.19 is valid. For

photons and other bosons, the particles need to interact with electrons (or other fermions).
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The value of lnQ becomes

lnQ = ntot lnntot − ntot −
∑
i

ni lnni +
∑
i

ni. (6)

Returning to the energy balance equation (Equation 1), we can divide through-

out by a small increment ∆nj of the population of nj quantum states associ-

ated with a quantum state j. Taking the limits of small increments and using

S = kB lnQ, we have a differential equation

∂U

∂nj

= kbT
∂ lnQ

∂nj

+ µ
∂ntot

∂nj

. (7)

Each of these terms simplifies considerably. Using the summation of all quantum

state energies given by Equation 2 we have

∂U

∂nj

= NjEj. (8)

All values in the summation of U are zero in the partial derivative except when

i = j. Similarly, using Equation 3 we have that

µ
∂ntot

∂nj

= Njµ.

The partial derivative of lnQ also simplifies. We can differentiate lnQ using Equa-

tion 6. The total number of particles ntot is constant when considering the partial

derivative with respect to the population of the jth quantum state and again the

summations are only non-zero upon partial differentiation when i = j. We have

∂ lnQ

∂nj

= − lnnj. (9)

The result of these simplifications is

NjEj = −kBT lnnj + µNj.

Re-arranging gives

nj = exp

(
Nj(µ− Ej)

kBT

)
. (10)

Dropping the sub-script j, we then have a probability for the occupation of a

quantum state of energy E determined by

P (E) = exp

(
N(µ− E)

kBT

)
/ntot. (11)
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2.0.1 Fermion and bosons

For fermions, the average occupancy n(E) of a quantum state with energy E is

determined by the ratio of the probability of occupation when a particle can be

present in the quantum state (N = 1) to the addition of the two probabilities

when a further occupancy is not allowed (N = 0) and allowed (N = 1). We obtain

Equation 1.20 with

n(E) =
P (N = 0)

P (N = 1) + P (N = 0)
=

exp((µ− E)/kBT )

exp((µ− E)/kBT ) + 1
=

1

1 + exp((−µ+ E)/kBT )

We may have several quantum states with the same energy E or an energy within a

small range E to E+dE. Equation 11 shows for fermions that if the energy E is the

same for different quantum states then the probability P (E) of occupation is the

same. We can allow for the effect on the populations of different quantum states

with the same energy by multiplying the average occupancy by a ‘degeneracy’ g

(also known as a statistical weight) which is the number of distinct quantum states

with the same energy. If the degeneracy or density of states in the energy range E

to E + dE is g(E), the population of all quantum states with energy E to E + dE

is given by

fFD(E)dE =
g(E)dE

1 + exp((−µ+ E)/kBT )
(12)

where g(E) is the degeneracy or density of quantum states at energy E. This

distribution is known as the Fermi-Dirac distribution. It is used in Section 13.3.

The chemical potential µ for a collection of electrons is obtained by integrating

Equation 12 over all energy and equating this integrated value to the known num-

ber of electrons in the system. Usually the number of electrons per unit volume,

that is the electron density ne is known. The degeneracy g(E) is then specified

as the number of quantum states per unit energy per unit volume. In dealing

with a bound quantum state, the electron degeneracy is specified as the number

of quantum states with the same energy per atom or ion.

At low densities and high temperatures, the chemical potential µ is large and

negative (see Section 13.3), so that the population of quantum states are propor-

tional to g(E) exp(−E/kBT ). The ratio of two discrete quantum state populations

n per unit volume which we label for the higher energy state with subscript ‘u’

and for the lower energy state with subscript ‘l’ is given by Equation 1.27 and is
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known as the Boltzmann ratio. Equation 1.27 is written as:

nu

nl

=
gu
gl

exp
(
−∆E

kBT

)
where the energy difference of the two quantum states is ∆E and gu and gl are

respectively the upper and lower quantum state degeneracies.

In Section 4.1.2, we determined the Planck black body radiation distribution.

Part of this calculation involved evaluating the probability of the presence of np

photons with energy h̄ω for a radiation temperature of T . As photons are bosons,

the chemical potential is zero. Adding a boson to a collection of bosons does not

release or require any energy. In addition, the parameter N in Equation 11 can

represent any number of photons in the same mode. The probability of having np

photons per mode can be regarded as following Equation 11 so that

Pnp =
exp(−nph̄ω/kBT∑
n′ exp(−n′h̄ω/kBT

where the summation in the denominator is from n′ = 0 up to n′ = ∞. The

average number of photons nav per mode is then given by

nav =
∑
np

npPnp =
1

exp(h̄ω/kBT )− 1
.

The expression on the right hand side is derived in Section 4.1.2. This value of

nav can be generalised to represent the average occupancy of bosons in a quantum

state of energy E after replacing h̄ω by E. There is a superficial resemblance to

the average occupancy of fermions (given by Equation 1.20), except the minus in

the denominator for bosons becomes a plus for fermions.

2.0.2 The thermodynamic and statistical physics entropy

The thermodynamic definition of an entropy change ∆S defines entropy in terms

of the change of total energy ∆U by specifying that ∆S = ∆U/T . This defini-

tion assumes that the chemical potential remains constant and the temperature

remains constant. The statistical physics definition is given by Equation 4 with

S = kB lnQ. We need to show that the two definitions are consistent.

With constant chemical potential µ and constant temperature T , we can have

an increase in entropy S associated with an increase of the total energy U by adding
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the entropy increase due to an increase in ‘disorder’ (represented by kB lnQ) and

the increase in entropy associated with the addition of particles. We have (see

Equation 1) that the additional energy associated with an increase of the total

particle number ntot is given by µ∆ntot. The increase of entropy associated with

the increase of particle number is consequently (µ/T )∆ntot. Adding the differential

of the entropy increase due to disorder plus the entropy increase due to particle

number with respect to the total energy U gives

dS

dU
=
∂(kB lnQ)

∂U
+
µ

T

∂ntot

∂U
.

We can write for any of the quantum states j that

∂ lnQ

∂U
=
∂ lnQ

∂nj

∂nj

∂U
= (− lnnj)

1

NjEj

upon using Equation 9 for the differentiation of lnQ and Equation 8 for the dif-

ferentiation of the total energy U . For the term involving the chemical potential

µ, we write that

(µ/T )
∂ntot

∂U
= (µ/T )

∂ntot

∂nj

∂nj

∂U
=
µ/T

Ej

.

Using the Boltzmann factor for nj with nj = exp(Nj(µ − Ej)/kBT ) gives the

required result that

dS

dU
=
∂(kB lnQ)

∂U
+
µ

T

∂ntot

∂U
= (− lnnj)

kB
NjEj

+
µ/T

Ej

=
1

T
.
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