Mathematical appendix 5

Nodal factors

This discussion relates to Sections 2.4.3 and 3.3, especially pp. 59 and 60.

Certain lunar constituents, notably L_2 , are affected by the 8.85-year cycle, and all the lunar constituents are affected by the 18.61-year nodal cycle; these modulations, which cannot be separately determined from a year of data, must also be represented in some way. In the full harmonic expansion they appear as terms separated from the main term by angular speeds (see Equation (3.3)):

$i_d \omega_4; i_e \omega_5$

The terms that are separated by ω_0 may be considered constant for all practical purposes. The modulations that cannot be resolved as independent constituents by analysis of a year of data are represented in harmonic expansion by small adjustment factors *f* and *u*. Each constituent is written:

$$H_n f_n \cos[\sigma_n t - g_n + (V_n + u_n)]$$

where V_n is the phase angle at the time zero. The nodal terms are:

 f_n the nodal factor u_n the nodal angle

both of which are functions of N sometimes p. The nodal factor and the nodal angle are 1.0 and 0.0 for solar constituents.

The application of nodal terms can be illustrated by the variations of M_2 . If yearly analyses are made throughout a nodal period of 18.61 years the value of the M_2 amplitude will increase and decrease from the mean value by about 4 per cent. The full harmonic expansion shows that in addition to the main M_2 term ($2\omega_1$) there are several other nearby terms; the only significant one has angular speed ($2\omega_1 + \omega_5$) and a relative amplitude of -0.0373, the negative coefficient signifying that in the full expansion this term appears as $-\cos [(2\omega_1 + \omega_5)t]$.

Writing the total constituent as:

$$H_{M_2}\cos(2\omega_1 t) - \alpha H_{M_2}\cos(2\omega_1 t + \omega_5 t)$$

we have:

$$H_{M_2} [(1 - \alpha \cos \omega_5 t) \cos 2\omega_1 t + \alpha \sin \omega_5 t \sin 2\omega_1 t]$$

= $H_{M_2} [f \cos u \cos 2\omega_1 t - f \sin u \sin 2\omega_1 t]$
= $H_{M_2} [f \cos(2\omega_1 t + u)]$

where

 $f \cos u = 1 - \alpha \cos \omega_5 t$ $f \sin u = -\alpha \sin \omega_5 t$

and hence for small values of α :

$$f^{2} = 1 - 2\alpha \cos \omega_{5} t + \alpha^{2}$$
$$f \approx 1 - \alpha \cos \omega_{5} t = 1 - 0.0373 \cos \omega_{5} t$$

and

$$\tan u = -\frac{\alpha \sin \omega_5 t}{1 - \alpha \cos \omega_5 t}$$

(where α is in radians)

$$u \approx -\alpha \sin \omega_5 t = -2.1^\circ \sin \omega_5 t$$

The phase of the nodal angle $\omega_5 t$ is measured from the time when the ascending lunar node, at which the moon crosses the ecliptic from south to north, is at the First Point of Aries (Υ). Around this time the excursions of the Moon north and south of the equator reach maximum declinations and the *f* value for **M**₂ has a minimum value of 0.963. After an interval of 9.3 years when the Moon has minimum declinations, the *f* value reaches a maximum of 1.037. If the nodal adjustments were not made, analyses of a year of data made at the time of maximum declinations would give values of H_{M_2} , 7.5 per cent lower than would be obtained 9.3 years later.