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Elastic strain energy 
The objective of this section is to introduce the elastic strain energy and coenergy and 

compute it for a few simple examples.  

Elastic strain energy density (strain energy per unit volume) is given by: 

 zxzxyzyzxyxyzzyyxxw  
2

1
es . (D1) 

The total strain energy within a linear elastic body is the integral of the energy density 

over the volume of the body V 
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Simple examples 
Let us evaluate the strain energy for a few simple examples: axially loaded bar, rod in 

torsion, and a beam in pure bending.  

Axially loaded beams 

 

Figure 1: A bar in tension. 

The stress is given by  
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Assuming small displacement, within the linear range, the Hooke’s law holds and 
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Inserting Eqs. (D3) and (D4) into Eq. (D2) yields the total elastic strain energy 
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Assuming constant area A and constant Young’s modulus Y, elastic energy simplifies to 
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where aeq is the equivalent flexibility coefficient.  

In the case A = const and Y = const, integration of strain x over the length of the beam 

yields the maximum displacement at the tip of the beam 
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The same result can be obtain by differentiation: 
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Expressing fx in terms of the maximum displacement and inserting the result into Eq. 

(D5) yields 
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where keq is the equivalent spring constant.  Compare Eq. (D6) with Eq. (D9) – they 

appear dual, just like energy and coenergy of a capacitor given by Eqs. (D10) and 

(D11), respectively. 
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However, we have not employed the Legendre transformation here.  Just as in the case 

of a linear capacitor, where one can express the energy in terms of voltage via insertion 

of the constitutive relation q = Cv, here we expressed elastic energy in terms of two 

different state variable using constitutive relations (displacement and force).  Energy 

and coenergy are equal only in case of a linear capacitor.  The same holds true for 

elastic energy and elastic coenergy (also known as complementary energy in 

mechanics of solids).  The elastic coenergy will be introduced in more details in the next 

section.  Before that, we will evaluate elastic energy for a rod in torsion and a beam in 

pure bending. 
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Torsion of a circular rod 

 

Figure 2: Rods under torsional stress.  Torsion 
applied to a uniform, circular rod.  Each 
infinitesimal, elemental disk undergoes rotation 
with no deformation in the axial direction.   

The total elastic strain energy of a rod is in pure shear 
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where we employed the constitutive relation for shear  = G (see Eq. D21 and D22 of 

the text).  

If G and Ip do not vary along the rod, Eq. (D12) simplifies to 
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Torque T can be viewed as the generalized load.  Thus, generalized displacement  is 

obtained as 
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This generalized displacement is the angle  at the free end of the rod (see Figure 2). 



Appendix D – Supplemental Material: Energy and co-energy  4/7 
 

Beam in pure bending 

 

Figure 3: Beam element in pure bending, 
with bending exaggerated for clarity. 
Each plane surface of the unbent beam 
undergoes rotation about the neutral 
axis, but no other form of distortion 
affects these planes. 

 

Elastic strain in pure bending is given by (see Section D.7.2) 
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Inserting Eq. (D15) into Eq. (D2) yields 
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In case of a constant moment, Eq. (D16) simplifies to 
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Here the moment M can be viewed as the generalized load and L / (YIx) as the 

generalized compliance.  The generalized displacement  is obtain by differentiating the 

elastic strain energy with respect to the generalized load 
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The generalized displacement  is angle at the tip of the beam. 

Energy coenergy and hybrid energies in mechanics of solids 
We have seen above that in case of linear materials with a single generalized load and 

a single generalized displacement, one does not have to worry too much about energy 

and coenergy because they are algebraically equal.   
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Let us first examine the case with one force and displacement in more detail using the 

axial bar example.  In general, an increment of the mechanical energy is defined as the 

product of force and the incremental displacement.  
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Integration of the force over the length of the bar yields the area under the curve of 

Figure 4 (the area between the curve and the u axis) 
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Figure 4: Energy and coenergy of an axially 
loaded bar. 

 

Coenergy is defined analogously to the definition for electrostatic energy (refer to 

Section 3.2.1) 
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Differentiating Eq. (D21) and using Eq. (D19) gives the differential of the coenergy 
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Integrating the coenergy (see Figure 4) gives the area to the left of the curve (the area 

between the curve and the f-axis) 
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It is clear from the figure that the two areas (represented by Wes and Wes) are in 

general different.  They are the same only when the relationship between the force and 

displacement is linear.  
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Now consider the case where two forces are applied simultaneously1.  The differential 

of the elastic energy is given by 

2211es dufdufdW  . (D24) 

The coenergy is defined in the usual manner 
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and its differential is 
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With two degrees of freedom, we can have a mixed representation. 

As in Chapter 3, to integrate the energy with two independent displacement we select 

the integration path.  For example we integrate along u1 while keeping u2 at zero and 

then integrate along u2, with u1 = u1. 
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Figure 5:  Convenient integration path for the 
energy function Wes(u1, u2). 

Consider a simple 2 DOF system of Figure 6.  On path (1) only u1 is nonzero and the 

integral is  
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On path (2) we have 
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Finally, adding the two contributions yield the total elastic strain energy 

                                            
1
 More generally we could consider generalized forces (forces and moments) and generalized 

displacements (displacements and angles), but there is not a significant gain of employing different 
symbols to emphasize this generality. 
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Figure 6:  Simple 2 DOF system. 
Note that the displacements are 
imparted slowly so that masses do 
not play a role here. 

Taking partial derivatives of Wes with respect to the displacements, yield the forces 
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or, in matrix form, 
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