
Problem 29

Introduction

This folder contain two C programs to calculate the moments

M2n ≡

∫ +∞
−∞ dx x2n

(2n)! e
−S(x)∫ +∞

−∞ dx e−S(x)
, with S(x) ≡ α

2
x2 +

β

4
x4, (1)

in order to generate the data used in Figure 2.9. The program direct.c

computes the moments directly from eq. (1) by numerical integration. The
program recursion.c solves the set of equations

Mn−2 = αnMn + βn(n+ 1)(n+ 2)Mn+2 (2)

(this is an exact recursion relation obeyed by the moments) with the bound-
ary conditions M0 = 1 and MN = 0 where N is some large integer (N = 5000
in the code). More details about these two approaches are given below.

These programs can be compiled by doing

make direct

make recursion

The compilation requires the FFTW3 library (the header files during the com-
pilation phase, and the runtime libraries to run the code), and a compiler
that supports quadruple precision floating point algebra, like gcc.

To run the programs, do

./direct

./recursion

(Note: the first one is very slow.) The output is made of three columns: the
index 2n in the first column, the natural logarithm of the modulus |M2n| in
the second column, and the phase of M2n in the third one. These outputs are
provided in the files moments direct.txt and moments recursion-r**.txt.

1

Direct computation of the integral

It is convenient to encapsulate all the moments into the following generating
function:

M(z) ≡
+∞∑
n=0

Mn z
n =

∫ +∞
−∞ dx ez x e−S(x)∫ +∞
−∞ dx e−S(x)

. (3)

From M(z), one may in principle recover the moments from the derivatives
at z = 0, but this becomes numerically unstable even for moderately large
n. A more robust method is to calculate M(z) on a circle of radius r in the
complex plane, i.e., for z = r eiθ. Then, the moments are given by:

Mn = r−n
∫ 2π

0

dθ

2π
e−inθ M(reiθ). (4)

The angular integral in eq. (4) is a Fourier integral, that can be approxi-
mated with very good accuracy by first evaluating M(reiθ) at equidistant
values of the angle θ and then by performing a discrete Fourier transform
(implemented with the FFTW3 library).

In order to compute the values of M(z = reiθ) from the integral in
eq. (3), we use the method of double exponential quadrature, based on the
following change of variables:

x ≡ t

1− exp(−k sinh(t))
. (5)

It may be shown1 that this transformation, combined with a trapezoidal dis-
cretization of the resulting integral over t, leads to a sum that converges very
quickly. With this method, implemented with quadruple precision floating
point arithmetics2, one may compute the moments up to very high orders.

An important parameter in the code is the variable r0 that sets the
radius of the circle used for computing M(z). Loosely speaking, a given
value of r0 allows to calculate accurately moments whose orders are in a
certain range (this range moves upwards as r0 is increased). To cover all
the orders n up to n = 3700 shown on Figure 2.9, the computation needs to
be repeated with three distinct values of r0:

1For more details on this approach and other related numerical integration methods,
see L.N. Trefethen, J.A.C. Weideman, The Exponentially Convergent Trapezoidal Rule,
SIAM Review vol. 56, no. 3, p 385.

2Quadruple precision floating point arithmetics can handle real numbers as small as
10−4932 before underflowing. In order to handle even smaller values, the code uses inter-
nally a rescaling to keep the moments in the representable range.

2

https://epubs.siam.org/doi/pdf/10.1137/130932132

� r0=5: n ≤ 300

� r0=15: 300 ≤ n ≤ 1500

� r0=25: 1500 ≤ n ≤ 3700

Computation from the recursion relation

The moments Mn obey the recursion relation (2). The set of all the se-
quences {Mn} that satisfy this recursion is a linear space of dimension two.
In addition, we have the two conditions M0 = 1 and M∞ = 0, that are
sufficient to obtain a unique solution. In practice, we must replace N =∞
by some large but finite N , chosen much larger than the maximal order of
the moments one wishes to calculate.

Since the conditions that determine the solution are given at the two
endpoints n = 0 and n = N , we can exploit the linear structure of the set of
solutions of the recursion as follows. A basis of this two-dimensional linear
space may be made of the following two sequences:

An, defined by A0 = 1, A2 = +1,

Bn, defined by B0 = 1, B2 = −1. (6)

Since the first two terms of the sequences {An} and {Bn} are known, it
is straightforward to compute them for any n. The sequence {Mn} we are
looking for is the linear combination Mn = aAn + bBn, with a+ b = 1 and
aAN + bBN = 0 (this is a 2 × 2 system of linear equations that determine
uniquely the coefficients a, b).

In order to tame the rapid decrease of the moments Mn (the goal being
to avoid underflows), we use quadruple precision floating point arithmetics
and we consider instead the rescaled moments Rn ≡ EnMn, where E is
some constant. The Rn obey the following recursion relation:

E2Rn−2 = αnRn + βn(n+ 1)(n+ 2)E−2Rn+2. (7)

The boundary conditions are unchanged (R0 = 1, RN = 0), and the solution
{Rn} is determined by the method described above. An appropriate value
of the scaling constant E is determined by trial and error.

3

