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Problems for Chapter 15 of Advanced Mathematics for Applications

Green’s Functions: Ordinary Differential Equations

by Andrea Prosperetti

1 Two-point boundary value problems

1.1 Separated boundary conditions

1. Construct the Green’s function for the problem

−

d2u

dx2
= f(x)

with a11u(0) + a12[du/dx]x=0 = U0 and a21u(b) + a22[du/dx]x=b = Ub, in which aij , U0 and Ub are
given constants.

2. Construct the Green’s function for the problem

−

d

dx

(

x
du

dx

)

= f(x)

with u(0) = 0 and [du/dx]x=1 = Ub, with Ub a given constant.

3. In the interval R1 < r < R2 find the Green’s function for the problem

1

r

d

dr

(

r
du

dr

)

+

(

k2
−

m2

r2

)

u = f(r) ,

with u(R1) = u(R2) = 0. Here k2 > 0 and m is an integer.

4. Find the Green’s function for the equation

u′′ + 4c2x2u = f 0 < x < L,

corresponding to the boundary conditions u(0) = a, u(L) = b. The operator appearing in the equation
is reducible to a Bessel operator by a substitution of the type u = xav(z), where z = xb.

5. Write the left-hand side of the equation

x
d2u

dx2
−

du

dx
+ 4k2x3u = x2 f(x),

in the standard Sturm-Liouville form and then find the Green’s function that expresses the solution to
the equation satisfying the boundary conditions

u(0) = 0,
du

dx

∣

∣

∣

∣

x=1

= 0.

Are there special values of k such that the procedure breaks down? What can you say about the
existence and uniqueness of the solution in these cases? (The transformation y = xα to reduce the
equation to a known form. Strictly speaking this problem is singular, but if f is bounded at 0 the
usual theory goes through after the transformation.)
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6. Determine, by finding the appropriate Green’s function, the solution to the problem

d2v

dx2
−

2

x

dv

dx
+

(

k2 +
2

x2

)

v = f(x),

in the interval 0 < x < L, subject to the conditions v′(0) = 0, v(L) = 0. For what values of k is the
existence of a solution not guaranteed? If solvability conditions for such cases were satisfied, would the
solution be unique? (Make the transformation v = x u after which the usual theory goes through even
though, as posed, the problem is singular.)

7. Find the Green’s function for the equation

−

d

dx

[

(1 − x2)
du

dx

]

= f 0 < x < 1,

corresponding to the boundary conditions u(0) = 0, limx→1−(1 − x2)u′(x) = 0.

8. Find the Green’s function for the equation

−

d

dx

[

(1 − x2)
du

dx

]

= f − 1 < x < 1,

corresponding to the boundary conditions limx→±1 u(x) = finite.

1.2 Mixed boundary conditions

1. In 0 < x < 1 construct the Green’s function for the problem

u′′ = f(x) , u(0) = u(1) , u′(0) = u′(1) .

2. In 0 < x < 1 construct the Green’s function for the problem

u′′ = f(x) , u(0) = u(1) , u′(0) = u′(1) .

3. In 0 < x < 1 construct the Green’s function for the problem

1

2
u′′ = f(x) , u(0) + u(1) = 0 , u′(0) = 0 .

4. In 0 < x < 1 construct the Green’s function for the problem

u′′
− u = f(x) , u(0) − u′(0) + u(1) = 0 , u(0) + u′(0) + 2u′(1) = 0 .

5. In 0 < x < π construct the Green’s function for the problem

−

d2u

dx2
− u = f(x) , u(0) = 0, u′(0) = u(π) .

6. Explain why it is impossible to find a Green’s function for the problem

−

d2u

dx2
− k2u = f(x)

with u(0) = u(1), [du/dx]x=0 = −[du/dx]x=1.
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7. Compare the two Green’s functions for the operator

Lu =
d2u

dx2
+ x

du

dx

and its adjoint. The boundary conditions are u(0) = u(1) and [du/dx]x=0 + [du/dx]x=1 = 0.

8. Calculate the Green’s function for the problem

x2u′′ + 2xu′ + λ2x2u = f(x) 0 < x < 1 (∗)

subject to u(0) = u0, u(1) = u1. Find the eigenvalues and eigenfunctions of the associated problem

x2v′′n + 2xv′n = −λ2x2vn vn(0) = vn(1) = 0

by determining the values of λ for which a solution of (*) does not exist for arbitrary f .

9. Construct the Green’s function for the problem

x2u′′ + xu′ + (λx2
− 1)u = f(x) 0 < x < 1

subject to u(0) = u0, u(1) = u1.

2 Regular Sturm-Liouville problems

2.1 Separated boundary conditions

1. Find eigenvalues and eigenfunctions of the operator

Lu ≡ u′′ , u(0) = u′(1) = 0

in 0 < x < 1.

2. Find eigenvalues and eigenfunctions of the operator

Lu ≡ u′′ , u(−1) = u(1) = 0

in −1 < x < 1.

3. Find eigenvalues and eigenfunctions of the operator

Lu ≡ u′′ + 4c2x2u , u(0) = 0 , u(L) = 0 .

(The differential equation is reducible to the Bessel form by a substitution of the type u = xav(z),
where z = xb.)

4. In 1 < x < e consider the Sturm-Liouville problem

d

dx

(

x2
du

dx

)

+
1

4
u = f(x)

where f(x) is given, subject to the boundary conditions

u(1) = a , u(e) = b .

(i) Construct the Green’s function G(x, ξ) for the problem and write down the solution for general
f , a, b
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(ii) Consider next the associated eigenvalue problem

d

dx

(

x2
dun

dx

)

+
1

4
un = λ2

nun

un(1) = un(e) = 0 .

Find eigenvalues and normalized eigenfunctions.

(iii) Solve the original problem with a = b = 0 by expanding u in a series of un’s; comparing with the
previous solution write down the expression of G as a series of eigenfunctions

(iv) Verify that this expression is correct by taking the scalar product of both sides with un.

(v) In 1 < x < e consider the diffusion problem

∂

∂x

(

x2
∂u

∂x

)

+
1

4
u =

∂u

∂t

subject to
u(1, t) = u(e, t) = 0 , u(x, 0) = F (x) ,

and write down the general solution.

[Hints: One solution of the differential equation is easy; for the other solution you can use (2.2.33).
The change of variable y = log x is useful to deal with the integrals that arise.]

2.2 Mixed boundary conditions

1. Find eigenvalues and eigenfunctions of the operator

Lu ≡ u′′ , u(0) = u(1) , u′(0) = u′(1)

in 0 < x < 1.

2. Find eigenvalues and eigenfunctions of the operator

Lu ≡ u′′ , u(0) = u(1) , u′(0) = u′(1)

in 0 < x < 1.

3. Find eigenvalues and eigenfunctions of the operator

Lu ≡

1

2
u′′ , u(0) + u(1) = 0 , u′(0) = 0

in 0 < x < 1.

4. Find eigenvalues and eigenfunctions of the operator

Lu ≡ u′′
− u , u(0) − u′(0) + u(1) = 0 , u(0) + u′(0) + 2u′(1) = 0

in 0 < x < 1.
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3 Singular Sturm-Liouville problems

1. Find eigenfunctions and eigenvalues of the operator

Lu ≡ x
d2u

dx2
−

du

dx
+ 4k2x3u

with u subject to the boundary conditions

u(0) = 0,
du

dx

∣

∣

∣

∣

x=1

= 0.

(The transformation y = xα to reduce the equation to a known form.)

2. Solve the eigenvalue problem

Lu ≡

d

dx

(

x2
du

dx

)

+ λx2u = 0

with u subject to the boundary conditions

du

dx

∣

∣

∣

∣

x=0

= 0, u(1) = 0 .

3. Find eigenvalues and eigenfunctions of the operator

Lu ≡ xu′′ + u′ , u(1) = 0

in 0 < x < 1, with u(0) finite.

4. Discuss the eigenfunctions and spectrum of the singular operator

Lu ≡ x
d2u

dx2
+ (1 − x)

du

dx

in the range 0 < x < ∞; the scalar product is defined by

(v, u) =

∫ ∞

0

e−xv u dx .

This is the operator which gives rise to the Laguerre polynomials (section 13.9, p. 334).

5. Discuss the eigenfunctions and spectrum of the singular operator

Lu ≡ (1 − x2)
d2u

dx2
− x

du

dx

in the range −1 < x < 1; the scalar product is defined by

(v, u) =

∫

1

−1

(1 − x2)−1/2v u dx .

This is the operator which gives rise to the Chebyshev polynomials Tn(x) (section 13.9, p. 334).

4 Initial-value problems

Note: For some of these problems use of the Laplace transform is a useful method to construct the Green’s
function.
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4.1 First-order equations

1. Build a Green’s function theory suitable for the general ordinary differential equation of the first order

du

dt
+ a(t)u = f(t) , u(0) = u0

and verify that the final expression satisfies the equation; a(t) and f(t) are given functions and u0 a
given constant. Compare with the solution given in (2.2.31) p. 34.

2. Solve by constructing a suitable Green’s function the equation

du

dt
+ ku = f , u(0) = u0

where u0 and k are given constants.

4.2 Second-order equations

1. By constructing the appropriate Green’s function, solve for t > 0 the initial-value problem

d2u

dt2
+

du

dt
= f(t) , u(0) = 0 , u′(0) = b .

2. By constructing the appropriate Green’s function, solve for t > 0 the initial-value problem

d2u

dt2
+ u = f(t) , u(0) = a , u′(0) = 0 .

3. By constructing the appropriate Green’s function, solve for t > 0 the initial-value problem

t
d2u

dt2
−

du

dt
+ 4t3u = f(t) , u(0) = 0 , u′(0) = 0 .

4. By constructing the appropriate Green’s function, solve for t > 0 the initial-value problem

d2u

dt2
+ 2c

du

dt
+ (1 + c2)u = f(t) , u(0) = a ,

du

dt

∣

∣

∣

∣

t=0

= b ;

c is a given real constant.

5. By constructing the appropriate Green’s function, solve for t > 0 the initial-value problem

t
d2u

dt2
+ 2

du

dt
− c2tu = f(t) , u(0) = 1 ,

du

dt

∣

∣

∣

∣

t=0

= 0 ,

where c is a given real constant,

6. By constructing the appropriate Green’s function, solve for t > 0 the initial-value problem

d2u

dt2
+ (a + bt)u = f(t) u(0) = u0 ,

du

dt

∣

∣

∣

∣

t=0

= v0 ,

in which a and b are given constants.

7. By constructing the appropriate Green’s function, solve for t > 0 the initial-value problem

t
d2u

dt2
+

du

dt
− tu = f(t) , u(0) = 0 ,

du

dt

∣

∣

∣

∣

t=0

= 0 .
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8. Develop a Green’s function theory for the solution of the initial-value governed by a third-order ordinary
differential equation and apply it to the solution, for t > 0, of the initial-value problem

d3u

dt3
+

d2u

dt2
− 2u = f(t) , u(0) = 0 ,

du

dt

∣

∣

∣

∣

t=0

= 1 ,
d2u

dt2

∣

∣

∣

∣

t=0

= 2 .
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