
Solutions to Selected Exercises

I am indebted to Krzysztof Smutek for having suggested to write this chapter.

He worked out many of these solutions, and I am grateful for his permission to

reproduce them here. There are indications on how to solve almost every exercise,

except those which are embarrassingly easy, or those whose solutions can be found

in the given references. Please be aware that I did not work out the exercises with

the same dedication as I wrote the main text, and brace yourself for a higher density

of typos and possibly a positive density of plain nonsense. After all, the point of

the exercises is to make the reader (not the author) work.

Exercise 1.2.1 An operator A equals zero if and only if (A(x), y) = 0 for each

x, y ∈ H, so that two operators A and B are equal if and only if (A(x), y) = (B(x), y)

for all x, y. To prove (a) we write

(x, (αA)(y)) = α(x,A(y)) = α(A†(x), y) = (α∗A†(x), y) ,

using that the inner product is anti-linear in the first variable. To prove (b) we

write

(x, (AB)(y)) = (x,A(B(y)) = (A†(x), B(y)) = (B†(A†(x), y) = ((B†A†)(x), y) .

Exercise 1.2.2 If x ∈ F⊥ and y ∈ F then (A(x), y) = (x,A(y)) = 0 since A(y) ∈ F .

So A(x) ∈ F⊥.

Exercise 1.2.3 The key here is that in a complex finite-dimensional Hilbert space

an operator has at least one eigenvector. This is because we may assume that the

space is Cn and then the characteristic polynomial det(A−λ1) has at least one root.

By Exercise 1.3.2, the orthogonal complement G of the corresponding eigenvector

satisfies A(G) ⊂ G and it suffices to apply the induction hypothesis to G.

Exercise 1.3.1 All you have to prove is that if Φ(ξ) =
∫

dxf(x)ξ(x) for a nice

function f then Φ′(ξ) := −Φ(ξ′) =
∫

dxf ′(x)ξ(x). This follows from integration by

parts.

Exercise 1.4.1 (a) For example, you may deduce from the fact that
∫

dxδ(x)ξ(x) =
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0 whenever ξ(x) = 0 that δ(x) = 0 if x 6= 0. Then

ξ(0) =

∫
dxδ(x)ξ(x) =

∫
{x=0}

dxδ(x)ξ(x) = ξ(0)

∫
dxδ(x) ,

so that the δ function has integral 1. (Of course this makes no mathematical sense,

but neither does the statement you try to “prove”.)

(b) One should have δ(0) =∞, but, as my kindergarten teacher said, “infinity is

not a number.”

(c) You may argue that δ′(x) = 0 if x 6= 0, but what is the value of δ′(0)?

Exercise 1.4.2 Considering for example for any y the continuous function ηx(y) =

ξ(x, y), one has∫∫
dxdyξ(x, y)δ(x− y) =

∫
dx

∫
dyηx(y)δ(x− y) =

∫
dxηx(x) =

∫
dxξ(x, x) .

Exercise 1.4.3 If ζ and η are test functions,∫
dxdyζ(x)η(y)

∫
dzδ(x− z)δ(z − y)ξ(z) =

∫
dzζ(z)η(z)ξ(z)

=

∫
dxdyζ(x)η(y)δ(x− y)ξ(x) .

Exercise 1.5.1 We start with the relation

f̂(p) =
√

2πFm(f)(p/~) .

Consider the function η(p) = f̂(p~). Changing p into p~ in the previous relation

and applying F−1
m to both sides, we get, using the formula for F−1

m ,

f(x) =
1√
2π
F−1
m (η)(x) =

1

2π

∫
dyη(y) exp(ixy) .

Making the change of variable y → p/~ yields the desired relation.

Exercise 1.5.2 For example,

ξ̌(x1, . . . , xn) =

∫
· · ·
∫

dp1

2π~
· · · dpn

2π~
exp
(

i
∑
k≤n

xkpk/~
)
ξ(p1, . . . , pn) .

Exercise 2.1.1 In mathematical notation, if x = |α〉 then this operator Px is such

that Px(y) = (x, y)x. It is the orthogonal projection on Cx.

Exercise 2.2.1. Assume first that A and A′ commute. Consider a basis (|j〉)j≤n
of eigenvectors for A, which are also eigenvectors for A′ since A′ commutes with A.

Let (λi) and (λ′i) be the corresponding eigenvalues. The probability of measuring

a value of O equal to λi is then |〈i|α〉|2. If we measure first O′, the probability of

measuring a value of λ′j is |〈j|α〉|2. After this measurement, the system is in state
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|j〉 and the measurement of O will be λj . So we will measure λi only if j = i, and

this occurs with the same probability |〈i|α〉|2 as if we had not measured O′ before

we measured O. Assume now that A and A′ do not commute, so that there exists

an eigenvector |i〉 of A which is not an eigenvector of A′. Assume that the system

is in state |i〉. If we measure O first we are guaranteed to obtain the value λi. This

is not the case if we measure O′ first, because after this measurement the state of

the system is an eigenvector of A′, so is not of the type α|i〉.

Exercise 2.5.4 We use integration by parts to write

(g,A(f)) = i

∫ 1

0

dxg(x)∗f ′(x) = ig(1)∗f(1)− ig(0)∗f(0)− i

∫ 1

0

dxg′(x)∗f(x)

i.e. (g,A(f)) = (A(g), f) + ig(1)∗f(1)− ig(0)∗f(0). Thus A is not symmetric on the

domain D but it is symmetric on the domain Dα.

Exercise 2.5.7 Since A is symmetric D(A) ⊂ D(A†). This implies that D((A†)†) ⊂
D(A†). But since A† is symmetric we have D(A†) ⊂ D((A†)†) so that D(A†) =

D((A†)†) and A is self-adjoint.

Let us recall the following simple fact of functional analysis, which is useful to

solve the next exercises: in a Hilbert space,

sup
‖y‖≤1

|(x, y)| = ‖x‖ ,

as follows from the choice (when x 6= 0) of y = x/‖x‖. In particular if |(x, y)| ≤ C‖y‖
then ‖x‖ ≤ C.

Exercise 2.5.8 (a) It is straightforward that D(A) is a dense subspace on which

A makes sense.

(b) For x, y ∈ D(A) we have (x,A(y)) =
∑
n≥0 x

∗
nλnyn whereas (A(x), y) =∑

n≥0 λ
∗
nx
∗
nyn, from which the result follows.

(c) If x ∈ D(A†) then for all y in D(A),

|(x,A(y))| =
∣∣∣∑
n≥0

x∗nλnyn

∣∣∣= |(z, y)| ≤ C‖y‖

where z = (λ∗nxn)n≥0. Thus ‖z‖2 =
∑
n≥0 |λnxn|2 ≤ C2 and x ∈ D(A). Further-

more since (x,A(y)) = (z, y) we have A†(x) = z.

Exercise 2.5.9 The operator B is defined by B(y) = (Bn(yn+1))n≥0. For x ∈ D(A)

and y ∈ H we have

(y,A(x)) =
∑
n≥1

(yn, An−1(xn−1)) =
∑
n≥0

(Bn(yn+1), xn) .

This makes it obvious that D(B) ⊂ D(A†). When y ∈ D(A†) we have |(y,A(x))| ≤
C‖x‖, and thus

∑
n≥0 ‖Bn(yn+1)‖2 ≤ C2 so that y ∈ D(B) and B = A†. The proof

of the equality A = B† is similar.
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Exercise 2.5.10 Consider y ∈ D(A†). We have to prove that y ∈ D(A). Since

A− i1 is onto, we can find x ∈ D(A) such that A†(y)− iy = A(x)− ix = A†(x)− ix,

using Lemma 2.5.5 in the second equality. Thus (A† − i1)(y − x) = 0. Hence for

any z it holds 0 = ((A† − i1)(x− y), z) = (x− y, (A+ i1)(z)) and this implies that

x− y = 0 since A+ i1 is onto. Thus y = x ∈ D(A).

Exercise 2.5.11 This is obvious. For example if x = (xn)n≥1 ∈ H then y =

(xn/(λn + i))n≥1 ∈ H and (A+ i1)(y) = x.

Exercise 2.5.12 Using Fourier series transports us to the space of square-integrable

sequences (xn)n∈Z, and transports A to an operator A′ whose domain contains the

sequences with finite support, and for such a sequence is defined as the transforma-

tion (xn) 7→ (2πnxn). Consequently by a previous argument a sequence (xn) in the

domain of A† is such that
∑
n∈Z n

2|xn|2 <∞. In particular
∑
n∈Z |xn| <∞, so that

the corresponding Fourier series converges absolutely and its sum is continuous.

Exercise 2.5.16 The operator T is bounded so that its graph is closed. The graph

of its restriction to L0 is closed so that the graph of A is closed. For f ∈ L2 and

g ∈ L0 integration by parts and approximation by smooth functions shows that

(T (f), g) = −(f, T (g)). This proves that A is symmetric. Moreover A is not self-

adjoint because the previous formula implies that T (L2) is contained in the domain

of A† whereas T (L2) is larger than T (L0).

Exercise 2.5.17 Denoting by A the “multiplication by x operator”, the domain of

A† consists of the functions ψ such that |(ψ,A(ϕ))| ≤ C‖ϕ‖2 i.e.∣∣∣∫ dx(xψ(x)∗)ϕ(x)
∣∣∣ ≤ C‖ϕ‖2 ,

so that xψ ∈ L2.

Exercise 2.5.18 A function ϕ is a eigenvector of eigenvalue a for the multiplication

by x operator if aϕ = xϕ in L2(R2,dµ,C), i.e. (x − a)ϕ = 0 µ-a.e. Thus ϕ = 0

µ-a.e. on R \ {a} and since ϕ is not zero we must have µ({a}) 6= 0.

Exercise 2.5.19 As in the previous exercise, the space of eigenvectors with eigen-

value a identifies to the space of functions ϕ(x, y) which are zero for x 6= a, i.e.

with L2(dµ′) where dµ′ is the restriction of dµ to {a}×R. It then suffices to prove

that for a measure dν on R which gives finite measure to bounded sets the space

L2(dν) has dimension n if and only if dν is carried by n points but not by n − 1

points. If L2(dν) is finite-dimensional, dν cannot have a continuous part, and can

charge only finitely many points. It is straightforward to check that its dimension

is exactly the number n of points it charges.

Exercise 2.5.20 We write, using mathematical notation for clarity,

〈γ|α〉 = (|γ〉, |α〉) = (|α〉, |γ〉)∗ = (|α〉, A|β〉)∗ = (A†(|α〉), |β〉)∗ = (|β〉, A†(|α〉) ,
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i.e. 〈γ|α〉 = 〈β|A†|α〉 so that 〈γ| = 〈β|A†.

Exercise 2.5.21 It is immediate that the domain of P is invariant under T and

that for f in this domain we have PT (f) = TP (f). If another observer, Alice, is

located at a fixed position a, a point of coordinate x in Alice’s reference frame has

coordinate x + a in my frame. When I describe a particle by the position state

space function f , the quantity |f(x)|2 describes the probability density of finding

the particle at location x. The location x has coordinate x− a in Alice’s reference

frame. It seems then most reasonable to assume that Alice will describe the same

particle by the position state function T (f) given by T (f)(x) = f(x + a). Since

T commutes with P , the momentum operator P produces the same value when

applied to these two state functions,

(T (f), PT (f)) = (T (f), TP (f)) = (f, Pf) .

This means that Alice measures the same momentum of the particle as I do, as is

confirmed by experience.

Exercise 2.5.22 The induction is straightforward. Using that

‖ABn‖ ≤ ‖A‖|B‖‖Bn−1‖

and similarly for ‖BnA‖ we obtain

n‖Bn−1‖ = ‖ABn −BnA‖ ≤ 2‖A‖‖B‖‖Bn−1‖ ,

which cannot hold for large n.

Exercise 2.7.1 Recalling the Fourier transform U from H to H′, let T ′ := UTU−1.

It is straightforward that for a test function ξ we have ξ̌(a+x) = η̌(x) where η(p) =

exp(iap/~)ξ(p). This means that T ′ is the operator “multiplication by exp(iap/~)”,

and this operator commutes with the operators “multiplying with a function of p”.

Exercise 2.8.1 One must not be shy in this type of formal manipulations, and one

writes ∫
dyψ(y)

∫
dzδy(z)δx(z) =

∫
dzδx(z)

∫
dyψ(y)δy(z) , (P.6)

and then one uses that ∫
dyψ(y)δ(y − z) = ψ(z) . (P.7)

The quantity (P.6) then equals
∫

dzδx(z)ψ(z), which is what one wanted to show.

Exercise 2.8.2 There is a complete symmetry between position and momentum

state space, so you may transpose any of the previous arguments you wish. For

example, since |p〉 is supposed to stand for a state of given momentum, and since

in momentum state space the momentum operator is the “multiplication by p op-

erator”, then |p〉 has to correspond to a function which is not zero only at p, i.e. a
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multiple of δp. Is has to correspond precisely to 2π~δp since for the natural mea-

sure on momentum space this function is of integral 1, which is required to make

formulas such as the equivalent of (2.26) work. Another approach is that by anal-

ogy with (2.26) if the test function ξ is seen as an element |ξ〉 of position state

space, one should have |ξ〉 =
∫

(dp/(2π~))ξ(p)|p〉. Integration in p of the relation

〈p|p′〉ξ(p) = 2π~δ(p− p′)ξ(p) then yields as required 〈ξ|p′〉 = ξ(p′).

Exercise 2.9.1 This might be obvious at the formal level, but if you try to think

about it, you will need to write at least a line.

Exercise 2.10.2 On the one hand

U(abc) = U((ab)c) = r(ab, c)U(ab)U(c) = r(ab, c)r(a, b)U(a)U(b)U(c)

and on the other hand

U(abc) = U(a(bc)) = r(a, bc)U(a)U(bc) = r(a, bc)r(b, c)U(a)U(b)U(c) .

Exercise 2.14.1 Write V̂ (t)(f)(p) =
∫

dx exp(−ixp/~)f(x + t) and make the

change of variables y = x+ t.

Exercise 2.14.3 (a) The only point which is not obvious is strong continuity. If h

is uniformly bounded by B on the support of f one simply use that ‖(exp(ith/~)−
1)f‖2 ≤ B|t|‖f‖2/~ so that then limt→0 ‖(exp(ith/~) − 1)f‖2 = 0 and the result

since the set of f where this limit is 0 is closed in norm. (b) If f belongs to the

domain of A, the function θ(f, t) := (U(t)(f) − U(0)(f))/(t~) remains bounded

in L2 as t → 0. Since this function converges point-wise to hf we have hf ∈ L2.

Conversely if hf ∈ L2, then ‖θ(f, t)‖2 ≤ ‖hf‖2/~ so that by approximation one

reduces to the case where h is bounded on the support of f to prove that f ∈ D
and A(f) = hf . (c) is a consequence of (a) and (b).

Exercise 2.17.1 One has to show first that |(y, a(x))| ≤ C‖x‖ for x ∈ D if and only

if y ∈ D. The “if” part is easy and the “only if part” is done by taking xn+1 =
√
nyn

for n ≤ k and xn+1 = 0 otherwise so that

(y, a(x)) =
∑
n≤k

√
n(n+ 1)|yn|2 ≤ C‖x‖ = C

√∑
n≤k

n|yn|2

and thus y ∈ D. The computation of a† is then straightforward.

Exercise 2.17.2 The vector
∑
n≥0(λn/

√
n!)en has this property.

Exercise 2.18.1 This has basically been done in Exercise 2.5.8.

Exercise 2.18.3 Consider the Taylor polynomial Pn(x) =
∑
k≤n(itx)k/k!. It holds

|Pn(x) − exp(itx)| = |
∑
k≥n+1(itx)k/k!| ≤ exp |tx|. Since |Pn(x) − exp(itx)| goes

pointwise to zero and since exp |tx|ϕ0 is square-integrable, Lebesgue’s convergence

theorem implies that Pn(x)ϕ0(x)→ exp(itx)ϕ0(x) in L2.
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Exercise 2.18.4 Compute a(t)(en+1) = exp(itH/~)a(exp(−itH/~)(en+1))

= exp(iH/~)a(exp(−it(n+3/2)ω)en+1) =
√
n+ 1 exp(−it(n+3/2)ω) exp(itH/~)en

=
√
n+ 1 exp(−itω)en = exp(−itω)a(en+1).

Exercise 3.1.1 dimH1⊗H2 = dimH1×dimH2 whereas dim(H1×H2) = dimH1+

dimH2.

Exercise 3.1.2 Show first that to prove that a unitary group U(t) is strongly

continuous it suffices to prove that t 7→ U(t)(y) is continuous at t = 0 for each y is

a set large enough that its closed linear span is H. Taking n = 2 it suffices then to

consider the case where y = x1 ⊗ x2. We write

U(t)(x1 ⊗ x2)− x1 ⊗ x2 = (U1(t)(x1)− x1)⊗ x2 + U1(t)(x1)⊗ (U2(t)(x2)− x2) ,

so that, using that U1(t) and U2(t) are unitary,

‖U(t)(x1 ⊗ x2)− x1 ⊗ x2‖ ≤ ‖U1(t)(x1)− x1‖‖x2‖+ ‖x1‖‖U2(t)(x2)− x2‖ .

Assuming now that each xk belongs to the domain of Ak we write Uk(t)(xk) =

xk+it~Ak(xk)+o(t) where o(t)/t goes to 0 with t, we expand the product U1(t)(x1)⊗
. . .⊗ Un(t)(xn) and we look at the terms of order t to obtain (3.5).

Exercise 3.2.2 The one thing which is not completely obvious is that these ele-

ments span H2,s. To see this, we recall that the elements of the type x ⊗ y span

H⊗H. Thus every element z of H⊗H may be approximated by a linear combina-

tion of the x⊗ y. If z is moreover symmetric, it is also approximated by the same

linear combination of the y⊗x, and hence by a linear combination of tensors of the

form x⊗ y + y ⊗ x, and the conclusion should then be obvious.

Exercise 3.2.3 Orthonormality of this sequence follows easily from (3.8) and the

definition of inner product onHn,s, see (3.2). To show that it indeed spans the whole

space one can simply use the same arguments as in the solution to Exercise 3.2.2.

Exercise 3.3.1 We have to prove that for α ∈ Hn,s and β ∈ Hn+1,s it holds

(A†(γ)(α), β) = (α,A(γ), β). It suffices to prove these formulas where γ, α, β are

basis elements, γ = ek, α = |n1, n2, . . . , nk, . . .〉, β = |n′1, n′2, . . . , n′k, . . .〉. In that

case (A†(γ)(α), β) = (α,A(γ), β) = 0 unless n′j = nj for j 6= k and n′k = nk + 1, in

which case (A†(γ)(α), β) = (α,A(γ), β) =
√
nk + 1.

Exercise 3.3.3 Given an orthonormal basis (ei) of H, for integers i1, . . . , in
we identify the tensor ei1 ⊗ . . . ⊗ ein with the function ei1,...in on Rn given by

ei1,...in(x1, . . . , xn) =
∏
j≤n enj (xj). These functions form an orthonormal system,

and in this way we obviously construct an isometry for Hn,s into a subspace of the

symmetric functions on Rn. To prove that is is onto, it suffices to prove that the

functions ei1,...,in span L2(Rn) (so that they form an orthonormal basis of L2(Rn))

and to use an expansion of a symmetric function of L2(Rn) on this basis. Using
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induction over n, this reduces to showing that a function of L2(Rn) which is or-

thogonal to every function of the type u(xn)v(x1, . . . , xn−1) is zero, an easy exercise

of measure theory. Recall that elements of the type (3.21) span Hn,s (this can be

proved as Exercise 3.2.3). Thus it suffices to prove these formulas when f is of this

type, and then they quickly reduce to (3.22) and (3.23). The last statement follows

by combining (3.24) and (3.25).

Exercise 3.4.3 The domains of A(ξ) and A†(η) are respectively given by

D(A(ξ)) =
{

(α(n))n≥1 ∈ B ;
∑
n≥0

‖An(ξ)(α(n))‖2 <∞
}

D(A†(η)) =
{

(α(n))n≥0 ∈ B ;
∑
n≥0

‖A†n(η)(α(n))‖2 <∞
}
,

and the operators A(γ) and A†(γ) are adjoint to each other.

Exercise 3.4.4 This requires simply care and patience. For example, for α ∈ Hn,s,

A(ξ)A†(η)(α)i1,...,in =
∑

i≥1,`≤n

ξ∗i ηi`αi1,...,̂i`,...,in,i + αi1,...,in
∑
i≥1

ξ∗i ηi ,

whereas the computation of A†(η)A(ξ)(α)i1,...,in yields only the first summation to

the right and this proves (3.33).

Exercise 3.5.1 This is obvious from (3.39).

Exercise 3.6.1 One just performs the same computation inside every eigenspace.

Exercise 3.7.1 Consider the case where ξ(x, y) = h(x)g(y) where h, g ∈ S. Then

S = A†(h)A(g∗) and the desired formula is the last assertion of Exercise 3.3.3.

Approximating ξ ∈ S2 by a sum of functions of the preceding type concludes the

argument.

Exercise 3.7.2 First solution. We start with

a(y)a(x)(f)(x1, . . . , xn−2) =
√
n(n− 1)f(x1, . . . , xn−2, x, y) ,

and as in (3.52) we obtain

a†(x)a(y)a(x)(f)(x1, . . . , xn−1) =
√
n
∑

k≤n−1

δx(xk)f(x1, . . . , xn−1, y)

= :
√
ng(x1, . . . , xn−1) ,
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so that

a†(y)a†(x)a(y)a(x)(f)(x1, . . . , xn) =
∑
`≤n

δy(x`)g(x1, . . . , x̂`, . . . , xn)

=
∑
`≤n

δy(x`)
(
δx(x1) + . . .+ δ̂x(x`) + . . .+ δx(xn)

)
f(x1, . . . , x̂`, . . . , xn, y)

=
∑
` 6=k

δy(x`)δx(xk)f(x1, . . . , x̂`, . . . , xn, y) =
∑
k 6=`

δy(x`)δx(xk)f(x1, . . . , xn) .

One then finishes with the relation
∫

dxdyV (x, y)δy(x`)δx(xk) = V (xk, x`).

Second solution. This solution is more formal. Using the relation a†(y)a(y) =

a(y)a†(x)− δ(y − x)1 and assuming that V (x, y) = V1(x)V2(y),

HV =

∫
dxV1(x)a†(x)a(x)

∫
dyV2(y)a†(y)a(y)−

∫
dxV (x, x)a†(x)a(x) .

One then uses the formula (3.53). The case of a general function V (x, y) is recovered

by approximation.

Exercise 3.7.3 The sensible way is to require that when V (x, y) = ξ(x)η(y) this

is A†(ξ)A(η∗). For f ∈ Hn,s,
∫∫

dxdyV (x, y)a†(x)a(y)f is then the symmetrized of

the function
∫

dyV (x1, y)f(y, x2, . . . , xn).

Exercise 3.7.4 As explained just before, the first term is the sum of the kinetic

energy of the individual particles, and the second term means that any two different

particles located at x and y interact with a potential V (x, y).

Exercise 3.8.1 Recalling that (ξ, η) = [A′(ξ), A′†(η)] one compares the formulas

(ξ, η) =

∫∫
d3p

(2π~)3

d3p′

(2π~)3
ξ(p)∗η(p′)(2π~)3δ(3)(p− p′)

and

[A′(ξ), A′†(η)] =
[∫ d3p

(2π~)3
ξ(p)∗a(p),

∫
d3p′

(2π~)3
η(p′)a†(p′)

]
=

∫∫
d3p

(2π~)3

d3p′

(2π~)3
ξ(p)∗η(p′)[a(p), a†(p′)] . (P.8)

Exercise 3.8.2 The quantity b†(p)|0〉 represents the ideal case of a single particle

state having exactly momentum p, whereas b†(p)b†(p′)|0〉 represents (the ideal case

of) a two-particle state, the particles having momenta p and p′.

Exercise 3.8.3 The meaning of (3.60) is that we have

[
∫

d3p/(2π~)3ξ(p)b(p),
∫

d3p/(2π~)3ξ′(p)b†(p)] =
∫

d3p/(2π~)3ξ(p)∗ξ(p). The

point is that the factor d3p/(2π~)3 has dimension [l−3] because ~ has the dimension

of an action, the product of a momentum by a length, and the natural way to
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make the dimensions equal in both sides of the previous equality is to think of b(p)

and b†(p) as having dimension [l3/2].

Exercise 3.9.1 Since (fn) is an orthonormal basis, any square-integrable function

g has an expansion g =
∑
n≥1 anfn with an =

∫
f∗n(x)g(x)dx. Thus, formally∫

dx
(∑
n≥1

fn(x)∗fn(y)
)
g(x) =

∑
n≥1

fn(y)

∫
dxfn(x)∗g(x) =

∑
n≥1

anfn(y) = g(y) ,

and using (P.7) this is what one wanted to prove. Considering h =
∑
n≥1 bnfn you

may also write

lim
k→∞

∫∫
dxdy

(∑
n≤k

fn(x)∗fn(y)
)
g(x)h(y)∗ =

∑
n≥1

b∗nan =

∫
dxh(x)∗g(x) ,

and this means that as a distribution of two variables,
∑
n≥1 fn(x)∗fn(y) is well-

defined with the appropriate value δ(x− y).

Exercise 3.10.2 The only sensible definition of
∑
k ak(c(k) + c†(k)) would be such

that ∑
k

αk(c(k) + c†(k))(e∅) =
∑
k

αkek ,

but the right-hand side is not defined when
∑
k≥1 |αk|2 = ∞. On the other hand,

if
∑
k |αk|2 < ∞ it is quite straightforward to check that the series

∑
k αk(c(k) +

c†(k))(x) converges when x = c†(i1) · · · c†(in)(e∅).

Exercise 3.10.3 Consider a test function ξ and ak =
∫

dxξ(x)gk(x). Using integra-

tion by parts one obtains that the sequence (ak) decreases fast enough that there

is no problem of convergence in what follows. First∫
dxξ(x)

∂2ϕ(t, x)

∂t2
= γ

∑
k∈K

ak√
ωk

∂2

∂t2
(c(t, k) + c†(t, k)) . (P.9)

Furthermore, using integration by parts∫
dxξ′′(x)gk(x) =

∫
dxξ(x)g′′k (x) = −k

2

~2

∫
dxξ(x)gk(x) ,

so that ∫
dxξ′′(x)ϕ(t, x) = γ

∑
k∈K

ak√
ωk

(
−k

2

~2

)
(c(t, k) + c†(t, k)) . (P.10)

Since
∂2

∂t2
(c(k, t) + c†(k, t)) = −ω2

k(c(k, t) + c†(k, t) ,

the required identity∫
dx
( ∂2

∂t2
ϕ(x, t)− α2 ∂

2

∂x2
ϕ(x, t) + βϕ(x, t)

)
ξ(x) = 0
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then simply results for (3.78), (P.9), (P.10) and the relation ω2
k = α2k2/~2 + β.

Exercise 3.10.4 We write

2a(k)a†(−k) = (c(k) + ic(−k))(c†(k)− ic†(−k))

2a†(−k)a(k) = (c†(k)− ic†(−k))(c(k) + ic(−k)) ,

and the required relation follows from the fact that c(k)c†(k) + c(−k)c†(−k) =

c†(k)c(k) + c†(−k)c(−k).

Exercise 4.1.2 Reduce to the case where A(e0) = e0 by replacing A by LA where

L ∈ SO↑(1, 3) is such that L(A(e0)) is a multiple of e0 and then multiplying A by a

constant. If u is a unit vector of R3 and y = (0,u) then (e0± y, e0± y) = 0 so that

(e0±Ay, e0±Ay) = 0 and thus (e0, Ay) = 0 and 1 = (Ay,Ay). That is, A fixes the

span of e1, e2, e3 and is an isometry on this span, so it is a Lorentz transformation

since it fixes e0.

Exercise 4.1.5. We write xν = ηνλxλ so that Lµνx
ν = Lµνη

νλxλ = L λ
µ xλ.

Exercise 4.1.6 Starting with LνµL
ν
λ′ = ηµλ′ we obtain ηλµLνµL

ν
λ′ = ηλµηµλ′

which is the required equality.

Exercise 4.3.2 We may take for B the boost Br given by the formula (4.22),

where r = −αx, r0 = αx2/x0, where α is chosen so that r2 = (r0)2 − r2 =

−α2x2x2/(x0)2 = 1.

Exercise 4.3.4 If R and S are two rotations which transform Bs(e0) into r we have

to show that RBsR−1 = SBsS−1, or equivalently, that (S−1R)Bs(S−1R)−1 = Bs.

Now, S−1R is a rotation which fixes Bs(e0), hence it fixes e3 (since it fixes e0

because it is rotation, and since Bs(e0) is a linear combination of e0 and e3). Thus

it suffices to show that such a rotation commutes with Bs. This is rather obvious if

one writes the matrices of these transformations. To prove (4.23), we simply say that

Br = RBsR−1 where R transforms Bs(e0) into r so that SBrS
−1 = (SR)Bs(SR)−1

where SR is a rotation which transforms Bs(e0) into S(r). Thus this transformation

equals BS(r).

Exercise 4.4.1 The pure boost Bs sends (1, 0, 0, 1) to (exp s, 0, 0, exp s), and a

suitable rotation sends this point to any point of the type (exp s,p) where |p| =

exp s.

Exercise 4.4.2 In that domain Xm is almost flat. When f is non-zero only when

|p| is much smaller than cm the formula (4.36) gives∫
Xm

dλm(p)f(p) ' 1

mc

∫
d3p

(2π~)3
f(p) . (P.11)

Thus dλm is nearly proportional to the volume measure, although the proportion-

ality factor is not very appealing.



820 Solutions to Selected Exercises

Exercise 4.4.4 Let η(p′) = (2π~)3
√

2ωpJ(δ
(3)
p )(p′) = (2π~)3

√
2ωp

√
2ωp′δ

(3)
p (p′)

so that ∫
dλm(p′)η(p′)ξ(p′) =

∫
d3p′

2ωp′

√
2ωp

√
2ωp′δ

(3)
p (p′)ξ(p′) = ξ(p) ,

which proves the claim.

Exercise 4.4.5 This is just a way to interpret (4.41).

Exercise 4.5.2 Assume first the U and U ′ are unitarily equivalent, and con-

sider a unitary map W as in (4.44). Consider an orthonormal basis (ei)i≤n of

H, so that (W (ei)) is an orthonormal basis of H′, and (W (ej), U
′(a)W (ei)) =

(ej ,W
−1U ′(a)W (ei)) = (ej , U(a)(ei)), so that the matrix of U ′(a) in the base

(W (ei)) is the same as the matrix of U(a) in the basis (ei). The reverse direction

is just as obvious, by using the operator W which sends the basis of H to the basis

of H′.

Exercise 4.5.9 If a representation is not irreducible there exists a non-trivial

invariant subspace G. We show that the orthogonal projector P on G commutes with

all the operators U(a). We note that since U is unitary the orthogonal complement

G⊥ of G is also an invariant subspace. Then, writing an element x ∈ H as x1 + x2

where x1 ∈ G and x2 ∈ G⊥ then U(a)(x) = U(a)(x1)+U(a)(x2) where U(a)(x1) ∈ G
and U(a)(x2) ∈ G⊥ so that PU(a)(x) = U(a)(x1) = U(a)P (x).

Exercise 4.6.1 If g(x) = a · f(a−1 · x) then U(b)g(x) = b · g(b−1 · x) = ba · f(a−1 ·
(b−1 · x)) = U(ba)(f)(x).

Exercise 4.7.1 Just compute (−A−1(a), A−1)(a,A) = (−A−1(a) +A−1(a), 1).

Exercise 4.8.3 (a) The formula
∫

dtdxϕ(x)ψ(x + t) =
∫

dxϕ(x)
∫

dtψ(t) follows

by integrating in t first and using that
∫

dtψ(x + t) =
∫

dtψ(t). Thus if for each

t ϕ(x)ψ(x + t) is zero a.e. then either
∫

dxϕ(x) = 0 or
∫

dtψ(t) = 0, and the

conclusion since ϕ,ψ ≥ 0. (b) Using left-invariance for the function θ(R) = ϕ(Rx)

shows that
∫

dRϕ(Rx) =
∫

dϕ(RTx) so that a :=
∫

dRϕ(Rx) is independent of x.

Integrating in x and using that
∫

dµ(x)ϕ(Rx) =
∫

dµ(x)ϕ(x) for any R yields the

result. (c) is immediate by integrating in R first and using (b).

Exercise 4.8.5 Consider the map p → βp from Xm to Xβm. The image of dλm
under this map is obviously invariant under the action of SO↑(1, 3) so that it is

proportional to dλβm. That is, there exists a number B(= B(β)) such that for each

ϕ in L2(Xβm,dλβm) we have
∫
ϕ(βp)2dλm(p) = B2

∫
ϕ(p′)2dλβm(p′). The map V :

L2(Xβm,dλβm)→ L2(Xm,dλm) given by V (ϕ)(p) = B−1ϕ(βp) is then an isometry

and it is straightforward to see that U(a,A)V (ϕ)(p) = exp(iβα(a, p))V (ϕ)(A−1(p)).

Exercise 4.10.2 Look at (4.69). If you think of |p〉 as a function in L2(Xm,dλm),

it is indeed δm,p which has this very property.
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Exercise 4.10.3 For example the heuristic formula 〈p′|ξ〉 = ξ(p′) is equivalent to∫
dλm(p)ξ(p)〈p′|p〉 =

∫
dλm(p)ξ(p)δm,p′(p) .

Exercise 5.1.2 This is quite obvious. Formally, taking the adjoint of (5.1) gets√
cϕ(f)† = A†(f̂) +A(f̂∗) =

√
cϕ(f∗).

Exercise 5.1.8 We prove by induction over n that Tn(f)(u) =∑
0≤k≤n gn,k(u)f (k)(u) where gn,k(u) = Pn,k(sinhu, coshu)/ coshun+1 where Pn,k

is polynomial in two variables of degree n. In particular the functions |gn,k| are

integrable. This proves (a). For (b) it suffices (appealing to dominated convergence)

to show that the functions (1− fε,r) and f
(k)
ε,r for k = 1, 2, 3 are bounded uniformly

over r and converge pointwise to zero as ε→ 0. This is done by elementary bounds.

For example, |f ′ε,r(u)| ≤ a exp(−a) where a = ε
√
r2 +m2c2 cosh(u+ τ).

Exercise 5.1.9 We denote by d, d′ . . . numerical constants, (which need not be the

same at each occurrence). We set ωr =
√
r2 +m2c2. Assuming again x to be in the

z direction we now integrate in spherical coordinates to obtain

Iε(x) = d

∫ ∞
0

dr
r

|x|ωr
exp(−iωrx

0/~− εωr) sin(|x|r/~)

=
d

2

∫
dr

r

|x|ωr
exp(−iωrx

0/~− εωr) sin(|x|r/~)

= d′
∫

dr
1

x0 + d′′ε
exp(−ix0ωrx

0/~− εωr) cos(|x|r/~) , (P.12)

where in the third inequality we have integrated by parts. More integration by parts

show that the limit

I(x) = d

∫
dr exp(−iωrx

0/~) cos(|x|r/~)

exists. We further compute it by setting r = mc sinhu, x0 = b cosh τ , |x| = b sinh τ

where b satisfies b2 = x2 and sign b = signx0. We then obtain (with a = mcb/~)

I(x) = d

∫
du

1

cosh τ
sinhu

(
exp(−ai cosh(u− τ) + exp(−ai cosh(u+ τ))

)
.

Splitting the integral in two parts, making the change of variables u → u + τ and

u→ u− τ and using (miracle!) that sinh(u+ τ) + sinh(u− τ) = 2 sinhu cosh τ show

that I(x) is independent of τ .

Exercise 5.2.2 The first part of the exercise is obvious. To handle the case of the

continuous situation, one may like to think in terms of “dimension of operators”,

how these unit-dependent quantities get rescaled under a change of units. The key

point is that the dimension of a(p) is [l3/2]. To get convinced of this we observe

from (3.60) that the square of this dimension is the dimension of (2π~)3δ(3)(p−q).

Now
∫

d3pδ(3)(p − q) = 1, so that δ(3)(p − q) has the dimension of the inverse of

the cube of a momentum, so that (2π~)3δ(3)(p− q) has dimension [l3].
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Exercise 5.4.1 Let us define the function η on R3 by η(p) = ξ(ωp,p)/
√

2ωp, so

that ξ = J(η). Then∫
dλm(p)ξ(p)∗a(p) =

∫
d3p

(2π~)3
η(p)∗a(p) = A(J(η)) = A(ξ) .

Exercise 5.4.2 (a) makes sense only by integrating against a function ξ ∈ S. Then,

for the right-hand side,∫
dλm(p)ξ(p)∗ exp(−i(c, C(p))/~)a(C(p))

=

∫
dλm(p)ξ(C−1(p))∗ exp(−i(c, p))/~)a(p) =

∫
dλm(p)(U(c, C)(ξ)(p))∗a(p)

= A(U(c, C)(ξ)) = UB(c, C) ◦A(ξ) ◦ UB(c, C)−1 .

For (b) we write

W (b, B)W (c, C)(a(p)) = exp(−i(b, BC(p))/~) exp(−i(c, C(p)/~)a(BC(p))

= exp(−i(b+B(c), BC(p))/~)a(BC(p)) = W ((b, B)(c, C))(a(p)) .

(c) To understand this difference meditate on the term a(C(p)) (as opposed to

a(C−1(p))). Here you get a rule to transform the operator a(p) whereas (4.61) is a

rule to transform the function ϕ of p. (d) To deduce Lorentz invariance from (5.42),

we write, using (5.41) and the corresponding formula for a†,

√
cUB(b, B) ◦ ϕ(x) ◦ UB(b, B)−1 =

=

∫
dλm(p)

(
exp(−i(x, p)/~) exp(−i(b, B(p))/~)a(B(p))

+ exp(i(x, p)/~) exp(i(b, B(p))/~)a†(B(p))
)
.

Making the change of variable p→ B−1(p) and using that (x,B−1(p)) = (B(x), p)

the right-hand side is
√
cϕ(b+B(x)).

Exercise 5.4.3 Using (5.39) the formula (5.43) is just another way to write (5.41).

Exercise 5.4.4 Because δm,p has the property that
∫

dλm(p′)δm,p(p
′)a(p′) = a(p).

Exercise 6.1.1 If M is a Lorentz transformation and x′ν = Mν
µx

µ by the chain

rule we have

ηµν∂µ∂νu = ηµν
∂

∂xµ
∂

∂xν
u = ηµν

∂x′λ

∂xµ
∂

∂x′λ
∂x′ξ

∂xν
∂

∂x′ξ
u

= ηµνMλ
µM

ξ
ν

∂

∂x′λ
∂

∂x′ξ
u = ηλξ

∂

∂x′λ
∂

∂x′ξ
u ,

using that ηµνMλ
µM

ξ
ν = ηλξ since M is a Lorentz transformation.

Exercise 6.1.2 Assume for simplicity that u is dimensionless. Then ∂νu is (the
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limit of) the quotient of an increment of u by a length and is of dimension [l−1]. Sim-

ilarly ∂ν∂νu is of dimension [l−2]. Thus the term ~2∂ν∂ν has dimension [m2l4t−2l−2]

which is the same as the dimension of the term m2c2u.

Exercise 6.2.1 No, by replacing a by exp(it0ω)a.

Exercise 6.4.1 For the motion x(t) = cosωt it is straightforward that the action

is zero. But for x(t) ≡ 1 the action is < 0. Thus x(t) = cosωt does not minimize

the action.

Exercise 6.4.3 We don’t know the dimension of u but is irrelevant as the equation

is homogeneous in u. The dimension of m2c4 is [m2l4t−4]. The dimension of ~2c2 is

[m2l6t−4], but each operator ∂ν creates a dimension [l−1].

Exercise 6.5.3 Let us write R`,k the matrix of R, v` =
∑
k≤nR`,kv̄k. Then, by

the chain rule,

p̄k :=
∂L̄

∂v̄k
=
∑
`≤n

∂L

∂v`

∂v`
∂v̄k

=
∑
`≤n

p`
∂v`
∂v̄k

=
∑
`≤n

p`R`,k ,

and thus p̄ = RT (p) = R−1(p) and p = R(p̄). Also,

v̄ = R−1(v) = R−1(v(x, p)) = R−1(v(R(x̄), R(p̄))) .

If we compute the Hamiltonian in the new coordinates, we obtain

H̄(x̄, p̄) =
∑
k≤n

v̄kp̄k − L̄(x̄, v̄) .

Since
∑
k≤n v̄kp̄k =

∑
k≤n vkpk this shows that indeed H̄(x̄, p̄) = H(R(x̄), R(p̄)).

Exercise 6.5.4 The first statement is just another way to express (6.44). Moreover

since the construction of the Hamiltonian H̄ is, in the new basis, the same as the

construction of H in the old basis, it satisfies Hamilton’s equation of motion which

is what is meant by the second statement.

Exercise 6.6.1 There is an orthogonal transformation R of Rn such that the point

of old coordinates x ∈ Rn has new coordinates R(x). The element f of the state

space (when using the new coordinates) is, in the old coordinates, given by U(f)

where U(f)(x) = f(R(x)). In the new basis the Hamiltonian Hn becomes U−1HnU .

It is a simple calculation (using the chain rule) to show that U−1HnU = Hn, the

same Hamiltonian as we would have obtained by proceeding to quantization using

the new coordinates.
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Exercise 6.7.1 Let compute only the hardest term∫
B

d3x
∑

1≤ν≤3

∂νu(x)∂νu(y) = −
∫
B

d3xu(x)
∑

1≤ν≤3

∂2

(∂xν)2
v(x)

= −
∑

k,`∈K′
bkb`

∫
B

d3xgk(x)
∑

1≤ν≤3

∂2

(∂xν)2
g`(x)

=
1

~2

∑
k,`∈K′

bkb``
2

∫
B

d3xgk(x)g`(x) =
∑
k∈K′

k2b2k/~2 ,

using (6.57) in the second line, that g` is an eigenvector of the Laplacian, of eigen-

value −`2/~2 in the third line and finally that (gk) is an orthogonal basis.

Exercise 6.9.2 In precise terms one is looking for distributions Φt such that∫
dtΦt(ft) = f(0), where ft(x) = f(t,x). Let us then take the function f of the type

f(t,x) = ϕ(t)ψ(x). Then
∫

dtϕ(t)Φt(ψ) = ϕ(0)ψ(0). In particular
∫

dtϕ(t)Φt(ψ) =

0 whenever ϕ(0) = 0, so that Φt(ψ) = 0 whenever t 6= 0. Since ψ is arbitrary, Φt = 0

when t 6= 0. Thus
∫

dtΦt(ft) = 0, a contradiction.

Exercise 6.9.3 (a) We compute

∂t

∫
d3xA

↔
∂t B =

∫
d3x∂t(A

↔
∂t B) =

∫
d3x(A∂2

tB −B∂2
tA) = 0 , (P.13)

using in the last equality that for C = A,B we have c−2∂2
tC = −m2c2C/~2 +∑

k≤3 ∂
2
kC, and integrating by parts in the space variables. (b) Denoting by Bt the

distribution obtained in fixing x0 = ct, and using that A and B satisfy the Klein-

Gordon equation the right hand side of (P.13) is c−2
∑
k≤3

∫
dx(A∂2

kBt−(∂2
kA)Bt).

Now, by the very definition of the derivative of a distribution,
∫

dxA∂2
kBt =∫

dx(∂2
kA)Bt.

Exercise 6.9.4 We observe that

2a(p) =
√

2cωpd(p) +
i

~

√
2

cωp
f(p) ,

so that using (6.74) and (6.76), and since π(0,x) = ~2∂tϕ(0,x), we obtain:

i

~
√

2cωpa(p) =

∫
d3x exp(−ix · p/~)

( i

~
cωpϕ(0,x)− ∂tϕ(0,x)

)
. (P.14)

This is the quantity
∫

d3xϕ(x)
↔
∂t exp(i(x, p)/~) for x0 = 0. To argue that this

quantity is independent of x0 we first have to define it! Thinking of this as a

distribution in p we integrate against a test function and we use (b) of the previous

exercise.

Exercise 6.9.5 Let us compute e.g.
∫

d3xA∂B/∂t when A =
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dλm(p) exp(i(x, p)/~)f+(p) and B =

∫
dλm(p) exp(i(x, p)/~)g+(p). Then

A∂B/∂t =
ci

~

∫∫
dλm(p)dλm(p′)p′0 exp(i(x, p+ p′)/~)f+(p)g+(p′) .

Integrating in d3x and using the formula
∫

d3x exp(i(x,p+p′)/~) = (2π~)3δ(3)(p+

p′) yields the formula∫
d3xA∂B/∂t =

ci

~

∫
dλm(p)p0 exp(ix0p

0/~)f+(p)g+(p′) =

∫
d3x∂A/∂tB .

Proceeding in a similar fashion for the other terms one gets∫
d3xA

↔
∂t B =

2ci

~

∫
dλm(p)p0(f−(p)g+(p)− g−(p)f+(p)) .

Exercise 6.11.2 First one has H(ϕ, ~2∂tϕ) = 1
2~

2c2
∑

0≤ν≤3(∂νϕ)2 + 1
2m

2c4ϕ2.

We compute the integral of each of the first four terms as in (6.82). The tricky part

is that implementing the condition δ(r) = 0 for r = ±p ± p′ does not affect the

term pνp
′
ν the same way when ν = 0 and when ν ≥ 1 because ω−p = ωp. When

ν = 0 one gets

~2

∫
d3x(∂0ϕ(x))2 =

∫
d3p

(2π~)32cωp
(p0)2

(
− exp(−2iωpct/~)a(p)a(−p)

+ a(p)a†(p) + a†(p)a(p)− exp(2iωpct/~)a†(p)a†(−p)
)
,

whereas for ν ≥ 1

~2

∫
d3x(∂νϕ(x))2 =

∫
d3p

(2π~)32cωp
(pν)2

(
exp(−2iωpct/~)a(p)a(−p)

+ a(p)a†(p) + a†(p)a(p) + exp(2iωpct/~)a†(p)a†(−p)
)
.

Using the relation m2c2 = pµpµ, and since p0 = ωp, algebra then yields∫
d3xH(ϕ(x), ~2∂tϕ(x)) =

∫
d3p

(2π~)32
cωp

(
a(p)a†(p) + a†(p)a(p)

)
,

which is just (5.36) modulo the infinite term obtained when replacing a(p)a†(p) by

a†(p)a(p) + δ(3)(0)1.

Exercise 8.1.10 Consider a positive Hermitian matrix B with B2 = A. Consider

an orthonormal basis in which B is diagonal. When A = B2 is a multiple of the

identity then so is B which is then clearly unique. Otherwise, the eigenvectors of

A are uniquely determined and again B is uniquely determined. That makes the

continuity of the map A 7→ B obvious by a standard subsequence argument.

Exercise 8.1.5 Taking the complex conjugate of the relation J−1C∗J = C†−1

yields J−1CJ = CT−1.
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Exercise 8.2.2 Just integrate over S the relation
∑

0≤i≤j
(
j
i

)
|zi1z

j−i
2 |2 = 1.

Exercise 8.2.4 Let us identify the space H1 of homogeneous first degree poly-

nomials to the set C2 seen as a set of column matrices. That is to the matrix

a =

(
a1

a2

)
corresponds the polynomial fa(z1, z2) = a1z1 + a2z2 = aT z where

z =

(
z1

z2

)
. Thus π1(A)(fa)(z1, z2) = fa(z′1, z

′
2) = aTA†(z) = (A∗a)T z. This means

that π1(A)(fa) = fA∗a . In other words π1 is equivalent to the representation of π of

SU(2) on C2 where π(A) is the operator with matrix A∗. According to Lemma 8.5.4

this representation is equivalent to the representation π′ of SU(2) where π′(A) is

the operator with matrix A†−1 = A.

Exercise 8.2.8 It is obvious that αi = αj−i, and the proof of (8.12) is then

straightforward from the definitions. For example, in the case of J we have z′1 = −z2

and z′2 = z1. Within a multiplicative factor which is a positive number and is

due to the normalization constants αi, πj(C)k,` is the coefficient of zk1z
j−k
2 in the

expansion of z′`1 z
′j−`
2 where z′1 and z′2 are given by (8.7), and this should make the

first equality in (8.13) obvious. Next, we use that C∗ = J−1CJ so that πj(C
∗) =

πj(J
−1)πj(C)πj(J). We then compute πj(C

∗)(fi) using (8.12) and the formula

πj(C)(fk) =
∑
` πj(C)`,kf` to obtain the result.

Exercise 8.4.1 We use the definition of κ. The point y = κ(exp(aσ3))(x) is such

that M(y) = exp(aσ3)M(x) exp(a∗σ3), using also that exp(aσ3)† = exp(a∗σ3). This

gives the relations

y0 + y3 = exp(a+ a∗)(x0 + x3) ; y0 − y3 = exp(−a− a∗)(x0 + x3)

y1 + iy2 = exp(−a+ a∗)(x1 + ix2) ; y1 − iy2 = exp(a− a∗)(x1 − ix2) .

Wheb a = s/2 ∈ R this coincides with the formula (4.21) for Bs. When a = −iθ/2

for θ ∈ R this gives the relations y0 = x0, y3 = x3, y1 + iy2 = exp(iθ)(x1 + ix2) and

y1− iy2 = exp(−iθ)(x1− ix2) i.e. y1 = x1 cos θ−x2 sin θ and y2 = x1 sin θ+x2 cos θ

which indeed correspond to a rotation of angle θ in the plane spanned by e1 and

e2.

Exercise 8.4.2 Since κ(SL(2,C)) contains all pure boosts it suffices from (8.22)

to prove that it contains all rotations. From (8.23) κ(exp(−iθσ3/2) is a rotation of

angle θ around the third axis. Since κ is 2-to-1, if an element A ∈ SU(2) is not of

the type exp(−iθσ3/2), κ(A) is a rotation around another axis than the third axis.

Thus G := κ(SU(2)) is a group of rotations which contains all rotations around

the third axis, and at least another rotation. We will show that such a group must

be the entire group rotations. The set D of directions with the property that any

rotation around this direction belongs to G is invariant under the action of any

rotation of G. This is because if R and S are rotations, RSR−1 is a rotation of
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the same angle as S but around the image by R of the axis of rotation of S. Thus

D contains the direction of the third axis, and another direction D0, which after

rotation around the third axis, we may assume to be in the plane generated by e1

and e3. Let us call θ the angle between D0 and e3. By rotating D0 around the third

axis, to a direction D with an angle ξ with D0, 0 ≤ ξ ≤ 2θ, and then bringing D

back to the e1, e3 plane by a rotation around D0 we can obtain every direction in

the e1, e3 plane with an angle less than 3θ with e3, and the conclusion should then

be obvious.

Exercise 8.4.4 Look at the solution of Exercise D.12.4

Exercise 8.4.5 Unfortunately a direct proof of that does not seem much easier

than the solution of Exercise 8.4.4. It is much easier to appeal to Theorem D.6.4.

The only thing we have show is that the representation is irreducible. When there

is an invariant subspace in a unitary representation, the orthogonal complement

of the subspace is also invariant. Since here the representation lives in a space of

dimension 3, if it was not irreducible there would be a one-dimensional invariant

subspace, but it is quite obvious that such a subspace does not exist.

Exercise 8.4.7 Let us first observe that a pure boost L satisfies L = LT . This

is obvious if L = Bs, and in general L = RBsR−1 for a rotation R so that LT =

(R−1)TBsRT = L. Thus if A is positive Hermitian, κ(A†) = κ(A) = κ(A)T because

κ(A) is a pure boost. On the other hand, if A is unitary,

κ(A†) = κ(A−1) = κ(A)−1 = κ(A)T ,

because κ(A) is a rotation. Thus it suffices to prove that every A in SL(2,C) is of

the type A = V U where V is positive Hermitian and U is unitary2 and since then

κ((V U)†) = κ(U†)κ(V †) = κ(U)Tκ(V )T = κ(V U)T . It is plain that AA† is positive

Hermitian, so that there is an orthonormal basis in which it is diagonal. In that

basis it is obvious that it can be written as V V † where V is positive Hermitian:

the diagonal entries of V are simply the positive square roots of the eigenvalues of

AA†. It then suffices to show that U := V −1A is unitary because A = V U . But

UU† = V −1AA†V †−1 is the identity since AA† = V V †.

Exercise 8.5.3 The construction is described e.g. in [30] page 499 or in [84] page

346.

Exercise 8.5.4 We recall that ρ(AB) = ±ρ(A)ρ(B). Obviously when ρ(AB) =

ρ(A)ρ(B) then π′(AB) = π′(A)π′(B). On the other hand when

ρ(AB) = −ρ(A)ρ(B) = (−I)ρ(A)ρ(B)

then π′(AB) = π(−I)π′(A)π′(B).

Exercise 8.5.5 The group SO(3) naturally acts on C3 by multiplication of a matrix

2 This is often called the polar decomposition of A.
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by a column vector. This defines a unitary representation of SO(3) in dimension

three, and it is easy to prove that it is irreducible. What else could we obtain

by using Lemma 8.5.4 for π2? Proving that this is actually the case is a different

matter. We present a self-contained argument, which of course is difficult to invent

if one does not know some general theory. Consider the space M of 2× 2 complex

matrices with trace (sum of the diagonal coefficients) zero and the representation

θ of SU(2) such that θ(A) is the operator M → AMA†. Let us show that this

representation is equivalent to π2. Recalling the matrix J of Lemma 8.1.4, let us

denote by M′ the spaces of matrices of the type MJ for M ∈ M. Using the map

M → MJ−1 from M′ to M shows that θ is equivalent to the representation θ of

SU(2) on M such that θ′(A) is the map M → AMJ−1A−1J from M′ to itself.

In Lemma 8.1.4 we prove that for C ∈ SU(2) we have J−1C∗J = C†−1 = C, so

that J−1A†J = AT , and θ′(A) is the map M → AMAT . Now it is straightforward

to see that M′ consists of symmetric matrices so it identifies with the space of

symmetric order two tensors, and under this identification writing the formula for

θ′(A) shows that θ′ is just π2. Thus θ is equivalent to π2. We now have to prove

that the representation B → θ(ρ(B)) is equivalent to matrix multiplication by B.

Consider the map U : C3 →M given by

U(x1, x2, x3) =

(
x3 x1 − ix2

x1 + ix2 −x3

)
.

By definition of the map κ, for A ∈ SU(2), U−1θ(A)U is the restriction of κ(A)

to R3. When D is a rotation of R4 then κ(ρ(D)) is simply D, so that when B is a

rotation of R3, seen as a rotation of R3, B is the restriction of U−1θ(ρ(B))U to R3.

Exercise 8.5.6 Since −I commutes with every operator A, π(−I) commutes with

every π(A) so that from Schur’s lemma it is a multiple c1 of the identity. Since

π(−I)2 = 1 we have c2 = 1. The rest is obvious from Lemma 8.5.4.

Exercise 8.5.7 If A ∈ κ−1(B) and A′ ∈ κ−1(C) then κ(AA′) = κ(A)κ(A′) ∈ BC.

Exercise 8.6.3 Using (8.32) when A = ρ(C) where ρ is as in Section 8.5 and

recalling (8.25) we observe in particular that

∀C ∈ SO(3) ; π′(C) = λ′(C)π(ρ(C)) (P.15)

where λ′(C) := λ(ρ(C)) is of modulus 1. In words, all projective representations

of SO(3) arise from a projective representation of SU(2) obtained through the

procedure of Exercise 8.5.4.

Exercise 8.8.1 The computation is done on page 713.

Exercise 8.8.2 The wave function is an element ϕ ∈ L2 ⊗ Hj i.e. a function

ϕ : R3 → Hj . The hypothesis that measurement of the spin always yields the value

~(j/2 − k) means that this wave function is an eigenvector of the spin operator

1⊗S3 with eigenvalue ~(j/2−k), so that for each p ∈ R3, ϕ(p) is an eigenvector of
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the operator S3 with eigenvalue ~(j/2−k). According to the definition (8.35) of S3

this implies that πj(exp(−iθσ3/2))(ϕ(p)) = exp(i(j/2− k)θ)ϕ(p). Next, the action

of an element A of SU(2) on the wave function is given by (8.34), and the element

A corresponding to a rotation of angle θ around the z axis is A = exp(−iθσ3/2)). In

the ideal case where ϕ(p) is not zero only when p is in the direction of the z axis,

ϕ(κ(A)(p)) = ϕ(p) and then πj(A)(ϕ(κ(A)(p))) = πj(A)(ϕ(p))) = exp(i(j/2 −
k)θ)ϕ(p) which is the desired result.

Exercise 8.9.4 Denoting by S(A) the first matrix and by S′ the second one, this

should be obvious from the relations S(A)S(B) = S(AB) and S′S(A)S′ = S(A†−1).

Exercise 8.10.1 (a) Just reverse the manipulations leading from (8.47) to (8.51).

(b) Taking determinants in the relation γ(θ(L)(x)) = Lγ(x)L−1 proves that θ(L) ∈
O(1, 3). To prove that Pin(1, 3) is a group, consider two elements L,L′ of this

set. Then L′Lγ(x)L−1L′−1 = L′γ(θ(L)(x))L′−1 = γ(θ(L′)θ(L)(x)) so that L′L ∈
Pin(1, 3) and θ(L′L) = θ(L′)θ(L) (etc.) (c) It is better to take for granted that the

linear span of the product of γ matrices is the set of all matrices, as there is nothing

to learn from checking that. Prove then that a matrix which commutes with every

matrix is a multiple of the identity, which is straightforward. (d) It follows from

(8.47) that S(A) ∈ Pin(1, 3) and that θ(S(A)) = κ(A). Thus θ(S(SL+(2,C))) =

κ(SL+(2,C)). And we proved in Section 8.9 that κ(SL+(2,C)) = O+(1, 3). (e) It is

obvious that S is one-to-one. We have already proved that it is an homomorphism

from SL+(2,C) into θ−1(O+(1, 3)), and we have to prove that it is onto. According

to (c) given any C ∈ O+(1, 3) we can find D ∈ SL+(2,C) with θ(S(D)) = C. Let us

define −D in the obvious manner if D ∈ SL(2,C) and −D = P ′(−A) if D = P ′A

for A ∈ SL(2,C). Then κ(−D) = κ(D), so that θ(S(D)) = θ(S(−D)). This means

that we have found two different elements of S(SL+(2,C)) whose image by θ is C.

Then (d) implies that S(SL+(2,C)) contains θ−1(A). (f): It is straightforward to

compute that θ(T )0
0 = −1, θ(T )ii = 1 for 1 ≤ i ≤ 3, the other being zero. This

“reverses the flow of time”. (g) We may guess the rules from the previous matrix

expressions: T ′2 = −1, P ′T ′ = T ′P ′, T ′A = −A†−1T ′. Let us denote by SL(2,C)∗

the group generated by SL+(2,C) and T ′, and extend S to SL(2,C)∗ by defining

S(T ′) = T . We then prove as in (e) that S is an isomorphism from SL(2,C)∗ to

Pin(1, 3).

Exercise 8.10.2 (a) The equivalence is given by the map S(P ′) since S(A†−1) =

S(P ′)S(A)S(P ′)−1. (b) It should be transparent that if S is the representation (j, `)

of SL(2,C) then A 7→ S(A†−1) is the representation (`, j) and these can be the

equivalent only if j = `. S(P ′) then has to exchange the actions of A and A†. I see

two maps which achieve this, namely the map (xi1,...,i`,j1,...,j`) 7→ (xj1,...,j`,i1,...,i`)

and the map (xi1,...,i`,j1,...,j`) 7→ (−xj1,...,j`,i1,...,i`) but I could not prove that there

are no others.

Exercise 8.10.4 (a) This is because S(A)S(P ) = S(P )S(A†−1). (b) Indeed the
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space G∩G′ is invariant under S so that it reduces to {0}. (c) Since the space G⊕G′
is invariant under S and since S is irreducible. (d) Let us denote by θ the restriction

of S to SL(2,C) and G. It is irreducible because if K is an invariant subspace of G
for θ then K⊕S(P ′)(K) is an invariant subspace of S. Let us then consider the map

T : G⊕G → H = G⊕G′ given by T (x, y) = x+S(P ′)(y). Using again S(A)S(P ′) =

S(P ′)S(A†−1) one obtains the relations T−1S(A)T (x, y) = (θ(A)(x), θ(A†−1)(x))

and T−1S(P ′)T (x, y) = (y, x).

Exercise 9.1.1 The point is that then ϕ(A−1(p)) 6= 0 only for p = A(p′).

Exercise 9.2.1 We have (−A)(b) = κ(−A)(b) = κ(A)(b) = A(b).

Exercise 9.2.3 The point is that the element (0,−I) commutes with every element

(a,A) because −Ia = κ(−I)a = a. Thus by Shur’s lemma π(0,−I) is a multiple

of the identity. In fact, it is ± the identity since its square is the identity. And

when ρ(A)ρ(B) = −ρ(AB) we have (a, ρ(A))(b, ρ(B)) = (a+ ρ(A)(b), ρ(A)ρ(B)) =

(a+Aa, ρ(AB))(0,−I) since ρ(A)a = κ(ρ(A))(a).

Exercise 9.4.3 Since (Dp)
−1D′p) belongs to the little group, on which V is unitary,

the operator V (D−1
p D′p) is unitary. Now, using (9.7) we obtain

U(a,A)(W (ϕ))(p) = exp(i(a, p)/~)V (D−1
p ADA−1(p))[W (ϕ)(A−1(p))] ,

and since W (ϕ)(A−1(p)) = V (D−1
A−1(p)D

′
A−1(p))ϕ(A−1(p)) the right-hand side is,

with obvious notation,

V (D−1
p D′p)

(
exp(i(a, p)/~)V (D′−1

p AD′A−1(p))[ϕ(A−1(p))]
)

= W (U ′(a,A)(ϕ))(p) .

Exercise 9.5.5 (a) We have
∫

dµ(A)f(CA) =
∫∫

dλm(p)dν(B)f(CDpB). Now,

CDp = DC(p)D where D ∈ SU(2), so that by left-invariance of dν we have∫
dν(B)f(CDpB) =

∫
dν(B)f(DC(p)B) and thus

∫∫
dλm(p)dν(B)f(CDpB) =∫∫

dλm(p)dν(B)f(DC(p)B) =
∫

dµ(A)f(A) as is shown by the change of variables

p→ C−1(p) and the invariance of dλm. (b) Since DpB(p∗) = Dpp
∗ = p we have∫

dµ(A)‖V (A)−1ϕ(A(p∗))‖2 =

∫∫
dλm(p)dν(B)‖V (B)−1V (Dp)

−1(ϕ(p))‖2 .

Now V (Dp)
−1(ϕ(p)) ∈ V and since V (B)−1 is unitary on V we

have ‖V (B)−1V (Dp)
−1(ϕ(p))‖2 = ‖V (Dp)

−1(ϕ(p))‖2 = ‖ϕ(p)‖2p. Thus∫
dµ(A)‖V (A)−1ϕ(A(p∗))‖2 =

∫∫
dλ(p)dν(B)‖ϕ(p)‖2p =

∫
dλm(p)‖ϕ(p)‖2p = ‖ϕ‖2.

(c) There still exists a left-invariant measure on the little group, but it cannot be

a probability because the little group is not compact, and the previous argument

does not work.

Exercise 9.5.8 By definition ‖u‖R,p = ‖D−1
p u‖ and ‖u‖L,p = ‖D†pu‖. We assume

that Dp = D†p so that D†pD
−2
p = D−1

p . Thus ‖W (ϕ)(p)‖L,p = ‖ϕ(p)‖R,p . Now,

UL(a,A)W (ϕ)(p) = exp(i(a, p)/~)A†−1D−2
A−1(p)ϕ(A−1(p))
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WUR(a,A)(ϕ)(p) = exp(i(a, p)/~)D−2
p Aϕ(A−1(p))

and these quantities are equal since A†−1D−2
A−1(p) = D−2

p A as a consequence of the

fact that B := D−1
p ADA−1(p) ∈ SU(2) so that B = B†−1.

Exercise 9.6.5 One of the goals of this exercise is to identify the little group

as a semi-direct product. This allows one to find its representations. (a) There

is no difficulty checking that this is a group, e.g. (c, a)−1 = (−ca−2, a−1), and

(b) is also straightforward. The “double cover” arises from the fact that (c,±a)

correspond to the same transformation. Denoting by A(a, b) the matrix (9.40) it

holds A(a, b)A(a′, b′) = A(aa′, ab′ + ba′∗) and indeed

(aa′(ab′ + ba′∗), aa′) = (a2a′b′ + ab, aa′) = (ab, a)(a′b′, a′) .

For (d) observe that unitarity is obvious as | exp(i Im (αb∗w))| = 1 and simply write

U(c′, a′)U(c, a)(f)(w) = (aa′)j exp(i Im (αc′∗w)) exp(i Im (αc∗a′−2w))f((aa′)−2w) ,

and this is U((c′, a′)(c, a))(f)(W ) since c′∗ + c∗a′−2 = (c′ + a′2c)∗.

Exercise 9.6.8 (a) and (b) are straightforward. So is (c). Indeed, for B =(
a′ b′

c′ d′

)
∈ SL(2,C) we have B−1 =

(
d′ −b′
−c′ a′

)
∈ SL(2,C), B−1 · z =

(−c′+ a′z)/(d′− b′z), f(B, z) = d′− b′z, f(A,B−1 · z) = d− b(−c′+ a′z)/(d′− b′z)
and f(BA, z) = dd′ + bc′ − (db′ + ba′)z = f(B, z)f(A,B−1 · z). (d) For p ∈

X0 \ {0}, we have M(p) = (p0 + p3)ZZ† where Z is the column matrix

(
1

z

)
for z = (p1 + ip2)/(p0 + p3). The map p 7→ z = (p1 + ip2)/(p0 + p3) provides an

identification of the quotient of X0 \{0} by the equivalence relation pRp′ if p′ = λp

for some λ > 0 identifies with C and the action of SL(2,C) on X0 \ {0} respects

this equivalence relation. The quotient action of SL(2,C) on C is the one we study

here, and (9.46) implies (9.45) for the function occurring in (9.42). .

Exercise 9.6.9 (a) is obvious. It is obvious that Hj is invariant under the trans-

formations V (a,A). To prove (b), writing what this means boils down to proving

that p(Av) = A(p(v)). This is because M(p(Av)) = Avv†A† = AM(p(v))A† =

M(A(p(v))). (c) It is obvious that w(p)w(p)† = M(p) so that p(w(p)) = p. When

vv† = M(p) then v = θw(p) where |θ| = 1. Then θ = v1/|v1| since w(p)1 ≥ 0.

(d) we have (Bw(p))(Bw(p))† = Bw(p)w(p)†B† = BM(p)B† = M(B(p)) and the

result by (c). (e) We compute

TU(a,A)(f)(p) = exp(i(a, p(w(p)))f(A−1w(p)) . (P.16)

Now, by (d) we have A−1w(p) = θw(A−1(p)) for θ = A−1(w(p))1/|A−1(w(p))1|, so

that f(A−1w(p)) = θjf(w(A−1(p))). Writing what this means makes it obvious that

θ = ξ(A,w(p))/|ξ(A,w(p)|, so that the right-hand side of (P.16) is V (a,A)T (f).

Finally we show that T is proportional to a unitary map. For this we note that
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Lebesgue’s measure on C2 is invariant by the action of SL(2,C). Since p(Av) =

Ap(v), the image of Lebesgue’s measure by the map v 7→ p(v) is a measure on X0

which is invariant under the action of SL(2,C). Thus this image is proportional to

λ0.

Exercise 9.6.11 One replaces V (A) by V (A†−1) and g by the tensor g′ such that

g′n1,...,nj = 0 unless all indices equal two, in which case gn1,...,nj = 1. Formula (9.48)

is unchanged. (It would also be possible to keep the same tensor g and to replace

V (A) buy V (A∗), but the formulas in the next exercise are not as clean.)

Exercise 9.6.14 One shows that (9.50) has to be replaced by Vp = {u ∈ H0 =

C2,M(p)(u) = 0}. One replaces (9.52) by

U ′(a,A)(ϕ)(p) = exp(i(a, p)/~)A†−1[ϕ(A−1(p))] (P.17)

on the space H′ of functions ϕ which satisfy M(p)(ϕ(p)) = 0, provided with the

norm (9.48). see previous exercise.

Exercise 9.6.15 In the case p = p∗ the relation (M(Pp∗)⊗I⊗· · ·⊗I)(u) = 0 means

that all components ui1,...,ij of u are zero unless i1 = 1 and since u is a symmetric

tensor the only non-zero component is for i1 = . . . = ij = 1. Thus u ∈ V if and only

if (M(Pp∗)⊗I⊗· · ·⊗I)(u) = 0. For the general case an element u belongs to Vp if and

only if u = D⊗jp (v) for v ∈ Vp∗ . Consider the operator U = DpM(Pp∗)D−1
p . Then U

satisfies UDp = DpM(Pp∗) so that (U⊗I⊗· · ·⊗I)(u) = D⊗jp (M(Pp∗)⊗· · ·⊗I)(v),

and hence u ∈ Vp if and only if (U ⊗ I ⊗ · · · ⊗ I)(u) = 0. Finally U = DpD
†
pM(Pp)

since M(Pp) = D†−1
p M(Pp∗)D−1

p by (9.51).

Exercise 9.7.2 I find striking that in the massless case all these representations

live on the same Hilbert space, see Proposition 9.6.6.3

Exercise 9.7.3 The point of (a) is simply that κ(exp(−iθu · σ/2)) = R(θ,u). For

(b), recalling that Ap stands for κ(A)(p), when u = p/|p| and A = exp(−iθu ·σ/2)

we have A−1(p) = p so that from (9.52) and since W (A) = U(0, A)

W (κ(exp(−iθu · σ/2))(ϕ)(p) = exp(−iθu · σ/2)ϕ(p)

and from (9.60) we get (9.61). For (c) since M(p) = pµσµ we have M(Pp) =

p0σ0−p ·σ. Since p ∈ X0 we have p0 = |p|. Moreover, since u = p/|p| the relation

M(Pp)(ϕ)(p) = 0 implies u · σ(ϕ(p)) = ϕ(p). Hence (9.61) implies Ju(ϕ)(p) =

−~/2ϕ(p). That is, ϕ is an eigenvector of the momentum operator Ju. It represents

a state which has a momentum (=~ times spin) −~/2 along the direction of u.

Exercise 9.8.2 To check the algebra, we set

g(C) := π(a,A)(f)(C) = exp(i(C−1(a), p∗)/~)f(A−1C) , (P.18)

3 Well, all the Hilbert spaces are the same, but I am sure you see what I mean.
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so that

π(b, B)π(a,A)(f)(C) = π(b, B)(g)(C) = exp(i(C−1(b), p∗)/~)g(B−1C)

= exp(i(C−1(b) + C−1(B(a)), p∗)/~)f(A−1B−1C)

and this is indeed π((b, B)(a,A))(f)(C). Consider C,D ∈ SL(2,C) with C(p∗) =

D(p∗). Taking A = D,B = D−1C in (9.66) yields

f(C) = V (D−1C)−1f(D) = V (C−1D)f(D) . (P.19)

In particular ‖f(C)‖ = ‖f(D)‖, so that ‖f(Dp)‖ is independent of the choice of

Dp. This shows also that ‖f(A−1Dp)‖ = ‖f(DA−1(p))‖, and from this it is straight-

forward to check that π(a,A) is unitary.

Exercise 9.8.3 Proceeding as in Exercise 9.5.5 (b) we write
∫

dµ(A)‖f(A)‖2 =∫
dλm(p)dν(B)‖f(DpB)‖2. Now by (9.66) we have f(DpB) = V (B−1)f(Dp) and

since V (B−1) is unitary we have ‖f(DpB)‖ = ‖f(Dp)‖ and the result follows.

Exercise 9.8.4 If instead of p∗ we use the specific point C(p∗) and a representation

V ′ of the little group G′ of C(p∗) the state space is the space F ′ of functions f :

SL(2,C)→ V for which f(AB) = V ′(B)−1f(A) for A ∈ SL(2,C) and B ∈ G′, and

the representation is given by π(a,A)(f)(B) = exp(i(a,BC(p∗))f(A−1B). When

V ′(B) = V (C−1BC) for B ∈ G′, an intertwining map T from the space F of

functions which satisfies the condition (9.66) to F ′ is given by T (f)(A) = f(AC).

The details are straightforward.

Exercise 9.8.5 Please read Section A.4. One can take for λ the counting measure,

λ(A) = cardA, and this exercise is a small variation on the theme of Theorem 9.8.1.

Exercise 9.8.6 Please read Section A.5 after which everything should look very

simple.

Exercise 9.10.2 From (8.47) we have S(A)γ(A−1(p)) = γ(p)S(A) and thus

U(a,A)D̂(ξ)(p) = exp(i(a, p)/~)S(A)γ(A−1(p))ξ(A−1(p))

= γ(p)U(a,A)(ξ)(p) = D̂U(a,A)(ξ)(p) .

Exercise 9.10.5 The only difference is that for u ∈ G′ one has u†γ0u = −‖u‖2 so

that there has to be a minus sign in the definition of the inner product.

Exercise 9.11.2 Starting with the statement γµS(A) = S(A)γνκ(A)νµ we may

first raise µ both sides to obtain γµS(A) = S(A)γνκ(A)νµ. We may then raise the

index ν in γν while lowering the index ν in κ(A)νµ as is done in Exercise (4.1.5).

Exercise 9.11.3 (a) is integration by parts, using that (x, p) = xµpµ. (b) The

Dirac operator D := γµ∂µ satisfies

D2 = γµγν∂µ∂ν =
1

2
(γµγν + γνγµ)∂µ∂ν = ηµν∂µ∂ν = ∂µ∂µ . (P.20)
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If a function f satisfies the Dirac equation, that is i~Df = mcf , then (i~)2D2f =

m2c2f and hence ~2∂µ∂µf +m2c2f = 0. Every component of f satisfies the Klein-

Gordon equation. (c) Follows from the relation i~∂̂µf(p) = pµf̂(p). (d) It follows

from (c) that the Fourier transform ϕ = f̂ satisfies the equation D̂(ϕ) = mcϕ so

that by (9.71) we have (p2−m2c2)(ϕ)(p) = 0: this Fourier transform is zero outside

Xm∪(−Xm) (which we already knew since each component is the Fourier transform

of the function satisfying the Klein-Gordon equation). It is then a function from

Xm ∪ (−Xm)→ C4. When f is real-valued then f̂(−p) = f̂(p)∗ so that ϕ = f̂ . (e)

We use

f̂(κ(A−1)(p)) =

∫
d4x exp(i(κ(A−1)(p)), x)/~)f(x)

=

∫
d4x exp(i(p, x)/~)f(κ(A−1(x)) ,

by change of variable x→ κ(A−1)(x) and Lorentz invariance. (f) These two relations

are Fourier transforms of each other.

Exercise 9.12.3 Recalling the formula (9.52), define the representation Ũ(a,A) :=

U(Pa,A†−1). Then the map T given by T (ϕ)(p) = ϕ(Pp) shows that Ũ(a,A) is

unitarily equivalent to the representation U ′(a,A) of (P.17).

Exercise 9.12.4 We check that JM(p)∗J† = M(Pp). Consequently (Jv∗)(Jv∗)† =

JM(p(v))∗J† = M(Pp(v)) and thus p(Jv∗) = Pp(v). We then note from

Lemma 8.1.4 that A†−1J = JA∗ to obtain the formula TV (Pa,A†−1)(v) =

V (a,A)T (f)(v).

Exercise 9.12.11 Generally speaking, given Q ∈ SL+(2,C) and a representation

π of P∗ one may define as in (9.12.1) a representation πQ of P∗ by the formula

πQ(a,A) = π(Qa,QAQ−1). Intuitively, if π is associated to a given particle, the

representation πQ is associated to “the image of the particle through Q”. The point

is that when Q−1Q′ ∈ SL(2,C) then πQ and πQ′ are equivalent. (This applies in

particular to the case where Q is parity and Q′ mirror symmetry.) This equivalence

is a consequence of the following immediate formula: if W = π(0, A) for A ∈
SL(2,C) then WπQW

−1 = πQA.

Exercise 9.13.5 The trick is as always to transport ϕ(p) to Vp∗ using V (Dp)
−1.

One then obtains that the representation is equivalent to the representation of

R4 oO(3, 1) on the space of functions Xm → C3 given by the formula

U(a,A)(ϕ)(p) = exp(i(a, p))(D−1
p ADA−1(p))(ϕ(A−1(p)),

where D−1
p ADA−1(p) is viewed as an orthogonal transformation of C3.
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Exercise 10.2.2 Write! That is,

W (D)W (C)(ek) = W (D)
(∑
`≤N

S(C−1)k,`e`

)
=
∑
`≤N

S(C−1)k,`W (D)(e`)

=
∑
`≤N

S(C−1)k,`
∑
`′≤N

S(D−1)`,`′e`′ =
∑
`′≤N

(∑
`≤N

S(C−1)k,`S(D−1)`,`′
)
e`′

=
∑
`′≤N

S(C−1D−1)k,`′e`′ =
∑
`′≤N

S((DC)−1)k,`′e`′ = W (DC)(ek) .

Exercise 10.4.5 Note that Π is simply the orthogonal projection of CN on G. Since

Π = W †, for x ∈ CN , y ∈ G we have

(ΠS(C)†x, y) = (x, S(C)Wy) = (x,WS(C−1)†Wy) = (S(C−1)Πx, y) ,

where we have used that S(C)Wy = S(C−1)†Wy = WS(C−1)†Wy because S(C)

is unitary on G and since S(C−1)†Wy ∈ G. This proves (a). The first asser-

tion of (b) follows from (10.21), and the second holds because S(C)ΠpS(C)† =

S(C)S(Dp)ΠS(Dp)
†S(C)† = S(CDp)ΠS(CDp)

† and CDp(p
∗) = C(p).

To prove (10.22) we compute

U(c, C)(ϕk) = exp(i(c, p)/~)S(C)[ϕk(C−1(p)] .

Now when ϕk = ϕk(f) = Π(f̂gk) we have ϕk(C−1(p)) = ΠC−1(p)(f̂(C−1(p))gk)

and S(C)ΠC−1(p) = ΠpS(C−1)†. Using that S(C−1)†(gk) =
∑
`≤N S(C−1)∗k,`g` we

obtain

U(c, C)(ϕk)(p) =
∑
`≤N

S(C−1)∗k,`Πp(exp(i(c, p)/~)f̂(C−1(p))g`)); .

Since exp(i(c, p)/~)f̂(C−1(p)) is the Fourier transform of V (c, C)f this proves the

formula 10.22. Applying A to (10.22) implies (10.8).

Exercise 10.5.3 This treatment can be found in [24], Sections 7.3 to 7.5, but it

might require dedication to plunge there.

Exercise 10.6.3 (a) We assume that S is irreducible. In Appendix D we prove

that S is equivalent to a representation of the type (n1, n2) as in Definition 8.3.2.

The restriction of S to G = SU(2) is (equivalent to) the representation πn1
⊗ πn2

of Proposition D.7.6. We also prove in Appendix D that for j = n1 + n2, n1 + n2 −
2, . . . , |n1 − n2| there is exactly one subspace G for which the restriction of S to

SU(2) and G is equivalent to πj . Then V = V ′ = πj .

(b) Taking the conjugate of the matrix relation (10.32) yields V ∗(C) = Z−1S(C)Z.

Since V ∗(C) = V (C∗) = V (J−1)V (C)V (J) this implies (10.38).

(c) Proposition 10.4.2 implies that ZV (J−1) = λW for some λ ∈ C. Thus Z =

W ′∗ = λWV (J), and (10.36) yields v(p, q) = λS(Dp)WV (J)(fq). Using (8.12),

yields (for a different λ) that for 0 ≤ q ≤ j we have v(p, q) = λ(−1)qu(p, j − q).
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Exercise 10.7.2 We consider only the first of these quantities. For 1 ≤ k ≤ N

the quantities (u(p, q)k) form a column vector u(p, q) = S(Dp)W (fq), as we saw

in (10.27). In a similar manner, the quantities v(p, q)k form a column vector

v(p, q) = S(Dp)W
′(fq)

∗. Denote by vT the row vector which is the transpose of

a column vector, and by v† the row vector which is the conjugate-transpose of v.

Thus u(p, q)v(p, q)T is an N × N matrix, and the element of this matrix located

on row k and column k′ is u(p, q)kv(p, q)k′ . Therefore it suffices to show that the

matrix ∑
q≤n

u(p, q)v(p, q)T = S(Dp)
∑
q≤n

W (fq)W
′(fq)

†S(Dp)
T (P.21)

is independent of the choice of Dp and of the orthogonal basis of H0. That the

matrix M :=
∑
q≤nW (fq)W

′(fq)
† is independent of the orthonormal basis fq is

rather obvious so we do not detail it. Choose another element D′p with D′p(p
∗) = p,

so that D′p = DpC where C leaves p∗ invariant. It suffices to show that for such C

we have S(C)MS(C)T = M . Now

V (C) = W−1S(C)W = W
′−1S∗(C)W ′ (P.22)

is a unitary transformation of H0, so that

W−1S(C)W (fq) = W
′−1S(C)∗W ′(fq) =

∑
j≤n

αjqfj ,

where the αjq are the coefficients of an orthonormal matrix. Thus S(C)W (fq) =∑
j≤n α

j
qW (fj) whereas in a similar manner S(C)∗W ′(fq) =

∑
i≤n α

i
qW
′(fi) and

thus, taking adjoints, W ′(fq)
†S(C)T =

∑
i≤n α

i∗
q W

′(fi)
†. The result follows since∑

q≤n α
j
qα

i∗
q = δji .

Exercise 10.12.1 We treat only the case of (10.63) since we have already treated

the case of (10.64) in a related situation. What this means is that for a test function

f we have ψµ(∂µf) = 0. This equation is satisfied separately for ψ+ and ψ−. We

treat the case of ψ−, for which (10.52) reads

ψ−µ(f) =
∑
q≤3

∫
d3p√

2cωp(2π~)3
f̂(p)(Dp)

µ
qa
†(p, q) .

Since i~∂̂µf(p) = pµf̂(p) to prove that ψ−µ(∂µf) = 0 it suffices to prove that

pµ(Dp)
µ
q = 0. Now we have (p,Dpeq) = (Dpp

∗, Dpeq) = (p∗, eq) = 0 which means

exactly pµ(Dp)
µ
q = 0.

Exercise 10.19.1 Using that D†−1
p = DPp and letting C =

√
2mc(mc+ p0) one

gets
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Cu(p, 1) =


mc+ p0 − p3

−p1 − ip2

mc+ p0 + p3

p1 + ip2

 ; Cu(p, 2) =


−p1 + ip2

mc+ p0 + p3

p1 − ip2

mc+ p0 − p3

 .

Exercise 10.19.2 Parity acts on H = L2(Xm,C4,dλm) by P ′(f)(p) = f(Pp). Let

us denote by PB the extension of this operator to the fermion Fock space. The

required property is

PB ◦ ψ(x) ◦ PB = S(P ′)ψ(Px) . (P.23)

This holds separately for ψ+ and ψ−. Making the change of variables p→ −p and

using that (x, p) = (Px, Pp) we obtain from (10.110)

ψ+(Px) =
∑
q≤2

∫
d3p

(2π~)3

c
√
m√

2ωp

exp(−i(x, p)/~)u(−p, q)a(−p, q) .

Now, u(−p, q) = S(DPp)fq, and DPp = D†−1
p = P ′DpP

′. Since S(P ′)(fq) = fq as

is apparent from the definition of fq it holds that u(−p, q) = S(P ′)S(Dp)(fq) =

S(P ′)u(p, q). Thus it suffices to prove that PB ◦a(p, q)◦PB = a(−p, q). This follows

from the relation PBA(f)PB = A(Pf) and (10.25).

Exercise 10.20.1 The dimension of the Lagrangian density (10.120) must be

[ml−1t−2]. The term mcψ̄ψ of this density shows that ψ should be of dimension

[l−1t−1/2]. In (10.109) the term a†(p, q) has dimension [l3/2], integration creates

a dimension [l−3], and the factor c
√
m/
√
ωp has dimension [l1/2t−1/2], giving the

correct dimension. Getting this correct dimension motivated our normalization of

the Dirac field.

Exercise 10.21.1 The proof of the last relation is identical to the case of the Dirac

field. The first two relations are no longer trivial because now the particle is its own

anti-particle, but one may simply reproduce the arguments that were given for the

massive Weyl spinor.

Exercise 10.22.1 (a) It follows from (9.85) (or is straightforward to compute)

that J(p∗) = (1, 0, 0,−1) = Pp∗. (b) If B ∈ SL(2,C) and P ′B ∈ G+
0 then A :=

P ′BQ−1 = P ′BJ−1P ′ = (BJ−1)†−1 ∈ SL(2,C) and also A ∈ G+
0 since G+

0 is a

group. Thus A ∈ SL(2,C) ∩ G+
0 = G0 (c) Follows from Lemma 8.1.4. (d) When

A ∈ SL(2,C) we define V +(AQ) = V +(A)V +(Q). We then check by looking at

cases that V +(RS) = V +(R)V +(S) when R,S are of the type A or AQ for A ∈
SL(2,C).

Exercise 10.22.3 (a) Generally speaking if V is a representation of SL(2,C) in

a space V one may construct a representation W of SL+(2,C) in V × V using

the formula W (A)(x, y) = (V (A)x, V (A∗)y) and W (P ′)(x, y) = (V (−J)y, V (J)x).
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The verification that these formuals make sense is straightfoward using the for-

mula J−1C∗J = C†−1 of Lemma 8.1.4. Then W (Q)(x, y) = (y, V (−I)x). Let us

chose V = C2 ⊗ C2 and V (A) = A ⊗ A, so that V (−J) = V (J). The tensor

c = (cn1,n2)n1,n2∈{1,2} such that c2,2 = 1 and all the other components are zero is

such that when A ∈ G0 we have V (A)c = π̂2(A)c and V (A∗)c = π̂−2(A)c. The sub-

space G of C4 × C4 consisting of the vectors (αc, βc) for α, β ∈ C has the required

properties. (b) There does not exist a vector c ∈ C4 such that S(A)c = π̂2(A)c

when A ∈ G0.

Exercise 11.1.2 Since (B†B(x), x) = ‖B(x)‖2 ≥ 0 an eigenvalue of B†B is ≥ 0, so

the eigenvalues of H0 +εHI are ≥ −g2|γ|2. Recalling Exercise 2.17.2 an eigenvector

of a of eigenvalue −gγ is an eigenvector of H0 + gHI of eigenvalue −g2|γ|2. For

(b), here we have vn = en, and HI(e0) = γe1, so (e0, HI(e0) = 0 and only the term

n = 1 contributes in (11.13).

Exercise 11.1.3 To minimize the quantity (11.17), if (vn)n≥0 is a basis of eigen-

vectors of H0 with eigenvalues λn (and λ0 = 0) let us look for w1 of the type∑
n≥1 αnvn, so that the quantity (11.17) is simply

∑
n≥0 λn|αn|2+2Reβ∗nαn, where

βn = (vn, HIv0). This is minimized by the choice αn = −βn/λn, which is exactly

the choice (11.10). Also the quantity (11.17) has exactly the value (11.12). If you

are confused by the fact that here we take g = 1 you may try to put the g back.

Exercise 11.2.1 Straightforward:

i
∂

∂t
|ψ(t)〉 = exp(itH0)(−H0)|ψ(t)〉+ exp(itH0)H(t)|ψ(t)〉

Exercise 11.2.3 the hint is immediate. One then applies (11.37) to t − s rather

than t, one uses that since HI(θ) = U0(−θ)HIU0(θ) then U0(−s)HI(θ)U0(s) =

HI(−s− θ) and one changes θj into θj + s.

Exercise 11.4.1 Straightforward.

Exercise 11.5.2 There are three momenta operators, one for each coordinate.

Using vector notation to describe the three components simultaneously, the operator

is given by P|m, (m`)〉 = (m+
∑

`m``)|m, (m`)〉. It is obvious that this operator

commutes with H0 since they have a common basis of eigenvectors. We prove that

each operator HI,k commutes with P. This is because

〈m, (m`)|HI,kP|n, (n`)〉 = (n+
∑
`

(n``))〈m, (m`)|HI,k|n, (n`)〉 ,

〈m, (m`)|PHI,k|n, (n`)〉 = (m+
∑
`

(m``))〈m, (m`)|HI,k|n, (n`)〉 ,

whereas by (11.64)

〈m, (m`)|HI,k|n, (n`)〉 = 〈(m`)|ak|(n`)〉
∫
B

d3xfm(x)∗fn(x)fk(x)
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is not zero only if m = n+ k and mk = nk − 1 and m` = n` for ` 6= k. A similar

argument proves that each H†I,k commutes with P.

Exercise 11.5.4 (a) is just another way to write integration in polar coordinates,

and (b) is a straightforward application of (a). As for (c), it is the application

here of the formula (4.40), here
∫

drη(r)δ(f(r)) = η(r0)/|f ′(r0)| when the equation

f(r) = 0 has a unique root r0.

Exercise 11.5.5 When there is no potential one should replace (11.71) by

c(m,n,k, t) = g2θ(k2)2C(m,n,k)2f(Em − En − ωk, t) , (P.24)

where Em = m2/2M , and where C(m,n,k) = 1/L3/2 if m = k + n and is zero

otherwise. To compute the probability of transition from the state of momentum

m to any other state one has to perform the summation over n, or equivalently

over k. Approximating this summation by an integral yields the expression

g2

∫
d3p

(2π)32ωp
f
(m2

2M
− (m− p)2

2M
− ωp, t

)
.

and the result by the usual approximation of f(x, t).

Exercise 11.5.8 I should not waste your chance for a refund of this book, should

I?

Exercise 12.2.5 Consider continuous functions ϕn with compact support with

‖ϕn‖ ≤ 2−n and ϕn(0) ≥ 2n+1. Thus for any sequence (tk) the function ϕ =∑
k≥1 U0(−tk)(ϕk) ∈ L2. Now

|U0(tn)ϕ(0)| ≥ ϕn(0)−
∑
k 6=n

|U0(tn − tk)ϕk(0)|; .

and one may recursively choose the points tn so that for n 6= k one has |U0(tn −
tk)ϕk(0)| ≤ 2−max(k,n). For this we use that when ψ is continuous with compact

support U(t)ψ converges uniformly to zero, so we simply choose tn large enough

that for k < n we have both |U(tn− tk)ϕk(0)| ≤ 2−n and |U(tk − tn)ϕn(0)| ≤ 2−n.

Exercise 12.2.7 According to (11.23), in the interaction picture the state ψ evolves

at time t into U0(t)−1U(t)ψ, so that the state ψ = U(t)−1U0(t)ϕ evolves at time t

into ϕ. Taking t = −∞ and ϕ = |ξ〉, the state |ξ〉in = U(−∞)−1U0(−∞)|ξ〉 evolves

at time t = −∞ into |ξ〉.

Exercise 12.4.2 In the case where there is no scattering, Ξ ≡ 0, it follows from

(12.32) that Φ(|ϕ〉u) =
∫

d3pθ(p)|〈p|ϕ〉|2/(2π~)3 so that this quantity must be zero

in order for the quantity
∫
‖u‖≤R d2uΦ(|ϕ〉u) to stay bounded as R→∞.

Exercise 13.12.1 Indeed we then have p1 = −p2 so that p0
1 = p0

2. Since 0 =

p1 + p2 = p3 + p4 we also have p3 = −p4 so that p0
3 = p0

4. Since p1 + p2 = p3 + p4

we then have p0
1 = p9

2 = p0
3 = p0

4, from which the claim follows.
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Exercise 13.3.1 We have S† =
∑
n≥0 S

†
n where

S†n =
(ig)n

n!

∫
d4x1 . . .

∫
d4xnT̄ H(x1) · · ·H(xn) , (P.25)

and where T̄ denotes “reverse time ordering”. Computing S†S we obtain 1 +∑
n≥1 g

nAn where obviously A1 = 0 and

2A2 =

∫
d4x1d4x2(H(x1)H(x2) +H(x2)H(x1)− T H(x1)H(x2)− T̄ H(x1)H(x2))

is zero because the integrand is zero. To prove that A3 is zero, denoting H(xi) by

hi one reduces to the identity T (h1h2h3)−h1T (h2h3)−h2T (h1h3)−h3T (h1h2) +

T̄ (h2h3)h1 + T̄ (h1h3)h2 + T̄ (h1h2)h3− T̄ (h1h2h3) = 0, which is proved by writing

what it means when x1 ≥ x2 ≥ x3.

Exercise 13.5.1 Since both sides are anti-symmetric tensors, it suffices to consider

the case k = 1, k′ = 2 and the right-hand side is the determinant of C−1 which is

1.

Exercise 13.9.1 (a) We have

ReB = 2

∫
{0≤θ1≤θ2≤t}

dθ1dθ2Re (α(θ2)∗α(θ1)) ,

and since Re (α(θ2)∗α(θ1)) = Re (α(θ1)∗α(θ2)) we get

ReB =

∫
{0≤θ1,θ2≤t}

dθ1dθ2Re (α(θ2)∗α(θ1)) = |A|2 .

For (b), U(t)|0〉 is of the type U(t)|0〉 =
∑
k≥0 λkek. Then 〈0|akU(t)|0〉 =√

k!λk and since |〈0|akU(t)|0〉|2 = |〈0|akV (t)|0〉|2 by (13.53) we get |λk|2 =

|A|2k exp(−ReB)/k! which sums to 1 by (a), and |λk|2 is of the probability that

U(t) has k quanta of oscillation.

Exercise 13.10.5 Just compute the integral:∫ ∞
−∞

dt exp(−|t|a+ itω) =

∫ 0

−∞
dt exp(ta+ itω) +

∫ ∞
0

dt exp(−ta+ itω)

=
1

a+ iω
− 1

−a+ iω
=

2a

ω2 + a2
, (P.26)

and (13.64) is just application of the inverse Fourier transform to this relation.

Denoting by ωp,ε the root of the equation z2 = p2+m2−iε with negative imaginary

part, one uses (13.64) with a = iωp,ε to obtain (13.62).

Exercise 13.10.6 (a) You would write

∆F (x)2 = lim
ε→0+

∫
d4p

(2π)4

d4p′

(2π)4

exp(−i(x, p+ p′))

(−p2 +m2 − iε)(−p′2 +m2 − iε)
,
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and integrating against a test function f∫
d4xf(x)∆F (x)2 = lim

ε→0

∫
d4p

(2π)4

d4p′

(2π)4

f̂(−p− p′)
(−p2 +m2 − iε)(−p′2 +m2 − iε)

.

The integral is however not convergent in general. To get convinced of that, you

may integrate in p′ at given p. Assuming that f̂ > 0 in a neighborhood of 0 you get

an integral of order at least 1/‖p‖4 (where ‖p‖ denotes the Euclidean norm) and

this is not an integrable function of p.

(b) Formal manipulations yield the definition ∆2
0(f) =

∫
dλm(p)dλm(p′)f̂(p + p′).

This integral is well defined because λ2
m({(p, p′) ; p0 +p′0 ≤ a}) grows polynomially

in a and f̂ decreases fast at infinity.

Exercise 13.13.3 (a) is a linguistic issue. Renumbering the set of internal vertices

defines a permutation of this set (sending a point to the point which has the same

order in the new ordering) and conversely. The rules we state about the permutation

exactly amount to saying the corresponding renumbering of the internal vertices

does not change the diagram. (b) If an internal vertex i is connected to an external

vertex v then σ(i) has to be connected to v. But there is unique internal vertex

connected to a given external vertex, so that σ(i) = i.

Exercise 13.13.5 Let us think of the symmetry as a permutation of the set of

vertices (internal and external) which leaves the set of external vertices fixed and

does not change the diagram. The set of vertices which are fixed is not empty

because it contains the external vertices, and there is at least one such vertex. If

a vertex is connected to a vertex f which is fixed it must be fixed because there

only one line of a given type out of f . Since we assume that the whole diagram is

connected, the set of points which are fixed must be the whole diagram. Note on

the other hand than in the examples of Figure 13.6 there exist symmetries which

do not fix any vertex.

Exercise 13.14.1 (a) We write ϕ(x) as the sum ϕ(x) = ϕ+(x)+ϕ−(x) of an anni-

hilation and a creation part, so that say 〈0|a(p)ϕ(x)|0〉 = 〈0|a(p)ϕ−(x)|0〉, whereas

〈0|ϕ−(x)a†(p)|0〉 = 0. Then :ϕ(x)4:= ϕ−(x)4 + 4ϕ−(x)3ϕ+(x) + 6ϕ−(x)2ϕ+(x)2 +

4ϕ−(x)ϕ+(x)3 + ϕ+(x)4. We simply expand before we can apply Lemma 13.8.1.

To understand why there are fewer terms and (b) is true let us number ϕj(x),

1 ≤ j ≤ 4 the four copies of ϕ(x) in the product ϕ(x)4. The lines between the

internal vertex corresponding to x and itself occur because of contractions such as

〈0|ϕ1(x)ϕ2(x)|0〉, or after expansion in creation and annihilation part, because of

contractions of the type 〈0|ϕ+
1 (x)ϕ−2 (x)|0〉. However, these terms do not occur when

we replace ϕ(x)4 by :ϕ(x)4: because the normal ordering replaces ϕ+
1 (x)ϕ−2 (x) by

ϕ−2 (x)ϕ+
1 (x).

Exercise 13.14.2 (a) is a special case of (b). Let us try more generally for a test

function f to make sense of the operator W :=
∫

d4xf(x) :ϕ(x)4:, as an operator
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on a certain subspace of the Boson Fock space, which we define now. Let us say

that a function ξ on Xn
m is of fast decrease if for each k the function (

∑
i≤n p

0
i )
kξ

is bounded. Let Hfast
n be the set of symmetric functions of fast decrease on Xn

m.

We will try to define our operators on the algebraic sum of the spaces Hfast
n (a

nice subspace of the boson Fock space.) Computations are easier using the formula

(5.42). A typical term in :ϕ(x)4: is∫∫∫∫
dλm(p1)dλm(p2)dλm(p3)dλm(p4)

exp(i(x, p1 + p2 − p3 − p4))a†(p1)a†(p2)a(p3)a(p4)

and a typical term in W is

W0 =

∫∫∫∫
dλm(p1)dλm(p2)dλm(p3)dλm(p4)

f̂(p1 + p2 − p3 − p4)a†(p1)a†(p2)a(p3)a(p4) .

Arguing as in Exercise 3.7.1 (and crossing our fingers because the function f̂ is not

a test function!) and not being concerned with the numerical factor, for ξ ∈ Hfast
n ,

we should define W0ξ as being proportional to the symmetrization of the following

function

η(p1, . . . , pn) =

∫∫
dλm(p′1)dλm(p′2)f̂(p1 + p2 − p′1 − p′2)ξ(p′1, p

′
2, p3, . . . , pn)

with respect to the variables p1, . . . , pn. To show that this function decreases fast,

one simply splits the integral in the regions where p′01 + p′02 ≤ (p0
1 + p0

2)/2 and its

complement and one uses easy bounds. The same computation even makes sense

when f ≡ 1. (c) If f is a test function on R3, proceeding as above
∫

dxf(x) :ϕ0(x)4:

|0〉 should be the function f̂(p1 + p2 + p3 + p4) on X4. But such a function is not

square-integrable, and it seems very difficult to make sense of HI(0). However,

despite the fact that we are not in the situation of Section 13.3, we are able to

compute the S matrix in φ4 theory, so that this theory makes some sense after all.

Exercise 13.14.3 Let us write ϕ(x) = ϕ+(x)+ϕ−(x), the annihilation and creation

parts of ϕ. Pretending that [ϕ−(x), ϕ+(x)] = ∆1 for a certain number ∆, the trick

is to write :ϕ(x)4: as a linear combination of ϕ(x)4, ϕ(x)2∆ and ∆21, which makes

the desired result formally obvious. You may try first to write first :ϕ(x)2: and

:ϕ(x)3: in this manner.

Exercise 13.15.1 Writing C := 〈0|T ϕ(x1)ϕ(x2)|0〉2, these are

〈0|ϕ(x1)a†(p1)|0〉〈0|ϕ(x1)a†(p2)|0〉C2〈0|a(p3)ϕ(x2)|0〉〈0|a(p4)ϕ(x2)|0〉 ,

〈0|ϕ(x1)a†(p1)|0〉〈0|ϕ(x2)a†(p2)|0〉C2〈0|a(p3)ϕ(x1)|0〉〈0|a(p4)ϕ(x2)|0〉 ,

〈0|ϕ(x1)a†(p1)|0〉〈0|ϕ(x2)a†(p2)|0〉C2〈0|a(p4)ϕ(x1)|0〉〈0|a(p3)ϕ(x2)|0〉 .
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Exercise 13.15.2 For Exercise 13.13.1: The number of different contraction dia-

grams one obtains when labeling the internal vertices of a Feynman diagram all

possible ways and the lines out the internal vertices all possible ways is of the form

n!(4!)n/S where S is an integer called the symmetry factor of the diagram. For

Lemma 13.13.2: The symmetry factor S of a contraction diagram is the number

of ways one may relabel the internal vertices and relabel the lines out the internal

vertices without changing the diagram.

Exercise 13.18.1 Let us do this the easy way. We compute the integral using the

residue formula and the contour of Figure 13.2. The existence of the limit is obvious,

as each term has a limit and denominators do not approach zero. The quantity A(p)

is the sum of two terms of the type 1/g(p). In one of them the function g(p) is a

constant times the quantity√
p2 +m2

(
−(
√
p2 +m2 − w0)2 + (p−w)2 +m2

)
.

A function of the type 1/g(p), where g is smooth and the set S = {g = 0} is a

non-empty two-dimensional surface is never integrable, exactly for the same reason

that in dimension 1 a function of the type 1/f(x) where f is smooth and has at least

one zero is never integrable. The volume of the set where |g(p)| ≤ α is proportional

to α (the volume of a shell of thickness about α around the surface S). It does take

some effort to show that here the set {g = 0} is typically a two-dimensional surface,

and you are on your own for that.

Exercise 13.18.3 (a) is straightforward. It does not make sense to set ε = 0

because the left-hand side becomes a massive +∞, and it does not make sense

either to replace ε by zero in the integral in (13.124).

Exercise 13.18.6 Let us consider w and w′ and fix R with R2 ≥ max(w2, w′2).

Under (13.129) the relation (13.134) implies

|U(w, θ)−U(w′, θ)−i(U1(w,R)−U1(w′, R))| ≤ |U2(w,R, θ)−U2(w′, R, θ)| . (P.27)

According to (13.135), to conclude the proof it suffices to show that

lim
R→∞

sup
θ
|U2(w,R, θ)− U2(w′, R, θ)| = 0 , (P.28)

where the supremum is over all values of θ for which θ(p) = 1 when p2 ≤ R2.

Making the change of variable p→ p− uw we obtain

U2(w,R, θ) =

∫ 1

0

du

∫
‖p−uw‖≥R

θ(p)d4p

(2π)4

1

(‖p− uw‖2 − u(1− u)w2 +m2)2
,

(P.29)

so that

U2(w,R, θ) = U3(w,R, θ) + U4(w,R, θ) , (P.30)
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where

U3(w,R, θ) =

∫ 1

0

du

∫
‖p‖≥R

θ(p)d4p

(2π)4

1

(‖p− uw‖2 − u(1− u)w2 +m2)2
,

and where (P.30) defines U4(w,R, θ). Since 0 ≤ θ(p) ≤ 1, considering the symmetric

difference ∆(w, u,R) between the sets {‖p‖ ≥ R} and {‖p− uw‖ ≥ R}, we have

|U4(w,R, θ)| ≤ U5(w,R) :=

∫ 1

0

du

∫
∆(w,u,R)

1

(‖p− uw‖2 − u(1− u)w2 +m2)2
.

Then U5(w,R) → 0 as R → ∞ since for large R we integrate a quantity of order

R−4 on a domain of volume of order R3. Therefore since 0 ≤ θ(p) ≤ 1 we have

|U2(w,R, θ)− U2(w′, R, θ)| ≤
∫ 1

0

du

∫
‖p‖≥R

d4p

(2π)4
H(w,w′, p, u) +R(R) , (P.31)

where R(R) = U5(w,R) + U5(w′, R) → 0 and the function H(w,w′, p, u) is given

by ∣∣∣∣ 1

(‖p− uw‖2 − u(1− u)w2 +m2)2
− 1

(‖p− uw′‖2 − u(1− u)w′2 +m2)2

∣∣∣∣
and is integrable. Letting R→∞ in (P.31) then yields the desired result.

Exercise 13.23.2 You have to replace (13.175) by

1

2
(U(w, θ)− U(0, θ))

(1

2
U(w, θ) +

5

2
U(0, θ)

)
,

when w = p1 − p3 for the s-group and w = p1 − p4 for the t-group.

Exercise 14.3.4 This Hamiltonian is the natural extension to the Fock space of

the operator “multiplication by cp0 on L2(Xm,dλm). The Fock space is the Hilbert

sum of the spaces Hn,s, each of which is invariant under the Hamiltonian, so that is

suffices to prove that for n ≥ 1 the extension Vn of the operator “multiplication by

cp0” to Hn,s does not have any eigenvector. The space Hn,s identifies the subspace

of L2(Xn
m,dλ

⊗n
m ) consisting of symmetric functions, and Vn is the operator “multi-

plication by f” where f is the function c
∑
k≤n p

0
k of the point (pk)k≤n of Xn

m. An

eignenvector of Vn must be supported by the set where f is constant, but such sets

are of measure zero.

Exercise 14.5.1 (a) We may as well assume a0 = 1. The result follows from the

formal identity (1+C)−1 =
∑
n≥0(−C)n used for C =

∑
k≥1 akg

k. (b) To express a

formal series
∑
n≥0 bng

n as a formal series in g′ we simply substitute the expression

g = g′+
∑
n≥2 an(g′)n in each term and we expand. This makes sense because there

are only finitely many terms which contain a given power of g. To express g′ as a

formal series in g we look for an expression g′ = g+
∑
n≥2 cng

n. We substitute this

in the expression g = g′+
∑
n≥2 an(g′)n and this gives us equations from which we

recursively compute the coefficients cn, for example c2 = −a2 and c3 = −a3−2(a2)2.
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Exercise 14.10.1 We look for θ of the type θ = m2 + g2Γ2(m2) + g4B + O(g6).

Thus Γ(θ) = g2Γ2(θ)+g4Γ4(θ)+O(g6). Since Γ4(θ) = Γ4(m2)+O(g2) and Γ2(θ) =

Γ2(m2)+g2Γ2(m2)Γ′2(m2)+O(g4) we obtain Γ(θ) = g2Γ2(m2)+g4(Γ2(m2)Γ′2(m2)+

Γ4(m2)) +O(g6), and B = Γ2(m2)Γ′2(m2) + Γ4(m2) from (14.97).

Exercise 14.10.2 If a diagram has n internal vertices, i internal lines and e external

lines then 3n = 2i+ e. To see that, think of each internal vertex as providing three

slots, each of which has to be filled by the end of a line. The end of the e external

lines fill e such slots, and the internal lines each fill two of the slots, one with each

of their ends. Thus when e is even, so is n.

Exercise 14.12.3 That µ = m follows from (14.101) (hoping of course that nothing

goes wrong). The second statement follows (14.124) using l’Hospital rule.

Exercise 15.4.12 According to (15.41) and (15.38) we have card E1 + 2 card (E2 \
E ′) = b ≤ 4. Since the whole diagram is connected we must have card E1 > 0.

Since b is even card E1 is even, so that card E1 ≥ 2. Thus card (E2 \ E ′) ≤ 1: either

the sub-diagram is a subgraph or it is obtained from a subgraph by removing a

single edge. The only possible cases are (a) card E1 = 2 and card (E2 \ E ′) = 0: the

sub-diagram α is a biped and d(α) = 2. (b) card E1 = 2 and card (E2 \ E ′) = 1:

the sub-diagram α has been obtained from a biped by removing a single edge, and

d(α) = 0. (c) card E1 = 4 and card (E2 \ E ′) = 0: the sub-diagram α is a quadruped

and d(α) = 0.

Exercise 15.5.2 This space has a base formed by the elements (e1 − ek) for 2 ≤
k ≤ n.

Exercise 15.7.3 Fix an arbitrary point v0 ∈ V and for w̄ ∈ (R1,3)V\{v0} define

S(w̄) ∈ (R1,3)V by S(w̄)v = w̄v for v 6= v0 and S(w̄)v0 = −
∑
v 6=v0

w̄v so that

S(w̄) ∈ N . Integrating in wv0
first we obtain∫

d4mw

(2π)4m
(2π)4δ(4)

(∑
v∈V

wv
)
η(w) =

∫
d4(m−1)w̄

(2π)4(m−1)
η(S(w̄)) . (P.32)

The integral on the right is with respect to a translation invariant measure, the

image of the translation invariant measure on (R1,3)V\{v0} under the linear map S.

Exercise 16.3.2 It should be obvious that kerL consists of the vectors of the type

(`, `, `) and that the projection of x on kerL is obtained for the value of ` given.

Exercise 16.3.3 With obvious notation we have L(Ax) = AL(x) so that kerL is

invariant by A. Obviously A preserves the dot product on (R1,3)E so that AQ = Q.

The equality x = I(x)+T (x) implies Ax = AI(x)+AT (x), and since AI(x) ∈ kerL
and AT (x) ∈ Q we have AI(x) = I(Ax) and T (Ax) = AT (x). Next you have to

convince yourself that for a function H on Q the Taylor polynomial of order d at

q = 0 of the function q 7→ H(Aq) is Hd(Aq) where Hd is the Taylor polynomial of

order d at q = 0 of H. Consequently (using the same notation as below (16.11)) the
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Taylor polynomial of order d at q = 0 of the function q 7→ FA(z+q) = F (Az+Aq) is

Gd(Az,Aq). Thus T dFA(x) = Gd(AI(x), AT (x)) = Gd(I(Ax), T (Ax)) = T dF (Ax)

which is the required equality.

Exercise 16.5.6 The forests are {γ} ; {γ1, γ} ; {γ2, γ} ; {γ3, γ} ; {γ4, γ} ;

{γ1, γ2, γ} ; {γ1, γ3, γ} ; {γ2, γ4, γ}.

Exercise 16.6.2 (a) Use (16.12) and Exercise 16.3.2. (b) Proceeding in a similar

manner for the diagram β we obtain F2F = −f(p/2 − q)f(p/2 + q)f(q/3 − `)3.

For example if ` is fixed, the quantity F2F is integrable in q by itself whereas

the quantity F + F1F is integrable in q. (In fact, F1F has been designed for this

purpose.)

Exercise 16.6.3 Given p, r, q, ` ∈ R1,5 consider x(p, r, `, q) ∈ (R1,5)Eα given by

the parameterization of Figure 16.6. Then obviously x(0, r, 0, q) ∈ kerLα. Since

by (15.34) we have dim kerLα = 6(6 − 5 + 1) = 12, all the elements of kerLα
are of the type x(0, r, 0, q). On the other hand, it is straightforward to check that

x(p, 0, `, 0) and x(0, r, 0, q) are orthogonal. This means that x(p, 0, `, 0) ∈ kerL⊥α so

that x(0, r, 0, q) = Iα(x(p, r, `, q)). This should make the formula for F1F obvious,

the flows on the edges of α are replaced by the internal flows. What happens here is

that even though the sum F +F2F does not have a divergence in the sub-diagram

β (as the term F2F is really designed to remove this divergence), the term F1F

bring in a new divergence in β.

Exercise 16.6.4 To improve convergence we replace F by (1 − T d(γ))F , so

we should also do this for subdivergences. If you have disjoint subdiagrams

γ1, . . . , γn, you should use that process “on each γi”. Using the identity
∏
i≤n(1−

xi)
∑
I⊂{1,...,n} =

∏
i∈I(−xi) you see that a good idea is to add a compensating

term
∑
I⊂{1,...,} FIF , where FI is the forest containing the diagrams γ and γi for

i ∈ I. The reason you assume that γ1, . . . , γn are disjoint is simply that it is far

from obvious to see what to do for subdiagrams which are not disjoint. Once you

see that you must add such a compensating term to F , arguing that you must ap-

ply the same procedure “on each γi” it does not seem to require much imagination

to invent the forest formula. The previous argument shows that it seems sort of

necessary to have a chance of success to add all the terms of the forest formula.

Why it is sufficient to add these terms is a different matter.

Exercise 16.7.1 The diagram obtained by contracting each of the connected com-

ponents cannot contain a loop because then the Feynman diagram would contain a

loop such that removing any edge of this loop would disconnect the diagram, which

is absurd. Next assume if possible that one of the connected components A of the

remaining diagram is not 1-PI. Then it contains an edge e such that removing e

disconnects this component into pieces B and C. We prove that removing e discon-

nects the original diagram which contradicts the fact that e is an edge of A. We

proceed by contradiction. If removing e does not disconnect the original diagram,
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this diagram contains a path linking a point of B to a point of C and this path must

contain edges which are not edges of A. These edges form a loop in the diagram

obtained by contracting the connected components, which we showed is impossible.

Exercise 17.6.2 Let us stress that Lorentz invariance is really built in at ev-

ery step of the theory, which is why we did not insist more on it. Denoting by

I(p1) the quantity (17.14) we have to show that for any Lorentz transformation

A we have I(p1) = I(Ap1). For vector x = (xe)e∈E ∈ (R1,5)E we denote Ax the

element (Axe)e∈E . Since the components χ(p1)e are all multiples of p1 (because

of the general fact that they are linear combinations of the external momenta)

we have χ(Ap1) = Aχ(p1). Thus T 2F(Ax + χ(Ap1)) = T 2F(A(x + χ(p1))). The

first thing we have to check is that T 2F (Ay) = T 2F (y). It is certainly true that

F (Ay) = F (y) because the propagator f is Lorentz invariant, and Exercise 16.3.3

shows that the operation T 2 preserves Lorentz invariance. Next you have to con-

vince yourself that the measure dµL is invariant by the map a 7→ Ax (so that then

the equality I(p1) = I(Ap1) follows by this change of variable), which requires re-

examining the definition of this measure, and ultimately relies on the fact that the

volume measure on R1,5 is invariant by Lorentz transformations,

Exercise 17.6.3 The value of this diagram is

(2π)6δ(6)(p1 + p2 + p3)(−ig)3

∫
d6k

(2π)6
f(k + q1)f(k + q2)f(k + q3) (P.33)

where q1, q2, q3 are certain linear combinations of the external momenta p1, p2, p3.

The way to enforce the first condition (17.7) at order g3 is to define at this stage

the counter-term D by D = −(−ig)3
∫

d6k
(2π)6 f(k)3, which at this order is exactly

the value following form (17.15). (Please note that in (17.15) there is exactly one

term of order g3, corresponding to the tripod α0 with three internal vertices and

the unique possible forest on α0, consting of α0 itself.

Exercise 17.6.4 Keeping again the cutoff implicit, the relevant integral is

U(p) := (−ig)2

∫
d6k

(2π)6
f(k + p/2)f(k − p/2) . (P.34)

Since we pretend that our cutoff is Lorentz invariant, the quantity U(p) depends

only on p2: it is of the type Y (p2). The way to enforce the second part of (17.7) at

order g2 is to set B = −Y ′(0) and C = −Y (0). Rather remarkably, the contribution

of the single vertex ⊗ then cancels the divergence of β0 at order 2, because the

quantity H(p2) := Y (p2) − p2Y ′(0) − Y (0) is given by a convergent integral. A

simple way to see it is to proceed as in the BPHZ method, to replace the integrand

V (k, p) = f(k + p/2)f(f + p/2) by V (k, p) − T 2V (k, 0) where T 2V (k, 0) is the

second order Taylor polynomial of V (k, p) in p computed at p = 0 and to use

power counting. Thus the quantity H(p2) has a limit as the cutoff gets removed.

Furthermore the values of B and C at order g2 are just those we defined above
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since at this order the only contribution is Bβ0,F and Cβ0,F for the unique forest

F of β0, which contributes the one consisting of the largest sub-diagram.

Exercise 18.1.2 Just the same, with ϕ(x, ε) and a bound using now

sup{|∂kϕ(x, ε)/∂xk| ; |ε| ≤ 1 ; k ≤ s , |x| ≤ 1} .

Exercise 18.1.3 Indeed
∫ 1

−1
dx/(x2 − iε) =

∫ 1/
√
ε

−1/
√
ε

dt/(
√
ε(t2 − i)).

Exercise 18.1.4 It is the convergence near zero which is a problem, that is the

existence of

lim
ε→0+

∫ 1

0

dr r3 1

(r2 − iε)s
= lim
ε→0+

ε2−s
∫ 1/

√
ε

0

dt t3
1

(t2 − i)s
,

where we have set r =
√
εt. This quantity just happens to have a limit when s > 2.

It is quite obvious that the limit does not exist for s > 2 since the integral converges

and the exponent of ε is negative. For s = 2 the integral diverges. For s < 2 the

integrand grow as t3−2s, so that the integral grows as (1/
√
ε)4−2s = εs−2 and the

limit is finite (as one can verify by actually proving that the limit does not change

if one replaces the integral by
∫ 1/
√
ε

1
dt t3−2s).

Exercise 18.1.5 Just integrate by parts s′ times in y and s times in x.

Exercise 18.1.6 After change of variable this looks like∫
{‖y‖≤A}

d5y

(‖y‖2 − iε)2
=
√
ε

∫
‖y‖≤Aε−1/2

d5y

(‖y‖2 − i)2
.

Looking at Exercise 18.1.4 this could have a limit, but the result might depend on

what one assumes about θ.

Exercise 18.2.4 Thinking of p and ε as parameters, it follows from Lemma 15.1.15

that for any space E one has degE PM (k) ≤ degE P (k, p, ε). Denoting by Q the

denominator in (18.14), the necessary condition degE P (k, p, ε) − degE Q < 0 for

convergence implies degE PM (k)− degE Q < 0.

Exercise 18.2.9 In fact no computation is needed. As a function of x the quantity

G(x) := F (x, y, u)−
∑
i≤s

ui

(∑
j≤n

ai,j
(
xj −Bj(y, u)

))2

is a first degree polynomial in x because the quadratic terms eliminates. It is a

constant because ∂G/∂xi = 0 since this is the case for both terms on the right

at x = B(y, u). The desired result follows from computing the value at the point

x = B(y, u).

Exercise 18.2.10 Consider the linear map T from Rn to Rs given by T (x) =

(
∑
j≤n ai,jxj)i≤s and E the image of T . The point T (B(y, u)) is the point z(y, u) =

(z(y, u)i)i≤s of E for which the function
∑
i≤s ui(zi−yi)2 of (zi)i≤s ∈ E is minimum.
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We will prove that for any matrix (ai,j)i≤s,j≤n the point z(y, u) stays bounded

over all values of u and of yi with |yi| ≤ 1. When the matrix (ai,j)i≤s,j≤n is of rank

n, the map T is one-to-one, so that the point z(y, u) determines the point B(y, u),

and these points also stay bounded over all values of u and of |yi| ≤ 1.

The idea of the proof is simple. The point z(y, u) is the point where a certain

ellipsoid
∑
i≤s ui(zi − yi)2 ≤ α of Rs centered at y touches the linear space E. For

z(y, u) to be far the ellipsoid would have to be stretched diagonally, which is not

the case for our ellipsoids, which are stretched only along the axes.

The formal proof goes by induction over s. The result is obvious for s = 1. Let us

argue by contradiction, and consider a sequence u` ∈ D′, points y` = (yi,`)i≤s with

|yi,`| ≤ 1, and points z` ∈ E which minimize the quantity
∑
i≤s ui,`(zi,` − yi,`)2

over all the possible choices of z` ∈ E. We may assume by taking a subsequence

that the limits ui = lim`→∞ ui,`, yi = lim`→∞ yi,` and zi = lim`→∞ zi,` exist, with

the possibility zi = ±∞. Let

I = {i ≤ s ; ui = 0} .

We want to rule out the possibility that one of the zi is infinite. We observe that∑
i≤s

ui,`(zi,` − yi,`)2 ≤
∑
i≤s

ui,`y
2
i,` ≤ 1 ,

because the choice of z` minimizes the left-hand side, and that the right-hand

side is simply the value of the left-hand side for z` = 0. Taking the limit we have∑
i≤s ui(zi−yi)2 ≤ 1. Thus for i 6∈ I we have zi finite, and there is nothing to prove

if I is empty. Observe also that since
∑
i≤s ui,` = 1 it holds that

∑
i≤s ui = 1 so

that card I < s. Thus the complement Ic of I is not empty. Assuming that I is not

empty we consider the projection Q from Rs to RIc which forgets the coordinates

xi for i ∈ I. We can decompose E = E1 ⊕ E2 where E1 ⊂ kerQ whereas Q is

one-to-one on E2. We can therefore decompose z` = z1
` + z2

` where z1
` ∈ E1 and

z2
` ∈ E2, so that Q(z`) = Q(z2

` ) = (zi,`)i∈Ic . Since zi = lim`→∞ zi,` is finite for

i /∈ I, as `→∞ the limit of Q(z2
` ) = Q(z`) exists. Thus this is also the case of the

limit of z2
` = Q−1(Q(z2

` )), and the numbers z2
i,` stay bounded as `→∞.

Now, since z` minimizes the quantity
∑
i≤s ui,`(zi−yi,`)2 over all choices of z ∈ E,

z1
` minimizes the quantity

∑
i≤s ui,`(z

1
i + z2

i,` − yi,`)2 over all choices of z1 ∈ E1.

Since z1
` ∈ kerQ we have z1

i,` = 0 for i /∈ I. This implies that z1
` minimizes the

quantity ∑
i∈I

ui,`(z
1
i + z2

i,` − yi,`)2

among all the possible points of z1 ∈ E1. That is, z1
` is obtained by the same

procedure as z` but in fewer dimensions (since card I < s). The induction hypothesis

shows that since the numbers −z2
i,` + yi,` stay bounded, this is also the case for the

numbers z1
i,`. Hence the numbers zi,` stay bounded as desired.
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Exercise 18.2.11 A function of x given by a formula of the type (18.29) does

attain its minimum on Rn, although this minimum may not be reached at a unique

point.

Let us fix y. For each x we have G(y, un) ≤ F (x, y, un), so that as un → u we get

lim sup
n→∞

G(y, un) ≤ F (x, y, u)

and therefore lim supn→∞G(y, un) ≤ G(y, u).

Next if un ∈ D, it holds that for a certain xn we have G(y, un) =

F (xn, y, un). Taking a subsequence we may assume that x = limxn exists, so that

lim infn→∞G(y, un) ≥ F (x, y, u) ≥ G(y, u).

Thus we have proved that whenever un ∈ D′ is a converging sequence,

limn→∞G(y, un) exists. It is then an exercise in elementary topology to show that

the function on D defined by U(u) = limn→∞G(y.un) whenever un → u is con-

tinuous on D, i.e. the function u 7→ G(u, y) defined on D′ extends to a continu-

ous function on D. We have proved that for each y the function u 7→ G(y, u) =∑
j,j′≤n Fj,j′(u)yjy

′
j extends to a continuous function on D. It then follows from the

interpolation principle of Lemma 18.2.13 that this is also the case of the functions

Fj,j′(u).

Exercise 18.2.17 In this situation an elementary computation is the most effective.

Let us assume that Q(y) =
∑
i,j≤r ci,jyiyj so that

−Q(p0) +
∑

1≤ν≤3

Q(pν) =
∑
i,j≤r

ηµ,νci,jp
µ
i p
ν
j ,

where as usual repeated Lorentz indices are summed. Replacing each pi by L(pi)

for a Lorentz transformation L replaces the right-hand side by∑
i,j≤r

ηµ,νci,jL
µ
λp
λ
i L

ν
λ′p

λ′

j =
∑
i,j≤r

ηλ,λ′ci,jp
λ
i p
λ′

j ,

since ην,µL
ν
λL

µ
λ′ = ηλ,λ′ .

Exercise 18.3.1 Use exactly the previous estimates on (18.28). In particular the

denominator is ≥ (‖k‖2 + 1)s/C.

Exercise 18.3.2 Since B(q, u) = (Bj(q, u))j≤n it suffices to prove that

A(Bj(q, u)) = Bj(A(q), u). Denoting by aνµ the matrix of A, we have A(Bj(q, u)) =

(aνµBj(q
µ, u))0≤ν≤3 = (Bj(a

ν
µq
µ), u)0≤ν≤3 = (Bj(A(q)ν , u)0≤ν≤3 = Bj(A(q), u)

where we have used that the map q 7→ Bj(q, u) is linear.

Exercise 19.3.10 Consider an element β of F̄ which meets α. Since F̄ is a forest

either β contains α (in which case we are done) or α strictly contains β, so that α

contains β+. If α strictly contains β+ we are done by Lemma 19.3.5 (a) because

β+ is contained in one of the αi. If β+ = α, then, by construction β is one of the

components τj of the diagram τ of the basic construction. But since all the edges of
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E(F , α) are α-active, the diagram τ is jsut the union of the αi so that its connected

components are the maximal sub-diagram αi themselves and β is one of them.

Exercise A.2.2 First by Lemma A.2.1 this projective representation arises from

a projective representation which is strongly continuous in a neighborhood of zero.

Then by Lemma A.1.1 it arises from a representation which is a true representation

in a neighborhood of zero, and the result follows easily.

Exercise A.5.10 (a) First, given a character w, for any b ∈ N we have∑
a∈N w(a) =

∑
a∈N w(ab) = w(b)

∑
a∈N w(a). Thus if there exists b with w(b) 6= 1

then
∑
a∈N w(a) = 0. If w′ is another character, then a→ w′(a)∗w(a) is a character

which takes a value different from 1 so that
∑
a∈N w

′(a)∗w(a) = 0. So if we have a

linear combination
∑
w αww ≡ 0, i.e.

∑
w αww(a) = 0 for each a then for another

character w′ we have 0 =
∑
w

∑
a αww

′(a)∗w(a) = αw′ . (b) Each character is a

function N → C and the dimension of this space of functions is cardN . Since the

characters are linearly independent we have card N̂ ≤ cardN . But each element a

of N defines a character on N̂ by the map w → w(a) and this defines an injec-

tion from N to M̂ where M = N̂ . Thus cardN ≤ card M̂ ≤ cardM = card N̂ .(c)

Just repeat the arguments of Section 9.8. (d) We could repeat the arguments of

the proof of Proposition 9.4.6, but the proof is even simpler. Consider f ∈ F with

f 6= 0. Assuming that (λ(a,A)f, g) = 0 for each a,A we have to show that g = 0.

Thus for each (a,A) we assume that
∑
B∈H κ̂(B)(w])(a)(f(AB), g(B)) = 0. For

w ∈ O let Sw = {B ∈ H; κ̂(B)(w]) = w}, so that
∑
B κ̂(B)(w])(a)(f(AB), g(B)) =∑

w∈O w(a)
∑
B∈Sw(f(AB), g(B)). As this holds for each a we then conclude from

(a) that
∑
B∈Sw(f(AB), g(B)) = 0 for each w and each A. Now if B,B′ ∈ Sw we

have C := B−1B′ ∈ Hw] , so that B′ = BC and thus f(AB′) = U(C−1)f(AB) and

similarly g(BB′) = U(C−1)f(B). Since U is unitary this shows that (f(AB), g(B))

is independent of B ∈ Sw. So (f(AB), g(B)) = 0 for each A ∈ H and each B ∈ Sw.

Since w is arbitray, (f(A), g(B)) = 0 for each A,B in H. Now since f 6= 0 there ex-

ists D with f(D) 6= 0, and since U is irreducible the set of f(DC) = U(C−1)(f(D))

for C ∈ Hw] spans V. In particular the set of f(A) spans V so that g(B) = 0 for

each B.

Exercise A.5.11 For A,B ∈ H we have κ̂(A)(w]) = κ̂(B)(w]) if and only if

κ̂(B−1A)(w]) = w] i.e. if and only if B−1A ∈ Hw] . Thus the map A → κ̂(A)(w])

from H to O factors through H/Hw] , providing a natural identification of O and

H/Hw] . The rest should be obvious.

Exercise A.5.12 (a) This is simply because the restriction of Ξ to V and Hw] is

U and Ξ has the same dimension as IndHH
w]

(U), see Theorem A.4.1. The argument

for (b) is identical.

Exercise A.6.3 The relation (A.47) should be pretty obvious in a basis where

b ∈ SU(2) is diagonal.
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Exercise C.1.5 All statements are straightforward to check, including (c) if one

reads (C.10) as T (s, t, r)T (s′, t′, r′) = T ((s, t, r) ∗ (s′, t′, r′)).

Exercise C.2.3 From (C.22) one gets

〈γ|γ〉 = exp
(
−|γ|

2

~2

) ∑
k,n≥0

1

n!k!

|γ|2

~2
〈0|ak(a†)n|0〉 ,

and it is a special case of Wick’s theorem (Lemma 13.8.1) that 〈0|ak(a†)n|0〉 = δnk k!.

(In one word, a term on the right-hand side of (13.41) can be non-zero only if it

pairs a† and a so one must have k = n and there are k! way to make such pairs.)

Exercise C.2.4 To look for the elements x such that ax = γx/~ try to find x

of the type
∑
n≥0 cn(a†)n|0〉, using that a(a†)n = (a†)na + n(a†)n−1 to find that

cn = γcn−1/(n~).

Exercise C.2.6 The equality

(−1)n exp(y2)
dn

dyn
exp(−y2) = exp(y2/2)

(
y − d

dy

)n
exp(−y2/2)

is proved by induction over n. Differentiating both sides in y and rearranging the

result yields the same equality for n + 1 rather than n. To prove that Hn(y) =

(−1)n exp(y2) dn

dyn exp(−y2) it suffices from (C.26) to prove that

exp(2uy − u2) = exp(y2)
∑
n≥0

(−1)n
un

n!

dn

dyn
exp(−y2)

or, equivalently,

exp(−(y − u)2) =
∑
n≥0

(−u)n

n!

dn

dyn
exp(−y2) ,

which is simply Taylor’s formula used for the function v 7→ exp(−(y+v)2) at v = 0.

Exercise C.2.7 Use the relations
√
n!en = (a†)n|0〉 so that by definition of Pn

en(x) = Pn(αx)ϕ0(x)/
√
n! and Pn(y) = Hn(

√
2y)/2n/2 by definition of Hn.

Exercise C.2.8 As we have seen, for γ = u + iv we have A(γ) = S(−2uβ, 2vα)

so |γ〉 = S(2uβ,−2vα)−1|0〉 and combining (C.13) and (C.16) yields ∆2
γX∆2

γP =

∆2
0X∆2

0P (= ~2/4) is as small as permitted by Heisenberg’s uncertainty princi-

ple (2.12). Furthermore by (C.11) and (C.14) we get 〈γ exp(ωt)|X|γ exp(ωt)〉 =

2βRe (γ exp(ωt)) and 〈γ exp(ωt)|P |γ exp(ωt)〉 = −2αIm (γ exp(ωt)). These func-

tions are of the type c cosω(t− t0) and −cmω sinω(t− t0) just as in the case of a

classical harmonic oscillator.

Exercise C.3.2 Consider f ∈ L2, f 6= 0. Consider g ∈ L2 and assume that for each

s, t the integral of ḡS(s, t)f is zero. Setting s = 0 and making suitable averages over

t the integral of ḡfξ is zero for each test function ξ, so that ḡf is zero a.e. and g
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is zero a.e. on the support of f . Considering then translations of f , g must be zero

a.e.

Exercise C.3.7 The case P ′ = P + u1 and X ′ = X + v1 is solved by (C.11) and

(C.14). The case α = δ = 0 and β = 1, δ = −1 is solved by the Fourier transform,

according to (2.23) and (2.24). The case P ′ = ρP,X ′ = X/ρ is solved by the trans-

formation W (f)(x) = f(xρ)/ρ. The transformation W (f)(x) = f(x) exp(iβx2/2)

takes care of the case P ′ = P − βX and X ′ = X.

Exercise C.4.2 Indeed,

(g, P (f)) =

∫
dxg(x)∗(−if ′(x) + ixf(x)) exp(−x2)

and by integration by parts∫
dxg(x)∗f ′(x) exp(−x2) =

∫
dx(−g′(x)∗ + 2xg(x)∗)f(x) exp(−x2)

and thus

(g, P (f)) =

∫
dx(−ig′(x) + ig(x))∗f(x) exp(−x2) = (P (g), f) .

Exercise C.5.1 Changing Xk into exp sXk and Pk into exp(−s)Pk changes the

operators ak and a†k of (C.72) into the operators a′k and a′†k of (C.76).

Exercise C.5.2 The relation (C.82) is a special case of (C.23). Since Ak(γ) is a

unitary operator, taking the adjoint of (C.82) we obtain Ak(γ)a†kAk(γ)−1 = a†k −
γ∗1. That is, the unitary operator Ak(γk) witnesses that the pairs (ak, a

†
k) and (ak−

γk1, a
†
k−γ∗k1) are unitarily equivalent. Thus we have (letting you guess how we define

Sk(s, t)!) Ak(γk)S0(s, t)Ak(γk)−1 = Sk(s, t), i.e S0(s, t) = Ak(γk)†Sk(s, t)Ak(γk)

and (C.63) is satisfied by the function τk = Ak(γk)|0〉. Since |0〉 is the constant

function equal to 1, we have
∫
τkdµ1 = 〈0|Ak(γk)|0〉, and this equals exp(−|γk|2/2)

is a consequence of (C.22), in the form 〈0|γ〉 = exp(−|γ|2/2). The rest is obvious.

Exercise C.5.3 (a) Consider a sequence (ϕk) of test functions on R3, with ‖ϕk‖ =

1, and assume that the support of ϕk is contained in Ck = [−k−1, k+1]3 \ [−k, k]3.

Then the sequence ak = A(ϕk) satisfies the canonical commutation relations. As a

consequence of (C.84) the sequence (ak) is unitary equivalent to the sequence (ak+

γk1) where γk =
∫
γ(p)ϕk(p)d3p/(2π)3. According to the previous exercise, the

quantity
∑
k |γk|2 is finite. The function ψk such that ψk(p) := γ(p)∗1Ck satisfies∫

γ(p)ψk(p)d3p/(2π)3 =
∫
Ck
|γ(p)|2d3p/(2π)3 = ‖ψk‖2. A test function ϕk with

support in Ck, with ‖ϕk‖ = 1 and approximating ψk/‖ψk‖ well will satisfy 2|γk|2 ≥∫
Ck
|γ(p)|2d3p/(2π)3. Since

∑
k |γk|2 <∞ this shows that γ ∈ H.

For (b), let us choose a basis of H such that the linear form ψ is (a multiple

of) the coordinate on the first basis vector. Then we are simply in the situation of

(C.77) for γk = 0 if k ≥ 2.
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Exercise D.1.2 Indeed, for any integer n we then have expnεkX ∈ G. If εk → 0

we can find a sequence nk with nkεk → t so that exp tX = limn→∞ exp(nkεk) ∈ G
since G is closed. Thus X ∈ g.

Exercise D.1.10 Just write down the components of [u · J,v · J].

Exercise D.1.11 If the unit vector u is fixed by X, then X induces an orthogonal

transformation in the plane perpendicular to u, so that X since detX = 1 X must

be a rotation. The elements of the type exp θu · J provide all the rotations of axis

u.

Exercise D.1.12 Very similar to the proof of Lemma D.9.1. Namely, we have

dA(t)/dt = u · JA(t) and dA−1(t)/dt = −A(t)−1u · J so that this derivative is

A−1(t)BA(t) where B = −[u ·J, A(t)(v) ·J] + (u ·JA(t)(v)) ·J. Now, by (D.13) we

have [u · J, A(t)(v) · J] = (u ∧A(t)(v)) · J, and u ∧A(t)(v) = u · JA(t)(v).

Exercise D.6.7 We write

N(V (h)(x))2 =

∫
‖V (g)V (h)(x)‖2dµ(g) =

∫
‖V (gh)(x)‖2dµ(g)

=

∫
‖V (g)(x)‖2dµ(g) = N(x)2 .

Denote by (·, ·) the inner product in H. Then 〈x, y〉 :=
∫
〈(V (g)(x), V (g)(y))dµ(g)

is an inner product, and N(x)2 = 〈x, x〉. When H is finite-dimensional, N and ‖ · ‖
are equivalent because any two norms are equivalent.

Exercise D.6.11 If σ is any of the Pauli matrices,

πj(exp(−itσ/2))(f)(z1, z2) = f(z1(t), z2(t)) (P.35)

where

(
z1(t)

z2(t)

)
= exp(itσ/2)

(
z1

z2

)
, so that taking the derivative of (P.35) at t = 0

we get π′j(−iσ/2)(f)(z1, z2) = ż1∂f/∂z1 + ż2∂f/∂z2 , where

(
ż1

ż2

)
= (iσ/2)

(
z1

z2

)
.

Then Z = 2iπ′j(−iσ3/2) is given by Z(f)(z1, z2) = −z1∂f/∂z1 + z2∂f/∂z2, and

zj2 is an eigenvector of eigenvalue j. Similarly, A+(f)(z1, z2) = −z2∂f/∂z1 and

A−(f)(z1, z2) = −z1∂f/∂z2.

Exercise D.6.12 A non-zero invariant subspace has to be invariant by the opera-

tors A+ and A− and as in Proposition D.6.1 we show that it has to be the whole

space.

Exercise D.7.5 Probably it is best to figure this out yourself with little pictures.

Recall (D.55), and the definition of Aj . Obviously mj = 0 for j > n + n′. For

j = n+ n′ then j ∈ An+n′ but to no other set A`. Next n+ n′ − 1 does not belong

to any set A`, n + n′ − 2 belongs to An+n′ and An+n′−2, etc. and in this way one

gets the first equality in (D.56). To prove the second equality, we compute the last
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term of (D.56) and we show that it equal 1 + min(n, n′, r). Since k′ = r−k we have

to count the number of integers k such that 0 ≤ k ≤ min(n, r) and r − k ≤ n′ i.e.

r−n′ ≤ k. If n′ ≥ r this is obviously 1 + min(n, r) = 1 + min(n, n′, r). Assume then

n′ < r. Since ` = n+n′−2r ≥ 0 we have r ≤ (n+n′)/2 and thus n′ < (n+n′)/2 so

that n′ < r < n. Then min(n, n′, r) = n′ and min(n, r) = r. The number of values

of k with r − n′ ≤ k ≤ r = min(n, r) is then n′ + 1.

Exercise D.7.8 Follow the hint.

Exercise D.7.9 It follows from Proposition D.7.7 (b) that the spaces Gn are or-

thogonal, so they form an orthogonal decomposition of H. Furthermore, again for

the same reason, an irreducible G of dimension n is orthogonal to each of the Gn′
for n′ 6= n so it is a subspace of Gn. Thus Gn is just the span of the irreducibles of

dimension n.

Exercise D.9.3 By definition of κ for X ∈ slC(2) one has M(κ(exp tX)(x)) =

exp tXM(x) exp tX† and taking the derivative at t = 0 yields M(κ′(X)(x)) =

XM(x) + M(x)X†, from which the desired relations are checked by explicit com-

putation.

Exercise D.9.4 This is obvious if v1 = v2 = 0 because then expv ·Y is diagonal

with positive coefficients. Since A(expv ·Y)A−1 = exp(v ·AYA−1) one may reduce

to the previous case by Lemma D.9.1.

Exercise D.10.2 Consider such an invariant subspace G and assume that it con-

tains a non-zero vector
∑
k,` αk,`em,`. Consider the largest integer `0 such that not

all the αk,`0 are zero. By successive applications of (D.89) we may assume that

`0 = 0. Consider then the smallest value k0 of k for which αk0,0 6= 0. Successive

applications of (D.86) reduce to the case where k = m. Thus em,0 ∈ G, and then

each ek,` ∈ G by successive applications of (D.87) and (D.88).

Exercise D.10.3 This is far simpler than what it sounds. Starting with the rep-

resentation π = πn,m, we know how to define the required operators, starting with

Lj = π′(Xj), etc. and they automatically satisfy the required commutations rela-

tions. If we can find a vector e such that Z(e) = me,W (e) = ne,A−(e) = C−(e) = 0

then the construction of Proposition D.10.1 carries through to construct the

whole required structure. It is quite straightforward to check that the tensor

e = (xi1,...,im,j1,...,jn) such that xi1,...,im,j1,...,jn = 0 unless all the indices are equal

to 1 when then xi1,...,im,j1,...,jn = 1, has the previous properties. All the rest is

obvious.

Exercise D.10.4 It should be clear at this stage that the representation is of type

(m, 0) if and only if B = 0 and of type (0, n) if and only if A = 0.

Exercise D.12.3 Recall the matrix J of Lemma 8.1.4. Then J−1C∗J = C†−1 so

that A† = J−1A∗−1J . Thus

θ(A)(MJ) = A(MJ)A† = AMA∗−1J .
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If W :M→M is given by W (M) = MJ this means that

θ(A)W (M) = W (AMA∗−1) .

Consequently θ is equivalent to the representation r given by r(A) : M 7→ AMA∗−1.

Exercise D.12.4 Let us consider the map x 7→M(x) for C4 to M defined by the

formula (8.19). Then by definition of κ we have M(κ(A)(x)) = θ(A)(M(x)) i.e.

Mκ(A) = θ(A)M so that indeed κ is equivalent to θ. The rest is obvious.

Exercise D.12.9 This inverse image is a space of dimension nine which is invariant

under the representation U , so indeed what else could it be? More precisely, the

following holds. Assume that a finite-dimensional space decomposes as a direct sum

of invariant subspaces F1, . . . , Fk, such that the restrictions of the representation

to these subspaces are not equivalent. Then if a subspace F is invariant, and such

that the restriction to this subspace of the representation is irreducible, it is one of

the spaces of the decomposition. To see this consider the projection Pk of F onto

Fk. It commutes with the representation, and its kernel is an invariant subspace of

F , with therefore must be zero or the whole of F . When it is zero, the restriction

of the representation to F and Fk are equivalent, so this happens for exactly one k

and then F = Fk.

Exercise E.2.1 Let us shorten notation by writing (κµν) = ∂κFµν . Since ∂κ =

∂/∂xκ and since L−1(x)γ = (L−1)γκx
κ = L γ

κ x
κ, by the chain rule the tensor

field (κµν)(x) is transformed into the tensor field L γ
κ L

λ
µ L

α
ν (γλα)(L−1(x)). Con-

sequently the field (κµν) + (µνκ) + (νµκ) is transformed into

L γ
κ L

λ
µ L

α
ν

(
(γλα) + (λαγ) + (αλγ)

)
.

Exercise E.2.3 cos θe1 + sin θe2 ± i(− sin θe1 + cos θe2) = exp(∓iθ)(e1 ± ie2)

Exercise G.1.2 Just use that cosh s+sinh s+1 = 1+exp s = 2 exp(s/2) cosh(s/2)

and 1 + cosh s = 2 cosh(s/2)2.

Exercise G.1.4 Just compute DpDPp using (G.4) and the formulas M(p) +

M(Pp) = 2p0I, M(p)M(Pp) = m2c2I.

Exercise L.2.2 Use that

|f(x)h(x)| ≤ 1

(1 + |x|)2
(1 + |x|)k+2|f(x)| ≤ 1

(1 + |x|)2
‖f‖k+2

and integrate in x.

Exercise L.2.5 Let F be the class of closed sets which are support of a given

tempered distribution Φ, and F the intersection of this family. It is closed under

finite intersection by Lemma L.2.4. If a function ξ ∈ Sn has a compact support

which does not intersect F , then its support does not intersect one of the elements

of F , so Φ(ξ) = 0. Thus F supports Φ.
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Exercise L.2.7 Since δ′(ξ) = −δ(ξ′) = −ξ′(0) this quantity need not be zero even

if ξ is 0 on the support {0} of δ i.e. if ξ(0) = 0.

Exercise L.2.9 One simply shows that a non-zero distribution cannot be zero on

each test function with compact support, an obvious consequence of Lemma L.2.8.

Exercise M.4.7 Since ξ̌](x) =
∫

exp i(p, x)ξ(p)d4x we have formally∫
ξ(p)Ŵ (p)d4p = Ŵ (ξ) = W (ξ̌]) =

∫
ξ(p)

(∫
exp i(p, x)W (x)d4x

)
d4p .

Exercise M.4.14 We write 1 =
∫∞

0
exp((1−m)x)dρ(m). Given m0 < 1 the right-

hand side is ≥ exp((1 − m0)x)
∫m0

0
dρ(m) and letting x → ∞ this shows that

0 =
∫m0

0
dρ(m) so that ρ is constant on the interval [0,m0] and then on the interval

[0, 1[. Thus we have 1 =
∫∞

1
exp((1 − m)x)dρ(m). Letting x → ∞ shows that ρ

has a jump of 1 at m = 1 (i.e. that dρ gives mass 1 to the point 1). We then get

the identity 0 =
∫

]1,∞[
exp((1 − m)x)dρ(m), and this obviously implies that ρ is

constant on the interval ]1,∞[.

Exercise N.2.2 (a) Using formulas such as ∂̂xf = ip1f̂(p) one obtains ∇̂f(p) =

−p2f̂(p) so that if f satisfies the Laplace equation it holds p2f̂(p) = −1. The rest

is straightforward.

Exercise O.1 The first part of (O.3) shows that to get a non-zero contribution

each term a(p) has to be paired with a term ϕ†a(x), but in S1 there is only one such

term which cannot be paired to both a(p1) and a(p2).

Exercise O.2 We now have two copies of ϕa, and to get a non-zero result, each of

them has to be paired with either an incoming a-particle or an outgoing ā particle.

Exercise O.3 The value of the first diagram is

(−i)3g2(2π)4 δ
(4)(p4 + p3 − p1 − p2)

m2
c − (p1 − p3)2

,

and for the second diagram one has to replace p1 − p3 by p1 − p4.

Exercise O.4 Bis repetita placent.


