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Introduction

We have considered that the transmitted signal is only
degraded by AWGN and it might be subjected to filtering.

There are communication channels (e.g., mobile wireless
channels) where the received signal is not subjected to a
known transformation or filtering.

Typically the gain and/or phase of a digitally modulated
transmitted signal is not known precisely at the receiver.

It is common to model these parameters as random.

Shall consider channel models where the amplitude and/or
phase of the received signal is random.
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Demodulation with Random Amplitude

r(t) = as(t) + w(t),

where a is a random variable with known pdf fa(a).
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Performance of BPSK and BFSK
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Optimum Demodulation of BASK

Optimum receiver is determined by the maximum likelihood
ratio:

fr1(r1|1T )

fr1(r1|0T )

1D

R
0D

1.

fr1(r1|0T ) is N (0, N0/2), while

fr1(r1|1T ) =

∫ ∞

0
fr1(r1|1T ,a = a)fa(a)da

= E {fr1(r1|1T ,a = a)} .

Need to know fa(a) to proceed further.

In general the threshold (and hence the decision regions) is a
balance between the different regions given by the values that
a takes on weighted by the probability that a takes on these
values.
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M -ary Demodulation with Random Amplitude

If all the signal points lie at distance of
√

Es from the origin (i.e.,
equal energy), then the optimum decision regions are invariant to
any scaling by a, provided that a ≥ 0.

The matched-filter or correlation receiver structure is still optimum,
one does not even need to know fa(a).

The error performance, however, depends crucially on a and fa(a).
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Demodulation with Random Phase

Phase uncertainty can be modeled as a uniform random variable (over

[0, 2π] or [−π, π]). It does not change the energy of the received signal.
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Optimum Receiver for Noncoherent BASK
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Decision Regions of BASK with Random Phase
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Different Implementation of BASK Demodulation

y(t) =

∫ ∞
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Error Performance

P [error|0T ] =
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There is about 0.3 dB penalty in power when using such a simpler

suboptimum threshold,
√

E
2 =

√
Eb

2 .
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Optimum Receiver for Noncoherent BFSK
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√
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Optimum Demodulator for BFSK with Random Phase
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Error Performance of BFSK with Random Phase
By symmetry P [error] = P [error|0T ] = P
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Noncoherent BASK is about 0.3 dB more power efficient than
noncoherent BFSK.
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Differential BPSK

Coherent BPSK is 3 dB better than coherent BASK or BFSK: Is it
possible to use BPSK on a channel with phase uncertainty?

Possible if a phase reference can be established at the receiver that
is matched to the received signal.

If the phase uncertainty changes relatively slowly with time, the
received signal in one bit interval can act as a phase reference for
the succeeding bit interval.
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But the above method can lead to error propagation!
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Differential BPSK Modulation and Demodulation

0T : no phase change,
1T : π phase change.

The decision rule is:

rk

1D

R
0D

0.

which is independent of the previous decision.

Since DBPSK is orthogonal signaling, the error analysis for
noncoherent BFSK therefore applies to DBPSK:

P [error]DBPSK =
1

2
e−Eb/N0 .

The only difference is rather than Eb joules/bit, the energy in
DBPSK becomes 2Eb. This is because the received signal
over two bit intervals is used to make a decision.
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DBPSK shows about 1 dB degradation over coherent BPSK.
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Detection over Fading Channels

Fading channel model arises when there are multiple transmission paths

from the transmitter to the receiver.
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Rayleigh Fading Channel Model

Consider the transmitted signal sT (t) = s(t) cos(2πfct), where

s(t) = ±√
Eb

√
2
Tb

over the bit interval with bit rate rb ≪ fc

(lowpass signal).

The received signal is:

r(t) =
∑

j

rj(t) =
∑

j

s(t − tj)αj cos(2πfc(t − tj))

≈ s(t)
∑

j

αj cos (2πfct − 2πfctj) = s(t)
∑

j

αj cos (2πfct − θj)

where αj represents the attenuation and tj the delay along the jth
path, which are random variables. Also because s(t) is lowpass, we
approximate s(t) ≈ s(t − tj).

Since tj ∼ 1/fc, the random phase θj lies in the range [0, 2π). Now

r(t) = s(t)








∑

j

αj cosθj



 cos(2πfct) +




∑

j

αj sin θj



 sin(2πfct)



 .
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Rayleigh Fading Channel Model

nF,I =
(
∑

j αj cosθj

)

and nF,Q =
(
∑

j αj sin θj

)

have the following

moments:

E {nF,I} =
∑

j

E{αj}E{cosθj} = 0, E {nF,Q} =
∑

j

E{αj}E{sinθj} = 0,

E
{
n2
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}
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E
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α

2
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}
E
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=
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2
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}
E
{
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θj

}
=

σ2
F

2
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∑
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∑
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αk sinθk







=
∑

j

∑

k

E {αjαk}E {cosθj sinθk}
︸ ︷︷ ︸

=0

= 0,

Since the number of multipaths is large, the central limit theorem says

that nF,I , nF,Q are Gaussian random variables.

A First Course in Digital Communications 22/45



Chapter 10: Signaling Over Fading Channels

nF,I and nF,Q are statistically independent Gaussian random
variables, zero-mean, variance σ2

F /2:

fnI ,nQ(nI , nQ) = fnI (nI)fnQ(nQ) = N
(

0,
σ2

F

2

)

N
(

0,
σ2

F

2

)

.

The received signal is therefore:

r(t) = s(t) [nF,I cos(2πfct) + nF,Q sin(2πfct)]

= s(t) [α cos(2πfct − θ)] ,

where α =
√

n2
F,I + n2

F,Q, θ = tan−1
(

nF,Q

nF,I

)

and

fθ(θ) =
1

2π
(uniform),

fα(α) =
2α

σ2
F

exp

{

− α2

σ2
F

}

u(α) (Rayleigh).

The term “Rayleigh fading” comes from the envelope distribution.

The phase of the received signal severely degraded but that the
amplitude is affected as well: The incoming signals add not only
constructively but also destructively.
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Noncoherent Demodulation of BFSK in Rayleigh Fading

s(t) =







√
Eb

√
2
Tb

cos(2πf1t), if “0T ”
√

Eb

√
2
Tb

cos(2πf2t), if “1T ”
,

r(t) =







√
Eb

√
2
Tb

α cos(2πf1t − θ) + w(t), if “0T ”
√

Eb

√
2
Tb

α cos(2πf2t − θ) + w(t), if “1T ”
.

=







√
EbnF,I

√
2

Tb
cos(2πf1t)

︸ ︷︷ ︸

φ1,I(t)

+
√

EbnF,Q

√
2

Tb
sin(2πf1t)

︸ ︷︷ ︸

φ1,Q(t)

+w(t), “0T ”,

√
EbnF,I

√
2

Tb
cos(2πf2t)

︸ ︷︷ ︸

φ2,I(t)

+
√

EbnF,Q

√
2

Tb
sin(2πf2t)

︸ ︷︷ ︸

φ2,Q(t)

+w(t), “1T ”,

The transmitted signal lies entirely within the signal space spanned by

φ1,I(t), φ1,Q(t), φ2,I(t) and φ2,Q(t).
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0T

r1,I =
√

EbnF,I + w1,I

r1,Q =
√

EbnF,Q + w2,Q

r2,I = w2,I

r2,Q = w2,Q

1T

r1,I = w1,I

r1,Q = w2,Q

r2,I =
√

EbnF,I + w2,I

r2,Q =
√

EbnF,Q + w2,Q

w1,I , w1,Q, w2,I , w2,Q are due to thermal noise, are Gaussian,
statistically independent, zero-mean, and variance N0/2.

nF,I and nF,Q, are also Gaussian, statistically independent,
zero-mean and variance σ2

F /2.

The sufficient statistics are Gaussian, statistically independent,
zero-mean, with a variance of either N0/2 or Ebσ

2
F /2 + N0/2,

depending on whether a “0T ” or “1T ”.

Computing the likelihood ratio gives the following decision rule:
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Equivalently the decision rule can be expressed as:
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Error Probability of Noncoherent BFSK

P [error] = P [error|0T ] = P
[√

r2
2,I + r2

2,Q ≥
√

r2
1,I + r2

1,Q

∣
∣
∣ 0T

]

.

Fix the value of r2
1,I + r2

1,Q at a specific value, say R2 and compute

P
[√

r2
2,I + r2

2,Q ≥ R
∣
∣
∣ 0T ,

√

r2
1,I + r2

1,Q = R
]

=

∫∫

Z

1

πN0
e−

r2
2,I+r2

2,Q
N0 dr2,Idr2,Q

=

∫ 2π

λ=0

∫ ∞

ρ=R

1

πN0
ρe−

ρ2

N0 dρdλ = e−
(r2

1,I+r2
1,Q)

N0 .

R

2,Qr

2,Ir

( )2, 2,

Find volume under
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I Q Tf r r
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Average over all possible values of r1,I , r1,Q:

E

{

e−
(r2

1,I+r1,Q)2

N0

∣
∣
∣
∣
∣
0T

}

=

∫ ∞

r1,I=−∞

∫ ∞

r1,Q=−∞
e
−(r2

1,I+r1,Q)2

N0 f(r1,I , r1,Q|0T )dr1,Idr1,Q

=
1

2 + σ2
F

Eb

N0

.

Ebσ
2
F can be interpreted as the received energy per bit.

The behavior is P [error] ∝ 1
SNR , a much much slower rate of decay

as compared to P [error] ∝ e−SNR.

In the log-log plot of the P [error] versus SNR in dB, the error
performance curve appears to be a straight line of slope −1 in the
high SNR region.
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Compared to noncoherent demodulation of BFSK in random phase only,

at an error probability of 10−3 about 19 dB more power is needed for

noncoherent demodulation of BFSK in Rayleigh fading!
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BFSK and BPSK with Coherent Demodulation

If the random phase introduced by fading can be perfectly
estimated, then coherent demodulation can be achieved ⇒ The
situation is the same as detection in random amplitude.

With a Rayleigh fading channel, α is a Rayleigh random variable.

For BFSK, the optimum decision rule is r1

0D

R
1D

r2 and

P [error] = E

{

Q

(

α

√

Eb

N0

)}

=
1

2



1 −

√
√
√
√

σ2
F

Eb

N0

2 + σ2
F

Eb

N0



 .

For BPSK, the optimum decision rule is r1

1D

R
0D

0 and

P [error] =
1

2



1 −

√
√
√
√

σ2
F

Eb

N0

1 + σ2
F

Eb

N0



 .

A First Course in Digital Communications 30/45



Chapter 10: Signaling Over Fading Channels

Coherent BPSK is 3 dB more efficient that coherent BFSK, which in turn

is 3 dB more efficient than the noncoherent BFSK.
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Diversity

All communication schemes over a Rayleigh fading channel
have the same discouraging performance behavior of
P [error] ∝ 1

SNR .

The reason is that it is very probable for the channel to
exhibit what is called a deep fade, i.e, the received signal
amplitude becomes very small.

Diversity technique: multiple copies of the same message are
transmitted over independent fading channels in the hope that
at least one of them will not experience a deep fade.

Time diversity: Achieved by transmitting the same message in
different time slots.
Frequency diversity: Accomplished by sending the message
copies in different frequency slots.
Antenna diversity: Achieved with the use of antenna arrays
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Optimum Demodulation of Binary FSK with Diversity
Consider N transmissions of BFSK over a fading channel:

s(t) =







√

E
′

b

√
2
Tb

cos(2πf1t), if “0T ”
√

E
′

b

√
2
Tb

cos(2πf2t), if “1T ”
,

rj(t) =







√

E
′

b

√
2
Tb

αj cos(2πf1t − θj) + w(t), “0T ”
√

E
′

b

√
2
Tb

αj cos(2πf2t − θj) + w(t), “1T ”

=







√

E
′

bnj,I

√
2

Tb
cos(2πf1t)

︸ ︷︷ ︸

φ
(1)
j,I (t)

+
√

E
′

bnj,Q

√
2

Tb
sin(2πf1t)

︸ ︷︷ ︸

φ
(1)
j,Q(t)

+w(t), “0T ”

√

E
′

bnj,I

√
2

Tb
cos(2πf2t)

︸ ︷︷ ︸

φ
(2)
j,I (t)

+
√

E
′

bnj,Q

√
2

Tb
sin(2πf2t)

︸ ︷︷ ︸

φ
(2)
j,Q(t)

+w(t), “1T ”

for (j − 1)Tb ≤ t ≤ jTb and j = 1, . . . , N .
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φ
(1)
j,I (t) =

√
2

Tb
cos(2πf1t), φ

(1)
j,Q(t) =

√
2

Tb
sin(2πf1t),

φ
(2)
j,I

(t) =
√

2
Tb

cos(2πf2t), φ
(2)
j,Q
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√

2
Tb

sin(2πf2t),
(j−1)Tb ≤ t ≤ jTb , j = 1, . . . , N.

0T

r
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1,I
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√

E
′
b
n
(1)
1,I

+ w
(1)
1,I

r
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1,Q

=
√

E
′
b
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1,Q
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1,Q

.
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.
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.
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r
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√
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√
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(1)
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(2)
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.
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=
√

E
′
b
n
(2)
N,I

+ w
(2)
N,I

r
(2)
N,Q

=
√
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Number the sufficient statistics corresponding to f1 from 1 to 2N ;
sufficient statistics associated with f2 from 2N + 1 to 4N . The
likelihood ratio test is

f(r1, . . . , rN ; r2N+1, . . . , r4N |1T )

f(r1, . . . , rN ; r2N+1, . . . , r4N |0T )
=

2N∏

j=1

1√
2πσw

e−r2
j /(2σ2

w)
4N∏

j=2N+1

1√
2πσt

e−r2
j /(2σ2

t )

2N∏

j=1

1√
2πσt

e−r2
j /(2σ2

t )
4N∏

j=2N+1

1√
2πσw

e−r2
j /(2σ2

w)

1D

R
0D

1,

which can be reduced to

4N∑

j=2N+1

r2
j

1D

R
0D

2N∑

j=1

r2
j .
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Chi-Square Probability Density Function

Consider y = x2
1 + x2

2 + · · · + x2
N where the xi’s are zero-mean,

statistically independent Gaussian random variables with identical
variances, σ2. To find fy(y) determine the characteristic function Φy(f)
and then inverse transform it.

Φy(f) = E
{
ej2πfy

}
= E






e
j2π

N∑

k=1

x
2
k






= E

{
N∏

k=1

ej2πfx
2
k

}

=

N∏

k=1

E
{

ej2πfx
2
k

}

.

E
{

ej2πfx
2
k

}

= 1√
2πσ

∫∞
−∞ ej2πfx2

ke−x2
k/(2σ2)dxk = 1√

1−j4πσ2f
.

Therefore Φy(f) = 1
(1−j4πσ2f)N/2 and

fy(y) =
∫∞
−∞

1
(1−j4πσ2f)N/2 e−j2πyfdf , where y ≥ 0. From the identity

∫∞
−∞(β − ix)−νe−ipxdx = 2πpν−1e−βp

Γ(ν) u(p), where R(ν) > 0 and

R(β) > 0, the pdf is

fy(y) =
y

N
2 −1e−y/(2σ2)

2
N
2 σNΓ

(
N
2

) u(y),

where Γ(x) =
∫∞
0 tx−1e−tdt = (x − 1)! for x integer.
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Error Performance of BFSK with Diversity

Define ℓ1 =
∑4N

j=2N+1 r2
j and ℓ0 =

∑2N
j=1 r2

j . The decision rule is:

ℓ1

1D

R
0D

ℓ0.

P [error] = P [error|0T ] =

∫ ∞

0
f(ℓ0|0T )

[∫ ∞

ℓ0

f(ℓ1|0T )dℓ1

]

dℓ0.

f(ℓ1|0T ) and f(ℓ0|0T ) are chi-square distributions:

f(ℓ1|0T ) =
ℓN−1
1 e−ℓ1/(2σ2

w)

2Nσ2N
w Γ(N)

u(ℓ1), f(ℓ0|0T ) =
ℓN−1
0 e−ℓ0/(2σ2

t )

2Nσ2N
t Γ(N)

u(ℓ0).

It can be shown that

P [error] =

N∑

j=1

(
σ2

t

σ2
w

)N−j
1

(

1 +
σ2

t

σ2
w

)2N−j

Γ(2N − j)

Γ(N)Γ(N − j + 1)
.
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Define γT = E
′

bσ
2
F /N0 as the averaged SNR per transmission.

Recognize that
σ2

t

σ2
w

= 1 + γT and Γ(x) = (x − 1)! for integer

x. Then

P [error] =
1

(2 + γT )N

N−1∑

k=0

(
N − 1 + k

k

)(
1 + γT

2 + γT

)k

.

For large values of SNR, 1 + γT ≈ 2 + γT ≈ γT and

P [error] ≈ 1

(γT )N

N−1∑

k=0

(
N − 1 + k

k

)

=
1

(γT )N

(
2N − 1

N

)

.

The error performance now decays inversely with the N th
power of the received SNR.

The exponent N of the SNR is generally referred to as the
diversity order of the modulation scheme.
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Compared to no diversity, there is a significant improvement in

performance with diversity.
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Optimum Diversity

As the diversity order N increases the error performance improves.

This improvement comes at the expense of a reduced data rate in
the case of time diversity.

If the transmitter’s power or equivalently the energy expended per
information bit is constrained to Eb joules then increasing N does
not necessarily lead to a better error performance.

With increased N we increase the probability of avoiding a deep
fade, at the same time the energy, E

′

b, of each transmission is
reduced. Therefore the SNR of each transmission is reduced which
in turn increases the error probability.

There is an optimum value for the diversity order N at each level of
error probability. An empirical relationship is:

Nopt = Ke10 log10 γT .

where K is some constant.
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P [error] versus the averaged received SNR per bit, 10 log10

(
Ebσ2

F

N0

)

.
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Determining The Optimum Diversity Order
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Central Limit Theorem

Central limit theorem states that under certain general
conditions the sum of n statistically independent continuous
random variables has a pdf that approaches a Gaussian pdf as
n increases.

Let x =
∑n

i=1 xi. where the xi’s are statistically independent
random variables with mean, E{xi} = mi, and variance,
E
{
(xi − mi)

2
}

= σ2
i . Then x is a random variable with

mean mx =
∑n

i=1 mi, variance σ2
x

=
∑n

i=1 σ2
i and a pdf of

fx(x) = fx1(x) ∗ fx2(x) ∗ · · · ∗ fxn(x).

By the central limit theorem fx(x) approaches a Gaussian pdf
as n increases, i.e.,

fx(x) ∼ 1√
2πσx

e
−

(x−mx)2

2σ2
x .
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Example 1: fxi
(xi) are Zero-Mean Uniform
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Example 2: fxi
(xi) are Laplacian
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