A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk

February 2009

A First Course in Digital Communications

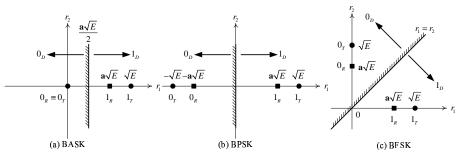
Introduction

- We have considered that the transmitted signal is only degraded by AWGN and it might be subjected to filtering.
- There are communication channels (e.g., mobile wireless channels) where the received signal is not subjected to a known transformation or filtering.
- Typically the gain and/or phase of a digitally modulated transmitted signal is not known precisely at the receiver.
- It is common to model these parameters as *random*.
- Shall consider channel models where the amplitude and/or phase of the received signal is random.

Demodulation with Random Amplitude

$$\mathbf{r}(t) = \mathbf{a}s(t) + \mathbf{w}(t),$$

where **a** is a random variable with known pdf $f_{\mathbf{a}}(a)$.



Performance of BPSK and BFSK

$$\begin{split} \mathbf{P}[\text{error}] &= Q\left(\mathbf{a}\sqrt{\frac{2E_b}{N_0}}\right) \quad (\text{antipodal}), \\ \mathbf{P}[\text{error}] &= Q\left(\mathbf{a}\sqrt{\frac{E_b}{N_0}}\right) \quad (\text{orthogonal}). \end{split}$$

$$E\{\mathbf{P}[\text{error}]\} = \int_0^\infty Q\left(a\sqrt{\frac{2E_b}{N_0}}\right) f_{\mathbf{a}}(a) da \quad (\text{antipodal}),$$
$$E\{\mathbf{P}[\text{error}]\} = \int_0^\infty Q\left(a\sqrt{\frac{E_b}{N_0}}\right) f_{\mathbf{a}}(a) da \quad (\text{orthogonal}).$$

Optimum Demodulation of BASK

• Optimum receiver is determined by the maximum likelihood ratio:

$$\frac{f_{\mathbf{r}_1}(r_1|1_T)}{f_{\mathbf{r}_1}(r_1|0_T)} \stackrel{1_D}{\underset{0_D}{\geq}} 1.$$

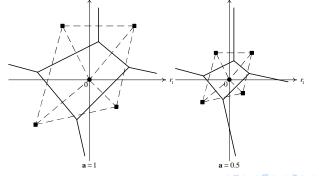
• $f_{\mathbf{r}_1}(r_1|0_T)$ is $\mathcal{N}(0,N_0/2)$, while

$$f_{\mathbf{r}_{1}}(r_{1}|1_{T}) = \int_{0}^{\infty} f_{\mathbf{r}_{1}}(r_{1}|1_{T}, \mathbf{a} = a) f_{\mathbf{a}}(a) da$$
$$= E \{ f_{\mathbf{r}_{1}}(r_{1}|1_{T}, \mathbf{a} = a) \}.$$

- Need to know $f_{\mathbf{a}}(a)$ to proceed further.
- In general the threshold (and hence the decision regions) is a balance between the different regions given by the values that a takes on weighted by the probability that a takes on these values.

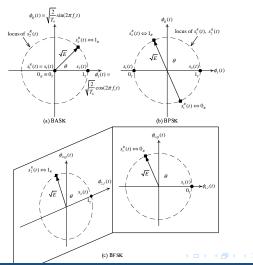
M-ary Demodulation with Random Amplitude

- If all the signal points lie at distance of √E_s from the origin (i.e., equal energy), then the optimum decision regions are *invariant* to any scaling by a, provided that a ≥ 0.
- The matched-filter or correlation receiver structure is still optimum, one does not even need to know $f_{\mathbf{a}}(a)$.
- The error performance, however, depends crucially on a and $f_{\mathbf{a}}(a)$.



Demodulation with Random Phase

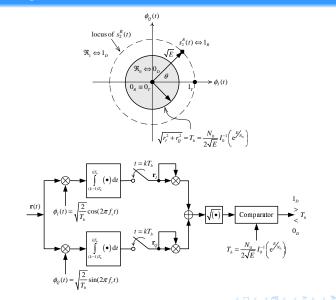
Phase uncertainty can be modeled as a uniform random variable (over $[0, 2\pi]$ or $[-\pi, \pi]$). It does not change the energy of the received signal.



Optimum Receiver for Noncoherent BASK

$$\mathbf{r}(t) = \begin{cases} \mathbf{w}(t), & \text{if } {}^{"0}T'' \\ \sqrt{E}\sqrt{\frac{2}{T_b}}\cos(2\pi f_c t - \theta) + \mathbf{w}(t), & \text{if } {}^{"1}T'' \\ \mathbf{r}_I = \begin{cases} \mathbf{w}_I, & \text{if } {}^{"0}T'' \\ \sqrt{E}\cos\theta + \mathbf{w}_I, & \text{if } {}^{"1}T'' \\ \text{if } {}^{"1}T'' \\ \text{if } {}^{"1}T'' \\ \text{where } \mathbf{w}_I \text{ and } \mathbf{w}_Q \text{ are statistically independent } \mathcal{N}(0, N_0/2). \\ f(r_I, r_Q|0_T) = f(r_I|0_T)f(r_Q|0_T) = \frac{1}{\pi N_0}\exp\left(-\frac{r_I^2 + r_Q^2}{N_0}\right). \end{cases}$$
$$(r_I, r_Q|1_T) = \int_0^{2\pi} \frac{1}{\pi N_0}\exp\left[-\frac{\left(r_I - \sqrt{E}\cos\theta\right)^2 + \left(r_Q - \sqrt{E}\sin\theta\right)^2}{N_0}\right] \frac{1}{2\pi}d\theta \\ = \frac{1}{\pi N_0}e^{-\frac{r_I^2 + r_Q^2}{N_0}}e^{-\frac{E}{N_0}}I_0\left(\frac{2\sqrt{E}}{N_0}\sqrt{r_I^2 + r_Q^2}\right). \\ e^{-\frac{E}{N_0}}I_0\left(\frac{2\sqrt{E}}{N_0}\sqrt{r_I^2 + r_Q^2}\right) \stackrel{1_D}{\stackrel{\geq}{\leq}} 1 \Rightarrow \sqrt{r_I^2 + r_Q^2} \stackrel{1_D}{\stackrel{\geq}{\leq}} \frac{N_0}{2\sqrt{E}}I_0^{-1}\left(e^{\frac{E}{N_0}}\right). \end{cases}$$

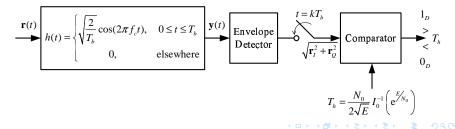
Decision Regions of BASK with Random Phase



Different Implementation of BASK Demodulation

$$y(t) = \int_{-\infty}^{\infty} r(\lambda) \sqrt{\frac{2}{T_b}} \cos(2\pi f_c(t-\lambda)) [u(t-\lambda) - u(t-\lambda - T_b] d\lambda$$
$$= \sqrt{y_I^2(t) + y_Q^2(t)} \cos\left[2\pi f_c\left(t - \tan^{-1}\frac{y_Q(t)}{y_I(t)}\right)\right],$$

where $\sqrt{y_I^2(t) + y_Q^2(t)}$ is the envelope. At the sampling instant, $t = kT_b$, then $y_I(kT_b) = r_I$ and $y_Q(kT_b) = r_Q$.



A First Course in Digital Communications

Error Performance

$$P[\text{error}|0_T] = \iint_{\Re_1} f(r_I, r_Q|0_T) dr_I dr_Q = \iint_{\Re_1} \frac{1}{\pi N_0} e^{-\frac{r_I^2 + r_Q^2}{N_0}} dr_I dr_Q,$$

$$= \frac{1}{\pi N_0} \int_{\alpha=0}^{2\pi} \int_{\rho=T_h}^{\infty} \rho e^{-\frac{\rho^2}{N_0}} d\rho d\alpha = e^{-T_h^2/N_0}.$$

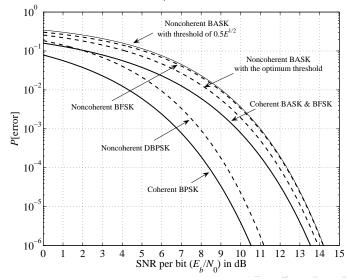
$$P[\text{error}|1_T] = 1 - P[\text{correct}|1_T] = 1 - \iint_{\Re_1} f(r_I, r_Q|1_T) dr_I dr_Q$$
$$= 1 - Q\left(\sqrt{\frac{2E}{N_0}}, \sqrt{\frac{2}{N_0}}T_h\right).$$

where $Q(\alpha,\beta) = \int_{\beta}^{\infty} x \mathrm{e}^{-\frac{x^2+\alpha^2}{2}} I_0(\alpha x) \mathrm{d}x$ is Marcum's Q-function.

$$P[\text{error}] = \frac{1}{2} e^{-T_h^2/N_0} + \frac{1}{2} \left[1 - Q\left(\sqrt{\frac{2E}{N_0}}, \sqrt{\frac{2}{N_0}}T_h\right) \right]$$

.

There is about 0.3 dB penalty in power when using such a simpler suboptimum threshold, $\frac{\sqrt{E}}{2} = \sqrt{\frac{E_b}{2}}$.



Optimum Receiver for Noncoherent BFSK

$$\mathbf{r}(t) = \begin{cases} \sqrt{E} \sqrt{\frac{2}{T_b}} \cos(2\pi f_1 t - \theta) + \mathbf{w}(t), & \text{if "}0_T" \\ \sqrt{E} \sqrt{\frac{2}{T_b}} \cos(2\pi f_2 t - \theta) + \mathbf{w}(t), & \text{if "}1_T" \end{cases} . \\ \mathbf{r}_{1,I} = \sqrt{E} \cos \theta + \mathbf{w}_{1,I} & \mathbf{r}_{1,I} = \mathbf{w}_{1,I}^T \\ \mathbf{r}_{1,Q} = \sqrt{E} \sin \theta + \mathbf{w}_{1,Q} & \mathbf{r}_{1,Q} = \mathbf{w}_{1,Q} \\ \mathbf{r}_{2,I} = \mathbf{w}_{2,I} & \mathbf{r}_{2,I} = \sqrt{E} \cos \theta + \mathbf{w}_{2,I} \\ \mathbf{r}_{2,Q} = \mathbf{w}_{2,Q} & \mathbf{r}_{2,Q} = \sqrt{E} \sin \theta + \mathbf{w}_{2,Q} \\ f(r_{1,I}, r_{1,Q}, r_{2,I}, r_{2,Q} | 0_T) = \frac{1}{\pi N_0} e^{-\frac{r_{1,I}^2 + r_{1,Q}^2}{N_0}} \times \\ e^{-\frac{\sqrt{E}}{N_0}} I_0 \left(\frac{2\sqrt{E}}{N_0} \sqrt{r_{1,I}^2 + r_{1,Q}^2} \right) \frac{1}{\pi N_0} e^{-\frac{r_{2,I}^2 + r_{2,Q}^2}{N_0}}, \\ f(r_{1,I}, r_{1,Q}, r_{2,I}, r_{2,Q} | 1_T) = \frac{1}{\pi N_0} e^{-\frac{r_{1,I}^2 + r_{1,Q}^2}{N_0}} \times \\ \frac{1}{\pi N_0} e^{-\frac{r_{2,I}^2 + r_{2,Q}^2}{N_0}} e^{-\frac{\sqrt{E}}{N_0}} I_0 \left(\frac{2\sqrt{E}}{N_0} \sqrt{\frac{r_{2,I}^2 + r_{2,Q}^2}{N_0}} \right). \end{cases}$$

A First Course in Digital Communications

Optimum Demodulator for BFSK with Random Phase

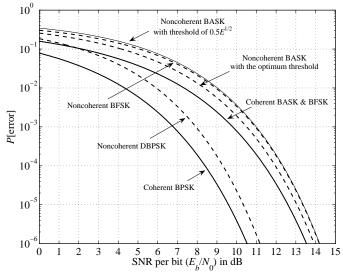
The demodulator finds the envelope at the two frequencies and chooses the larger one at the sampling instant.

Error Performance of BFSK with Random Phase

By symmetry
$$P[\text{error}] = P[\text{error}|0_T] = P\left(\mathbf{r}_{2,I}^2 + \mathbf{r}_{2,Q}^2 \ge \mathbf{r}_{1,I}^2 + \mathbf{r}_{1,Q}^2\right).$$

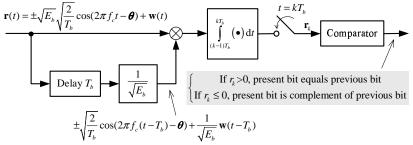
 $P\left[\text{error}|0_T, \mathbf{r}_{1,I}^2 + \mathbf{r}_{1,Q}^2 = R^2\right] =$
 $P\left[(\mathbf{r}_{2,I}, \mathbf{r}_{2,Q}) \text{ falls outside the circle of radius } R|0_T\right]$
 $= \frac{1}{\pi N_0} \int_{\alpha=0}^{2\pi} \int_{\rho=R}^{\infty} \rho e^{-\frac{\rho^2}{N_0}} d\rho d\alpha = e^{-\frac{R^2}{N_0}} = e^{-\frac{\left(r_{1,I}^2 + r_{1,Q}^2\right)}{N_0}}.$
 $P[\text{error}] = E\left\{\int_{r_{1,I}=-\infty}^{\infty} \int_{r_{1,Q}=-\infty}^{\infty} e^{-\frac{\left(r_{1,I}^2 + r_{1,Q}^2\right)}{N_0}} f(r_{1,I}, r_{1,Q}|0_T) dr_{1,I} dr_{1,Q}\right\}$
 $= \int_{\alpha=0}^{2\pi} \left[\int_{r_{1,I}=-\infty}^{\infty} e^{-\frac{r_{1,I}^2}{N_0}} \mathcal{N}\left(\sqrt{E}\cos\alpha, \frac{N_0}{2}\right) dr_{1,I}\right]$
 $\left[\int_{r_{1,Q}=-\infty}^{\infty} e^{-\frac{r_{1,Q}^2}{N_0}} \mathcal{N}\left(\sqrt{E}\sin\alpha, \frac{N_0}{2}\right) dr_{1,Q}\right] f_{\theta}(\alpha) d\alpha.$
 $= \int_{\alpha=0}^{2\pi} \frac{1}{\sqrt{2}} e^{-\frac{E\cos^2\alpha}{2N_0}} \frac{1}{\sqrt{2}} e^{-\frac{E\sin^2\alpha}{2N_0}} \frac{1}{2\pi} d\alpha = \frac{1}{2} e^{-\frac{E}{2N_0}} = \frac{1}{2} e^{-\frac{E_b}{2N_0}}.$

Noncoherent BASK is about 0.3 dB more power efficient than noncoherent BFSK.



Differential BPSK

- Coherent BPSK is 3 dB better than coherent BASK or BFSK: Is it possible to use BPSK on a channel with phase uncertainty?
- <u>Possible</u> if a *phase reference* can be established at the receiver that is matched to the received signal.
- If the phase uncertainty changes relatively slowly with time, the received signal in one bit interval can act as a phase reference for the succeeding bit interval.



But the above method can lead to error propagation!

Differential BPSK Modulation and Demodulation

 0_T : no phase change, 1_T : π phase change.

The decision rule is:

$$r_k \stackrel{1_D}{\underset{0_D}{\geq}} 0.$$

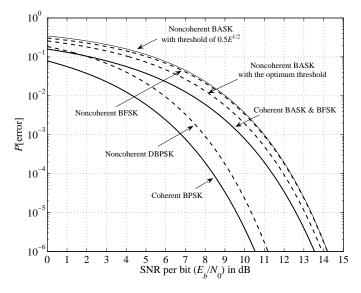
which is independent of the previous decision.

• Since DBPSK is orthogonal signaling, the error analysis for noncoherent BFSK therefore applies to DBPSK:

$$P[\text{error}]_{\text{DBPSK}} = \frac{1}{2} e^{-E_b/N_0}$$

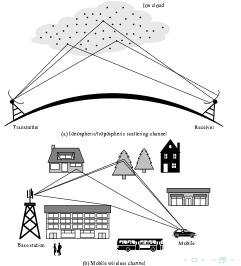
• The only difference is rather than E_b joules/bit, the energy in DBPSK becomes $2E_b$. This is because the received signal over two bit intervals is used to make a decision.

DBPSK shows about 1 dB degradation over coherent BPSK.



Detection over Fading Channels

Fading channel model arises when there are multiple transmission paths from the transmitter to the receiver.



Rayleigh Fading Channel Model

- Consider the transmitted signal $s_T(t) = s(t)\cos(2\pi f_c t)$, where $s(t) = \pm \sqrt{E_b} \sqrt{\frac{2}{T_b}}$ over the bit interval with bit rate $r_b \ll f_c$ (*lowpass* signal).
- The received signal is:

$$\mathbf{r}(t) = \sum_{j} \mathbf{r}_{j}(t) = \sum_{j} s(t - \mathbf{t}_{j}) \boldsymbol{\alpha}_{j} \cos(2\pi f_{c}(t - \mathbf{t}_{j}))$$
$$\approx s(t) \sum_{j} \boldsymbol{\alpha}_{j} \cos(2\pi f_{c}t - 2\pi f_{c}\mathbf{t}_{j}) = s(t) \sum_{j} \boldsymbol{\alpha}_{j} \cos(2\pi f_{c}t - \boldsymbol{\theta}_{j})$$

where α_j represents the attenuation and \mathbf{t}_j the delay along the *j*th path, which are *random* variables. Also because s(t) is lowpass, we approximate $s(t) \approx s(t - t_j)$.

• Since $\mathbf{t}_j \sim 1/f_c$, the random phase $\boldsymbol{\theta}_j$ lies in the range $[0, 2\pi)$. Now

$$\mathbf{r}(t) = s(t) \left[\left(\sum_{j} \boldsymbol{\alpha}_{j} \cos \boldsymbol{\theta}_{j} \right) \cos(2\pi f_{c} t) + \left(\sum_{j} \boldsymbol{\alpha}_{j} \sin \boldsymbol{\theta}_{j} \right) \sin(2\pi f_{c} t) \right]$$

Rayleigh Fading Channel Model

$$\mathbf{n}_{F,I} = \left(\sum_{j} \alpha_{j} \cos \theta_{j}\right)$$
 and $\mathbf{n}_{F,Q} = \left(\sum_{j} \alpha_{j} \sin \theta_{j}\right)$ have the following moments:

$$E\{\mathbf{n}_{F,I}\} = \sum_{j} E\{\boldsymbol{\alpha}_{j}\} E\{\cos\boldsymbol{\theta}_{j}\} = 0, \ E\{\mathbf{n}_{F,Q}\} = \sum_{j} E\{\boldsymbol{\alpha}_{j}\} E\{\sin\boldsymbol{\theta}_{j}\} = 0,$$

0

$$E\left\{\mathbf{n}_{F,I}^{2}\right\} = \sum_{j} E\left\{\boldsymbol{\alpha}_{j}^{2}\right\} E\left\{\cos^{2}\boldsymbol{\theta}_{j}\right\} = \frac{\sigma_{F}^{2}}{2},$$

$$E\left\{\mathbf{n}_{F,Q}^{2}\right\} = \sum_{j} E\left\{\boldsymbol{\alpha}_{j}^{2}\right\} E\left\{\sin^{2}\boldsymbol{\theta}_{j}\right\} = \frac{\sigma_{F}^{2}}{2},$$

$$E\left\{\mathbf{n}_{F,I}\mathbf{n}_{F,Q}\right\} = E\left\{\sum_{j}\boldsymbol{\alpha}_{j}\cos\boldsymbol{\theta}_{j}\sum_{k}\boldsymbol{\alpha}_{k}\sin\boldsymbol{\theta}_{k}\right\}$$

 $=\sum_{j}\sum_{k}E\left\{\alpha_{j}\alpha_{k}\right\}\underbrace{E\left\{\cos\theta_{j}\sin\theta_{k}\right\}}_{=0}=0,$

Since the number of multipaths is large, the *central limit theorem* says that $\mathbf{n}_{F,I}$, $\mathbf{n}_{F,Q}$ are Gaussian random variables.

n_{F,I} and n_{F,Q} are statistically independent Gaussian random variables, zero-mean, variance σ²_F/2:

$$f_{\mathbf{n}_I,\mathbf{n}_Q}(n_I,n_Q) = f_{\mathbf{n}_I}(n_I)f_{\mathbf{n}_Q}(n_Q) = \mathcal{N}\left(0,\frac{\sigma_F^2}{2}\right)\mathcal{N}\left(0,\frac{\sigma_F^2}{2}\right).$$

• The received signal is therefore:

$$\begin{split} \mathbf{r}(t) &= s(t) \left[\mathbf{n}_{F,I} \cos(2\pi f_c t) + \mathbf{n}_{F,Q} \sin(2\pi f_c t) \right] \\ &= s(t) \left[\boldsymbol{\alpha} \cos(2\pi f_c t - \boldsymbol{\theta}) \right], \\ \text{where } \boldsymbol{\alpha} &= \sqrt{\mathbf{n}_{F,I}^2 + \mathbf{n}_{F,Q}^2}, \ \boldsymbol{\theta} &= \tan^{-1} \left(\frac{\mathbf{n}_{F,Q}}{\mathbf{n}_{F,I}} \right) \text{ and} \\ &f_{\boldsymbol{\theta}}(\theta) &= \frac{1}{2\pi} \quad (\text{uniform}), \\ &f_{\boldsymbol{\alpha}}(\alpha) &= \frac{2\alpha}{\sigma_F^2} \exp\left\{ -\frac{\alpha^2}{\sigma_F^2} \right\} u(\alpha) \quad (\text{Rayleigh}). \end{split}$$

- The term "Rayleigh fading" comes from the envelope distribution.
- The phase of the received signal severely degraded but that the amplitude is affected as well: The incoming signals add not only constructively but also destructively.

Noncoherent Demodulation of BFSK in Rayleigh Fading

$$s(t) = \begin{cases} \sqrt{E_b} \sqrt{\frac{2}{T_b}} \cos(2\pi f_1 t), & \text{if "}0_T"\\ \sqrt{E_b} \sqrt{\frac{2}{T_b}} \cos(2\pi f_2 t), & \text{if "}1_T" \end{cases},$$

$$\mathbf{r}(t) = \begin{cases} \sqrt{E_b} \sqrt{\frac{2}{T_b}} \alpha \cos(2\pi f_1 t - \theta) + \mathbf{w}(t), & \text{if "}0_T" \\ \sqrt{E_b} \sqrt{\frac{2}{T_b}} \alpha \cos(2\pi f_2 t - \theta) + \mathbf{w}(t), & \text{if "}1_T" \end{cases}$$

$$= \begin{cases} \sqrt{E_b} \mathbf{n}_{F,I} \sqrt{\frac{2}{T_b}} \cos(2\pi f_1 t) + \sqrt{E_b} \mathbf{n}_{F,Q} \sqrt{\frac{2}{T_b}} \sin(2\pi f_1 t) + \mathbf{w}(t), & "0_T", \\ \sqrt{E_b} \mathbf{n}_{F,I} \sqrt{\frac{2}{T_b}} \cos(2\pi f_2 t) + \sqrt{E_b} \mathbf{n}_{F,Q} \sqrt{\frac{2}{T_b}} \sin(2\pi f_2 t) + \mathbf{w}(t), & "1_T", \\ \sqrt{E_b} \mathbf{n}_{F,I} \sqrt{\frac{2}{T_b}} \cos(2\pi f_2 t) + \sqrt{E_b} \mathbf{n}_{F,Q} \sqrt{\frac{2}{T_b}} \sin(2\pi f_2 t) + \mathbf{w}(t), & "1_T", \end{cases}$$

The transmitted signal lies entirely within the signal space spanned by $\phi_{1,I}(t)$, $\phi_{1,Q}(t)$, $\phi_{2,I}(t)$ and $\phi_{2,Q}(t)$.

 1_T

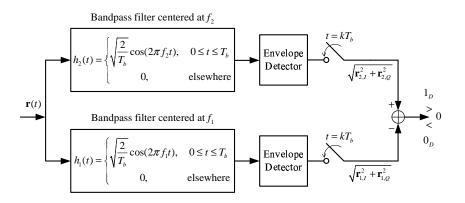
- $\mathbf{r}_{1,I} = \sqrt{E_b} \mathbf{n}_{F,I} + \mathbf{w}_{1,I} \qquad \mathbf{r}_{1,I} = \mathbf{w}_{1,I} \\ \mathbf{r}_{1,Q} = \sqrt{E_b} \mathbf{n}_{F,Q} + \mathbf{w}_{2,Q} \qquad \mathbf{r}_{1,Q} = \mathbf{w}_{2,Q} \\ \mathbf{r}_{2,I} = \mathbf{w}_{2,I} \qquad \mathbf{r}_{2,I} = \sqrt{E_b} \mathbf{n}_{F,I} + \mathbf{w}_{2,I} \\ \mathbf{r}_{2,Q} = \mathbf{w}_{2,Q} \qquad \mathbf{r}_{2,Q} = \sqrt{E_b} \mathbf{n}_{F,Q} + \mathbf{w}_{2,Q}$
- $\mathbf{w}_{1,I}$, $\mathbf{w}_{1,Q}$, $\mathbf{w}_{2,I}$, $\mathbf{w}_{2,Q}$ are due to thermal noise, are Gaussian, statistically independent, zero-mean, and variance $N_0/2$.
- n_{F,I} and n_{F,Q}, are also Gaussian, statistically independent, zero-mean and variance σ²_F/2.
- The sufficient statistics are Gaussian, statistically independent, zero-mean, with a variance of either $N_0/2$ or $E_b \sigma_F^2/2 + N_0/2$, depending on whether a " 0_T " or " 1_T ".
- Computing the likelihood ratio gives the following decision rule:

$$r_{2,I}^2 + r_{2,Q}^2 \stackrel{1_D}{\underset{0_D}{\gtrsim}} r_{1,I}^2 + r_{1,Q}^2$$

Equivalently the decision rule can be expressed as:

$$\sqrt{r_{2,I}^2 + r_{2,Q}^2} \stackrel{1_D}{\underset{0_D}{\geq}} \sqrt{r_{1,I}^2 + r_{1,Q}^2}$$

which is identical to that for noncoherent BFSK!



Error Probability of Noncoherent BFSK

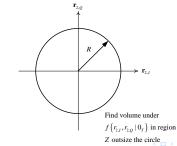
$$P[\text{error}] = P[\text{error}|0_T] = P\left[\sqrt{\mathbf{r}_{2,I}^2 + \mathbf{r}_{2,Q}^2} \ge \sqrt{\mathbf{r}_{1,I}^2 + \mathbf{r}_{1,Q}^2} \,\Big|\, 0_T\right].$$

Fix the value of $\mathbf{r}_{1,I}^2+\mathbf{r}_{1,Q}^2$ at a specific value, say R^2 and compute

$$P\left[\sqrt{\mathbf{r}_{2,I}^2 + \mathbf{r}_{2,Q}^2} \ge R \middle| 0_T, \sqrt{\mathbf{r}_{1,I}^2 + \mathbf{r}_{1,Q}^2} = R\right] = \iint_Z \frac{1}{\pi N_0} e^{-\frac{r_{2,I}^2 + r_{2,Q}^2}{N_0}} dr_{2,I} dr_{2,Q}$$

$$= \int_{\lambda=0}^{2\pi} \int_{\rho=R}^{\infty} \frac{1}{\pi N_0} \rho e^{-\frac{\rho^2}{N_0}} d\rho d\lambda = e^{-\frac{\left(r_{1,I}^2 + r_{1,Q}^2\right)}{N_0}}.$$

Ζ



• Average over all possible values of $\mathbf{r}_{1,I}$, $\mathbf{r}_{1,Q}$:

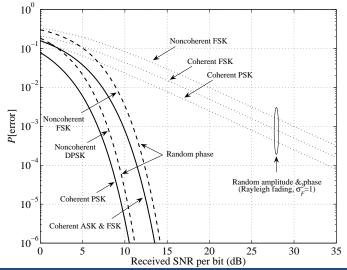
$$E\left\{ e^{-\frac{\left(r_{1,I}^{2}+r_{1,Q}\right)^{2}}{N_{0}}} \middle| 0_{T} \right\}$$

= $\int_{r_{1,I}=-\infty}^{\infty} \int_{r_{1,Q}=-\infty}^{\infty} e^{-\frac{\left(r_{1,I}^{2}+r_{1,Q}\right)^{2}}{N_{0}}} f(r_{1,I}, r_{1,Q}|0_{T}) dr_{1,I} dr_{1,Q}$
= $\frac{1}{2 + \sigma_{F}^{2} \frac{E_{b}}{N_{0}}}.$

- $E_b \sigma_F^2$ can be interpreted as the received energy per bit.
- The behavior is $P[\text{error}] \propto \frac{1}{\text{SNR}}$, a much much slower rate of decay as compared to $P[\text{error}] \propto e^{-\text{SNR}}$.
- In the log-log plot of the P[error] versus SNR in dB, the error performance curve appears to be a straight line of slope -1 in the high SNR region.

マロト イラト イラト

Compared to noncoherent demodulation of BFSK in random phase only, at an error probability of 10^{-3} about 19 dB more power is needed for noncoherent demodulation of BFSK in Rayleigh fading!



BFSK and BPSK with Coherent Demodulation

- If the random phase introduced by fading can be perfectly estimated, then coherent demodulation can be achieved ⇒ The situation is the same as detection in random amplitude.
- With a Rayleigh fading channel, lpha is a Rayleigh random variable.
- For BFSK, the optimum decision rule is $r_1 \stackrel{0_D}{\underset{1_D}{\gtrsim}} r_2$ and

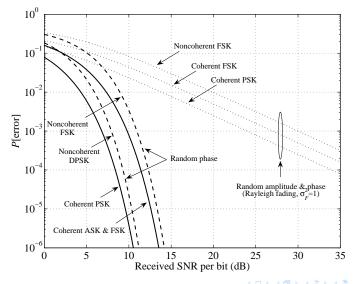
$$P[\text{error}] = E\left\{Q\left(\alpha\sqrt{\frac{E_b}{N_0}}\right)\right\} = \frac{1}{2}\left[1 - \sqrt{\frac{\sigma_F^2 \frac{E_b}{N_0}}{2 + \sigma_F^2 \frac{E_b}{N_0}}}\right].$$

• For BPSK, the optimum decision rule is $r_1 \stackrel{1_D}{\underset{0_D}{\geq}} 0$ and

$$P[\text{error}] = \frac{1}{2} \left[1 - \sqrt{\frac{\sigma_F^2 \frac{E_b}{N_0}}{1 + \sigma_F^2 \frac{E_b}{N_0}}} \right]$$

.

Coherent BPSK is 3 dB more efficient that coherent BFSK, which in turn is 3 dB more efficient than the noncoherent BFSK.



Diversity

- All communication schemes over a Rayleigh fading channel have the same discouraging performance behavior of $P[\text{error}] \propto \frac{1}{\text{SNR}}$.
- The reason is that it is very probable for the channel to exhibit what is called a *deep fade*, i.e, the received signal amplitude becomes very small.
- *Diversity* technique: multiple copies of the same message are transmitted over independent fading channels in the hope that at least one of them will not experience a deep fade.
 - Time diversity: Achieved by transmitting the same message in different time slots.
 - Frequency diversity: Accomplished by sending the message copies in different frequency slots.
 - Antenna diversity: Achieved with the use of antenna arrays

Optimum Demodulation of Binary FSK with Diversity

Consider N transmissions of BFSK over a fading channel:

$$s(t) = \begin{cases} \sqrt{E_b'} \sqrt{\frac{2}{T_b}} \cos(2\pi f_1 t), & \text{if "}0_T"\\ \sqrt{E_b'} \sqrt{\frac{2}{T_b}} \cos(2\pi f_2 t), & \text{if "}1_T" \end{cases},$$

$$\begin{split} \mathbf{r}_{j}(t) &= \begin{cases} \sqrt{E_{b}'} \sqrt{\frac{2}{T_{b}}} \alpha_{j} \cos(2\pi f_{1}t - \boldsymbol{\theta}_{j}) + \mathbf{w}(t), & ``0_{T}" \\ \sqrt{E_{b}'} \sqrt{\frac{2}{T_{b}}} \alpha_{j} \cos(2\pi f_{2}t - \boldsymbol{\theta}_{j}) + \mathbf{w}(t), & ``1_{T}" \\ \end{cases} \\ &= \begin{cases} \sqrt{E_{b}'} \mathbf{n}_{j,I} \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{1}t) + \sqrt{E_{b}'} \mathbf{n}_{j,Q} \sqrt{\frac{2}{T_{b}}} \sin(2\pi f_{1}t) + \mathbf{w}(t), & ``0_{T}" \\ \sqrt{E_{b}'} \mathbf{n}_{j,I} \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{2}t) + \sqrt{E_{b}'} \mathbf{n}_{j,Q} \sqrt{\frac{2}{T_{b}}} \sin(2\pi f_{2}t) + \mathbf{w}(t), & ``1_{T}" \\ \sqrt{E_{b}'} \mathbf{n}_{j,I} \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{2}t) + \sqrt{E_{b}'} \mathbf{n}_{j,Q} \sqrt{\frac{2}{T_{b}}} \sin(2\pi f_{2}t) + \mathbf{w}(t), & ``1_{T}" \\ \end{cases} \\ & \text{for } (i - 1)T_{b} < t < jT_{b} \text{ and } j = 1, \dots, N. \end{cases} \end{split}$$

$$\begin{cases} \phi_{j,I}^{(1)}(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_1 t), \ \phi_{j,Q}^{(1)}(t) = \sqrt{\frac{2}{T_b}} \sin(2\pi f_1 t), \\ \phi_{j,I}^{(2)}(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_2 t), \ \phi_{j,Q}^{(2)}(t) = \sqrt{\frac{2}{T_b}} \sin(2\pi f_2 t), \end{cases} (j-1)T_b \le t \le jT_b, \ j = 1, \dots, N.$$

$$\label{eq:relation} \begin{array}{c|c} & \underline{0_T} \\ \hline \mathbf{r}_{1,I}^{(1)} = \sqrt{E_b'} \mathbf{n}_{1,I}^{(1)} + \mathbf{w}_{1,I}^{(1)} & \mathbf{r}_{1,Q}^{(1)} = \sqrt{E_b'} \mathbf{n}_{1,Q}^{(1)} + \mathbf{w}_{1,Q}^{(1)} \\ & \vdots & \vdots \\ \mathbf{r}_{N,I}^{(1)} = \sqrt{E_b'} \mathbf{n}_{N,I}^{(1)} + \mathbf{w}_{N,I}^{(1)} & \mathbf{r}_{N,Q}^{(1)} = \sqrt{E_b'} \mathbf{n}_{N,Q}^{(1)} + \mathbf{w}_{N,Q}^{(1)} \\ \hline \mathbf{r}_{1,I}^{(2)} = \mathbf{w}_{1,I}^{(2)} & \mathbf{r}_{1,Q}^{(2)} = \mathbf{w}_{1,Q}^{(2)} \\ & \vdots & \vdots \\ \mathbf{r}_{N,I}^{(2)} = \mathbf{w}_{N,I}^{(2)} & \mathbf{r}_{N,Q}^{(2)} = \mathbf{w}_{N,Q}^{(2)} \\ \hline \hline \mathbf{r}_{1,I}^{(1)} = \mathbf{w}_{1,I}^{(1)} & \mathbf{r}_{1,Q}^{(1)} = \mathbf{w}_{1,Q}^{(1)} \\ \hline \mathbf{r}_{1,I}^{(1)} = \mathbf{w}_{N,I}^{(1)} & \mathbf{r}_{1,Q}^{(1)} = \mathbf{w}_{1,Q}^{(1)} \\ & \vdots & \vdots \\ \mathbf{r}_{N,I}^{(1)} = \mathbf{w}_{N,I}^{(1)} & \mathbf{r}_{1,Q}^{(1)} = \mathbf{w}_{1,Q}^{(1)} \\ \hline \mathbf{r}_{1,I}^{(2)} = \sqrt{E_b'} \mathbf{n}_{1,I}^{(2)} + \mathbf{w}_{1,I}^{(2)} & \mathbf{r}_{1,Q}^{(2)} = \sqrt{E_b'} \mathbf{n}_{1,Q}^{(2)} + \mathbf{w}_{1,Q}^{(2)} \\ & \vdots & \vdots \\ \mathbf{r}_{N,I}^{(2)} = \sqrt{E_b'} \mathbf{n}_{N,I}^{(2)} + \mathbf{w}_{N,I}^{(2)} & \mathbf{r}_{N,Q}^{(2)} = \sqrt{E_b'} \mathbf{n}_{N,Q}^{(2)} + \mathbf{w}_{1,Q}^{(2)} \\ \hline \end{array} \right]$$

A First Course in Digital Communications

Number the sufficient statistics corresponding to f_1 from 1 to 2N; sufficient statistics associated with f_2 from 2N + 1 to 4N. The likelihood ratio test is

$$\frac{f(r_1, \dots, r_N; r_{2N+1}, \dots, r_{4N} | \mathbf{1}_T)}{f(r_1, \dots, r_N; r_{2N+1}, \dots, r_{4N} | \mathbf{0}_T)} = \frac{\prod_{j=1}^{2N} \frac{1}{\sqrt{2\pi}\sigma_w} e^{-r_j^2/(2\sigma_w^2)} \prod_{j=2N+1}^{4N} \frac{1}{\sqrt{2\pi}\sigma_t} e^{-r_j^2/(2\sigma_t^2)}}{\prod_{j=1}^{2N} \frac{1}{\sqrt{2\pi}\sigma_t} e^{-r_j^2/(2\sigma_t^2)} \prod_{j=2N+1}^{4N} \frac{1}{\sqrt{2\pi}\sigma_w} e^{-r_j^2/(2\sigma_w^2)}} \stackrel{1_D}{\underset{O_D}{\overset{\geq}{=}} 1,$$

which can be reduced to

$$\sum_{j=2N+1}^{4N} r_j^2 \stackrel{1_D}{\underset{0_D}{\geq}} \sum_{j=1}^{2N} r_j^2.$$

- 4 同 6 - 4 三 6 - 4 三 6

Chi-Square Probability Density Function

Consider $\mathbf{y} = \mathbf{x}_1^2 + \mathbf{x}_2^2 + \dots + \mathbf{x}_N^2$ where the \mathbf{x}_i 's are zero-mean, statistically independent Gaussian random variables with identical variances, σ^2 . To find $f_{\mathbf{y}}(y)$ determine the characteristic function $\Phi_{\mathbf{y}}(f)$ and then inverse transform it.

$$\begin{split} \Phi_{\mathbf{y}}(f) &= E\left\{\mathrm{e}^{j2\pi f\mathbf{y}}\right\} = E\left\{\mathrm{e}^{j2\pi \int_{k=1}^{N} \mathbf{x}_{k}^{2}}\right\} = E\left\{\prod_{k=1}^{N} \mathrm{e}^{j2\pi f\mathbf{x}_{k}^{2}}\right\} = \prod_{k=1}^{N} E\left\{\mathrm{e}^{j2\pi f\mathbf{x}_{k}^{2}}\right\} \\ &= E\left\{\mathrm{e}^{j2\pi f\mathbf{x}_{k}^{2}}\right\} = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} \mathrm{e}^{j2\pi fx_{k}^{2}} \mathrm{e}^{-x_{k}^{2}/(2\sigma^{2})} \mathrm{d}x_{k} = \frac{1}{\sqrt{1-j4\pi\sigma^{2}f}}.\\ &\text{Therefore } \Phi_{\mathbf{y}}(f) = \frac{1}{(1-j4\pi\sigma^{2}f)^{N/2}} \text{ and} \\ &f_{\mathbf{y}}(y) = \int_{-\infty}^{\infty} \frac{1}{(1-j4\pi\sigma^{2}f)^{N/2}} \mathrm{e}^{-j2\pi yf} \mathrm{d}f, \text{ where } y \ge 0. \text{ From the identity} \\ &\int_{-\infty}^{\infty} (\beta - ix)^{-\nu} \mathrm{e}^{-ipx} \mathrm{d}x = \frac{2\pi p^{\nu-1} \mathrm{e}^{-\beta p}}{\Gamma(\nu)} u(p), \text{ where } \mathcal{R}(\nu) > 0 \text{ and} \\ &\mathcal{R}(\beta) > 0, \text{ the pdf is} \qquad \sqrt{\frac{N}{2}} - 1 - \frac{-u/(2\sigma^{2})}{2} \end{split}$$

$$f_{\mathbf{y}}(y) = \frac{y^{\frac{N}{2}-1}\mathrm{e}^{-y/(2\sigma^2)}}{2^{\frac{N}{2}}\sigma^N\Gamma\left(\frac{N}{2}\right)}u(y),$$

where $\Gamma(x)=\int_0^\infty t^{x-1}{\rm e}^{-t}{\rm d}t=(x-1)!$ for x integer.

Error Performance of BFSK with Diversity

Define
$$\ell_1 = \sum_{j=2N+1}^{4N} \mathbf{r}_j^2$$
 and $\ell_0 = \sum_{j=1}^{2N} \mathbf{r}_j^2$. The decision rule is:
 $\ell_1 \stackrel{1_D}{\underset{O_D}{\geq}} \ell_0.$
 $P[\text{error}] = P[\text{error}|0_T] = \int_0^\infty f(\ell_0|0_T) \left[\int_{\ell_0}^\infty f(\ell_1|0_T) d\ell_1 \right] d\ell_0.$
 $f(\ell_1|0_T)$ and $f(\ell_0|0_T)$ are chi-square distributions:
 $f(\ell_1|0_T) = \frac{\ell_1^{N-1} \mathrm{e}^{-\ell_1/(2\sigma_w^2)}}{2^N \sigma_w^{2N} \Gamma(N)} u(\ell_1), \ f(\ell_0|0_T) = \frac{\ell_0^{N-1} \mathrm{e}^{-\ell_0/(2\sigma_t^2)}}{2^N \sigma_t^{2N} \Gamma(N)} u(\ell_0).$

It can be shown that

$$P[\text{error}] = \sum_{j=1}^{N} \left(\frac{\sigma_t^2}{\sigma_w^2}\right)^{N-j} \frac{1}{\left(1 + \frac{\sigma_t^2}{\sigma_w^2}\right)^{2N-j}} \frac{\Gamma(2N-j)}{\Gamma(N)\Gamma(N-j+1)}.$$

• Define $\gamma_T = E_b' \sigma_F^2 / N_0$ as the averaged SNR *per transmission*. Recognize that $\frac{\sigma_t^2}{\sigma_w^2} = 1 + \gamma_T$ and $\Gamma(x) = (x - 1)!$ for integer x. Then

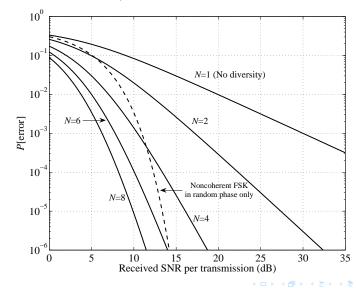
$$P[\text{error}] = \frac{1}{(2+\gamma_T)^N} \sum_{k=0}^{N-1} \binom{N-1+k}{k} \left(\frac{1+\gamma_T}{2+\gamma_T}\right)^k$$

• For large values of SNR, $1 + \gamma_T \approx 2 + \gamma_T \approx \gamma_T$ and

$$P[\text{error}] \approx \frac{1}{(\gamma_T)^N} \sum_{k=0}^{N-1} \binom{N-1+k}{k} = \frac{1}{(\gamma_T)^N} \binom{2N-1}{N}.$$

- The error performance now decays inversely with the *N*th power of the received SNR.
- The exponent N of the SNR is generally referred to as the *diversity order* of the modulation scheme.

Compared to no diversity, there is a significant improvement in performance with diversity.



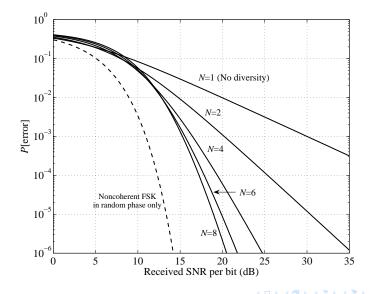
Optimum Diversity

- As the diversity order N increases the error performance improves.
- This improvement comes at the expense of a reduced data rate in the case of time diversity.
- If the transmitter's power or equivalently the energy expended per information bit is constrained to E_b joules then increasing N does not necessarily lead to a better error performance.
- With increased N we increase the probability of avoiding a deep fade, at the same time the energy, E_b^{\prime} , of each transmission is reduced. Therefore the SNR of each transmission is reduced which in turn increases the error probability.
- There is an optimum value for the diversity order N at each level of error probability. An empirical relationship is:

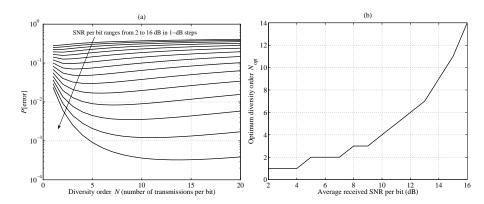
$$N_{\rm opt} = K \mathrm{e}^{10 \log_{10} \gamma_T}.$$

where K is some constant.

P[error] versus the averaged received SNR per bit, $10 \log_{10} \left(\frac{E_b \sigma_F^2}{N_0}\right)$.



Determining The Optimum Diversity Order



Central Limit Theorem

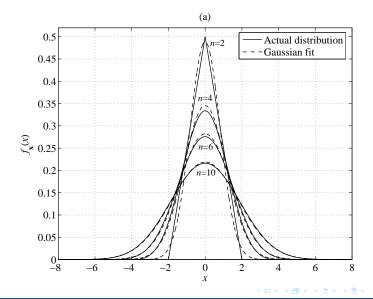
- Central limit theorem states that under certain general conditions the sum of *n* statistically independent continuous random variables has a pdf that approaches a Gaussian pdf as *n* increases.
- Let $\mathbf{x} = \sum_{i=1}^{n} \mathbf{x}_i$. where the \mathbf{x}_i 's are statistically independent random variables with mean, $E\{\mathbf{x}_i\} = m_i$, and variance, $E\{(\mathbf{x}_i m_i)^2\} = \sigma_i^2$. Then \mathbf{x} is a random variable with mean $m_{\mathbf{x}} = \sum_{i=1}^{n} m_i$, variance $\sigma_{\mathbf{x}}^2 = \sum_{i=1}^{n} \sigma_i^2$ and a pdf of

$$f_{\mathbf{x}}(x) = f_{\mathbf{x}_1}(x) * f_{\mathbf{x}_2}(x) * \dots * f_{\mathbf{x}_n}(x).$$

• By the central limit theorem $f_{\mathbf{x}}(x)$ approaches a Gaussian pdf as n increases, i.e.,

$$f_{\mathbf{x}}(x) \sim \frac{1}{\sqrt{2\pi\sigma_{\mathbf{x}}}} \mathrm{e}^{-\frac{(x-m_{\mathbf{x}})^2}{2\sigma_{\mathbf{x}}^2}}$$

Example 1: $f_{\mathbf{x}_i}(x_i)$ are Zero-Mean Uniform



Example 2: $f_{\mathbf{x}_i}(x_i)$ are Laplacian

