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Problems for Chapter 20 of Advanced Mathematics for Applications

THEORY OF DISTRIBUTIONS

by Andrea Prosperetti

General

1. Do the following linear operators acting on the infinitely differentiable functions ¢ with compact support
define distributions?

N

(@ Ti@) =3 6M0), () Tal6)= / ) (t)dt.

n=0
Here superscripts in parenthesis indicate derivatives and N and k are arbitrary integers.

2. Show that the following equalities hold in the sense of distributions, i.e. as linear continuous functionals
over the space of test functions

e“o(z) = o(z), sin(az)d’' (z) = —ad(z).

4. Using the result

N-1 . .
Nz/2 N —1)xz/2
Z Sin ma — sin (Nz/ ) sin|( Yz /2]
— sin(x/2)
prove that, in the distributional sense,
> 1 1
Z mcosmz = ——cosec’(=x).
= 4 2

5. Is it true that |z|~1/2|z| /2 = |z|~1?

6. If, as shown in section 3.6, Poisson’s formula

_R*—r2 [T f(0— o)
u(r, 0) = o /WRQ—QTRCOS(;S—I—TQCM)'

furnishes the solution to the boundary-value problem V2?u =0 for 0 <r < R, 0 < ¢ < 27, u = f(¢)
for r = R, then it must be that

1 RZ — 2

21 R2 — 2rRcos ¢ + r2

— 6(0),

as r — R. Prove this fact.



7.

10.

11.
12.
13.

14.

15.

16.

17.

18.

For k=1,2,... let

1 k
R + k2227
Show that
lim < sg, ¢ >= ¢(0).
What is 13
2k°x
li _— ?
i { oy )
. Show that

Show that |z|" = sgnx.
Show that, for A # 0, —1, =2, ..,

d A-1

L5 = Az,

Find the second distributional derivatives of exp(—|z|) and sin|z]|.

The function tanh ! has a jump discontinuity at « = 0. Find its distributional derivative.

Prove that, in the sense of distributions,

d @ _ a—1 [e% _ 1 @
E[m H(z)] = az® " H(x), x*H(z) = §|:v| (1+sgnz) .

Show that u(x) = H(x)Jo(z) is a solution of Bessel’s equation of order 0

1d du

Show that 4 af
S @) HE) = L)+ F(0)).
If f is continuous except for jumps of magnitude f1, fa, ... at * = aq, aa, ..., what is f/(x)?

Prove that, in the distributional sense,

lim ~ [f(z +e) - f(2)] = f(z).

e—0 €

Calculate

I= /11 |z| " (z)dz

by expressing |z| in terms of the Heaviside (or step) distribution H(x) and integrating by parts.

Verify formally that, if a(x) < ¢t < b(x),

b(x) S
d Fla,t)dt = / (%{H[t—a(x)]H[b(x)—t] Fla, )}t

dx a(x) —00



19.

20.

21.

Calculate in closed form -
J :/ H(sin mx) exp(—ax)dz.
0

Calculate the integral
b
I = / H(z —a)f'(z)dz
0

first directly and then by parts and show that the two results are equal. Consider both a > b and
a <b.

Calculate the first derivative of the distribution defined by

(z71,4) = lim UOO @d:ﬁqﬁ(@) log e

e—0

For test functions which can be expanded in Taylor series near the origin, show explicitly that the limit
€ — 0 exists and is finite.

The 4 distribution

. Show that the following equalities hold in the sense of distributions, i.e. as linear continuous functionals

over the space of test functions

e”o(z) = o(z), sin(az)d’'(z) = —ad(x).

Prove that qm ) qm
a0 ) = T g @ T b/a)
Show that
0 m<n
né(m) = n__m m—n
Show that

§' (2% +3z) = %5/(,%) : §"(x® 4 3x) = 8" () — 26(x) .

Show that, if x¢ is the only simple zero of the function f(z),

/ o 1 " — f

Show that

T 0 a<0

5<a_l) _ { a 25(x—1/a) a>0

Prove that, in the sense of distributions,

lim ——e=®"*" = o(z) .
a— 00 T
Prove that, in the sense of distributions,
lim ae”*l = 2§(z).

a— 00
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11.
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13.

14.

15.

16.

17.

18.

19.

Show that _
lir% elz|te™ = 26(x).

Show that )
lir%— (Jz]¢ = 1) sgnz = (sgnz) log |z|.
e—0 €

Prove that, in the sense of distributions,

9 g
%5(17—(1) = —d(x—a).
Show that )
7100 (2) = ———5" D () + Co(x)

n+1

where C' is an arbitrary constant.
Show that the set of distributions (—1)"6(™)(z) and the set of monomials 2" /n!, in both cases with
0 < n < oo, satisfy the relation

Cqymgm) TN

Reduce f(x)d"(x) to an expression involving the values of f and its derivatives at 0. Give a distribu-
tional verification of your result.

Calculate ~ ~
I = / S(az® — b) f(x)dx, I, = / S(az® — b)f(x)dz.
oo 0
Consider all possible sign combinations of the constants a and b.
Calculate in closed form -
1 :/ d(sin mx) exp(—qx)dz,
0
where ¢ is a positive constant.

If @ and b are non-negative real numbers with a # b, show that, in the sense of distributions,

/ Jo(ax) cos brdx = M. (1)
0 22 — b2
Hint: Recall that Loy
Jo(z) = —/ cos (zsin ) df. (2)
T Jo

Substitute, exchange, think of the relation between §(z) and its Fourier transform ...

(00— 0)0(a))

dx™

By calculating

or otherwise, derive an equivalent expression for (d™/dz™) é (ax — b); a and b are real constants.

Show that

/:m §(z —a)d(b—x)dz = 6(b—a), /jo 5™ (x — a)d™ (b —z)dz = 6T (b—a).



20.

21.

22.

Show that, if x = ¢ coshu cos ¢, y = £sinhu sin ¢, with 0 < u < 00, 0 < ¢ < 27, then

6w — 20)6(y — yo) = A= 40)0(0 — o)

"~ 2(cosh®u — cos?v)

where ug and ¢g are the values of u and ¢ corresponding to (xg, yo).
Define the generalized function é(xy) by
8(zy) = |z[71o(y) + |y~ (x)

and show that
zy &' (zy) +d(zy) = 0.

Show that d(x) + 0(y)
. - - ? y
S(zy) = lz[~o(y) + [yl 'o(x) = W
Convolution

. Prove that (section 20.9)

[xH(x)] * [e"H(x)] = (" —ax — 1)H(z).

. Prove that (section 20.9)

lsinz H (2)]  [cosz H(z)] = %x sina H(z).

Prove that (section 20.9)

Calculate (section 20.9)

ezl emlol

Calculate (section 20.9)

a2 a2
e‘”*[me ‘”].

Fourier and Laplace transforms

. Show that F{e®} = (2m)~Y25(k — ia).
. Show that F{z~'} = (7/2)"?isgnk.

Show that -
i

Fla™) = (/2 oy

k™ lsgnk.

. Calculate the (distributional) Fourier transform of Pf(z71). On the basis of this result and of the

known properties of the Fourier transform, find the transform of Pf(z~2).

Calculate the Fourier transform of 2§ ().



10.

Calculate the Fourier transform of (1 — z)~3/2H(1 — x).
Calculate the Fourier transform of (22 —4)7L.

Prove that )
L{H(z)loga} — — 11085
S
where the logarithm has its principal value and « is Euler’s constant. Deduce that

(=s)™"!

L{z"™H(z)} = =1

(C —~ —logs)

where C' is arbitrary.

. Find the Laplace transform of 25:1 5" (x — n) with N finite.

Show that
eﬁs/a

L{6(t+p)} =

o

Fourier series

. Show that >~ a,e"™ is a generalized function if and only if, for n — oo, a, = O(|n|") for some

integer N.

For m > 0 a positive integer, evaluate

o0
E nmelnx .

n=—oo

Proceeding formally find the Fourier series of d(z) over the interval —L < z < L. Can you check your
result by reducing it to the one given in class for the interval —m < 2 < 7?7 What is the distributional

limit, over —L < z < L, of
N

SN = Z erxp(ikwx/L)?
k=—N

On the interval (—L, L) find the Fourier series of the distributions §(z — a) and H(xz — a), where a is a
constant in the same interval, and prove that the first one is the distributional derivative of the second
one.

Show that | o
d(sinz) = = n:Z_OO e?niT
. Show that - -
;emx = wm;mé(m —2mm) + % (icotg - 1) .

If a, = O(|n|N), is >.°°

n=—oo

0(x — n) periodic?



Asymptotic evaluation of integrals

IQ x

. Examine the differences between the behavior of the Fourier transforms of e™ and e~ 2sgnz as

k — oo.
. Derive the first few terms of the asymptotic expansion of
oo .
/ e~ key=1 log |z — 1| dz
—0o0
with an error of order |k|~2.

. If f(z) is continuously differentiable in x > 0 and, together with its derivatives, is well-behaved at

infinity, show that
N-1

/jo f(z))sgnze *dx = Z

n=0

2 (0)

for any N, with an error decreasing faster than |k|~2V).

Algebraic and differential equations
. Show that the general solution of the equation
2" u(z) =1
is given by u(z) = 27" + >, o~V ().
. Show that the general solution of the equation
zu(z) = 60 (z)
is given by u(z) = Cd(x) — 6™+ /(m 4 1).

. Find the distributional solution of the equation

for m = 1 and calculate explicitly < u, ¢ >.

. In the range —% <z< % find the distributional solution of the equation
(sinmx)u(x) = 1.

Hint: The distributional solution must coincide with the ordinary solution at all points such that the
coefficients multiplying the unknown do not vanish.

. Solve the distributional differential equation

du
— —H
dCC (CC)7
where H is the Heaviside distribution. After having found the general solution, find the particular one
such that < u, ¢ >= 0 for all test functions with support in —co < z < 0.



10.

11.

12.

13.

Find the distributional solution of
au'(z) =1

by a “fast and dirty” method. [Note that the regular solution must differ from the distributional
solution by a distribution with support concentrated at the point where the coefficient vanishes].

Find the general distributional solution of the equation

eu
dx?

First, proceed formally as if you were dealing with functions.

= b(z - &),

Find the distributional solution of the equation
dPu

satisfying the conditions

u=0 for t<0, u—0 for t—0+4.

Find the general distributional solution of the equation

du

r— =z —a
7 = oz —a)
where a # 0 is a given constant.

Show that the general solution of the differential equation

d
xd—Z—au:&

with a not a negative integer, is
u(z) = C1z%H(z) + Co(—xz)*H(—x)
with C; and Cy arbitrary. If, on the other hand, a = —n, a negative integer, then

u(z) = Cra™™ + Cod Y (x).

Find the distribution which satisfies the differential equation
@ + 3u = e®

dx

with a real.
In the range 0 < r < oo find the solution of the equation

d*>uv  2du  n(n+1)
dr? = rdr r2

where n is an integer and 0 < R < oo, which is regular at » = 0 and at infinity and vanishes for a = 0.

u=ad(r — R),

In the range —1 < x < 1 find the general distributional solution of the equation

d*u du,
(1- xz)@ - Qxd— =ad(z —§).

X

which is regular at x = £1 and vanishes for a = 0.



14.

15.

16.

17.

18.

19.

20.

Show that the infinite series
o0 2n+15(n) ((E)

nl(n+ 1)’

u =
n=0

formally satisfies the first-order ordinary differential equation

du
2 —2u=0.
Idm u

Find the solution of the equation
w2 u” —2u=—6(z — &)
u bounded at =0 and x — oo .

A point-like heat source of strength ) constant in time is placed at the center of a rod of length 2L.
The initial temperature of the rod is u = 0, its two ends are kept at zero temperature for all times,
and the sides of the rod are thermally insulated. The system is therefore governed by the equation

ou 0%u
R — —L<x<
5 = a7 + Qé(x), L<zx<L,

with
u(z,0) =0, u(xL,t) = 0.

Find u(z,t) using the usual method of eigenfunction expansion.
Solve, in unbounded three-dimensional space 0 < r < oo, the problem

A

2,
Viu= TR

o(r — R)

where R and A are constants and u is regular at r = 0 and v — 0 for r — oo.

Solve the following differential equation

L) s

in the range 0 < z < X subject to u(0) bounded, u = U at x = X; a is a positive constant and a < X.

Solve the following equation
oG oG
E = W—i—é(m—g)é(t—ﬂ
in the interval 0 < z < L, subject to the boundary conditions G = 0 for x = 0, L, G = 0 for t = 0.

In the interval 0 < x < oo solve

v 1du m?
ﬁ+5%_<l+ﬁ>u_5(x_a)+5(x_b) 0<a<b

with m > 0, subject to u(0) = 0, v — 0 at infinity.



