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Continuity Intermediate Value Theorem Trigonometric Functions

Continuity at a point

A function f is said to be continuous at p if

lim
x→p

f (x) = f (p).

Alternately, f is continuous at p if for every ϵ > 0 there is a
corresponding δ > 0 such that |x − p| < δ =⇒ |f (x)− f (p)| < ϵ.

The concept of continuity is only to be applied to points which are
in the domain of f . In fact they need to be in an open interval
which is completely contained in the domain of f , so that the limit
can be talked about.
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Failure of continuity
The following functions are not continuous at 0 because their limit
does not exist at 0:

H(x) =

{
0 if x < 0,
1 if x ≥ 0,

and sgn(x) =

{ x

|x |
if x ̸= 0,

0 if x = 0.

Next, we have functions which are not continuous at 0 because
their limit at 0 does not equal their value at 0:

E (x) =

{
0 if x ̸= 0,
1 if x = 0,

and F (x) =


x if x = 1/n, n ∈ N,
1 if x = 0,
0 else.

(In both cases the limit is 0 but the function value is 1.)
These functions are continuous at every point of R:

f (x) = C , g(x) = x , h(x) = |x |.
On the other extreme, the Dirichlet function is not continuous at
any point!
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Continuity of combinations of functions

Theorem 1

Let f (x) and g(x) be continuous at p. Then the following
functions are also continuous at p.

1 C f (x).

2 f (x)± g(x) .

3 f (x)g(x).

4
f (x)

g(x)
, if g(p) ̸= 0.

Proof. We prove the last claim. The others are left as an exercise
for the reader.
First, note that lim

x→p
g(x) = g(p) ̸= 0, by continuity of g(x) at

x = p and the given condition that g(p) ̸= 0.

So, by the Algebra of Limits, lim
x→p

f (x)

g(x)
=

lim
x→p

f (x)

lim
x→p

g(x)
=

f (p)

g(p)
. □
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Polynomials and rational functions

Theorem 2

1 Any polynomial is continuous at every point of R.
2 Any rational function is continuous at every point of its

domain.

Proof. Let a0, . . . , an ∈ R.

The functions y = a0 and y = x are continuous. By repeated
application of (3) of the previous theorem, every function y = x i

(i ∈ N) is continuous.

By (1) of the previous theorem, every function y = aix
i is

continuous. So by (2), the polynomial
∑n

i=0 aix
i is continuous.

For continuity of rational funcions, combine continuity of
polynomials with part 4 of the previous theorem. □
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One-sided Continuity

A function f is left-continuous at p if lim
x→p−

f (x) = f (p).

It is right-continuous at p if lim
x→p+

f (x) = f (p).

Example: The greatest integer function is right-continuous at
every point. It is left-continuous at all points except the integers.

−2 −1 1 2

−2

−1

1

2
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One-sided and two-sided continuity

Theorem 3

A function f is continuous at p if and only if it is left and
right-continuous at p.

Proof.
lim
x→p

f (x) = f (p) ⇐⇒ lim
x→p+

f (x) = f (p) and lim
x→p−

f (x) = f (p).

□

For example, we can argue that the Heaviside step function H(x)
is not continuous at x = 0 because it is right continuous but not
left continuous.
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Types of discontinuity

Removable discontinuity: lim
x→a

f (x) exists but does not equal f (a).

We can make f continuous at a by changing its value
at a to lim

x→a
f (x).

Jump discontinuity: lim
x→a+

f (x) and lim
x→a−

f (x) exist but are not

equal. The quantity lim
x→a+

f (x)− lim
x→a−

f (x) is called

the jump of f at a.

Essential discontinuity: Either lim
x→a+

f (x) or lim
x→a−

f (x) fails to

exist.
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Continuity on an interval

A function f is called continuous on an interval I if

1 f is continuous at every interior point of I ,

2 f is right-continuous at the left endpoint, if the left endpoint
is in I ,

3 f is left-continuous at the right endpoint, if the right endpoint
is in I .
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Composition and Limits

Theorem 4

Let f and g be real functions such that their composition g ◦ f is
defined on an interval (a, b). Let p ∈ (a, b) with q = lim

x→p
f (x) and

suppose g is continuous at q. Then

lim
x→p

g(f (x)) = g(q) = g( lim
x→p

f (x)).

Proof. Let ϵ > 0.
Since g is continuous at q there is a δ′ > 0 such that |y − q| < δ′

implies |g(y)− g(q)| < ϵ.
There is a δ > 0 such that 0 < |x − p| < δ implies |f (x)− q| < δ′.
Hence,

0 < |x − p| < δ =⇒ |f (x)− q| < δ′ =⇒ |g(f (x))− g(q)| < ϵ.

□
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Example

Calculate lim
x→1

√
x2 − 1

x − 1
.

We first note that lim
x→1

x2 − 1

x − 1
= 2.

Since the square root function is continuous at 2 (we proved that
for a > 0, lim

x→a

√
x =

√
a), we have

lim
x→1

√
x2 − 1

x − 1
=

√
lim
x→1

x2 − 1

x − 1
=

√
2.
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Composition and continuity

Theorem 5

Let f and g be real functions such that their composition g ◦ f is
defined on an interval (a, b). Let p ∈ (a, b) such that f is
continuous at p and g is continuous at f (p). Then g ◦ f is
continuous at p.

Proof. lim
x→p

g(f (x)) = g( lim
x→p

f (x)) = g(f (p)). □
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Continuity of monotone functions

Theorem 6

If I , J are intervals and f : I → J is a surjective monotone function,
then f is continuous on I .

Proof. We’ll do the case when J is an open interval.
Let x0 ∈ I and let ϵ > 0. We may assume that f (x0)± ϵ ∈ J.
Since f is surjective, there are x± ∈ I such that f (x−) = f (x0)− ϵ
and f (x+) = f (x0) + ϵ.

f (x)

x0

f (x0)
f (x0) + ϵ

f (x0)− ϵ

x− x+

Take δ = min{x0 − x−, x+ − x0}. □
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Continuity of logarithms and exponentials

Theorem 7

All logarithms and exponential functions are continuous.

Proof. They are monotonic bijections between intervals. □

Task: Let r ≥ 0. Show that the function x r is continuous on
[0,∞).
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Indefinite integrals

Suppose I is an interval and f : I → R is integrable on every
[α, β] ⊆ I . Fix a point a ∈ I . Then the function

F (x) =

∫ x

a
f (t) dt (x ∈ I )

is called an indefinite integral of f .

Example: Calculate the indefinite integral F (x) =
∫ x
0 H(t) dt for

the unit step function H(t).

x < 0 =⇒
∫ x

0
H(t) dt = −

∫ 0

x
H(t) dt = −

∫ 0

x
0 dt = 0

x ≥ 0 =⇒
∫ x

0
H(t) dt =

∫ x

0
1 dt = x

Hence F (x) =

{
0 if x < 0,
x if x ≥ 0.
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Continuity of indefinite integrals

Theorem 8

Suppose I is an interval, a ∈ I , and f : I → R is integrable on every
[α, β] ⊆ I . Then F (x) =

∫ x
a f (t) dt is continuous on I .

Proof. For any x , p ∈ I we have

F (x)− F (p) =

∫ x

a
f (t) dt −

∫ p

a
f (t) dt =

∫ x

p
f (t) dt.

Suppose p is not the right endpoint of I .
Then, there is a δ > 0 such that [p, p + δ] ⊆ I .
Since f is integrable on [p, p + δ] it is bounded there.
Hence there is a positive number M such that −M ≤ f (x) ≤ M
for every x ∈ [p, p + δ]. Now for p < x < p + δ,

−M(x − p) =

∫ x

p
(−M) dt ≤

∫ x

p
f (t) dt ≤

∫ x

p
M dt = M(x − p).
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Continuity of indefinite integrals

(proof continued)

By the Sandwich Theorem, we have lim
x→p+

|F (x)− F (p)| = 0.

Therefore lim
x→p+

F (x) = F (p).

Similarly, we check that if p is not the left endpoint of I then f is
left-continuous at p.

This establishes the continuity of f on I . □
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Intermediate Value Theorem, ver. 1

Theorem 9

Suppose f is continuous on [a, b] and f (a)f (b) < 0. Then there is
a number c ∈ (a, b) such that f (c) = 0.

Proof. Assume that f (x) is never zero. Let a0 = a and b0 = b.
Let c0 be the midpoint of [a0, b0]. Define

[a1, b1] =

{
[a0, c0] if f (a0)f (c0) < 0,
[c0, b0] if f (b0)f (c0) < 0.

+ −
a = a0 b = b0c0

f (
c 0
) >

0 f (c
0 ) <

0

+ −+

a0 a1 b1 = b0

+ −−
a0 = a1 b1 b0
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Intermediate Value Theorem, ver. 1

(proof continued)

We have f (a1)f (b1) < 0, so we repeat this process with [a1, b1]
replacing [a0, b0].

Thus, we create a sequence of intervals [an, bn] such that

[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · ·

The endpoints a0, a1, a2, . . . and b0, b1, b2, . . . are arranged as
follows:

a0 ≤ a1 ≤ a2 ≤ · · · ≤ b2 ≤ b1 ≤ b0.

From the Completeness Axiom we obtain a number c such that
an ≤ c ≤ bn for every n.
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(proof continued)
Suppose f (c) > 0.

There is a δ > 0 s.t. x ∈ (c − δ, c + δ) =⇒ f (x) > 0.

Note that bn − an =
b − a

2n
<

b − a

n
.

By the Archimedean Property, there is N such that bN − aN < δ.
Since c ∈ [aN , bN ], this implies [aN , bN ] ⊂ (c − δ, c + δ).

(
c − δ c + δ

)
c

[
aN

]
bN

< δ

We have a contradiction since f changes sign on [aN , bN ] but not
on (c − δ, c + δ).
The f (c) < 0 case similarly leads to a contradiction. □
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Solving equations

Consider the equation x4 + 4x3 + x2 − 6x − 1 = 0.

We calculate
the values of f (x) = x4 + 4x3 + x2 − 6x − 1 at various points.

x −4 −3 −2 −1 0 1 2

f (x) 39 −1 −1 3 −1 −1 39

The sign changes show there are solutions in the intervals
(−4,−3), (−2,−1), (−1, 0) and (1, 2).
We can shrink these intervals further by employing the bisection
method.
For example, consider the (1, 2) interval.
The value of f (x) at its midpoint is f (1.5) = 10.8 > 0.
Therefore there is a solution in (1, 1.5).
This process can be repeated for greater accuracy.
f (1.25) = 3.3 =⇒ solution is in (1, 1.25).
f (1.125) = 0.81 =⇒ solution is in (1, 1.125).
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Intermediate Value Theorem, ver. 2

Theorem 10

Suppose f is continuous on [a, b] and L is a value between f (a)
and f (b), i.e., f (a) < L < f (b) or f (b) < L < f (a). Then there is
a number c ∈ (a, b) such that f (c) = L.

Proof. Suppose f (a) < L < f (b).

Define g : [a, b] → R by g(x) = f (x)− L.

Then g(a) = f (a)− L < 0 and g(b) = f (b)− L > 0.

Hence there is a number c ∈ (a, b) such that g(c) = 0, and
f (c) = g(c) + L = L.

The case f (b) < L < f (a) is handled in a similar manner. □
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Angles

We define an angle to be a region bounded by two rays with a
common starting point, as shown below.

To measure the angle we draw a unit circle whose centre is the
meeting point of the rays. We take twice the area enclosed by this
circle within the angle, and call that the radian measure of the
angle. Thus the full circle corresponds to 2π radians while a right
angle corresponds to π/2 radians.
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Radians

We have allotted a real number in [0, 2π] to each angle. We show
that every such number really is the radian measure of some angle.

Consider any x ∈ [−1, 1]. We create a corresponding angle:

x

√
1− x2

x

√
1− x2

Let R(x) be the radian measure of this angle.
The function R : [−1, 1] → [0, π] is defined by

R(x) = x
√
1− x2 + 2

∫ 1

x

√
1− t2 dt.
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Radians

R is continuous, R(−1) = π and R(1) = 0.

By the intermediate value theorem, R takes every value between 0
and π.

Task: Show that every number between π and 2π is also the
radian measure of an angle.
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Sine and Cosine

Consider the ray in the xy -plane created by rotating the positive
x-axis counterclockwise through an angle of t radians.

This ray cuts the unit circle with centre at origin at exactly one
point, (x , y).

We define cos t = x and sin t = y .

The figures below illustrate the definitions for an acute and an
obtuse angle respectively.

cos t

sin t (x , y)

t
cos t

sin t(x , y)

t
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Properties of sine and cosine

• Since (cos t, sin t) is a point on the unit circle, we have
cos2 t + sin2 t = 1.

• cos t, sin t ∈ [−1, 1].

• Let y ∈ [−1, 1].
Then x =

√
1− y2 is defined and (x , y) is on the unit circle.

Let t be the angle between the positive x-axis and the ray
emanating from origin and passing through (x , y).
By the definition of the sine function, sin t = y .
Therefore, sin : [0, 2π] → [−1, 1] is onto.

• Similarly, cos : [0, 2π] → [−1, 1] is also onto.

• By symmetry, sin(π/2− t) = cos t for every t ∈ [0, π/2].
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Then x =

√
1− y2 is defined and (x , y) is on the unit circle.

Let t be the angle between the positive x-axis and the ray
emanating from origin and passing through (x , y).
By the definition of the sine function, sin t = y .
Therefore, sin : [0, 2π] → [−1, 1] is onto.

• Similarly, cos : [0, 2π] → [−1, 1] is also onto.

• By symmetry, sin(π/2− t) = cos t for every t ∈ [0, π/2].
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Graphs

The following values of sine and cosine are obvious:

x 0 π/2 π 3π/2 2π

sin x 0 1 0 −1 0
cos x 1 0 −1 0 1

Task: Show that sin(π/4) = cos(π/4) = 1/
√
2.

π/4 π/2

1

1/
√
2

sine

π/4 π/2

1

1/
√
2

cosine
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Graphs

Task: cos(π − t) = cos(π + t) = − cos t, for every t ∈ [0, π]

sin(π − t) = − sin(π + t) = sin t, for every t ∈ [0, π]

.

With the help of these identities, we can visualize the graphs over
[0, 2π], using the pieces for [0, π/2] as building blocks:

π

π/2 2π3π/2

1

−1

π

π/2 2π3π/2

1

−1
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Graphs

The domains can be extended on each side of [0, 2π] by setting
sin(x + 2π) = sin x and cos(x + 2π) = cos x :

2π

−2π

4π
1

−1

cos x

2π

−2π

4π
1

−1

sin x
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An angle sum identity

1
O

A

B

C

P

Q

R
α

β

α

In this figure, CP and QR are
perpendicular to OA, while CQ
is perpendicular to OB.

We have the following
calculations:

OQ = cosβ =⇒ OR = cosα cosβ,

CQ = sinβ =⇒ PR = sinα sinβ.

Hence, cos(α+ β) = OP = OR − PR = cosα cosβ − sinα sinβ.

Our figure is only valid for 0 ≤ α, β and with α+ β ≤ π/2. The
identity can be extended to arbitrary α, β by other appropriate
figures.
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Other angle sum identities

The other sum of angle identities can be obtained from this one.

Replacing β by −β gives

cos(α− β) = cosα cosβ + sinα sinβ.

Replacing α by π/2− α and β by −β gives

sin(α+ β) = sinα cosβ + cosα sinβ.

Substituting β by −β in the previous identity gives

sin(α− β) = sinα cosβ − cosα sinβ.

Task: Show that sinπ/6 = cosπ/3 = 1/2,

cosπ/6 = sinπ/3 =
√
3/2.

Task: Prove the half-angle formulas:

cos 2x = cos2 x − sin2 x = 1− 2 sin2 x = 2 cos2 x − 1,

sin 2x = 2 cos x sin x .

Amber Habib Calculus



Continuity Intermediate Value Theorem Trigonometric Functions

Other angle sum identities

The other sum of angle identities can be obtained from this one.

Replacing β by −β gives

cos(α− β) = cosα cosβ + sinα sinβ.

Replacing α by π/2− α and β by −β gives

sin(α+ β) = sinα cosβ + cosα sinβ.

Substituting β by −β in the previous identity gives

sin(α− β) = sinα cosβ − cosα sinβ.

Task: Show that sinπ/6 = cosπ/3 = 1/2,

cosπ/6 = sinπ/3 =
√
3/2.

Task: Prove the half-angle formulas:

cos 2x = cos2 x − sin2 x = 1− 2 sin2 x = 2 cos2 x − 1,

sin 2x = 2 cos x sin x .

Amber Habib Calculus



Continuity Intermediate Value Theorem Trigonometric Functions

Other angle sum identities

The other sum of angle identities can be obtained from this one.

Replacing β by −β gives

cos(α− β) = cosα cosβ + sinα sinβ.

Replacing α by π/2− α and β by −β gives

sin(α+ β) = sinα cosβ + cosα sinβ.

Substituting β by −β in the previous identity gives

sin(α− β) = sinα cosβ − cosα sinβ.

Task: Show that sinπ/6 = cosπ/3 = 1/2,

cosπ/6 = sinπ/3 =
√
3/2.

Task: Prove the half-angle formulas:

cos 2x = cos2 x − sin2 x = 1− 2 sin2 x = 2 cos2 x − 1,

sin 2x = 2 cos x sin x .

Amber Habib Calculus



Continuity Intermediate Value Theorem Trigonometric Functions

Other angle sum identities

The other sum of angle identities can be obtained from this one.

Replacing β by −β gives

cos(α− β) = cosα cosβ + sinα sinβ.

Replacing α by π/2− α and β by −β gives

sin(α+ β) = sinα cosβ + cosα sinβ.

Substituting β by −β in the previous identity gives

sin(α− β) = sinα cosβ − cosα sinβ.

Task: Show that sinπ/6 = cosπ/3 = 1/2,

cosπ/6 = sinπ/3 =
√
3/2.

Task: Prove the half-angle formulas:

cos 2x = cos2 x − sin2 x = 1− 2 sin2 x = 2 cos2 x − 1,

sin 2x = 2 cos x sin x .

Amber Habib Calculus



Continuity Intermediate Value Theorem Trigonometric Functions

Other angle sum identities

The other sum of angle identities can be obtained from this one.

Replacing β by −β gives

cos(α− β) = cosα cosβ + sinα sinβ.

Replacing α by π/2− α and β by −β gives

sin(α+ β) = sinα cosβ + cosα sinβ.

Substituting β by −β in the previous identity gives

sin(α− β) = sinα cosβ − cosα sinβ.

Task: Show that sinπ/6 = cosπ/3 = 1/2,

cosπ/6 = sinπ/3 =
√
3/2.

Task: Prove the half-angle formulas:

cos 2x = cos2 x − sin2 x = 1− 2 sin2 x = 2 cos2 x − 1,

sin 2x = 2 cos x sin x .

Amber Habib Calculus



Continuity Intermediate Value Theorem Trigonometric Functions

Other angle sum identities

The other sum of angle identities can be obtained from this one.

Replacing β by −β gives

cos(α− β) = cosα cosβ + sinα sinβ.

Replacing α by π/2− α and β by −β gives

sin(α+ β) = sinα cosβ + cosα sinβ.

Substituting β by −β in the previous identity gives

sin(α− β) = sinα cosβ − cosα sinβ.

Task: Show that sinπ/6 = cosπ/3 = 1/2,

cosπ/6 = sinπ/3 =
√
3/2.

Task: Prove the half-angle formulas:

cos 2x = cos2 x − sin2 x = 1− 2 sin2 x = 2 cos2 x − 1,

sin 2x = 2 cos x sin x .
Amber Habib Calculus



Continuity Intermediate Value Theorem Trigonometric Functions

Law of Sines

Theorem 11

Consider a triangle whose sides have lengths a, b, c, and the
corresponding opposite angles are α, β, γ. Then

sinα

a
=

sinβ

b
=

sin γ

c
.

Proof. Take a as the base of the triangle and let h be the height.

β γ

α

a

c b
h

We have h = c sinβ = b sin γ,

hence
sinβ

b
=

sin γ

c
.

Similarly, taking b as the base,

we get
sin γ

c
=

sinα

a
.

□
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Law of Cosines
Theorem 12

Consider a triangle whose sides have lengths a, b, c, and the
corresponding opposite angles are α, β, γ. Then

c2 = a2 + b2 − 2ab cos γ.

Proof. Take the side a as the base of the triangle. We show two
cases below, depending on whether any base angle is obtuse.

β γ

α

a

c b

β γ

α

a

c

b

We have a = c cosβ + b cos γ in both cases. Hence,
a2 = ac cosβ + ab cos γ. Similarly, b2 = ab cos γ + bc cosα,

c2 = ac cosβ + bc cosα.

So,

a2 + b2 = 2ab cos γ + ac cosβ + bc cosα = c2 + 2ab cos γ. □
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Limits at zero

O
Q

P

x

The circle has radius 1.

For 0 < x < π/2 we have

0 < Area(△OPQ) < Area( OPQ)

=⇒ 0 <
1

2
sin x <

x

2
=⇒ 0 < sin x < x .

The Sandwich Theorem gives lim
x→0+

sin x = 0.

Since sin x is an odd function, we get

lim
x→0−

sin x = − lim
x→0+

sin x = 0.

Both the one-sided limits being 0, we have lim
x→0

sin x = 0.

Apply the half-angle formula: lim
x→0

cos x = lim
x→0

(
1− 2 sin2

x

2

)
= 1.
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Continuity

lim
x→a

sin x = lim
h→0

sin(a+ h) = lim
h→0

(sin a cos h + cos a sin h) = sin a,

lim
x→a

cos x = lim
h→0

cos(a+ h) = lim
h→0

(cos a cos h − sin a sin h) = cos a.

Thus the sine and cosine functions are continuous on R.

Task: Calculate lim
x→1

sin
(x2 − 2x + 1

x2 − 1

)
.

Recall the other four trigonometric functions:

tan x =
sin x

cos x
, cot x =

cos x

sin x
, sec x =

1

cos x
, csc x =

1

sin x
.

By the properties of continuity, these functions are continuous at
every point of their domains.
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