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Problems for Chapter 1 of Advanced Mathematics for Applications

The Classical Field Equations

by Andrea Prosperetti

1 Vector fields

1. Verify that the vector field

V = (3yz + x2)i + (2y2 + 3xz)j + (z2 + 3xy)k

is irrotational and find its (scalar) potential.

2. Verify that the vector field given in cylindrical coordinates by

V = 2rz sin φ er + r2z cosφ eφ + r2 sin φk

is irrotational and find its (scalar) potential (see Figure 6.1 p. 146 for a definition of symbols).

3. Show that, if V is a constant vector, then the divergence of the vector field A = |x| (V × x) vanishes.
Find a vector potential for A.

4. In cylindrical coordinates the infinitesimal displacement dx of a point x = (r, φ, z) when the coordinates
are incremented by ( dr , dφ , dz ) can be expressed as

dx = hr dr er + hφ dφ eφ + hz dz k

where er, eφ and k are unit vectors pointing in the direction in which the coordinates (r, φ, z) respec-
tively, increase (see figure 6.1 p.146) and hr, hφ and hz are called the metric coefficients (see p. 487).
Show explicitly that the metric coefficients in this coordinate system are given by hr = hz = 1, hφ = r.

5. By proceeding as in the previous problem in the case of a spherical coordinate system (figure 7.1 p.
170) write

dx = hr dr er + hθ dθ eθ + hφ dφ eφ

and show that hr = 1, hθ = r, hφ = r sin θ.

6. Using the reasoning described at the top of p. 4, verify the expressions of ∇∇∇u in cylindrical and
spherical coordinates given in Tables 6.4 p. 148 and 7.3 p. 173.

7. Use the relation in (1.1.3) p. 4

∇∇∇ ·A = lim
∆V →0

1

∆V

∮

S

A · n dS

to verify the expression of ∇∇∇ ·A in cylindrical coordinates given in Table 6.4 p. 148. For this purpose
build a small volume ∆V with sides parallel to the directions of er, eφ and k at a generic point (r, φ, z).
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8. Repeat the previous problem for a spherical coordinate system and verify the expression of ∇∇∇·A given
in Table 7.3 p. 173.

9. By using the relation (1.1.5) p. 4

n · (∇∇∇×A) = lim
∆S→0

1

∆S

∮

L

A · t d`

verify the expression of ∇∇∇ × A in cylindrical coordinates given in Table 6.4 p. 148. For this purpose
build small planar areas normal to each coordinate direction in turn and having sides parallel to the
other two directions.

10. Repeat the previous problem for a spherical coordinate system and verify the expression of ∇∇∇ × A

given in Table 7.3 p. 173.

11. Let f(x) and A(x) be a scalar and a vector field respectively. Calculate ∇∇∇× (fA) and ∇∇∇ · (fA).

12. With the aid of the formulae in Table 6.4 p. 148 give an explicit expression for the double curl
B = ∇∇∇×∇∇∇×A and the gradient of the divergence C = ∇∇∇(∇∇∇ ·A) of a vector field A = (Ar, Aφ, Az)
in cylindrical coordinates. By using the identity (1.1.10), find an expression for ∇2A in this coordinate
system.

13. With the aid of the formulae in Table 7.3 p. 173 give an explicit expression for the double curl
B = ∇∇∇×∇∇∇×A and the gradient of the divergence C = ∇∇∇(∇∇∇ ·A) of a vector field A = (Ar , Aθ, Aφ)
in spherical polar coordinates. By using the identity (1.1.10), find an expression for ∇2A in this
coordinate system.

14. Given a function u(x) define its spherical mean over a sphere centered at x and having radius r by

Mu(x, r) =
1

4π

∫

|e|=1

u(x + re) dS

Note that this expression provides a definition of Mu also for r < 0 and shows that Mu(x, r) =
Mu(x,−r) so that Mu is an even function of r. With the aid of the divergence theorem show that Mu

satisfies the Darboux equation
(

∂2

∂r2
+

2

r

∂

∂r

)

Mu = ∇2
xMu

where ∇2
x is the Laplacian with respect to the coordinate x.

2 Elliptic equations

1. Let u be harmonic, i.e., let it satisfy the Laplace equation ∇2u = 0. Is u2 also harmonic? What is the
most general class of functions f such that f(u) is harmonic?

2. Show that the expression

u(x, y, z) =

∫ π

−π

f (z + ix cosu + iy sin u, u) du

is a solution of the Laplace equation ∇2u = 0. After converting this expression from Cartesian to
spherical polar coordinates, find the function f which gives rise to the solid harmonic r`Y m

` (θ, φ) (cf.
section 13.3.1).
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3. Prove that, if u(x) satisfies Laplace’s equation ∇2u = 0 in any number of dimensions, then so does
the function

v(x) = |x|2−nu

(

x

|x|

)

where |x| =
√

x · x. This is a generalization of the Kelvin inversion of section 7.9.

4. Show that the function given by

u(x, y) = Re

∫ z

0

J0

(

k

√

(z − ζ)ζ

)

f(ζ) dζ

satisfies the two-dimensional Helmholtz equation

∂2u

∂x2
+

∂2u

∂y2
+ k2u = 0 ,

in which k is a constant. Here z = x + iy, z = x− iy, ζ = ξ + iη and J0 is the Bessel function of order
0 defined by (see p. 305)

J0(t) =
∞
∑

n=0

(−t2/4)n

(n!)2
.

5. Show that the general solution of the biharmonic equation (p. 7)

∇4u = 0

in a simply-connected two-dimensional domain can be represented as

u(x, y) = Re [z v(z) + w(z)]

where z = x − iy and v and w are arbitrary analytic functions of z = x + iy.

3 Hyperbolic equations

1. By effecting the change of variables
ξ = x , η = iy

transform the two dimensional Laplace equation

∂2u

∂x2
+

∂2u

∂y2
= 0

into the formally hyperbolic equation
∂2u

∂ξ2
− ∂2u

∂η2
= 0

In this way deduce the formula

u(x, y) =
1

2
Φ(x + iy) +

1

2
Φ(x + iy)

expressing any solution of the two-dimensional Laplace equation as the real part of some analytic
function of the variable x + iy.
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2. Starting from the general d’Alembert solution (1.2.9) p. 8 find, for x > 0 and t > 0, the solution to
the homogeneous wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0

subject to the initial conditions u(x, 0) = f(x), ∂u/∂t|t=0 = g(x) and to the boundary condition
∂u/∂t = au at x = 0. Is there a special value of a such that the problem, in general, admits no
solution? Give a physical interpretation of your answer.

3. Show that, in three-dimensional space, the function

u(r, t) =
1

r
[Φ+(r − ct) + Φ−(r + ct)]

with r the distance from the origin, is a spherically symmetric solution of the wave equation. Using this
fact, find the solution of the wave equation corresponding to the initial data u(r, 0) = 0, ∂u/∂t|t=0 =
g(r) with g an even function of its argument. For the special case

g(r) =

{

1 for 0 < r < a
0 for a < r

find u explicitly in the different regions bounded by the cones r = a± ct. Locate the discontinuities of
the solution arising from the discontinuity of the initial data.

4. Prove that, if v(x, t; τ) is a solution of

∂v

∂t
−

d
∑

n=1

Aj
∂v

∂xj
− Bv = 0 ,

where d is the number of the space dimensions and x = (x1, x2, . . . , xd), satisfying the inhomogeneous
initial data v(x, τ ; τ) = f(x, τ) then the Duhamel integral

u(x, t) =

∫ t

0

v(x, t; τ) dτ

satisfies the inhomogeneous equation

∂u

∂t
−

d
∑

n=1

Aj
∂u

∂xj
− Bu = f(x, t)

together with the homogeneous initial condition u(x, 0) = 0 (cf section 5.5.4 p. 141).

5. Show that the retarded potential

u(x, y, z, t) =
1

4π

∫ ∫ ∫

F (ξ, η, ζ, t − ρ)

ρ
dξ dη dζ

in which ρ =
√

(x − ξ)2 + (y − η)2 + (z − ζ)2, satisfies the inhomogeneous wave equation

∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= F (x, y, z, t)

together with the homogeneous initial conditions u(x, y, z, 0) = 0, ∂u(x, y, z, t)/∂t|t=0
= 0.
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6. Show that one solution of the two-dimensional wave equation

∂2u

∂x2
+

∂2u

∂y2
− 1

c2

∂2u

∂t2
= 0

can be written in the form u(x, y, t) = Re f(θ), where f is an analytic function of the argument
θ = θ(x, y, t) given by the relation

t − x

c
θ +

y

c

√

1 − θ2 = 0 .

7. By effecting a suitable change of variables, find the general solution of the equation

a2 ∂2u

∂x2
+ 2a

∂2u

∂x∂y
+

∂2u

∂y2
= 0

where a is a given constant.

8. Show that the function

u(x, y, t) =

∞
∑

n=0

tn

λnn!

(

∂2

∂x2
+

∂2

∂y2

)n

T (x, y)

where T (x, y) is an arbitrary polynomial in the variables x and y and λ is a constant, satisfies the
equation

∂2u

∂x2
+

∂2u

∂y2
= λ

∂u

∂t
.

9. Show that, for any R > 0 there is a T > 0 such that, for all points (x, y) with x2 + y2 < R2 and all
times t ≥ T the solution of the two-dimensional wave equation

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2

subject to u(x, y, 0) = u0(x, y), ∂u/∂t|t=0 = v(x, y) is expressible by means of the converging series

u(x, y, t) =

∞
∑

n=0

Um(x, y)

tn+1
.

Calculate U0 and U1.

4 Diffusion equation

1. Prove that the diffusion equation
∂u

∂t
=

∂2u

∂x2

possesses solutions of the form

u = tα v(η), η =
x2

4t
.

Give explicitly the (ordinary) differential equation satisfied by v and solve it.
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2. Consider the equation
∂u

∂t
= −∂2u

∂x2

Let

u = t−1/2 v(η), η =
x2

4t

and derive the ordinary differential equation satisfied by v. Show that its solution is unbounded for
η → 0, i.e., t → ∞.

3. Find the general solution of the one-dimensional diffusion equation

∂u

∂t
= D

∂2u

∂x2

having the form u(x, t) = f(x − vt), with v a constant. Solutions of this type may represent, for
example, the heating of a substance ahead of a detonation wave propagating with velocity v when the
chemical reaction maintains the temperature of the wave front constant.

4. Find the general solution of the non-linear one-dimensional diffusion equation

∂u

∂t
= D

∂

∂x

(

un ∂u

∂x

)

having the form u(x, t) = f(x − vt), with v a constant.

5. Consider spherically symmetric solutions of the diffusion equation

∂u

∂t
= D∇2u

in the entire d-dimensional space, i.e., solutions of the form u(r, t) with r = (x2
1 + x2

2 + . . . + x2
d)

1/2.
Find a transformation of the form r′ = αr, t′ = βt which leaves the equation unchanged and deduce
the structure of the solution u(r, t).
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