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Problem Specifications

Byzantine Agreement (single source has an initial value)

Agreement: All non-faulty processes must agree on the same value.

Validity: If the source process is non-faulty, then the agreed upon value by all the
non-faulty processes must be the same as the initial value of the source.

Termination: Each non-faulty process must eventually decide on a value.

Consensus Problem (all processes have an initial value)

Agreement: All non-faulty processes must agree on the same (single) value.

Validity: If all the non-faulty processes have the same initial value, then the agreed upon
value by all the non-faulty processes must be that same value.

Termination: Each non-faulty process must eventually decide on a value.

Interactive Consistency (all processes have an initial value)

Agreement: All non-faulty processes must agree on the same array of values A[v1 . . . vn].

Validity: If process i is non-faulty and its initial value is vi , then all non-faulty processes
agree on vi as the ith element of the array A. If process j is faulty, then the
non-faulty processes can agree on any value for A[j].

Termination: Each non-faulty process must eventually decide on the array A.

These problems are equivalent to one another! Show using reductions.
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Overview of Results

Failure Synchronous system Asynchronous system
mode (message-passing and shared memory) (message-passing and shared memory)

No agreement attainable; agreement attainable;
failure common knowledge also attainable concurrent common knowledge attainable
Crash agreement attainable agreement not attainable
failure f < n Byzantine processes

Ω(f + 1) rounds
Byzantine agreement attainable agreement not attainable
failure f ≤ b(n − 1)/3c Byzantine processes

Ω(f + 1) rounds

Table: Overview of results on agreement. f denotes number of failure-prone processes. n
is the total number of processes.

In a failure-free system, consensus can be attained in a straightforward manner
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Some Solvable Variants of the Consensus Problem in
Async Systems

Solvable Failure model and overhead Definition
Variants

Reliable crash failures, n > f (MP) Validity, Agreement, Integrity conditions
broadcast
k-set crash failures. f < k < n. size of the set of values agreed
consensus (MP and SM) upon must be less than k

ε-agreement crash failures values agreed upon are
n ≥ 5f + 1 (MP) within ε of each other

Renaming up to f fail-stop processes, select a unique name from
n ≥ 2f + 1 (MP) a set of names

Crash failures f ≤ n − 1 (SM)

Table: Some solvable variants of the agreement problem in asynchronous system. The
overhead bounds are for the given algorithms, and not necessarily tight bounds for the
problem.
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Solvable Variants of the Consensus Problem in Async
Systems

This is the study of 

Circumventing the impossibility results for consensus in asynchronous systems

k set consensus

epsilon− consensus

Renaming

consensusepsilon−

Shared memory

Reliable broadcast using atomic registers and

k set consensus

Renaming

Consensus 

atomic snapshot objects

constructed from atomic registers

using more powerful

objects than atomic registers.

universal objects and

universal constructions.

Message−passing
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Consensus Algorithm for Crash Failures (MP, synchronous)

Up to f (< n) crash failures possible.

In f + 1 rounds, at least one round has no failures.

Now justify: agreement, validity, termination conditions are satisfied.

Complexity: O(f + 1)n2 messages

f + 1 is lower bound on number of rounds

(global constants)
integer: f ; // maximum number of crash failures tolerated
(local variables)
integer: x ←− local value;

(1) Process Pi (1 ≤ i ≤ n) executes the Consensus algorithm for up to f crash failures:
(1a) for round from 1 to f + 1 do
(1b) if the current value of x has not been broadcast then
(1c) broadcast(x);
(1d) yj ←− value (if any) received from process j in this round;
(1e) x ←− min(x , yj);
(1f) output x as the consensus value.
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Upper Bound on Byzantine Processes (sync)

Agreement impossible when f = 1, n = 3.

correct process

commandercommander

0 0

1
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P Pa ab b

c c

(a) (b)

malicious process

0

1

1

0

second round messagefirst round message

Taking simple majority decision does not help because loyal commander Pa

cannot distinguish between the possible scenarios (a) and (b);

hence does not know which action to take.

Proof using induction that problem solvable if f ≤ b n−1
3 c. See text.
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Consensus Solvable when f = 1, n = 4

correct process

P

P
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(a) (b)

P Pc c

d d
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malicious process

There is no ambiguity at any loyal commander, when taking majority decision

Majority decision is over 2nd round messages, and 1st round message
received directly from commander-in-chief process.
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Byzantine Generals (recursive formulation), (sync,
msg-passing)

(variables)
boolean: v ←− initial value;
integer: f ←− maximum number of malicious processes, ≤ b(n − 1)/3c;
(message type)
Oral Msg(v, Dests, List, faulty), where
v is a boolean,
Dests is a set of destination process ids to which the message is sent,
List is a list of process ids traversed by this message, ordered from most recent to earliest,
faulty is an integer indicating the number of malicious processes to be tolerated.

Oral Msg(f ), where f > 0:

1 The algorithm is initiated by the Commander, who sends his source value v to all other processes using a OM(v, N, 〈i〉, f ) message. The
commander returns his own value v and terminates.

2 [Recursion unfolding:] For each message of the form OM(vj , Dests, List, f ′) received in this round from some process j , the process i uses the

value vj it receives from the source, and using that value, acts as a new source. (If no value is received, a default value is assumed.)

To act as a new source, the process i initiates Oral Msg(f ′ − 1), wherein it sends

OM(vj , Dests − {i}, concat(〈i〉, L), (f ′ − 1))

to destinations not in concat(〈i〉, L)
in the next round.

3 [Recursion folding:] For each message of the form OM(vj , Dests, List, f ′) received in Step 2, each process i has computed the agreement

value vk , for each k not in List and k 6= i ,corresponding to the value received from Pk after traversing the nodes in List, at one level lower in
the recursion. If it receives no value in this round, it uses a default value. Process i then uses the value majorityk 6∈List,k 6=i (vj , vk ) as the

agreement value and returns it to the next higher level in the recursive invocation.

Oral Msg(0):

1 [Recursion unfolding:] Process acts as a source and sends its value to each other process.

2 [Recursion folding:] Each process uses the value it receives from the other sources, and uses that value as the agreement value. If no value is
received, a default value is assumed.
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Relationship between # Messages and Rounds

round a message has aims to tolerate and each message total number of
number already visited these many failures gets sent to messages in round

1 1 f n − 1 n − 1
2 2 f − 1 n − 2 (n − 1) · (n − 2)

. . . . . . . . . . . . . . .
x x (f + 1)− x n − x (n − 1)(n − 2) . . . (n − x)

x + 1 x + 1 (f + 1)− x − 1 n − x − 1 (n − 1)(n − 2) . . . (n − x − 1)
f + 1 f + 1 0 n − f − 1 (n − 1)(n − 2) . . . (n − f − 1)

Table: Relationships between messages and rounds in the Oral Messages algorithm for
Byzantine agreement.

Complexity: f + 1 rounds, exponential amount of space, and

(n − 1) + (n − 1)(n − 2) + . . .+ (n − 1)(n − 2)..(n − f − 1)messages
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Bzantine Generals (iterative formulation), Sync,
Msg-passing

(variables)
boolean: v ←− initial value;

integer: f ←− maximum number of malicious processes, ≤ b n−1
3
c;

tree of boolean:

level 0 root is vL
init , where L = 〈〉;

level h(f ≥ h > 0) nodes: for each vL
j at level h − 1 = sizeof (L), its n − 2 − sizeof (L) descendants at level h are v

concat(〈j〉,L)
k

, ∀k

such that k 6= j, i and k is not a member of list L.

(message type)
OM(v, Dests, List, faulty), where the parameters are as in the recursive formulation.

(1) Initiator (i.e., Commander) initiates Oral Byzantine agreement:

(1a) send OM(v, N − {i}, 〈Pi 〉, f ) to N − {i};
(1b) return(v).

(2) (Non-initiator, i.e., Lieutenant) receives Oral Message OM:

(2a) for rnd = 0 to f do
(2b) for each message OM that arrives in this round, do
(2c) receive OM(v, Dests, L = 〈Pk1

. . . Pkf +1−faulty
〉, faulty) from Pk1

;

// faulty + round = f; |Dests| + sizeof (L) = n

(2d) v
tail(L)
head(L)

←− v ; // sizeof (L) + faulty = f + 1. fill in estimate.

(2e) send OM(v, Dests − {i}, 〈Pi , Pk1
. . . Pkf +1−faulty

〉, faulty − 1) to Dests − {i} if rnd < f ;

(2f) for level = f − 1 down to 0 do

(2g) for each of the 1 · (n − 2) · . . . (n − (level + 1)) nodes vL
x in level level , do

(2h) vL
x (x 6= i, x 6∈ L) = majorityy 6∈ concat(〈x〉,L);y 6=i (vL

x , v
concat(〈x〉,L)
y );
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Tree Data Structure for Agreement Problem (Byzantine
Generals)

level 3
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v
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9

round 2

round3

round4

level 1

level 0

level 2

Some branches of the tree at P3. In
this example, n = 10, f = 3, commander is P0.

(round 1) P0 sends its value to all other processes using Oral Msg(3), including to P3.

(round 2) P3 sends 8 messages to others (excl. P0 and P3) using Oral Msg(2). P3 also
receives 8 messages.

(round 3) P3 sends 8× 7 = 56 messages to all others using Oral Msg(1); P3 also receives
56 messages.

(round 4) P3 sends 56× 6 = 336 messages to all others using Oral Msg(0); P3 also
receives 336 messages. The received values are used as estimates of the majority function
at this level of recursion.
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Exponential Algorithm: An example

An example of the majority computation is as follows.

P3 revises its estimate of v
〈5,0〉
7 by taking

majority(v
〈5,0〉
7 , v

〈7,5,0〉
1 , v

〈7,5,0〉
2 , v

〈7,5,0〉
4 , v

〈7,5,0〉
6 , v

〈7,5,0〉
8 , v

〈7,5,0〉
9 ). Similarly for

the other nodes at level 2 of the tree.

P3 revises its estimate of v
〈0〉
5 by taking

majority(v
〈0〉
5 , v

〈5,0〉
1 , v

〈5,0〉
2 , v

〈5,0〉
4 , v

〈5,0〉
6 , v

〈5,0〉
7 , v

〈5,0〉
8 , v

〈5,0〉
9 ). Similarly for the

other nodes at level 1 of the tree.

P3 revises its estimate of v
〈〉
0 by taking

majority(v
〈〉
0 , v

〈0〉
1 , v

〈0〉
2 , v

〈0〉
4 , v

〈0〉
5 , v

〈0〉
6 , v

〈0〉
7 , v

〈0〉
8 , v

〈0〉
9 ). This is the consensus

value.
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Impact of a Loyal and of a Disloyal Commander

commander

Oral_Msg(k) Oral_Msg(k)

Oral_Msg(k−1)Oral_Msg(k−1)

correct process malicious process

(b)(a)

0 0

1

??

commander

The effects of a loyal or a disloyal

commander in a system with n = 14 and

f = 4. The subsystems that need to tolerate

k and k − 1 traitors are shown for two cases.

(a) Loyal commander. (b) No assumptions

about commander.

(a) the commander who invokes
Oral Msg(x) is loyal, so all the loyal
processes have the same estimate. Although
the subsystem of 3x processes has x
malicious processes, all the loyal processes
have the same view to begin with. Even if
this case repeats for each nested invocation
of Oral Msg, even after x rounds, among the
processes, the loyal processes are in a simple
majority, so the majority function works in
having them maintain the same common
view of the loyal commander’s value.

(b) the commander who invokes

Oral Msg(x) may be malicious and can send

conflicting values to the loyal processes. The

subsystem of 3x processes has x − 1

malicious processes, but all the loyal

processes do not have the same view to

begin with.
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The Phase King Algorithm

Operation

Each round has a unique ”phases king” derived, say, from PID.

Each round has two phases:

in 1st phase, each process sends its estimate to all other processes.

in 2nd phase, the ”Phase king” process arrives at an estimate based on the
values it received in 1st phase, and broadcasts its new estimate to all others.

phase f+1

P
0

P

1
P

k

P
f+1

phase 1 phase 2
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The Phase King Algorithm: Code

(variables)
boolean: v ←− initial value;
integer: f ←− maximum number of malicious processes, f < dn/4e;

(1) Each process executes the following f + 1 phases, where f < n/4:

(1a) for phase = 1 to f + 1 do
(1b) Execute the following Round 1 actions: // actions in round one of each phase
(1c) broadcast v to all processes;
(1d) await value vj from each process Pj ;
(1e) majority ←− the value among the vj that occurs > n/2 times (default if no maj.);
(1f) mult ←− number of times that majority occurs;
(1g) Execute the following Round 2 actions: // actions in round two of each phase
(1h) if i = phase then // only the phase leader executes this send step
(1i) broadcast majority to all processes;
(1j) receive tiebreaker from Pphase (default value if nothing is received);
(1k) if mult > n/2 + f then
(1l) v ←− majority ;
(1m) else v ←− tiebreaker ;
(1n) if phase = f + 1 then
(1o) output decision value v .
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The Phase King Algorithm

(f + 1) rounds, (f + 1)[(n − 1)(n + 1)] messages, and can tolerate up to
f < dn/4e malicious processes

Correctness Argument

Among f + 1 rounds, at least one round k where phase-king is non-malicious.

In round k , all non-malicious processes Pi and Pj will have same estimate of
consensus value as Pk does.

I Pi and Pj use their own majority values (Hint: =⇒ Pi ’s mult > n/2 + f )
I Pi uses its majority value; Pj uses phase-king’s tie-breaker value.
I Pi and Pj use the phase-king’s tie-breaker value. (Hint: In the round in which

Pk is non-malicious, it sends same value to Pi and Pj)

In all 3 cases, argue that Pi and Pj end up with same value as estimate

If all non-malicious processes have the value x at the start of a round, they
will continue to have x as the consensus value at the end of the round.
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Impossibility Result (MP, async)

FLP Impossibility result

Impossible to reach consensus in an async MP system even if a single process has
a crash failure

In a failure-free async MP system, initial state is monovalent =⇒ consensus
can be reached.
In the face of failures, initial state is necessarily bivalent
Transforming the input assignments from the all-0 case to the all-1 case,

there must exist input assignments ~Ia and ~Ib that are 0-valent and 1-valent,
resp., and that differ in the input value of only one process, say Pi . If a
1-failure tolerant consensus protocol exists, then:

I Starting from ~Ia, if Pi fails immediately, the other processes must agree on 0
due to the termination condition.

I Starting from ~Ib, if Pi fails immediately, the other processes must agree on 1
due to the termination condition.

However, execution (2) looks identical to execution (1), to all processes, and
must end with a consensus value of 0, a contradiction. Hence, there must
exist at least one bivalent initial state.
Consensus requires some communication of initial values.
Key idea: in the face of a potential crash, not possible to distinguish between
a crashed process and a very slow process.
Hence, from bivalent state, impossible to go to univalent state.
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Impossibility Result (MP, async)

To transition from bivalent to monovalent step, must exist a critical step
which allows the transition by making a decision

Critical step cannot be local (cannot tell apart between slow and failed
process) nor can it be across multiple processes (it would not be well-defined)

Hence, cannot transit from bivalent to univalent state.

Wider Significance of Impossibility Result

By showing reduction from consensus to problem X, then X is also not
solvable under same model (single crash failure)

E.g., leader election, terminating reliable broadcast, atomic broadcast,
computing a network-wide global function using BC-CC flows, transaction
commit.
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Terminating Reliable Broadcast (TRB)

A correct process always gets a message, even if sender crashes while sending (in
which case the process gets a null message).

Validity: If the sender of a broadcast message m is non-faulty, then all
correct processes eventually deliver m.

Agreement: If a correct process delivers a message m, then all correct processes
deliver m.

Integrity: Each correct process delivers at most one message. Further, if it
delivers a message different from the null message, then the sender
must have broadcast m.

Termination: Every correct process eventually delivers some message.

Reduction from consensus to TRB.

Commander sends its value using TRB.

Receiver decides on 0 or 1 based on value it receives. If it receives a ”null”
message, it decides on default value.

But, as consensus is not solvable, algo for TRB cannot exist.
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k-set Consensus

k-Agreement: All non-faulty processes must make a decision, and the set of values that
the processes decide on can contain up to k (< f ) values.

Validity: If a non-faulty process decides on some value, then that value must have
been proposed by some process.

Termination: Each non-faulty process must eventually decide on a value.

The k-Agreement condition is new, the Validity condition is different from that for
regular consensus, and the Termination condition is unchanged from that for regular
consensus.

Example: Let n = 20, f = 2, k = 3 and each process choose a unique number from 1 to

10. Then 3-set is {8, 9, 10}.
(variables)
integer: v ←− initial value;

(1) A process Pi , 1 ≤ i ≤ n, initiates k-set consensus:
(1a) broadcast v to all processes.
(1b) await values from |N| − f processes and add them to set V ;
(1c) decide on max(V ).
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Epsilon Consensus (msg-passing, async)

ε-Agreement: All non-faulty processes must make a decision and the values
decided upon by any two non-faulty processes must be within ε
range of each other.

Validity: If a non-faulty process Pi decides on some value vi , then that value
must be within the range of values initially proposed by the
processes.

Termination: Each non-faulty process must eventually decide on a value.

The algorithm for the message-passing model assumes n ≥ 5f + 1, although the
problem is solvable for n > 3f + 1.

Main loop simulates sync rounds.

Main lines (1d)-(1f): processes perform all-all msg exchange

Process broadcasts its estimate of consensus value, and awaits n − f similar
msgs from other processes

the processes’ estimate of the consensus value converges at a particular rate,
until it is ε from any other processes estimate.

# rounds determined by lines (1a)-(1c).
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Epsilon Consensus (msg-passing, async): Code
(variables)
real: v ←− input value; //initial value
multiset of real V ;
integer r ←− 0; // number of rounds to execute

(1) Execution at process Pi , 1 ≤ i ≤ n:
(1a) V ←− Asynchronous Exchange(v , 0);
(1b) v ←− any element in(reduce2f (V ));
(1c) r ←− dlogc(diff (V ))/εe, where c = c(n − 3f , 2f ).
(1d) for round from 1 to r do
(1e) V ←− Asynchronous Exchange(v , round);
(1f) v ←− new2f ,f (V );
(1g) broadcast (〈v , halt〉, r + 1);
(1h) output v as decision value.

(2) Asynchronous Exchange(v,h) returns V :

(2a) broadcast (v , h) to all processes;
(2b) await n − f responses belonging to round h;
(2c) for each process Pk that sent 〈x , halt〉 as value, use x as its input henceforth;
(2d) return the multiset V .
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Epsilon Consensus (msg-passing, async)

Consider a sorted collection U. The new
estimate of a process is chosen by
computing newk,f (U), defined as
mean(selectk(reduce f (U)))

reduce f (U) removes the f largest and f
smallest members of U.

selectk(U) selects every kth member of
U, beginning with the first. If U has m
members, selectk(U) has
c(m, k) = b(m − 1)/kc+ 1 members.
This constant c represents a
convergence factor towards the final
agreement value, i.e., if x is the range
of possible values held by correct
processes before a round, then x/c is
the possible range of estimate values
held by those processes after that
round.

f

U

u u u u u u1550 10 2520

select  (reduce  (U))
5

4shaded members belong to 

k=5

f=4reduce  (U)

selectk(reducef (U)) operation, with
k = 5 and f = 4. The mean of the
selected members is the new estimate
new5,4(U).
The algorithm uses m = n − 3f and
k = 2f . So c(n − 3f , 2f ) will represent
the convergence factor towards reaching
approximate agreement and new2f ,f is
the new estimate after each round.
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Epsilon Consensus (msg-passing, async)

Let |U| = m, and let the m elements u0 . . . um−1

of multiset U be in nondecreasing order.
Properties on nonempty multisets U, V , W .

The number of the elements in multisets U
and V is reduced by at most 1 when the
smallest element is removed from both.
Similarly for the largest element.

The number of elements common to U
and V before and after j reductions differ
by at most 2j . Thus, for j ≥ 0 and
|V |, |W | ≥ 2j ,
|V ∩W |− |reduce j (V )∩ reduce j (W )| ≤ 2j .

Let V contain at most j values not in U,
i.e., |V − U| ≤ j , and let size of V be at
least 2j . Then by removing the j low and j
high elements from V , it is easy to see
that remaining elements in V must belong
to the range of U.

Thus,

each value in reduce j(V ) is in the
range of U, i.e., range(reduce j(V )) ⊆
range(U).

newk,j(V ) ∈ range(U).

Correctness, termination, complexity: refer

book
f

V

U

W

range(reduce   (W))
f

range(U)

new    (V)
k,f

new    (W)
k,f

<=diff(U) / c(m−2f,k)

range(reduce   (V))
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Asynchronous Renaming
The renaming problem assigns to each process Pi , a name mi from a domain M, and is
formally specified as follows.

Agreement: For non-faulty processes Pi and Pj , mi 6= mj .

Termination: Each non-faulty process is eventually assigned a name mi .

Validity: The name mi belongs to M.

Anonymity: The code executed by any process must not depend on its initial
identifier.

Uses of renaming (name space transformation):

processes from different domains need to collaborate, but must first assign
themselves distinct names from a small domain.

processes need to use their names as “tags” to simply mark their presence, as in a
priority queue.

the name space has to be condensed, e.g., for k-mutex.

Assumptions

The n processes P1 . . .Pn have their identifiers in the old name space. Pi knows
only its identifier, and the total number of processes, n.

The n processes take on new identifiers m1 . . .mn, resp., from the name space M.

Due to asynchrony, each process that chooses its new name must continue to
cooperate with the others until they have chosen their new names.
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Asynchronous Renaming -MP Model

Attiya et al. renaming algorithm assumes n ≥ 2f + 1 and fail-stop model.

Transformed name space is M = n + f .

View is a list of up to n objects of type bid .

(local variables)
struct bid :

integer P; // old name of process
integer x ; // new name being bid by the process
integer attempt; // the number of bids so far, including this current bid
boolean decide; // whether new name x is finalized

list of bid: View [1 . . . n]←− 〈〈i , 0, 0, false〉〉; // initialize list with an entry for Pi

integer count; // number of copies of the latest local view, received from others
boolean: restart, stable, no choose; // loop control variables

View ≤ View ′ if and only if for each process Pi such that View [k].P = Pi , we also have
that for some k ′, View ′[k ′].P = Pi and View [k].attempt ≤ View ′[k ′].attempt.

If View ′ 6≤ View (line 1n), then View is updated using View ′ (line 1o) by:

1 including all process entries from View ′ that are missing in View (i.e., View ′[k ′].P is not
equal to View [k].P, for all k), so such entries View ′[k ′] are added to View .

2 replacing older entries for the same process with more recent ones, (i.e., if
View ′[k ′].P = Pi = View [k].P and View ′[k ′].attempt > View [k].attempt, replace View [k]
by View ′[k ′]).
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Asynchronous Renaming

The high level functioning is given by
the flow-chart.

A view becomes stable if it gets n − f
votes.

If no name conflict, it decides on its
view and helps other processes to reach
their view.

If name conflict, it decides whether to
seek more votes or try to get a new
name, based on its rank, which is like a
sequence number determined from the
old name space, from among those
processes who have not yet finalized
their new names.

Safety, Liveness, Termination,
Complexity: refer book
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Wait-free Renaming: Code
(1) A process Pi , 1 ≤ i ≤ n, participates in renaming:

(1a) repeat
(1b) restart ←− false;
(1c) broadcast message(View);
(1d) count ←− 1;
(1e) repeat
(1f) no choose ←− 0;
(1g) repeat

(1h) await message(View′);
(1i) stable ←− false;

(1j) if View′ = View then
(1k) count ←− count + 1;
(1l) if count ≥ n − f then
(1m) stable ←− true;

(1n) else if View′ 6≤ View then

(1o) update View using View′ by taking latest information for each process;
(1p) restart ←− true;
(1q) until (stable = true or restart = true); // n − f copies received, or new view obtained
(1r) if restart = false then // View [1] has information about Pi
(1s) if View [1].x 6= 0 and View [1].x 6= View [j].x for any j then
(1t) decide View [1].x ;
(1u) View [1].decide ←− true;
(1v) broadcast message(View);
(1w) else
(1x) let r be the rank of Pi in UNDECIDED(View);
(1y) if r ≤ f + 1 then
(1z) View [1].x ←− FREE(View)(r), the rth free name in View ;
(1A) View [1].attempt ←− View [1].attempt + 1;
(1B) restart ←− 1;
(1C) else
(1D) no choose ←− 1;
(1E) until no choose = 0;
(1F) until restart = 0;
(1G) repeat

(1H) on receiving message(View′)
(1I) update View with View′ if necessary;
(1J) broadcast message(View);
(1K) until false.
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Reliable Broadcast

Reliable Broadcast is RTB
without terminating condition.

RTB requires eventual delivery of
messages, even if sender fails
before sending. In this case, a
null message needs to get sent.
In RB, this condition is not there.

RTB requires recognition of a
failure, even if no msg is sent

Crux: RTB is required to
distinguish between a failed
process and a slow process.

RB is solvable under crash
failures; O(n2) messages

(1) Process P0 initiates Reliable Broadcast:
(1a) broadcast message M to all processes.

(2) A process Pi , 1 ≤ i ≤ n, receives message M:
(2a) if M was not received earlier then
(2b) broadcast M to all processes;
(2c) deliver M to the application.
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Shared Memory Consensus (async): Impossibility

Use FLP argument seen in async MP
systems here for SM systems.

Cannot distinguish between failed
process and a slow process =⇒
consensus not possible.

Proof by contradiction, using notion of
critical step at which system transitions
from bivalent to monovalent state.

Given initial bivalent state, prefix Z ,
then step by Pi leads to 0-valent state
but event at some Pj followed by step
of Pi leads to 1-valent state.

Apply case analysis on prefix Z and
actions of Pi and Pj after Z .

Y

i i i

j

z

X

i

0−val 0−val 1−val 1−val

Z
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Shared Memory Consensus (async): Impossibility

(a) Pi does a Read. extend(Z , i · j) and
extend(Z , j · i) are isomorphic to all except
Pi . If Pi stops after extend(Z , i · j), all
must reach consensus 0 after some suffix δ.
However, as per Figure (a), processes must
reach consensus 1 after δ. A contradiction.

(a’) Pj does a Read. Similar reasoning to case
(a)

(b) Pi and Pj Write to different vars. System
state after extend(Z , i · j) and
extend(Z , j · i) will have to be 0-valent and
1-valent, resp.. A contradiction.

(c) Pi and Pj Write to the same variable.
System states after extend(Z , i) and after
extend(Z , j · i) are isomorphic to all except
Pj . Assume Pj does not run now. Then a
contradiction can be seen, because of
consensus value 0 after the first prefix and
a consensus value of 1 after the second
prefix.

(b) i and j write to 

Read

Read
by i

j

j

0−val

0−val0−val

ZZ Z

0−val0−val

Write

Write

Write

Write

WriteWrite
by

by

i

iby
i

by i by j

Write
by j

by jby i

(a) i does a Read

different variables

(c) i and j write to

the same variable

(same logic if 

j does a Read)

0−val

all processes
except i 

all processes

1−val1−val

except j
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Wait-free SM Consensus using Shared Objects
Not possible to go from bivalent to univalent state if even a single failure is allowed.
Difficulty is not being able to read & write a variable atomically.

It is not possible to reach consensus in an asynchronous shared memory system
using Read/Write atomic registers, even if a single process can fail by crashing.

There is no wait-free consensus algorithm for reaching consensus in an
asynchronous shared memory system using Read/Write atomic registers.

To overcome these negative results

Weakening the consensus problem, e.g., k-set consensus, approximate consensus,
and renaming using atomic registers.

Using memory that is stronger than atomic Read/Write memory to design wait-free
consensus algorithms. Such a memory would need corresponding access primitives.

Stronger objects?

Are there objects (with supporting operations), using which there is a wait-free (i.e.,
(n− 1)-crash resilient) algorithm for reaching consensus in a n-process system? Yes, e.g.,
Test&Set, Swap, Compare&Swap.

Henceforth, assume only the crash failure model, and also require the solutions to be

wait-free.
A. Kshemkalyani and M. Singhal (Distributed Computing) Consensus and Agreement CUP 2008 34 / 54



Distributed Computing: Principles, Algorithms, and Systems

Consensus Numbers and Consensus Hierarchy

Consensus Numbers
An object of type X has consensus number k, denoted as CN(X ) = k, if k is the largest
number for which the object X can solve wait-free k-process consensus in an
asynchronous system subject to k − 1 crash failures, using only objects of type X and
read/write objects.

Wait-free simulations and Consensus Numbers
For objects X and Y such that CN(X ) < CN(Y ), there is no wait-free simulation of
object Y using X and read/write registers (whose consensus number is 1) in a system
with more than CN(X ) processes.

There does not exist any simulation of objects with CN > 1 using only Read/Write

atomic registers =⇒ need stronger objects.

Object Consensus number

Read/Write objects 1
Test-&-Set, stack, FIFO queue, Fetch-&-Inc 2
Augmented queue with peek - size k k
Compare-&-Swap, Augmented queue, memory-memory move ∞
memory-memory swap, Fetch-&-Cons, store-conditional

Table: Consensus numbers of some object types. Some of these objects are described in
Figure ??.
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Definitions of Sync Operations RMW , Compare&Swap,
Fetch&Inc

(shared variables among the processes accessing each of the different object types)
register: Reg ←− initial value; // shared register initialized
(local variables)
integer: old ←− initial value; // value to be returned
integer: key ←− comparison value for conditional update;

(1) RMW (Reg , function f ) returns value:

(1a) old ←− Reg ;
(1b) Reg ←− f (Reg);
(1c) return(old).

(2) Compare&Swap(Reg , key , new) returns value:

(2a) old ←− Reg ;
(2b) if key = old then
(2c) Reg ←− new ;
(2d) return(old).

(3) Fetch&Inc(Reg) returns value:

(3a) old ←− Reg ;
(3b) Reg ←− r + 1;
(3c) return(old).
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Two-process Wait-free Consensus using FIFO Queue

(shared variables)
queue: Q ←− 〈0〉; // queue Q initialized
integer: Choice[0, 1]←− [⊥,⊥] // preferred value of each process
(local variables)
integer: temp ←− 0;
integer: x ←− initial choice;

(1) Process Pi , 1 ≤ i ≤ 2, executes this for 2-process consensus using a FIFO queue:
(1a) Choice[i ]←− x ;
(1b) temp ←− dequeue(Q);
(1c) if temp = 0 then
(1d) output(x)
(1e) else output(Choice[1− i ]).
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Wait-free Consensus using Compare&Swap

(shared variables)
integer: Reg ←−⊥; // shared register Reg initialized
(local variables)
integer: temp ←− 0; // temp variable to read value of Reg
integer: x ←− initial choice; // initial preference of process

(1) Process Pi , (∀i ≥ 1), executes this for consensus using Compare&Swap:

(1a) temp ←− Compare&Swap(Reg ,⊥, x);
(1b) if temp =⊥ then
(1c) output(x)
(1d) else output(temp).
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Read-Modify-Write (MRW) Abstraction

RMW allows to read, and modify the register content as per some function f .

RMW object has a CN of at least 2 because it allows the first process to access the
object to leave an imprint that the object has been accessed. The other process can
read the imprint.

If the imprint can include the ID of the first process, or the choice of the first
process, then CN > 2.

RMW objects differ in their function f . A function is termed as interfering if for
all process pairs i and j , and for all legal values v of the register,

1 fi (fj(v)) = fj(fi (v)), i.e., function is commutative, or
2 the function is not write-preserving, i.e., fi (fj(v)) = fi (v) or vice-versa with the

roles of i and j interchanged.

Examples:
The Fetch&Inc commutes even though it is write-preserving. The Test&Set
commutes and is not write-preserving. The Swap does not commute but it is not
write-preserving. Hence, all three objects uses functions that are interfering.
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RMW Object and Instruction

A nontrivial interfering RMW operation has consensus number = 2

If RMW is commutative, 3rd process cannot know which of the other two
accessed the object first, and therefore does not know whose value is the
consensus value

If RMW is not write-preserving, 3rd process does not know if it is the 2nd or
3rd to access the object. Therefore, whose value is the consensus value?

Objects like Compare&Swap are non-interfering and hence have a higher
consensus number.
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RMW Object and Instruction

(shared variables)
integer: Reg ←−⊥; // shared register Reg initialized
integer: Choice[0, 1]←− [⊥,⊥]; // data structure
(local variables)
integer: x ←− initial choice; // initial preference of process

(1) Process Pi , (0 ≤ i ≤ 1), executes this for consensus using RMW:

(1a) Choice[i ]←− x ;
(1b) val ←− RMW (Reg , f );
(1c) if val =⊥ then
(1d) output(Choice[i ])
(1e) else output(Choice[1− i ]).

Reg 

RMW register

Choice [0] [1]
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Universality of Consensus Objects

An object is defined to be universal if that object along with read/write
registers can simulate any other object in a wait-free manner. In any system
containing up to k processes, an object X such that CN(X ) = k is universal.

For any system with up to k processes, the universality of objects X with
consensus number k is shown by giving a universal algorithm to wait-free
simulate any object using only objects of type X and read/write registers.
This is shown in two steps.

1 A universal algorithm to wait-free simulate any object whatsoever using
read/write registers and arbitrary k-processor consensus objects is given. This
is the main step.

2 Then, the arbitrary k-process consensus objects are simulated with objects of
type X , also having consensus number k. This trivially follows after the first
step.

Hence, any object X with consensus number k is universal in a system with
n ≤ k processes.

A. Kshemkalyani and M. Singhal (Distributed Computing) Consensus and Agreement CUP 2008 42 / 54



Distributed Computing: Principles, Algorithms, and Systems

Universality of Consensus Objects

An arbitrary consensus object X allows a single operation, Decide(X , vin) and
returns a value vout , where both vin and vout have to assume a legal value
from known domains Vin and Vout , resp.

For the correctness of this shared object version of the consensus problem, all
vout values returned to each invoking process must equal the vin of some
process.

A nonblocking operation, in the context of shared memory operations, is an
operation that may not complete itself but is guaranteed to complete at least
one of the pending operations in a finite number of steps.
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A Nonblocking Universal Algorithm

The linked list stores the linearized sequence of operations and states
following each operation.

Operations to the arbitrary object Z are simulated in a nonblocking way
using only an arbitrary consensus object (namely, the field op.next in each
record) which is accessed via the Decide call.

Each process attempts to thread its own operation next into the linked list.

Head[1..n]

x

n
e

t

seq
operation

state
result

op

Anchor_Record
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A Nonblocking Universal Algorithm

(shared variables)
record op

integer: seq ←− 0; // sequence number of serialized operation
operation ←−⊥; // operation, with associated parameters
state ←− initial state; // the state of the object after the operation
result ←−⊥; // the result of the operation, to be returned to invoker
op ∗next ←−⊥; // pointer to the next record

op ∗Head [1 . . . k]←− &(anchor record);
(local variables)
op ∗my new record, ∗winner ;

(1) Process Pi , 1 ≤ i ≤ k performs operation invoc on an arbitrary consensus object:
(1a) my new record ←− malloc(op);
(1b) my new rec.operation ←− invoc;
(1c) for count = 1 to k do
(1d) if Head [i ].seq < Head [count].seq then
(1e) Head [i ]←− Head [count];
(1f) repeat
(1g) winner ←− Decide(Head [i ].next, &my new record);
(1h) winner .seq ←− Head [i ].seq + 1;
(1i) winner .state, winner .result ←− apply(winner .operation, Head [i ].state);
(1j) Head [i ]←− winner ;
(1k) until winner = my new record ;
(1l) enable the response to invoc, that is stored at winner .result.
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A Nonblocking Universal Algorithm: Notes

There are as many universal objects as
there are operations to thread.

A single pointer/counter cannot be
used instead of the array Head . B’coz
reading and updating the pointer
cannot be done atomically in a
wait-free manner.

Linearization of the operations given by
the seq no.

As algorithm is nonblocking, some
process(es) may be starved indefinitely.
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A Wait-free Universal Algorithm
(shared variables)
record op

integer: seq ←− 0; // sequence number of serialized operation
operation ←−⊥; // operation, with associated parameters
state ←− initial state; // the state of the object after the operation
result ←−⊥; // the result of the operation, to be returned to invoker
op ∗next ←−⊥; // pointer to the next record

op ∗Head [1 . . . k], ∗Announce[1 . . . k]←− &(anchor record);
(local variables)
op ∗my new record, ∗winner ;

(1) Process Pi , 1 ≤ i ≤ k performs operation invoc on an arbitrary consensus object:
(1a) Announce[i ]←− malloc(op);
(1b) Announce[i ].operation ←− invoc; Announce[i ].seq ←− 0;
(1c) for count = 1 to k do
(1d) if Head [i ].seq < Head [count].seq then
(1e) Head [i ]←− Head [count];
(1f) while Announce[i ].seq = 0 do
(1g) turn ←− (Head [i ].seq + 1)mod (k);
(1h) if Announce[turn].seq = 0 then
(1i) my new record ←− Announce[turn];
(1j) else my new record ←− Announce[i ];
(1k) winner ←− Decide(Head [i ].next, &my new record);
(1l) winner .seq ←− Head [i ].seq + 1;
(1m) winner .state, winner .result ←− apply(winner .operation, Head [i ].state);
(1n) Head [i ]←− winner ;
(1o) enable the response to invoc, that is stored at winner .result.
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Wait-free Universal Algorithm

To prevent starvation in the nonblocking algoriithm, the idea of ”helping”
using a round-robin approach modulo n is used.

If Pj determines that the next op is to be assigned sequence number x , then
it first checks whether the process Pi such that i = x (mod n) is contending
for threading its operation. If so, then Pj tries to thread Pi ’s operation
instead of its own.

The round-robin approach uses the array Announce.

Within n iterations of the outer loop, a process is certain that its operation
gets threaded - by itself or with the help of another contending process.
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x

n
e

t

seq
operation

state
result

op

Anchor_Record

Head[1..n]
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Shared Memory k-set Consensus

Crash failure model, k > f . Analogous to message-passing model algorithm.
Assumes atomic snapshot object Obj .

Pi writes its value to Obj [i ] and scans Obj until n − f vales have been
written to it. Then takes the max.

(variables)
integer: v ←− initial value;
array of integer local array ←− ⊥;
(shared variables)
atomic snapshot object Obj [1 . . . n]←− ⊥;

(1) A process Pi , 1 ≤ i ≤ n, initiates k-set consensus:
(1a) updatei (Obj [i ]) with v ;
(1b) repeat
(1c) local array ←− scani (Obj);
(1d) until there are at least |N| − f non-null values in Obj ;
(1e) v ←− minimum of the values in local array .
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Async Wait-free Renaming using Atomic Shared Object

Crash failure model. Obj linearizes all accesses to it.

Each Pi can write to its portion in Obj and read all Obj atomically.

Pi does not have a unique index from [1 . . . n].

Pi proposes a name ”1” for itself. It then repeats the following loop.
I It writes its latest bid to its component of Obj (line 1c); it reads the entire

object using a scan into its local array (line 1d). Pi examines the local array
for a possible conflict with its proposed new name (line 1e).

F If Pi detects a conflict with its proposed name mi (line 1e) it determines its
rank rank among the old names (line 1f); and selects the rankth smallest
integer among the names that have not been proposed in the view just read
(line 1g). This will be used as Pi ’s bid for a new name in the next iteration.

F If Pi detects no conflict with its proposed name mi (line 1e), it selects this
name and exits (line 1i).
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Async Wait-free Renaming using Atomic Shared Object

Correctness: As Obj is linearizable, no two proceses having chosen a new name
will get back a Scan saying their new names are unique.

Size of new name space: [1 . . . 2n − 1].

Termination: Assume there is a subset T ⊆ N of processes that never terminate.
Let min(T ) be the process in T with the lowest ranked process
identifier (old name). Let rank(min(T )) be the rank of this process
among all the processes P1 . . .Pn. Once every process in T has
done at least one update, and once all the processes in T have
terminated, we have the following.

The set of names of the terminated processes, say MT ,
remains fixed.
The process min(T ) will choose a name not in MT , that is
ranked rank(min(T )). As rank(min(T )) is unique, no other
process in T will ever choose this name.
Hence, min(T ) will not detect any conflict with rank(min(T ))
and will terminate.

As min(T ) cannot exist, the set T = ∅.
Lower bound: For crash-failures, lower bound of n + f on new name space.
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Async Wait-free Renaming using Atomic Shared Object

(variables)
integer: mi ←− 0;
integer: Pi ←− name from old domain space;
list of integer tuples local array ←− 〈⊥,⊥〉;
(shared variables)
atomic snapshot object Obj ←− 〈⊥,⊥〉; // n components

(1) A process Pi , 1 ≤ i ≤ n, participates in wait-free renaming:
(1a) mi ←− 1;
(1b) repeat
(1c) updatei (Obj , 〈Pi ,mi 〉); // update ith component with bid mi

(1d) local array(〈P1,m1〉, . . . 〈Pn,mn〉)←− scani (Obj);
(1e) if mi = mj for some j 6= i then
(1f) Determine rank ranki of Pi in {Pj |Pj 6=⊥ ∧j ∈ [1, n]};
(1g) mk ←− ranki th smallest integer not in {mj |mj 6=⊥ ∧j ∈ [1, n] ∧ j 6= i};
(1h) else
(1i) decide(mk); exit;
(1j) until false.
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The Splitter
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(shared variables)
MRMW atomic snapshot object X , Y ←− false;

(1) splitter(), executed by process Pi , 1 ≤ i ≤ n:

(1a) X ←− i ;
(1b) if Y then
(1c) return(right);
(1d) else
(1e) Y ←− true;
(1f) if X = i then return(stop)
(1g) else return(down).
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Configuration of Splitters for Wait-free Renaming (SM)
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New name space: n(n + 1)/2
splitters

(local variables)
next, r , d, new name ←− 0;

(1) Process Pi , 1 ≤ i ≤ n, participates in wait-free renaming:
(1a) r , d ←− 0;
(1b) while nexti 6= stop do
(1c) nexti ←− splitter(r , d);
(1d) case
(1e) next = right then r ←− r + 1;
(1f) next = down then d ←− d + 1;
(1g) next = stop then break()
(1h) return(new name = n · d − d(d − 1)/2 + r).
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