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What is Scheduling?

It is the allocation of limited resources to tasks over time
Michael Pinedo, 1998

Single-Stage Scheduling
N jobs to be processed in M machines

pij, cij, sij
Release/due times
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 Assignment of jobs to machines 
 Sequencing of jobs in the same machine
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Preliminaries
 Systematic scheduling practiced in manufacturing since early 20th century
 First scheduling publications in the early 1950s

Salveson, M.E. On a quantitative method in production planning and scheduling. Econometrica, 20(9), 1952
Johnson, S.M. Optimal two- and three-stage production schedules with setup times. Naval Research Logistics Quarterly, 1(1), 61-68, 1954.

 Extensive research in 1970s
• Closely related to developments in computing and algorithms
• Computational Complexity: Job Sequencing one of 21 NP-complete problems in (Karp, 1972)

 Widespread applications
• Airlines industry (e.g., fleet, crew scheduling)
• Transportation (e.g., vehicle routing)
• Government, educational institutions (e.g., class scheduling)
• Sports
• Services (e.g., service center scheduling)
• Manufacturing industries

 Chemical industries 
• Batch process scheduling (e.g., pharma, food industry, fine chemicals)
• Continuous process scheduling (e.g., polymerization)
• Transportation and unloading of crude oil

 Very challenging problem: Small problems can be very hard
• Most Open problems in MIPLIB are scheduling related

– Railway scheduling: 1,500 constraints, 1,083 variables, 794 binaries
– Production planning: 1,307 constraints, 792 variables, 240 binaries
– Crew scheduling: 1,803 constraints, 11,612 variables, 9,720 binaries
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Problem Statement
Given are:
a) Production facility data; e.g., processing and storage unit capacities, unit connectivity, etc.
b) Production recipes; i.e., mixing rules, processing times/rates, utility requirements, etc. 
c) Equipment unit – task compatibility. 
d) Production costs; e.g., raw materials, utilities, changeover, etc.
e) Material availability; e.g., deliveries (amount and date) of raw materials. 
f) Resource availability; e.g., maintenance schedule, resource allocation from planning, etc. 
g) Production targets or orders with due dates.

Our goal is to find a least cost schedule that meets production targets subject to resource constraints. 
Alternative objective functions are the minimization of tardiness or lateness (minimization of backlog cost)
or the minimization of earliness (minimization of inventory cost) or the maximization of profit. 

In the general problem, we seek to optimize our objective by making four types of decisions: 
a) Selection and sizing of batches to be carried out (batching) 
b) Assignment of batches to processing units or general resources.  
c) Sequencing and timing of batches on processing units. 

Demand (orders)
A
B
C
D

A1 A2 A3

B1 B2

C1

Task selection (batching)
How many tasks/batches? 
What size?

Batches

D1

Task-resource Assignment
What resources each task requires?

A1

A2

A3

B1

B2

C1

U1

U2

D1

Sequencing (for unary resources)
In what sequence are batches processed? 

C1A2 A3A1

B1D1 B2
Timing
When do tasks start? 

C1A2 A3A1
B1D1 B2
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Scheduling in the Supply Chain

Scheduling
• Batching
• Assignment
• Sequencing
• Timing

Tr
an

sp
or

t/
Di

st
ri

bu
tio

n 
Pl

an
ni

ng

De
m

an
d 

Pl
an

ni
ng

/F
ul

fil
lm

en
tProduction

Planning

De
m

an
d

M
at

er
ia

ls
 R

eq
ui

re
m

en
t P

la
nn

in
g

Optimization, Control &
Shopfloor Management

Master Planning

 Scheduling is only one planning function in SC optimization
 Interactions with other planning functions determine:

• Type of scheduling problem: cyclic vs. short-term scheduling
• Overarching production goal → scheduling objective
• Optimization decisions for scheduling
• Inputs: resource availability, production targets, etc. 

 Wide range of problems due to market environments and company planning structure
 Variability increases due to multiple production environments and processing restrictions
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Discrete Manufacturing: Machine Environments

R o u t i n g   G e n e r a l i z a t i o n

2
ndGeneralization Level: 

Parallel m
achine sim

ilarity

P1

P2

P3

𝑖𝑖 ∈ 𝐈𝐈: Jobs
𝑗𝑗 ∈ 𝐉𝐉: Machines
𝑘𝑘 ∈ 𝐊𝐊: Operations
𝑐𝑐 ∈ 𝐂𝐂: Work centers

m

(a) Single machine

m1 mK…

Operations: Single ⇒ Multiple

(b) Flow-shop

m2

m1 m3

m4

A

B

C

Routes: Common ⇒ Job-specific 

RA = {m1, m3} RB = {M1, M2}

RC = {M2, M4}

(c) Job-shop

m2

m1 m3

m4

Routes: Predetermined ⇒ Free 

JB = {m1, m2}JA = {m1, m3}

JC = {m2, m4}

B

A

C

(d) Open-shop

m1

m2

Single m
achine

M
ultiple m

achines
1

stGeneralization Level: M
achines per Stage

(e) Machines in parallel

m1

m2

m4

m3

m5

Operation 1:
J1 = {m1, m2}

Operation 2:
J2 = {m3, m4, m5}

(f) Flexible flow-shop

m3m1

m2

m5

m4

A

BRA = {c1, c2}

c1 = {m1, m2}, c2 = {m3, m4}, c3 = {m5}

C

RC = {c3, c2}

RB = {c1, c3}

(g) Flexible job-shop

m3m1

m2

m5

m4

CA = {c1, c2}

CB = {c1, c3}

A

B

c1 = {m1, m2}, c2 = {m3, m4}, c3 = {m5}

(h) Flexible open-shop

𝐑𝐑𝑖𝑖: Routing of job i (jobshop)
𝐉𝐉𝑖𝑖: Machines for job i (open-shop)
𝐉𝐉𝑘𝑘: Machines in stage k
𝐂𝐂𝑖𝑖: Centers for job i

O
p

eration
G

en
eralizatio

n



Cambridge University Press Christos T. MaraveliasChemical Production Scheduling: Mixed-Integer Programing Models and Methods

Basic Insights

Batches

Fermentation Centrifugation

…

Drying

Sequential processing
 Materials cannot be mixed/split/recycled
 Problem defined in terms of: 

Batches, stages, and units
 Usually, no utility & storage constraints

A

B

RM1

RM2

Int1

Int2

Int3

ImB

40%

60%

40%

60%
10%

90%
80%

20%

RM3

Network processing
 Materials can be mixed/split/recycled
 Problem defined in terms of: 

Materials, tasks, resources 
 Utility and storage constraints modeled

 Discrete manufacturing
• A job (e.g., chip) moves through operations consisting of parallel machines
• Each job is not split into multiple jobs; jobs are not merged

 Chemical production: tasks involve fluids
• Fluids (from different batches) can be mixed into a vessel; 

output of a batch can be used in multiple downstream batches
• No mixing/splitting restrictions may be added (e.g., quality control)

Discrete Manufacturing ⇨ Chemical Production
Absence of material handling restrictions makes 
chemical production scheduling problems different
• The notion of a batch (job) moving through 

stages cannot be defined
• Consumed/produced materials must be 

monitored 
• Model material balances
Notation
 Jobs ⇒ Orders or batches
 Operations ⇒ Tasks
 Machines ⇒ Units
Key Features
 Modeling of storage is important 

(solid, liquid and gas phases)
⇒ Storage vessels & states

 Utilities are also important
(steam, water, electricity)
⇒ Utilities (or resources)

 No Preemption
 [Variable Processing Times]
 Long changeover times
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Basic Insights

U1-T1F

Tasks:
T1 in U1: F → I (2 h); 
T2 in U2: I → P (3 h)
Capacities: βmin/βmax (kg):
U1: 20/40, U2: 20/40, V: 0/40v

No special restrictions for intermediate I

V U2-T2 PI

U1

V

U2

T1/20

T2/40

Two batches of 
T1 mix into one
batch of T2Store/20

T1/20

0                2                4                6                8 (h)

20

20

20

U1

V

U2 T2/20

Store/20

T2/20
0                2                4                6                8 (h)

20

2020

T1/40 One batch of T1 splits
into two batches of T2

Sequential-looking process

 Sequential plant structure does NOT imply sequential processing
 Materials handling restrictions determine type of processing

Network-looking process

U0-T0F

U3-T3 P3

I U2-T2 P2

U1-T1 P1

Tasks: 
T0/U0: F → I (2 h); 
T1/U1: I → P1 (3 h) 
T2/U2: I → P2 (4 h); 
T3/U3: I → P3 (2 h)
Capacities: βmin/βmax (kg): 
All units should run 20 kg batches

Each batch of intermediate I should be
consumed by a single downstream batch

U0

U1

U2

U3 T3/20

0               2                4                6                8 (h)

20

T0/20

T2/20

T0/20

T1/20

T0/20
20 20

Batches

Stage 1 Stage 2
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Multi-PurposeMulti-Stage

Discrete Manufacturing: Machine Environments

R o u t i n g   G e n e r a l i z a t i o n
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𝑘𝑘 ∈ 𝐊𝐊: Operations
𝑐𝑐 ∈ 𝐂𝐂: Work centers

m

(a) Single machine

m1 mK…

Operations: Single ⇒ Multiple

(b) Flow-shop
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Routes: Common ⇒ Job-specific 

RA = {m1, m3} RB = {M1, M2}
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(c) Job-shop
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(e) Machines in parallel

m1

m2

m4

m3

m5

Operation 1:
J1 = {m1, m2}

Operation 2:
J2 = {m3, m4, m5}

(f) Flexible flow-shop

m3m1

m2

m5

m4

A

BRA = {c1, c2}

c1 = {m1, m2}, c2 = {m3, m4}, c3 = {m5}

C

RC = {c3, c2}

RB = {c1, c3}

(g) Flexible job-shop

m3m1

m2

m5

m4

CA = {c1, c2}

CB = {c1, c3}

A

B

c1 = {m1, m2}, c2 = {m3, m4}, c3 = {m5}

(h) Flexible open-shop

𝐑𝐑𝑖𝑖: Routing of job i (jobshop)
𝐉𝐉𝑖𝑖: Machines for job i (open-shop)
𝐉𝐉𝑘𝑘: Machines in stage k
𝐂𝐂𝑖𝑖: Centers for job i
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Problem Classes

α / β / γ
α Production environment

• Material handling constraints are key (not facility structure): sequential, network, hybrid
β Processing characteristics

• Typical characteristics: setups, changeovers, release/due times, etc. 
• Chemical production characteristics: storage constraints, material transfer constraints, utilities, etc. 

γ Objective functions
• min Cost, min Lateness, min Tardiness, max Throughput, etc. 

Sequential – multistage (Sms)

Network (N)
Hybrid (H)

Sequential – multipurpose (Smp)

Production Environment - α

min Makespan (Mmax)
min Cost (Ctot)
min Max Lateness (Lmax)
min Weighted Lateness (ΣwiLi)
…

Objective Function - γ

Problem Class
e.g. Sms/s, u, r/Mmax

Processing characteristics - β

-
Setups (s) & changeovers (c)
Utilities (u)
Storage restrictions (st)

Material transfers (mt)

Unit connectivity constraints (uc)

. . .
Release/due times (r)

Selection of one
Multiple selections possible
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Notation
We use:
 lower case Latin characters for indices,
 uppercase Latin bold letters for sets,
 uppercase Latin characters for variables,
 Greek letters for parameters, and
 regular uppercase Latin letters for set elements.

All subsets of a set will be denoted by the letter used for the set and a  subscript and/or superscript. Specifically, 
 indices are used as subscripts to denote subsets that are index-specific

(e.g., the subset of units 𝐉𝐉 in stage 𝑖𝑖 is denoted by 𝐉𝐉𝑘𝑘); 
 uppercase letters are used as superscripts to further differentiate subsets 

(e.g., if 𝐉𝐉 is the set of units, the subset of processing units and storage vessels are denoted by 𝐉𝐉𝑃𝑃 and 𝐉𝐉𝑆𝑆 , respectively). 
Parameters and variables may also have superscripts for differentiation; 
e.g., , the processing cost of task 𝑖𝑖 is denoted by 𝛾𝛾𝑖𝑖𝑃𝑃 while the changeover cost between tasks 𝑖𝑖 and 𝑖𝑖𝑖 is denoted by 𝛾𝛾𝑖𝑖𝐶𝐶𝐶𝐶. 
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Outline
 Basics

 Single-unit problems

 Single-stage problems

 Multi-stage problems

 Network problems
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Single Unit Problem
 There is only one unit available with known capacity
 The minimum number of batches to meet orders can be pre-calculated,
 We have predefined set of batches (some of which may be identical)
 We are given:

• A set of batches, 𝑖𝑖 ∈ 𝐈𝐈, to be carried out on a single unit, U. 
• Processing time of batch 𝑖𝑖 is 𝜏𝜏𝑖𝑖

 Is this  an optimization problem?

 Since all batches will be carried out on the same unit, we observe the following: 
• The minimum makespan will be equal to ∑𝑖𝑖 𝜏𝜏𝑖𝑖 regardless of the sequencing of batches. 
• If there is a processing cost, 𝛾𝛾𝑖𝑖𝑃𝑃 the total processing cost will be ∑𝑖𝑖 𝛾𝛾𝑖𝑖𝑃𝑃. 
• Since there are no due times, lateness, tardiness, and earliness cannot be defined. 
• Since the number and size of batches is fixed, the total production and thus profit are fixed. 

 There are two features that make this problem more interesting: 
• Each batch is subject to release and due times, 𝜌𝜌𝑖𝑖 and 𝜀𝜀𝑖𝑖, respectively. 
• There are sequence dependent changeover times, 𝜎𝜎𝑖𝑖𝑖𝑖𝑖 and costs, 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶. 

 Note: setup (i.e., sequence independent) times and costs are not relevant for single-unit problems because:
• all feasible solutions have exactly the same setup cost (since all batches are assigned to the same unit) and 
• setup times can be simply added to the processing times, so the problem statement remains the same. 
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Single Unit Problem: Global Sequence-Based Models
Basic idea
 Use binary variable to represent the relative order (sequence) and then employ big-M constraints to enforce a no-overlap condition
 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 ∈ 0,1 ≔ 1 if batch 𝑖𝑖 is processed before batch 𝑖𝑖′
 𝑆𝑆𝑖𝑖 ∈ ℝ+ ≔ start time of batch 𝑖𝑖

Equations
 How do we ensure that batch 𝑖𝑖 is finished before batch 𝑖𝑖′ starts if 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 = 1 (disjunctive constraint)? 
𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖′ + 𝛭𝛭 1 − 𝑌𝑌𝑖𝑖𝑖𝑖′ , 𝑖𝑖, 𝑖𝑖′ ≠ 𝑖𝑖 (1)
where Μ is a sufficiently large number. 
(Note: we could have defined 𝐸𝐸𝑖𝑖 = 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 but we used 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 instead).

 Eq (1) enforces correct batch timing provided that binary variables 𝑌𝑌𝑖𝑖𝑖𝑖′ assume correct values. 
How do we ensure that a sequencing relationship is established for every pair of tasks (i.e., no overlap)? 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖, 𝑖𝑖′ > 𝑖𝑖 (2)

 How do we enforce release and due dates? 
𝑆𝑆𝑖𝑖 ≥ 𝜌𝜌𝑖𝑖 , 𝑖𝑖 (3); 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖 , 𝑖𝑖 (4)

 If due times can be violated, at a cost, then (4) can be replaced with:
𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖 + 𝐿𝐿𝑖𝑖 , 𝑖𝑖 (5)

where 𝐿𝐿𝑖𝑖 is the lateness/tardiness of batch i. 
• If the objective function is to minimize lateness then (5) will be satisfied as equality;

i.e, 𝐿𝐿𝑖𝑖 will assume the smallest possible value, which can be negative.  
• If the objective tardiness minimization, then we should enforce 𝐿𝐿𝑖𝑖 ≥ 0 and eq (3.5) will be satisfied as equality only if 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖.
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Single Unit Problem: Global Sequence-Based Models
 How do we enforce changeover times? 

If the triangle inequality, 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 < 𝜎𝜎𝑖𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖, holds for all 𝑖𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖𝑖𝑖 then changeover times can be addressed through:
𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖′ + 𝛭𝛭 1 − 𝑌𝑌𝑖𝑖𝑖𝑖′ , 𝑖𝑖, 𝑖𝑖𝑖 ≠ 𝑖𝑖

 Can we model changeover costs using global sequencing variables?
No, because for a given batch 𝑖𝑖′ we potentially have many variables with 𝑌𝑌𝑖𝑖𝑖𝑖′ = 1

 Makespan, MS, minimization, we have: 
min𝑀𝑀𝑀𝑀

and require: 
𝑀𝑀𝑀𝑀 ≥ 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 , 𝑖𝑖

 For earliness minimization, 
min∑𝑖𝑖 𝜔𝜔𝑖𝑖(𝜀𝜀𝑖𝑖 − (𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖))

where 𝜔𝜔𝑖𝑖 is a weight factor
 Do you see a problem with the above equation? 

Yes, we can benefit from increasing the lateness of batch 𝑖𝑖 in order to decrease earliness of batch 𝑖𝑖′
We should assume that due times are met.

 The objective function for total weighted lateness, 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇, and tardiness, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, minimization is, 
min∑𝑖𝑖 𝜔𝜔𝑖𝑖𝐿𝐿𝑖𝑖

where 
𝐿𝐿𝑖𝑖 ≥ 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 − 𝜀𝜀𝑖𝑖 , 𝑖𝑖

and for tardiness we also require 𝐿𝐿𝑖𝑖 ≥ 0. 
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Single Unit Problem: Immediate Sequence-Based Models
Preliminaries
 In immediate-sequencing, binary 𝑌𝑌𝑖𝑖𝑖𝑖′ if batch 𝑖𝑖 is immediately followed by 𝑖𝑖′, 

which means that the number of variables being equal to 1 is different: 
• In global sequencing, |𝐈𝐈|( 𝐈𝐈 − 1)/2 𝑌𝑌𝑖𝑖𝑖𝑖′ variables are equal to 1 (why?) 
• In immediate sequencing, there are only 𝐈𝐈 − 1 variables being equal to 1

 Main difference: equations that activate 𝑌𝑌𝑖𝑖𝑖𝑖′ ; specifically, (2) should be replaced with alternative equations. 

Basic Ideas and Equations
 We exploit that all batches have one immediate predecessor/successor, except the first/last which has no predecessor/successor. 

• 𝑌𝑌𝑖𝑖𝐹𝐹 ∈ 0,1 ≔ 1 if batch 𝑖𝑖 is processed first in unit U. 
• 𝑌𝑌𝑖𝑖𝐿𝐿 ∈ 0,1 ≔ 1 if batch 𝑖𝑖 is processed last in unit U.

 The two new variables should satisfy:
∑𝑖𝑖 𝑌𝑌𝑖𝑖𝐹𝐹 = ∑𝑖𝑖 𝑌𝑌𝑖𝑖𝐿𝐿 = 1 (1)

 The condition on the number of immediate predecessors and successors is then enforced via, 
∑𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑌𝑌𝑖𝑖′

𝐹𝐹, 𝑖𝑖′ (2) ∑𝑖𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑌𝑌𝑖𝑖𝐿𝐿 , 𝑖𝑖 (3)  

 Eqs (1) - (3) can be used to activate immediate sequencing binary variables 𝑌𝑌𝑖𝑖𝑖𝑖𝑖. 
 Once 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 assume feasible values, the equations presented in the previous slide can be used to enforce the remaining constraints. 

 An alternative approach exploits the fact that exactly I-1 immediate sequencing variables will be activated in any feasible solution: 
∑𝑖𝑖,𝑖𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 = 𝐈𝐈 − 1 (4)

 Eq (4) coupled with (2)-(3) and timing constraints (e.g., (1) in previous slide) enforce that only one batch is processed at a time

CAB DCB

A B

A D

𝑌𝑌B,A = 1 𝑌𝑌A,C = 1 𝑌𝑌C,D = 1

𝑌𝑌B,C = 1 𝑌𝑌A,D = 1

𝑌𝑌B,D = 1

𝑌𝑌B,A = 1 𝑌𝑌A,C = 1 𝑌𝑌C,D = 1

𝑌𝑌B,C = 0 𝑌𝑌A,D =0

𝑌𝑌B,D = 0
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Single Unit Problem: Continuous Time Grid-Based Models
Preliminaries
 Time-grid-based approaches require the definition of a time grid onto which the execution of tasks/batches are mapped. 
 When a continuous grid is adopted, the horizon, η, is divided into |I| periods of unknown length. 
 Each period 𝑡𝑡 ∈ 𝐓𝐓 starts at time point 𝑡𝑡 − 1 and ends at time point 𝑡𝑡; the timing of point 𝑡𝑡 is 𝑇𝑇𝑡𝑡 . 
 The horizon starts at 𝜌𝜌0 = min𝑖𝑖 𝜌𝜌𝑖𝑖 ; if deadlines are given, then it ends at 𝜀𝜀𝐹𝐹 = max𝑖𝑖{𝜀𝜀𝑖𝑖} (i.e., 𝜂𝜂 = 𝜀𝜀𝐹𝐹 − 𝜌𝜌0)
 The set of necessary periods is 𝐓𝐓 = {1, 2, … , |𝐈𝐈|}, and the set of points is 𝐓𝐓′ = 𝐓𝐓 ∪ 0 = {0, 1, 2, … , |𝐈𝐈|}.
 The timing of time points should satisfy the following constraints: 

𝑇𝑇0 = 0, 𝑇𝑇|𝐓𝐓| = 𝜂𝜂; 𝑇𝑇𝑡𝑡 ≥ 𝑇𝑇𝑡𝑡−1, 𝑡𝑡 (1)

Points :  0                    1           2     …      |I|-1 |I|

…

Periods :            1                2    |I|

Variables :  …    

A

Equations
 Basic idea: match a batch and a time period through the introduction of 
𝑋𝑋𝑖𝑖𝑖𝑖 ∈ 0,1 : is equal to 1 if batch 𝑖𝑖 is allocated to time period 𝑡𝑡, 

 Enforce that each batch is allocated to exactly one period and
each period is used for exactly one batch: 
∑𝑡𝑡 𝑋𝑋𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖 (2) ∑𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 = 1, 𝑡𝑡 (3)

 Variables 𝑋𝑋𝑖𝑖𝑖𝑖 are used to enforce no-overlap between batches;
if 𝑆𝑆𝑖𝑖 are the batch start time variables, then: 
𝑆𝑆𝑖𝑖 ≥ 𝑇𝑇𝑡𝑡−1 − 𝛭𝛭 1 − 𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑡𝑡 (4);     𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 ≤ 𝑇𝑇𝑡𝑡 + 𝛭𝛭 1 − 𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑡𝑡 (5)

 The first model based on a continuous time grid consists of eqs (1) – (5)
 Same objective functions can be used as in global-sequencing models
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Single Unit Problem: Continuous Time Grid-Based Models
Alternative Models
 A slightly different model is obtained when 𝑆𝑆𝑖𝑖 is required to be equal to the start of the period to which batch i is allocated:

𝑇𝑇𝑡𝑡−1 − 𝛭𝛭 1 − 𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝑇𝑇𝑡𝑡−1 + 𝛭𝛭 1 − 𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑡𝑡 (6)

 Alternatively, the batch end time, 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 , can be enforced to be equal to the end time of the period to which is allocated
𝑇𝑇𝑡𝑡 − 𝛭𝛭 1 − 𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 ≤ 𝑇𝑇𝑡𝑡 + 𝛭𝛭 1 − 𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑡𝑡 (7)

 A different model is obtained if batch start time, 𝑆𝑆𝑖𝑖 , is removed; no overlap condition enforced using 𝑇𝑇𝑡𝑡:
𝑇𝑇𝑡𝑡 ≥ 𝑇𝑇𝑡𝑡−1 + ∑𝑖𝑖 𝜏𝜏𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑡𝑡 (8)
where ∑𝑖𝑖 𝜏𝜏𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 represents the processing time of the batch allocated to t

 Since variable 𝑆𝑆𝑖𝑖 is removed, 𝑇𝑇𝑡𝑡 is used to enforce release and due times:
𝑇𝑇𝑡𝑡−1 ≥ 𝜌𝜌𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑡𝑡 (9); 𝑇𝑇𝑡𝑡−1 + 𝜏𝜏𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂(1 − 𝑋𝑋𝑖𝑖𝑖𝑖), 𝑖𝑖, 𝑡𝑡 (10)
assuming that batch processing starts at the start of the allocated period

 In general, models based on a continuous time grid can employ different
variables and sets of constraints to enforce: 
(1) that a batch starts and ends within the period it is allocated to, and 
(2) release and due time constraints. 

 Consequently, the same schedule can be represented by
different variables and, when the same variables are employed, 
by a different solution vector.
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Single Unit Problem: Continuous Time Grid-Based Models
Changeovers
 Accounting for changeovers is, in general, more challenging with time-grid-based models. 
 One approach is to introduce period-specific immediate sequencing variables:
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ∈ 0,1 : are equal to 1 if the 𝑖𝑖 → 𝑖𝑖𝑖 changeover occurs before point 𝑡𝑡 prior to the execution of batch 𝑖𝑖𝑖

 Activation of 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑡𝑡 is accomplished using the batch-period allocation binaries, 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖′,𝑡𝑡+1 − 1, 𝑖𝑖, 𝑖𝑖′ ≠ 𝑖𝑖, 𝑡𝑡 (11)

∑𝑖𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑡𝑡 (12)

∑𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖′,𝑡𝑡−1 ≤ 𝑋𝑋𝑖𝑖′𝑡𝑡 , 𝑖𝑖𝑖, 𝑡𝑡 (13)

 Then use a new timing constraint, whose most intuitive (but not tightest) form is,
𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑡𝑡 + 𝛭𝛭 1 − 𝑌𝑌𝑖𝑖𝑖𝑖′𝑡𝑡 , 𝑖𝑖, 𝑖𝑖′ ≠ 𝑖𝑖, 𝑡𝑡 (14)

 Note that sequencing variables 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑡𝑡 can be defined in multiple ways. 
E.g., 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 if the 𝑖𝑖 → 𝑖𝑖𝑖 changeover occurs within 𝑡𝑡 prior to the execution of 𝑖𝑖𝑖
which also occurs in period t
(Can you see the difference? How should (11) - (13) be modified in this case?). 

 The minimization of changeover cost can then be expressed as follows: 

min∑𝑖𝑖,𝑖𝑖𝑖 ∑𝑡𝑡 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 The modeling of changeover times and costs using models based on a continuous time 

grid requires the introduction of new binary variables 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 which leads to large models. 

A

𝑇𝑇𝑡𝑡: 𝑇𝑇0 = 0 𝑇𝑇1 = 8 𝑇𝑇2 = 14

B
𝑆𝑆A = 1 𝑆𝑆B = 9

𝜏𝜏A = 3 𝜏𝜏B = 4𝜎𝜎Α,B = 2

𝑌𝑌A ,B,1 = 1
𝑋𝑋A ,1 = 1 𝑋𝑋B ,2 = 1
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Single Unit Problem: Discrete Time Grid-Based Models
Preliminaries
 We use 𝑛𝑛 ∈ 𝐍𝐍 = {0,1,2, … 𝐍𝐍 } to denote time points1. 
 The horizon is divided into periods 𝑛𝑛 ∈ 𝐍𝐍′ = 𝐍𝐍\ 0 = {1,2, … , 𝐍𝐍 } of equal length 𝛿𝛿; period 𝑛𝑛 runs between points 𝑛𝑛 − 1 and 𝑛𝑛. 
 The natural choice of 𝛿𝛿 is the greatest common factor of time-related data (processing, 𝜏𝜏𝑖𝑖 , changeover, 𝜎𝜎𝑖𝑖𝑖𝑖𝑖 release/due, 𝜌𝜌𝑖𝑖/𝜀𝜀𝑖𝑖, times). 
 The data for the model are then obtained by dividing the original parameters by 𝛿𝛿, and, if a coarse discretization is used, rounding:  

𝜏𝜏𝑖𝑖 = ⁄𝜏𝜏𝑖𝑖 𝛿𝛿 ,𝜎𝜎𝑖𝑖𝑖𝑖𝑖 = ⁄𝜎𝜎𝑖𝑖𝑖𝑖𝑖
𝛿𝛿 ,𝜌𝜌𝑖𝑖 = ⁄𝜌𝜌𝑖𝑖 𝛿𝛿 , 𝜀𝜀𝑖𝑖 = ⁄𝜀𝜀𝑖𝑖 𝛿𝛿

𝜏𝜏𝑖𝑖 = ⁄𝜏𝜏𝑖𝑖 𝛿𝛿 ,𝜎𝜎𝑖𝑖𝑖𝑖𝑖 = ⁄𝜎𝜎𝑖𝑖𝑖𝑖𝑖
𝛿𝛿 ,𝜌𝜌𝑖𝑖 = ⁄𝜌𝜌𝑖𝑖 𝛿𝛿 , 𝜀𝜀𝑖𝑖 = ⁄𝜀𝜀𝑖𝑖 𝛿𝛿

(Can you see why some parameters are rounded up and some are rounded down?)

1 Note that we use index 𝑡𝑡 ∈ 𝐓𝐓 to denote points/periods in continuous time models but index 𝑛𝑛 ∈ 𝐍𝐍 in discrete time models.

Equations
 We introduce binary variable 𝑋𝑋𝑖𝑖𝑖𝑖 which is equal to 1 if batch i starts at time point 𝑛𝑛.
 The first constraint that should be enforced is that each batch is executed once,

∑𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖

 Next, we should enforce the no-overlap restriction. How can we do it?  
 What do you think about this: ∑𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 1, 𝑛𝑛 ?
 Can you think of another one? 

∑𝑖𝑖 ∑𝑛𝑛′=𝑛𝑛−𝜏𝜏𝑖𝑖+1
𝑛𝑛′=𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖 ≤ 1, 𝑛𝑛 (1) [Clique constraint]

𝑖𝑖 𝜏𝜏𝑖𝑖𝑖𝑖
B1 7
B2 4
B3 8 

B1

B2

B3

n:  … 6         8        10       12       14 
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Single Unit Problem: Discrete Time Grid-Based Models
Equations (continued)
 Release times and deadlines are enforced via fixing the binaries outside the allowable window to zero, 

𝑋𝑋𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖,𝑛𝑛 < 𝜌̅𝜌𝑖𝑖 ,𝑛𝑛 > ̅𝜀𝜀𝑖𝑖 − ̅𝜏𝜏𝑖𝑖

 In general, the timing of an event can be modeled through the multiplication of time points by the corresponding binary variable. 
𝑆𝑆𝑖𝑖 = ∑𝑛𝑛 𝑛𝑛𝑋𝑋𝑖𝑖𝑖𝑖 , 𝐸𝐸𝑖𝑖 = ∑𝑛𝑛(𝑛𝑛 + 𝜏𝜏𝑖𝑖)𝑋𝑋𝑖𝑖𝑖𝑖

 Using this idea, we can enforce constraints for makespan,
𝑀𝑀𝑀𝑀 ≥ ∑𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖

 We can also calculate batch earliness,  𝜀𝜀𝑖𝑖 − ∑𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 ; and lateness, ∑𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖 . 
 The corresponding objective functions become, 

min𝑀𝑀𝑀𝑀

min ∑𝑖𝑖 𝜔𝜔𝑖𝑖(𝜀𝜀𝑖𝑖 − ∑𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖)

min ∑𝑖𝑖 𝜔𝜔𝑖𝑖(∑𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖)

 For tardiness minimization, we first define and constrain a non-negative batch-specific tardiness variable (𝐿𝐿𝑖𝑖 ≥ 0), 
𝐿𝐿𝑖𝑖 ≥ ∑𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖 , 𝑖𝑖

and then express: 
min∑𝑖𝑖 𝜔𝜔𝑖𝑖𝐿𝐿𝑖𝑖
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Single Unit Problem: Product Families
 Products are often grouped into product families 𝑓𝑓 ∈ 𝐅𝐅 to generate computationally tractable optimization models.
 The grouping can be based on various criteria; e.g., product similarities, processing similarities, or changeover considerations. 
 Since the number of batches of each product is known, batches are assigned to families: the subset of batches of family 𝑓𝑓 is 𝐈𝐈𝑓𝑓 . 

 Transitions between batches in different families (from 𝑖𝑖 ∈ 𝐈𝐈𝑓𝑓 to 𝑖𝑖𝑖 ∈ 𝐈𝐈𝑓𝑓𝑓 𝑓𝑓 ≠ 𝑓𝑓𝑓) incur sequence-dependent changeover time, 𝜎𝜎𝑓𝑓𝑓𝑓𝑓 and 
cost, 𝛾𝛾𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶; transitions between batches within a family have no changeover or sequence-independent changeovers (setup). 

 One approach is to use a model that accounts for changeover times/costs and simply update changeover parameters as follows.
1) Products within a family (i.e., 𝑖𝑖 ∈ 𝐈𝐈𝑓𝑓 and 𝑖𝑖𝑖 ∈ 𝐈𝐈𝑓𝑓 for some 𝑓𝑓): 

• If there is no changeover time/cost, then 𝜎𝜎𝑖𝑖𝑖𝑖′ = 𝛾𝛾𝑖𝑖𝑖𝑖′𝐶𝐶𝐶𝐶 = 0.
• If there is setup time, we can still use a model for changeover times but use: 𝜎𝜎𝑖𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖 ,∀𝑖𝑖𝑖 ∈ 𝐈𝐈𝑓𝑓 , where 𝜎𝜎𝑖𝑖 is setup time of 𝑖𝑖 ∈ 𝐈𝐈𝑓𝑓 . 

If 𝜎𝜎𝑖𝑖 < 𝜎𝜎𝑓𝑓𝑓𝑓𝑓 ,∀𝑓𝑓,𝑓𝑓′, 𝑖𝑖 ∈ 𝐈𝐈𝑓𝑓 , then an alternative approach is to use adjusted processing times 𝜏𝜏𝑖𝑖𝑆𝑆 = 𝜏𝜏𝑖𝑖 + 𝜎𝜎𝑖𝑖 , zero changeovers
between batches of the same family, and adjusted changeovers between batches of different families, 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑆𝑆 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑖. 
(Do you see any other adjustments that have to be made? How would you make them?)

2) Products in different families (i.e., 𝑖𝑖 ∈ 𝐈𝐈𝑓𝑓 and 𝑖𝑖′ ∈ 𝐈𝐈𝑓𝑓′ with 𝑓𝑓 ≠ 𝑓𝑓′):
• Sequence-dependent time/cost: 𝜎𝜎𝑖𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑓𝑓𝑓𝑓𝑓 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 = 𝛾𝛾𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 .

 The treatment of families with adjusted parameters can be effective when immediate-sequence models are employed (why?). 
 Other models can also be simplified in additional ways; 

• In sequence-based models, if changeovers between products within a family are zero, then simpler equations can be used (why?). 
• In continuous time grid-based models, variables 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 removed for batches 𝑖𝑖, 𝑖𝑖′ in the same family; and the summations in 

the equations used for activating 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 can be modified to include batches outside the families. 
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Single Unit Problem: Prize Collection
 No minimum demand; we maximize profit; we should consider batch selection decisions: 𝑍𝑍𝑖𝑖 ∈ {0,1} = 1 if batch 𝑖𝑖 is carried out
 The objective function, 𝑃𝑃𝑃𝑃, then becomes (where 𝜋𝜋𝑖𝑖 is the prize for carrying out batch 𝑖𝑖):  max∑𝑖𝑖 𝜋𝜋𝑖𝑖𝑍𝑍𝑖𝑖

Global sequence models
 Variables 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 can be equal to 1 only if both batches 𝑖𝑖 and 𝑖𝑖𝑖 are selected: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖 , 𝑖𝑖, 𝑖𝑖𝑖 ≠ 𝑖𝑖 (1);   𝑌𝑌𝑖𝑖𝑖𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖 , 𝑖𝑖, 𝑖𝑖𝑖 ≠ 𝑖𝑖 (2)
 If two batches are selected, then a sequence should be established

𝑌𝑌𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖 ≥ 𝑍𝑍𝑖𝑖 + 𝑍𝑍𝑖𝑖′ − 1, 𝑖𝑖, 𝑖𝑖′ > 𝑖𝑖
 If a batch is not selected, its start and end date are set to zero and the release and deadline constraints are relaxed,

𝑆𝑆𝑖𝑖 ≤ 𝑀𝑀𝑍𝑍𝑖𝑖 , 𝑖𝑖 (3); 𝑆𝑆𝑖𝑖 ≥ 𝜌𝜌𝑖𝑖𝑍𝑍𝑖𝑖 , 𝑖𝑖 (4) 𝑆𝑆𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑍𝑍𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖𝑍𝑍𝑖𝑖 , 𝑖𝑖 (5)

Continuous time grid models
 Introduce 𝑍̂𝑍𝑡𝑡 ∈ {0,1}, which is 1 if a batch is allocated to period 𝑡𝑡. 
 Since the number of the selected batches is an optimization decision, |I| time periods should be postulated; we add (why?) 

𝑍̂𝑍𝑡𝑡 ≤ 𝑍̂𝑍𝑡𝑡−1, 𝑡𝑡 > 1

 Batch 𝑖𝑖 is allocated to a period only if it is selected and only active periods can be allocated a batch, 
∑𝑡𝑡 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑍𝑍𝑖𝑖 , 𝑖𝑖 (6); ∑𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑍̂𝑍𝑡𝑡 , 𝑡𝑡 (7)

Discrete-time grid models
 What changes are needed? Check model in previous slide. 
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Single Unit Problem: Exercises
Consider a single unit environment consisting of four batches 𝐈𝐈 = B1, B2, B3, B4 with processing times, release and due times, 
and changeover times and costs given in the following table. 

Table. Processing (𝜏𝜏𝑖𝑖), release (𝜌𝜌𝑖𝑖) and due (𝜀𝜀𝑖𝑖) times; and changeover (𝜎𝜎𝑖𝑖𝑖𝑖′) times and costs (𝛾𝛾𝑖𝑖𝑖𝑖′).

Batch 𝜏𝜏𝑖𝑖 𝜌𝜌𝑖𝑖/𝜀𝜀𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖′/𝛾𝛾𝑖𝑖𝑖𝑖′ (=left, =top)
B1 B2 B3 B4

B1 2 0/15 - 1/1 2/1 1/1
B2 4 6/15 1/4 - 1/2 1/2
B3 3 5/20 1/1 2/8 - 1/1
B4 5 2/15 1/1 3/1 1/1 -

Using the above data, formulate and solve the following problems using a sequencing model:
a) Makespan minimization without changeovers.
b) Makespan minimization accounting for changeover times; compare with (a) above.
c) Earliness minimization with weight factor 𝜔𝜔𝑖𝑖= {4,5,1,10}.
d) Makespan using the immediate sequencing model and compare with (i).
e) Changeover cost minimization.
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Outline
 Basics

 Single-unit problems

 Single-stage problems

 Multi-stage problems

 Network problems
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Single Stage (Multi-Unit) Problem: Sequence-Based Models
Problem Statement
 The facility has a set of units J
 Demand is converted into a set of batches I; each batch 𝑖𝑖 ∈ 𝐈𝐈 has a release, 𝜌𝜌𝑖𝑖 , and due, 𝜀𝜀𝑖𝑖, time, and has to be carried out in 

exactly one compatible unit 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 ⊆ 𝐉𝐉; the set of batches that can be processed on unit 𝑗𝑗 is denoted by 𝐈𝐈𝑗𝑗 . 

 The processing time of batch 𝑖𝑖 on unit j is 𝜏𝜏𝑖𝑖𝑖𝑖 and the processing cost is 𝛾𝛾𝑖𝑖𝑖𝑖𝑃𝑃 ; the changeover cost/time is denoted by 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶/𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . 

Equations
 The new type of decision is the assignment of batches to units. Regardless of the modeling approach, we introduce:
𝑋𝑋𝑖𝑖𝑖𝑖 ∈ {0,1}: is equal to 1 if batch 𝑖𝑖 is assigned to unit 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 .

 Batch-unit assignment: 
∑𝑗𝑗∈𝐉𝐉𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖

 If two batches are assigned to the same unit, then the relative order in which they are processed should be determined: 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}: is equal to 1 if both batches 𝑖𝑖 and 𝑖𝑖𝑖 are assigned to unit 𝑗𝑗, and batch 𝑖𝑖 is processed before batch 𝑖𝑖𝑖.

 In global sequence models, the activation of the sequencing binary variables can be achieved via, 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖 − 1, 𝑖𝑖, 𝑖𝑖′ > 𝑖𝑖, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 ∩ 𝐉𝐉𝑖𝑖𝑖

 Exercise: Develop equations to activate 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in immediate sequence models

 If feasible assignments (𝑋𝑋𝑖𝑖𝑖𝑖) and sequencing relationships (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖) are available, then all remaining problem restrictions and 
features can be modeled using the same equations for all sequence-based models
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Single Stage Problem: Sequence-Based Models
Equations (continued)
The main remaining constraints are: 
 Start time disaggregation

𝑆𝑆𝑖𝑖 = ∑𝑗𝑗 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗

 Enforcement of no-overlap condition; 
𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖′𝑗𝑗 + 𝛭𝛭 1 − 𝑌𝑌𝑖𝑖𝑖𝑖′𝑗𝑗 , 𝑖𝑖, 𝑖𝑖′, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 ∩ 𝐉𝐉𝑖𝑖𝑖

 Release, due time constraints;
𝑆𝑆𝑖𝑖 ≥ 𝜌𝜌𝑖𝑖 , 𝑖𝑖; 𝑆𝑆𝑖𝑖 + ∑𝑗𝑗 𝜏𝜏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖 + 𝐿𝐿𝑖𝑖 , 𝑖𝑖

where 𝐿𝐿𝑖𝑖 is batch lateness/tardiness (𝐿𝐿𝑖𝑖 = 0 if hard deadlines). 
 Objective functions: 

• Makespan minimization
min𝑀𝑀𝑀𝑀 with   𝑀𝑀𝑀𝑀 ≥ 𝑆𝑆𝑖𝑖 + ∑𝑗𝑗 𝜏𝜏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖

• Weighted earliness and lateness/tardiness minimization
min∑𝑖𝑖 𝜔𝜔𝑖𝑖(𝜀𝜀𝑖𝑖 − (𝑆𝑆𝑖𝑖 + ∑𝑗𝑗 𝜏𝜏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖)),         min∑𝑖𝑖 𝜔𝜔𝑖𝑖𝐿𝐿𝑖𝑖

• Cost minimization
min∑𝑖𝑖,𝑗𝑗 𝛾𝛾𝑖𝑖𝑖𝑖𝑃𝑃𝑋𝑋𝑖𝑖𝑖𝑖

Changeovers
Changeover times & costs can be handled using techniques similar 
to the ones presented for single unit problems 
 Assuming that the triangular inequality holds, timing constraint:
𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖′𝑗𝑗 + 𝛭𝛭 1 − 𝑌𝑌𝑖𝑖𝑖𝑖′𝑗𝑗 , 𝑖𝑖, 𝑖𝑖′, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 ∩ 𝐉𝐉𝑖𝑖𝑖

 Changeover costs can be addressed using immediate-sequence-
based models.
min∑𝑖𝑖,𝑖𝑖𝑖 ∑𝑗𝑗 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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Single Stage Problem: Continuous Time Grid-Based Models
Time Grids
 Time horizon of each unit divided into 𝑇𝑇𝑗𝑗 unit-specific periods
 If unit 𝑗𝑗 becomes available at 𝜚̅𝜚𝑗𝑗 and deadlines are given, then

the start, 𝜚𝜚𝑗𝑗 , and end, 𝜀𝜀𝑗𝑗 , of the unit horizons are given by: 

𝜚𝜚𝑗𝑗 = max{𝜚̅𝜚𝑗𝑗 , min
𝑖𝑖∈𝐈𝐈𝑗𝑗

𝜌𝜌𝑖𝑖 }, 𝜀𝜀𝑗𝑗 = max
𝑖𝑖∈𝐈𝐈𝑗𝑗

{𝜀𝜀𝑖𝑖}

 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀: max number of periods, 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 = max𝑗𝑗{𝑇𝑇𝑗𝑗}; 
we define 𝐓𝐓 = {1, … ,𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀} and unit-specific subsets 𝐓𝐓𝑗𝑗 ⊆ 𝐓𝐓
of time periods 𝐓𝐓𝑗𝑗 = {1, … ,𝑇𝑇𝑗𝑗}.

 𝑇𝑇𝑗𝑗𝑗𝑗 ≥ 0: timing of point 𝑡𝑡 in the grid of unit 𝑗𝑗;
each unit period starts at 𝑇𝑇𝑗𝑗,𝑡𝑡−1 and ends at 𝑇𝑇𝑗𝑗𝑗𝑗 . 

𝑇𝑇𝑗𝑗,0 = 𝜚𝜚𝑗𝑗 , 𝑇𝑇𝑗𝑗,𝑇𝑇𝑗𝑗 = 𝜀𝜀𝑗𝑗

𝑇𝑇𝑗𝑗𝑗𝑗 ≥ 𝑇𝑇𝑗𝑗,𝑡𝑡−1, 𝑗𝑗, 𝑡𝑡 ∈ 𝐓𝐓𝑗𝑗

Variables
 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}: equal to 1 if batch i allocated to period 𝑡𝑡 of unit 𝑗𝑗

 𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 0: (disaggregated) start time of batch 𝑖𝑖 on unit 𝑗𝑗

 𝑆𝑆𝑖𝑖 ≥ 0: start time of batch 𝑖𝑖

Equations
 Assignment of batches to units and time periods:
∑𝑡𝑡 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗

∑𝑗𝑗,𝑡𝑡 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖

∑𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1, 𝑗𝑗, 𝑡𝑡 ∈ 𝐓𝐓𝑗𝑗

 Start times: 
𝑆𝑆𝑖𝑖 = ∑𝑗𝑗 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑖𝑖;   𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀∑𝑡𝑡 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗

 Timing constraints: 
𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 𝑇𝑇𝑗𝑗,𝑡𝑡−1 − 𝜂𝜂 1 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗, 𝑡𝑡 ∈ 𝐓𝐓𝑗𝑗

𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑗𝑗𝑗𝑗 + 𝜂𝜂 1 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗, 𝑡𝑡 ∈ 𝐓𝐓𝑗𝑗

 Release and due times: 
𝑆𝑆𝑖𝑖 + ∑𝑗𝑗,𝑡𝑡 𝜏𝜏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖 , 𝑖𝑖; 𝑆𝑆𝑖𝑖 + ∑𝑗𝑗,𝑡𝑡 𝜏𝜏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖 + 𝐿𝐿𝑖𝑖 , 𝑖𝑖

 Objective functions: 
• Same as sequence-based for makespan, earliness, lateness
• Cost minimization: min∑𝑖𝑖,𝑗𝑗,𝑡𝑡 𝛾𝛾𝑖𝑖𝑖𝑖𝑃𝑃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
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Single Stage Problem: Discrete Time Grid-Based Models
Time Grid
 Time points 𝑛𝑛 ∈ 𝐍𝐍 = {0,1, … 𝐍𝐍 }; periods 𝑛𝑛 ∈ 𝐍𝐍′ = 𝐍𝐍\ 0 of 

length 𝛿𝛿; period 𝑛𝑛 runs between points 𝑛𝑛 − 1 and 𝑛𝑛. 
 Rounding time-related data as in single unit problem
 Unit grid: 𝐍𝐍𝑗𝑗 = {𝑛𝑛|max{𝜚̅𝜚𝑗𝑗 , min

𝑖𝑖∈𝐈𝐈𝑗𝑗
𝜌̅𝜌𝑖𝑖 } ≤ 𝑛𝑛 ≤ max

𝑖𝑖∈𝐈𝐈𝑗𝑗
{ ̅𝜀𝜀𝑖𝑖}}

Equations
 All decisions encompassed in single assignment variable: 
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}: equal to 1 if batch 𝑖𝑖 starts on unit 𝑗𝑗 at time point 𝑛𝑛

 Each batch is executed once: 
∑𝑗𝑗,𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖

 Processing of at most one batch at a time: 

∑𝑖𝑖 ∑𝑛𝑛′=𝑛𝑛−𝜏𝜏𝑖𝑖𝑖𝑖+1
𝑛𝑛′=𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1, 𝑗𝑗,𝑛𝑛

 Release and due times: 
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖, 𝑗𝑗,𝑛𝑛 < 𝜌̅𝜌𝑖𝑖 ,𝑛𝑛 > ̅𝜀𝜀𝑖𝑖 − ̅𝜏𝜏𝑖𝑖𝑖𝑖

 Do we need another equation? 
 How many equations do we have? 

Objective Functions
 Makespan minimization

min𝑀𝑀𝑀𝑀 with        𝑀𝑀𝑀𝑀 ≥ ∑𝑗𝑗,𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖

 Weighted earliness: 
min ∑𝑖𝑖 𝜔𝜔𝑖𝑖(𝜀𝜀𝑖𝑖 − ∑𝑗𝑗,𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)

 Weighted lateness
min ∑𝑖𝑖 𝜔𝜔𝑖𝑖(∑𝑗𝑗,𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖)

 Weighted tardiness  (𝐿𝐿𝑖𝑖 ∈ ℝ+): 
min∑𝑖𝑖 𝜔𝜔𝑖𝑖𝐿𝐿𝑖𝑖 subject to 𝐿𝐿𝑖𝑖 ≥ ∑𝑗𝑗,𝑛𝑛 𝑛𝑛 + 𝜏𝜏𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖 , 𝑖𝑖

 Cost minimization:
min∑𝑖𝑖,𝑗𝑗(𝛾𝛾𝑖𝑖𝑖𝑖𝑃𝑃 ∑𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)
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Single Stage Problem: Batching Decisions
Problem Statement
 If units have different capacities, 𝛽𝛽𝑗𝑗 , then the number of required batches to meet given demand (orders) is not known a priori
 Given are a set of orders I and a set of units J; each order has amount 𝜉𝜉𝑖𝑖 due, release/due time 𝜌𝜌𝑖𝑖/𝜀𝜀𝑖𝑖; the batches towards it can be

executed in 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 ⊆ 𝐉𝐉; the processing time for a batch of order 𝑖𝑖 in unit 𝑗𝑗 is 𝜏𝜏𝑖𝑖𝑖𝑖 and the processing cost is 𝛾𝛾𝑖𝑖𝑖𝑖𝑃𝑃 .

Sequence-Based Model
 Minimum and maximum number of batches for order 𝑖𝑖:

𝜆𝜆𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 = �𝜉𝜉𝑖𝑖 max
𝑗𝑗∈𝐉𝐉𝑖𝑖

{𝛽𝛽𝑗𝑗} , 𝜆𝜆𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 = �𝜉𝜉𝑖𝑖 min
𝑗𝑗∈𝐉𝐉𝑖𝑖

{𝛽𝛽𝑗𝑗} , 𝑖𝑖 (Why?)

 Set of potential batches for order 𝑖𝑖, 𝑙𝑙 ∈ 𝐋𝐋𝑖𝑖 = {1, 2, … , 𝜆𝜆𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀}
 Batch selection: 𝑍𝑍𝑖𝑖𝑙𝑙 ∈ {0,1}
 If batch is selected, it should be assigned: 

∑𝑗𝑗∈𝐉𝐉𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑙𝑙 ∈ 𝐋𝐋𝑖𝑖

 Demand satisfaction
∑𝑙𝑙∈𝐋𝐋𝑖𝑖 ∑𝑗𝑗 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝜉𝜉𝑖𝑖 , 𝑖𝑖

 Remaining constraints similar to the ones for the fixed-batch problem: 
(1) variables defined for 𝑖𝑖 and 𝑙𝑙 ∈ 𝐋𝐋𝑖𝑖 instead of 𝑖𝑖 only; and (2) 
constraints are expressed for 𝑖𝑖 and 𝑙𝑙 ∈ 𝐋𝐋𝑖𝑖 instead of 𝑖𝑖 only; for 
example
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖′𝑙𝑙′𝑗𝑗 − 1, 𝑖𝑖, 𝑖𝑖′ > 𝑖𝑖, 𝑙𝑙 ∈ 𝐋𝐋𝑖𝑖 , 𝑙𝑙𝑙 ∈ 𝐋𝐋𝑖𝑖𝑖, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 ∩ 𝐉𝐉𝑖𝑖𝑖

Discrete-time Model
 Since sequencing is achieved via the mapping of the 

starting times onto the grid, there is no need to 
differentiate between batches of the same product

 No need to calculate 𝜆𝜆𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 and 𝜆𝜆𝑖𝑖𝑀𝑀𝐴𝐴𝐴𝐴

 Batch selection/activation: 
∑𝑗𝑗∈𝐉𝐉𝑖𝑖,𝑛𝑛 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝜉𝜉𝑖𝑖 , 𝑖𝑖

(instead of ∑𝑗𝑗,𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖)

 Everything else remains the same, that is, 

∑𝑖𝑖 ∑𝑛𝑛′=𝑛𝑛−𝜏𝜏𝑖𝑖𝑖𝑖+1
𝑛𝑛′=𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1, 𝑗𝑗,𝑛𝑛
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Shared Resources
Preliminaries
 So far, we have assumed that the only shared resources type is units and that each batch requires only one type of shared resource. 
 This is not always true: a batch may require, simultaneously, multiple types of resources; e.g., labor, electricity, and cooling water. 
 In general, shared resources can be classified as renewable and non-renewable
 Renewable resources are used during the execution of a batch and freed after a batch is finished;  e.g, in the case of cooling (power), a 

certain load (which is subtracted from the available cooling capacity of the facility) is necessary during the execution of a batch. 
 Non-renewable resources are consumed by a batch, that is, they do not become available after the batch is finished; e.g., a promoter, 

necessary for the initiation of a polymerization batch, can be viewed as a non-renewable resource. 
 For now, we will focus on renewable resources (and, without loss of generality, problems with no changeovers)
 At a second level, resources can be classified as discrete (e.g., labor) and continuous (e.g., cooling load). 
 A special discrete resource is a unary resource; i.e., a resource for which the demand is 1 unit and its capacity is also 1; 

an equipment unit can be viewed as a unary resource. 

Renewable (R) Nonrenewable (NR)Consumption depends on:

Execution (A)
(on/off)

Batchsize (B)

Execution & batchsize (C)

Unary (U)

Discrete (D)

NR.B

R.A.U

Classification
We classify resources based on the nature of the demand for them: 
 Type A: based on the execution (on/off) of a batch

• Unary (e.g., unit, labor)
• Discrete (e.g., pumps needed to load/withdraw material)

 Type B: based on the size (continuous variable) of a batch
 Type C: based on both the execution and batch size. 
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Shared Resources
Formulation Basics
 If 𝜑𝜑𝑖𝑖𝑖𝑖/ 𝜓𝜓𝑖𝑖𝑖𝑖 is the fixed/variable requirement of resource 𝑚𝑚 by batch 𝑖𝑖, then the resource use, 𝑅𝑅𝑖𝑖𝑖𝑖, during the execution of a batch is

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝜑𝜑𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖

 Note that for type A resources,  𝜓𝜓𝑖𝑖𝑖𝑖 = 0; for type B, 𝜑𝜑𝑖𝑖𝑖𝑖 = 0; and both parameters are positive for type C resources
 A resource can be classified differently based on the batch that requires it. 

• A batch processed in small units may always require 1 pump for loading/unloading ⇒ a pump can be viewed as a unary resource
• A different batch, produced in larger units with variable batchsizes, may require many pumps (integer function of its batchsize)
⇒ pumps should be treated collectively as a discrete resource. 

 Thus, it is more accurate to say that a resource-batch pair is classified according to the proposed scheme

B1
B2

0            2            4            6             8  t (h)

0            2            4            6             8    t (h)

R1 (NR) R2 (R)
Resource Availability

B1 (5)
B1 (10)

0            2            4            6             8          10  t (h)

0            2            4            6             8           10  t (h)

R1 (R.B) R2 (R.C)
3

2

1

A B C
B2

0            2            4            6          8 t (h)

0            2            4            6            8 t (h)

Capacity
Availability 
Use/consumption

4

3

2

1

B1

B3

4
2
0

Resource Availability

Example
We illustrate: (A) (non)renewable resources, 
(B) resource types A-C; and (C) the relationship
between resource consumption and availability.

Instance 1 Instance 2 Instance 3
m R1 (NR.A)1 R2 (R.A) R1 (R.B) R2 (R.C) R1 (R.A)
𝜒𝜒𝑚𝑚 3 4 3 2 4.5

𝜑𝜑𝑖𝑖𝑖𝑖𝑆𝑆 𝜑𝜑𝑖𝑖𝑖𝑖 𝜓𝜓𝑖𝑖𝑖𝑖 𝜑𝜑𝑖𝑖𝑖𝑖/𝜓𝜓𝑖𝑖𝑖𝑖 𝜑𝜑𝑖𝑖𝑖𝑖
B1 2 0.3 0.5/0.1 1
B2 2 2
B3 2
1 Parameter 𝜑𝜑𝑖𝑖𝑖𝑖𝑆𝑆 is used, instead of 𝜑𝜑𝑖𝑖𝑖𝑖, because consumption of 

renewable resource, at the start of the batch, is permanent.



Cambridge University Press Christos T. MaraveliasChemical Production Scheduling: Mixed-Integer Programing Models and Methods

Shared Utilities: Sequence and Continuous Time Grid Models
Sequence Based
 A key attribute of single-stage problems is that batches

assigned to different units are not interacting with each other, 
i.e., batch sequencing (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖) is unit-specific

 If batches assigned to different units require the same resource, 
then monitoring resource consumption across units is needed;
i.e., the parallel units are coupled. 

 Sequence-based models are not well suited to address problems
under shared resources, unless they are unary (e.g., labor) 
• Each unary resource 𝑚𝑚 ∈ 𝐌𝐌 is modelled as a unit.
• Resource-specific grids are defined
• Variables 𝑌𝑌𝑖𝑖𝑖𝑖′𝑚𝑚 ∈ {0,1} and 𝑆𝑆𝑖𝑖𝑖𝑖 ∈ ℝ+ are introduced
• All sets of constraints are expressed for all unary resources

Continuous Time Grid
 The special case of unary resources can be treated similarly:

• Define resource-unit-specific grids; 
• Assign batches to resource unit slots; 
• Disaggregate start time variables with respect to all resources;

(note: all disaggregated 𝑆𝑆𝑖𝑖𝑚𝑚 must be equal).  
• Enforce that batches are carried out within resource unit slots.

 The general case cannot be readily handled by models based on 
unit-specific grids (see Figure)

 For the general case, a single common time grid is necessary
• A batch spans multiple time periods; 
• The ending time point cannot be inferred from the starting one
• Advantage of continuous time not present

Batch A s tarts on U1 at t = 3, 𝑇𝑇3 = 7. 
Batch B s tarts on U2 at t = 3, but 𝑇𝑇3 = 9. 

Batch A requires 2 units of resource m
Batch B requires 2 units of resource m

What i s the resource consumption at 𝑇𝑇3? 
𝑇𝑇3 i s  not uniquely defined. 

B

A B C
AU1

𝐓𝐓U1

U2
𝐓𝐓U2

𝑇𝑇2 𝑇𝑇3 𝑇𝑇4

𝑇𝑇2 𝑇𝑇3 𝑇𝑇4

0              4              8             12           16 (h)

B
AU1

U2
𝐓𝐓

0              4              8             12           16 (h)

𝑅𝑅𝑖𝑖,𝑡𝑡

𝑇𝑇2 𝑇𝑇3 𝑇𝑇4 𝑇𝑇6 𝑇𝑇7𝑇𝑇8𝑇𝑇5 𝑇𝑇9𝑇𝑇10

A. Description of instance. 
B. Solution representation using unit-

specific grids; 𝑇𝑇3 corresponds to 
𝑡𝑡 = 7 in U1 but 𝑡𝑡 = 9 in U2. 

C. Representation of the same 
solution using a common time grid; 
the start of A and B now 
correspond to different time points
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Shared Utilities: Discrete Time Models
Basics
 All types of resources can be readily addressed; even with 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖
 Same common time grid is used; no new assignment variables

Resource Variables
 Resource utilization 𝑅𝑅𝑖𝑖𝑖𝑖 = 𝜑𝜑𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖
 Resource engagement and release: 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
𝐼𝐼 = 𝜑𝜑𝑖𝑖𝑖𝑖 ∑𝑗𝑗 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖 ∑𝑗𝑗 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖,𝑚𝑚,𝑛𝑛 (1)

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
𝑂𝑂 = 𝜑𝜑𝑖𝑖𝑖𝑖 ∑𝑗𝑗 𝑋𝑋𝑖𝑖𝑖𝑖,𝑛𝑛−�𝜏𝜏𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖 ∑𝑗𝑗 𝐵𝐵𝑖𝑖𝑖𝑖,𝑛𝑛−�𝜏𝜏𝑖𝑖𝑖𝑖 , 𝑖𝑖,𝑚𝑚,𝑛𝑛 (2)

 Plugged into (i.e., eqs (1)-(3) can be written as one constraint):
𝑅𝑅𝑚𝑚𝑚𝑚 = 𝑅𝑅𝑚𝑚,𝑛𝑛−1 + ∑𝑖𝑖 𝑅𝑅𝑖𝑖𝑖𝑖,𝑛𝑛−1

𝐼𝐼 − ∑𝑖𝑖 𝑅𝑅𝑖𝑖𝑖𝑖,𝑛𝑛−1
𝑂𝑂 ≤ 𝜒𝜒𝑚𝑚 , 𝑚𝑚,𝑛𝑛 (3)

 Objective function
min∑𝑖𝑖,𝑗𝑗(𝛾𝛾𝑖𝑖𝑖𝑖𝑃𝑃 ∑𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖) + ∑𝑖𝑖,𝑖𝑖′,𝑗𝑗,𝑛𝑛 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + ∑𝑚𝑚,𝑛𝑛 𝛾𝛾𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚

Alternative Approach
 Bound resource consumption: 

∑𝑖𝑖,𝑗𝑗 ∑𝑛𝑛′=𝑛𝑛−�𝜏𝜏𝑖𝑖𝑖𝑖
𝑛𝑛′=𝑛𝑛−1 (𝜑𝜑𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ≤ 𝜒𝜒𝑚𝑚 , 𝑚𝑚,𝑛𝑛

 Have you seen a similar constraint before? 
 What happens if 𝜑𝜑𝑖𝑖𝑖𝑖 = 1, 𝜓𝜓𝑖𝑖𝑖𝑖 = 0, and 𝜒𝜒𝑚𝑚 = 1



Cambridge University Press Christos T. MaraveliasChemical Production Scheduling: Mixed-Integer Programing Models and Methods

Shared Utilities: Extensions Using Discrete Time Models
Time-Varying Resource Capacity and Cost
 All variables and constraints remain exactly the same
 Need to only calculate time-varying parameters:

capacity, 𝜒𝜒𝑚𝑚𝑚𝑚, and cost 𝛾𝛾𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅

0            2              4    6     8        10         12  n 0          2        4        6       8       10       12 n

A B

0     1      2       3     4       5            6   t (h) 

Cost: $0.04/kWh during 0-2.5 and 4.25-6 hr
$0.03/kWh during  2.5-4.25 hr

Calculation of time-varying resource price 𝛾𝛾𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑆𝑆
For 𝛿𝛿 =0.5: 𝛾𝛾𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑆𝑆 = 0.04, 𝑛𝑛 = 1-5, 9-12; 𝛾𝛾𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑆𝑆 = 0.03, 𝑛𝑛 = 6-8

Resource cost = ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑆𝑆𝛿𝛿𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
l inear
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e

𝛾𝛾𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑆𝑆

0            1               2    3     4     5    6   t (h) 

Capacity: 30 kW during 0-2.25 and 4.25-6 hr
20 kW during  2.25-4.25 hr

Calculation of time-varying resource capacity 𝜒𝜒𝑖𝑖𝑖𝑖
For 𝛿𝛿 = 0.5: 𝜒𝜒𝑖𝑖𝑖𝑖 = 30, 𝑛𝑛 = 1-4, 10-12; 𝜒𝜒𝑖𝑖𝑖𝑖 = 20, 𝑛𝑛 = 5-9. 

Resource constraint: 𝑅𝑅𝑖𝑖𝑖𝑖 ≤ 𝜒𝜒𝑖𝑖𝑖𝑖

Re
al

Pr
of

il
e

𝜒𝜒𝑖𝑖𝑖𝑖

parameter

Varying Consumption During Batch Execution
 Define 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖/𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 to denote fixed/proportional engagement/

release of resource 𝑚𝑚, 𝑠𝑠 periods after the start of batch 𝑖𝑖
 Replace (3) with: 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁 = ∑𝑗𝑗 ∑𝑠𝑠=0

�𝜏𝜏𝑖𝑖 (𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖,𝑛𝑛−𝑠𝑠 + 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖,𝑛𝑛−𝑠𝑠) , 𝑖𝑖,𝑚𝑚,𝑛𝑛

𝑅𝑅𝑚𝑚𝑚𝑚 = 𝑅𝑅𝑚𝑚,𝑛𝑛−1 + ∑𝑖𝑖 𝑅𝑅𝑖𝑖𝑖𝑖,𝑛𝑛−1
𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 𝜒𝜒𝑚𝑚𝑚𝑚, 𝑚𝑚,𝑛𝑛

A B C

s = 0      1      2      3     4      5      6

10

5

0

Labor (L) requirements (no)
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𝜑𝜑L ,𝑖𝑖 𝜓𝜓W ,𝑖𝑖 (kW/kg)
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0

𝐵𝐵𝑖𝑖 = 10

s = 0      1      2      3      4      5      6

+0.5
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0

-1

𝑋𝑋5 = 1,
𝐵𝐵5 = 10

10

5
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 (k
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no

)

1

0

𝜑𝜑L ,𝑖𝑖 𝜓𝜓W ,𝑖𝑖 𝜑𝜑L,1𝑋𝑋𝑖𝑖,6−1

-1.0
n = 5      6     7      8      9     10    11

Labor (L) requirements (no)
Power (W) consumption (kW)

𝜑𝜑L,0𝑋𝑋5
𝜓𝜓W,4𝐵𝐵9−4

𝜓𝜓W,2𝐵𝐵7−2

+1 −1
+5 −10

Modeling of time-varying resource capacity and cost using a discrete time model 
with δ = 0.5 h. Calculation of parameters 𝜒𝜒𝑚𝑚𝑚𝑚 (A) and 𝛾𝛾𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅 (B) from real data.

Varying resource consumption during batch
A. Resource consumption during batch with 

batchsize of 10 kg. 
B. Resource consumption parameters. 
C. Resource consumption calculations for batch 

starting at 𝑛𝑛 = 5. (index 𝑖𝑖 omited from B and C).
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Multi-stage Problems

1

2
.
.
.

𝜌𝜌1 𝜀𝜀1

𝜌𝜌2 𝜀𝜀2

𝜌𝜌|𝚰| 𝜀𝜀|𝚰|

.  .  .

U1,1

U1,|𝐉𝐉1 |

U2,1

U2,|𝐉𝐉2 |

.

.

.

.

.

.

U 𝚱 ,1

U 𝚱 ,||𝐉𝐉|𝚱||

.

.

.

𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = |𝚱|

𝐉𝐉1 = {U1,1, … , U1,|𝐉𝐉1 |} 𝐉𝐉|𝚱| = {U|𝐊𝐊|,1, … , U|𝐊𝐊|,|𝐉𝐉|𝐊𝐊||}

|I|

Problem Statement
 We consider the problem with fixed batching decisions. 
 The facility has 𝑘𝑘 ∈ 𝐊𝐊 stages; each stage has units 𝑗𝑗 ∈ 𝐉𝐉𝑘𝑘 with ⋃𝑘𝑘 𝐉𝐉𝑘𝑘 = 𝐉𝐉 and 𝐉𝐉𝑘𝑘 ∩ 𝐉𝐉𝑘𝑘′ = ∅ for all 𝑘𝑘, 𝑘𝑘𝑘; i.e., each unit belongs to one stage
 We are given a set, I, of batches that have to be processed on exactly one unit per stage

• Each batch 𝑖𝑖 has a release, 𝜌𝜌𝑖𝑖 , and due, 𝜀𝜀𝑖𝑖, time
• The processing time of batch 𝑖𝑖 on unit j is denoted by 𝜏𝜏𝑖𝑖𝑖𝑖 and the processing cost by 𝛾𝛾𝑖𝑖𝑖𝑖𝑃𝑃 . 

 The processing of a batch in stage 𝑘𝑘 + 1 can start only after its processing in 𝑘𝑘 is completed (precedence relation or constraint)
 𝐉𝐉𝑖𝑖𝑖𝑖 is the subset of units in stage 𝑘𝑘 suitable for processing batch 𝑖𝑖; 𝐈𝐈𝑗𝑗 is the set of batches that can be carried out in unit 𝑗𝑗. 

Remarks
 The problem can be viewed as many single-stage problems coupled together: 
 The environment leads naturally to (intermediate ) storage considerations → Storage Policies
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Multi-Stage Problems: Coupled Models
Sequence-Based Model
Each batch has to go through consecutive one stage problems
 Assigned to a unit:

∑𝑗𝑗∈𝐉𝐉𝑖𝑖,𝑘𝑘 𝑋𝑋𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖, 𝑘𝑘

 Sequenced: 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖′𝑗𝑗 − 1, 𝑖𝑖, 𝑖𝑖′ > 𝑖𝑖,𝑘𝑘, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖𝑖𝑖 ∩ 𝐉𝐉𝑖𝑖′𝑘𝑘

𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖′𝑗𝑗 + 𝛭𝛭 1 − 𝑌𝑌𝑖𝑖𝑖𝑖′𝑗𝑗 , 𝑖𝑖, 𝑖𝑖′,𝑘𝑘, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖𝑖𝑖 ∩ 𝐉𝐉𝑖𝑖𝑖𝑖𝑖

 Start on unit: 
𝑆𝑆𝑖𝑖𝑖𝑖 = ∑𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑘𝑘 st. 𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑖𝑖,𝑘𝑘, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖𝑖𝑖

 Meet release and due times:
𝑆𝑆𝑖𝑖,𝑘𝑘=1 = 𝑆𝑆𝑖𝑖,1 ≥ 𝜌𝜌𝑖𝑖 , 𝑖𝑖;   𝑆𝑆𝑖𝑖,|𝐊𝐊| + ∑𝑗𝑗∈𝐉𝐉𝑖𝑖,|𝐊𝐊| 𝜏𝜏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝜀𝜀𝑖𝑖 , 𝑖𝑖

 Satisfy precedence relationship
𝑆𝑆𝑖𝑖𝑖𝑖 + ∑𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖 𝜏𝜏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖,𝑘𝑘+1, 𝑖𝑖,𝑘𝑘 < |𝐊𝐊|

Discrete Time Grid Model
Each batch has to go through consecutive one stage problems
 Assigned to a unit:

∑𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖 ∑𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖,𝑘𝑘

 Sequenced and timed: 

∑𝑖𝑖 ∑𝑛𝑛′=𝑛𝑛−𝜏𝜏𝑖𝑖𝑖𝑖+1
𝑛𝑛′=𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1, 𝑗𝑗,𝑛𝑛

 Meet release and due times:
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖, 𝑗𝑗,𝑛𝑛 < 𝜌̅𝜌𝑖𝑖; 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖, 𝑗𝑗,𝑛𝑛 > ̅𝜀𝜀𝑖𝑖 − ̅𝜏𝜏𝑖𝑖𝑖𝑖

 Satisfy precedence relationship
∑𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖 ∑𝑛𝑛 𝑛𝑛𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≥ ∑𝑗𝑗∈𝐉𝐉𝑖𝑖,𝑘𝑘−1 ∑𝑛𝑛 𝑛𝑛 + ̅𝜏𝜏𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑘𝑘 > 1



Cambridge University Press Christos T. MaraveliasChemical Production Scheduling: Mixed-Integer Programing Models and Methods

Multi-Stage Environments: Storage
Preliminaries
 Chemical manufacturing involves handling of fluids which leads to different types of storage policies. 
 Most research has focused on storage in network environments, but the no splitting/mixing restrictions lead to complex constraints. 
 In sequential facilities, batches of the same product cannot be mixed so the number and size of available vessels are relevant
 If enough vessels of sufficient size are available, then we operating under unlimited storage; otherwise, we are under limited storage
 The time (the material from) a batch can be stored in a vessel (storage time) is also important (e.g., food manufacturing)
 The time a batch can wait in a processing unit after its completion (waiting time) is also relevant; waiting in a processing unit can be 

used instead of actual storage in a vessel if the next processing stage is the bottleneck of the system.  

Storage Policy

Storage capacity Timing constraints

Number of vessels Size of vessels Waiting time
(processing units)

Storage time
(storage vessels)

Main Idea
 A storage policy is based on both capacity and timing constraints. 

• The former depend on both the number and size of storage vessels 
• The latter depend on the waiting and storage times

 Note 1: We use the term size to describe the capacity of an 
individual storage vessel; and the term capacity to describe a 
feature of the entire process (depending on both the number 
and size of all vessels. 
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Multi-Stage Environments: Storage Policy Classification
• The number and size of vessels determine whether we have unlimited (US), limited (LS) or no storage (NS). 
• The waiting and storage time constraints determine whether we have unlimited (UT) or limited (LT) storage/waiting time policies.
• Each box in the Figure corresponds to a different case, represented by a pair 𝛽𝛽𝐶𝐶/𝛽𝛽𝑇𝑇 , where 𝛽𝛽𝐶𝐶 and 𝛽𝛽𝑇𝑇 refer to storage capacity and 

timing, respectively, constraints.
1) US/UT: it can be assumed that a batch can always be stored as soon as its processing in stage is completed, and that it can remain 

stored for unlimited time.  This is the problem we have considered so far. 
2) US/LT: it is necessary to model waiting and storage times and  introduce constraints that bound them.  
3) Under limited storage, storage vessels become scarce resources, and hence the assignment and sequencing of competing batches

to storage vessels should be considered.  We should also account for batch transfer from a processing unit to a storage vessel or a 
processing unit in the next stage and the waiting/storage times. 

4) When no storage is available, there is no need to 
model batch-vessel assignments; but, unlike the 
US/UT case, a batch should be directly transferred 
from one stage to the next with no idle time; 
no-storage automatically implies zero-wait storage
time, so zero-wait is relevant only for the waiting 
time in a processing unit.  
We classify zero-wait as a special case of the 
limited waiting time.

Un
lim

ite
d 

(U
T) US/UT

Traditional approaches

Li
m

ite
d 

(L
T) US/LT

• Modeling & bounding of
waiting & storage times

LS/UT
• Vessel resource constraints
• Modeling of transfers
• Modeling of waiting & 

storage times

LS/LT
• Vessel resource constraints
• Account for transfers
• Modeling & bounding of 

waiting & storage times

NS/UT*
• Account for transfers

(i.e., enforce storage bypass)
• Modeling of waiting times

NS/LT*
• Account for transfers

(i.e., enforce storage bypass)
• Modeling & bounding of 

waiting times

Ti
m

in
g 

co
ns

tra
in

ts
:

w
ai

tin
g 

an
d 

st
or

ag
e 

tim
e

Unlimited (US) Limited (LS) No storage (NS)

Storage capacity: number and size of storage vessels

* UT and LT refer to waiting time only; since there are no storage vessels, all storage times are zero
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Multi-Stage Environments: Problem Statement
 The facility consists of processing stages 𝑘𝑘 ∈ 𝐊𝐊. Each stage has:

• Processing units 𝑗𝑗 ∈ 𝐉𝐉𝑘𝑘𝑃𝑃 with ⋃𝑘𝑘 𝐉𝐉𝑘𝑘𝑃𝑃 = 𝐉𝐉𝑃𝑃 and 𝐉𝐉𝑘𝑘𝑃𝑃 ∩ 𝐉𝐉𝑘𝑘𝑘𝑃𝑃 = ∅ for all 𝑘𝑘,𝑘𝑘𝑘; and 
• Storage vessels 𝑗𝑗 ∈ 𝐉𝐉𝑘𝑘𝑆𝑆 , where the output of stage 𝑘𝑘 can be stored, with ⋃𝑘𝑘 𝐉𝐉𝑘𝑘𝑆𝑆 = 𝐉𝐉𝑆𝑆 and 𝐉𝐉𝑘𝑘𝑆𝑆 ∩ 𝐉𝐉𝑘𝑘𝑘𝑆𝑆 = ∅ for all 𝑘𝑘, 𝑘𝑘𝑘

 Each batch 𝑖𝑖 ∈ 𝐈𝐈 has to be processed on exactly one compatible unit, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖𝑖𝑖𝑃𝑃 , in each stage, and can be stored in a compatible vessel, 
𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖𝑖𝑖𝑆𝑆 , before its processing in stage 𝑘𝑘 + 1 starts; 𝐈𝐈𝑗𝑗 is the set of batches that can be carried out in unit 𝑗𝑗.

 Each batch has a release, 𝜌𝜌𝑖𝑖 , and due, 𝜀𝜀𝑖𝑖, time and the processing time of batch i on unit j is denoted by 𝜏𝜏𝑖𝑖𝑖𝑖 . 

1

2

|Ι|

.

.

.

U1,1

U1,|𝐉𝐉1𝑃|

.

.

.

𝑘𝑘 = 1

𝐉𝐉1𝑃𝑃 = {U1,1 ,… , U1,|𝐉𝐉1𝑃|}

V1 ,1
.
.
.

V1,|𝐉𝐉1𝑆𝑆|

𝐉𝐉1𝑆𝑆 = {V1,1 ,… , V1,|𝐉𝐉1𝑆𝑆|}

U2,1

U2,|𝐉𝐉1𝑃|

.

.

.

𝑘𝑘 = 2

𝐉𝐉2𝑃𝑃 = {U2,1 , … , U2 ,|𝐉𝐉1𝑃|}

V2 ,1
.
.
.

V2 ,|𝐉𝐉2𝑆𝑆|

𝐉𝐉2𝑆𝑆 = {V2,1 ,… , V2,|𝐉𝐉2𝑆𝑆|}

U|𝐊𝐊|,1

U|𝐊𝐊|,|𝐉𝐉|K|
𝑃 |

.

.

.

𝑘𝑘 = |𝐊𝐊|

𝐉𝐉|𝐊𝐊|
𝑃𝑃 = {U|𝐊𝐊|,1 , … , U|𝐊𝐊|,|𝐉𝐉|K|

𝑃 |}

V|𝐊𝐊|,1
.
.
.

V|𝐊𝐊|,|𝐉𝐉|𝐊𝐊|
𝑆𝑆 |

𝐉𝐉|𝐊𝐊|
𝑆𝑆 = {V|𝐊𝐊|,1,… , V|𝐊𝐊|,|𝐉𝐉|K|

𝑆𝑆 |}

.  .  .

Remarks
 To express the constraints, we have to account for the batch transfer time from a processing unit to a storage vessel and vice versa. 
 Waiting time in processing units can be used in optimal solutions ⇨ waiting and storage times should be modeled and bounded.
 If batching is optimized, the number & size of batches are variables ⇨ the number & size of storage vessels should be considered. 
 If batching decisions are known, batchsizes are given, so we can predetermine vessel-batch suitability in each stage; 
⇨ it is not necessary to consider batchsizes and vessel sizes. 

 We assume unlimited storage for raw materials; if raw material storage is limited, we introduce a dummy 𝑘𝑘 = 0 stage with vessels.
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Network Environments
Preliminaries
 An environment is classified as network when there are no restrictions in the way all materials are handled; 

i.e., multiple batches of the same task can be mixed or material produced by a single batch can be consumed by multiple batches.
 The notion of a batch going through different stages is irrelevant in network environments (no requirement for batch integrity)
 Processing stages not used because products can be produced in different ways; batching decisions have to be made
 New problem representation is necessary
 We use tasks, which are defined in terms of input (consumed) and output (produced) materials

(batch denotes different executions of the same task, i.e. a schedule may include multiple batches of the same task).
 We use the concept of materials, consumed and produced by tasks. 
 In the absence of other restrictions (e.g., unit connectivity), materials can flow freely from storage vessels to processing units. 

V1

V2 V3

V4 V5

V6

R1

R2 R3

Basic Elements
Tasks: T1, T2, T3, T4
Processing Units: R1, R2, R3
Storage Units: V1, V2, V3, V4, V5, V6
Materials: RM1, RM2, IN1, IN2, IN3, P1, P2
Utilities: hot steam (HS), cooling water (CW)

Task Conversions
T1: 0.8 RM1 + 0.2 IN1 → IN3
T2: RM2 → 0.3 IN1 + 0.7 IN2
T3: IN3 → P1
T4: 0.6 IN2 + 0.4 IN3 →P2

Task – Unit Suitability
T1 and T2 carried out on R1 or R2
T3 and T4 carried out on R3

Material – Vessel Compatibility
RM1 in V1; RM2 in V2;
IN2 in V3; IN2 and IN3 in V4;
P1 in V5; P2 in V6

Utility Requirements
T1 and T3 require HS
T2 and T4 require CW

A B
Example
Facility producing two products from two raw 
materials through four tasks requiring utilities. 
Figure B is not a process flow diagram (PFD): 
 Batch process: connections represent one-time 

(instantaneous) transfers [kg], not flows [kg/h]
 Different connections are active at different 

times; some connections may be inactive
 Units are not to unit operations: a unit may 

carry out different tasks at different times Representation of example network environment. A. Basic elements (tasks, 
processing units, storage vessels, materials, and utilities). B. Facility structure. 
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Network Environments: Representations
State Task Network (STN)
The STN representation is based on the following concepts: 
 States (materials1): represented by circles. 
 Tasks: activities consuming/producing materials (rectangles) 
 Units: unary resources needed for task execution
 Utilities
The facility is defined in terms of the following:
Indices/Sets
𝑖𝑖 ∈ 𝐈𝐈 tasks
𝑗𝑗 ∈ 𝐉𝐉 processing units
𝑘𝑘 ∈ 𝐊𝐊 materials
Subsets
𝐈𝐈𝑘𝑘+/𝐈𝐈𝑘𝑘− tasks producing/consuming material 𝑘𝑘
𝐈𝐈𝑗𝑗 tasks that can be carried out on unit 𝑗𝑗
𝐉𝐉𝑖𝑖 processing units that can process task 𝑖𝑖
𝐊𝐊𝑖𝑖
+/𝐊𝐊𝑖𝑖

− materials produced/consumed by task 𝑖𝑖
Parameters: 
𝛽𝛽𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀/𝛽𝛽𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀 minimum/maximum capacity of unit 𝑗𝑗
𝛾𝛾𝑖𝑖𝑖𝑖𝐹𝐹/𝛾𝛾𝑖𝑖𝑖𝑖𝑉𝑉 fixed/variable cost for task 𝑖𝑖 in unit 𝑗𝑗
𝜋𝜋𝑘𝑘 price of material 𝑘𝑘
𝜌𝜌𝑖𝑖𝑖𝑖 conversion coefficient of material 𝑘𝑘 produced

(>0) or consumed (<0) by task 𝑖𝑖
We use the term material, rather than state, because the latter is also 
used to describe the system state, a concept used in real-time scheduling

T1 T3
RM1

IN2
T4T2

IN3

80%

RM2

70% 60%

40%20%
IN1

30%

P1

P2

R1, R2 R3
Heating steam
Cooling water

Task

Material

Unit

Utility requirements

, 

, 
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Network Environments: Representations
Resource Task Network (RTN)
 The major difference between STN and RTN representations is that 

in RTN materials and units are both treated as resources
 Utilities are also, naturally, treated as resources
 The only modeling entities in RTN are tasks and resources

The facility is defined in terms of the following:
Indices/Sets
𝑖𝑖 ∈ 𝐈𝐈 tasks
𝑟𝑟 ∈ 𝐑𝐑 resources
Subsets
𝐈𝐈𝑟𝑟+/𝐈𝐈𝑟𝑟− tasks producing/consuming resource 𝑟𝑟;
𝐈𝐈𝑟𝑟 tasks interacting with resource 𝑟𝑟; 𝐈𝐈𝑟𝑟 = 𝐈𝐈𝑟𝑟+ ∪ 𝐈𝐈𝑟𝑟−
𝐑𝐑𝑈𝑈/𝐑𝐑𝑀𝑀/𝐑𝐑𝑈𝑈𝑈𝑈 unit/material/utility resources
𝐑𝐑𝑖𝑖+/𝐑𝐑𝑖𝑖− resources produced/consumed by task 𝑖𝑖
𝐑𝐑𝑖𝑖 resources interacting task 𝑖𝑖, 𝐑𝐑𝑖𝑖 = 𝐑𝐑𝑖𝑖+ ∪ 𝐑𝐑𝑖𝑖−
Parameters:
𝛽𝛽𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀/𝛽𝛽𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 minimum/maximum extent of task 𝑖𝑖 executed on 𝑟𝑟 ∈ 𝐑𝐑𝑈𝑈
𝛾𝛾𝑖𝑖𝐹𝐹/𝛾𝛾𝑖𝑖𝑉𝑉 fixed/variable cost for carrying out task 𝑖𝑖
𝜏𝜏𝑖𝑖 processing time for task 𝑖𝑖
𝜑𝜑𝑖𝑖𝑖𝑖𝑆𝑆 /𝜑𝜑𝑖𝑖𝑖𝑖𝐸𝐸 fixed net consumption of 𝑟𝑟 by 𝑖𝑖 at the start/end of task 𝑖𝑖
𝜓𝜓𝑖𝑖𝑖𝑖𝑆𝑆 /𝜓𝜓𝑖𝑖𝑖𝑖𝐸𝐸 variable consumption of 𝑟𝑟 by 𝑖𝑖 at the start/end of task 𝑖𝑖
𝜒𝜒𝑟𝑟 capacity of resource 𝑟𝑟
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Modeling Using Discrete Time Grid

A. Inventory cost, ICk (νk: unit cost [$/(kg⋅hr)])

Discrete: ICk = ∑𝑛𝑛 𝜈𝜈𝑘𝑘𝛿𝛿𝑆𝑆𝑘𝑘𝑘𝑘
0            1            2             3            4            5            6  t (hr) In
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linear
T1 variable

Continuous: ICk = ∑𝑛𝑛 𝜈𝜈𝑘𝑘𝑇𝑇𝑛𝑛𝑆𝑆𝑘𝑘𝑘𝑘
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bilinear

δ parameter

Skn variable

Skn variable

B. Utility cost, UCr (σr: unit cost [$/(kW⋅hr)])

Discrete: UCr = ∑𝑛𝑛 𝜎𝜎𝑟𝑟𝛿𝛿𝑅𝑅𝑟𝑟𝑟𝑟
0            1            2             3            4            5            6  t (hr) 
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Continuous: UCr = ∑𝑛𝑛 𝜎𝜎𝑟𝑟𝑇𝑇𝑛𝑛𝑅𝑅𝑟𝑟𝑟𝑟
bilinear

δ parameter

Rrn variable
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Tn variable

Rrn variable

Deliveries: 
20 kg of A 30 kg of B
@ t=0.5 hr @ t=1.75 hr

1            2             3            4            5            6  t (hr) 

A B

C

Real timeline

Calculation of shipments ξkn (δ = 1):
Deliveries/orders moved to next/previous point if needed

5            6

1            2             3            4                              t (hr) 

A B

C

Discrete timeline

E. Modeling of release and due times

Order:
25 kg of C

@ t = 5. 25 h

ξA1 = 20   ξB2 = 30 ξC5 = -25
Material balance:
𝑆𝑆𝑘𝑘𝑘𝑘 = 𝑆𝑆𝑘𝑘,𝑛𝑛−1 + ∑𝑖𝑖,𝑗𝑗 𝜌𝜌𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖,𝑛𝑛−𝜏𝜏𝑖𝑖𝑖𝑖 + ∑𝑖𝑖,𝑗𝑗 𝜌𝜌𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖𝑛𝑛 + 𝜉𝜉𝑘𝑘𝑘𝑘

D. Time-varying resource pricing

0            1            2             3            4            5            6  t (hr) 

Pricing: $0.04/kWh during 0-2.5 and 4.25-6 hr
$0.03/kWh during  2.5-4.25 hr

0            1            2             3            4            5            6  t (hr) 

Calculation of time-varying resource price σrn
For δ=0.5: σrn = 0.04, n = 1-5, 9-12; σrn = 0.03, n = 6-8

UCr = ∑𝑛𝑛 𝜎𝜎𝑟𝑟𝑟𝑟𝛿𝛿𝑅𝑅𝑟𝑟𝑟𝑟
linear
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σrn

0            1            2             3            4            5            6  t (hr) 

0            1            2             3            4            5            6  t (hr) 

C. Time-varying resource availability

Availability: 30 kW during 0-2.25 and 4.25-6 hr
20 kW during  2.25-4.25 hr

Calculation of time-varying resource availability θrn
For δ=0.5: θrn = 30, n = 1-4, 10-12; θrn = 20, n = 5-9

Resource constraint: 𝑅𝑅𝑟𝑟𝑟𝑟 ≤ 𝜃𝜃𝑟𝑟𝑟𝑟
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Electricity consumption (kW)
(𝜓𝜓𝑅𝑅,𝐸𝐸,𝑠𝑠𝐵𝐵𝑅𝑅,𝑈𝑈,𝑛𝑛−𝑠𝑠)

Coefficient 𝜓𝜓𝑅𝑅,𝐸𝐸,𝑠𝑠 (kW/kg)

Recipe of task i = R in unit j = U:
Load B = 10 kg of input F
Remove product P (75%) after 4 hr
Electricity consumption (kW/kg): 
0-1 h: 10; 1-3 h: 5; 3-4 h: 10 kW/kg ψRP4=0.75

ψRF0=-1

F. Variable resource consumption during task

𝑅𝑅𝑟𝑟,𝑛𝑛+1 = 𝑅𝑅𝑟𝑟,𝑛𝑛 + ∑𝑖𝑖,𝑗𝑗 ∑𝑠𝑠=0
𝜏𝜏𝑖𝑖𝑖𝑖 (𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖,𝑛𝑛−𝑠𝑠 + 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖,𝑛𝑛−𝑠𝑠)
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Data Generation
 Intermediate shipments and time-varying utility capacity & cost are given in terms of an external time grid with points  𝑡𝑡 ∈ 𝐓𝐓, 
 Shipments, 𝑜𝑜 ∈ 𝐎𝐎, are defined in terms of: (1) an associated material �𝑘𝑘(𝑜𝑜); (2) timing 𝑡𝑡𝑜𝑜 (of a 𝑡𝑡 ∈ 𝐓𝐓𝑀𝑀𝑀𝑀), and (3) amount �𝜉𝜉𝑜𝑜. 
 𝐎𝐎𝑘𝑘: shipments of material 𝑘𝑘 (i.e., 𝐎𝐎𝑘𝑘 = {𝑜𝑜|�𝑘𝑘 𝑜𝑜 = 𝑘𝑘}; 𝐓𝐓𝑘𝑘+/𝐓𝐓𝑘𝑘−: time points where a delivery/order of material 𝑘𝑘 occurs; 𝐓𝐓𝑘𝑘𝑀𝑀𝑀𝑀 = 𝐓𝐓𝑘𝑘+ ∪ 𝐓𝐓𝑘𝑘−.  

A B C

0            1            2             3            4            5            6  (h) 

$0.04/kWh during 0-2.5 and 4.25-6 h 
$0.03/kWh during  2.5-4.25 h

0            2            4            6            8            10          12  (n)

Calculation of time-varying util ity price
𝛾𝛾𝑅𝑅 ,𝑖𝑖
𝑈𝑈𝑇𝑇 = 0.04, 𝑛𝑛 = 1-5, 9-12; 𝛾𝛾𝑅𝑅 ,𝑖𝑖

𝑈𝑈𝑇𝑇 = 0.03, 𝑛𝑛 = 6-8
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t 𝛾𝛾𝑅𝑅 ,𝑖𝑖

𝑈𝑈𝑇𝑇

0            1            2             3            4            5            6  (h) 0            2            4             6            8           10          12  (n)

30 kW during 0-2.25 and 3.75-6 h 
20 kW during  2.25-3.75 h

Time-varying util ity availability calculation
𝜒̃𝜒E,𝑖𝑖
𝑈𝑈𝑇𝑇= 30, 𝑛𝑛 = 1-4, 10-12;𝜒̃𝜒E,𝑖𝑖

𝑈𝑈𝑇𝑇= 20, 𝑛𝑛 = 5-9. 
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ity 𝜒̃𝜒E,𝑖𝑖
𝑈𝑈𝑇𝑇

Deliveries: 
20 kg of A 30 kg of B
@ t=0.75 h   @ t=1.75 h

1            2             3            4            5            6  (h) 

A B

C

10         12

2            4             6            8                              (n) 

A B

C

Order:
25 kg of C

@ t = 5. 25 h

𝜉𝜉Α,2 = 20 𝜉𝜉Β,4 = 30

𝜉𝜉C,10 = −25

Sh
ip

m
en

ts

Material shipment calculation

0            1            2             3            4            5            6  (h) 

𝐓𝐓𝑴𝑆𝑆 = {1,2,7} 𝐓𝐓𝑈𝑈𝐶𝐶 = {3,5}
𝐓𝐓 = 1,2,3,… , 7

𝐓𝐓𝑈𝑈𝑃𝑃 = {4,6}

1            2             3            4            5            6  (h) 

A B

C

𝐓𝐓𝑀𝑀+ = 𝐓𝐓𝑀𝑀𝑀𝑀𝑆𝑆 = 1 , 
𝑡𝑡1 = 0.75, 𝜉̃𝜉1 = 20

𝐓𝐓𝐵𝐵+ = 𝐓𝐓𝐵𝐵𝑀𝑀𝑆𝑆 = 2 , 
𝑡𝑡𝟐 = 1.75, 𝜉̃𝜉2 = 30

𝐓𝐓𝐶𝐶− = 𝐓𝐓𝐶𝐶𝑀𝑀𝑆𝑆 = 7 , 
𝑡𝑡7 = 5.25, 𝜉̃𝜉7 = −25

0            1            2             3            4            5            6  (h) 

𝐓𝐓𝑙𝑙=𝑅𝑅𝑈𝑈𝐶𝐶 = 𝐓𝐓𝑈𝑈𝐶𝐶 = 3,5 , 
𝑡𝑡3 = 2.25, 𝜒̃𝜒E,3

𝑈𝑈𝑇𝑇 = 20; 𝑡𝑡5 = 3.75, 𝜒̃𝜒E,5
𝑈𝑈𝑇𝑇 = 30

𝜒̃𝜒Ε,0 = 30

0            1            2             3            4            5            6  (h) 

𝐓𝐓𝑙𝑙=𝑅𝑅𝑈𝑈𝑃𝑃 = 𝐓𝐓𝑈𝑈𝑃𝑃 = 4,6 , 
𝑡𝑡4 = 2.5, 𝛾𝛾�Ε ,4

𝑈𝑈𝑇𝑇 = 0.03; 𝑡𝑡6 = 4.25, 𝛾𝛾�Ε,6
𝑈𝑈𝑇𝑇 = 0.04

𝛾𝛾�Ε ,0
𝑈𝑈𝑇𝑇 = 0,04

𝑛𝑛�(1) = 2
𝑛𝑛� 2 = 4
𝑛𝑛�(7) = 10

𝑛𝑛�(3) = 4
𝑛𝑛� 5 = 9

𝑛𝑛�(4) = 5
𝑛𝑛� 6 = 8

 Deliveries mapped onto the next time point; 
i.e., if 𝑡𝑡𝑜𝑜 ∈ (𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛] then 𝑜𝑜→ 𝑛𝑛 (i.e., �𝑛𝑛 𝑡𝑡𝑜𝑜 = 𝑛𝑛);
𝐎𝐎𝑘𝑘𝑘𝑘+ : deliveries of material 𝑘𝑘 mapped onto 𝑛𝑛

 Orders mapped onto the previous time point; 
i.e., if 𝑡𝑡𝑜𝑜 ∈ [𝑡𝑡𝑛𝑛 , 𝑡𝑡𝑛𝑛+1) then 𝑜𝑜→ 𝑛𝑛 (i.e., �𝑛𝑛 𝑡𝑡𝑜𝑜 = 𝑛𝑛);
𝐎𝐎𝑘𝑘𝑘𝑘− : orders of material 𝑘𝑘 mapped onto 𝑛𝑛.
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State-Task Network: Discrete Time Model
Variables
 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}: 1 if batch 𝑖𝑖 starts on 𝑗𝑗 at time point 𝑛𝑛
 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ℝ+: batchsize of a batch of task 𝑖𝑖 starting on unit 𝑗𝑗 at 𝑛𝑛
 𝐼𝐼𝑘𝑘𝑘𝑘 ∈ ℝ+: inventory level of material 𝑘𝑘 during period 𝑛𝑛,

Equations
 Task-unit assignment

∑𝑖𝑖∈𝐈𝐈𝑗𝑗 ∑𝑛𝑛𝑛∈𝐍𝐍𝑖𝑖𝑖𝑖𝑈𝑈 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1, 𝑗𝑗,𝑛𝑛

where 𝐍𝐍𝑖𝑖𝑖𝑖𝑈𝑈 = {𝑛𝑛 − 𝜏𝜏𝑖𝑖 + 1, … ,𝑛𝑛}
 Batchsize constraints

𝛽𝛽𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛽𝛽𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗,𝑛𝑛

 Inventory balance
𝐼𝐼𝑘𝑘,𝑛𝑛+1 = 𝐼𝐼𝑘𝑘𝑘𝑘 + ∑𝑖𝑖∈𝐈𝐈𝑘𝑘+ ∑𝑗𝑗 𝜌𝜌𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖,𝑛𝑛−�𝜏𝜏𝑖𝑖𝑖𝑖 + ∑𝑖𝑖∈𝐈𝐈𝑘𝑘− ∑𝑗𝑗 𝜌𝜌𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑘𝑘𝑘𝑘 − 𝑆𝑆𝑘𝑘𝑘𝑘 ≤ 𝜒𝜒𝑘𝑘𝑀𝑀 , 𝑘𝑘,𝑛𝑛

 Utility constraints
∑𝑖𝑖,𝑗𝑗∈𝐉𝐉𝑖𝑖 ∑𝑛𝑛𝑛∈𝐍𝐍𝑖𝑖,𝑛𝑛−1𝐶𝐶 (𝜑𝜑𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ≤ 𝜒𝜒𝑙𝑙𝑙𝑙𝑈𝑈𝑈𝑈 , 𝑙𝑙,𝑛𝑛

 Objective Function
max(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐶𝐶𝑃𝑃𝑃𝑃 − 𝐶𝐶𝑈𝑈𝑈𝑈 − 𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐿𝐿𝐿𝐿)
where 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 = ∑𝑘𝑘 𝜋𝜋𝑘𝑘 ∑𝑛𝑛 𝑆𝑆𝑘𝑘𝑘𝑘 , 𝐶𝐶𝑃𝑃𝑃𝑃 = ∑𝑖𝑖,𝑗𝑗 𝛾𝛾𝑖𝑖𝑖𝑖𝐹𝐹 ∑𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑉𝑉 ∑𝑛𝑛 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 …
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Resource-Task Network: Discrete Time Model
Parameters
In addition to the already introduced parameters, we have: 
 𝜉𝜉𝑟𝑟𝑟𝑟𝑀𝑀 : net addition of (nonrenewable) material resource 𝑟𝑟 ∈ 𝐑𝐑𝑀𝑀 at time point 𝑛𝑛.
 𝜒𝜒𝑟𝑟𝑟𝑟: capacity of (renewable) resource 𝑟𝑟 ∈ 𝐑𝐑𝑈𝑈𝑈𝑈 during period 𝑛𝑛.
 𝛾𝛾𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅: cost of resource 𝑟𝑟 ∈ 𝐑𝐑𝑈𝑈𝑈𝑈 during period 𝑛𝑛.

Variables
 𝑋𝑋𝑖𝑖𝑖𝑖 ∈ {0,1}: 1 if batch 𝑖𝑖 starts at time point 𝑛𝑛
 𝐵𝐵𝑖𝑖𝑖𝑖 ∈ ℝ+: batchsize (extent) of a batch of task 𝑖𝑖 starting at point 𝑛𝑛
 𝑅𝑅𝑟𝑟𝑛𝑛 ∈ ℝ+: availability of resource 𝑟𝑟 during period 𝑛𝑛

Equations
 Unit resource availability

𝑅𝑅𝑟𝑟,𝑛𝑛+1 = 𝑅𝑅𝑟𝑟𝑟𝑟 + ∑𝑖𝑖∈𝐈𝐈𝑟𝑟 𝑋𝑋𝑖𝑖,𝑛𝑛−�𝜏𝜏𝑖𝑖𝑖𝑖 − ∑𝑖𝑖∈𝐈𝐈𝑟𝑟 𝑋𝑋𝑖𝑖𝑖𝑖 , 𝑟𝑟 ∈ 𝐑𝐑𝑈𝑈,𝑛𝑛

 Batchsize constraints
𝛽𝛽𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑖𝑖𝑖𝑖 ≤ 𝛽𝛽𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟 ∈ 𝐑𝐑𝑖𝑖 ∩ 𝐑𝐑𝑈𝑈 ,𝑛𝑛

 Material resource availability
𝑅𝑅𝑟𝑟,𝑛𝑛+1 = 𝑅𝑅𝑟𝑟𝑟𝑟 + ∑𝑖𝑖∈𝐈𝐈𝑟𝑟+ 𝜓𝜓𝑖𝑖𝑖𝑖

𝐸𝐸 𝐵𝐵𝑖𝑖,𝑛𝑛−�𝜏𝜏𝑖𝑖 + ∑𝑖𝑖∈𝐈𝐈𝑟𝑟− 𝜓𝜓𝑖𝑖𝑖𝑖
𝑆𝑆 𝐵𝐵𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑟𝑟𝑟𝑟𝑀𝑀 − 𝑆𝑆𝑟𝑟𝑟𝑟 ≤ 𝜒𝜒𝑟𝑟𝑀𝑀 , 𝑟𝑟 ∈ 𝐑𝐑𝑀𝑀,𝑛𝑛

 Utility resource availability
𝑅𝑅𝑟𝑟,𝑛𝑛+1 = 𝑅𝑅𝑟𝑟𝑟𝑟 + ∑𝑖𝑖∈𝐈𝐈𝑟𝑟+(𝜑𝜑𝑖𝑖𝑖𝑖𝐸𝐸 𝑋𝑋𝑖𝑖,𝑛𝑛−�𝜏𝜏𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖𝐸𝐸 𝐵𝐵𝑖𝑖,𝑛𝑛−�𝜏𝜏𝑖𝑖) − ∑𝑖𝑖∈𝐈𝐈𝑟𝑟− 𝜑𝜑𝑖𝑖𝑖𝑖𝑆𝑆 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖𝑆𝑆 𝐵𝐵𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑟𝑟𝑟𝑟𝑈𝑈𝑈𝑈 , 𝑟𝑟 ∈ 𝐑𝐑𝑈𝑈𝑈𝑈 ,𝑛𝑛
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Network Environments: Extensions
Material Consumption/Production During Task Execution
 A task may require consumption of some input materials after its start and may lead to output material production before its end.  
 Introduce 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖: conversion coefficient of task 𝑖𝑖 for material 𝑘𝑘, 𝑠𝑠 periods after the start of 𝑖𝑖.  
 We assume that 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 are readily available, but we note that they should be calculated based on the chosen scheduling horizon step 𝛿𝛿;
 Previous coefficients, 𝜌𝜌𝑖𝑖𝑖𝑖 (used assuming consumption/production occurs at the start (𝑠𝑠 = 0)/end (𝑠𝑠 = 𝜏𝜏𝑖𝑖)) become:
𝜌𝜌𝑖𝑖𝑖𝑖,𝑠𝑠=0 = 𝜌𝜌𝑖𝑖𝑖𝑖 < 0, for 𝑘𝑘 ∈ 𝐊𝐊𝑖𝑖

− and     𝜌𝜌𝑖𝑖𝑖𝑖,𝑠𝑠=𝜏𝜏𝑖𝑖 = 𝜌𝜌𝑖𝑖𝑖𝑖 > 0, for 𝑘𝑘 ∈ 𝐊𝐊𝑖𝑖
+. 

 Generalized STN material balance, assuming 𝐉𝐉𝑖𝑖 = 1, is
𝐼𝐼𝑘𝑘,𝑛𝑛+1 = 𝐼𝐼𝑘𝑘𝑘𝑘 + ∑𝑖𝑖∈𝐈𝐈𝑘𝑘+ ∑𝑠𝑠∈𝐒𝐒𝑖𝑖𝑖𝑖+ 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖,𝑛𝑛−𝑠𝑠 + ∑𝑖𝑖∈𝐈𝐈𝑘𝑘− ∑𝑠𝑠∈𝐒𝐒𝑖𝑖𝑖𝑖− 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖,𝑛𝑛−𝑠𝑠 + 𝜉𝜉𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑘𝑘𝑘𝑘 ≤ 𝜒𝜒𝑘𝑘𝑀𝑀 , 𝑘𝑘,𝑛𝑛

where 𝐒𝐒𝑖𝑖𝑖𝑖+ = {𝑠𝑠: 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 > 0} and 𝐒𝐒𝑖𝑖𝑖𝑖− = {𝑠𝑠:𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 < 0} are the sets of points, with respect to the start of 𝑖𝑖, where 𝑘𝑘 is produced/consumed

A B C

A1 A2

C1 C2

𝐒𝐒T,A2
− = {1}

𝐒𝐒T,C1
+ = {5} 𝐒𝐒T,C2

+ = {6}

𝜌𝜌T,A1,0 = −0.5 𝜌𝜌T,A1,2 = −0.2

𝜌𝜌T,A2,1 = −0.3

𝜌𝜌T,C1,5 = 0.3 𝜌𝜌T,C2,6 = 0.5

0     1     2     3     4       5   6  s

0     1     2     3     4     5     6     7     8   n

𝑋𝑋T,1 = 1,𝐵𝐵T,1 = 50

𝐼𝐼𝑀𝑀1 ,𝑖𝑖

𝐼𝐼𝐶𝐶1 ,𝑖𝑖

𝜌𝜌T,A1 ,0𝐵𝐵T,1−0 = −25
𝜌𝜌T,A1 ,2𝐵𝐵T,3−2 = −10

15 = 𝜌𝜌T,C1 ,5𝐵𝐵T ,6−5

A

D

A

D

𝐒𝐒T,A
− = {0}, 𝐒𝐒T,D

+ = {1, … , 6}

𝐒𝐒T,A
− = {0, … , 5}, 𝐒𝐒T,D

+ = {6}

𝐒𝐒T,A1
− = {0,2}
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Network Environments: Extensions
Material Storage and Transfer
 If storage vessels are shared among materials, then, in the STN representation, they are treated explicitly as additional units.
 The set of units, 𝐉𝐉, in this case, has two subsets: the set of processing units, 𝐉𝐉𝑃𝑃𝑃𝑃 , and the set of storage vessels, 𝐉𝐉𝑆𝑆𝑆𝑆 . 
 We define subsets: 𝐊𝐊𝑗𝑗: materials that can be stored in 𝑗𝑗 ∈ 𝐉𝐉𝑆𝑆𝑆𝑆;

𝐊𝐊𝑆𝑆𝑆𝑆: materials stored in shared vessels;
𝐊𝐊𝐷𝐷𝐷𝐷: materials stored in dedicated vessels;

Storage in Shared Vessels
 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 ∈ {0,1}: 1 if material 𝑘𝑘 is stored in 𝑗𝑗 ∈ 𝐉𝐉𝑆𝑆𝑆𝑆 during period 𝑛𝑛

 𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗 ∈ ℝ+: inventory of material 𝑘𝑘 in vessel 𝑗𝑗 during period 𝑛𝑛. 

 Only one material can be stored at in a vessel at any time: 
∑𝑘𝑘∈𝐊𝐊𝑗𝑗 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗

𝑆𝑆𝑆𝑆 ≤ 1, 𝑗𝑗 ∈ 𝐉𝐉𝑆𝑆𝑆𝑆 ,𝑛𝑛 (1); 𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝜒𝜒𝑘𝑘𝑀𝑀𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 , 𝑗𝑗 ∈ 𝐉𝐉𝑆𝑆𝑆𝑆 , 𝑘𝑘 ∈ 𝐊𝐊𝑗𝑗 ,𝑛𝑛 (2)

 In general, a material can be stored in many vessels
 If 𝐉𝐉𝑘𝑘𝑆𝑆𝑆𝑆is the set of vessels material 𝑘𝑘 can be stored in

and there is no dedicated storage vessel for 𝑘𝑘, then
∑𝑗𝑗∈𝐉𝐉𝑘𝑘𝑆𝑆𝑆𝑆 𝐼𝐼𝑗𝑗𝑗𝑗,𝑛𝑛+1 = ∑𝑗𝑗∈𝐉𝐉𝑘𝑘𝑆𝑆𝑆𝑆 𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗 + ∑𝑖𝑖∈𝐈𝐈𝑘𝑘+ 𝜌𝜌𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖,𝑛𝑛−𝜏𝜏𝑖𝑖𝑖𝑖 + ∑𝑖𝑖∈𝐈𝐈𝑘𝑘− 𝜌𝜌𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑘𝑘𝑘𝑘 , 𝑘𝑘,𝑛𝑛

Extensions
 Storage in processing units before and after the execution of a batch
 Resource-constrained material transfer tasks
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