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Exercises on Ch.18 Methods of modelling 
18.3 Reference states. Exercises 1 and 2 

18.4 Representation of Gibbs energy of formation. Exercise 1 

18.5 Use of power series in T. Exercise 1 

18.6 Representation of pressure dependence. Exercise 1 

18.7 Application of physical models. Exercise 1 

18.8 Ideal gas. Exercise 1 

18.10 Mixtures of gas species. Exercise 1 

18.11 Black-body radiation. Exercise 1 

 

18.3 Reference states 

Exercise 18.3.1 

Find an argument why it would be less convenient to give the Gibbs energies for various 
forms of pure Fe relative to the bcc form instead of the fcc form. 

Hint 

These values can be read as the differences between the curves in Fig. 18.1. 

Solution 

All the curves would show the very strong curvature at about 1300 K, which is due to the 
properties of bcc-Fe. 

Exercise 18.3.2 

All the curves in Fig. 18.1 and two of the three curves in Fig. 18.2 are parallel to the T 
axis at the left-hand side of the diagram. What determines the slope of the third curve in 
Fig. 18.2? 
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Hint 

ΔS = – dΔG/dT. 

Solution 

For the third curve we get, for the slope at T = 0, dΔG/dT = d[G – H(298) + TS(298)]/dT 
= dG/dT + S(298) = S(298) – S(0). 

18.4 Representation of Gibbs energy of formation 

Exercise 18.4.1 

Give the lattice stability of hcp-Fe relative to fcc-Fe as a linear function of T for 800–
1800 K. 

Hint 

The information can be obtained from Fig. 18.1 by fitting a straight line. 

Solution 

TGGHGHGG FeFeFeFeFe 52400 +−=−=+−−=Δ fccohcpoREFfccoREFhcpofcchcpo /  

18.5 Use of power series in T 

Exercise 18.5.1 

The modelling of heat capacity at low temperatures is based on Cv but we have discussed 
the use of CP. In order to get a feeling for the difference between CP and Cv it may be 
instructive to estimate roughly the difference between CP and Cv at 1500 K for an element 
with a thermal expansion of α = 3·10-5 K-1. 

Hint 

Suppose this temperature is so high that Cv = 3R. The Grüneisen constant γ may be 
estimated as 2. 

Solution 

CP – CV = CVTγα = 3R·1500·2·3·10- 5 = 0.27R 

18.6 Representation of pressure dependence 

Exercise 18.6.1 
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Examine where the power series representation of the Gibbs energy of a pure substance, 
given as the first equation in this section, should be truncated in order for the sum of the 
P terms to be PVm. 

Hint 

Evaluate PVm from the expression given for Vm. 

Solution 

PVm = eP + fTP + 2gP2. However, the Gm expression contains eP + fTP + gP2. It is thus 
necessary to omit gP2 and higher terms. 

18.7 Application of physical models 

Exercise 18.7.1 

Let us examine a very simple physical model. Measurements on alloys indicate that 
metallic melts undergo a glass transition if undercooled to a temperature, TTglass, which may 
be about one-third of the melting point, TTm.p.. On cooling down to that temperature the 
melt has lost most of its excess entropy relative to the crystalline state. Below the glass 
temperature CP of the amorphous phase is close to CP of the crystalline phase. Just above 
the glass temperature it is much larger. At higher temperatures it decreases gradually 
from this large value and we shall assume that it approaches CP of the (superheated) 
crystalline phase at high temperatures, a behaviour which can be modelled by the 
following expression above :  . glassT )/exp( glass
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Use this crude model to evaluate the difference in enthalpy between the glassy and 
crystalline phases at absolute zero. By first evaluating the model parameters from the 
information given above. 

Hint 

If there is practically no difference in  below TPC Tglass then we can approximate 
 as constant up to Tcryst

m
L
m HH − Tglass and there is practically no entropy difference. 

at absolute zero can thus be estimated as  at the glass temperature. 
The information on S at the glass temperature, T
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Tglass = TTm.p./3, gives one equation. The 
information on phase equilibrium at T Tm.p. gives a second equation and Richard's rule that 
the entropy of melting of ordinary metals is equal to about R gives a third one. 

Solution 
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At T = T=glassT m.p./3:  –b + (3c/T=− cryst
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m SS m.p.)exp( – 1) = 0. 
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At T = Tm.p.:  –b + (3c/T=− cryst
m

L
m SS m.p.)exp( – 3) = R. Therefore, c = – (R Tm.p./3)/[exp( 

– 1) – exp(– 3)] = – 1.048RT m.p.; b = (3c/T m.p.)exp( – 1) = – 1.157R. 
cryst
m

L
m GG =  at Tm.p. gives a + bTm.p. + cexp(-3) = 0; a = 1.209R Tm.p.. 

At T = Tm.p./3:   at 0 K. cryst
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18.8 Ideal gas 

Exercise 18.8.1 

Suppose a numerical expression for K(T) has been evaluated for a gas which obeys the 
ideal gas model very well. The evaluation was made with P measured in pascal. How 
should one change the numerical expression if one would like to give P in bar (1 bar = 
100 000 pascal)? 

Hint 

P(in pascal) = 100 000·P(in bar) 

Solution 

Gm – HSER = K(T) + RTln[P(in pascal)] = K(T) + RTln[100 000.P(in bar)] = K(T) + 
11.51RT + RTln[P(in bar)] 

18.10 Mixtures of gas species 

Exercise 18.10.1 

Show how one can calculate the heat of reaction for C(graphite) + 

O2(gas) → CO2(gas) where O2 and CO2 are taken from a gas mixture which is ideal. 

Hint 

We want  where  and  are partial quantities for the 
gas. 
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Solution 
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and  and 1 yields  and , respectively.  
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18.11 Black-body radiation 

Exercise 18.11.1 

Consider a container filled with N moles of an ideal gas and black-body radiation. Derive 
an expression for Gm as a function of its natural variables. 

Hint 

Suppose that the expressions for Helmholtz's energy F are additive. Then use G = F + 
PV. Finally, eliminate V by introducing P. 

Solution 

F1 = aT4V/3; F2 = NK(T) + NRTln(NRT/V) – NRT; F = F1 + F2 = – aT4V/3 + NK(T) + 
NRTln(NRT/V) – NRT; P = – ∂F/∂V = aT4/3 + NRT/V; G = F + PV = – aT4V/3 + NK(T) + 
NRTln(NRT/V)NRT + aT4V/3 + NRT = NK(T) + NRTln(NRT/V) = NK(T) + NRTln(P – 
aT4/3) 
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