Errata: Soft X-Rays and Extreme Ultraviolet Radiation / David Attwood

(September 2009)

Page #	Corrections	Where		
7	bonds \rightarrow bands	1st sentence		
9	$1/e^{x} \rightarrow 1/e^{\rho\mu x}$ (Fig. 1.8)	Fig. 1.8e		
17	Add L_{β_2} (N ₅ to L ₃); remove L_{β_1}	Fig. 1.11		
	(historically correct, but confusing)			
50	$(2.71) \rightarrow (2.71a)$	renumber equation		
50	$(2.72) \rightarrow (2.71b)$	renumber equation		
67	$ \mathbf{k} = \mathbf{k}^{"} = \omega/c$	eq. 3.31		
74	$(\theta \ \theta_{\rm c}) \rightarrow (\theta \ \theta_{\rm c})$	4 lines below eq. 3.50		
75	(3.51)	boxed equation		
90	subscript → superscript	below eq. for $f^0(\omega)$		
99	interference transition \rightarrow interface transition	Fig. 4.1 caption, 5th sentence		
101	$(4.5a) \rightarrow (4.4b)$	1st sent. below eq. 4.4b		
101	Remove right-most $\sqrt{-}$ sign	footnote		
102	Table 1.4 \rightarrow the periodic Table of the Elements	(pg. 102) end of 1st para.		
103	(continued from above) on the inside back cover	(pg. 103) below eg. 4.8		
106	observed \rightarrow theoretical	1st sentence		
123	(5.80), (5.82), (5.85)	wiggler eg. #s		
131	Appendix B → Appendix D.1	1st sentence		
134	φ-dependence → ψ-dependence	para. above eq. 5.8		
135	correct magnet arrows	Fig. 5.8		
148	5.3.3 → 5.3.2	1st sentence		
154	$J_n(x) = \dots (x/2)^{n+2s}$	below eq. 5.40a		
161	$P_{T,I} \rightarrow \overline{P}_{T,I}$ (two places)	eqs. 5.50a and 5.50b		
162	$(5.51b) \rightarrow (5.51)$ (two places)	above and below eq. 5.52		
168	$B_{\Delta\omega/\omega}(0) \to \overline{B}_{\Delta\omega/\omega}(0)$	eq. 5.65		
175	$\gamma^* \omega_u^{\ l} \rightarrow \gamma^* \omega_u$	above eq. 5.71		
183	$P_T \rightarrow \overline{P}_T$ (two places)	eqs. 5.85a and 5.85b		
183	$1.90 \times 10^{-6} (W) \rightarrow (1.90 \times 10^{-6} W)$	eq. 5.85b		
184	$(5.76b) \rightarrow (5.7b)$	below eq. 5.88b		
189	1.6 → 1.16	footnote		
196	Larmor radius*	4th sent. below eq. 6.8		
196	*See pg. 280 footnote for practical units			
198	$\partial(\mathbf{r} - \mathbf{r}_i) / \partial \mathbf{r}_i \rightarrow \partial \delta(\mathbf{r} - \mathbf{r}_i) / \partial \mathbf{r}_i$	middle of page		
198	Appendix B → Appendix D.7	1st sentence & middle of page		
205	$\partial \mathbf{n} \mathbf{e} / \partial \mathbf{t} + \nabla \cdot (\mathbf{n}_{\mathbf{e}} \mathbf{v}) = 0$	eq. 6.40		

Page #	Corrections	Where		
208	$\widetilde{\mathbf{v}}^2 \equiv \widetilde{\mathbf{v}} \cdot \widetilde{\mathbf{v}} \to \widetilde{\mathbf{v}}^2 \equiv \widetilde{\mathbf{v}} \cdot \widetilde{\mathbf{v}}$	2nd sent. below eq. 6.53		
209	Replace with $\mathbb{P}_j = mn_j \overline{\tilde{v}^2}/3$ $1 = \mathbf{P}_j 1$	eq. 6.57		
211	Eq. $6.60b \rightarrow$ Eq. $6.60a$	3rd line below 6.64		
211	so that for a one-dimensional plasma	Just above Eq. 6.61		
212	$n_i = n_{i0} e^{-x/v_{exp}t}$	Eq. 6.72		
213	, a 1 keV plasma of Ne-like titanium ions with an average charge state of $Z = +12$ will expand at a velocity of approximately 0.20 μ m/ps.	Sentence below eq. 6.73		
215	$\omega_r + i\omega_i$	last line above eq.6.85		
220	$\nabla n_{\rm o} \rightarrow \nabla n_{\rm e}$	eq. 6.102		
224	$(6.18b) \rightarrow (6.118b)$	boxed eq. at top of page		
225	$e/cm^2 \rightarrow e/cm^3$	last line		
226	$N_D \simeq 3.4 \times 10^3 \rightarrow N_D \simeq 2.4 \times 10^3$	1st para., 3rd line		
226	$\upsilon_{ei}/\omega_p \simeq 2.4 \times 10^{-3} \rightarrow \upsilon_{ei}/\omega_p \simeq 3.4 \times 10^{-3}$	1st para., 3rd line		
226	$v_{ei} \simeq 3.3 \times 10^{12} / \text{s} \rightarrow v_{ei} \simeq 4.6 \times 10^{12} / \text{s}$	1st para., 4rd line		
226	$l_{\rm abs} \simeq 130 \ {\rm m} \rightarrow l_{\rm abs} \simeq 93 \ {\rm m}$	1st para., 5th line		
230	$6.10b \rightarrow 6.11b$	Last para., line 2		
248	titanium atoms \rightarrow titanium ions	7th line from end of 2nd para.		
252	targets \rightarrow plasmas	1st line		
254	Kr-like closed shell \rightarrow [Kr] 4d ¹⁰ closed sub-shell	2nd & 3rd lines of footnote		
255	$0.35 \text{ w/cm}^2 \rightarrow 0.35 \ \mu\text{m}$	Fig. 6.27 caption, 2nd line		
272	$\lambda^2/\Delta\lambda ightarrow \lambda^2/2\Delta\lambda$	2nd para., last line		
273	pum-laser \rightarrow pump-laser	4th line from bottom of para.		
277	$v_i/c \rightarrow 2\sqrt{2 \ln 2} v_i/c$	middle of eq.7.19a		
278	$e/cm \rightarrow e/cm^3$ (three places)	para. below eq. $n_u FL$		
280	target \rightarrow plasma	2nd line, last para.		
289	$340 \text{ eV} \rightarrow 220 \text{ eV}$	6th line of Fig. 7.18 caption		
289	$Ti(100 \text{ eV}) \rightarrow \kappa Ti(100 \text{ eV})$	in Fig. 7.18		
290, 291	$13.99 \text{ nm} \rightarrow 13.89 \text{ nm}$	4 places		
311	curve goes to zero power at 428 eV in Fig. 8.9c	Fig. 8.9		
315	$(d_y, \theta_y) \rightarrow (d_y \theta_y)$	eq. 8.10a		
316	$3.5 \text{ m} \rightarrow 4.3 \text{ m}$	end of 2nd para.		
317	Shift photon energy axis by 50 eV, so that 50 eV \rightarrow 100 eV 100 eV \rightarrow 150 eV, etc. Extend curve to zero power at 428 eV	Fig. 8.11b		
323	Fig. 8.17 → Fig. 8.18a	above eq. 8.13		
324	$\delta\ell \ldots = \xi x/z \ldots$ and $\delta\psi \ldots = -k\xi x/z$	both in Fig. 8.18b		

Page #	Corrections	Where			
326	Eq. $8.12 \rightarrow 8.17$; Eq. $8.18 \rightarrow 8.18a$	1st para., 4th & 5th lines			
327	$\delta \psi = -kr\rho/x \rightarrow = -kr\rho/z$	Fig. 8.20			
328	statistically \rightarrow spatially ;	both on 2nd line below			
328	point source \rightarrow Gaussian with	eq. $ \mu_{\rm OP} = \dots 0.88$			
330	$(8.26) \rightarrow (8.27)$	2nd para, 4th line			
330	interface \rightarrow interference	last line			
330	$charged \rightarrow charge$	footnote, 2nd line	footnote, 2nd line		
331	magnification \rightarrow reduction	1st para., 4th line			
331	$(8.26) \rightarrow (8.27)$	1st para., 4th line from bottom			
332	$8.24(a) \rightarrow 8.25(a)$	last para., 2nd from last line			
333	$8.24(b) \rightarrow 8.25(b)$	last paragraph, 4th line			
343	$\simeq \rightarrow =$	in Fig. 9.5			
350	$lower \rightarrow longer$	1st line			
361	The depth of focus of a lens, or depth of field				
	of an imaging system, is the	1st line of Sec. 9.5			
363	spread by an amount	2nd para., 1st line			
388	, A.G. Michette and C.J. Buckley, editors	add to reference 15			
392	J. Microscopy 197, 185 (2000)	add to reference 86			
396	Add "θ" to Fig. 10.1	half-angle left of wafer	half-angle left of wafer		
397	$NA_{obj} = Sin\theta_{obj} \rightarrow NA = Sin\theta$ at the wafer	2nd para, 1st line			
398	$focus \rightarrow field$	above eq. 10.2			
398	$NA \rightarrow NA_{obj}$	end of para. below eq. 10.3	end of para. below eq. 10.3		
400	$NA_{obj} = 0.6 \rightarrow NA = 0.6$	1st sentence			
401	Fig. 9.34 → Fig. 9.37	4th line from bottom of 2nd para.			
403	Update Table 10.1 to 23 nm node	see new Table 10.1			
418, 419	Update Tables A.4 and A5: http://physics.nist.gov/cuu/Constants/index.html Display \odot table (pdf), then "extensive listings."				
419	$\epsilon_0^2 \rightarrow \epsilon_0$ (in Bohr radius)	in Table A.5			
423	$Ti \rightarrow Tl$	z = 81			
425	$ \begin{array}{l} Yb(70), \ K_{\beta_1} = 59,370; \ W(74), \ K_{\beta_1} = 67,244; \ Po(84), \ K_{\beta_1} = 89,800 \\ For \ elements \ At(85) \ through \ Ra(88) \ multiply \times 10 \ values \ for \ K_{\alpha_1}, \\ K_{\alpha_2}, \ and \ K_{\beta_1}. \ Also \times 10 \ for \ Fr(87) \ L_{\beta_2} \ and \ Ac(89) \ K_{\alpha_2} \ and \ K_{\beta_1}. \end{array} \right. \ \ \begin{array}{l} Table \ B.2 \end{array} $				
429-436	Add μ (2 places for each element), as for Be	Upper left table for each element			
439	$5p \rightarrow 5d$	(W) below 5s			
439	$4p \rightarrow 4d$	(Au) below 4f			
455	reference to equation E1-E4 should be F1-F4	3rd sentence from bottom			

Errata: Updated Table 10.1

TABLE 10.1. The National Technology Roadmap for Semiconductors in tabular form, showing anticipated technological characteristics for selected parameters of high volume microprocessors and DRAM chips. The projections cover five generations of technology, denoted by half-pitch of periodic patterns ("nodes"). (Courtesy of the Semiconductor Industry Association, San Jose, CA; updated 2008.)

First year of volume production*	2007	2009	2011	2013	2015
Technology Generation (half pitch, 1:1, printed in resist)	45 nm	32 nm	22 nm	16 nm	11 nm
Isolated Lines (in resist) [Physical gate, metalized]	36 nm [24 nm]	25 nm [18 nm]	18 nm [14 nm]	12 nm [11 nm]	9 nm [8 nm]
Transistors per chip (HV) (3 × for HP ; 8 × for ASICs)	770 M	1.5 B	3.1 B	6.2 B	12.4 B
DRAM Memory (bits per chip)	4.3 G	8.6 G	17 G	34 G	69 G
Field Size (mm × mm)	26 × 33	26 × 33	26 × 33	26 × 33	26 × 33
Wafer Size (diameter)	300 mm	300 mm	300 mm	450 mm	450 mm

*Leading high volume chip manufacturers strive to maintain a two year cycle.