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Power Series

A power series is an expression of the form

c0 + c1(x − a) + c2(x − a)2 + · · · or
∞∑
n=0

cn(x − a)n

in which a and the cn are constants and x is a variable.

• The cn are called the coefficients of the power series.

• And a is called the centre of the power series.

Main Question: For which values of x will a power series converge?

Example 1

The geometric series
∑∞

n=0 x
n is a power series centred at 0 and with all

coefficients equal to 1. It converges absolutely for |x | < 1 and diverges
for |x | ≥ 1.
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Examples
Example 2∑∞

n=0 x
n/n! is centred at 0 and has coefficients 1/n!. We saw earlier,

using the Ratio Test, that it converges absolutely for every x .

Example 3∑∞
n=0 n! x

n converges only at x = 0.

Example 4
∞∑
n=1

(−1)n

n (x − 1)n. is centred at 1 and has coefficients cn = (−1)n/n, with

c0 = 0.

Apply the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣ (x − 1)n+1n

(n + 1)(x − 1)n

∣∣∣∣ → |x − 1|.

So it converges absolutely if |x − 1| < 1 and diverges if |x − 1| > 1.
At x = 0 it becomes the harmonic series and diverges, while at x = 2 it
becomes the alternating harmonic series and converges.
So it converges for 0 < x ≤ 2, and diverges elsewhere.
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Convergence on an interval

In proving facts about power series, it is enough to consider the a = 0
case, since the substitution y = x − a converts a power series with centre
a to one with centre 0.

Theorem 5

Suppose
∑∞

n=0 cnx
n converges at x = r ̸= 0. Then it converges

absolutely at every x which satisfies |x | < |r |.

Proof. The convergence of
∑∞

n=0 cnr
n implies cnr

n → 0, hence |cnrn| is
bounded by some real M. Now consider any x such that |x | < |r |. Then

|cnxn| = |cnrn|
∣∣∣x
r

∣∣∣n ≤ M
∣∣∣x
r

∣∣∣n .
By the Comparison Theorem,

∑∞
n=0 |cnxn| converges. □
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Radius of Convergence

Theorem 6

Consider a power series
∞∑
n=0

cn(x − a)n. One of the following will occur:

1 The series converges only if x = a.

2 The series converges absolutely for every x ∈ R.

3 There is R ∈ R such that the series converges absolutely for
|x − a| < R and diverges for |x − a| > R.

R is called the radius of convergence. In the first case we say R = 0.
In the second case, we say R = ∞.
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Radius of Convergence

Proof. We may assume a = 0. Let S =
{
h ∈ R :

∑∞
n=0 cnh

n converges
}
.

We know 0 ∈ S , so S ̸= ∅.

If S is not bounded above then S = R: For any t ∈ R, there is h ∈ S
such that h > |t|. Therefore t ∈ S . This is the R = ∞ case.

If S is bounded above, take R = supS . Suppose |x | < R. There is h ∈ S
such that |x | < h < R. Since

∑
cnh

n converges,
∑

cnx
n converges

absolutely. Hence the series converges for every x ∈ (−R,R).

Finally, suppose the series converges for some x with |x | > R. Take any t
such that R < t < |x |. Then the series converges at t, violating the
definition of R. □
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Interval of Convergence

The interval of convergence consists of all the x for which the power
series converges.

It can be {a}, (−∞,∞), (a−R, a+R), (a−R, a+R], [a−R, a+R) or
[a− R, a+ R].

The Ratio and Root Tests usually suffice to find R. Some other test
would have to be applied to the end-points a± R.
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Power Series as Functions

Let
∞∑
n=0

cn(x − a)n have radius of convergence R > 0.

It defines a function f : (a− R, a+ R) → R by f (x) =
∞∑
n=0

cn(x − a)n.

The endpoints a± R can also be included in the domain, provided the
series converges there.

Is f (x) differentiable? The obvious candidate for its derivative is its
derived power series

∑∞
n=1 ncn(x − a)n−1 obtained by term-by-term

differentiation.

We will prove this is the right candidate.
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Convergence of Desired Series

Theorem 7

Let
∑∞

n=0 cn(x − a)n have radius of convergence R > 0. Then its derived
series

∑∞
n=1 ncn(x − a)n−1 also has radius of convergence R.

Proof. Assume a = 0. Let 0 < x < R.
Pick h such that 0 < x < x + h < R. Then

f (x + h)− f (x)

h
=

∞∑
n=1

cn
(x + h)n − xn

h
=

∞∑
n=1

n cn y
n−1
n

for some x < yn < x + h, by the Mean Value Theorem.
Since the series for f (x + h) and f (x) converge absolutely, so does∑

n cn y
n−1
n . By Comparison Test,

∑
n cn x

n−1 converges absolutely.

So the derived series converges for 0 < x < R. Hence its radius of
convergence is at least R. On the other hand, for n > x we have
|n cn xn−1| ≥ |cn xn| and so the derived series diverges for x > R.
Hence the radius of convergence is exactly R. □
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Differentiability of Power Series

Theorem 8

Let f (x) =
∞∑
n=0

cn(x − a)n have radius of convergence R > 0. Then

f ′(x) =
∞∑
n=1

ncn(x − a)n−1 for |x − a| < R.

Proof. Again let a = 0. We investigate the gap between the difference
quotient and the candidate derivative g(x) =

∑∞
n=1 ncn(x − a)n−1.

f (y)− f (x)

y − x
− g(x) =

∞∑
n=1

cn
yn − xn

y − x
−

∞∑
n=1

ncnx
n−1

=
∞∑
n=1

cn
[yn − xn

y − x
− nxn−1

]
(continued . . . )
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Differentiability of Power Series

(. . . continued)

f (y)− f (x)

y − x
− g(x) =

∞∑
n=1

cn
[ n−1∑
k=0

ykxn−k−1 − nxn−1
]

=
∞∑
n=1

cn
[ n−1∑
k=1

xn−k−1(yk − xk)
]
.

Fix a number ρ such that |x |, |y | < ρ < R. Then

|yk − xk | = |y − x |
∣∣∣∣ k−1∑
j=0

y jxk−1−j

∣∣∣∣ ≤ k |y − x |ρk−1.

(continued . . . )
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Differentiability of Power Series

(. . . continued)

Hence,

∣∣∣∣ f (y)− f (x)

y − x
− g(x)

∣∣∣∣ ≤ |y − x |
∞∑
n=1

|cn|
[ n−1∑
k=1

kρn−2
]

= |y − x |
∞∑
n=1

|cn|
n(n − 1)

2
ρn−2

= M|y − x |.

Therefore, lim
y→x

(
f (y)− f (x)

y − x
− g(x)

)
= 0 and f ′(x) = g(x). □
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Example

Example 9

We have seen that the power series
∑∞

n=0 x
n/n! converges for every

x ∈ R. Thus, it defines a differentiable function f : R → R. Note that

f (0) = 1 and f ′(x) =
∞∑
n=1

n
xn−1

n!
=

∞∑
n=1

xn−1

(n − 1)!
= f (x).

Therefore f (x) is the exponential function, and we get

ex =
∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · .

In particular, e =
∞∑
n=0

1

n!
.
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Integration of Power Series

Theorem 10

Suppose f (x) =
∑∞

n=0 cn(x − a)n with radius of convergence R > 0.
Then∫

f (x) dx =
∞∑
n=0

∫
cn(x − a)n dx =

∞∑
n=0

cn
n + 1

(x − a)n+1 + C .

Further, for any b ∈ (a− R, a+ R),∫ b

a

f (x) dx =
∞∑
n=0

∫ b

a

cn(x − a)n dx =
∞∑
n=0

cn
n + 1

(b − a)n+1.

Proof. Consider the power series h(x) =
∑∞

n=0
cn
n+1 (x − a)n+1.

As f (x) is the derived series of h(x), h(x) also has radius of convergence
R, and it is the anti-derivative of f (x).
This proves the first part.
The second part follows from the Second Fundamental Theorem. □
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Integration of Power Series

Theorem 10
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n=0 cn(x − a)n with radius of convergence R > 0.
Then∫
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∞∑
n=0

∫
cn(x − a)n dx =

∞∑
n=0

cn
n + 1

(x − a)n+1 + C .

Further, for any b ∈ (a− R, a+ R),∫ b

a

f (x) dx =
∞∑
n=0

∫ b

a

cn(x − a)n dx =
∞∑
n=0

cn
n + 1

(b − a)n+1.
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R, and it is the anti-derivative of f (x).
This proves the first part.
The second part follows from the Second Fundamental Theorem. □
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Applications of Geometric Series

Consider the function defined by the geometric series

1

1− x
=

∞∑
n=0

xn = 1 + x + x2 + · · · , for |x | < 1.

We can use various substitutions to get power series expansions of other
functions.

1

1 + x
=

∞∑
n=0

(−1)nxn = 1− x + x2 −+ · · · , for |x | < 1.

1

1 + x2
=

∞∑
n=0

(−1)nx2n = 1− x2 + x4 −+ · · · , for |x | < 1.

1

2− x
=

1

2

∞∑
n=0

xn

2n
=

1

2
+

x

4
+

x2

8
+ · · · , for |x | < 2.
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Applications of Geometric Series

Differentiating the geometric series repeatedly gives more power series
expansions, each valid for |x | < 1.

1

(1− x)2
=

∞∑
n=1

nxn−1 = 1 + 2x + 3x2 + · · · .

1

(1− x)3
=

∞∑
n=2

n(n − 1)

2
xn−2 = 1 + 3x + 6x2 + · · · .

1

(1− x)k
=

∞∑
n=k−1

(
n

k − 1

)
xn−k+1.
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Applications of Geometric Series

Integration gives other interesting series.

log(1 + x) =

∫ x

0

1

1 + t
dt =

∫ x

0

( ∞∑
n=0

(−1)ntn
)
dt

=
∞∑
n=0

(−1)n

n + 1
xn+1 = x − x2

2
+

x3

3
−+ · · · for |x | < 1.

Task 1

Prove that arctan x = x − x3

3
+

x5

5
−+ · · · for |x | < 1.
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Abel’s Theorem

Theorem 11

Suppose a power series with centre at x = a has radius of convergence
R > 0. If the power series converges at a+ R then the function defined
by it is left continuous at that point.

Proof. We may assume the power series has the form
∑∞

n=0 cnx
n, R = 1,

and
∑∞

n=0 cn converges. Now take any x such that 0 < x < 1.
Denote Sn = c0 + · · ·+ cn and S = limSn. First we have,

m∑
n=0

cnx
n = xmSm +

m−1∑
n=0

(xn − xn+1)Sn = xmSm + (1− x)
m−1∑
n=0

xnSn,

obtained by substituting cn = Sn − Sn−1 and regrouping.
By letting m → ∞ we obtain

∞∑
n=0

cnx
n = (1− x)

∞∑
n=0

xnSn.

(continued . . . )
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Abel’s Theorem

(. . . continued)

Hence,
∞∑
n=0

cnx
n −

∞∑
n=0

cn = (1− x)
∞∑
n=0

xn(Sn − S).

Given ϵ > 0 we first choose N such that n ≥ N implies |Sn − S | < ϵ/2.
Then,

∣∣∣ ∞∑
n=0

cnx
n −

∞∑
n=0

cn

∣∣∣ ≤ |1− x |
N−1∑
n=0

|x |n|Sn − S |+ |1− x |
∞∑

n=N

|x |n|Sn − S |

≤ |1− x |
N−1∑
n=0

|Sn − S |+ ϵ/2.

The choice of N was independent of x , hence
∑N−1

n=0 |Sn − S | is also
independent of x . Therefore, for x close enough to 1, we’ll have
|1− x |

∑N−1
n=0 |Sn − S | < ϵ/2. This completes the proof. □
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Applications of Abel’s Theorem

It follows from Abel’s Theorem that f (x) =
∞∑
n=0

(−1)n

n+1 xn+1 is left

continuous at 1. Hence,

∞∑
n=0

(−1)n

n + 1
= f (1) = lim

x→1−
f (x) = lim

x→1−
log(1 + x) = log 2.

Task 2

Prove that

π = 4
∞∑
n=0

(−1)n

2n + 1
= 4

(
1− 1

3
+

1

5
−+ · · ·

)
.
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Taylor Series

A function is called C∞ or smooth if it has derivatives of every order.
Term-by-term differentiation establishes that power series are smooth.

Suppose a smooth function f (x) is expressible as a power series with
centre a and radius of convergence R > 0,

f (x) =
∞∑
n=0

cn(x − a)n, for |x − a| < R.

By differentiating repeatedly at x = a, we get the following.

f (x) =
∞∑
n=0

cn(x − a)n =⇒ f (a) = c0,

f ′(x) =
∞∑
n=1

ncn(x − a)n−1 =⇒ f ′(a) = c1,

f ′′(x) =
∞∑
n=2

n(n − 1)cn(x − a)n−2 =⇒ f ′′(a) = 2c2.

(continued . . . )
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Taylor Series

(. . . continued)

Differentiating k times gives

f (k)(x) =
∞∑
n=k

n(n − 1) · · · (n − k + 1)cn(x − a)n−k =⇒ f (k)(a) = k! ck

=⇒ ck =
f (k)(a)

k!
.

The power series Tf (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n is called the Taylor series

of f (x) with centre at a.

If a = 0, it is also called the Maclaurin series.

Every smooth function f (x) has a unique Taylor series Tf (x) centered at
a. But they may not be equal to each other.
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Taylor Series

(. . . continued)

Differentiating k times gives

f (k)(x) =
∞∑
n=k

n(n − 1) · · · (n − k + 1)cn(x − a)n−k =⇒ f (k)(a) = k! ck

=⇒ ck =
f (k)(a)

k!
.

The power series Tf (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n is called the Taylor series

of f (x) with centre at a.

If a = 0, it is also called the Maclaurin series.

Every smooth function f (x) has a unique Taylor series Tf (x) centered at
a. But they may not be equal to each other.

Amber Habib Calculus



Power Series Taylor Series Fourier Series Complex Series

Examples

We already know the following Maclaurin series expansions.

1

(1− x)k
= 1 +

(
k

k − 1

)
x +

(
k + 1

k − 1

)
x2 + · · · for |x | < 1, k ∈ N,

log(1 + x) = x − x2

2
+

x3

3
−+ · · · for |x | < 1,

arctan x = x − x3

3
+

x5

5
−+ · · · for |x | < 1,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · for x ∈ R.
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Binomial Series

Theorem 12

Fix r ∈ R. Then the Maclaurin series of f (x) = (1 + x)r is given by

T (x) =
∞∑
n=0

(
r

n

)
xn

and equals f (x) for |x | < 1. We have used the notation(
r

n

)
=

r(r − 1) · · · (r − n + 1)

n!
, with the convention

(
r

0

)
= 1.

Proof. We compute the Maclaurin series by repeated differentiation:

f (x) = (1 + x)r =⇒ f (0) = 1 =⇒ c0 = 1,

f ′(x) = r(1 + x)r−1 =⇒ f ′(0) = r =⇒ c1 = r ,

f ′′(x) = r(r − 1)(1 + x)r−2 =⇒ f ′′(0) = r(r − 1) =⇒ c2 =
r(r − 1)

2!
.

(continued . . . )
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(continued . . . )
Amber Habib Calculus



Power Series Taylor Series Fourier Series Complex Series

Binomial Series

(. . . continued)

Continuing in this fashion gives cn =
r(r − 1) · · · (r − n + 1)

n!
=

(
r

n

)
and

we obtain the desired form of the Maclaurin series.

Now we have to address its convergence.
First apply the Ratio Test:

lim
n→∞

∣∣∣cn+1x
n+1

cnxn

∣∣∣ = |x | lim
n→∞

∣∣∣ r(r − 1) · · · (r − n)

r(r − 1) · · · (r − n + 1)
· n!

(n + 1)!

∣∣∣
= |x | lim

n→∞

∣∣∣ r − n

n + 1

∣∣∣ = |x |.

Thus the Maclaurin series has radius of convergence 1 and defines a
function T (x) for |x | < 1.

(continued . . . )
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Binomial Series

(. . . continued)
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Binomial Series
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Binomial Series

(. . . continued)
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(continued . . . )
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Binomial Series

(. . . continued)
To obtain the equality of f and T we consider their derivatives:

f ′(x) = r(1 + x)r−1 =⇒ (1 + x)f ′(x) = rf (x), and

(1 + x)T ′(x) =
∞∑
n=1

n

(
r

n

)
xn−1 +

∞∑
n=1

n

(
r

n

)
xn

= r +
∞∑
n=1

[
(n + 1)

(
r

n + 1

)
+ n

(
r

n

)]
xn

= r +
∞∑
n=1

r

(
r

n

)
xn = rT (x).

Hence,(
T (x)

f (x)

)′
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(1 + x)f (x)2
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It follows that T (x) = cf (x).
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Binomial Series
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Binomial Series
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Taylor Polynomials and Series

Recall that the Taylor polynomials of f (x) are defined by

TN(x) =
N∑

n=0

f (n)(a)

n!
(x − a)n.

The Taylor polynomials of a smooth function are the partial sums for its
Taylor series. Hence

Tf (x) = lim
n→∞

Tn(x).

So the question of whether f (x) equals Tf (x) can be addressed by
checking whether lim

N→∞
RN(x) = 0, where RN(x) is the remainder after N

terms.
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Example: Sine function

Example 13

From the Taylor polynomial calculations in Chapter 6 we know that the
Maclaurin series of the sine function is

Tsin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
= x − x3

3!
+

x5

5!
−+ · · · .

The remainder terms are given by

R2n+1(x) = sin x −
n∑

k=0

(−1)k
x2k+1

(2k + 1)!
= sin(2k+2)(c)

x2k+2

(2k + 2)!
.

Hence, |R2n+1(x)| ≤
|x |2k+2

(2k + 2)!
→ 0 =⇒ R2n+1(x) → 0.

Therefore, sin x =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
= x − x3

3!
+

x5

5!
−+ · · · .
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Exercises

Task 3

Prove that the cosine function equals its Maclaurin series:

cos x =
∞∑
k=0

(−1)k
x2k

(2k)!
= 1− x2

2!
+

x4

4!
−+ · · · .

Task 4

Let f : (c − R, c + R) → R be a C∞ function such that there is a
constant M with |f (n)(x)| ≤ Mn for all x and n. Prove that

f (x) =
∞∑
n=0

f (n)(c)

n!
(x − c)n for every x.
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Taylor Series and Limits

Substituting a Taylor series for the corresponding function can often be
useful in computing limits. For example,

lim
x→0

sin x − x

x3
= lim

x→0

(x − x3/3! + x5/5! · · · )− x

x3
= lim

x→0

−x3/3! + x5/5! · · ·
x3

= lim
x→0

(− 1

3!
+

x2

5!
· · · ) = − 1

3!
.

To compute a limit at a, we use Taylor series expansions centred at a,
provided the series equal the corresponding functions. Here is another
example:

lim
x→1

log x√
x − 1

= lim
x→1

(x − 1)− (x − 1)2/2 · · ·
(x − 1)/2− (x − 1)2/8 · · ·

= lim
x→1

1− (x − 1)/2 · · ·
1/2− (x − 1)/8 · · ·

= 2.
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Trigonometric Polynomials

Our goal is to express periodic functions in terms of the sine and cosine
functions. To begin, we consider functions whose period is 2π. It is
enough to analyse such functions on the interval [−π, π].

The functions sinmx and cosmx , with m ∈ Z have period 2π, so we can
consider them as basic functions from which we would like to construct
others.
It is enough to consider the following sub-collection of these functions:
{1} ∪ { sinmx | m = 1, 2, 3, . . . } ∪ { cosmx | m = 1, 2, 3, . . . }.
A trigonometric polynomial is a linear combination of such functions,

T (x) =
a0
2

+
M∑
n=1

an cos nx +
M∑
n=1

bn sin nx .

An immediate question is: If we are able to process T in terms of finding
information like its integrals, can we recover the defining numbers an and
bn? This is part of a general approach of trying to recover the original
data from knowledge of averages.
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Orthogonality Relations

Task 5

Suppose m, n ∈ N. Show the following.∫ π

−π

cosmx cos nx dx =

∫ π

−π

sinmx sin nx dx =

{
0 if m ̸= n,
π if m = n,∫ π

−π

cosmx sin nx dx = 0,∫ π

−π

1 · cosmx dx =

∫ π

−π

1 · sinmx dx = 0,∫ π

−π

1 · 1 dx = 2π.
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Orthogonality Relations

From the orthogonality relations, we can conclude that

1

π

∫ π

−π

T (x) cos nx dx = an,

1

π

∫ π

−π

T (x) sin nx dx = bn,

1

π

∫ π

−π

T (x) · 1 dx = a0.

Setting the constant part of T to a0/2 has enabled a uniform formula for
all an.
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Example

Example 14

An example of a trigonometric polynomial is

T (x) = sin x +
sin 3x

3
+

sin 5x

5
+ · · ·+ sin 11x

11
.

We plot its graph and observe it appears to be approaching a square
wave shape:

π−π

1

This example shows that trigonometric polynomials have the potential to
approximate discontinuous periodic functions.
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Trigonometric Polynomials

A trigonometric series is an expression of the form,

T (x) =
a0
2

+
∞∑
n=1

an cos nx +
∞∑
n=1

bn sin nx .

Let f be a function with period 2π and which is integrable on [−π, π].
Then the functions f (x) cos nx and f (x) sin nx are also integrable.
Hence, we can define,

an =
1

π

∫ π

−π

f (x) cos nx dx , bn =
1

π

∫ π

−π

f (x) sin nx dx .

The numbers an and bn are called the Fourier coefficients of f .
The corresponding trigonometric series is called the Fourier series of f
and we write:

f (x) ∼ a0
2

+
∞∑
n=1

an cos nx +
∞∑
n=1

bn sin nx .

The symbol ∼ indicates that the right hand side is the Fourier series of f
but we have not established its convergence to f .
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Example: Square Wave

Example 15

Consider the square wave function defined by S(x) = −1 if x ∈ (−π, 0]
and S(x) = 1 if x ∈ {−π}∪ (0, π]. Then the Fourier coefficients of S are:

an =
1

π

∫ 0

−π

(−1) cos nx dx +
1

π

∫ π

0

(1) cos nx dx = 0 + 0 = 0,

bn =
1

π

∫ 0

−π

(−1) sin nx dx +
1

π

∫ π

0

(1) sin nx dx

=
2

π

∫ π

0

(1) sin nx dx = − 2

π
· cos nx

n

∣∣∣π
0
=

2

π
· 1− (−1)n

n

=

{
0 if n even

4/πn if n odd.

Hence the Fourier series is S(x) ∼ 4

π

(
sin x +

sin 3x

3
+

sin 5x

5
+ · · ·

)
.
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Example: Square Wave

Let us see Fourier’s own method for establishing the convergence of the
Fourier series for the square wave function. Let Sm(x) be the partial sum
of the first m terms of the series,

π

4
Sm(x) = sin x +

sin 3x

3
+ · · ·+ sin(2m − 1)x

2m − 1
.

Differentiate, and multiply both sides by 2 sin 2x :

π

2
S ′
m(x) sin 2x = 2 cos x sin 2x + 2 cos 3x sin 2x + · · ·+ 2 cos(2m − 1)x sin 2x

= (sin 3x − sin(−x)) + (sin 5x − sin x) + · · ·
+ (sin(2m + 1)x − sin(2m − 3)x)

= sin(2m + 1)x + sin(2m − 1)x = 2 sin(2mx) cos x .

Hence, S ′
m(x) =

2

π

sin 2mx

sin x
. Note that

Sm(π/2) = (4/π)(1− 1/3 + 1/5 + · · ·+ (−1)m−1/(2m− 1)) → 1, by the
Gregory-Leibniz formula which we observed earlier.
(continued . . . )
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(continued . . . )
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Example: Square Wave

(. . . continued)
Now, for any a ∈ [π/2, π),

Sm(a) = Sm(π/2) +

∫ a

π/2

S ′
m(x) dx = Sm(π/2) +

2

π

∫ a

π/2

sin 2mx csc x dx

= Sm(π/2)−
2

π

cos 2mx csc x

2m

∣∣∣a
π/2

+
1

mπ

∫ a

π/2

cos 2mx csc′ x dx

= Sm(π/2)−
cos 2ma csc a− (−1)m

mπ
+

cos 2mξm
mπ

∫ a

π/2

csc′ x dx

= Sm(π/2)−
1

mπ

(
cos 2ma csc a− cos 2mξm(csc a− 1)− (−1)m

)
→ 1 as m → ∞.

The argument also works for a ∈ (0, π/2].

We have to separate these cases because in the fourth equality we have
used the Mean Value Theorem for Weighted Integration, which requires
the weight function to not change sign.
(continued . . . )
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Example: Square Wave

(. . . continued)
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∫ a

π/2

S ′
m(x) dx = Sm(π/2) +

2

π

∫ a

π/2

sin 2mx csc x dx

= Sm(π/2)−
2

π

cos 2mx csc x

2m

∣∣∣a
π/2

+
1

mπ

∫ a

π/2

cos 2mx csc′ x dx

= Sm(π/2)−
cos 2ma csc a− (−1)m

mπ
+

cos 2mξm
mπ

∫ a

π/2

csc′ x dx

= Sm(π/2)−
1

mπ

(
cos 2ma csc a− cos 2mξm(csc a− 1)− (−1)m

)
→ 1 as m → ∞.

The argument also works for a ∈ (0, π/2].
We have to separate these cases because in the fourth equality we have
used the Mean Value Theorem for Weighted Integration, which requires
the weight function to not change sign.
(continued . . . )
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Example: Square Wave

(. . . continued)
Further, for x ∈ (−π, 0), we have Sm(x) → −1 because these are odd
functions.

Thus the Fourier series converges to S(x) at the points where it is
continuous.

At the points of discontinuity (−π, 0, π) the series gives zero, which is
the mean of the left and right hand limits.

Task 6

Show that
π

4
=

1√
2

(
1 +

1

3
− 1

5
− 1

7
+ · · ·

)
.

Task 7

Let S be the square wave function of the last example. Show that the
Fourier series of g(x) = S(x − a) converges to 0 at x = a.
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Dirichlet Kernel

Let fm represent a partial sum of the Fourier series expansion of f (x),

fm(x) =
a0
2

+
m∑

n=1

an cos nx +
m∑

n=1

bn sin nx .

Substitute the formulas for the Fourier coefficients:

fm(x) =
1

2π

∫ π

−π

f (s) ds +
m∑

n=1

( 1
π

∫ π

−π

f (s) cos ns ds
)
cos nx

+
m∑

n=1

( 1
π

∫ π

−π

f (s) sin ns ds
)
sin nx

=
1

π

∫ π

−π

f (s)
(1
2
+

m∑
n=1

(cos ns cos nx + sin ns sin nx)
)
ds

=
1

π

∫ π

−π

f (s)
(1
2
+

m∑
n=1

cos n(s − x)
)
ds.
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Dirichlet Kernel

Task 8

Show that
1

2
+

m∑
n=1

cos nθ =
sin(m + 1/2)θ

2 sin θ/2
. Give a justification for

claiming equality even when θ = 2nπ.

The collection of functions Dm(x) =
sin(m + 1/2)x

2π sin x/2
is called the

Dirichlet kernel.

Assuming that f extends beyond [−π, π] with a period of 2π, the partial
sums of the Fourier series can be expressed as

fm(x) =

∫ π

−π

f (s)Dm(s − x) ds =

∫ π

−π

f (s + x)Dm(s) ds.

If we take f (x) = 1 then all the partial sums are also 1, and we get

1 =

∫ π

−π

Dm(s) ds for every n.
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Dirichlet Kernel

The graphs below depict D5 and D10.

π−π

π

π−π

π

As n increases, the Dirichlet kernel gets more concentrated near origin.
Consequently, the values of

∫ π

−π
f (s + x)Dn(s) ds depend more and more

on the values of f near x (corresponding to s = 0).

If f is continuous at x , this should make the integral approach f (x).

If f has a jump discontinuity, then the left and right limits contribute
equally (due to the symmetry of Dn) and so we expect the integral to
converge to their mean.
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Convergence of Fourier Series

Theorem 16

Let f : [−π, π] → R be ‘piecewise differentiable’ in the following sense.

1 The interval [−π, π] has a partition −π = x0 < · · · < xn = π such
that f is differentiable on each subinterval (xi , xi+1).

2 The left and right limits of f and f ′ exist at every point.

Then we have the following convergence results.

1 If f is continuous at x, the Fourier series at x converges to f (x).

2 If f has a jump discontinuity at x, the Fourier series at x converges
to the mean of the left and right-hand limits at x.
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Example: Sawtooth Function

Example 17

Consider the sawtooth function f , which has period 2π and satisfies
f (x) = x on (−π, π). Since f is odd, all an = 0. And
bn = 1

π

∫ π

−π
x sin nx dx = (−1)n+12/n. Hence, the Fourier series is

f (x) ∼ 2
(
sin x − sin 2x

2
+

sin 3x

3
− · · ·

)
We plot two of the partial sums below, with 3 and 10 terms respectively.

π−π

π

π−π

π
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Example: Triangular Wave

Example 18

C (x) = π − |x |, for x ∈ [−π, π], is continuous but fails to be
differentiable at 0. Using integration by parts, we can calculate

an =

 π if n = 0
4/πn2 if n odd

0 else
, bn = 0.

Therefore, C (x) ∼ π

2
+

4

π

(
cos x +

cos 3x

32
+

cos 5x

52
+ · · ·

)
.

Convergence of the Fourier series to C (x) is guaranteed by the last
theorem.
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Example: Triangular Wave

The partial sum
π

2
+

4

π

(
cos x +

cos 3x

32
+

cos 5x

52

)
is plotted below.

π−π

π

Note how quickly the series converges when the function has no
discontinuity.

Task 9

Show that
π2

8
= 1 +

1

32
+

1

52
+ · · · .
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Inner Product

Let us use the name I for the class of integrable functions on [−π, π].
For f , g ∈ I we define their inner product by

⟨f , g⟩ = 1

π

∫ π

−π

f (x)g(x) dx .

Note that the Fourier coefficients of f are given by an = ⟨f (x), cos nx⟩
and bn = ⟨f (x), sin nx⟩.

Task 10

Let f , g , h ∈ I. Show the following.

1 ⟨f , f ⟩ ≥ 0. (Hence we can define the norm ||f || = ⟨f , f ⟩1/2.)

2 ⟨f , g⟩ = ⟨g , f ⟩.

3 If c ∈ R then ⟨cf , g⟩ = ⟨f , cg⟩ = c⟨f , g⟩.

4 ⟨f + g , h⟩ = ⟨f , h⟩+ ⟨g , h⟩ and ⟨f , g + h⟩ = ⟨f , g⟩+ ⟨f , h⟩.

5 ⟨f , g⟩ = 0 =⇒ ||f + g ||2 = ||f ||2 + ||g ||2.
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Bessel’s Inequality

Theorem 19

Let f ∈ I and f (x) ∼ a0
2 +

∑∞
n=1 an cos nx +

∑∞
n=1 bn sin nx. Then

a20
2

+
∞∑
n=1

a2n +
∞∑
n=1

b2n ≤ 1

π

∫ π

−π

f (x)2 dx .

Proof. Let fm be a partial sum of the Fourier series:

fm(x) =
a0
2

+
m∑

k=1

ak cos kx +
m∑

k=1

bk sin kx .

Due to the orthogonality relations, we have for 1 ≤ n ≤ m,

⟨fm(x), 1⟩ = a0, ⟨fm(x), cos nx⟩ = an, ⟨fm(x), sin nx⟩ = bn.

Hence ||fm||2 = ⟨fm, fm⟩ =
a20
2

+
∞∑
n=1

a2n +
∞∑
n=1

b2n.

(continued . . . )

Amber Habib Calculus



Power Series Taylor Series Fourier Series Complex Series

Bessel’s Inequality

Theorem 19

Let f ∈ I and f (x) ∼ a0
2 +

∑∞
n=1 an cos nx +

∑∞
n=1 bn sin nx. Then

a20
2

+
∞∑
n=1

a2n +
∞∑
n=1

b2n ≤ 1

π

∫ π

−π

f (x)2 dx .

Proof. Let fm be a partial sum of the Fourier series:

fm(x) =
a0
2

+
m∑

k=1

ak cos kx +
m∑

k=1

bk sin kx .

Due to the orthogonality relations, we have for 1 ≤ n ≤ m,

⟨fm(x), 1⟩ = a0, ⟨fm(x), cos nx⟩ = an, ⟨fm(x), sin nx⟩ = bn.

Hence ||fm||2 = ⟨fm, fm⟩ =
a20
2

+
∞∑
n=1

a2n +
∞∑
n=1

b2n.

(continued . . . )
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(continued . . . )
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Bessel’s Inequality

(. . . continued)

Further, for 1 ≤ n ≤ m,

⟨f (x)− fm(x), 1⟩ = ⟨f (x)− fm(x), cos nx⟩ = ⟨f (x)− fm(x), sin nx⟩ = 0.

Hence, ⟨f − fm, fm⟩ = 0. Therefore,

||f ||2 = ||(f − fm) + fm||2 = ||f − fm||2 + ||fm||2 ≥ ||fm||2.

Since this is true for all m, the result follows. □

Task 11 (Riemann Lemma)

Let f ∈ I with Fourier coefficients an, bn. Prove that an, bn → 0.
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Complex Numbers

Consider R2 = R× R with the binary operations given below.

Addition: (x , y) + (u, v) = (x + u, y + v).

Multiplication: (x , y) ∗ (u, v) = (xu − yv , xv + yu).

We denote the cartesian plane with these operations by C and call it the
complex plane. First we observe that C is a field.

1 The operations + and ∗ are commutative and associative.

2 (0, 0) is the additive identity, and (−x ,−y) is the additive inverse of
(x , y).

3 (1, 0) is the multiplicative identity, and a nonzero (x , y) has

multiplicative inverse
( x

x2 + y2
,

−y

x2 + y2

)
.

4 Multiplication distributes over addition.
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Real and Imaginary Parts

Now we identify (1, 0) with the real number 1 and denote (0, 1) by i .
Then

(x , y) = x(1, 0) + y(0, 1) = x + iy .

In this notation, the rules for + and ∗ become

(x + iy) + (u + iv) = (x + u) + i(y + v).

(x + iy) ∗ (u + iv) = (xu − yv) + i(xv + yu).

If z = x + iy with x , y ∈ R, we say x is the real part of z and y is the
imaginary part of z . We shall use ‘Let z = x + iy ’ as an abbreviation for
‘Let z = x + iy with x , y ∈ R’.
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Conjugation and Absolute Value

The absolute value or modulus of z is |z | =
√
x2 + y2 and the

conjugate of z is z = x − iy = x + i(−y). We have the following
properties:

1 z = 0 ⇐⇒ |z | = 0,

2 zz = |z |2,

3 z ̸= 0 =⇒ z−1 = z/|z |2,

4 z = z ,

5 z + w = z + w , zw = zw ,

6 |z + w | ≤ |z |+ |w |,

7 |z − w | ≥ ||z | − |w ||,

8 |zw | = |z ||w |.
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The Argand Plane

Real Axis

Imaginary Axis

x−x

y

−y

|z |
=

√ x
2 +

y
2

z = x + iy

z = x − iy
−z = −x − iy
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Addition

The process of addition is depicted by the ‘Parallelogram Rule’ in the
Argand plane:

u x

y

v

z = x + iy

w = u + iv

u x x + u

y

v

y + v

z

w

z + w
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Multiplication

To visualize multiplication, let us first view what happens when a
complex number is multiplied by i . We have i(x + iy) = −y + ix .

−y x

y

x

x + iy

−y + ix

We see that the points x + iy , −y + ix and 0 form a right angled
triangle. Thus, multiplication by i causes a counter-clockwise rotation by
a right angle around the origin. Multiplying by i twice gives a total
rotation of 180 degrees and hence sends z to −z . This is the geometric
description of i being the square root of −1.
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Polar Coordinates

Any complex number z = x + iy can be expressed as |z |(cos θ + i sin θ)
where θ is the angle between the rays starting at origin and passing
through the points (1, 0) and (x , y).

Let w = |w |(cosϕ+ i sinϕ) be another complex number. Let us multiply
them:

zw = |z ||w |(cos θ + i sin θ)(cosϕ+ i sinϕ)

= |z ||w |((cos θ cosϕ− sin θ sinϕ) + i(cos θ sinϕ+ sin θ cosϕ))

= |z ||w |(cos(θ + ϕ) + i sin(θ + ϕ))

Thus the effect of multiplying by z is to stretch the other number by a
factor of |z | and also rotate it by θ.

Task 12 (De Moivre’s formula)

If z = |z |(cos θ + i sin θ) ̸= 0 and n ∈ Z then

zn = |z |n(cos nθ + i sin nθ).
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Roots of Unity

Suppose zn = 1 for n ∈ N. Write z = |z |(cos θ + i sin θ).
Then 1 = |z |n(cos nθ + i sin nθ).
Hence |z | = 1 and nθ = 2πk with k ∈ Z.
Taking k = 1, we get the root w = cos(2π/n) + i sin(2π/n).
If we let k vary over 0, . . . , n − 1 we get n distinct roots of unity:
1,w ,w2, . . . ,wn−1. They are equally spaced out on the unit circle:

1

w
w2

w3w4

Task 13

Prove that 1 + w + w2 + · · ·+ wn−1 = 0.
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Roots of Complex Numbers

If z = |z |(cos θ + i sin θ) is a non-zero complex number then

α = |z |1/n(cos(θ/n) + i sin(θ/n))

is an nth root: αn = z .

Let 1,w , . . . ,wn−1 be the roots of unity.

Then α, αw , . . . , αwn−1 are the nth roots of z .

Thus every non-zero complex number has n distinct nth roots, and they
are equally spaced on a circle centred at origin.

Notice how uniform and pleasant this situation is compared to taking
roots of real numbers.
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Example

Let us compute the 4th roots of i .

We’ll need the 4th roots of unity: 1, w = i , w2 = −1, w3 = −i .

We need the root α = cosπ/8 + i sinπ/8 of i .

Then all the roots of i are obtained by multiplying each root of unity by
α, that is, by rotating each of them through an angle of π/8.

w

1
w2

w3

i

α

i

α

αw

αw2

αw3
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Complex Sequences

A complex sequence is a function from N to C, that is, an unending list
of complex numbers.

Let (zn) be a complex sequence, and L a complex number. We say that
(zn) converges to L if for every real number ϵ > 0 there is N ∈ N such
that n ≥ N implies |zn − L| < ϵ. The number L is called the limit of (zn),
and we write lim

n→∞
zn = L or lim zn = L or zn → L.

Task 14

Prove the following.

1 |zn| → 0 if and only if zn → 0.

2 zn → L if and only if zn − L → 0.

3 zn → L implies |zn| → |L|.

Complex sequences follow the same Algebra of Limits as real sequences.
They lack the Sandwich Theorem as the complex numbers are not an
ordered field.
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A Criterion for Convergence

Theorem 20

Consider a sequence (zn) and let zn = xn + iyn. Further, let L = M + iN.
Then zn → L if and only if xn → M and yn → N.

Proof. We begin by noting that |zn − L|2 = |xn −M|2 + |yn −N|2. Hence,

xn → M and yn → N =⇒ |xn −M| → 0 and |yn − N| → 0

=⇒ |zn − L|2 = |xn −M|2 + |yn − N|2 → 0

=⇒ zn → L.

In the other direction, noting that |xn −M|, |yn −N| ≤ |zn − L|, we apply
the Sandwich Theorem for real sequences.

zn → L =⇒ |zn − L| → 0 =⇒ |xn −M|, |yn − N| → 0

=⇒ xn → M and yn → N.

□
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Example

Consider a fixed complex number z and consider the sequence (zn) of
powers of z .

If |z | > 1, we already know |z |n diverges, and hence zn diverges.

If |zn| < 1 then |z |n → 0 and hence zn → 0.

If |z | = 1 the sequence (zn) rotates around the unit circle and so has no
limit. The only exception is when z = 1.

z
z2

z3
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Complex Series

Given a complex sequence (zn), we create the corresponding series∑∞
n=1 zn. It has the partial sums Sn =

∑n
k=1 zk , and we define the sum

of the series as lim Sn. The series converges if this limit exists and
diverges if it does not.

Example 21

Consider a geometric series
∑∞

n=1 z
n−1 = 1 + z + z2 + · · · with z ̸= 1.

The partial sums are Sn = 1 + z + · · ·+ zn−1 =
1− zn

1− z
.

By our earlier calculations we see that
∞∑
n=1

zn−1 =
1

1− z
if |z | < 1, and

diverges otherwise.

Task 15 (Divergence Test)

If
∑

zn converges then zn → 0.
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Algebra of Series

Task 16

Consider convergent complex series
∑

an = L and
∑

bn = M. Show
that:

1 For any c ∈ C,
∑

(c an) = cL, 2
∑

(an + bn) = L+M.

Task 17

Let zn = xn + iyn. Show that
∑

zn converges if and only if both
∑

xn and∑
yn converge. If these series do converge, prove

∑
zn =

∑
xn + i

∑
yn.

Analysing convergence by separating into real and imaginary parts is not
always fruitful, as a simple complex expression may look complicated
when viewed in terms of real and imaginary parts.
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Absolute Convergence

A complex series
∑

zn is called absolutely convergent if
∑

|zn|
converges. For example, if |z | < 1, the geometric series

∑
zn is

absolutely convergent.

Theorem 22

Let zn = xn + iyn. Then
∑

zn is absolutely convergent if and only if both∑
xn and

∑
yn are absolutely convergent.

Proof. First, suppose
∑

|zn| converges. Then, |xn|, |yn| ≤ |zn| implies∑
|xn| and

∑
|yn| converge.

Next, suppose
∑

|xn| and
∑

|yn| converge. Then |zn| ≤ |xn|+ |yn|
implies

∑
|zn| converges. □

Task 18

If a series is absolutely convergent then it is convergent.
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Complex Power Series

A complex power series is an expression of the form

∞∑
n=0

cn(z − a)n = c0 + c1(z − a) + c2(z − a)2 + · · ·

in which a and the cn are complex numbers and z is a complex variable.

Our main question is: For which values of z will a power series converge?

Example 23

The geometric series
∑∞

n=0 z
n is a power series centred at a = 0. It

converges absolutely on the open disc |z | < 1 and diverges for |z | ≥ 1.
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Disc of Convergence

We can replicate the basic results for real power series, with the same
proofs.

Theorem 24

Suppose
∑∞

n=0 cnz
n converges at z0 ̸= 0. Then it converges absolutely at

every z which satisfies |z | < |z0|.

Theorem 25

Consider a complex power series
∑

cn(z − a)n. One of the following

cases will occur.

1 The series converges only if z = a.

2 The series converges absolutely for every z ∈ C.

3 There is R ∈ R such that the series converges absolutely for
|z − a| < R and diverges for |z − a| > R.

Amber Habib Calculus



Power Series Taylor Series Fourier Series Complex Series

Disc of Convergence

The radius of convergence R determines a disc of convergence inside
which the series converges absolutely at every point. The bounding circle
of this disc becomes an object of special interest, as the series may
converge on some points of this circle and diverge on others.

Complex power series give a convenient procedure for extending real
functions to the complex plane. We simply take the power series of a real
function and convert the real variable to a complex one. For example, we
define

exp z = 1 + z +
z2

2!
+

z3

3!
+ · · · ,

sin z = z − z3

3!
+

z5

5!
− z7

7!
+ · · · ,

cos z = 1− z2

2!
+

z4

4!
− z6

6!
+ · · · .
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Identities

Task 19

Use the Ratio or Root Test to prove that the power series that define the
complex exponential, sine and cosine functions converge absolutely for
every complex z.

Following the real notation, we shall write ez = exp z . The complex
numbers reveal a close relationship between the exponential and
trigonometric functions.

Theorem 26

cos z =
e iz + e−iz

2
, sin z =

e iz − e−iz

2i
.

Proof. We have e iz = 1 + iz − z2

2!
− i

z3

3!
+

z4

4!
+ i

z5

5!
· · · ,

e−iz = 1− iz − z2

2!
+ i

z3

3!
+

z4

4!
− i

z5

5!
· · · .

Adding and subtracting these expressions gives the result. □
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Properties of Exponential
Task 20

Show that e iz = cos z + i sin z. In particular, we have Euler’s identity:
e iπ = −1.

Task 21

Let θ, ϕ ∈ R. Show that e i(θ+ϕ) = e iθe iϕ.

Theorem 27

For any z ,w ∈ C, ez+w = ezew .

Proof.

ezew = lim
m→∞

m∑
n=0

zn

n!

m∑
n=0

wn

n!
= lim

m→∞

2m∑
n=0

n∑
k=0

zk

k!

wn−k

(n − k)!

= lim
m→∞

2m∑
n=0

n∑
k=0

(
n

k

)
zkwn−k

n!
= lim

m→∞

2m∑
n=0

(z + w)n

n!
= ez+w .

□
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Properties of Exponential

We can now express the exponential function in terms of the real and
imaginary parts of z :

z = x + iy =⇒ ez = ex+iy = exe iy = ex(cos y + i sin y).

Task 22

Prove the following properties of the exponential function.

1 For every z ∈ C, ez ̸= 0 and (ez)−1 = e−z .

2 Every non-zero z ∈ C can be expressed as z = ew for some w ∈ C.

3 We have ez = 1 if and only if z = 2nπi , with n ∈ Z. Hence
ez = ew if and only if w − z ∈ 2πiZ.
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Example

Consider the real power series expansion
1

1 + x2
= 1− x2 + x4 − · · · .

It has R = 1. The function itself is smooth on all of R so it seems odd
that the power series representation breaks down at ±1.

Now consider the complex version
1

1 + z2
= 1− z2 + z4 − · · · .

The function 1/(1 + z2) is not defined at ±i . In fact, as z varies along
the imaginary axis, the function takes the following appearance:

1

1 + (it)2
=

1

1− t2
.

It takes values which are arbitrarily large in magnitude as t → ±1. Hence
its power series expansion must break down beyond a radius of 1.

−i

i
Disc of convergence for

∑∞
n=0(−1)nz2n

Interval of convergence for
∑∞

n=0(−1)nx2n
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Complex Fourier Series

Consider f : R → C. We express it as f (x) = u(x) + iv(x) with
u, v : R → C. In future, we will just say ‘Let f = u + iv ’.

We say f has period T if f (x + T ) = f (x) for every x . This is equivalent
to both u, v having period T .

Further, we call f integrable on [a, b] if u, v are integrable there, and we
define ∫ b

a

f (x) dx =

∫ b

a

u(x) dx + i

∫ b

a

v(x) dx .

We shall work with functions that have period 2π. We only need to
understand these over the interval [−π, π]. The role of the integral∫ b

a
f (x)g(x) dx in the real case will be assumed by

∫ b

a
f (x)g(x) dx in the

complex case.
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Trigonometric Polynomials
A trigonometric polynomial T (x) can be expressed in terms of
exponentials:

T (x) =
a0
2

+
M∑
n=1

an cos nx +
M∑
n=1

bn sin nx

=
a0
2

+
M∑
n=1

an
e inx + e−inx

2
− i

M∑
n=1

bn
e inx − e−inx

2

=
a0
2

+
M∑
n=1

an − ibn
2

e inx +
M∑
n=1

an + ibn
2

e−inx

=
M∑

n=−M

cnen(x).

Similarly, a trigonometric series can be expressed as

∞∑
n=−∞

cnen(x) = lim
M→∞

M∑
n=−M

cnen(x).
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Orthogonality Relations

For n ∈ Z, define en(x) = e inx . Then∫ π

−π

en(x) dx =

∫ π

−π

cos nx dx + i

∫ π

−π

sin nx dx =

{
0 if n ̸= 0,
2π if n = 0.

This leads to the following calculation:∫ π

−π

en(x)em(x) dx =

∫ π

−π

en−m(x) dx =

{
0 if n ̸= m,
2π if n = m.

We can use integration to extract the coefficients of a trigonometric
polynomial: ∫ π

−π

T (x)em(x) dx =

∫ π

−π

M∑
n=−M

cnen(x)em(x) dx

=
M∑

n=−M

cn

∫ π

−π

en(x)em(x) dx

= 2πcm.
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Fourier Series

Given an integrable function f with period 2π we try to express it as a
trigonometric series by first defining its Fourier coefficients:

f̂ (n) =
1

2π

∫ π

−π

f (x)en(x) dx , (n ∈ Z)

and then its Fourier series

f (x) ∼
∞∑

n=−∞
f̂ (n) en(x).

We see that the use of complex numbers gives a much cleaner description
of Fourier series, without a split into the sine and cosine coefficients.

Let us use the name I for the class of integrable functions on [−π, π].

For f , g ∈ I we define ⟨f , g⟩ = 1
2π

∫ π

−π
f (x)g(x) dx and ||f ||2 = ⟨f , f ⟩.

Note that f̂ (n) = ⟨f , en⟩.
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trigonometric series by first defining its Fourier coefficients:
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Fourier Series

Task 23

Show that ⟨f , g⟩ = 0 =⇒ ||f + g ||2 = ||f ||2 + ||g ||2.

Task 24

Prove Bessel’s Inequality:
∞∑

n=−∞
|f̂ (n)|2 ≤ ||f ||2.

Complex numbers reveal a connection between trigonometric series and
power series. Consider f (z) =

∑∞
n=0 cnz

n and let us describe z as re iθ. If
we fix θ and vary r we get a power series in the real variable r ,

f θ(r) =
∞∑
n=0

(cne
inθ)rn.

On the other hand, if we fix r and vary θ we get a trigonometric series,

fr (θ) =
∞∑
n=0

(cnr
n)e inθ.
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Example

Consider f (z) =
∑∞

n=1 z
n/n2. It has R = 1 and converges absolutely at

each point of the unit circle. We look at the values on the unit circle:

f1(θ) =
∞∑
n=1

e inθ

n2
=

∞∑
n=1

cos nθ

n2
+ i

∞∑
n=1

sin nθ

n2
.

The real part of this series is the Fourier series of the even function given
by g(θ) = 1

4 (θ − π)2 − π2/12 for 0 ≤ θ ≤ π. This function is not
differentiable at θ = 0. Below, we see the graph of g as well as that of
the real part of f (z), showing the kink corresponding to r = 1 and θ = 0.

π−π

π2/6

This lack of differentiability prevents the series from converging beyond
the unit circle.
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