Digital Logic Design: a rigorous approach (¢

Chapter 13: Decoders and Encoders

Guy Even Moti Medina
School of Electrical Engineering Tel-Aviv Univ.

January 24, 2013

Book Homepage:
http://www.eng.tau.ac.il/"guy/Even-Medina

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

http://www.eng.tau.ac.il/~guy/Even-Medina

Buses

an adder and a register (a memory device). The output of the
adder should be stored by the register. Different name to each bit?!

Definition

A bus is a set of wires that are connected to the same modules.
The width of a bus is the number of wires in the bus.

Example

PCI bus is used to connect hardware devices (e.g., network cards,
sound cards, USB adapters) to the main memory.

N

In our settings, we consider wires instead of nets.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Indexing conventions

© Connection of terminals is done by assignment statements:
The statement b[0 : 3] < a[0 : 3] means connect a[i] to bJi].

© "Reversing” of indexes does not take place unless explicitly
stated: b[i : j] < a[i : j] and b[i : j] < a[j : i], have the same
meaning, i.e., b[i] < a[i], ..., b[j] < alj].

© 'Shifting” is done by default: a[0: 3] < b[4 : 7], meaning
that a[0] < b[4], a[1] < b[5], etc. We refer to such an implied
re-assignment of indexes as hardwired shifting.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Example - 1

Go

EA)

(A)

Gn-1

Zn—1

al0:n—1] b0:n—1]

T

Figure: Vector notation: multiple instances of the same gate.

Guy Even, Moti Medina

Digital Logic Design: a rigorous approach ©

ao ay an-1 b al0:n —1] b

Go Gy | mmmmm Gno1 G(n)
20 21 Zn—1 z[0:n —1]
(A) (B)

Figure: Vector notation: b feeds all the gates.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Reminder: Binary Representation

Recall that (a[n — 1 : 0]), denotes the binary number represented
by an n-bit vector 3.

n—1
(a[n—1:0]), éZa;-2i.
i=0

Definition

Binary representation using n-bits is a function
bin, : {0,1,...,2" — 1} — {0, 1}" that is the inverse function of
(-). Namely, for every a[n —1:0] € {0,1}",

bin,((a[n —1:0]),) = a[n —1:0].

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Division in Binary Representation
r = (a mod b):

a=q-b+r, where 0 < r < b.

Claim

Let s = (x[n—1:0]),, and0 < k < n—1. Let q and r denote the
quotient and remainder obtained by dividing s by 2¥. Define the
binary strings xg[k —1: 0] and x.[n —1: n— k — 1] as follows.

xg[k —1:0] = x[k —1: 0]
x([n—k—1:0] 2 x[n—1: k]
Then,

qg=(x[n—k—1:0])
r = (xg[k —1:0]).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Definition of Decoder

Definition
A decoder with input length n is a combinational circuit specified
as follows:
Input: x[n—1:0] € {0,1}".
Output: y[2" —1:0] € {0,1}*"

Functionality:
) 1 if(x)=1i
ylil = { &

0 otherwise.

We denote a decoder with input length n by DECODER(n).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Definition of Decoder

A decoder with input length n:
Input: x[n—1:0] € {0,1}".
Output: y[2" —1:0] € {0,1}*

Functionality:
) 1 ifx)=i
ylil = {)

0 otherwise.

Number of outputs of a decoder is exponential in the number of
inputs. Note also that exactly one bit of the output ¥ is set to one.
Such a representation of a number is often termed one-hot
encoding or 1-out-of-k encoding.

Consider a decoder DECODER(3). On input x = 101, the output y
equals 00100000.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Application of decoders

An example of how a decoder is used is in decoding of controller
instructions. Suppose that each instruction is coded by an 4-bit
string. Our goal is to determine what instruction is to be executed.
For this purpose, we feed the 4 bits to a DECODER(4). There are
16 outputs, exactly one of which will equal 1. This output will
activate a module that should be activated in this instruction.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Brute force design

@ simplest way: build a separate circuit for every output bit y/[i].

@ The circuit for y[i] is simply a product of n literals.

o letv = bin,(i), i.e., v is the binary representation of the
index i.

o define the minterm p, to be p, = (¥ - £%--- £¥), where:

VA{XJ if vj =1
EJ: - . o
x; ifvi=0.

y[il = pv.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

analysis: brute force design

The brute force decoder circuit consists of:
@ n inverters used to compute INV(X), and
@ a separate AND(n)-tree for every output y|[i].
@ The delay of the brute force design is
tod (INV) + toq(AND(n)-tree) = O(log, n).
@ The cost of the brute force design is ©(n - 2"), since we have
an AND(n)-tree for each of the 2" outputs.

Wasteful because, if the binary representation of i and j differ in a
single bit, then the AND-trees of y[i] and y|[j] share all but a single
input. Hence the product of n — 1 bits is computed twice.

We present a systematic way to share hardware between different
outputs.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

An asymptotically optimal decoder design

Base case DECODER(1):

The circuit DECODER(1) is simply one inverter where:

y[0] < 1Nnv(x[0]) and y[1] < x[0].

Reduction rule DECODER(n):

We assume that we know how to design decoders with input
length less than n, and design a decoder with input length n.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

aplk—1:0] = alk—1:0]

k

Decoder(k)

Ri2F—1:0]12"

R[r]

nk o ok
nl—k=1:00 pe | 22 o
E) Decoder(n — k) array of
zn—1:k
x[n] Q" * —1:0) AND-gates .
ylg- 2"+ 7]

Figure: A recursive implementation of DECODER(n).

Claim (Correctness)

ylil=1 <= (x[n—1:0])=1.

Cost analysis

We denote the cost and delay of DECODER(n) by ¢(n) and d(n),
respectively. The cost c(n) satisfies the following recurrence
equation:

o(n) = {C(INV) if n=1

c(k) 4+ c(n— k) +2"- c(AND) otherwise.

It follows that, up to constant factors

1. ifn=1
e = {c(k) +c(n—k)+2" ifn>1. @)

Obviously, c(n) = Q(2") (regardless of the value of k).

c(n) = 0(2") if k = [n/2].

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Delay analysis.

The delay of DECODER(n) satisfies the following recurrence
equation:

d(n) = { (INv) if n=1

max{d(k),d(n — k)} + d(AND) otherwise.

Set k = n/2. It follows that d(n) = ©(log n).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Asymptotic Optimality

For every decoder G of input length n:

d(G) = Q(log n)
c(G) = Q2.

© lower bound on delay : use log delay lower bound theorem.

©Q lower bound on cost? The proof is based on the following
observations:
@ Computing each output bit requires at least one nontrivial
gate.
@ No two output bits are identical.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Encoders

@ An encoder implements the inverse Boolean function
implemented by a decoder.

@ the Boolean function implemented by a decoder is not
surjective.

@ the range of the Boolean function implemented by a decoder
is the set of binary vectors in which exactly one bit equals 1.

o It follows that an encoder implements a partial Boolean
function (i.e., a function that is not defined for every binary
string).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Hamming Distance and Weight

The Hamming distance between two binary strings u,v € {0,1}" is
defined by

dist(u,v) = {i | uj # vi}.

Definition

The Hamming weight of a binary string u € {0,1}" equals
dist(u,0"). Namely, the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string 3 by wt(3),
namely,

wt(aln —1:0]) £ |{i : a[i] # 0}.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Concatenation of strings

Recall that the concatenation of the strings a and b is denoted by
aob.

Definition

The binary string obtained by i/ concatenations of the string a is
denoted by a'.

Consider the following examples of string concatenation:
@ If a=01and b =10, then ao b =0110.
o Ifa=1andi=>5, then a’ = 11111.
o If a=01and i = 3, then a' = 010101.

@ We denote the zeros string of length n by 0" (beware of
confusion between exponentiation and concatenation of the
binary string 0).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Definition of Encoder function

We define the encoder partial function as follows.

Definition

The function ENCODER,, : {¥ € {0,1}?" : wt(y) = 1} — {0,1}" is
defined as follows: (ENCODER,(Y)) equals the index of the bit of
y[2" — 1 : 0] that equals one. Formally,

wt(y) = 1 = y[(ENCODER,(y))] = L.

Examples:
© ENCODER3(0001) = 00, ENCODER3(0010) = 01,
ENCODER3(0100) = 10, ENCODER3(1000) = 11.

@ ENCODER,(02""%1 010 0%) = bin,(k).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Encoder circuit - definition

Definition

An encoder with input length 2" and output length n is a
combinational circuit that implements the Boolean function
ENCODER,,.

We denote an encoder with input length 2" and output length n by
ENCODER(n). An ENCODER(n) can be also specified as follows:

Input: y[2" —1:0] € {0,1}*".
Output: x[n—1:0] € {0,1}".
Functionality: If wt(y) = 1, let i denote the index such that

y[i] = 1. In this case X should satisfy (X) = i.
Formally:

wi(y) =1 = y[{X)]=1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Encoder - remarks

@ functionality is not specified for all inputs y.

o functionality is only specified for inputs whose Hamming
weight equals one.

@ Since an encoder is a combinational circuit, it implements a
Boolean function. This means that it outputs a digital value
even if wt(y) # 1. Thus, two encoders must agree only with
respect to inputs whose Hamming weight equals one.

@ If y is output by a decoder, then wt(y) =1, and hence an
encoder implements the inverse function of a decoder.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Brute Force Implementation

Recall that bin,(i)[j] denotes the jth bit in the binary
representation of /. Let A; denote the set

A= {iel0:2"—1]| bin,(I\[j] = 1}.

Ifwt(y) =1, then x[j] = \/,€Aj yli]-

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Brute Force Implementation - cont

Ifwt(y) =1, then x[j] = \/,€Aj yli]-

Implementing an ENCODER(n):
@ For each output x;, use a separate OR-tree whose inputs are
Wi i€ A,
@ Each such OR-tree has at most 2" inputs.
@ the cost of each OR-tree is O(2").
@ total cost is O(n-2").
@ The delay of each OR-tree is O(log2") = O(n).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Can we do better?

@ We will prove that the cone of the first output is (2").

@ So for every encoder C: ¢(C) = Q(2") and d(C) = Q(n).

@ The brute force design is not that bad. Can we reduce the
cost?

o Let's try...

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

ENCODER/(n) - a recursive design

For n =1, is simply x[0] < y[1].
Reduction step:

yi[2"t —1:0] = y[2" —1:2"1]
yr2"T—1:01 =yt —1:0].

Use two ENCODER’(n — 1) with inputs y; and yg. But,
wi(y) = 1= (wi(yi) = 0) V (wt(yr) = 0).

What does an encoder output when input all-zeros?

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Augmenting functionality

Augment the definition of the ENCODER,, function so that its
domain also includes the all-zeros string 0%". We define

ENCODER,(0%") = 0.

Note that ENCODER’(1) (i.e., x[0] < y[1]) also meets this new
condition, so the induction basis of the correctness proof holds.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Reduction step for ENCODER’(n)

yr[2" = 1:0] yr[2" =110
Sylr—1:2m] Syt —1:0)
on-t - J(
ENCODER'(n — 1) ENCODER'(n — 1)
bln—2:0]fn-1 aln —2:0/yn-1
||

OR-tree(2" 1) OR(n —1)
% # -1
x[n — 1] z[n—2:0]

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Correctness

The circuit ENCODER/(n) implements the Boolean function

ENCODER,,.
yr[2" —1:0] yp[2" ™t —1:0]
Sy[2n—1:277 Syt —1:0]
27171 ;
27171 /\/
ENCODER’(n — 1) ENCODER'(n — 1)
b[an:O]Tnfl a[an:O]Tnfl
||

OR-tree(2"~1) OR(n — 1)

T 1 */n -1

z[n—1] zn—2:0]

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Cost Analysis

0 ifn=1
2 - ¢(ENCODER/(n — 1))
+c(OR-tree(2"1))

+(n—1) - c(or) if n> 1.

c(ENCODER/(n)) =

Let c(n) £ c(ENCODER'(n))/c(OR).

0 ifn=1
C(n):{2'C(n_1)_’_(2n—1_1+n_1) if n> 1. @

c(n) =0O(n-2").

So c(ENCODER'(n)) (asymptotically) equals the cost of the brute
force design...

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Reducing The Cost

Ifwt(y[2" —1:0]) <1, then

ENCODER,,_1(OR(V, Vr))
= OR(ENCODER,_1()1), ENCODER ,_1(¥R)).-

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

yL[Q"_l —1:0]
Sy 1
on~!

ENCODER'(n — 1)

bn—2:0/ yn—-1

rl2t =120
é y[Qn—l —1: 0]

271—1

ENCODER'(n — 1)

OR-tree(2" 1)

z[n —1]

aln—2:0]yn-1
OR(n — 1) 2 I
gn—1 e
/‘/n -1 .
xzn —2:0]
oRr(2"1)
ot

OR-tree(2" 1)

ENCODER*(n — 1)

%1

x[n — 1]

Correctness?

) Jr
211—1 2’”71
or(2"")
21171
OR-tree(2" 1) ENCODER*(n — 1)
1 n—1
xn —1] xzn—2:0]

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Definition

Two combinational circuits are functionally equivalent if they
implement the same Boolean function.

Ifwt(y[2" —1:0]) <1, then

ENCODER;,_1(OR(Y, Yr)) = OR(ENCODER,,_1(¥|), ENCODER,,_1(Y¥R))-

ENCODER/(n) and ENCODER*(n) are functionally equivalent.

ENCODER*(n) implements the ENCODER,, function.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Cost analysis

The cost of ENCODER*(n) satisfies the following recurrence
equation:

0 if n=1
c¢(ENCODER*(n — 1)) + (2" — 1) - c(OR) otherwis

c(ENCODER"(n)) = {

C(2%) £ c(ENcODER*(k))/c(OR). Then,

0 if k=0
c(@") = {C(zk—l) + (2K —1) - c¢(0R) otherwise.

we conclude that C(2k) = ©(2%).

c(ENCODER*(n)) = ©(2") - c(OR).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Delay analysis

The delay of ENCODER*(n) satisfies the following recurrence
equation:

0 if n=1
d(ENCODER*(n)) = { max{d(ORr-tree(2""1)),
d(ENCODER*(n — 1) + d(OR))} otherwise.

Since d(OR-tree(2""1)) = (n — 1) - d(OR), it follows that

d(ENCODER"(n)) = n - d(OR).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Asymptotic Optimality

Our goal is to prove that the encoder design we presented is
optimal.

For every encoder G of input length n:

Let fo: {0,1}%" — {0,1} denote the Boolean function
implemented by the output x[0]. We claim that

{2i+1]0<i<2"—1} C cone(fy).

Indeed, consider y = 02" and z = f/iP2i+1()/)- O

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

We discussed:
@ buses
@ decoders

@ encoders

Guy Even, Moti Medina

Digital Logic Design: a rigorous approach ©

Three main techniques were used in this chapter.
@ Divide & Conquer - a recursive design methodology.

@ Extend specification to make problem easier. Adding
restrictions to the specification made the task easier since we
were able to add assumptions in our recursive designs.

@ Evolution. Naive, correct, costly design. Improved while
preserving functionality to obtain a cheaper design.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

