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Buses

Example

an adder and a register (a memory device). The output of the
adder should be stored by the register. Different name to each bit?!

Definition

A bus is a set of wires that are connected to the same modules.
The width of a bus is the number of wires in the bus.

Example

PCI bus is used to connect hardware devices (e.g., network cards,
sound cards, USB adapters) to the main memory.

In our settings, we consider wires instead of nets.
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Indexing conventions

1 Connection of terminals is done by assignment statements:
The statement b[0 : 3]← a[0 : 3] means connect a[i ] to b[i ].

2 “Reversing” of indexes does not take place unless explicitly
stated: b[i : j]← a[i : j] and b[i : j]← a[j : i ], have the same
meaning, i.e., b[i ]← a[i ], . . . , b[j]← a[j].

3 “Shifting” is done by default: a[0 : 3]← b[4 : 7], meaning
that a[0]← b[4], a[1]← b[5], etc. We refer to such an implied
re-assignment of indexes as hardwired shifting.
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Example - 1
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Figure: Vector notation: multiple instances of the same gate.
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Figure: Vector notation: b feeds all the gates.
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Reminder: Binary Representation

Recall that 〈a[n − 1 : 0]〉n denotes the binary number represented
by an n-bit vector ~a.

〈a[n − 1 : 0]〉n
△
=

n−1
∑

i=0

ai · 2
i .

Definition

Binary representation using n-bits is a function
binn : {0, 1, . . . , 2n − 1} → {0, 1}n that is the inverse function of
〈·〉. Namely, for every a[n − 1 : 0] ∈ {0, 1}n,

binn(〈a[n − 1 : 0]〉n) = a[n − 1 : 0].
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Division in Binary Representation

r = (a mod b):

a = q · b + r , where 0 ≤ r < b.

Claim

Let s = 〈x [n − 1 : 0]〉n, and 0 ≤ k ≤ n− 1. Let q and r denote the

quotient and remainder obtained by dividing s by 2k . Define the

binary strings xR [k − 1 : 0] and xL[n − 1 : n− k − 1] as follows.

xR [k − 1 : 0]
△
= x [k − 1 : 0]

xL[n − k − 1 : 0]
△
= x [n − 1 : k].

Then,

q = 〈xL[n − k − 1 : 0]〉

r = 〈xR [k − 1 : 0]〉.
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Definition of Decoder

Definition

A decoder with input length n is a combinational circuit specified
as follows:

Input: x [n − 1 : 0] ∈ {0, 1}n.

Output: y [2n − 1 : 0] ∈ {0, 1}2
n

Functionality:

y [i ]
△
=

{

1 if 〈~x〉 = i

0 otherwise.

We denote a decoder with input length n by decoder(n).
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Definition of Decoder

Definition

A decoder with input length n:

Input: x [n − 1 : 0] ∈ {0, 1}n.

Output: y [2n − 1 : 0] ∈ {0, 1}2
n

Functionality:

y [i ]
△
=

{

1 if 〈~x〉 = i

0 otherwise.

Number of outputs of a decoder is exponential in the number of
inputs. Note also that exactly one bit of the output ~y is set to one.
Such a representation of a number is often termed one-hot
encoding or 1-out-of-k encoding.

Example

Consider a decoder decoder(3). On input x = 101, the output y

equals 00100000.
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Application of decoders

An example of how a decoder is used is in decoding of controller
instructions. Suppose that each instruction is coded by an 4-bit
string. Our goal is to determine what instruction is to be executed.
For this purpose, we feed the 4 bits to a decoder(4). There are
16 outputs, exactly one of which will equal 1. This output will
activate a module that should be activated in this instruction.
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Brute force design

simplest way: build a separate circuit for every output bit y [i ].

The circuit for y [i ] is simply a product of n literals.

Let v
△
= binn(i), i.e., v is the binary representation of the

index i .

define the minterm pv to be pv
△
= (ℓv

1 · ℓ
v
2 · · · ℓ

v
n), where:

ℓv
j

△
=

{

xj if vj = 1

x̄j if vj = 0.

Claim

y [i ] = pv .
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analysis: brute force design

The brute force decoder circuit consists of:

n inverters used to compute inv(~x), and

a separate and(n)-tree for every output y [i ].

The delay of the brute force design is
tpd(inv) + tpd(and(n)-tree) = O(log2 n).

The cost of the brute force design is Θ(n · 2n), since we have
an and(n)-tree for each of the 2n outputs.

Wasteful because, if the binary representation of i and j differ in a
single bit, then the and-trees of y [i ] and y [j] share all but a single
input. Hence the product of n − 1 bits is computed twice.
We present a systematic way to share hardware between different
outputs.
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An asymptotically optimal decoder design

Base case decoder(1):
The circuit decoder(1) is simply one inverter where:
y [0]← inv(x [0]) and y [1]← x [0].
Reduction rule decoder(n):
We assume that we know how to design decoders with input
length less than n, and design a decoder with input length n.
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Decoder(k)

k

2k

xR[k − 1 : 0]
△
= x[k − 1 : 0]

R[2k − 1 : 0]

Decoder(n− k)

andq,r

y[q · 2k + r]

Q[q]

R[r]

2n−k × 2k

array of

and-gates
Q[2n−k − 1 : 0]

n− k 2n−kxL[n− k − 1 : 0]

x[n− 1 : k]

△
=

Figure: A recursive implementation of decoder(n).

Claim (Correctness)

y [i ] = 1 ⇐⇒ 〈x [n − 1 : 0]〉 = i .



Cost analysis

We denote the cost and delay of decoder(n) by c(n) and d(n),
respectively. The cost c(n) satisfies the following recurrence
equation:

c(n) =

{

c(inv) if n=1

c(k) + c(n − k) + 2n · c(and) otherwise.

It follows that, up to constant factors

c(n) =

{

1· if n = 1

c(k) + c(n − k) + 2n if n > 1.
(1)

Obviously, c(n) = Ω(2n) (regardless of the value of k).

Claim

c(n) = O(2n) if k = ⌈n/2⌉.
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Delay analysis.

The delay of decoder(n) satisfies the following recurrence
equation:

d(n) =

{

d(inv) if n=1

max{d(k), d(n − k)}+ d(and) otherwise.

Set k = n/2. It follows that d(n) = Θ(log n).
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Asymptotic Optimality

Theorem

For every decoder G of input length n:

d(G ) = Ω(log n)

c(G ) = Ω(2n).

Proof.

1 lower bound on delay : use log delay lower bound theorem.
2 lower bound on cost? The proof is based on the following

observations:

Computing each output bit requires at least one nontrivial
gate.
No two output bits are identical.
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Encoders

An encoder implements the inverse Boolean function
implemented by a decoder.

the Boolean function implemented by a decoder is not
surjective.

the range of the Boolean function implemented by a decoder
is the set of binary vectors in which exactly one bit equals 1.

It follows that an encoder implements a partial Boolean
function (i.e., a function that is not defined for every binary
string).
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Hamming Distance and Weight

Definition

The Hamming distance between two binary strings u, v ∈ {0, 1}n is
defined by

dist(u, v)
△
= {i | ui 6= vi}.

Definition

The Hamming weight of a binary string u ∈ {0, 1}n equals
dist(u, 0n). Namely, the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string ~a by wt(~a),
namely,

wt(a[n − 1 : 0])
△
= |{i : a[i ] 6= 0}|.
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Concatenation of strings

Recall that the concatenation of the strings a and b is denoted by
a ◦ b.

Definition

The binary string obtained by i concatenations of the string a is
denoted by ai .

Consider the following examples of string concatenation:

If a = 01 and b = 10, then a ◦ b = 0110.

If a = 1 and i = 5, then ai = 11111.

If a = 01 and i = 3, then ai = 010101.

We denote the zeros string of length n by 0n (beware of
confusion between exponentiation and concatenation of the
binary string 0).
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Definition of Encoder function

We define the encoder partial function as follows.

Definition

The function encodern : {~y ∈ {0, 1}2
n

: wt(~y) = 1} → {0, 1}n is
defined as follows: 〈encodern(~y)〉 equals the index of the bit of
y [2n − 1 : 0] that equals one. Formally,

wt(y) = 1 =⇒ y [〈encodern(~y)〉] = 1.

Examples:

1 encoder3(0001) = 00, encoder3(0010) = 01,
encoder3(0100) = 10, encoder3(1000) = 11.

2 encodern(0
2n

−k−1 ◦ 1 ◦ 0k) = binn(k).
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Encoder circuit - definition

Definition

An encoder with input length 2n and output length n is a
combinational circuit that implements the Boolean function
encodern.

We denote an encoder with input length 2n and output length n by
encoder(n). An encoder(n) can be also specified as follows:

Input: y [2n − 1 : 0] ∈ {0, 1}2
n

.

Output: x [n − 1 : 0] ∈ {0, 1}n.

Functionality: If wt(~y) = 1, let i denote the index such that
y [i ] = 1. In this case ~x should satisfy 〈~x〉 = i .
Formally:

wt(~y) = 1 =⇒ y [〈~x〉] = 1.
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Encoder - remarks

functionality is not specified for all inputs ~y .

functionality is only specified for inputs whose Hamming
weight equals one.

Since an encoder is a combinational circuit, it implements a
Boolean function. This means that it outputs a digital value
even if wt(y) 6= 1. Thus, two encoders must agree only with
respect to inputs whose Hamming weight equals one.

If ~y is output by a decoder, then wt(~y ) = 1, and hence an
encoder implements the inverse function of a decoder.
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Brute Force Implementation

Recall that binn(i)[j] denotes the jth bit in the binary
representation of i . Let Aj denote the set

Aj
△
= {i ∈ [0 : 2n − 1] | binn(i)[j] = 1}.

Claim

If wt(y) = 1, then x [j] =
∨

i∈Aj
y [i ].
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Brute Force Implementation - cont

Claim

If wt(y) = 1, then x [j] =
∨

i∈Aj
y [i ].

Implementing an encoder(n):

For each output xj , use a separate or-tree whose inputs are
{y [i ] | i ∈ Aj}.

Each such or-tree has at most 2n inputs.

the cost of each or-tree is O(2n).

total cost is O(n · 2n).

The delay of each or-tree is O(log 2n) = O(n).
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Can we do better?

We will prove that the cone of the first output is Ω(2n).

So for every encoder C : c(C ) = Ω(2n) and d(C ) = Ω(n).

The brute force design is not that bad. Can we reduce the
cost?

Let’s try...
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encoder
′(n) - a recursive design

For n = 1, is simply x [0]← y [1].
Reduction step:

yL[2
n−1 − 1 : 0] = y [2n − 1 : 2n−1]

yR [2n−1 − 1 : 0] = y [2n−1 − 1 : 0].

Use two encoder
′(n − 1) with inputs ~yL and ~yR . But,

wt(~y) = 1⇒ (wt(~yL) = 0) ∨ (wt( ~yR) = 0).

What does an encoder output when input all-zeros?
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Augmenting functionality

Augment the definition of the encodern function so that its
domain also includes the all-zeros string 02n

. We define

encodern(0
2n

)
△
= 0n.

Note that encoder
′(1) (i.e., x [0]← y [1]) also meets this new

condition, so the induction basis of the correctness proof holds.
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Reduction step for encoder
′(n)

n − 1 n − 1

or(n− 1)

n − 1

x[n− 2 : 0]

2n−1

1

△
= y[2n − 1 : 2n−1]

△
= y[2n−1 − 1 : 0]

2n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder
′(n− 1) encoder

′(n− 1)

x[n− 1]

yL[2n−1 − 1 : 0] yR[2n−1 − 1 : 0]
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Correctness

Claim

The circuit encoder
′(n) implements the Boolean function

encodern.

n − 1 n − 1

or(n− 1)

n − 1

x[n− 2 : 0]

2n−1

1

△
= y[2n − 1 : 2n−1]

△
= y[2n−1 − 1 : 0]

2n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder
′(n− 1) encoder

′(n− 1)

x[n− 1]

yL[2n−1 − 1 : 0] yR[2n−1 − 1 : 0]
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Cost Analysis

c(encoder
′(n)) =























0 if n = 1

2 · c(encoder
′(n − 1))

+c(or-tree(2n−1))

+(n − 1) · c(or) if n > 1.

Let c(n)
△
= c(encoder

′(n))/c(or).

c(n) =

{

0 if n = 1

2 · c(n − 1) + (2n−1 − 1 + n − 1) if n > 1.
(2)

Claim

c(n) = Θ(n · 2n).

So c(encoder
′(n)) (asymptotically) equals the cost of the brute

force design...
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Reducing The Cost

Claim

If wt(y [2n − 1 : 0]) ≤ 1, then

encodern−1(or(~yL, ~yR))

= or(encodern−1(~yL),encodern−1(~yR)).
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n − 1 n − 1

or(n− 1)

n − 1

x[n− 2 : 0]

2n−1

1

△
= y[2n − 1 : 2n−1]

△
= y[2n−1 − 1 : 0]

2n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder
′(n− 1) encoder

′(n− 1)

x[n− 1]

yL[2n−1 − 1 : 0] yR[2n−1 − 1 : 0]

2n−1

n − 1

encoder
∗(n− 1)

1

or-tree(2n−1)

x[n− 1]

2n−1

or(2n−1)

2n−1

x[n− 2 : 0]

~yL ~yR



Correctness?

2n−1

n − 1

encoder
∗(n− 1)

1

or-tree(2n−1)

x[n− 1]

2n−1

or(2n−1)

2n−1

x[n− 2 : 0]

~yL ~yR
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Definition

Two combinational circuits are functionally equivalent if they
implement the same Boolean function.

Claim

If wt(y [2n − 1 : 0]) ≤ 1, then

encodern−1(or(~yL, ~yR)) = or(encodern−1(~yL),encodern−1(~yR)).

Claim

encoder
′(n) and encoder

∗(n) are functionally equivalent.

Corollary

encoder
∗(n) implements the encodern function.
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Cost analysis

The cost of encoder
∗(n) satisfies the following recurrence

equation:

c(encoder
∗(n)) =

{

0 if n=1

c(encoder
∗(n − 1)) + (2n − 1) · c(or) otherwise.

C (2k)
△
= c(encoder

∗(k))/c(or). Then,

C (2k) =

{

0 if k=0

C (2k−1) + (2k − 1) · c(or) otherwise.

we conclude that C (2k) = Θ(2k).

Claim

c(encoder
∗(n)) = Θ(2n) · c(or).
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Delay analysis

The delay of encoder
∗(n) satisfies the following recurrence

equation:

d(encoder
∗(n)) =











0 if n=1

max{d(or-tree(2n−1)),

d(encoder
∗(n − 1) + d(or))} otherwise.

Since d(or-tree(2n−1)) = (n − 1) · d(or), it follows that

d(encoder
∗(n)) = n · d(or).
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Asymptotic Optimality

Our goal is to prove that the encoder design we presented is
optimal.

Theorem

For every encoder G of input length n:

d(G ) = Ω(n)

c(G ) = Ω(2n).

Proof.

Let f0 : {0, 1}2
n

→ {0, 1} denote the Boolean function
implemented by the output x [0]. We claim that

{2i + 1 | 0 ≤ i ≤ 2n − 1} ⊆ cone(f0).

Indeed, consider y = 02n

and z
△
= flip2i+1(y).
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Summary - 1

We discussed:

buses

decoders

encoders
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Summary - 2

Three main techniques were used in this chapter.

Divide & Conquer - a recursive design methodology.

Extend specification to make problem easier. Adding
restrictions to the specification made the task easier since we
were able to add assumptions in our recursive designs.

Evolution. Naive, correct, costly design. Improved while
preserving functionality to obtain a cheaper design.
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