Digital Logic Design: a rigorous approach © Chapter 13: Decoders and Encoders

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

January 24, 2013

Book Homepage:

http://www.eng.tau.ac.il/~guy/Even-Medina

Buses

Example

an adder and a register (a memory device). The output of the adder should be stored by the register. Different name to each bit?!

Definition

A *bus* is a set of wires that are connected to the same modules. The *width* of a bus is the number of wires in the bus.

Example

PCI bus is used to connect hardware devices (e.g., network cards, sound cards, USB adapters) to the main memory.

In our settings, we consider wires instead of nets.

Indexing conventions

- **①** Connection of terminals is done by assignment statements: The statement $b[0:3] \leftarrow a[0:3]$ means connect a[i] to b[i].
- **②** "Reversing" of indexes does not take place unless explicitly stated: $b[i:j] \leftarrow a[i:j]$ and $b[i:j] \leftarrow a[j:i]$, have the same meaning, i.e., $b[i] \leftarrow a[i], \ldots, b[j] \leftarrow a[j]$.
- ③ "Shifting" is done by default: $a[0:3] \leftarrow b[4:7]$, meaning that $a[0] \leftarrow b[4]$, $a[1] \leftarrow b[5]$, etc. We refer to such an implied re-assignment of indexes as hardwired shifting.

Example - 1

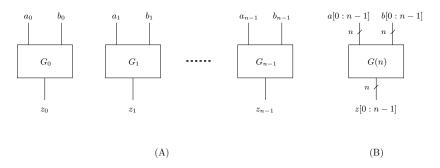


Figure: Vector notation: multiple instances of the same gate.

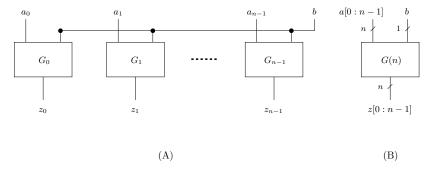


Figure: Vector notation: b feeds all the gates.

Reminder: Binary Representation

Recall that $\langle a[n-1:0]\rangle_n$ denotes the binary number represented by an *n*-bit vector \vec{a} .

$$\langle a[n-1:0]\rangle_n \stackrel{\triangle}{=} \sum_{i=0}^{n-1} a_i \cdot 2^i.$$

Definition

Binary representation using n-bits is a function $bin_n: \{0,1,\ldots,2^n-1\} \to \{0,1\}^n$ that is the inverse function of $\langle \cdot \rangle$. Namely, for every $a[n-1:0] \in \{0,1\}^n$,

$$bin_n(\langle a[n-1:0]\rangle_n) = a[n-1:0].$$

Division in Binary Representation

$$r = (a \mod b)$$
:

$$a = q \cdot b + r$$
, where $0 \le r < b$.

Claim

Let $s = \langle x[n-1:0] \rangle_n$, and $0 \le k \le n-1$. Let q and r denote the quotient and remainder obtained by dividing s by 2^k . Define the binary strings $x_R[k-1:0]$ and $x_L[n-1:n-k-1]$ as follows.

$$x_R[k-1:0] \stackrel{\triangle}{=} x[k-1:0]$$
$$x_L[n-k-1:0] \stackrel{\triangle}{=} x[n-1:k].$$

Then,

$$q = \langle x_L[n-k-1:0] \rangle$$

$$r = \langle x_R[k-1:0] \rangle.$$

Definition of Decoder

Definition

A decoder with input length n is a combinational circuit specified as follows:

Input:
$$x[n-1:0] \in \{0,1\}^n$$
.
Output: $y[2^n-1:0] \in \{0,1\}^{2^n}$

Functionality:

$$y[i] \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \langle \vec{x} \rangle = i \\ 0 & \text{otherwise.} \end{cases}$$

We denote a decoder with input length n by DECODER(n).

Definition of Decoder

Definition

A decoder with input length *n*:

Input: $x[n-1:0] \in \{0,1\}^n$.

Output: $y[2^n - 1:0] \in \{0,1\}^{2^n}$

Functionality:

$$y[i] \stackrel{\triangle}{=} egin{cases} 1 & ext{if } \langle \vec{x} \rangle = i \\ 0 & ext{otherwise}. \end{cases}$$

Number of outputs of a decoder is exponential in the number of inputs. Note also that exactly one bit of the output \vec{y} is set to one. Such a representation of a number is often termed one-hot encoding or 1-out-of-k encoding.

Example

Consider a decoder DECODER(3). On input x = 101, the output y equals 00100000.

Application of decoders

An example of how a decoder is used is in decoding of controller instructions. Suppose that each instruction is coded by an 4-bit string. Our goal is to determine what instruction is to be executed. For this purpose, we feed the 4 bits to a DECODER(4). There are 16 outputs, exactly one of which will equal 1. This output will activate a module that should be activated in this instruction.

Brute force design

- simplest way: build a separate circuit for every output bit y[i].
- The circuit for y[i] is simply a product of n literals.
- Let $v \stackrel{\triangle}{=} bin_n(i)$, i.e., v is the binary representation of the index i.
- define the minterm p_v to be $p_v \stackrel{\triangle}{=} (\ell_1^v \cdot \ell_2^v \cdots \ell_n^v)$, where:

$$\ell_j^{\mathsf{v}} \stackrel{\triangle}{=} \begin{cases} x_j & \text{if } \mathsf{v}_j = 1 \\ \bar{x}_j & \text{if } \mathsf{v}_j = 0. \end{cases}$$

Claim

$$y[i] = p_v$$
.

analysis: brute force design

The brute force decoder circuit consists of:

- n inverters used to compute INV (\vec{x}) , and
- a separate AND(n)-tree for every output y[i].
- The delay of the brute force design is $t_{pd}(INV) + t_{pd}(AND(n)-tree) = O(\log_2 n)$.
- The cost of the brute force design is $\Theta(n \cdot 2^n)$, since we have an AND(n)-tree for each of the 2^n outputs.

Wasteful because, if the binary representation of i and j differ in a single bit, then the AND-trees of y[i] and y[j] share all but a single input. Hence the product of n-1 bits is computed twice.

We present a systematic way to share hardware between different outputs.

An asymptotically optimal decoder design

Base case DECODER(1):

The circuit DECODER(1) is simply one inverter where:

 $y[0] \leftarrow \text{INV}(x[0]) \text{ and } y[1] \leftarrow x[0].$

Reduction rule DECODER(n):

We assume that we know how to design decoders with input length less than n, and design a decoder with input length n.

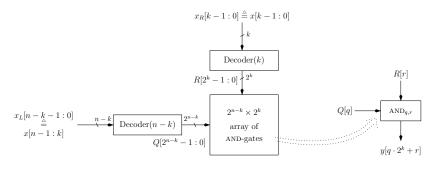


Figure: A recursive implementation of DECODER(n).

Claim (Correctness)

$$y[i] = 1 \iff \langle x[n-1:0] \rangle = i.$$

Cost analysis

We denote the cost and delay of DECODER(n) by c(n) and d(n), respectively. The cost c(n) satisfies the following recurrence equation:

$$c(n) = egin{cases} c(ext{INV}) & \text{if } n{=}1 \\ c(k) + c(n-k) + 2^n \cdot c(ext{AND}) & \text{otherwise.} \end{cases}$$

It follows that, up to constant factors

$$c(n) = \begin{cases} 1 & \text{if } n = 1\\ c(k) + c(n-k) + 2^n & \text{if } n > 1. \end{cases}$$
 (1)

Obviously, $c(n) = \Omega(2^n)$ (regardless of the value of k).

Claim

$$c(n) = O(2^n)$$
 if $k = \lceil n/2 \rceil$.

Delay analysis.

The delay of DECODER(n) satisfies the following recurrence equation:

$$d(n) = egin{cases} d(ext{INV}) & ext{if } n{=}1 \\ \max\{d(k), d(n-k)\} + d(ext{AND}) & ext{otherwise}. \end{cases}$$

Set k = n/2. It follows that $d(n) = \Theta(\log n)$.

Asymptotic Optimality

Theorem

For every decoder G of input length n:

$$d(G) = \Omega(\log n)$$

$$c(G)=\Omega(2^n).$$

Proof.

- 1 lower bound on delay: use log delay lower bound theorem.
- ② lower bound on cost? The proof is based on the following observations:
 - Computing each output bit requires at least one nontrivial gate.
 - No two output bits are identical.

Encoders

- An encoder implements the inverse Boolean function implemented by a decoder.
- the Boolean function implemented by a decoder is not surjective.
- the range of the Boolean function implemented by a decoder is the set of binary vectors in which exactly one bit equals 1.
- It follows that an encoder implements a partial Boolean function (i.e., a function that is not defined for every binary string).

Hamming Distance and Weight

Definition

The Hamming distance between two binary strings $u, v \in \{0, 1\}^n$ is defined by

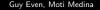
$$dist(u, v) \stackrel{\triangle}{=} \{i \mid u_i \neq v_i\}.$$

Definition

The Hamming weight of a binary string $u \in \{0,1\}^n$ equals $dist(u,0^n)$. Namely, the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string \vec{a} by $wt(\vec{a})$, namely,

$$wt(a[n-1:0]) \stackrel{\triangle}{=} |\{i:a[i] \neq 0\}|.$$



Concatenation of strings

Recall that the concatenation of the strings a and b is denoted by $a \circ b$.

Definiti<u>on</u>

The binary string obtained by i concatenations of the string a is denoted by a^i .

Consider the following examples of string concatenation:

- If a = 01 and b = 10, then $a \circ b = 0110$.
- If a = 1 and i = 5, then $a^i = 11111$.
- If a = 01 and i = 3, then $a^i = 010101$.
- We denote the zeros string of length n by 0^n (beware of confusion between exponentiation and concatenation of the binary string 0).

Definition of Encoder function

We define the encoder partial function as follows.

Definition

The function $\text{ENCODER}_n: \{\vec{y} \in \{0,1\}^{2^n}: wt(\vec{y})=1\} \to \{0,1\}^n$ is defined as follows: $\langle \text{ENCODER}_n(\vec{y}) \rangle$ equals the index of the bit of $y[2^n-1:0]$ that equals one. Formally,

$$wt(y) = 1 \Longrightarrow y[\langle \text{ENCODER}_n(\vec{y}) \rangle] = 1.$$

Examples:

- ENCODER₃(0001) = 00, ENCODER₃(0010) = 01, ENCODER₃(0100) = 10, ENCODER₃(1000) = 11.

Encoder circuit - definition

Definition

An encoder with input length 2^n and output length n is a combinational circuit that implements the Boolean function ENCODER_n .

We denote an encoder with input length 2^n and output length n by ENCODER(n). An ENCODER(n) can be also specified as follows:

Input:
$$y[2^n - 1:0] \in \{0,1\}^{2^n}$$
.

Output:
$$x[n-1:0] \in \{0,1\}^n$$
.

Functionality: If $wt(\vec{y}) = 1$, let i denote the index such that y[i] = 1. In this case \vec{x} should satisfy $\langle \vec{x} \rangle = i$. Formally:

$$wt(\vec{y}) = 1 \implies y[\langle \vec{x} \rangle] = 1.$$

Encoder - remarks

- functionality is not specified for all inputs \vec{y} .
- functionality is only specified for inputs whose Hamming weight equals one.
- Since an encoder is a combinational circuit, it implements a Boolean function. This means that it outputs a digital value even if $wt(y) \neq 1$. Thus, two encoders must agree only with respect to inputs whose Hamming weight equals one.
- If \vec{y} is output by a decoder, then $wt(\vec{y}) = 1$, and hence an encoder implements the inverse function of a decoder.

Brute Force Implementation

Recall that $bin_n(i)[j]$ denotes the jth bit in the binary representation of i. Let A_j denote the set

$$A_j \stackrel{\triangle}{=} \{i \in [0:2^n-1] \mid bin_n(i)[j] = 1\}.$$

Claim

If
$$wt(y) = 1$$
, then $x[j] = \bigvee_{i \in A_i} y[i]$.

Brute Force Implementation - cont

Claim

If
$$wt(y) = 1$$
, then $x[j] = \bigvee_{i \in A_i} y[i]$.

Implementing an ENCODER(n):

- For each output x_j , use a separate OR-tree whose inputs are $\{y[i] \mid i \in A_j\}$.
- Each such OR-tree has at most 2^n inputs.
- the cost of each OR-tree is $O(2^n)$.
- total cost is $O(n \cdot 2^n)$.
- The delay of each OR-tree is $O(\log 2^n) = O(n)$.

Can we do better?

- We will prove that the cone of the first output is $\Omega(2^n)$.
- So for every encoder C: $c(C) = \Omega(2^n)$ and $d(C) = \Omega(n)$.
- The brute force design is not that bad. Can we reduce the cost?
- Let's try...

$\operatorname{ENCODER}'(n)$ - a recursive design

For n = 1, is simply $x[0] \leftarrow y[1]$.

Reduction step:

$$y_L[2^{n-1} - 1:0] = y[2^n - 1:2^{n-1}]$$

 $y_R[2^{n-1} - 1:0] = y[2^{n-1} - 1:0].$

Use two ENCODER'(n-1) with inputs $\vec{y_L}$ and $\vec{y_R}$. But,

$$wt(\vec{y}) = 1 \Rightarrow (wt(\vec{y_L}) = 0) \lor (wt(\vec{y_R}) = 0).$$

What does an encoder output when input all-zeros?

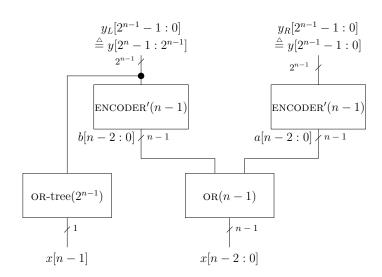
Augmenting functionality

Augment the definition of the ENCODER_n function so that its domain also includes the all-zeros string 0^{2^n} . We define

$$\mathrm{ENCODER}_n\big(0^{2^n}\big)\stackrel{\triangle}{=} 0^n.$$

Note that ENCODER'(1) (i.e., $x[0] \leftarrow y[1]$) also meets this new condition, so the induction basis of the correctness proof holds.

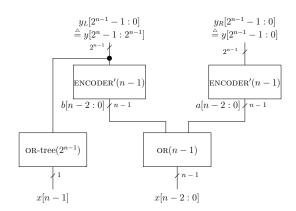
Reduction step for ENCODER'(n)



Correctness

Claim

The circuit encoder(n) implements the Boolean function ENCODER_n.



Cost Analysis

$$c(ext{ENCODER}'(n)) = egin{cases} 0 & ext{if } n=1 \ 2 \cdot c(ext{ENCODER}'(n-1)) & \ +c(ext{OR-tree}(2^{n-1})) & \ +(n-1) \cdot c(ext{OR}) & ext{if } n>1. \end{cases}$$

Let $c(n) \stackrel{\triangle}{=} c(\text{ENCODER}'(n))/c(\text{OR})$.

$$c(n) = \begin{cases} 0 & \text{if } n = 1\\ 2 \cdot c(n-1) + (2^{n-1} - 1 + n - 1) & \text{if } n > 1. \end{cases}$$
 (2)

Claim

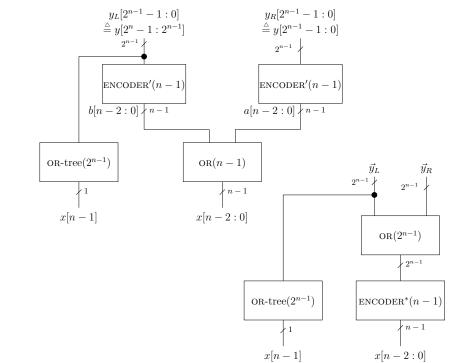
$$c(n) = \Theta(n \cdot 2^n).$$

So c(ENCODER'(n)) (asymptotically) equals the cost of the brute force design...

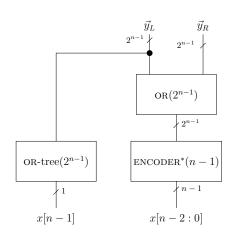
Reducing The Cost

Claim

If
$$\operatorname{wt}(y[2^n-1:0]) \leq 1$$
, then
$$\operatorname{ENCODER}_{n-1}(\operatorname{OR}(\vec{y}_L,\vec{y}_R))$$
$$= \operatorname{OR}(\operatorname{ENCODER}_{n-1}(\vec{y}_L),\operatorname{ENCODER}_{n-1}(\vec{y}_R)).$$



Correctness?



Definition

Two combinational circuits are functionally equivalent if they implement the same Boolean function.

Claim

If $wt(y[2^n - 1:0]) \le 1$, then

 $\text{ENCODER}_{n-1}(\text{OR}(\vec{y}_L, \vec{y}_R)) = \text{OR}(\text{ENCODER}_{n-1}(\vec{y}_L), \text{ENCODER}_{n-1}(\vec{y}_R)).$

Claim

ENCODER'(n) and $ENCODER^*(n)$ are functionally equivalent.

Corollary

ENCODER*(n) implements the ENCODER $_n$ function.

Cost analysis

The cost of encoder*(n) satisfies the following recurrence equation:

$$c(ext{ENCODER}^*(n)) = egin{cases} 0 & ext{if n=1} \ c(ext{ENCODER}^*(n-1)) + (2^n-1) \cdot c(ext{OR}) & ext{otherwise} \end{cases}$$

$$C(2^k) \stackrel{\triangle}{=} c(\text{ENCODER}^*(k))/c(\text{OR})$$
. Then,

$$C(2^k) = \begin{cases} 0 & \text{if } k=0\\ C(2^{k-1}) + (2^k - 1) \cdot c(OR) & \text{otherwise.} \end{cases}$$

we conclude that $C(2^k) = \Theta(2^k)$.

Claim

$$c(\text{ENCODER}^*(n)) = \Theta(2^n) \cdot c(\text{OR}).$$

Delay analysis

The delay of $ENCODER^*(n)$ satisfies the following recurrence equation:

$$d(\text{ENCODER}^*(n)) = \begin{cases} 0 & \text{if } n=1 \\ \max\{d(\text{OR-tree}(2^{n-1})), \\ d(\text{ENCODER}^*(n-1) + d(\text{OR}))\} & \text{otherwise.} \end{cases}$$

Since
$$d(\operatorname{OR-tree}(2^{n-1})) = (n-1) \cdot d(\operatorname{OR})$$
, it follows that
$$d(\operatorname{ENCODER}^*(n)) = n \cdot d(\operatorname{OR}).$$

Asymptotic Optimality

Our goal is to prove that the encoder design we presented is optimal.

Theorem

For every encoder G of input length n:

$$d(G) = \Omega(n)$$

$$c(G) = \Omega(2^n).$$

Proof.

Let $f_0: \{0,1\}^{2^n} \to \{0,1\}$ denote the Boolean function implemented by the output x[0]. We claim that

$${2i+1 \mid 0 \le i \le 2^n-1} \subseteq cone(f_0).$$

Indeed, consider $y = 0^{2^n}$ and $z \stackrel{\triangle}{=} flip_{2i+1}(y)$.

Summary - 1

We discussed:

- buses
- decoders
- encoders

Summary - 2

Three main techniques were used in this chapter.

- Divide & Conquer a recursive design methodology.
- Extend specification to make problem easier. Adding restrictions to the specification made the task easier since we were able to add assumptions in our recursive designs.
- Evolution. Naive, correct, costly design. Improved while preserving functionality to obtain a cheaper design.