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Preface

This solution manual provides the (hopefully correct) solutions to all numer-

ical problems of the text “Microwave Electronics”. Finding good problems to

stimulate students and to let them check their grasp of the theory is a challenge,

sometimes lost because problems turn out to be either too trivial or too complex.

We have tried to balance the two extremes, sometimes providing extra develop-

ments that are outside what the text of the problem literally asks for, and always

struggling to exploit realistic parameters (as far as our knowledge goes).

Although the problems have been used for years in a number of courses on

Microwave Electronics and RF Electronics we teach at Politecnico, the numerical

results provided, although mostly reasonable, certainly include some errors and

oversights. I would be glad to correct them if somebody points them out, e.g. by

email (addresses below).

Giovanni Ghione

giovanni.ghione@polito.it

Marco Pirola

marco.pirola@polito.it
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1 A system introduction to
microwave electronics

Problem 1 An antenna is working at a frequency of 100 kHz. Assuming the

antenna length equal to L = λ0/100, evaluate L.

Solution The free space wavelength at 100 kHz is:

λ0 =
c0
f

=
3× 108

100× 103
= 3000 m = 3 km

thus:

L =
λ0

100
= 30 m

not a pocket-size antenna.

Problem 2 A dielectric medium has ǫr = 9. Evaluate the free-space wavelength

at 10 GHz and the wavelength in the dielectric medium.

Solution The free space wavelength at 10 GHz is:

λ0 =
c0
f

=
3× 108

10× 109
= 0.03 m = 3 cm

while in the dielectric medium the velocity of light is c0/
√
ǫr, so that the wave-

length scales accordingly as:

λ =
c0

f
√
ǫr

=
3× 108

10× 109 ·
√
9
= 0.01 m = 1 cm.

Problem 3 Estimate the typical size of a distributed element operating at 100

MHz and at 50 GHz. Assume as the centerband dimension a quarter of the

wavelength and as the wavelength λ = λ0/n where λ0 is the free space wavelength

and n = 2.5 is the effective refractive index.

Solution The effective (guided) wavelength (n = 2.5) at 100 MHz is:

λg1 =
c0
nf

=
3× 108

2.5 · 100× 106
= 1.2 m

while at 50 GHz:

λg2 =
c0
nf

=
3× 108

2.5 · 50× 109
= 2.4 mm
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2 A system introduction to microwave electronics

thus the device length at centerband will be, in the two cases:

L1 =
λg1

4
= 30 cm

L2 =
λg2

4
= 0.6 mm.



2 Passive elements and circuit layout

Problem 1 A lossless quasi-TEM line has a 50 Ω impedance and an effective

permittivity ǫeff = 2. Evaluate the per-unit-length parameters L, C. Compute

the guided wavelength at 10 GHz.

Solution We have:

Z0 =

√

L
C

vf =
1√
LC

=
c0√
ǫeff

;

thus:

1

C =
Z0c0√
ǫeff

→ C =

√
ǫeff

Z0c0
=

√
2

50 · 3× 108
= 9.43× 10−11 F/m = 94.3 pF/m

L =
Z0

√
ǫeff

c0
=

50 ·
√
2

3× 108
= 2.36× 10−7 H/m = 236 nH/m.

The guided wavelength at 10 GHz is:

λg =
c0

f
√
ǫeff

=
3× 108

10× 109 ·
√
2
= 2.12 cm.

Problem 2 A lossy quasi-TEM line has a 50 Ω impedance. The dielectric atten-

uation is 0.1 dB/cm while the conductor attenuation is 1 dB/cm at 1 GHz.

Evaluate the per-unit-length parameters R, G. Estimate their values and the

resulting dielectric and conductor attenuation at 10 GHz. Assuming an effective

permittivity ǫeff = 7, evaluate the total loss over one guided wavelength at 10

GHz.

Solution The attenuations in natural units are:

αd =
0.1 · 100
8.6859

= 1.15 Np/m

αc =
1 · 100
8.6859

= 11.5 Np/m.

3



4 Passive elements and circuit layout

Then:

αd =
G
2Y0

→ G = 2Y0αd = 2 · 50−1 · 1.15 = 0.046 S/m

αc =
R
2Z0

→ R = 2Z0αc = 2 · 50 · 11.5 = 1150 Ω/m.

At 10 GHz the dielectric attenuation scales linearly and the conductor atten-

uation scales with the square root of frequency. Thus:

αd(10) = αd(1) ·
10

1
= 0.1 · 10

1
= 1 dB/cm

αc(10) = αc(1) ·
√
10

1
= 1 ·

√
10

1
= 3.16 dB/cm

At 10 GHz the guided wavelength is:

λg =
3√
7
cm = 1.13 cm

therefore the total loss over λg is:

(αc + αd)λg = (1 + 3.16) · 1.13 = 4.7 dB.

To verify the correctness of the high-frequency approximation we need to evaluate

all the per-unit-length parameters of the line. Since the characteristic impedance

is assumed as real, we cannot extract exactly the per-unit-length parameters but

we have to rely on the high-frequency approximation to be verified a posteriori.

From the high-frequency approximation we have:

C=
√
ǫeff

Z0c0
=

√
7

50 · 3× 108
= 176.4 pF/m

L =
Z0

√
ǫeff

c0
=

50 ·
√
7

3× 108
= 2.36× 10−7 H/m = 441 nH/m.

Then, let us evaluate the per-unit-length impedance and admittance at 1 GHz.

We obtain:

Y=jωC + G =j · 2π · 1× 109 · 176.4× 10−12 + 0.046 = 1.11j + 4.6× 10−2

Z=jωL+R = j · 2π · 1× 109 · 441× 10−9 + 1150 = 2.77× 103j+1.15× 103.

The high-frequency approximation is therefore well verified for the parallel

parameters but only marginally so for the series ones at 1 GHz. However, if

we derive back the impedance and attenuation from the p.u.l. parameters we

obtain:

Z0 =

√

Z
Y =

√

2.77× 103j + 1.15× 103

1.11j + 4.6× 10−2
= 51.1− j9.1 Ω

γ =
√
ZY=

√

(2.77× 103j + 1.15× 103) · (1.11j + 4.6× 10−2) =

= 12.45 + 56.34j m−1
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The attenuation obtained is similar to the one proposed:

αd + αc = 12.65 Np/m

and the effective permittivity is:

2π

λ0

√
ǫeff = 56.34 → ǫeff =

(

56.34 · 0.3
2π

)2

= 7.24

slightly different from the one proposed. However the imaginary part of the

impedance is far from being negligible. We conclude that with the parameters

given the high-frequency approximation is not entirely justified.

If we reduce losses in the initial data the approximation improves. Imagine in

fact to have at 1 GHz:

αd = 0.115 Np/m

αc = 1.15 Np/m.

The dissipative parameters are reduced by a factor of 10:

G = 0.0046 S/m

R = 115 Ω/m.

and therefore:

Y=jωC + G = 1.11j + 4.6× 10−3

Z=jωL+R = 2.77× 103j+1.15× 102.

Then:

Z0 =

√

Z
Y=

√

2.77× 103j + 1.15× 102

1.11j + 4.6× 10−3
= 49, 9− j0.93 Ω

γ =
√
ZY=

√

(2.77× 103j + 1.15× 102) · (1.11j + 4.6× 10−3) =

= 1.27 + 55.4× 101j m−1

where the imaginary part of the impedance is now negligible, while in the high-

frequency approximation:

γHF = α+ jβ = αd + αc + j
2π

λ0

√
ǫeff =

= 0.115 + 1.15 + j
2π

0.3

√
7 = 1.265 + 55.41j m−1 ≈ γ.

Problem 3 The conductivity of a 2 µm thick conductor is σ = 1× 105 S/m.

Evaluate the frequency at which the skin-effect penetration depth is equal to the

conductor thickness.

Solution Imposing that the skin penetration depth be δ = t where t = 2 µm

we obtain, from the definition of δ:

δ =

√

1

πµσf
= t
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from which:

f =
1

πµσt2
=

1

π · 4π × 10−7 · 1× 105 · (2× 10−6)2
= 633.32 GHz .

Problem 4 We suppose that the metal is non-magnetic; thus, µ = µ0 = 4π ×
10−7 H/m. For a good conductor (gold, copper...) we can assume σ ≈ 1× 107

S/m and in this case:

f =
1

π · 4π × 10−7 · 4× 107 · (2× 10−6)2
= 1.58 GHz.

Problem 5 A lossless transmission line with 50 Ω characteristic impedance

and 5 mm guided wavelength is closed on ZL = 50 + j50 Ω. Compute the input

impedance for a 2.5 and 1.25 mm long line.

Solution We have:

λg = 5× 10−3 m → β =
2π

λg
=

2π

5× 10−3
= 1256.7 m−1.

The input impedance can be evaluated from:

Zi = Z0
ZL + jZ0 tan (βl)

Z0 + jZL tan (βl)

We have for l1 = 2.5 mm:

Zi (l1) = Z0
ZL + jZ0 tan (βl1)

Z0 + jZL tan (βl1)
=

= 50 · 50 + j50 + j50 · tan
(

1256.7 · 2.5× 10−3
)

50 + j (50 + j50) tan (1256.7 · 2.5× 10−3)
=

= 50 + j50 Ω

that is not surprising, since the line is a half wavelength and therefore the input

impedance is the same as the load impedance. Then for l2 = 1.25 mm:

Zi (l2) = Z0
ZL + jZ0 tan (βl2)

Z0 + jZL tan (βl2)
=

= 50 · 50 + j50 + j50 · tan
(

1256.7 · 1.25× 10−3
)

50 + j (50 + j50) tan (1256.7 · 1.25× 10−3)
=

= 25− j25 Ω

The line length is a quarter wavelength and therefore we should have:

Zi =
Z2
0

ZL
=

502

50 + j50
= 25− j25 Ω.

Problem 6 In a MIM capacitor the dielectric is 100 nm thick, width permittivity

equal to 2. What is the capacitance per mm2 area?
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Solution We have:

C =
ǫǫ0A

t
→ C

A
=

ǫǫ0
t

=
2 · 8.86× 10−12

100× 10−9
= 1.772× 10−4 F/m2 =

=
1.772× 10−4

10002
1012 = 177 pF/mm2
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Problem 1 A resistive two-port has the following impedance matrix:

Z = R

(

2 1

1 2

)

Sketch a possible structure (implementing the above impedance matrix and eval-

uate the scattering matrix (assume the normalization impedance R0 = R).

Solution A possible implementation of the impedance matrix is through a T

tripole with R on the three arms (input output and towards ground). Concerning

the scattering matrix, the structure is symmetric and reciprocal, so that S11 =

S22 and S21 = S12. We can evaluate the S matrix directly rather than through

conversion formulae. We load port 2 with R so that V2 = −RI2 and then we

have:

V1 = 2RI1 +RI2

V2 = −RI2 = RI1 + 2RI2 → I2 = −1

3
I1 →

V1 = 2RI1 −
1

3
RI1 =

5

3
RI1 → Rin =

V1

I1
=

5

3
R

V2 = −RI2 =
1

3
RI1 → V2

V1
=

1
3RI1
5
3RI1

=
1

5

Assuming that port 1 is loaded by a generator with open circuit voltage V01 and

internal resistance R we further have:

V1 = V01

5
3R

R + 5
3R

=
5

8
V01 → V2

V01
=

V2

V1

V1

V01
=

1

5
· 5
8
=

1

8

From the input resistance we have:

S11 = S22 =
5
3R −R
5
3R +R

=
1

4

and:

S21 = S12 = 2
V2

V01
=

1

4

8



CAD techniques 9

since the normalization resistances at the two ports are the same. The same

computations could have been carried out by exploiting the T equivalent circuit.

To verify we can exploit conversion formulae:

S11 = S22 =
(z11 − 1)(z22 + 1)− z12z21
(z11 + 1)(z22 + 1)− z12z21

=
(2− 1)(2 + 1)− 1

(2 + 1)(2 + 1)− 1
=

1

4

S21 = S12 =
2z21

(z11 + 1)(z22 + 1)− z12z21
=

2 · 1
(2 + 1)(2 + 1)− 1

=
1

4
.

Instead of using conversion formulae in this case the direct inversion etc. can

be implemented. In fact:

S = (Z − RI) (Z +RI)−1 =

=

[

R

(

2 1

1 2

)

−R

(

1 0

0 1

)][

R

(

2 1

1 2

)

+R

(

1 0

0 1

)]−1

=

=

(

1 1

1 1

)(

3 1

1 3

)−1

=

(

1 1

1 1

)(

3/8 −1/8

−1/8 3/8

)

=

(

1/4 1/4

1/4 1/4

)

Problem 2 A reactive two-port has the following impedance matrix:

Z = jX

(

2 1

1 2

)

Evaluate the scattering matrix assuming R0 = X and check that the properties

of the S-matrix of a lossless two-port are verified.

Solution A possible implementation of the impedance matrix is through a T

tripole with jX on the three arms (input output and towards ground). Con-

cerning the scattering matrix, the structure is symmetric and reciprocal, so that

S11 = S22 and S21 = S12. We can evaluate the S matrix directly rather than

through conversion formulae. We load port 2 with R0 = X so that V2 = −XI2
and then we have:

V1 = 2jXI1 + jXI2

V2 = −XI2 = jXI1 + 2jXI2 → I2 = −
(

2

5
+

1

5
j

)

I1 →

V1 = 2jXI1 − jX

(

2

5
+

1

5
j

)

I1 =

(

1

5
+

8

5
j

)

XI1 → Rin =
V1

I1
=

(

1

5
+

8

5
j

)

X

V2 = −XI2 =

(

2

5
+

1

5
j

)

XI1 → V2

V1
=

(

2

5
+

1

5
j

)

XI1
(

1

5
+

8

5
j

)

XI1

=
2

13
− 3

13
j
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Assuming that port 1 is loaded by a generator with open circuit voltage V01 and

internal resistance X we further have:

V1 = V01

(

1

5
+

8

5
j

)

X

X +

(

1

5
+

8

5
j

)

X

=

(

7

10
+

2

5
j

)

V01 →

V2

V01
=

V2

V1

V1

V01
=

(

2

13
− 3

13
j

)

·
(

7

10
+

2

5
j

)

=
1

5
− 1

10
j

From the input resistance we have:

S11 = S22 =

(

1

5
+

8

5
j

)

X −X

(

1

5
+

8

5
j

)

X +X

=
2

5
+

4

5
j

and:

S21 = S12 = 2
V2

V01
=

2

5
− 1

5
j

since the normalization resistances at the two ports are the same. The same

computations could have been carried out by exploiting the T equivalent circuit.

To verify we can exploit conversion formulae:

S11 = S22 =
(z11 − 1)(z22 + 1)− z12z21
(z11 + 1)(z22 + 1)− z12z21

=
(2j− 1)(2j + 1) + 1

(2j + 1)(2j + 1) + 1
=

2

5
+

4

5
j

S21 = S12 =
2z21

(z11 + 1)(z22 + 1)− z12z21
=

2 · j
(2j + 1)(2j + 1) + 1

=
2

5
− 1

5
j.

The S matrix is therefore:

S =







2

5
+

4

5
j
2

5
− 1

5
j

2

5
− 1

5
j
2

5
+

4

5
j







thus:

S−1 =







2

5
+

4

5
j
2

5
− 1

5
j

2

5
− 1

5
j
2

5
+

4

5
j







−1

=







2

5
− 4

5
j
2

5
+

1

5
j

2

5
+

1

5
j
2

5
− 4

5
j






= S†.

Problem 3 A real generator has internal impedance ZG = 50−j50 Ω and open

circuit voltage V0 = 10 V. Assuming R0 = 50 Ω derive the power wave equivalent

circuit (ΓG and b0).
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Solution We have:

ΓG =
ZG −R0

ZG +R0
=

50− j50− 50

50− j50 + 50
=

1

5
− 2

5
j

b0 =

√
R0

ZG +R0
V0 =

√
50

50− j50 + 50
· 10 =

√
2

(

2

5
+

1

5
j

)

Problem 4 A one-port has the power wave model:

b = Γa+ b0.

Exploiting the coupled current-voltage generator model for the power wave gen-

erator b0, show that the power-wave model is equivalent to the series represen-

tation:

V = ZI + V0.

Assume R0 as the normalization resistance; Γ is the reflection coefficient of Z

with respect to R0.

Solution We have that the equivalent power wave generator equivalent circuit

is made of an impedance with reflection coefficient Γ in parallel with a current

generator b0/
√
R0, in series to a voltage generator b0

√
R0. It follows that the

input impedance of the equivalent circuit is Z (obviously) and that the open-

circuit voltage is:

V0 =
b0√
R0

Z + b0
√

R0 = b0
Z +R0√

R0

.

Alternatively, we can replace a and b with the corresponding voltage and current

representations:

a =
V +R0I

2
√
R0

b =
V −R0I

2
√
R0

we obtain:

V −R0I

2
√
R0

= Γ
V +R0I

2
√
R0

+ b0

V −R0I = ΓV + ΓR0I + 2
√

R0b0

V (1− Γ) = R0I (1 + Γ) + 2
√

R0b0

V = R0
1 + Γ

1− Γ
I +

2
√
R0b0

1− Γ
,
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i.e., since:

R0
1 + Γ

1− Γ
= Z

1

1− Γ
=

1

1− Z −R0

Z +R0

=
Z +R0

2R0

we finally have:

V = ZI +
Z +R0√

R0

b0.

Problem 5 A two-port has scattering matrix:

S =
1√
2

(

1 j

j 1

)

.

Discuss whether the two-port is (1) reciprocal; (2) reactive. Derive the impedance

matrix of the two-port with R0 = 50 Ω.

Solution Since S = S
T the two-port is reciprocal. Moreover, we have:

SS
∗T =

1√
2

(

1 j

j 1

)

· 1√
2

(

1 −j

−j 1

)

=

(

1 0

0 1

)

,

i.e. the two-port is reactive. To evaluate the impedance matrix we can exploit

the conversion formulae:

Z= R
1/2 (I− S)−1 (I+ S)R1/2 =

=

(√
R0 0

0
√
R0

)[(

1 0

0 1

)

− 1√
2

(

1 j

j 1

)]−1

[(

1 0

0 1

)

+
1√
2

(

1 j

j 1

)](√
R0 0

0
√
R0

)

=

= R0

(

0 j
(√

2 + 1
)

j
(√

2 + 1
)

0

)

.

We can verify from:

S11 = S22 =
(z11 − 1)(z22 + 1)− z12z21
(z11 + 1)(z22 + 1)− z12z21

=

=
(0− 1)(0 + 1)− j

(√
2 + 1

)

j
(√

2 + 1
)

(0 + 1)(0 + 1)− j
(√

2 + 1
)

j
(√

2 + 1
) =

1√
2

S21 = S12 =
2z21

(z11 + 1)(z22 + 1)− z12z21
=

=
2 · j

(√
2 + 1

)

(0 + 1)(0 + 1)− j
(√

2 + 1
)

j
(√

2 + 1
) =

1√
2
j.
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The structure can be realized with a reactive T having an inductor in the common

branch with reactance jR0

(√
2 + 1

)

and a capacitor in the input and output

branches with reactance -jR0

(√
2 + 1

)

.

Problem 6 Consider a quadratic nonlinearity y = x2 excited by two tones f1
and f2. Discuss the output spectrum when including harmonics up to the order

5 (a)using a box truncation approach; (b)using a diamond truncation approach.

For this component only is the inclusion of odd-order harmonics and intermod-

ulation products indispensable? Explain.

Solution Truncation to the order 5 implies that we have to keep all tones

mf1 + nf2 such as |m| ≤ 5, |n| ≤ 5 (box truncation) or |m|+ |n| ≤ 5 (diamond

truncation). The allowed absolute values (|m| , |n|) are therefore:

Problem 7 for the box scheme: (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5); (1, 0),

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5); (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5); (3, 0),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5); (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5); (5, 0),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5);

Problem 8 for the diamond scheme: (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5);

(1, 0), (1, 1), (1, 2), (1, 3), (1, 4); (2, 0), (2, 1), (2, 2), (2, 3); (3, 0), (3, 1), (3, 2);

(4, 0), (4, 1); (5, 0).

If, however, we consider only the specific quadratic nonlinearity as an input-

output system, such a nonlinearity will only generate second harmonics and

second-order intermodulation products, corresponding to the (|m| , |n|) pairs

(0, 0), (0, 2), (2, 0), (1, 1). Of course if the nonlinearity is inserted in a circuit

providing feedback also odd-order harmonics and IMPs will be generated.

Problem 9 Consider a quadratic nonlinearity y = x2 excited by two sine tones

f1 and f2. Confining the spectrum to the second harmonics, DC and second-

order intermodulation products, evaluate the output spectrum directly and by

remapping the frequencies on the artificial spectrum nf0, n = 0 . . .N . Use a box

truncation with a proper order.

Solution Let us first evaluate the output spectrum in the natural spectrum.

Supposing for simplicity all initial phases to be zero we have:

x(t) = X1 cosω1t+X2 cosω2t

thus:

y(t) = x2(t) = (X1 cosω1t+X2 cosω2t)
2 =

=
1

2
X2

1 +
1

2
X2

2 +
1

2
X2

1 cos 2ω1t+
1

2
X2

2 cos 2ω2t+

+X1X2 cos (ω1 + ω2) t+X1X2 cos (ω1 − ω2) t.
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Since we are working with trigonometric function we explicitly remap only in

the positive frequency axis. Using a box scheme of second order we have:

0 → 0 f1 → 5f0 2f1 → 10f0
f2 → f0 f1 + f2 → 6f0 2f1 + f2 → 10f0

2f2 → 2f0 f1 + 2f2 → 7f0 2f1 + 2f2 → 11f0
f1 − 2f2 → 3f0 2f1 − 2f2 → 8f0
f1 − f2 → 4f0 2f1 − f2 → 9f0

Of course many of those frequencies will not be present in the input spectrum

or generated in the output spectrum. With the mapping we have:

x(t) = X1 cos 5ω0t+X2 cosω0t

thus:

y(t) = x2(t) = [X1 cos (5ω0t) +X2 cos (ω0t)]
2 =

=
1

2
X2

1 +
1

2
X2

2 +
1

2
X2

1 cos 2ω1t+
1

2
X2

2 cos 2ω2t+

+X1X2 cos 4ω0t+X1X2 cos 6ω0t

i.e. applying the inverse mapping:

y(t) =
1

2
X2

1 +
1

2
X2

2 +
1

2
X2

1 cos 10ω0t+
1

2
X2

2 cos 2ω0t+

+X1X2 cos (ω1 − ω2) t+X1X2 cos (ω1 + ω2) t

coinciding with the previous result.

Problem 10 Consider two tones f1 = πf0 and f2 = 2f0. Are they commen-

surate? Suppose now to represent them in a finite-precision arithmetic as

f1 = 3.1415f0 and f2 = 2.0000f0. Are they commensurate now? what would be

the period of the resulting two tone excitation?

Solution The two tones f1 and f2 are commensurate if:

D1f1 = N1f0

D2f2 = N2f0

where the integers (N1, D1) and (N2, D2) are mutually prime (i.e. they have 1

as only common divisor). In fact, going to the periods this implies:

N1T1 = D1T0

N2T2 = D2T0

i.e.:

T3 = D2N1T1 = D1N2T2 = D2D1T0
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is a common period to both. If f1 = πf0 and f2 = 2f0 we have:

πT1 = T0

2T2 = T0

which means that no integer multiple of T1 will be ever equal to an integer

multiple of T2. Consider now f1 = 3.1415f0 and f2 = 2.0000f0; we now obtain:

3.1415T1 = T0

2.0000T2 = T0

i.e.:

31415 · T1 = 10000 · T0

20000 · T2 = 10000 · T0

i.e. expanding into factors:

(5× 61× 103) · T1 = 2454 · T0

2554 · T2 = 2454 · T0

or, simplifying:

(61× 103) · T1 = 2453 · T0 → 6283T1 = 2000T0

2T2 = T0

i.e.:

6283T1 = 2000T0

4000T2 = 2000T0.

The two frequencies are therefore commensurate and the common period is T3 =

2000T0. Starting from:

31415 · T1 = 10000 · T0

20000 · T2 = 10000 · T0

we could have applied the formula:

T3 = T0
mcm (10000, 10000)

MCD (20000, 31415)
= T0

10000

5
= 2000T0.



4 Directional couplers and power
dividers

Problem 1 Imagine that an ideal 3dB, 90◦ coupler is fed with a 100 mW signal.

What is the power on the coupled and the transmission port, respectively? What

is the power on the insulated port? What is the phase difference between the

coupled and transmission ports?

Solution The coupled power is one half of the input power, i.e. 50 mW. Ideally

no power is on the isolated port and the phase difference between the coupled

and transmission ports is π/2.

Problem 2 A Wilkinson divider on 50 Ω loads operates at 10 GHz. Assuming

ǫeff = 4 evaluate the lengths and characteristic impedance of the divider arms.

Solution The arm impedances are equal and given by:

Z01 = Z0

√
2 = 50 ·

√
2 = 70.71 Ω

while the parallel resistance is R = 2Z0 = 100 Ω. The arm length is λg/4 at 10

GHz, i.e.:

l =
λg

4
=

λ0

4
√
ǫeff

=
0.03

4
√
4
= 3.75 mm.

Problem 3 Design a 10 dB coupler on two-conductor coupled microstrips; the

substrate is GaAs (permittivity 13) with thickness 0.3 mm; the centerband fre-

quency is 10 GHz and the closing impedance 50 Ω.

Solution The coupling is C2 = 0.1 i.e. C =
√
0.1 = 0.31623. Thus, the even and

odd mode impedances will be:

Z0e = 50 ·
√

1 + C

1− C
= 50 ·

√

1 + 0.31623

1− 0.31623
= 69.371 Ω

Z0o = 50 ·
√

1− C

1 + C
= 50 ·

√

1− 0.31623

1 + 0.31623
= 36.038 Ω.

From the graph in Fig. 4.16 (repeated here in Fig. 4.1) we approximately obtain:

S/h ≈ 2.5× 10−1 → S = 2.5× 10−1 · 300 = 75 µm

W/h ≈ 6× 10−1 → W = 6× 10−1 · 300 = 180 µm,

16
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while from the graph in Fig. 4.8 (repeated here in Fig. 4.2) we can obtain an

approximation of the even and odd effective permittivities; we have:

ǫeff,o ≈ 7.2

ǫeff,e ≈ 8.8.

Averaging the even and odd mode quarter-wave lengths we obtain for the coupler

length (centerband at 10 GHz) the value:

l =
1

2

(

λ0

4
√
ǫeff,e

+
λ0

4
√
ǫeff,o

)

=
1

2

(

0.03

4
√
8.8

+
0.03

4
√
7.2

)

= 2.66 mm

S  =    5 0  m m  

S  =    5 0  m m  

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

W / h

Z
0 e
,  O h m

Z
0 o
,  O h m

S  =    5 0  m m  

S  =  1 5 0  m m

S  =  3 0 0  m m

S  =  4 5 0  m m

Figure 4.1 Even (Z0e) and odd (Z0o) mode microstrip impedances (two symmetric
coupled lines) on GaAs substrate.

Problem 4 Design a four conductor Lange 3 dB coupler; the substrate is GaAs

(permittivity 13) with thickness 0.3 mm; the centerband frequency is 10 GHz

and the closing impedance 50 Ω.

Solution From the computation in Example 4.2 we obtain the even and odd-

mode impedances of the equivalent two-conductor coupler as:

Z0e = 176.2 Ω

Z0o = 52.6 Ω.
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0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

7

7 . 5

8

8 . 5

9

9 . 5

W / h

e
e f f e

S  =    5 0  m m  

S  =    5 0  m m  

S  =  4 5 0  m me
e f f o

S  =    5 0  m m  

S  =  1 5 0  m m

S  =  3 0 0  m m

S  =  4 5 0  m m

Figure 4.2 Even (ǫeffe) and odd (ǫeffo) mode effective permittivity of coupled
microstrips on a 300 µm GaAs substrate.

From the graph in Fig. 4.16 we approximately obtain:

S/h ≈ 5× 10−2 → S = 5× 10−2 · 300 = 15 µm

W/h ≈ 5× 10−2 → W = 5× 10−2 · 300 = 15 µm.

More accurate values can be obtained from TX calculators in CAD suites as:

S = 30 µm

W = 25 µm.

An approximation of the even and odd effective permittivities is:

ǫeff,o ≈ 7

ǫeff,e ≈ 8.

Averaging the even and odd mode quarter-wave lengths we obtain for the coupler

length (centerband at 10 GHz) the value:

l =
1

2

(

λ0

4
√
ǫeff,e

+
λ0

4
√
ǫeff,o

)

=
1

2

(

0.03

4
√
8
+

0.03

4
√
7

)

= 2.74 mm.

Problem 5 Design (dimensions and impedances) a hybrid ring with 3 dB cou-

pling on 50 Ω at 5 GHz. Assume that the line effective permittivity is 5.

Solution The ring impedance is given by:

Z01 = Z02 = Z0

√
2 = 50

√
2 = 70.71 Ω
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The arm length is λg/4 at 5 GHz, i.e.:

l =
λg

4
=

λ0

4
√
ǫeff

=
0.06

4
√
5
= 6.70 mm.

Problem 6 Design (dimensions and impedances) a branch-line coupler with 3

dB coupling on 100 Ω at 20 GHz. Assume that the line effective permittivity is

5.

Solution The arm impedances are given by:

Z01 = Z0/
√
2 = 100/

√
2 = 70.71 Ω

Z02 = 100 Ω.

The arm length is λg/4 at 10 GHz, i.e.:

l =
λg

4
=

λ0

4
√
ǫeff

=
0.03

4
√
5
= 3.35 mm.

Problem 7 Design (dimensions and impedances) a Wilkinson divider on 70 Ω

at 30 GHz. Assume that the line effective permittivity is 2.

Solution The arm impedances are given by:

Z01 = Z0

√
2 = 70 ·

√
2 = 99 Ω

while the parallel resistance is R = 2Z0 = 140 Ω. The arm length is λg/4 at 10

GHz, i.e.:

l =
λg

4
=

λ0

4
√
ǫeff

=
0.01

4
√
2
= 1.77 mm.



5 Active RF and microwave
semiconductor devices

Problem 1 A HEMT has gate length of 50 nm, thickness of the supply layer

d+∆d = 10 nm, gate width 100 µm. The relative dielectric constant of the

supply layer is ǫr = 13. Evaluate the maximum device transconductance and

cutoff frequency assuming an equivalent electron saturation velocity vn = 2× 107

cm/s.

Solution We have:

gm ≈ Wvn,sat
ǫ

d+∆d
= 100× 10−6 · 2× 105 · 13 · 8.86× 10−12

10× 10−9
= 230 mS

while:

fT ≈ vn,sat
2πLg

=
2× 105

2π · 50× 10−9
= 637 GHz.

Problem 2 The cutoff frequency of a HEMT is 400 GHz while the maximum

oscillation frequency is 900 GHz. The gate periphery is W = 200 µm while the

transconductance per unit length is 800 mS/mm. The gate and intrinsic resis-

tances are RG = 5 Ω and RI = 4 Ω. Estimate the gate-source capacitance and

the output resistance RDS .

Solution The transconductance is:

gm = 800 · 0.2 = 160 mS

and since:

fT =
gm

2πCGS

we have:

CGS =
gm
2πfT

=
160× 10−3

2π · 400× 109
= 63.67 fF.

The maximum frequency of oscillation is:

fmax =
fT
2

√

RDS

RG +RI

20
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thus:

RDS = (RG +RI)

(

2fmax

fT

)2

= 9 · 4 · 900
2

4002
= 182.25 Ω.

Problem 3 A heterojunction bipolar transistor has a base to emitter capaci-

tance CBE = 5 pF. The DC collector current is IC = 100 mA. Estimate the ideal

cutoff frequency.

Solution Ideally the cutoff frequency is:

fT =
gm

2πCBE
=

IC
2πCBEVT

=
100× 10−3

2π · 5× 10−12 · 26× 10−3
= 122 GHz

where VT = kBT/q = 26 mV at ambient temperature, and gm = IC/VT .

Problem 4 A FET has RDS → ∞, VT0 = −2 V, drain current at vGS = 0

equal to IDSS = 100 mA, output conductance ∂ID/∂VDS = 100 mS for vGS = 0,

vDS → 0. Evaluate the values of the parameters of the quadratic Curtice model

β, α, VT0, λ. (Neglect the difference between intrinsic and extrinsic voltages.)

Solution The parameters of the quadratic Curtice model are β, VT0, λ, α

according to the above-threshold formula:

iD = β (vGS − VT0)
2 (1 + λvDS) tanh (αvDS) .

Taking into account that RDS = (∂ID/∂VDS)
−1 for large vDS and that (for

vDS → ∞):

R−1
DS = ∂ID/∂VDS = β (vGS − VT0)

2 λ

we have that R−1
DS is (neglecting parasitics) proportional to λ; thus we immedi-

ately get λ = 0. VT0 = −2 V as given. To evaluate β we have that the saturation

current (large vDS) is, for vGS = 0:

IDSS = βV 2
T0 → β =

IDSS

V 2
T0

=
0.1

(−2)2
= 2.5× 10−2 A/V2.

Then, with λ = 0:

∂ID
∂VDS

= αβ (vGS − VT0)
2 (1− tanh2 (αvDS)

)

and for vDS → 0 and vGS = 0:

∂ID
∂VDS

= αβ (−VT0)
2 → α =

1

β (−VT0)
2

∂ID
∂VDS

=
1

IDSS

∂ID
∂VDS

=
1

0.1
0.1 = 1 A/V.

Thus finally the model reads, above threshold:

iD = 2.5× 10−2 · (vGS + 2)2 tanh (vDS) .

Problem 5 Consider a simplified small-signal equivalent circuit of a bipolar

transistor in the common emitter configuration, where only the intrinsic cir-

cuit is considered, the input includes the base-emitter capacitance CBE and the
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base-emitter resistance RBE , while the output has the current generator βIB in

parallel with the output resistance RCE. Evaluate the maximum available power

gain of the stage and the optimum input and output matching condition.

Solution Connect to the transistor input a generator with internal admittance

Yg and short-circuit current Ag. Since the internal feedback is neglected the

circuit is one-directional and in this case unconditionally stable. Power matching

at the input implies:

Ygo = Ggo + jBgo = Y ∗
in =

1

RBE
− jωCBE ;

in such conditions IB = Ag/2. Output matching implies:

ZLo = RCE;

thus the load current is:

IL =
βIB
2

=
βAg

4

while the load power (coinciding with the load available power since the load is

power matched) is:

Pav,L = RLo |IL|2 =
1

16
β2RCE |Ag|2

while the input available power is:

Pav,g =
1

4
RBE |Ag|2

therefore the maximum available gain of the stage (i.e. the power gain of the

stage with input and output matching) is:

MAG =
Pav,L

Pav,g
=

1

16
β2RCE |Ag|2

1

4
RBE |Ag|2

=
RCE

4RBE
β2.

Problem 6 Consider a simplified small-signal equivalent circuit of a FET in the

common source configuration, where only the intrinsic circuit is considered, the

input includes the gate resistance RG and the gate-source capacitance CGS , while

the output has the transconductance generator gmV ∗ where V ∗ is the voltage

across CGS in parallel with the output resistance RDS . Evaluate the maximum

available power gain of the stage and the optimum input and output matching

condition.

Solution Connect to the transistor input a generator with internal impedance

Zg and open-circuit voltage Eg. Since the internal feedback is neglected the

circuit is one-directional and in this case unconditionally stable. Power matching

at the input implies:

Zgo = Rgo + jXgo = Z∗
in = RG − 1

jωCGS
;
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in such conditions IG = Eg/2Rgo = Eg/2RG and:

V ∗ =
IG

jωCGS
=

Eg

2RG

1

jωCGS

Output matching implies:

ZLo = RDS ;

thus the load current is:

IL =
gmV ∗

2
=

gm
jωCGS

Eg

4RG

while the load power (coinciding with the load available power since the load is

power matched) is:

Pav,L = RLo |IL|2 = RDS
g2m

ω2C2
GS

|Eg|2
16R2

G

while the input available power is:

Pav,g =
|Eg|2
4RG

;

therefore the maximum available gain of the stage (i.e. the power gain of the

stage with input and output matching) is:

MAG =
Pav,L

Pav,g
=

RDS
g2m

ω2C2
GS

|Eg|2
16R2

G

|Eg|2
4RG

=
g2m

ω2C2
GS

RDS

4RG
.

Notice that the MAG decreases with the square of the frequency and is MAG = 1

at the (angular) maximum oscillation frequency:

ωmax =
gm

2CGS

√

RDS

RG
=

ωT

2

√

RDS

RG

where ωT is the angular cutoff frequency.



6 Microwave linear amplifiers

Problem 1 A real generator with ΓG = 0.2 and b0 = 1 W1/2 is connected to a

load with ΓL = 0.5. Evaluate the power delivered to the load and the maximum

available power of the generator.

Solution We have:

PL = |b0|2
1− |ΓL|2

|1− ΓLΓG|2
= 12 · 1− 0.52

|1− 0.5 · 0.2|2
= 0.925 W

Pav = |b0|2
1

1− |ΓG|2
= 12 · 1

1− 0.22
= 1.042 W.

Alternatively, we could evaluate the corresponding series equivalent circuit.

We have:

ZG = R0
1 + ΓG

1− ΓG
= R0

1 + 0.2

1− 0.2
= 1.5R0

ZL = R0
1 + ΓL

1− ΓL
= R0

1 + 0.5

1− 0.5
= 3R0

V0 = b0
ZG +R0√

R0

=
1.5R0 +R0√

R0

= 2.5
√

R0

Pav =
V 2
0

4RG
=

2.52R0

4 · 1.5R0
= 1.042 W

PL =
V 2
0

(RL +RG)
2RL =

(

2.5
√
R0

)2 · 3R0

(3R0 + 1.5R0)
2 = 0.925 W.

Problem 2 A loaded two-port has the following characteristics: Pin = 10 mW;

Pav,in = 20 mW; PL = 100 mW; Pav,out = 300 mW. Evaluate the two-port gains

Gop, Gav, Gt.

24
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Solution We have:

Gop =
PL

Pin
=

100

10
= 10

Gav =
Pav,out

Pav,in
=

300

20
= 15

Gt =
PL

Pav,in
=

100

20
= 5.

Problem 3 A two-port has the following scattering matrix (R0 = 50 Ω):

S =

(

0 0

10 0

)

Evaluate the two-port MAG. Is the two-port unilateral?

Solution The two-port is unilateral since S12 = 0. We can therefore apply the

MUG definition:

MAG = MUG =
|S21|2

(

1− |S11|2
)(

1− |S22|2
) = 100.

On the other hand since the device is power matched when closed on the nor-

malization resistances and the device is unilateral the maximum gain is |S21|2 .

Problem 4 A two-port has the following scattering matrix (R0 = 50 Ω):

S =

(

0.1 0.01

10 0.1

)

Compute the input and output reflection coefficients when the two-port is loaded

on 100 Ω.

Solution We have:

ΓG = ΓL =
100− 50

100 + 50
=

1

3
.

Then:

Γin = S11 +
S12S21ΓL

1− S22ΓL
= 0.1 +

10 · 0.01 · 1
3

1− 0.1 · 1
3

= 0.134

Γout = S22 +
S12S21ΓG

1− S11ΓG
= 0.1 +

10 · 0.01 · 1
3

1− 0.1 · 1
3

= 0.134.

Problem 5 A two-port has K = 2, S21 = 15(1 + j) and S12 = 0.1. Evaluate the

two-port MAG and MSG. Assume the two-port is unconditionally stable.

Solution We have:

MAG =
|S21|
|S12|

(

K −
√

K2 − 1
)

=

∣

∣

∣

∣

15(1 + j)

0.1

∣

∣

∣

∣

(

2−
√

22 − 1
)

= 56.84

MSG =
|S21|
|S12|

=

∣

∣

∣

∣

15(1 + j)

0.1

∣

∣

∣

∣

= 212.
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Problem 6 Consider the parameter |S21|2. To what power gain (and in which

loading conditions) does it correspond?

Solution We have, by definition, that:

|S21|2 =
|b2|2

|a1|2

when the two-port is loaded on the corresponding normalization resistances.

Since PL = |b2|2 − |a2|2 and a2 = 0 we have that in this case PL = |b2|2. More-

over, the available power of the generator connected to port 1 is:

Pav,in = |a1|2
1

1− |ΓG|2
≡ |a1|2

if the generator internal impedance coincides with the normalization resistance.

We conclude that:

|S21|2 =
|b2|2

|a1|2
=

PL

Pav,in
= Gt

i.e. the parameter is the two-port transducer gain when the two-port is closed

on its normalization resistances. The same result can be found by directly using

the definition of the transducer gain.

Problem 7 Discuss the stability (according to the one- and two-parameter cri-

teria) of the two-port with scattering matrix:

S =

(

j0.1 10

0.1 0.1

)

.

Suppose now to exchange ports 1 and 2, the new scattering matrix becomes:

S ′ =

(

0.1 0.1

10 j0.1

)

.

Does the 2-port stability change?

Solution We have for the stability parameters (two-parameter criterion):

∆S = S11S22 − S12S21 = j0.1 · 0.1− 10 · 0.1 = −1.0 + 1.0× 10−2j

K =
1− |S11|2 − |S22|2 + |∆S |2

2 |S12S21|
=

=
1− |j0.1|2 − |0.1|2 +

∣

∣−1.0 + 1.0× 10−2j
∣

∣

2

2 |10 · 0.1| = 0.99

thus the two-port is potentially unstable, both criteria are violated. Since both

stability parameters are invariant upon exchange of port 1 with port 2 the situa-

tion does not change when interchanging the ports. The one-parameter stability
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criterion yields e.g. (a similar result can be obtained from µ2):

µ1 =
1− |S11|2

|S22 − S∗
11∆S |+ |S12S21|

=

=
1− |j0.1|2

|0.1 + j0.1 · (−1.0 + 1.0× 10−2j)|+ |10 · 0.1| = 0.867 < 1

while it should be > 1 for unconditional stability. If we interchange the ports we

obtain:

µ1 =
1− |S11|2

|S22 − S∗
11∆S |+ |S12S21|

=

=
1− |0.1|2

|j0.1− 0.1 · (−1.0 + 1.0× 10−2j)|+ |0.1 · 10| = 0.867 < 1.

Problem 8 Discuss the stability (according to the one- and two-parameter cri-

teria) of the unilateral two-port with scattering matrix:

S =

(

j1.1 0

5 0.1

)

.

Solution We have for the stability parameters (two-parameter criterion):

∆S = S11S22 − S12S21 = j1.1 · 0.1− 5 · 0 = 0.11j → |∆S | = 0.11 < 1

K =
1− |S11|2 − |S22|2 + |∆S |2

2 |S12S21|
=

1− |j1.1|2 − |0.1|2 + |0.11|2
2 |5 · 0| = −∞ < 1

thus the two-port not unconditionally stable, in fact beware, |S11| > 1 (a prac-

tically very uncommon occurrence) and therefore unconditional stability is lost

anyway.

The one-parameter stability criterion yields that a two-port is unconditionally

stable is µ1 > 1 or µ2 > 1. In this case we have:

µ1 =
1− |S11|2

|S22 − S∗
11∆S |+ |S12S21|

=
1− |j1.1|2

|0.1 + j1.1 · (0.11j)|+ |5 · 0| = −10 < 1

thus potential instability is immediately found. Moreover:

µ2 =
1− |S22|2

|S11 − S∗
22∆S |+ |S12S21|

=
1− |0.1|2

|j1.1− 0.1 · (0.11j)|+ |5 · 0| = 0.909 < 1

Thus also with the second criterion (that should be equivalent to the first) the

two-port turns out to be potentially unstable.

Problem 9 We want to design a 10 dB amplifier with parallel and series feed-

back. What is the minimum device |S21|?
Solution The low-frequency ideal gain of the feedback amplifier is equal to

10 log10 |S21f |2 = 10 dB, i.e. |S21f |2 = 10, |S21f | =
√
10 = 3.16.The limitation on
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the open-loop S21 is therefore:

|S21| ≥ 2 (1 + |S21f |) = 2 · (1 + 3.16) = 8.32.



7 Low-noise amplifier design

Problem 1 A noisy tripole has the following admittance matrix:

Y =

(

jωC −jωC

−jωC
1

R
+ jωC

)

Derive an equivalent circuit of the tripole and evaluate the short-circuit noise

current correlation matrix.

Solution The tripole is a passive reciprocal structure that can be easily imple-

mented though a π circuit with input arm admittance Y1 = 0, common arm

admittance Y2 = jωC and output arm admittance Y3 =
1

R
. The resistor R is the

only noisy elements. We can apply the generalized Nyquist formula where:

S = 4kBT0 ReY = 4kBT0

(

0 0

0 1/R

)

.

Alternatively we can compute the short-circuit input and output currents

induced by the resistor noise current generator An; we find that I2 = An and

I1 = 0; thus Si1i1 = 0, Si1i2 = 0, Si2i2 = 4kBT0R
−1.

Problem 2 A voltage noise source has a power spectrum of 1 (nV)2/Hz1.

Assuming a bandwidth of 500 MHz, evaluate the mean square value of the noise

voltage and the noise available power on 50 Ω. Evaluate the noise available power

spectral density of the generator.

Solution Let us call the voltage noise source spectrum Svn . The noise available

power can be expressed as:

Pav =

∫

B

Svn

4R
df =

∫

B

pndf =
BSvn

4R
=

v2n,rms

4R

1 Spectral units like V2/Hz, A2/Hz etc., when the V or A unit is associated to a multiplier,
like in µV2/Hz, must be interpreted as (µV)2/Hz, that is 10−12V/Hz. This meaning has
been explicited in the text whenever possible.
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where the noise available power spectral density is:

pn =
Svn

4R
=

1× 10−18

4× 50
= 5.0× 10−21 W/Hz

we then have

vn,rms =
√

BSvn =
√

500× 106 · 1× 10−18 = 22.36 µV.

Pav =
BSvn

4R
=

500× 106 · 1× 10−18

4 · 50 = 2.5 pW.

We can also check that:

Pav = Bpn = 500× 106 · 5.0× 10−21 = 2.5 pW.

If the noise was the thermal noise of the resistor, what would the resistor tem-

perature be? we have (T0 = 300 K):

pn = kBT0
T

T0
= 1.69× 10−19 · 26× 10−3 T

T0
= 5.0× 10−21 →

T =
300 · 5.0× 10−21

1.69× 10−19 · 26× 10−3
= 341 K.

Problem 3 A resistor with R = 1 kΩ operates with a bandwidth of 5 GHz.

Evaluate the power spectral density at 300 K. Evaluate the spectral density of

the resistor noise voltage and the r.m.s. noise voltage value over the specified

bandwidth.

Solution The power spectral noise density pn is kBT independent on the resis-

tor value. Taking into account that kBT = 26 meV at ambient temperature (300

K) we have:

pn = q · kBT |eV = 1.69× 10−19 · 26× 10−3 = 4.394× 10−21 W/Hz.

The power spectrum of the noise voltage is:

Svn = 4kBTR = 4 · 4.394× 10−21 · 1× 103 = 1.7576× 10−17 V2/Hz.

The r.m.s. noise voltage vn,rms is (B system bandwidth):

vn,rms =
√

SvnB =
√

4kBTRB =

=
√

4 · 1.69× 10−19 · 26× 10−3 · 1× 103 · 5× 109 = 0.29 mV.

Just for a check we can evaluate the total power as the noise available power spec-

tral density by the bandwidth or by means of the open circuit voltage quadratic

mean, thus obtaining the same value:

pnB = 4.394× 10−21 · 5× 109 = 2.1× 10−11 W

v2n,rms

4R
=

(

0.29× 10−3
)2

4 · 1× 103
= 2.1× 10−11 W.
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Problem 4 In the circuit in Fig. 7.1 (a) assume Z1 = 50 + j50 Ω, ZL = 50− j50

Ω; the two noise generators are the thermal noise (Nyquist law) generators of the

two impedances, respectively (i.e. in1 is associated to Z1, en2 to ZL). Assuming

1 GHz bandwidth, evaluate at 300 K the total power on the load.

e
n 2

V
L

i
n 1

Z
LZ

1

Figure 7.1 Circuit from Es.4.

Solution We evaluate the voltage on the load through phasor analysis. We have

(assuming that the noise sources are uncorrelated):

VL = (Z1In1 + En2)
ZL

Z1 + ZL

VLV ∗
L =

∣

∣

∣

∣

ZL

Z1 + ZL

∣

∣

∣

∣

2
(

|Z1|2 In1I∗n1 + En2E∗
n2

)

=

= 4kBT

∣

∣

∣

∣

ZL

Z1 + ZL

∣

∣

∣

∣

2
(

|Z1|2 G1 +RL

)

We have:

Y1 = G1 + jB1 =
1

Z1
=

1

50 + j50
=

1

100
− 1

100
j

YL = GL + jBL =
1

ZL
=

1

50− j50
=

1

100
+

1

100
j

thus:

VLV ∗
L = 4kBT

∣

∣

∣

∣

ZL

Z1 + ZL

∣

∣

∣

∣

2
(

|Z1|2 G1 +RL

)

=

= 4 · 1.69× 10−19 · 26× 10−3 ·
∣

∣

∣

∣

50− j50

50 + j50 + 50− j50

∣

∣

∣

∣

2

·

·
(

|50 + j50|2 1

100
+ 50

)

=

= 8.788× 10−19 V2/Hz

The load voltage effective value will be:

vL,rms =

√

BVLV ∗
L =

√

1× 109 · 8.788× 10−19 = 2.965× 10−5 V
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and the power on the load is:

PL = GLv
2
L,rms =

1

100
·
(

2.965× 10−5
)2

= 8.79 pW.

Problem 5 In the circuit in Fig. 7.1 (b) compute the minimum noise figure and

optimum generator impedance of the two-port in the grey box assuming Z1 = 10

Ω, gm = 500 mS. The two (uncorrelated) noise generators en1 and in2 are white,

with spectral density equal to 100 (pV)2/Hz and 100 (pA)2/Hz, respectively. The

system bandwidth is 100 MHz. (Hint: the noise figure is a ratio of available noise

powers at the output port, that is independent from the output conductance of the

two-port and therefore reduces to a ratio of short-circuit noise current spectra at

port 2.)

Solution The total noise current at the short-circuited port 2 is given by:

It = gmV ∗ + I2 =
gmZ1 (Ens + E1)

Z1 + Zs
+ I2

and thus the power spectrum of it is given, via the symbolic definition, by:

Sit = ItI∗t =
g2m |Z1|2

(

EnsE∗
ns + E1E∗

1

)

|Z1 + Zs|2
+ I2I∗2 .

Let us exploit Nyquist or Nyquist-like definitions (through the noise resistance

Rn and the noise conductance Gn) for the power spectra:

EnsE∗
ns = 4kBT0Rs

E1E∗
1 = 4kBT0Rn

I2I∗2 = 4kBT0Gn.

Substituting we have:

Sit = 4kBT0

[

g2m |Z1|2 (Rs +Rn)

|Z1 + Zs|2
+Gn

]

.

The noise figure can be expressed as the ratio of the total output short-circuit

current power spectrum and the same but taking only into account the noise

introduced by the source noise generator:

NF =

g2m |Z1|2 (Rs +Rn)

|Z1 + Zs|2
+Gn

g2m |Z1|2 Rs

|Z1 + Zs|2
=

= 1+
Rn

Rs
+

Gn

Rs

|Z1 + Zs|2

g2m |Z1|2
=

= 1+
Rn

Rs
+

Gn

Rs

(Rs +R1)
2 + (Xs +X1)

2

g2m |Z1|2
.



Low-noise amplifier design 33

The optimum source reactance is immediately found as:

Xso = −X1.

Let us now optimize vs. Rs the resulting noise figure:

NF = 1 +
Rn

Rs
+

Gn

Rs

(Rs +R1)
2

g2m |Z1|2
=

= 1 +
Rn

Rs
+

Gn

Rs

R2
s + 2RsR1 +R2

1

g2m |Z1|2
=

= 1 +
Rn

Rs
+

GnRs

g2m |Z1|2
+

2GnR1

g2m |Z1|2
+

GnR
2
1

Rsg2m |Z1|2
=

= 1 +
1

Rs

(

Rn +
GnR

2
1

g2m |Z1|2
)

+
2GnR1

g2m |Z1|2
+Rs

(

Gn

g2m |Z1|2
)

=

= 1 +
a

Rs
+ b+ cRs.

The minimum can be found by differentiating the noise figure vs. Rs and impos-

ing zero derivative; the optimum value is:

Rso = \

√

a

c
=

√

√

√

√

√

√

√

√

Rn +
GnR

2
1

g2m |Z1|2
Gn

g2m |Z1|2
=

√

R2
1 +

g2m |Z1|2 Rn

Gn

while for the minimum noise figure we have:

NFmin = 1 + 2
√
ac+ b =

= 1 + 2

√

(

Rn +
R2

1Gn

g2m |Z1|2
)

Gn

g2m |Z1|2
+

2R1Gn

g2m |Z1|2
.

Introducing the values given for the power spectra of e1 and i1 we obtain the

values of Gn and Rn:

Se1 = 4kBTRn = 0.1× 10−18 → Rn =
0.1× 10−18

4 · 1.69× 10−19 · 26× 10−3
= 5.689 Ω

Si1 = 4kBTGn = 0.1× 10−18 → Gn =
0.1× 10−18

4 · 1.69× 10−19 · 26× 10−3
= 5.689 S

Thus:

NFmin = 1 + 2

√

(

5.689 +
102 · 5.689
0.52 · |10|2

)

5.689

0.52 · |10|2
+

2 · 10 · 5.689
0.52 · |10|2

= 10.63

Rso =

√

102 +
0.52 · |10|2 · 5.689

5.689
= 11.2 Ω

Xso = −X1 = 0 Ω
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e
n s

v *Z
s

Z
1

e
n 1

g
m
v *

i
n 2

1 2

Figure 7.2 Circuit from Es. 5.

Problem 6 A noisy two-port has the optimum source impedance ZGo = 25 +

j32 Ω, minimum noise figure NFmin = 2 dB, and series noise conductance gn =

50 mS. Supposing that the source reactance is the optimum one, estimate the

variation of the noise figure when the source resistance varies between 5 and 50

Ω.

Solution We have RGo = 25 Ω, XG = XGo = 32 Ω; thus:

NF = NFmin +
gn
RG

[

(RG −RGo)
2 + (XG −XGo)

2
]

= NFmin +
gn
RG

(RG −RGo)
2 ;

but NFmin = 102/10 = 1.5849; thus, for RG = 5 Ω and RG = 50 Ω we have the

extreme values:

NF = 1.5849 +
gn
RG

(RG −RGo)
2 = 5.58

NF = 1.5849 +
gn
RG

(RG −RGo)
2 = 2.2

The resulting behaviour is shown in Fig. 7.3.

0

2

4

6

8

2 0 4 0 6 0 8 0 1 0 0

R
G

0

Figure 7.3 Behaviour of the noise figure as a function of RG, Problem 6.
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Problem 7 Two amplifiers are cascaded (50 Ω design) with Gav,1 = 10 dB,

Gav,2 = 20 dB, NF1 = 1 dB, NF2 = 6 dB. Evaluate the total noise figure accord-

ing to the Friis formula.

Solution The gains etc. in natural units are:

Gav,1 = 1010/10 = 10

Gav,2 = 1020/10 = 100

NF1 = 101/10 = 1.26

NF2 = 106/10 = 3.98

From the Friis formula:

NF = 1 + (NF1 − 1) +
NF2 − 1

Gav,1
= 1 + 1.26− 1 +

3.98− 1

10
= 1.558.

The gain of the second amplifier therefore plays no role.

Problem 8 A resistive attenuator designed on 50 Ω has 3 dB loss. What is the

noise figure?

Solution For a resistive two-port the loss coincides with the noise figure, which

is therefore 3 dB.

Problem 9 A common-gate LNA has to be designed on a 50 Ω generator with

a device having a specific transconductance of 400 mS/mm. Evaluate the device

periphery needed and the low-frequency noise figure, assuming P = 0.9.

Solution The LNA matching condition is, at low frequency:

Zin =
1

gm
→ gm =

1

50
= 20 mS.

Therefore the gate periphery needed is:

W =
20

400
= 0.05 mm = 50 µm.

For the low-frequency noise figure we have:

F ≈ 1 + P = 1.9.

Problem 10 An inductive series feedback amplifier must be designed on 50 Ω

at 10 GHz. Assuming CGS = 0.2 pF and gm = 200 mS, evaluate LS and LG.

Evaluate the noise figure, assuming P = 0.7 and neglecting the gate noise source

(and therefore the correlation).

Solution The inductances are derived from the design formulae:

LS =
CGSR0

gm
=

0.2× 10−12 · 50
0.2

= 50 pH

LG =
1

ω2CGS
− LS =

1

(2π · 10× 109)2 · 0.2× 10−12
− 5.0× 10−11 = 1.21 nH.
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The noise figure is given, assuming R = 0, by:

F = 1 +
ω

ωT

P

QL
= 1 +

gmR0ω
2P

ω2
T

= 1 +
ω2C2

GSR0P

gm
.

Thus, we have:

F = 1 +

(

2π · 1010
)2 ·

(

0.2× 10−12
)2 · 50 · 0.7

0.2
= 1.028.



8 Power amplifiers

Problem 1 In a class A power amplifier the gain in linearity is 20 dB and the

1 dB compression corresponds to an input power of 0 dBm. What is the output

power at the 1 dB compression point?

Solution The output power in linearity at 0 dBm input power will be 20 dBm

taking into account the linear 20 dB gain of the amplifier. However, the output

power is compressed by 1 dB. Thus, the output power will be 19 dBm.

Problem 2 A class A power amplifier, with a single-tone input of 100 µW, has

a second harmonic output power 10 nW. The 1 dB compression point is at 1

mW input power. What is the second harmonic output power for an input of

200 µW?

Solution Since the 1 dB compression point occurs at an input power much

larger than 200 µW, we can approximate the harmonic distortion according to

the low-power model where the second harmonic is a quadratic function of the

input power at the fundamental. Thus, doubling the input power makes the

second harmonic power increase by a factor of 4, i.e. to 40 nW.

Problem 3 A class A power amplifier, with a two-tone input of 100 µW, has a

CIMR3 of 60 dB. The 1 dB compression point is at 1 mW input power. What is

the CIMR3 for an input of 200 µW?

Solution Since the 1 dB compression point occurs at an input power much

larger than 200 µW, we can evaluate the CIMR3 according to the low-power

model where the third-order intermodulation products increase with the cube of

the input power while the output power at the fundamental increases linearly as

a function of the input power at the fundamentals. Thus, increasing the input

power by 3 dB the output power at the fundamentals increases by 2 dB while

the third-order intermodulation product by 9 dB. The CIMR3 thus decreases by

6 dB becoming 54 dB.

Problem 4 A HEMT has 16 V breakdown voltage, 0.5 V knee voltage (onset

of current saturation) and maximum current of 500 mA. What is the maximum

class A output power? What is the optimum load and optimum class A working

point?

37
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Solution The maximum class A output power is:

PRF,M =
(VDS,br − VDS,k)ID,max

8
=

(16− 0.5)× 0.5

8
= 0.968 W.

The optimum DC working point is for:

ID =
ID,max

2
= 250 mA

VDS = 0.5 +
16− 0.5

2
= 7.75 V.

The optimum load will have a parallel reactive part (compensating the output

capacitance) that cannot be derived with the information available. The optimum

load resistance is:

RLo =
VDS,br − VDS,k

ID,max
=

16− 0.5

0.5
= 31 Ω.

Problem 5 A class-A power amplifier working at 1 dB compression point has

CIMR3 = 15 dB. The output power is 20 W and the gain in linearity is 20 dB;

the efficiency is 35% in the working point. Evaluate the input backoff needed to

increase the CIMR3 up to 30 dB. Evaluate the efficiency in the initial condition

and in backoff and the corresponding power-added efficiency.

Solution The output power in the 1 dB compression point is 43 dBm while the

corresponding output power in linearity would be, for the same input power, 44

dBm. If we reduce by x dB the input power the output power (in linearity) will

be reduced by x dB while the third-order intermodulation will decrease by 3x

dB, leading to an increase of 2x dB of the CIMR3. In other words, to increase

the CIMR3 by 15 dB as requested we have to reduce the input power by 7.5

dB, that corresponds to the required backoff. This leads to an output power of

44− 7.5 = 36.5 dBm (i.e. 10−3 · 10(36.5/10) = 4.47 W) corresponding to an input

power of 36.5− 20 = 16.5 dBm. Concerning the efficiency, in class A the DC

power is constant; since in the 1 dB compression working point the efficiency is

35% we have:

PDC =
20

0.35
= 57.14 W.

In the backoff condition therefore the efficiency will be:

η =
4.47

57.14
= 7.82%.

Alternatively, we could use the fact that the class A efficiency decreases as the

backoff, i.e. an output backoff of 10(−6.5/10) = 0.224 corresponds to η = 0.224 ·
35 = 7.836% (take into account that while the input backoff is 7.5 dB the output

is 6.5 dB only, since we start from the 1 dB compression point). Concerning

the PAE, the gain in the 1 dB compression point is 19 dB or in natural units

1019/10 = 79.433,while in backoff we can assume a 20 dB gain or in natural units
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100. The two PAEs will therefore be:

PAE1 = 35 ·
(

1− 1

79.433

)

= 34.559%

PAE2 = 7.82 ·
(

1− 1

100

)

= 7.742%.

Problem 6 A receiver stage has bandwidth B = 2 GHz, noise figure of 4 dB,

output signal over noise ratio of 20 dB. Assuming input thermal noise at 300

K, evaluate the sensitivity and noise floor of the receiver. Suppose than that the

third-order intermodulation product intercept be IIP3 = 10 dBm; evaluate the

Spurious Free Dynamic Range of the receiver.

Solution The noise floor in natural units is F = 104/10 = 2. 512 while (S/N)L =

100. The sensitivity Pin,S is given by:

Pin,S = F · kBT0B · (S/N)L =

= 2.512 · 26× 10−3 · 1.6× 10−19 · 2× 109 · 100 = 2. 09× 10−9 ≈ 2.1 nW

or, in log units,

Pin,S|dBm = 10 log10

(

2. 09× 10−9

1× 10−3

)

= −56.8 dBm.

The noise floor corresponds to (S/N)L = 1; we have:

Pin,NF = F · kBT0B =

= 2.512 · 26× 10−3 · 1.6× 10−19 · 2× 109 = 2. 09× 10−11 ≈ 21 pW

or, in log units,

Pin,NF|dBm = 10 log10

(

2. 09× 10−11

1× 10−3

)

= −76.8 dBm.

Concerning the SFDR we have, taking into account that IIP3 = 10 mW:

SFDR =
IIP

2/3
3 P

−2/3
in,NF

(S/N)L
=

(

10× 10−3
)2/3 ·

(

2. 09× 10−11
)−2/3

100
= 6117

or, in log units:

SFDR|dB = 10 log10 6117 = 37. 86 dBm.

Problem 7 An amplifier is designed on a 50 Ω load to provide, at low frequency,

small signal available gain G1 = 25 dB. The 1 dB compression point is for an

input power Pin,1 = 10 dBm while the saturation power is Psat,1 = 36 dBm.

Evaluate the corresponding performances for a balanced amplifier closed on 50

Ω in which two identical amplifiers are connected in tandem.

Solution The small-signal gain of the balanced amplifier is the same for the two

stages, i.e. G2 = 25 dB. However, for a total input power Pin,2 = 13 dB each of

the two amplifiers will receive an input power Pin,1 = 10 dBm so that the total
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output power will be 2 · α ·G1 · Pin,1 where α = 10−1/10 = 0.794 corresponds to

a 1 dB penalty; in log units:

P2|dBm = (3− 1 + 25)|dB + 10|dBm = 37 dBm.

Taking into account that in linearity the output power would have been 13 + 25 =

38 dBm, we find that the input power of 13 dBm corresponds to the 1 dB

compression point. The saturation power will be however twice than for the

single amplifier, i.e. it will correspond to Psat,2 = 36 + 3 = 39 dBm.
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Problem 1 A reflectometer has the following readings when loaded by a short,

an open and a matched standard:

asm1 = 0.98, bsm1 = −0.96,

aom1 = 0.98, bom1 = 0.94,

aR0

m1 = 0.99, bR0

m1 = 0.01.

Evaluate the error coefficients e12, e21 and e22 and the reflectivity of a DUT with

readings am1 = 0.98, bm1 = 0.94j. What is the apparent reflectivity measured

without the correction?

Solution The system to be solved is:

0.98− 0.96 · e12 + 0.98 · e21 − 0.96 · e22 = 0

0.98 + 0.94 · e12 − 0.98 · e21 − 0.94 · e22 = 0

0.99 + 0.01 · e12 = 0

yielding: e12 = −99.0, e21 = −95.948, e22 = 2.0737. Thus:

ΓDUT =
am1 + e12bm1

e21am1 + e22bm1
=

0.98− 99.0 · 0.94j
−95.948 · 0.98 + 2.0737 · 0.94j =

= −3.0926× 10−2 + 0.98905j.

The apparent reflectivity would have been:

Γ′
DUT =

0.94j

0.98
= 0.95918j.

Problem 2 The Line of a TRL calibration set has a length L = 1 mm. The

measured transmission matrices of the Line and of the Thru are:

T
m
T =

(

0.89794 3.0829× 10−2

2.1044× 10−3 0.97875

)

T
m
L =

(

0.72572− 0.52727j 2.4916× 10−2 − 1.8103× 10−2j

1.7008× 10−3 − 1.2357× 10−3j 0.79103− 0.57472j

)

Find the complex propagation constant of the line.
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Solution We have:

RM = T
m
L (Tm

T )−1 =

=

(

0.80821− 0.58720j −1.6937× 10−7 − 2.2871× 10−7j

1.6463× 10−8 − 6.9072× 10−10j 0.8082− 0.58720j

)

whose eigenvalues are equal and satisfy the relationship:

exp(−γL) = 0.80821− 0.5872j

i.e.:

γL = − ln (0.80821− 0.5872j) = 9.9737× 10−4 + 0.62832j

γ =
(

9.9737× 10−4 + 0.62832j
)

103 = 0.99737 + 628.32j

Problem 3 An active load pull system exploiting the active load technique

needs to implement a load of impedance ZL = 50+j50 Ω. Evaluate the loop gain

and phase delay needed, supposing to use a loop coupler with 10 dB power

coupling. The reference impedance is R0 = 50 Ω.

Solution Let us call b2 the outgoing wave from port 2. The loop wave sampled

by the coupler will be bl = Cb2 where:

20 log10 C = −10 → C = 10−10/20 = 0.31623.

The bs wave is then amplified with total loop amplification Al and phase delay

φl; the wave entering the loop coupler will therefore be:

al = blAl exp (jφl) = CAl exp (jφl) b2

while the wave entering port 2 of the two port after the coupler is:

a2 = −jal
√

1− C2 = −j
√

1− C2CAl exp (jφl) b2.

Thus:

a2
b2

= ΓL = −j
√

1− C2CAl exp (jφl) .

But the reflection coefficient vs. the reference impedance is:

ΓL =
ZL −R0

ZL +R0
=

50 + j50− 50

50 + j50 + 50
= 0.2 + 0.4j.

Thus the complex amplification is:

Al exp (jφl) =
ΓL

−j
√
1− C2C

=
0.2 + 0.4j

−j
√
1− 0.316232 · 0.31623

=

= −1.3333+ 0.66666j = 1.4907 exp (j2.6779)

yielding also the gain and phase delay of the loop.

Problem 4 An active load pull system (active load technique) needs to imple-

ment a short circuit. Evaluate the loop gain and phase delay needed, supposing
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to use a loop coupler with 20 dB power coupling. The reference impedance is

R0 = 50 Ω.

Solution Let us call b2 the outgoing wave from port 2 of the DUT. The loop

wave sampled by the coupler will be bl = Cb2 where:

20 log10 C = −20 → C = 10−20/20 = 0.1.

The bs wave is then amplified with total loop amplification Al and phase delay

φl; the wave entering the loop coupler will therefore be:

al = blAl exp (jφl) = CAl exp (jφl) b2

while the wave entering port 2 of the two port after the coupler is:

a2 = −jal
√

1− C2 = −j
√

1− C2CAl exp (jφl) b2.

Thus:

a2
b2

= ΓL = −j
√

1− C2CAl exp (jφl) .

But the reflection coefficient vs. the reference impedance is:

ΓL =
0−R0

0 +R0
=

50 + j50− 50

50 + j50 + 50
= −1.

Thus the complex amplification is:

Al exp (jφl) =
ΓL

−j
√
1− C2C

=
−1

−j
√
1− 0.12 · 0.1

= −10.05j

yielding also the gain and phase delay of the loop.

Problem 5 A noise source has ENR = 30 and the OFF temperature is TOFF
s =

300 K. We apply the Y-factor technique, obtaining in the first step (noise source

directly connected to the noise figure meter) PON
n1 = 300 µW, POFF

n1 = 15 µW.

In the second step (DUT connected) we obtain PON
n1 = 3500 µW, POFF

n1 = 250

µW. Find the TON of the noise source, and the DUT gain, noise figure and noise

temperature.

Solution The ON temperature of the source with ENR (Excess Noise Ratio)

equal to 30 is, from the ENR definition:

TON
s = TOFF

s + ENR · T0 = 300 + 30 · 290 = 9000 K.

In the first step we obtain:

Y1 =
PON
n1

POFF
n1

=
300

15
= 20

from which the noise temperature of the Noise Figure Meter (NFM) can be

estimated as:

TNFM =
TON
s − Y1T

OFF
s

Y1 − 1
=

9000− 20 · 300
20− 1

= 157.89 K
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In the second step we have:

Y2 =
PON
n2

POFF
n2

=
3500

250
= 14

from which the total noise temperature T2 of the cascade of the DUT and of the

NFM can be estimated as:

T2 =
TON
s − Y2T

OFF
s

Y2 − 1
=

9000− 14 · 300
14− 1

= 369.23K.

The device gain is:

GDUT =
PON
n2 − POFF

n2

PON
n1 − POFF

n1

=
3500− 250

300− 15
= 11.404

We can now compute the DUT noise temperature as:

TDUT = T2 −
TNFM

GDUT
= 369.23− 157.89

11.404
= 355.38

and the DUT noise figure as:

FDUT = 1 +
TDUT

T0
= 1 +

355.38

290
= 2.22.


