
Solutions to exercises in chapter 2

1. Error propagation

a) The surface area of a sphere is: A = 4πr2 = πd2. Therefore the error in the surface is: σA =
∂A
∂d σd = 2πdσd, or in terms of relative errors: rA = 2rd. Numerically: A = 100πµm2 = π · 10−10m2

and σA = π10µm2, or rA = 0.1.

b) The volume of a sphere is: V = 4πr3/3 = πd3/6. Therefore the volumes error is: σV = ∂V
∂d σd =

πd2σd/2, or in terms of relative errors: rV = 3rd. Numerically: V = 1000π/6µm3 = π/6 · 10−15m3

and σV = 250 · πµm3, or rV = 0.15.

2. Absolute and relative errors

a) Relative error of pressure: rp =
σp
p = 1Pa

1000Pa = 10−3

b) Error in pressure difference: σ∆p =
√
σ2
p1 + σ2

p2 =
√

1Pa2 + 1Pa2 =
√

2Pa ' 1.4Pa

c) Relative error of pressure difference: r∆p =
σ∆p

∆p = 1.4Pa
10Pa = 0.14

3. Data analysis

(a) On the one hand, there is the uncertainty in the distance travelled. This is certainly bigger
than the ticks on the meter scale (which are typically cm), such that our initial estimate might be
0.01 m. However, if the plane does not fly perfectly straight, there is an additional uncertainty and
will always increase the actually travelled distance. For a few degrees uncertainty in the direction,
we obtain an uncertainty of a few %. Finally, there is an uncertainty that always decreases the
distance travelled, namely the parallax that is obtained when observing the entire distance from its
middle. This is of the same order as the directional uncertainty, such that we have uncertainties in
both directions of a few %. Assuming 2%, we obtain σ∆L = 0.02 ∗ L = 0.02 ∗ 4.8m ' 0.1m.

For the timing uncertainty, we again could use the precision of the stopwatch, i.e. 0.01 s, however
the uncertainty in the timing is given by the uncertainty of pressing the stopwatch. Note that this is
not the reaction time of the person measuring the time, since that will be the same for the start and
the stop, such that in the time difference this systematic uncertainty drops out. The uncertainty in
pressing however (which corresponds to the fluctuation in reaction times) is roughly given by 0.1 s,
i.e. σ∆t = 0.1s.

(b) The average is given by 〈∆t〉 = 1
N

∑
i ∆ti. We have a total of 15 measurements, i.e. N = 15

and inserting the different values ∆ti we obtain: 〈∆t〉 = (1.20 + 1.16 + 1.23 + 1.06 + 1.12 + 1.14 +
1.05 + 1.28 + 1.15 + 1.18 + 1.07 + 1.11 + 1.14 + 1.17 + 1.10)s/12 = 1.144s.

(c) The varaince of the average is given by var = 1
N−1

∑
i(∆ti−〈∆t〉)2. For the differences from the

average, we have (in seconds): 0.056; 0.016; 0.086; -0.084; -0.024; -0.004; -0.094; 0.136; 0.006; 0.036;
-0.074; -0.034; -0.004; 0.026; -0.044. Therfore the variance is: var = (0.0562 + 0.0162 + 0.0862 +
0.0842 + 0.0242 + 0.0042 + 0.0942 + 0.1362 + 0.0062 + 0.0362 + 0.0742 + 0.0342 + 0.0042 + 0.0262 +
0.0442)/14s2 = 0.0564/14s2 = 0.004s2. The standard deviation (and hence the estimate for the
error of a single time measurement) is then std = 0.07 s, which is not too far away from the estimate
we have given above. The actual error of the average is finally given by σ∆t = std/

√
N = 0.02s.

(d) So our result is ∆x = 4.8 ± 0.1m ' 4.8(1)m and ∆t = 1.14 ± 0.02s = 1.14(2)s. For the

speed we need to add the relative errors in squares, i.e.
σ2
v

v2 =
σ2

∆t

∆t2 +
σ2

∆x

∆x2 , which numerically gives:
σ2
v

v2 = 0.022

1.142 + 0.12

4.82 = 0.0004
1.3 + 0.01

23 = 0.00074. The relative error in the speed thus is σv = 0.03 ∗ v,
where v = ∆x/∆t = 4.8/1.14m/s = 4.2m/s, hence σv = 0.1m/s. The final result therefore is:
v = 4.2(1)m/s.

4. Absolute and relative errors 2

(a) The error of the 250 µl is given by 0.01 · 250µl = 2.5 µl. For the minimum pipette amount of
25 µl we have a relative error of 5%, or in other words, the error of these 25 µl = 0.05 · 25µl =
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1.25 µl. Therefore, the error of the total amount is given by: σ2
tot = (2.52 + 1.252)µl2 = 7.81µl2 or

σtot = 2.9µl

(b) The error of the 150 µl is 0.01 · 150µl = 1.5 µl. The same calculation can be done for the
125 µl, i.e. 0.01 · 125µl = 1.25 µl. Therefore, the error of the total amount is given by: σ2

tot =
(1.52 + 1.252)µl2 = 3.81µl2 or σtot = 1.9µl

(c) The error of the 5 µl is 0.01 5 µl = 0.05 µl. This is the same every time of the 5 times the amount
is pipetted. Therefore, the error of the total amount is given by: σ2

tot = 55 · 0.052µl2 = 0.14µl2 or
σtot = 0.37µl

5. Error propagation 2

a) We know from Gaussian error propagation that σ2
c =

(
∂c
∂λ

)2
σ2
λ +

(
∂c
∂c0

)2

σ2
c0 . Using the specific

function for the concentration c(x) = c0exp(−x/λ), we obtain:

∂c
∂λ = c0exp(−x/λ) xλ2 = c(x)x

λ2

∂c
∂c0

= exp(−x/λ) = c(x)
c0

Hence: σ2
c = c(x)2

(
σ2
c0

c20
+ x2

λ2

σ2
λ

λ2

)
. We therefore obtain for the relative error:

σ2
c

c(x)2 =

(
σ2
c0

c20
+ x2

λ2

σ2
λ

λ2

)
.

Using numerical values we obtain:
σ2
c0

c20
= 0.052 = 0.0025,

σ2
λ

λ2 = (20/120)2 = 1/36 = 0.0277 and

x2

λ2 = (200/120)2 = 100/36 = 2.777, which yields:
σ2
c

c(x)2 = 0.0025 + 2.777 ∗ 0.02777 = 0.077. and

finally: σc
c = 0.277

b) Solving the equation c(xT ) = cT yields: ln(cT /c0) = −xT /λ, which we can transform into:

xT = λln(c0/cT ). Numerically, this yields a value of xT = 120µm ln(5) ' 200µm

Error propagation: σ2
xT =

(
∂xT
∂λ

)2
σ2
λ +

(
∂xT
∂c0

)2

σ2
c0 .

∂xT
∂λ = ln(c0/cT ) = xT

λ

∂xT
∂c0

= λ cTc0
1
cT

= λ
c0

This yields: σ2
xT =

x2
T

λ2 σ
2
λ + λ2

c20
σ2
c0 =

σ2
λ

λ2 x
2
T +

σ2
c0

c20
λ2.

Numerically: σ2
xT = (2002 × 1/36 + 1202 × 0.0025)µm2 = (33.32 + 62)µm2 ' 33.82µm2. Also ist

xT = 200± 34µm

c) To take into account an uncertainty in the threshold, we need an extra term in the error propa-
gation: ∂xT

∂cT
. Hence, we obtain:

σ2
xT =

(
∂xT
∂λ

)2
σ2
λ +

(
∂xT
∂c0

)2

σ2
c0 +

(
∂xT
∂cT

)2

σ2
cT .

where ∂xT
∂cT

= λ cTc0
c0
c2T

= λ
cT

This yields: σ2
xT =

x2
T

λ2 σ
2
λ + λ2

c20
σ2
c0 + λ2

c2T
σ2
cT =

σ2
λ

λ2 x
2
T +

(
σ2
c0

c20
+

σ2
cT

c2T

)
λ2.

d)If we normalize concentrations by the initial concentration, an uncertainty in c0 becomes reflected
in an uncertainty in cT , since the ratio c0/cT is decisive in the determination of xT . The uncertainty
in concentration is σc and for normalized concentrations, this corresponds to σc0 = 0 and σcT = σc.
If we use this in the result of part c) using σc = 0.05c0, we obtain:

σ2
xT =

x2
T

λ2 σ
2
λ + λ2

c2T
σ2
c =

σ2
λ

λ2 x
2
T +

σ2
c

c2T
λ2.

Or numerically: σ2
xT = (2002× 1/36 + 1202× 0.0025× 25)µm2 = (33.32 + 302)µm2 ' 452µm2. The

threshold position including its uncertainty would thus be given by xT = 200 ± 45µm, which is a
much larger uncertainty than is biologically observed.
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6. Dimensional analysis

a) Diffusivity times mobility has the units of m2/s × N s / m = N × m = J, thus corresponds to
an energy. The physical property corresponding the the product of diffusivity times mobility thus
has to correspond to an energy, which we will se in chapter 8 is equal to the thermal energy kBT .
This relation is also known as the Einstein relation.

b) We are looking for a force (air resistance) (F, Newton) given by viscosity (η, Pa s), speed (v,
m/s) and area (A, m2). Our Ansatz is: F = ηavbAc, which yields an equation in units: N = Paa

sa−b mb+2c. Using the relations for N and Pa in terms of basic units, we obtain: kg m s−2 =
kga s−b−a mb+2c−a, which gives three separate equations (corresponding to the three different base
units) for the constants a,b, and c:

(i) a=1;

(ii) b+a=2;

(iii) b+2c-a=1

Inserting (i) in (ii) gives b=1. Inserting this and (i) in (iii) gives c=1/2, which gives the final result:
F ∝ ηvA0.5. This is also known as Stokes friction.

7. Dimensional analysis 2

a) Dimensional analysis uses the Ansatz: [E] = [R]a · [T ]b · [ρ]c, thus:

kgm2/s2 = ma · sb · kgc/m3c

This gives equation for the kg giving: c = 1, for the s giving b = −2 and for the m giving:
2 = a− 3c = a− 3 or a = 5 after inserting the result for the kg. We therefore obtain for the energy:

E = ρR5/T 2

b) We read the diameter of the blast from the image using the scale for 100 m, image 1: 105 m and
image 2: 128 m. Using a) with a dimensionless prefactor equal to one, we obtain:

E1 =
1kg/m3(105)5m5

0.0162s2
=

(1.05)5 · 1010

(1.6)2 · 10−4
J =

1.055

1.62
1014J = 5 · 1013J.

E2 =
1kg/m3(128)5m5

0.0252s2
=

(1.28)5 · 1010

(2.5)2 · 10−4
J =

1.285

2.52
1014J = 5.5 · 1013J.

c) Error propagation using relative errors yields: r2
E = r2

ρ + 25r2
R + 4r2

T .

d) The error in reading off distances from the figure is roughly 0.5 mm, which is valid for the
diameter as well as the scale-bar. Therefore, the relative error in R is: rR =

√
r2
D + r2

S ' 0.03.
Given the time stamp, we can estimate a time uncertainty of 1 ms, such that rt ' 0.05. From the
problem setting we get the error in the density of the air as rρ = 0.1. Error propagation from c)
therefore gives rE =

√
100 + 25 · 9 + 4 · 25% =

√
425% ' 20% or σE = 1013J .

e) The two results from b) therefore are in agreement with each other within the uncertainty.
Similarly, a web-search gives that the strength of the explosion in Alamogordo is typically estimated
as E = 7·1013 J or 18 kt TNT. This is surprisingly close to the estimate and only two standard errors
away, hence still compatible with our simple estimate. This is because the pre-factor for the energy
of a shock wave is in fact very close to one, which however cannot be obtained from dimensional
analysis. Experimentally this could be done using a process that we can image, where we know
the energy involved, such as the shockwave of a busting balloon filled with water, where high speed
movies can be easily found on youtube. With this we could in fact determine the prefactor and
then obtain an even better estimate.

8. Power laws and logarithmic scales

The slope of the straight line is given by ∆ ln R / ∆ ln M, which we can numerically determine to
be 0.36(2). This slope is compatible with a dependence of the size on the mass as R ∝ M1/3. This
means that the mass grows like a volume, which is sensible for an object of constant density.
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9. Power laws and logarithmic scales 2

a) The slope of the red line is a = 5/4. This means that there is a scaling law of the form: d ∝ L5/4.

b) For the uncertainty, we determine two different slopes. One from the lowest small value to
the largest big value and a second from the largest small value to the lowest big value. The
real result must be between these two values and the distance to the average thus determines
the uncertainty interval. The two slopes are: Min = 3/(log(1500) − log(3.5)) ' 1.14; Max =
3/(log(1000)− log(5.5)) ' 1.33. So the average exponent is a = 1.24(9).

c) If we only had to look at an absolute error, this would be important only for the small values.
Therefore, the slope (and its uncertainty) is mostly determined by the big values, meaning that the
two slopes have to go through the same points in the upper right of the figure. This means that
the uncertainty of the value we determine will be smaller, as will the average slope.

If the relative errors for the measurements are roughly constant, the errors of all points on a
logarithmic scale are equally sized. Therefore, we have to treat all point equally when laying
different straight lines. This basically gives the treatment of part b) above.

A roughly constant relative error is more probable, since the shape of the bone and where the
circumference is measured determine the systematic error, which will be the determining source
of error. these systematic errors increase in accordance with the size of the bone, such that the
relative errors are roughly constant.

10. Power laws and logarithmic scales 3

a) The slope is given by a = log(101)−log(10−2)
log(100)−log(109) = 1−(−2)

0−9 = − 1
3 .

b) Maximum slope: a = log(2.5·101)−log(7·10−3)
log(100)−log(109) = 1.4−(−2.15)

0−9 = − 3.55
9 = −0.39

minimum slope: a = log(0.7·101)−log(2·10−2)
log(100)−log(109) = 0.85−(−1.7)

0−9 = − 2.55
9 = −0.28

So the average exponent is a = −0.33(5)

c) However, here values with large N have a much smaller relative error. Therefore, we have to
determine the slopes differently with bigger weight given to those values. This gives:

Maximum slope: a = log(3·101)−log(10−2)
log(100)−log(109 = 1.48−(−2)

0−9 = − 3.48
9 = −0.385

minimum slope: a = log(0.7·101)−log(10−2)
log(100)−log(109 = 0.85−(−2)

0−9 = − 2.85
9 = −0.32

So the average exponent is a = −0.35(3)

11. Scaling laws and the Body Mass Index

(a) If fish have the same density (are made from the same material), their mass is given by their
volume. Since the unit of a volume is m3 and the length has units of m, we expect a scaling law of
M ∝ L3. If you know this law (and its pre-factor) you do not need a scale on the fish market, but
can simple measure the length of the fish to obtain its weight. The pre-factor actually is given by
the density (roughly 103 kg/m3) as well as a number describing the geometric shape of an average
fish.

(b) The same argument as above would give a scaling law of the form M ∝ L3. Apart from the
density, the pre-factor is a simple number that characterizes the shape of a body. For instance as
sphere would have a pre-factor of π/6, whereas it would be π/25 for a cylinder with a radius of one
fifth of its length or π/16 with a radius of a quarter of the length. The pre-factor for humans is
typically between 0.13 (=π/25) and 0.16 (=π/20).

(c) If the BMI is a good measure for the average population, this means that everybody should
have roughly the same value of M/L2. This means that the pre-factor that we have looked at in
b) is dependent on the size of the person. To be exact, it decreases as 1/L. This means that short
people should be sturdier, whereas tall people should be skinnier on average.

(d) We determine the slope of the red line, which corresponds to the linear part of the curve
(masses below about 60 kg). To get an estimate for the uncertainty, we actually look at two
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different straight lines, with maximum and minimum possible slope still compatible with the data.
For the factor of ten increase between 10 and 100 kg, the lines cover the length interval between
80 to 180 cm and 65 to 200 cm respectively. Thus the slopes will be log(200/65) = 0.48 and
log(180/80) = 0.35 respectively. Thus our estimate for the exponent becomes β = 0.42(7). This is
actually the exponent for the power law L ∝ Mβ . In terms of the normal version of the BMI, we
have to look for α = 1/β = 2.4(4). The empirical value is therefore a little bit closer to that used
for the BMI rather than the geometrically expected exponent. However also the usual exponent is
only marginally fitting the data.
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