EXERCISES FOR VECTORS, MATRICES, AND GEOMETRY

Exercise 7.1 (Linear combination of random vectors). Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K$ be independent *M*-dimensional random vectors. However, the vectors are not drawn from the same population. Instead, the populations have individual means $\mathbb{E}[\mathbf{x}_k] = \boldsymbol{\mu}_k$ and covariance matrices $\operatorname{cov}[\mathbf{x}_k] = \boldsymbol{\Sigma}_k$. Because the vectors are independent,

$$\operatorname{cov}[\mathbf{x}_k, \mathbf{x}_{k'}^T] = \begin{cases} \mathbf{0} & k \neq k' \\ \mathbf{\Sigma}_k & k = k' \end{cases}$$
(7.1)

Note that there are K distinct covariance matrices $\Sigma_1, \Sigma_2, \ldots, \Sigma_K$. Suppose $\mathbf{y} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots + c_N \mathbf{x}_N$, where the c's are known scalars. What is the mean and covariance matrix of \mathbf{y} ?

Exercise 7.2 (Matrix combinations of random vectors). Let $\mathbf{x} \sim N_M(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Suppose $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$, where \mathbf{A} is a constant matrix and \mathbf{b} is a constant vector. What is the complete distribution of \mathbf{y} ?

Exercise 7.3 (Properties of the Trace and Determinant). Let **A** be a square matrix, but not necessarily symmetric. Square matrices still have eigenvectors and eigenvalues that satisfy

$$\mathbf{As} = \lambda \mathbf{s}.\tag{7.2}$$

As a result, the matrix is close enough for practical purposes to having an eigen decomposition of the form

$$\mathbf{A} = \mathbf{S}\mathbf{\Lambda}\mathbf{S}^{-1},\tag{7.3}$$

25

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett

in which case A is said to diagonalizable and the properties below are easy to prove. If A is symmetric, then we know that there exists a decomposition of the above form where S is an orthogonal matrix and Λ has real diagonal elements, but these special properties are not needed in the following problems.

(a) Show that $\operatorname{tr} \mathbf{A} = \operatorname{tr} \mathbf{A}^T$ for any matrix \mathbf{A} .

(b) Show that $tr{AB} = tr{A^TB^T}$ for any two matrices A and B such that $tr{AB}$ is defined.

(c) Show that tr $\mathbf{A} = \sum \lambda_i$, where the λ_i 's are the eigenvalues of \mathbf{A} , and the sum is over all eigenvalues.

(d) What is $tr{A^k}$ in terms of the eigenvalues of A?

(e) Show that $tr[\mathbf{A}^{-1}] = \sum_{m=1}^{M} \lambda_m^{-1}$, where the λ_m 's are the eigenvalues of \mathbf{A} .

(f) Show that $tr{\mathbf{A}\mathbf{A}^T} = \sum_i \sum_j a_{ij}^2$, where a_{ij} is the (i, j) element of \mathbf{A} .

(g) Show that $|\mathbf{A}| = \lambda_1 \lambda_2 \dots \lambda_p$, where \mathbf{A} is a $p \times p$ matrix and the λ_i 's are the eigenvalues of \mathbf{A} .

(h) If A is symmetric and positive definite, show that $\operatorname{tr} \mathbf{A} > 0$ and $|\mathbf{A}| > 0$.

(i) Show that the trace of a positive semi-definite matrix is non-negative. Show that the determinant of a positive semi-definite matrix is non-negative.

Exercise 7.4 (Idempotent matrices). An *idempotent* matrix is a matrix \mathbf{A} such that $\mathbf{A}^2 = \mathbf{A}$. Show that the eigenvalues of an idempotent matrix can have only two values, namely 0 and 1. Show that the number of eigenvalues equal to 1 is given by tr[\mathbf{A}].

Exercise 7.5 (Properties of Orthogonal Matrices).

(a) Show that orthogonal transformations preserve the Euclidean length of a vector. That is, if $\boldsymbol{\xi} = \mathbf{U}\mathbf{x}$, where U is an orthogonal matrix, then show that $\boldsymbol{\xi}^T \boldsymbol{\xi} = \mathbf{x}^T \mathbf{x}$.

(b) Show that orthogonal transformations preserve the cosine-angle between two vectors. That is, show that the cosine-angle between x and y, and the cosine-angle between $\boldsymbol{\xi} = \mathbf{U}\mathbf{x}$ and $\boldsymbol{\eta} = \mathbf{U}\mathbf{y}$, are equal. The cosine-angle between two vectors x and y is

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\sqrt{(\mathbf{x}^T \mathbf{x})(\mathbf{y}^T \mathbf{y})}}.$$
(7.4)

(c) Show that the determinant of an orthogonal matrix is +1 or -1.

(d) Show that $|\mathbf{U}\mathbf{A}\mathbf{U}^T| = |\mathbf{A}|$, where U is an orthogonal matrix and A is any matrix.

(e) Show that $tr{UAU^T} = tr{A}$, where U is orthogonal and A is a square matrix.

(f) If U_1 and U_2 are orthogonal matrices, show that U_1U_2 is also orthogonal. Hint: remember that orthogonal matrices satisfy *two* properties.

Exercise 7.7. Show that the inverse of a transpose equals the transpose of the inverse:

$$\left(\mathbf{A}^{T}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{T}.$$
(7.5)

Hint: start with $AA^{-1} = I$.

Exercise 7.8 (Frobenius Norm). The "length" of a vector is defined as the square root of the sum square vector elements. A natural generalization of "length" to a matrix \mathbf{X} is

$$\|\mathbf{X}\|_{F} = \sqrt{\sum_{i} \sum_{j} x_{ij}^{2}}.$$
(7.6)

This measure is called the *Frobenius Norm*. It is clear that the Frobenius norm vanishes if and only if $\mathbf{X} = \mathbf{0}$, consistent with a measure of "length."

(a) Show that the Frobenius Norm can be written equivalently as

$$\|\mathbf{X}\|_F^2 = \operatorname{tr}\left[\mathbf{X}\mathbf{X}^T\right]. \tag{7.7}$$

(b) Suppose U and V are orthogonal matrices with dimensions such that the product UAV is defined. Show that

$$\|\mathbf{U}\mathbf{A}\mathbf{V}\|_F = \|\mathbf{A}\|_F. \tag{7.8}$$

Exercise 7.9. Consider a $M \times M$ matrix **A** with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_M$. Show that the eigenvalues of $a\mathbf{I} + b\mathbf{A}$ are $a + b\lambda_m, m = 1, 2, \ldots, M$.

Exercise 7.10. If A is positive definite, show that *each* diagonal element of A must be positive. \Box

Exercise 7.11 (Distribution of a random quadratic form). Suppose $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is positive definite. In this problem you will determine the distribution of the quadratic form

$$Q = (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) .$$
 (7.9)

(a) Let the eigenvector decomposition of the covariance matrix be

$$\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T, \tag{7.10}$$

where U is an orthogonal matrix, and Λ is the diagonal eigenvalue matrix. What is the eigenvector decomposition of Σ^{-1} ?

(b) Using the results from part (a), construct a transformation matrix A such that

$$\boldsymbol{\zeta} = \mathbf{A} \left(\mathbf{x} - \boldsymbol{\mu} \right) \quad \text{and} \quad \boldsymbol{\zeta}^T \boldsymbol{\zeta} = Q \,.$$
 (7.11)

28 EXERCISES FOR VECTORS, MATRICES, AND GEOMETRY

What is **A**?

(c) What is the distribution of $\boldsymbol{\zeta}$?

(d) A theorem in statistics states that if two random variables are uncorrelated *and* distributed as a multivariate Gaussian, then they are independent. Use this theorem to show that ζ_i and ζ_j are independent if $i \neq j$.

(e) What is the distribution of Q?