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1 Selected topics of set theory

To be done.






2.1

Matrices

In this supplement to our book], we provide a review of some topics of matrix algebra thatratevant to the
book. This supplement is not a textbook, but rather a catleaif mathematical methods illustrated by examples
that help engineers and graduate students to understantateeal of the book. Throughout this supplement we
give references to textbooks that contain in-depth coweaagl necessary proofs of the corresponding statements
and theorems.

Matrix Operations

A sizem x n matrix is a table withn rows andn columns:

a1 a12 ... Qip
. a21 22 ... A2p .
A= - [aij]ann . (21)
Am1 Am?2 - .. Amn

We consider only the matrices whose elememnjsare real or complex numbers. If the elements of the matrix are
real, we writeA € R™*"; if they are complex, we writed € C™*". If the number of rows is equal to the number
of columns (n = n), A is called asquare matrix

A matrix with one row (n = 1) a = [a1, aq,...,a,] is called a row-vector, and a matrix with one column
(n=1)
by
b= | (2.2)
b

is called a column-vector. Sometimes it is convenient tatetheij-th element of the matrid as(A);; = a;.
An A

A transposeA ' of the matrixA is obtained by replacing its rows with the correspondingioois:(A");;
(A);;. For example, if

L

127"

135

AL
24

56 0



4 Matrices

To save paper, it is convenient to represent a column vestartanspose of a row vector. For example a column
vector of equationZ.2) we can present ds= [by,bs,...,b,]". If A= AT, the matrix is calledymmetrical

For matrices with complex element$armitian transposer conjugate transposmatrix is defined as a com-
plex conjugate of its transposd:’ = (AT). For example,

. H
e
5 6 2 4-216

A matrix is calledHermitianif it is equal to its Hermitian transposgt = A . Obviously, a real Hermitian matrix
is a symmetrical matrix. Thproduct of a scalar and the matris obtained by multiplying each element of the
matrix by this scalarfAA);; = \(A);;. For example

3 135 [3915
246| |61218
Thesum of the matriced + B of the same size is the matrix whose elements are the sums obtresponding
A

element§ A + B);; = (A);; + (B),;. For example

135 N -112 3] [-1058
246 73-1| 975

If A =lail,,., andB = [b;],,,,. then theproduct of the matrice€” = A B of the matrices is defined as the
matrix C' whose element
cij = @b + apbyj + - + ainby; = Z aixbj. (2.3)
k=1

For example,

12 112 3 -11+14 2+6 3-2 3 81

34 [ 73_1]2 —33+4+28 6+12 9—-4| =] —5185

56 —55+4210+1815—6 —-13289

Note that the product of the matrices is generally non-cotative: AB # B A. For example, if we exchange
the order of multiplication of the matrices of the previoxample, we obtain

{_112 3] - {10 4]
-1 - |182
73 56 8 20

A lower triangular matrixis a square matrix whose elements above its main diaggnat 0 for ¢ < j. An
upper triangular matrixs defined similarlya;; = 0 for ¢ > j. A diagonal matrixis a matrix whose off-diagonal
elements:;; = 0 for ¢ # j. A diagonalm x n we denote as

A =diag{aq,a2,...,ap,} (2.4)

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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Matrices S

wherep = min(m, n). For example, the following matrices are diagonal matrices

(1)2 FOO} [10}
’ 2 ’ 2
00 020 0

A square diagonal matrix whose diagonal elements are afl snealled andentity matrix

1 0 ... 0
1= % b O 5 = diad1 1. 1), 2.5)
0 0 ... 1

whered;;, is the Kronecker symbob;; = 1 andd;;, = 0for i # k. Itis easy to see thadl = A andI A = A for
any matrix A.

A column matrix1 =[1 1 ... 1]T is often used in our books]. The productAl is equal to the column
matrix whose elements are the sums of rows of the matrikor example

12 3
1
HEK
56 11

Thus defined matrix operations satisfy the following eagdyified identities:

.A+B=B+ A.

.(A+B)+C=A+(B+0C).

. (AB)C = A(BC) = ABC.

.A(B+C)=AB+ AC.

. (AB)Y = BH AH,

.(AB)T=B"A".

. A product or sum of lower (upper) triangular matrices soa lower (upper) triangular matrix.

~NOoO o WDN PR

Trace of a matrix
Trace of square matrixd € C™*" is the sum of the elements on its main diagonal:

Trace(A) = i @i (2.6)
i=1

The matrix trace possesses the following properties

1. Trace(A + B) = Trace(A) + Trace(B).
2. Trace(AA) = ATrace(A).
3. If A e C™™andB € C"*™, thenTrace(AB) = Trace(BA). Indeed,

m m

Trace(AB) = Z(AB)” = Z Zaijbﬁ.

i=1 i=1 j=1

1 If the matrix A hasm rows andn columns, then we should writd I ,,,,, = A andI,,..».A = A, but since the sizes of the identity
matrices are obvious, we write in both cade® simplify notation

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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6 Matrices

Similarly,

n n n

Trace(BA) == Z(BA)JJ = ZZ bjiaij.

j=1 j=1i=1
Thus, Trace(AB) = Trace(BA).
4. Trace(A) = Trace(A™) because the Hermite transposition just changes the diagkements by their con-
jugate.

Determinant

Determinant of a square matrix can be defined recursively.dBterminant of a scalar ( sizex 1 matrix)is equal
to the scalardet(a) = a. The second-order determinant

a1l a12
det =
a21 Q22

a11 a12
21 22

= 11022 — G12021 (2.7)

can be viewed as sum of the products of the elements of a rolvebgarrespondingdjunctsor cofactors:
det A = Cl11A11 + a12A12 (28)

whereA;; = ass and A = —ao; are calledadjunctsor cofactorsof the elements;; anda;s, respectively.
For the third-order matrix, we define

a1l ai2 ais
det |a21 a2 a3 | = a11d11 + a12412 + a134i3

a31 az2 a33
where the adjuncts are defined as
Ay = det [ } Ay = —det [ } Ay = det [ ] |
a32 as3 a3zl ass a31 as2
For the square matrix of size x n, we define the adjunct as
Aij = (=) M;; (2.9)
wherel;;, called theminor of a,;, is a determinant of the matrix obtained by deleting-tf row and;-th column

from A.
For the square matrix of size x n, we define the determinant recursively as

j=1

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



Matrices 7

This equation is order-recursive: it defilghe determinant ofi-th order using the determinants @f — 1)-th
order which can further be decomposed into determinants ef 2)-th order, and so on. For example,

123
321 =112 o |3 5. 32 21 02.243.4=5, (2.11)
91 21 11 12

The matrixA is calledsingularif det A = 0, otherwise it is calleghon-singular It is easy to verify the follow-
ing properties of the determinant (assuming that all theatfpns are defined).

1. If any raw of a square matrix consists entirely of zeros,tiatrix is singular. Indeed, ifth row consists of
zeroes, then equatio.(L0) givesdet A = 0.

2. Interchanging two rows changing the sign of the determinindeed, this is obvious for the second-order
determinants, according to equati@). Then, by induction, all thel;; in equation 2.10 change sign which
means thatlet A changes sign.

3. If a matrix has two equal rows, it is singular. Indeed, if @&hange the rows, its determinant must change
sign. But, since the rows are equal, we have the same matrixs, in this caselet A = — det A, which is
possible only ifdet A = 0.

4. A sum of products of elements Bth row of a matrix by the cofactors of another row of the maisizero:

> aijA; =0 if itk (2.12)
j=1
This property follows from the previous, because the sumigeéto the determinant of the matrix that has two
equal rows. This matrix is obtained from the matdxby replacing itsk-th with its i-th row.
5. det A" = det A. It follows from this property, that every result that is pen to the columns of the determinant
applies to its rows.
6. Combining equation(10 and .12 we have

> aijAp; = b det A (2.13)
j=1
7. If a a row of a matrix is multiplied by a number, then its detmant is also multiplied by the same number.
This property is obtained by multiplying both sides 8f{0 by a number.
8. If two rows of a matrix are proportional, the matrix is sitar. Indeed, by factoring the proportionality coeffi-
cient we obtain the matrix with two equal rows which is siragul
9. If two matrices differ only by a row, then the determinaftie sum of the matrices is equal to the sum of their
determinants. This property follows from equati@l(Q in whicha,; = b;; + c;;.

10. Addition of a row times any number to the other row of thetrinedoes not change its determinant. This
property is a corollary of the two previous properties sitiee determinant of the modified matrix can be
expressed as a sum of the determinants of the original netdxhe matrix with the proportional rows.

11. For the sizer x n matrix A, det A\A = \" det A. This property follows from property7J: if we multiply A
by A, then each its row is multiplied by.

2 strictly speaking, we can use this definition using one paldr row and then prove (by induction) that the result dastsdepend on the
row selection. We leave the proof to the reader as an exercise

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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12. Determinant of a triangular matrix is equal to the praddidts diagonal elements. This property follows from

equation .10 according to whichlet A = a1 411 WhereA; is also a triangular matrix. Thus,

det A = a11a22 - Apnp (214)

13. Determinant of the the product of the matrides AB = det A det B.
14. Determinant of the Hermite transpage (A" ) = det A.
15. Determinant of a Hermitian matrix is redkt(A”) = det A = det A.

Rank of the Matrix

An order% minor of the matrixA is a determinant of & x &k matrix

ailjl (Lile . ailjk
Qi Qjngo « oo Qjog

1271 272 27k i (215)
Qiyjy Wiy -+ Qigjgy,

whereiy, i, ..., i, andji, jo, ..., ji represent the selected rows and columnglofTherank of the matrix is the
highest order of all the matrix minors that are differennfiraero. In other words, there is an ordeminor that
is not equal to zero while all the minors of higher orders amaes. If the rank of am x n matrix is equal to
min(m, n), we say that the matrix hdsll rank.

The rank of the matrix can be found by the following recurgivecedure: we try to find consequently the
non-zero minors of the order, 2, ..., adding at each step just one row and one column to the nonrziear
found in the previous step. The process stops if we found @amahthe orderk that is not equal to O, but all
minors of the ordek + 1, obtained in this process are equal to 0, then the rank of dtexnis k because in this
case the minors whose order is larger tthan 1 can be expressed using equati@riL() as a linear combination
of the minors of ordek + 1 which all are zeroes.

Inverse Matrix
The matrixA ! is called the inverse ofl if
ATA=AAT=T (2.16)

The inverse matrix exists if and only A is non-singular. It follows from this equation that if thev@rse matrix
exists, thend must be non-singular. Sinecket A ' A = det A~* det A = det I = 1, we have

1

det At = —— 2.17
¢ det A ( )
To obtain a formula for the inverse matrix, we rewrite equaiR.13 as
1 n
j=1

As we can see, the left hand side of this equation represargteaent of the product of the matrix and the
transposed matrix Adi) of the cofactors (called thadjugate matrix of Amultiplied by the scalat / det A.
The right hand side is an element of the identity mat2iX%). Thus, we can rewrite equatioB.(8) in the following

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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matrix form

1 .
A (dctA AdJ(A)> — T (2.19)

Comparing this equation witt2(16) we conclude that for any non-singular matdxthe inverse matrix exists and
can be written as

o1

= i Adi(4) (2.20)

As an example of using this equation, let us find the inverseixfar the second-order matrix

A= [“” ‘“2] (2.21)
@21 G422
We have
det A = a11a22 — A12021 (222)
The matrix of cofactors is
{ a2 _a21:| (2 23)
—a12 a11 '

The adjugate matrix is the transpose of this matrix. Thuesjrierse matrix

1 _
At— - [ a2 a12} (2.24)
a11G22 — A12021 | —G21 411

To verify the correctness of this equation, we multiply

AA T =

1 [a11a22 — G12021 —A11612 + a12a11] _ {1 O} (2.25)

G11022 — G12021 | @21G22 — G22021 —A21G12 + Q22011 01

Caution: Equation 2.20 is used mostly in theoretical derivations. As we will se¢hia sequel, there are many
practical algorithms that are both less computationalfyessive and more accurate tha2Q).

Unitary and orthogonal matrices
A matrix U is calledunitaryif U = U i.e.

vl =vUu¥? =1. (2.26)
A real unitary matrix is calledrthogonal
U'U=UU'"=1I (2.27)
It follows from the properties of the determinants of the fite transpose of a matrix that
det U” det U = (detU)? = det I = 1. (2.28)
Thus,
|detU| =1 (2.29)

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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and the determinant of a unitary matrix equals either -1 or +1

detU = +1. (2.30)

Systems of Linear Equations

A system of linear equations has the form

anTi+ apTot -+ a1ty = by
a21T1+ aTo+ -+ Aoy, = bo

(2.31)
Am1T1+ AmaZa+ -+ QmnTn = by,
Using matrix notations this system can be written as
Az =b (2.32)
where A = [a;j],nxn is called thematrix of the systepvectorz = [x1, 22, ...,z,]" is called theunknown and

b= [b1,ba,...,b,]" is a known vector.

A solutionof the system is every vectar that satisfies the system, that is tur@s3@) into an identity. If such
vector does not exist, the system does not have a solutiomsystems are calleshjuivalenif they have the same
set of solutions. Multiplication of both sides of equati@32 by a non-singular matri¥’ leads to an equivalent
systemF' Ax = F'b. Indeed, as we can see, for any matFixevery solution of the original system is a solution
of the modified system. IF' is non-singular, multiplying the modified system by the iseematrixF ! leads to
the original system2.32) so that every solution of the modified system is also a swiutif the original system.

Consider a system of equations withn unknowns. In this cased is a square matrix. If the matrix of the
system in non-singular, it has an inverse matfix'. Multiplying both sides of equatior2(32 by the inverse
matrix, we obtainA ' Az = A~'b which gives us the unique solution

z=A"b (2.33)

If we use equation?.20 for the inverse matrix and multiply the adjugate matrix @dl) by b, we obtain the well
known Cramer’s rule:

det Az

xTr; =

det A
where A; is the matrix formed by replacing theth column of A by the column vectob. These formulae are
rarely used in practice, because the computation of thesavmatrix is more complex then solving the system
by Gaussian elimination. The efficient methods for solvingar systems are discussed in the next section.

(2.34)

Row Echelon Form

The process of solving the system of linear equation is baseéthnsforming it into a simpler equivalent system.
The followingelementary transformations of the systara used to solve the system

1. interchanging the equations,
2. multiplying an equation by a non-zero number,
3. adding some equation times a number to the other equation.

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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It is convenient to perform the elementary transformatioiithie system using the systenalsgmenteanatrix

air ai2 - G by
Au= (A= |0 0 235)
Am1 Gm2 *** Omn bm

. Elementary transformations of the system are equivatettitet corresponding transformations of the rows of the
augmented matrix: interchanging equations is equivateimtéerchanging the corresponding rows, multiplication
of an equation by a non-zero number is equivalent to muitiglghe corresponding row of the augmented matrix
by this number, and adding some equation times a number tottier equation is equivalent to adding the
corresponding row of the augmented matrix times the nunat®etother row. It is easy to see that these operations
can be performed by multiplying from the left the augmentedrin of the system by thelementary matrice®
that are obtained by the same elementary transformatiahg @dentity matrix. Since the elementary matrices are
non-singular, therefore, multiplications convert themegted matrix into an augmented matrix of the equivalent
system. In other words, tridementary transformations of a linear system converttd an equivalent system

The first column ofA4, always has a non-zero element (otherwise there would berrablex; in the system).
We can always assume that # 0 (this can be achieved by exchanging the rows of the augmemailx). We
call thus obtained coefficient;; # 0 apivot

By multiplying the first row by—a;; /a1, and adding it to the-th row we obtain 0 in the place af;. Thus, we
can create zeroes belaw; which means that we eliminate the variablefrom the restn — 1 equations:

aiy a2 ... aip by
(1) (1) 5(1)
AW — (AW p) = |0 @2 e @ b (2.36)
0 a;g a,(ﬁz, bﬁ,?
where
al)) = a;; — N (2.37)
aii

This process is called theaussian eliminatiorof the variablex;. If the rest of the equations contain, i.e.
a§;> # 0, we can assume thaélz) # 0 (we can always achieve it by interchanging the equationd)use it as

a pivot to eliminatex, from the rest ofm — 2 equations. Otherwise, it can happen that after the elinoinaif

z7 from the rest of the equations we also eliminaigdzs, . . ., zx,—1, but there is an equation containing, .
Without loss of generality we can assume that, # 0 (this can be achieved by swapping the rows of the matrix)
and use it as a pivot to eliminate,,, and so on. We can continue the process until we can find pindtse

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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following rows. Finally, we obtain the so-calledw echelon forr{REF) for the augmented matrix:

ail a12 ... Algy - .. A1k, co. Q1p b1
1 1 1 1
000 ) . a) el
..... - "(}71) @Ln
A((lr) _ [A((lr)’ b(r)] _ 0 ... 0 cee Qpp T e G bzr) (238)
0 0 ...0 ...0 ... 0 by {1
0 0 .0 0 0 0
oo ..o ..o ...0 0 |
The system that corresponds to the mat?ix8g has the form
a11T1+ G12Ta+ -+ Qg Thy+ -+ @1k, Th,+ o+ AT, = by
a;i)kaQ—’_ st aéi;)rxkr—’— 4 agn)xn — bél)
B, (2.39)
0Vt ot al V= Y
0 = 51(21

The REF system is easy to solve and analyse.

First of all we note that ibﬂ)1 # 0, the last equation = bﬁ?l is impossible to satisfy. Thus, the system does
not have a solution in this case.

If b@l = 0,we can prove that the system has solutions which can be foynthe back substitution

r

Since ai’,;:l) # 0, we can findzy, from the r-th equation of the system2@39 by expressing it through
Tk, +1, Tk, +2,- - -, Tn. SUDStitUting it into the previous equations we find , and so on. Finally, will express all
the unknownscy, xk,, ..., xg,. corresponding to the pivots through the rest of the unknowns

Ty =01+, BTy,
Tp, =02+, Boty (2.40)

Tk, = CQp + ZV BT‘I/'IIJ

where the index in the RHS of this equation can take all the values n except forl, ko, ..., k.. The unknowns

in the RHS of the previous equation are calledftee unknownsecause we can assign to them any values while
the unknowns in the LHS of this equation are thain or basicunknowns. Their values are uniquely defined
from (2.40 by the free unknowns. Any set of valuesrof- r free unknowns and the correspondingf the main
unknowns define a solutions of the linear syst@n37).

Note that the back substitution can be incorporated intddhgard elimination if we eliminate not only the
elements below a pivot, but also the elements above the. pivot

Thus, the system has solutions if and onlftfﬁzl = 0. In this case, if = n, there is no free variables and the
system has the unique solutionrlk n, the system has an infinite number of solutions.

It is easy to verify using the properties of determinants the elementary transformations of the matrix do not
change its rank. Therefore, the rank of the matrix is equtieéaank of its REF which is equal to the number of
its non-zero rows. Note thaf;)l = 0if and only if Rank(A) = Rank(A,). These results are summarized in the
following theorem.

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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Theorem 2.1 (Kronecker-Capelli). A system of linear equations has a solution if and only if twekrof its
coefficient matrix is equal to the rank of its augmented maRink(A) = Rank(A,).

A system has the unique solution if and onlRafnk(A) = Rank(A,) = n.

A system has an infinite number of solutions solution if ag ditank(A) = Rank(A,) < n

Example 2.1: Let us solve the system of linear equations

2¢ +y —z= 8
=3z —y +2z = —11
-2z +y +2z = -3

1. We have the following transformations of the system augetematrix

2 1-1 8 2 1-18 2 1-18
—3-1 2-11|~]005051| ~ [005051 (2.41)
-2 1 2 -3 0 2 15 0 0-11

To obtain the second matrix, we multiplied the first row by 8/ added it to the second row, then we added first
row to the last row. The last matrix (the REF) was obtained ljtiplying the second row of the second matrix
by -4 and adding it to its third row.

The REF of the system, according to equati®mt(), is

2 +y —z =38
0.5y +0.5z =1.
—2z=1

To find the solution, we perform the back substitution. Fréw liast equation we have= —1. Substituting it
into the previous equation, we obtajn= 3, and, substituting = 3 andz = —1 into the first equation we obtain
T =2.

2. Note that the back substitution can be also performedyusiementary operations starting from the last
equation.

2 1-18 2 10 7 2 00 4 100 2
005051| ~ 005015~ (005015~ ]010 3
0 0-11 0 01-1 0 01-1 001-1

The last matrix was obtained by dividing each row of the pyegimatrix by the pivot (so that the new pivots are
equal to 1). The system that corresponds to the last matsixteaform

r=2
y=3
z=—1

Thus, the last column (2,3,-1) of the previous matrix giveshe solution. The corresponding matrix is called the
reduced row echelon forfRREFYof the system augmented matrix.

3 Matlab and the majority of other software packages have fomst r ef () that perform the transformations.

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



14 Matrices

3. The back substitution can be incorporated into the fodvpairt of the Gaussian elimination if in its each step
we not only eliminate the matrix elements below its pivotsddao above them. Referring to equati@(), in
addition to the previously performed eliminations, we cbitdve multiplied the second row by -2 and added it to
the first row and repeated similar eliminations in the thiotuon as illustrated above. Thus, we could have

2 1-1 8 2 1-18 2 0-26 2 0 0 4
-3-1 2-11| ~ 005051 ~|005051|~ (005 01.5 (2.42)
-2 1 2 =3 0 2 15 0 0-11 0 0-1 1

By dividing each row by its pivot, we obtain the RREF

100 2
010 3
001-1

and the solutior{2, 3, —1).

Example 2.2: In this example, we consider a system whose matrix has reatkitHess than the number of
unknowns.
2xy +4x9 —3x3 +5x4 +x5 =9
3r1 +xo ‘x4 —3x5 =2
I +7£B2 —6x3 +91’4 +5!L’5 =16

Applying the Gaussian elimination to the augmented mafrikhe system, we obtain the following RREF

24-35 19 10 03-01-1.3-0.1
31 01-3 2| ~(01-09 13 09 23
17-69 516 00 0 0 0 0

As we can sedRank(A) = Rank(A,) = 2 which is less than the number of unknowns= 5. Hence, according
to the Kronecker-Capelli theorem, the system has an infmitaber of solutions that can be expressed using
equation 2.40 which in our case takes the form:

1 = —0.1 —0.323 +0.1x4 +1.325
o = 2.3 +0.9x3 —1.3x4 —0.925

wherezxs, x4, x5 are the free variables that can take any values. For exaifiple= 1, x4 = 0, z5 = 0, then the
solution of the system is = (—0.4,3.2,1,0,0).

Example 2.3: In this example, we change the last element in the RHS of thiesy(e.g. write 7 instead of 16),
we obtain after the Gaussian elimination

24-35 19 10 0.3-0.1-1.3-0.1
31 01-32|~{01-09 13 09 23
17-69 57 00 0 0 0 1
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Thus,Rank(A) = 2 < Rank(A,) = 3 and the system does not have solutions.

Block Matrices
It is often convenient to represent a matrix in the block form

Ay A o A

A21 A22 o A2N

A= (2.43)

DR ... ... DY :[Al]]MXN.
Api Ao -0 Aun
where A;; are sub-matrices of the matrit. The operations between the matrices can be written in thekbl
form. For example, the matrix produ€t = A B of the matrices in the block form is given by

N
Cij = AnByj+ AinAyj + -+ AinBy; = Y AiBy;. (2.44)
k=1

provided that all the matrix products in this equation aréngel.
A block-diagonal matrix is defined as

A;; 0 ... O

0 Ay ... O

A= = block diaglA:;] y .y - (2.45)

0 0 ... Ayn
where all the diagonal blocks are square matrices. It is ggagsove that

det A = det A11 det A22 ---det ANN (246)

Linear Vector Space

Definition 2.1 (Linear vector space)A linear vector space is a setwhose elements are called vectors (or points)
if

1. there is a rule according to which for any vectars=s V andy € V there is a unique vectat € V which is
called the sum of the vectors and denotec¢tas x + y;

2. there is a rule according to which for any vectorc V and a numben from some field of numbers there is a
unique vector € V which is called the product of the number and vector and d=hasz = A\x;

3. the defined operations of addition of the vectors and plidétion of a vector by a number satisfy the following
axioms (called the axioms of a linear space)
Azxrxty=y+wz,
b) (x+y)+z=z+ (y+2)foranyz,y),z € V;
c) there is a null-vectof € V such thate + 0 = x for anyx € V;
d) for anyx € V there isy € V such thatr + y = 0. This vector is called the opposite 40and denoted as

—x

e)1-xz=xforanyx € V;
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f) a(Bx) = (af)x for anyx € V and any two numbers and 3;
g (a+ B)x = (ax + px for anyx € V and any two numbers and 3;
h) a(z + y) = ax + ay foranyz, y € V and any numbet.

This axiomatic definition allows us to apply the theory o&lam vector spaces not only to to geometrical vectors
but also to various objects (such as polynomials, solutiblisear systems, solutions of the systems of differential
equations, random variables, and many other objects thistystihe axioms of the linear vector space).

We call the vector space real and den@t# the numbers are from the field of real numbers. We denote the
complex vector space &sif the numbers are from the field of complex numbers.

Linearly Independent Vectors

Definition 2.2 (Linearly dependent and independent vectoi}t a;, as, ..., a; be vectors inC. We say that
these vectors are linearly dependent if there are numberss, . . . , x5 not all equal to zero, such that

r1a1 + x2a9 + -+ xrar =0 (2.47)
Otherwise (that is if this equation is satisfied onlyzif = x5 = ... = x, = 0), the vectors are called linearly
independent.

If vectors are linearly dependent, then at least one of tefficents is different from zero. Dividing equation
(2.47 by it we can express the corresponding vector as a lineabication of the rest of them.

Definition 2.3 (n-dimensional space)lf in the linear space there are linearly independent vectors and every
n + 1 vectors of the space are linearly dependent, then we callgjpicer-dimensional

In other words, the maximal number of the linearly independectors of the space is called its dimension. If
we use real numbers in the definition of the linear space, wetddghen-dimensional space &"; the complex
n-dimensional space is denoted@s.

Definition 2.4 (Basis of n-dimensional space)An ordered system ofi linearly independent vectors
ey, e, ..., e, of then-dimensional space is called its basis

Theorem 2.2. Any vectorz of then-dimensional space can be uniquely represented as a linembmation of
its basis vectors

T =2x1€] +To€3+ -+ xn€,. (2.48)

Proof. Since anyn + 1 vectors are linearly dependent
apx + ajep +ases + -+ ape, =0

where at least one of the coefficients is not zero. We claimdhaZ 0 because otherwise it would mean that the
basis vectors are linearly dependent. Dividing this eguaty«y # 0 we obtain 2.48. Unigueness can be proven
by contradiction: if we assume that the representationtisinigue, then subtracting an alternative representation
we will see that the basis vectors are linearly dependént. O
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The coefficientseq, zo, . . ., z,, are callecthe coordinatesof the vectora in the basise,, es, ..., e, and we
will write © = (21, 22,...,2n).
Itis easy to see that if vectous= (z1, zo, ..., z,) andy = (y1,y2,. .., yn) are presented by their coordinates

in the same basis, then+ y = (x1 + y1,22 + Y2, ..., Tn + yn) @ndrx = (Az1, Azo, ..., Azy,).

Conditions of Linear Dependence

Consider now the conditions of the linear dependence of thetovs in the coordinate form. Lei; =
(a1, aiz, - .. ain), i = 1,2,...,m bem vectors. They are linearly dependent if equatidrt() has a non-zero
solution. This equation can be written in the following odioate form

a1121+ a12x2+ -+ a1y, =0
a21T1+ a2%2+ -+ agpTn, =0

(2.49)
am1T1+ GmaZot -+ GmnTn =0
which can be written in the following form
Ax =0 (2.50)
where the vectora, as, . . ., a,, are columns of the matrid while z = (x1, z2, ..., x,,). This system is called

ahomogeneous systefhalways has a solutiom = 0 which is called drivial solution. Thus, we can say that the
vectors are linearly dependent if and only if the system hagratrivial solution. As we know, this is possible if
and only ifRank(A) < m (the rank of the system matrix is less than the number of uwksh Thus, the rank
of the matrix is equal to the maximal number of its linearlgépendent columns (or rows).

For example, if

a; =(1,0,1), a; =(0,1,0), a1 =(1,1,1),

then
101 101
A=1]011]~|011
101 000

Thus, theRank(A) = 2 < 3 and the vectors are linearly dependent.

Inner Product Space

Definition 2.5 (Inner product and the norm). Aninner product on a complex vector spaégis a function that
assigns to each ordered pairs of vectarsy € C a scalar(x, y) such that

@ (®+y z)=(z2) + (y 2);

(b) (cz,y) = c(z,y);

(c) (y,z) = (x,y), the bar denoting complex conjugation;
d) (x,x) > 0,if x # 0.

The positive square root @k, =) denoted by

2] = v/ (z,z)
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is called thenorm of & with respect to the inner product. O

The axioms (a), (b) and (c) imply
€) (@, y+2z)=(z,y)+(z, 2)
With (c), we have, for instance,
(iz,ix) = —i(iz,z) = —i*(z,z) = (z,z) = |z|°.

A complex linear space with the inner product is calted inner product space(or a unitary space) a real
linear space with the inner product is called Ehgclidean space Thus, for the Euclidean space, the axiom (c) is
replaced by:

©) (y,x) = (z,9);

Since we can define the distancerpetric between any elements andy by d(x,y) = || — y||, the inner
product space is metric space

Definition 2.6 (Orthogonality). Letx andy be vectors in an inner product spa8é. We say thatc andy are
orthogonal if (x,y) = 0. O

As we showed in Sec. 10.1 of our bocH [ the inner product satisfies the Cauchy-Schwarz inequalit

[(z, y) <1 (2.51)
ll[lyl
Thus, we can define the cosine of the angle between the vexdttits Euclidean space‘as
cosp = M (2.52)
Iyl
so that we can present the inner product as
(z,y) = llzll[[yl cos ¢. (2.53)

Consider a right triangle in the unitary space with the ogthal legse, y (x’y, and hypotenuse = y — x.
Then we have

217 = ly —=|* = (y —z,y — x) = ||z — (@, y) — (y,z) + [ly]]*. (2.54)
Thus,
12I1” = llz|* + [ly[” (2.55)

which is the Pythagoras theorem for the inner product sp@ireilarly, we can extend many theorems of the
elementary geometry to the Euclidean space geometry. Howese must be careful using these theorems in
the general unitary space. For example, we know from the exiéamy geometry that diagonals of a rhombus (a
parallelogram whose sides all have the same length) arg/slaréhogonal. However, this is not necessarily true
for a rhombus of a unitary space.

4 In the unitary space, it is defined psos ¢| = “‘f“’f’)“‘ .
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Suppose that vectots = (x1, x2, ..., z,) andy = (y1,v2, ..., yn) are presented by their coordinates in the
same basis, then

(x,y) = (r1€1 + 2280 + - -+ Tpep,y1€1 +Y2€2 + -+ Ynen)
= Zinyj<ei,ej> (256)
i=1 j=1
This equation can be written in the following matrix form
(®,y) =y" Mz (2.57)

wherey ! denotes the conjugate transpose of the column vectond M is the matrix whose elements are the
inner productge;, e;). Since(e;, e;) = (e;, e;), the matrixM is Hermitian:M* = M. (In the real space these
matrices are symmetricakd " = M.) In addition to being Hermitian, the matrix must pesitive definitehat is

(e, x) =Mz >0, Vx+#0 (2.58)

according to axiom (d).
We know from geometry, that it is convenient to use the ortioral basisi,7, k in R3. This is also true for
other spaces. For that we need the following theorem.

Theorem 2.3. Mutually orthogonal non-zero vectots , as, . . . , a; are linearly independent.

Proof. Indeed, if we assume that these vectors are linearly depgrtien equation,47) has a non-zero solution
x1,x9,..., 2. If we assume that, # 0, then by multiplying both sides of equatioR.47) by a, and using the
orthogonality(a;, a;) = 0 for i # j, we obtain the contradiction:; (a;, a;) = 0.0 O

Thus, anyn non-zero orthogonal vectors of thedimensional space represent a basis of the space. If waedivi
each vector by its length, we obtain tbehonormal basisIn the orthonormal basis, the matrdd = I is the
identity matrix and the inner product takes especially $&nfiprm

(@, y) =y z=> (2.59)
=1

Example 2.4: Consider a set of all matrice4 € C™*™ with the previously defined matrix addition an multipli-
cation by a complex number. Obviously, this set represefitear space. For any two matricelsand B of this
space define their inner product as

(A, B) = Trace(B"A) = > > " a;by;. (2.60)
i=1 j=1
As we can see, this definition is equivalent to the definitibthe inner product of the vectors i@ *" that are
constructed by concatenating columns of the matrices.efbis, the inner product of the matrices satisfies all the
axioms of the unitary space.
The norm ofA induced by this definition

m n

|A] = (A, B) = \/Trace(A" A) = > " |a;;[*. (2.61)

i=1j=1
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is called theFrobenius norm

2.3.3.1  Gram-Schmidt orthogonalization
Each inner product space has an orthonormal basis. It caorstracted by the so-called Gram-Schmidt orthog-
onalization of any basis;,es, ..., e,. The first vector of the new basis we defineggs= e;/||e1]||, next we
construct a vector als; = es + 119, and finday; such thay, andh, were orthogonal:

(91, h2) = (g1, €2) + a11(g1,9:) =0
Thus,
a1 = —(gy, e2).
since(g,,g,) = 1. Therefore, we have
hy =e; — (e2,91)9;-

Dividing hs by its length we obtain the second vectpy = hs/||h2|| of the orthonormal basis. I = 2, we
have the orthonormal basfg, g, }, otherwise the process continues. Assumingdhays,, . .., g,,_, have been
constructed, we find that

h,=e,—(€engn_1)gn_1— " — (€n,91)91 (2.62)

is orthogonal tog;,gs,...,9, ;- By normalizing it we obtaing,, = h,,/||h,|® the orthonormal basis
gi,9s,---, 9, Since we have constructed an orthonormal basis, the #igois often called th&ram-Schmidt
orthonormalization

2.3.3.2  Matrix form of the Gram-Schmidt orthogonalization
Equation 2.62) can be written as

€n = ||h”legn + <envgnfl>gnfl +oo <envgl>gl = Zrm‘gl (263)
=1

where we substitutell,, = || h,,||g,, and denoted as;,, the coefficient ofy,.
Starting fromn = 1, we can rewrite this equation as

€] =T1191
ez =Tr12g; + 229 (2.64)
€3 = 11391 + 2392 + 73393 (2.65)

........................ (2.66)
€n =Ting1 +72ngs + -+ Tnungy,-

5 We would like to point out that in the general unitary space tiormalization can be achieved in the infinite number of ways:=
exp(ig)hn /| hn.
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If we denote asA = [ey, eq, . . ., €,,] the matrix whose columns are the vectors of the originalshésen we can
present the previous equation in the following matrix form

T11 712 **° Tin
0 722+ 12y
A: [917927"'7971] . : .. : :QnR” (267)
0 0 - rppn
where we denoted &3,, = [94, 9>, - - -, 9,] and
11712 "+ Tin
0 rog -+ 12y
R,=|. . . . (2.68)
0 0 < rpn

is an upper triangular matrix. Since, by construction, thetersg, represent an orthonormal basis
gi'g; = 6ij. (2.69)

In other words, the Hermite transpose@®j, is the inverse matrixQ” = Q.!. The matrices that possess this
property are called thanitary matrices. The real unitary matrices are called ahthogonalmatrices, they are
defined byQ, = Q,,*.

Thus, in the matrix form, the Gram-Schmidt orthogonalmatis represented by the so-called tQ&R-
decomposition

A=Q,R, (2.70)

whereQ,, is a unitary matrix andi,, is the upper triangular matrix.

The direct Gram-Schmidt orthogonalization is in generaliastable process which is prone to propagation of
errors, because in each step we divide by the norm of a vettiwhvean be small. On the other hand, if we can
find a stable algorithm for the QR-decomposition, then tHaroos of@,, will give us the desired orthonormal
basis. These algorithms are consideredjn [

Note that, in our development, the diagonal element®gfare all positive. However, in general, the QR-
decomposition by other algorithms might not satisfy thiedition. Geometrically, this corresponds to select-
ing the vector—g, instead ofg,. By changing the direction of the corresponding vectors W&io the QR-
decomposition with with positive diagonal elements Thus, if we obtained the QR-decomposition using a
general algorithm, we must write

el = [ril- (2.71)

The Matlabgr () function performs the QR decomposition.

Example 2.5: Leta = (1,2,0),b=(2,-1,3), ¢ = (-1,1,-1).
The Matlab functiorgr ( A) , where

12 -1
A=(2-11
03 -1
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Figure 2.1 Gram-Schmidt orthonormalization.

gives us
—0.4472 0.5345 —0.7171 —2.2361 0 —0.4472
Q = |—-0.8944 —0.2673 0.3586 |, R = 0 3.7417 —1.6036
0 0.8018 0.5976 0 0 0.4781

As we can see;; = —2.2361 is negative. Multiplying first row ofQ by (-1), we obtain the QR-decomposition

0.4472 —0.5345 0.7171] [2.2361 0 —0.4472
A=QR; = |—-0.8944 —0.2673 0.3586 0 3.7417 —1.6036
0 0.8018 0.5976 0 0 0.4781

in which all the diagonal elements &, are positive.

Note that if the original vectors are linearly dependeng @R-decomposition is still possible (with some
r; = 0). In this case, the QR-decomposition allows us to obtairb#sss of the column space of the matrdx

Geometrical interpretation of the Gram-Schmidt orthogonaikzation

Suppose that vectoes , e, e; from R? are linearly independent. Then, singgis a unit vector, it follows from
(2.69 that ||le; || = |r11|- Equation 2.65 decomposeg, into two orthogonal components. Singsg is a unit
vector,|ros| is the altitude of the parallelogram whose sides are theovget ande,. Therefore, the area of this
parallelogramV; = |r11792|. Equation 2.66) tells us thats; is the altitude of the parallelepiped with the sides
ey, ez, andes. Thus, its volume i8/3 = |ry1r99733| (See Fig2.3.3.3.

Based on these results, it is natural to define a volume of #éhallplepiped whose sides represent linearly
independent vectors,, e, . . ., e, as

‘Vn =|riira - Tonl ‘ (2.72)

wherer;; are the coefficients @f, in the Gram-Schmidt decomposition ef. This definition gives us the length
of the vector inR', the area of the parallelogram?, and the volume of the parallelepipedRd. | also agrees
with the general definition of measure in the Euclidean space

To prove that this definition does not depend on the orderle€srg vectors for the orthonormalization, we use
equation .70 according to whichlet A,, = detU,, det R,,. Since|det U ;| = 1 anddet R,, = 711722 * - Tnn,
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we conclude that

V, = | det A,| (2.73)

i.e. the volume of the parallelepiped whose sides are thenowd of the matrix4,, is the absolute value of the
determinant of the matrix.

Linear Operator

Let X and) be two linear spaces.

Definition 2.7. A linear operatory = AX is a rule that maps every vectarc X to a vectory € ) satisfying
the following conditions

1. A(xy 4 z2) = Az, + Az, foranyez, € X andx, € X;

2. A(Ax) = AAg for anyz € X and numben.

The space of aly = Az, x € X is called theoperator range or theimageof X and is denoted as

R(A) = {Asc s X}. (2.74)
The dimension the operator range is calleddperator rank
Rank(A) £ dimR(A) (2.75)

The space of alt € X that the operatoA maps onto the null-space is called therator kernel and is denoted
as

N(A) = {:v €X:Alx) = o} . (2.76)
The dimension the operator kernel is called dperator nullity
Null(A) £ dim NV (A) (2.77)
The rank and nullity of an operator i{ty* are related byd, p.50]
Rank(A) + Null(A) = dim X (2.78)
The A is invertible if there exists an operatdr—! with domain)’ and rangeY such that
Az =yifandonlyif A 'y =axforanyxz € X, ye ) (2.79)

The operatord ! is called the inverse tel.

Matrix of a Linear Operator
Letey,eq,...,e, andg,, es, ..., g,, be bases ok’ and), respectively. Then any vectar€ V can be expressed
as

T =z€ +T2€0 +---+1pE, (2.80)
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and
y = Ax = z1Ae; + z0Aes + -+ + 1, A€y, (2.81)
Thus, it is sufficient to define images of basis vectors to éedilinear operator. Sincde; € V;, we can write

15461 =a1191 +a2192 + -+ ami19m,
Aey = a12g, + azegs + -+ amag,y, (2.82)

The matrix
aip @12 QA1n
A— a21 Q22 " QA2p (2.83)
aml Gm2 *°* Gmn

whose columns, according to equatich82, are coordinates of the images of the basis vectors iscctile
matrix of linear operator
Substituting 2.82) into (2.81) we obtain

Y= ;Y aig;= > g; Y a7 (2.84)
j=1 i=1 i=1 j=1
Thus, vectoty has the following coordinates
n
Yi :Za’ij‘rﬁ 1= 1,2,...,7’71 (285)
j=1
This equation represents the relationship between thaelowdes of the imagg through the coordinates @k
pre-imagex and can be expressed in the following matrix form
y= Az (2.86)

Thus, if the bases of both spaces are fixed, every linear tmpédras a unique matrix and every matrix defines a
unique linear operator. This relationship is similar to tékationship between a vector and its coordinates.

In a special case, when an operator mapsnto itself, both bases are the same @g.e= e;), the matrix of an
operator is aquare matrix

Example 2.6: The projection operator Let us find a matrix of the operator that projects every veat®? onto
some line in the orthonormal basis = i, e; = j. Suppose that the line has anglevith the vectore; .

We need to find the coordinates of the images of the basisrgecte; is the projection ok, onto the line that
is the vector along the line whose lengthis «. Its coordinates in the selected basis are its projectiots the
basis vectors:

cos a(cos a, sin ) = (cos? o, cos arsin o)
Thus,

Ae; = cos® o eq + cosasina ey
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. We find similarly

Aey = cosasina e + sin? o ey

and, therefore, the matrix of the operator in the selectsishs.

cos?a  cosasinw

cosasina  sin? a

Note that if we select a basis vectef as a unit vector along the projection line aagl as a unit vector
perpendicular to it, then we would have

Ae; =€} and Ae;=0

Thus, in this basis, the matrix of the projection operator is

« |10
a=log)-

Transformation of Coordinates

Let us find the relationship between the coordinates of sovectn different bases. Suppose that along with the
"old” basisey, es, .. ., e, of C" we select a "new” basig,, g, - - . ,g,,- Then we can write

r=1x1€1 +x0€2+ -+ xn€,

x =119, + 259, + -+ 1,9,

Thus, we have
> wiei=) w9 (2.87)
i=1 j=1
The vectors of the new basis can be expresses as linear ctiobsof the vectors of the old basis:
gj :Ztijei 1= 1,2,...,7’7,. (288)
=1

Substituting these equations in&7) and grouping coefficients of the same basis vectors, werobta

i T;€e; = i €; i tij{L‘; (289)
=1

i=1  j=1

Since basis vectors are linearly independent, the coeffeiaf the same basis vectors on both sides of this equa-
tion must be equal:

Ty = Zti]‘.’lﬁ;. (290)
j=1
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This equation expresses the coordinates of the vector ialtheasis through the coordinates of the vector in the
new basis. It can be written in the following matrix form

x=Tx" (2.91)

where, according to equatioB.88), T = [t;;],«». IS the matrix whose columns are the coordinates of the new
basis vectors in the old basis. Since the mdftils non-singular, we can express the new coordinates thritnegh
old ones as

=T 'a. 2.92
(2.92)

Example 2.7: Let e; ande, be two orthogonal unit vectors in the plarig?j and the new basig, andg, is
obtained by rotating the old basis counter clockwise byaagiThen it is easy to see that

g, = cosaej +sina ey, (2.93)

g, = —sina e; + cosa es. (2.94)

Therefore,

__|cosa —sina
" |sina  cosa
and we have the following relations between the old an newdinates

X1 = x] cosa — x3sinq, (2.95)

o = x]sina + x5 cos a. (2.96)

Similarity Transformation

Suppose that we have a linear operator in the matrix fgrea Az, wherex andy are the column matrices
of coordinates of the corresponding vectors in some bastiswadlld like to find the relationship between the
coordinates of these vectors in some other basis.

Using equationZ.90, we can write

Ty* = ATx" (2.97)
or
y' =T 'ATz". (2.98)
It follows from this equation that the matrix of the operaitothe new basis has the form
A" =T 1AT. (2.99)

The formula in the RHS of this equation is called Himilarity transformatiorof the matrixA. Thus, we can say
that matrices of the same operator in different bases aitasitm each other.

Copyright(©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



2.3.6.1

2.3.7

Matrices 27

Geometrical meaning of an operator determinant
Since

det A* = det T 'det Adet T = det AdetT = det A

detT
we conclude that the determinant of the linear operatoriridbes not depend on the selected basis and, therefore,
can be called theperator determinant
Suppose that vectots, , x-, . . ., x,, are mapped onto vectots, y,, - . . , y,, by the linear operator with the
matrix A in some basis. We can express this as

Y = AX, where X = [z1,23,...,2,],Y = [y1,Ys,---, Y] - (2.100)
Since the determinant of the matrix product equals to thdymbof the determinants, we can write
detY = det Adet X (2.101)

As we know, the absolute value of the determinant of a matjiaés to the volume of the parallelepiped whose
sides are the columns of the matrix. Thus, it follows fromphevious equation that

V, = |det A|V, (2.102)
Thus, we can say that the absolute value of the determinaart operatorA is the coefficient
|det A| = % (2.103)

a
of contraction (expansion) of the volume of the parallgbepi after mapping by the operator. We use this result in
developing the variable substitution in multidimensioiméggrals.

In the two-dimensional space the volumes are replaced bgréaes and the previous formula takes the form

|det A| = % (2.104)

We can now ask a question: In which basis does the matrix ofatioperator has the simplest form? The answer
to this question will be given in the next section.

Eigenvalues and Eigenvectors

Definition 2.8. A vectorz # 0 is called the eigenvector (or characteristic vector) ofrelar operatorA if there
is a number)\ called eigenvalue (or characteristic number) the such that

Az = \x. (2.105)

In other words, an operator transforms its eigenvegtonto its collinear vectonx.
To find the eigenvectors, we rewrite equati@ilQ5 in a coordinate form in some basis

(A— M)z =0. (2.106)
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As we know, this homogeneous equation has a non-triviatisolif and only if its determinant is equal to zero:
CL11—>\0,12 co. Q1n

A(\) =det(A — ATy = |21 P27 A o

= 0. (2.107)

anl An2 et A — A

This equation is called theharacteristic equatiofor the matrixA. As we can see, itis orderalgebraic equation.

Definition 2.9. The multiplicityk; of the root); of the characteristic polynomiah()) is called the algebraic
multiplicity of the eigenvalue.

This means that the characteristic polynomial can be fadtas

AN = (A= 2)"q(N), g(\i) #0. (2.108)

Definition 2.10. The maximal number of linearly independent eigenvectaresponding to the eigenvalug is
called its geometric multiplicity.

According to equation2.106, the geometric multiplicity of\; is equal to the dimension of the null space:
dimN(A — \;I) = Null(A — \;I) = n — Rank(A — A\, 1).

An operator is said to havesimple structurg?] in C™ if it has n linearly independent eigenvectors. Let an
operatoropA have a simple structure with linearly independent eigetovsce,, @, . .., ,, corresponding to
eigenvalues\i, Az, ..., \,. We can use these vectors as basis vectof8"ofIn this basis, which is called an
eigenbasisbecause of the relationshj%mi = \;x;, the operator has a diagonal matrix

A

A2
A= _ (2.109)

An
Since matrices of the same operator are similar, we can write
A =T 'AT. (2.110)

A matrix of a simple structure operator is callegsianple structure matrixThus, we can say that a simple
structure matrix is similar to a diagonal matrix.
The converse statement is also true. Indeed, equai@d @ can be written as

TA = AT. (2.111)

which shows that the columns of the matilixare the eigenvectors of. SinceT ! exists,det T' # 0 so that the
eigenvectors are linearly independent. Hence, a matrixatasiple structure if and only if it idiagonalizable
(i.e. is similar to a diagonal matrix).

Equation 2.110 can be rewritten as

A=TAT ' =) Ny, (2.112)
i=1
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wherez; andy, denote columns oI’ andT !, respectively. Sinc& - T~! = I, we have
wzy; = 04 (2.113)

which means that the vectors are orthogonal if they are IHmliever, they are not orthogonal in the general case
since the inner product of the complex vectors isy’ . Equation 2.112 is called thespectral decompositioor
eigendecompositioof the matrixA that has a simple structure.

Note, that if a simple structure matrif is a real, the spectral decomposition in the real sfRités possible
only if all the eigenvalues are real.

Consider now some conditions for the matrices to have a sistplicture [, p.98].

Theorem 2.4. A matrix has a simple structure if and only if for each eigduaea\; its algebraic multiplicityk;
equals its geometric multiplicitfull(A — A\;I) = n — Rank(A — A\, ).

Corollary 2.1. If all the eigenvalues of a matrix are different, the matrasta simple structure.

Proof. In this casek; = 1,: = 1,2, ..., n, and, thereforeNull(A — \;I) = k; = 1 and we have: linearly inde-
pendent eigenvectofs. O

Note, that this corollary gives onlysufficientcondition for the matrix to have a simple structure. The eose
is not true as we saw in the previous theorem. If a matrix hasjpls structure, some eigenvalues can be the same
as long as the conditions of theor&mw are satisfied.

Theorem 2.5. A matrix has a simple structure if and only if, for each eigd#ne \; of algebraic multiplicityk;,
theRank (A — \I) =n —k;.

Proof. All eigenvectors corresponding to represent the null spac¥(A — \;I) whose dimension i& — r;
wherer; = Rank(A — \;I). According to the previous theorerd has a simple structure if and only if this
dimension isk;. Thus,n — r; = k;.00 O

Example 2.8: Let

0.5 0.5
A= {0.25 0.75} (2.114)
Its characteristic equation is
B 025-X 075 | o B B
det[A — \I] = det { 0.95  0.75 — )J =X —=0.7A-025=0 (2.115)

It has two solutions (eigenvalued) = 0.25 and A\, = 1. Since the eigenvalues are different, the matrix has a
simple structure. The corresponding eigenvectors aredffnam (2.109. For \; this system takes the form

0.5 — )\1 0.5 Iy 0.25 0.5 Iy
= = 211
o arm ] [l = 035 03] [ =0 2110

This system is equivalent to one equation

0.25z1 + 0.5z5 = 0 (2.117)
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This equation has an infinite number of solutions. One of tieem = (2, —1). The eigenvector corresponding
to \q is found similarly:xzs = (1,1). Thus,

201 0 11 =1
o2 et e

The spectral decomposition has the following form

Y 0 i Y T PR

Jordan Canonical Form

If a matrix A does not have a simple structure, there is not enough lingatpendent eigenvectors to construct
an eigenbasis . Let \;,i = 1,2, ..., m be all different eigenvalues of and we need to use some other vectors
to construct a basis @".

Definition 2.11. (Generalized eigenvector Vectorz is called the generalized eigenvectors of k-th order of an
operator A if there is a numben such that

(A= XDz #£0 (A-ADFfzx=0 (2.120)

Itis clear that previously defined eigenvectors are alseggized eigenvectors of the first order:
(A-X°’z=x#0 (A—-X)x=0. (2.121)

If an operatorA does not have a simple structure, its matrix is not diageahlée. In this case, the simplest
matrix that the operator can have is the so-calledltirdan canonical formThis matrix is obtained if we select
the generalized eigenvectors Afto construct a basis @t™. Denote the pre-image af in equation 2.120 as
(M) : 2 = (A — Xz, the pre-image o&(V) asz® : () = (A — AI)z?), and so on. Thus we have the
sequencer, z1, ..., z(*~1) of vectors constituting thdordan chain of vectorsatisfying

(A= XDz =0, (A- DazW =x,... (A-\z®*VD = gk2 (2.122)
After opening parentheses in these equations we obtain
Az =z, Az =Xz 2. ... Az* D = \gFD 4 g(k-2) (2.123)

If we include these vectors into a basis@f, then, according to definition of the matrix of a linear operait
will have the following form

J C
{ 5 D} (2.124)
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where
AL O ---0
0N 1 0
J=] (2.125)
00--- X1
00 0 --- A

is called aJordan blockof the matrix.

If we can find enough Jordan chains such that their vectorbeaselected as a basis of tG&, then, in this
basis, the matrix of the operator (according to equat®oha4) will be a block-diagonal matrix, called tHerdan
canonical formwhose diagonal blocks are the Jordan blosZ5.

In other words, a basis @ can be constructed using Jordan chains of an operhtdthe structure of this
basis (and, therefore, the corresponding Jordan candoicta) can be described as follows For every eigenvalue
A; of the algebraic multiplicity;,

e there are
hi = n —2Rank(A — A\, I) + Rank(A — \; 1)  blocks of size 1, (2.126)
e there are
hy = Rank(A — \;I) — 2Rank(A — M\ )% 4+ Rank(A — M )% second — orderblocks  (2.127)
and so on,
e there are
hj = Rank(A — A, I)F! — 2Rank(A — N\, I)* + Rank(A — A, I)F*1 blocks of size k (2.128)
e there are
Bm,+1 = Rank(A — A, I)™~ — Rank(A — A\, I)™ blocks of the largest size m; + 1 (2.129)
wherem; is the smallest number such tHaink(A — A\, I)™+! = Rank(A = \,I)™i*2,
For each eigenvaluk;, the total number of the Jordan chains equals to the geamettitiplicity of the eigen-
value:

m;+1
gi= Y hj=n-—r (2.130)
j=1
and the total number of vectors in these chains equals tdgkbraic multiplicity of \;:
mi+1
ki= Y (mi+1)h;. (2.131)
j=1
Thus, we proved that the number of Jordan chains correspgidithe eigenvalug is equal to its geometric
multiplicity g and the total number of vectors in these chains equals tolgebraic multiplicity & of A. As we
have seen before, there is a Jordan matrix block correspgridieach Jordan chain of vectors. We construct
Jordan chains for all different eigenvalues. It is not diffido prove that these vectors are linearly independent.
Since the sum of all the algebraic multiplicities of the eigedues equals to the degreeof the characteristic
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polynomial (which is also the dimension @f*) we can always construct thlrdan basis of th&€™ using the
Jordan chains of vectors. The matrix 4fin this basis is the Jordan canonical form which is a blodgdnal
matrix whose diagonal blocks have the form of equatibiZy:

A1 0 -+ 0
J1 0N 1 -0
J = , WhereJ; = | 1 @ - . (2.132)
Jp 00-- X1
00 0 - X\

wherep is the number of Jordan chains which is equal to the maximalbaur of the linearly independent eigen-
vectors ofA.
Thus, every matrix is similar to a Jordan canonical form:

A=TJT ' or J=T AT (2.133)

The columns of the transformation matffx according to equatior2(91), are the coordinates of the vectors of the
Jordan basis in the "old” basis in which is the matrix of the operatod. Thus, to obtain the matrix, we need to
find all the generalized eigenvectors of the matrix. Altéikrgdy, if we know the structure of the Jordan canonical
form (e.q. by using equationg.(1262.129), we can obtain the matrix by solving f@ equation 2.133 which

is a hon-zero solution of

AT =TJ. (2.134)
Example 2.9: Let
32 -3
A= (410 —12 (2.135)
36 -7
Its characteristic equation
3—A 2 -3
AN =det(A—AI)=det| 4 10-Xx —12 | =0 (2.136)
3 6 —7=A
after simplifications becomé& — \)? = 0. Its root\ = 2 has the algebraic multiplicity = 3. We have
12 -3
r = Rank(A —2I) =Rank ({4 8 —12| =1 (2.137)
36 -9

because all the columns of this matrix are proportional &fitst column. Since the geometric multiplicity &f

isg=dimN (A —2I)=n—r =2 < k = 3, this matrix has only two linearly independent eigenvectand,

therefore, does not have a simple structure. Becédse 2I)? = 0, Rank(A — 2I)? = 0. Then, according to
(2.126 and @.1279,

h1=3-2+0=1
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and
hy=1-2-0+0=1
. The corresponding Jordan canonical form contains oneosieeblock and one size-two block:

210
020
002

J =

To find the transformation matriX’, we need to find two Jordan chains of sizes two and one. Theéhldng
chain vectors, andt?), representing two first columns @f, satisfy equationZ.122 which in our case takes the
form

(A—2Dt; =0, (A—2DtY = ¢ (2.138)
These equations can be written in the following matrix form
(1 2 -3 00 0 ] [t]
4 8 —-1200 0 to1
A-2I 0 t | 3 6 —900 0 | |ta|
[ I AzI} ngl S0 0 0 12 3] [he| 0 (2-139)
0 —1 0 48 —12| [t2
0 0 —136 —9] [ts

The REF of this system (which can be obtained using the Métlattionr r ef () ) is

t11 — t12 — 2t92 + 3t32 =0
to1 — 4t12 — 8t22 -+ 12t32 =0
tgy — 3t1o — 6tog + 9132 =0

Hereto, t22, andtsq are free variables. To find a non-zero solution, welgt= 1, too = 0, and¢zs = 0 to obtain
t = (1,4,3), M =(1,0,0).

In order to complete the Jordan basis we need to find an eigemég which is linearly independent af . All
the eigenvectors are found as solutiong Af— 2I')x = 0 which is equivalent to

X1 +21‘2 —3173 =0.

By settingzs = 0 we findt; = (—2,1,0). Thus, we have a Jordan bagis= t;, e; = tgl), ez = to and the
transformation matrix takes the following form

11 -2
T=140 1 (2.140)
30
The inverse matrix

(2.141)
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Equation 2.133 takes the form

11 -2][210][00 3 32 —=3]
TJT =140 1|]020| |12 —3|=1[410 —12 (2.142)
30 oJ0o02] |01 —3% 36 —7]
or
00 7132 —-3]7[11 -2 21 0]
T'AT = |12 —-3| 410 —12[ (40 1|=(020 (2.143)
01 —3][36 —-7][30 00 2

In conclusion, we would like to point out that there are salether methods for constructing the Jordan canonical
form. One of them uses the theory of the elementary polynisraied elementary quotients of polynomial matrices
[2], the other method is based on the minimal polynomial of tlarix[1, pp. 151-152].

Adjoint Operators

Hermitian matrices play an important role in applicatiossg, for example, Chapter 13 of our bo&K [ In this
section, we study important properties of Hermitian masiclhese matrices are closely related to the self-ajoint
operators which we will study first.

Definition 2.12. Let A and B be linear operators in an unitary spaée If for any two vectorse, y € U
(Az,y) = (z, By), (2.144)

the operators are called thadjoint operators.
If A = B the operator is calledelf-adjoint. In this case

(Az,y) = (z, Ay), (2.145)

The relationship between the self-adjoint operators andnifian matrices is established by the following
theorem

Theorem 2.6. An operatorA is self-adjoint if and only if its matrix in an orthonormal &ia is Hermitian.

Proof. Let A be the matrix of the operatet in some orthonormal basis. To find the matrix of the adjoirgragor,
we express the inner product in its coordinate form as

(Az,y) = y" Az = (A"y) e = (2, A"y). (2.146)

where we denoted ad” the adjoint operator because, as we can see, the matrix efdjbant operator in the
orthonormal basis is the Hermite transpose of the ma#ixXThus, the operator is self-adjoint if and only if
A = A" j.e. the matrix is Hermitiar(] O

For operators ifR™ the matrix of the adjoint operator is the transpose matrix(A* = A'for real matrices)
while the matrix of the self-adjoint operator is symmetit £ A").
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It is not difficult to prove [, p. 116] that

e All eigenvalues of a self-adjoint operator are real.
e Eigenvectors of a self-adjoint operator correspondingfterént eigenvalues are orthogonal.
o A self-adjoint operator has a simple structure.

It follows from these properties that any Hermitian matssimilar to a diagonal matrix2(109:
A=TAT! (2.147)

whose elements are real numbers. Moreover, we can consinuatthonormal eigenbasis @f* consisting of
eigenvectors of a self-adjoint operator. This can be aeli®y constructing orthonormal eigenbases in subspaces
/\/’(A — X\ I) of the eigenvectors corresponding to each eigenvaluextimple, using the Gram-Schmidt orthog-
onalization).

We know that the columns of the transformation maffixn equation 2.147 are the coordinates of the basis
eigenvectors. If the basis is orthonormal, we denote thigixas U = [u;;]nxn. The orthonormality of the
vectors can be expressed as

Zﬂkiukj =ullv; = §;; (2.148)
k=1

whereu; are the columns of the matrt{. This equation shows th&f* is the inverse matrix of/ (see equation
(2.18). Thus,U is an unitary matrix:

vl =y (2.149)
Hence, equatior?(147) can be rewritten as
A=UAU" (2.150)

Matrices satisfying this equation are calleditary equivalentThus, any Hermitian matrix is unitary equivalent
to a diagonal matrix. The spectral decomposition of a Heamitnatrix has the form

n
A=UAU" =) Nuu/ (2.151)
Real symmetrical matricesrepresent a special case of the Hermitian matrices. ThHubegbrevious results are

also valid for the symmetrical matrices Ri* with the replacement of the Hermite transpot€ with the real
transposed " . For the real symmetrical matrices the spectral decomipog®.151) can be written as

A=QAQ" =) Ngq;. (2.152)
1=1

Hermitian and Quadratic Forms

Definition 2.13. A bivariate Hermitian form is a second-order homogeneougrmmmial

H(z,y) =27 Ay = ZZ@U Ty, (2.153)

i=1 j=1
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wherex € C", y € C", and A is a Hermitian matrix which is called the matrix of the Heriait form.

According to equation2.57) the inner product of two vectors is an example of the Heamiform.
If x = y, the Hermitian form

n n

H(w, ar:) =zl Az = Z Zaij@arj (2154)

i=1 j=1

is called theunivariate Hermitian formor simply the Hermitian form. This form represents a realction of
the complex variables. Indeed, sinE&x, ) is a number, its transpose is the same number. Using Praperty
(Section2.1) of the Hermite transpose of the product of matrices, weinbta

H(z,xz) = [H(z,x)|" =" A%z = 2" Az = H(x,x). (2.155)

Thus,H (x,x) = H(x,x) and, thereforeH (x, ) is real.

Definition 2.14. A bivariate quadratic form is a second-order homogeneougnmnial of real variables

Qz,y) =z Ay = Z Zaijmiyj (2.156)

i=1 j=1

whereA is a real symmetrical matrix. An univariate quadratic foenéefined by

Qz,z) =x Az = Z Zaijxiacj (2.157)
i=1 j=1
If the matrix is not symmetrical, we can always make it synmioat by replacinga,;x;z; + aj;x;2; with
az(;)xixj + al(.;)xjxi, Whereaz(.;.) = 0.5(a;; + a;;) without changing the quadratic form.

Equivalent Hermitian forms
A linear variable substitutiog = T'x transforms a Hermitian form as
H(y,y) = (Tz)? A(Tz) = 2"T" ATx = 2" Bx. (2.158)
where
B=THAT (2.159)

is the matrix of the Hermitian form in new variables. Matfkdefined by the previous equation is callmhgru-
entto the matrixA.

Two Hermitian formsH (x, ) and H, (x, «) are callecequivalentf there exists a non-singular matri such
thatH (x,xz) = H;(T'z, Tx). In other words, their matrices are related by equattbh59 wheredet T' # 0. In
the sequel we will use only non-singular matri@s

It follows from equation 2.159 that

det(B — AT) = det T det(A — M) det T = det(A — AI)| det T|? (2.160)

which means that the eigenvalues of the matrix of the Heamiform do not change after a linear variable sub-
stitution with the non-singular matri’. Therefore, matrices of all equivalent Hermitian forms éngélve same
eigenvalues which are called tbégenvalues of the Hermitian forrBince the rank of the matrix is equal to the
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number of its non-zero eigenvalues, it is also the same faqaiivalent Hermitian forms an it is called thank
of the Hermitian form

If the transformation matrix is a unitary matrix, then thetriwaes of the equivalent Hermitian forms areitary
equivalentand equationd.159 can be written as

B=U"AU =U'AU. (2.161)
Since any Hermitian matrix is unitary equivalent to a diagonal matix= diag[A;, As, . . ., A,,] whose diagonal
elements are the eigenvaluesAf
A=U"AU, (2.162)

we conclude that any Hermitian form can be transformed to
HUz,Uz) = M\i|x1 > + Aa|aa > + - + M|z | (2.163)

The RHS of this equation represents the so-calledlthgonal Hermitian form
Note that a unitary transformation of vectors does not chahgir inner product:

Uy)" (Ux) =y"U"Uz = y" Iz = y" . (2.164)

Therefore, they do not change lengths of the vectors anaamgtween the vectors and represent linear isome-
tries: rotations, reflections, and their combinations. Adpatic form with the real coefficients is a special case of
a Hermitian form, therefore, any quadratic form is orthaglynequivalent to the diagonal quadratic form is

Q(Tx, Tx) = M2 + Noxs 4 - + Mp2? (2.165)

whereT is the orthogonal matrix. Since a transformation with thih@gonal matrix maps an orthogonal basis
into an orthogonal basis, this transformation has numeapptications in geometry.

Example 2.10: Consider a second-order curve that is defined by the follgwopuation
522 + 4y + 8y? — 32z — 56y + 80 = 0. (2.166)

We would like to find the canonical form of the equation of thigve.
The quadratic form in the LHS of equatio®.166 is

9 2 92| x| x
S5x° 4+ dxy + 8y~ = [z y] {2 8} {y} = [z y]A {y} . (2.167)
The characteristic polynomial of the matrix of this quaddrédrm is
det(A — AI) = {5 S A . 2 A] — A2~ 13) + 36 (2.168)

Its roots\; = 4 and)\, = 9 are the eigenvalues of. Thus, the diagonal form of the quadratic formiis + 9y2.
To transform the linear terms 02 (166 to the new coordinates, we need to find the mdtfief the transfor-
mation of coordinates. The columns of this matrix are thharormal eigenvalues oA.
The coordinates of the eigenvectors are found from the aquat

(5 — )\)”U1 +2v9 =0

201 + (8 = Nvg =0 (2.169)
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in which )\ is one of the eigenvalues.
For \ = 4 this equation has the form

1)1+2U2:0

2.17
201 +4v, =0 ( 0)

A non-zero solution of this system can be found by letting= —1 and findingv; = 2. Thus, we have an eigen-
vector (2,-1). Dividing this vector by its length, we obt#iive normalized vector

(Ve vs)

Next, we find similarly the normalized eigenvector correstiog to\ = 9:

(1 2)
V5 V)
These vectors are orthogonal. Therefore, the coordinatsfsrmation matrix has the form
2 1
T = [ vp 451 (2.171)
VB VB
Hence, the old coordinatesy and the new coordinates, y; are related by the following formulae

xr = %x1+%y1

(2.172)
y=—Tz 1+ =y
Substituting these equations in 166 we obtain after grouping similar terms
8 144
423 +9y; — —=a1— —= 1 +80=0. 2.173
1 U1 \/5 1 \/S 1 ( )
After completing the squares we can rewrite this equation as
1 8
d(r1 — =) +9y1 — —=)?—36=0 2.174
or
(z1 — L)2 (y1 — i)2
V5 V5T 1. (2.175)

9 4
As we can see, the curve is an ellipse.

Definite Hermitian forms

Definition 2.15. A Hermitian formH (z, =) = =/ Az, wherez € C", and its matrixA are called

Positive definite if H(x, ) > 0 for all  # 0. In this case we writed > 0.

Positive semidefinite or nonnegative definitaf H(x,x) > 0 for all « and there ise # 0 such thatH (xz, x) =
0. In this case we writed > 0.

Negative definite if —H (x, x) is positive definite. In this case we write < 0.

Negative semidefinite or nonpositive definitef — H (x, x) is positive semidefinite. In this case we write< 0.
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Since the negative (semi)definite forms are defined usingpdiséive (semi)definite forms, it is sufficient to
study the latter.

Theorem 2.7. A Hermitian form is positive definite (semidefinite) if andyaifiits all eigenvalues are positive
(non-negative).

Proof. A Hermitian form H (x, ) is positive definite (semidefinite) if and only if its equigal diagonal form
H(U=z,Ux) is positive definite (semidefinite). The latter, accordiogguation 2.163 is positive definite if and
only if its all eigenvalues are positive (non-negative). O

As we pointed out previously, finding eigenvalues of a maisixa difficult problem especially for large
matrices. There are simpler methods for deciding whetherreemgl Hermitian form is positive (semi)definite,
because a Hermitian foriH (x, ) is positive definite (semidefinite) if and only if its equigat Hermitian form
H(Tz,Tx) is positive definite (semidefinite) whefE is any non-singular matrix (not necessarily a unitary
matrix). In other words, it is sufficient to find a diagonal goment matrixl'*’ AT (and not necessarily a similar
matrix U ! AU) that lets us to solve the problem.

Any Hermitian form can be presented by linear transfornmatibits variables (in an infinite number of ways)
as an equivalent diagonal Hermitian form

H(Tz,Tx) = al\x1|2 + a2|:c2|2 4+t an|azn|2. (2.176)

It is often convenient to decide if a matrix is positive-déérby using the Cholesky decomposition which we
consider in the next section.

Cholesky Decomposition

Theorem 2.8(The Cholesky decompositionA Hermitian matrixA is positive definite if and only if there exists
a non-singular lower triangular matrixC' with positive real diagonal entries such that

A=cct. (2.177)
This formula is known as th€holesky decompositiasf A, andC is called the Cholesky factor or a square
root of A.

Proof. If Hermitian matrix is positive definite, then all its eigelues are positive and we can rewrite equation
(2.150 as

A=ccH (2.178)
where
VAL
C =U diag\/ A1, VA2, .,V An) =U JE_. . (2.179)
;»

The matrixC' is non-singular since
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Conversely, ifA = CC* whereC is non-singular, then for any # 0
xf Az =x"CClx = ||Cx|? > 0.
O O

We obtained equatior2(178 using the matrix spectral decomposition. However, thel€ky decomposition
can be obtained without finding the eigenvaluesiofindeed, we can rewrite equatioch {78 as

aii @21 *+* Gpl ci1 0 -+ 0 €11 C21 "+ Cp1l
a1 Q22 *+* Gp2|  |C21 C22 -+ 0O 0 co2 -+ Cpa (2.180)
Anl Ap2 *** Gpn Cnl Cn2 " ° Cnn 0 0o --- Cnn

Multiplying matrices in the RHS of this equation and compgrthe results with the corresponding elements of
A in the LHS we obtain a system of equations from which it is dafind elements of the Cholesky factor. For
the first column of4, we have

2
a11 = €11, @21 = C11€21, - -.,0n1 = C11Cn1- (2.181)
From this system we find
C11 = y/Q11, C21 = a21/0117 <oy Cnl = an1/011' (2.182)

Substituting this solution intd2(180, we can obtain similarly the second column@fas

o2 = \/aga — |ca1]?, c32 = (@32 — Ca1c31)/C22, .-, Cn2 = (An2 — C21Cn1)/cC22. (2.183)

Continuing the process, we obtain the following recursigeations

i—1
cii = \/ @iy = )=y |Cik]? (2.184)
Cij = i(aij _ch_:ll CikEjk); 1=1,2,...,n.
We can now rephrase Theoreh® a Hermitian matrix is positive definite if and only if the tgsive equations
in (2.1849 are satisfied (i.e. all the expressions under the squatemost be positive).
The other criterion of positive-definiteness of a Hermitiarm (or matrix) is given by the following theorem

Theorem 2.9(Sylvester’s criterion) [4, p. 404], [1, p. 136] A Hermitian form is positive-definite if and only if
its all leading diagonal minors are positive:

ail ai2 -+ Qain
a a a a R
Dy =ay; > 0,Dy = det { H 12] >0,...,D, =det | 2t % s, (2.185)
a21 a/22 .« .. “ e .. .« ..
Apl Ap2 * -+ Gpn

Let us consider now some other applications of the Choleskphposition.

Generation of multidimensional Gaussian variates
Consider an affine transformation

Y =AX +b (2.186)
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of a real random vector (RVX with the meanE[X] = u, and the variance matriX, = E[(X — p,)(X —
w.)"]. Applying the expectation to both sides of the previous &qaawe obtain

pm, =EY]=E[AX]= Ap, +b
and
2, = B(Y —p,)(Y —p,) "] = E[A(X — p,)(A(X = p,)) "]
— AB[(X —p,)(X —p,) ]AT = AS, AT,

Thus, the mean and the variance matrix of ¥he= AX + b are given by

Hy =Ap, +b

S _ A% AT (2.187)

As we can see, the variance matd, is congruent ta,. In particular, if the components of the RY are
uncorrelated i.eX, = I, thenX¥, = AX, AT, Therefore, if a RV has a positive definite variance matrig,can
express it as

Y =CU +p, (2.188)

whereU is a random vector whose components are zero-mean and uiibhe@ uncorrelated RVEY' is the
Cholesky factor oB,;:

x,=CC’, (2.189)

Equation 2.189 in the one-dimensional case represents the normalised RMY — a)/o.

As we know, the uncorrelated Gaussian RVs are independiatefore, equatior?(189 can be used to gen-
erate multidimensional Gaussian variates with the mgarand the variance matrix, from the independent
Gaussian variables with zero mean and unit variance thaterssidered In Sec. 5.4.3 of our bod}.[

2.5.2.2  Multivariate Gaussian conditional distribution
In our book [] , we offered a derivation of equations (4.124) and (4.125pa exercise. Let us derive these
equations using the Cholesky decomposition.

Let
X,
X = {XJ (2.190)
be a Gaussian RV with the mean and the variance matrices
[La 2aa 2ab:|
= , Y= ) 2.191
H |:l"b:| |:2ba b3 ( )

We would like to find the conditional PDF oX, given X, = x,.
For this purpose, we use equatiéhl88 to presentX as a function of independent Gaussian RVSs:

X=CU+pu (2.192)
whereC is the Cholesky factor o¥::
Z3aa Zlab Caa 0 :| |:CT C;—:|
= aa ~ e 2.193
[Eba Ebb] |:Cba Cw| 0 C} ( )
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Using these notations, equation can be rewritten in theviatlg block form
X,=CU,;+ Hq (2194)
Xy =CpUy+ CrpUy + . (2.195)

If X, =, is fixed, we can solve first of these equations Iy and substitute it into the second equation to
obtain

Xy, = CpCrl (g — p,) + CopUp + py. (2.196)

This equation shows that th¥,, given X, = xy, is a Gaussian RV whose mean vector and the variance matrix
can be obtained using equatich187:

e = My + CraClan (Ta — 1) (2.197)
Sija = CovChy. (2.198)
Comparing matrices on both sides of equatipri 93, we find that
C10Crs = Z0aCri Crg = Z0a(CaaCrt ) 7' = 0Ty (2.199)
and
CuCH =y, — CpoCE =y — T0. 2,138 (2.200)

Using these equations, we can rewrite equati@miky/) as

-1
Hpa = Hp + ShaX g (Ta — 1g)
2:b\a = z:bb - EbaE;;Eab (2201)
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3 The Dirac delta function

To be done.






4  Stieltjes and Lebesgue integrals, and dF
notation

To be done.






5  Selected topics in measure theory
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6 Interchanging limit and integral
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/7 Differentiating integrals and sums

To be done.






8 Complex analysis: Contour integral and
the residue theorem

To be done.






O Functional transformation and Jacobians

To be done.
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Stirling’s Formula

Two functionsf(z) andg(z) are calledasymptotically equivalerdsz — x if
lim 1) . (10.1)
=0 ()

In this case, we writg (x) ~ g(x) and we cally(x) an asymptotic representation ffz).
The Stirling’s formula gives us an asymptotic represeatatif the factorial. Since! = I'(n + 1), we derive a
more general the asymptotic representation for the ganumetionI'(p + 1):

T(p+1) ~ pPexp(—p)y/27p. (10.2)
which means that
. F'(p+1)
lim —
p—o0 pP exp(—p)\/27 p

To prove this formula, we use the following integral repreaaéion of the gamma-function

F'lp+1) = /000 P exp(—z)dx = /000 exp(plnz — z) dx. (10.3)

To find the asymptotic formula, we note that the integrandhim RHS of this equation attains its maximum
pP exp(—p) atz = p. Asp grows, this maximal value becomes dominant and we expedimnant contribution
to the integral from the small vicinity of = p. After the substitution: = ¢ + p we obtain

F(p+1):/

J=p

o0

00 p
(p+1t)" exp(—p — t) dt = p? exp(—p) / <1 + ;) exp(—t) dt. (10.4)
-p

The logarithm of the last integrand can be written as
t t2
pln(14+-)—t=——+4--- (10.5)
P 2p

where we used the Taylor series for the natural logarithmsTthe integrand behavesm(—%) in the vicinity
of the maximum. So we can write

00 t2 00 t2
Lip+1) ~ p”exp(—p)/ exp (—2]7) dt ~ p? exp(—p)/ exp (—2p> dt = p” exp(—p)+/27p (10.6)
“p o
where we used the Gaussian integral formula

00 t2
/ exp <M) dt =V2mo

[o.¢]
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derived in Section 4.2.4 of our book][
Thus, the Stirling’s formula for the factorial has the form

nl ~ n" exp(—n)V 2w n. (10.7)
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