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1 Selected topics of set theory

To be done.





2 Matrices

In this supplement to our book [5], we provide a review of some topics of matrix algebra that are relevant to the
book. This supplement is not a textbook, but rather a collection of mathematical methods illustrated by examples
that help engineers and graduate students to understand thematerial of the book. Throughout this supplement we
give references to textbooks that contain in-depth coverage and necessary proofs of the corresponding statements
and theorems.

2.1 Matrix Operations

A sizem× n matrix is a table withm rows andn columns:

A =









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .

am1 am2 . . . amn









= [aij ]m×n
. (2.1)

We consider only the matrices whose elementsaij are real or complex numbers. If the elements of the matrix are
real, we writeA ∈ R

m×n; if they are complex, we writeA ∈ C
m×n. If the number of rows is equal to the number

of columns (m = n), A is called asquare matrix.
A matrix with one row (m = 1) a = [a1, a2, . . . , an] is called a row-vector, and a matrix with one column

(n = 1)

b =









b1
b2
. . .

bm









(2.2)

is called a column-vector. Sometimes it is convenient to denote theij-th element of the matrixA as(A)ij = aij .
An A

A transposeA⊤ of the matrixA is obtained by replacing its rows with the corresponding columns:(A⊤)ij ,
(A)ji. For example, if





1 2

3 4

5 6





⊤

=

[

1 3 5

2 4 6

]

.



4 Matrices

To save paper, it is convenient to represent a column vector as a transpose of a row vector. For example a column
vector of equation (2.2) we can present asb = [b1, b2, . . . , bm]⊤. If A = A⊤, the matrix is calledsymmetrical.

For matrices with complex elements aHermitian transposeor conjugate transposematrix is defined as a com-
plex conjugate of its transpose:AH = (Ā

⊤
). For example,





1 + i 2

3− i 4 + 2i

5 6





H

=

[

1− i 3 + i 5

2 4− 2i 6

]

.

A matrix is calledHermitianif it is equal to its Hermitian transpose:A = AH . Obviously, a real Hermitian matrix
is a symmetrical matrix. Theproduct of a scalar and the matrixis obtained by multiplying each element of the
matrix by this scalar:(λA)ij , λ(A)ij . For example

3

[

1 3 5

2 4 6

]

=

[

3 9 15

6 12 18

]

Thesum of the matricesA+B of the same size is the matrix whose elements are the sums of the corresponding
elements(A+B)ij , (A)ij + (B)ij . For example

[

1 3 5

2 4 6

]

+

[−11 2 3

7 3 −1

]

=

[−10 5 8

9 7 5

]

If A = [aij ]m×n
andB = [bij ]n×p

, then theproduct of the matricesC = AB of the matrices is defined as the
matrixC whose element

cij = ai1b1j + ai2b2j + · · ·+ ainbnj =

n
∑

k=1

aikbkj . (2.3)

For example,




1 2

3 4

5 6





[−11 2 3

7 3 −1

]

=





−11 + 14 2 + 6 3− 2

−33 + 28 6 + 12 9− 4

−55 + 42 10 + 18 15− 6



 =





3 8 1

−5 18 5

−13 28 9





Note that the product of the matrices is generally non-commutative:AB 6= BA. For example, if we exchange
the order of multiplication of the matrices of the previous example, we obtain

[−11 2 3

7 3 −1

]





1 2

3 4

5 6



 =

[

10 4

18 20

]

A lower triangular matrixis a square matrix whose elements above its main diagonalaij = 0 for i < j. An
upper triangular matrixis defined similarly:aij = 0 for i > j. A diagonal matrixis a matrix whose off-diagonal
elementsaij = 0 for i 6= j. A diagonalm× n we denote as

A = diag{a1, a2, . . . , ap} (2.4)

Copyright c©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



Matrices 5

wherep = min(m,n). For example, the following matrices are diagonal matrices




1 0

0 2

0 0



 ,

[

1 0 0

0 2 0

]

,

[

1 0

0 2

]

A square diagonal matrix whose diagonal elements are all ones is called anidentity matrix:

I =









1 0 . . . 0

0 1 . . . 0

. . . . . . . . . . . .

0 0 . . . 1









= [δij ]n×n = diag[1, 1, . . . , 1], (2.5)

whereδik is the Kronecker symbol:δii = 1 andδik = 0 for i 6= k. It is easy to see thatAI = A andIA = A for
any matrix1 A.

A column matrix1 = [1 1 . . . 1]⊤ is often used in our book [5]. The productA1 is equal to the column
matrix whose elements are the sums of rows of the matrixA. For example





1 2

3 4

5 6





[

1

1

]

=





3

7

11





Thus defined matrix operations satisfy the following easilyverified identities:

1. A+B = B +A.
2. (A+B) +C = A+ (B +C).
3. (AB)C = A(BC) = ABC.
4. A(B +C) = AB +AC.
5. (AB)H = BHAH .
6. (AB)⊤ = B⊤A⊤.
7. A product or sum of lower (upper) triangular matrices is also a lower (upper) triangular matrix.

2.1.0.1 Trace of a matrix
Trace of square matrixA ∈ C

n×n is the sum of the elements on its main diagonal:

Trace(A) =

n
∑

i=1

aii. (2.6)

The matrix trace possesses the following properties

1. Trace(A+B) = Trace(A) + Trace(B).
2. Trace(λA) = λTrace(A).
3. If A ∈ C

m×n andB ∈ C
n×m, thenTrace(AB) = Trace(BA). Indeed,

Trace(AB) =

m
∑

i=1

(AB)ii =

m
∑

i=1

n
∑

j=1

aijbji.

1 If the matrixA hasm rows andn columns, then we should writeAIn×n = A andIm×mA = A, but since the sizes of the identity
matrices are obvious, we write in both casesI to simplify notation

Copyright c©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



6 Matrices

Similarly,

Trace(BA) =

n
∑

j=1

(BA)jj =

n
∑

j=1

n
∑

i=1

bjiaij .

Thus,Trace(AB) = Trace(BA).

4. Trace(A) = Trace(AH) because the Hermite transposition just changes the diagonal elements by their con-
jugate.

2.1.1 Determinant

Determinant of a square matrix can be defined recursively. The determinant of a scalar ( size1× 1 matrix)is equal
to the scalar:det(a) = a. The second-order determinant

det

[

a11 a12
a21 a22

]

=

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= a11a22 − a12a21 (2.7)

can be viewed as sum of the products of the elements of a row by the correspondingadjunctsor cofactors:

detA = a11A11 + a12A12 (2.8)

whereA11 = a22 andA22 = −a21 are calledadjunctsor cofactorsof the elementsa11 anda12, respectively.
For the third-order matrix, we define

det





a11 a12 a13
a21 a22 a23
a31 a32 a33



 = a11A11 + a12A12 + a13A13

where the adjuncts are defined as

A11 = det

[

a22 a23
a32 a33

]

, A12 = − det

[

a21 a23
a31 a33

]

, A13 = det

[

a21 a22
a31 a32

]

.

For the square matrix of sizen× n, we define the adjunct as

Aij = (−1)i+jMij (2.9)

whereMij , called theminorof aij , is a determinant of the matrix obtained by deleting ofi-th row andj-th column
fromA.

For the square matrix of sizen× n, we define the determinant recursively as

detA = |A| ,
n
∑

j=1

aijAij (2.10)

Copyright c©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



Matrices 7

This equation is order-recursive: it defines2 the determinant ofn-th order using the determinants of(n− 1)-th
order which can further be decomposed into determinants of(n− 2)-th order, and so on. For example,

∣

∣

∣

∣

∣

∣

1 2 3

3 2 1

1 2 1

∣

∣

∣

∣

∣

∣

= 1 ·
∣

∣

∣

∣

2 1

2 1

∣

∣

∣

∣

− 2 ·
∣

∣

∣

∣

3 1

1 1

∣

∣

∣

∣

+ 3 ·
∣

∣

∣

∣

3 2

1 2

∣

∣

∣

∣

= 1 · 0− 2 · 2 + 3 · 4 = 8. (2.11)

The matrixA is calledsingular if detA = 0, otherwise it is callednon-singular. It is easy to verify the follow-
ing properties of the determinant (assuming that all the operations are defined).

1. If any raw of a square matrix consists entirely of zeros, the matrix is singular. Indeed, ifi-th row consists of
zeroes, then equation (2.10) givesdetA = 0.

2. Interchanging two rows changing the sign of the determinant. Indeed, this is obvious for the second-order
determinants, according to equation (2.7). Then, by induction, all theAij in equation (2.10) change sign which
means thatdetA changes sign.

3. If a matrix has two equal rows, it is singular. Indeed, if weexchange the rows, its determinant must change
sign. But, since the rows are equal, we have the same matrix. Thus, in this case,detA = − detA, which is
possible only ifdetA = 0.

4. A sum of products of elements ofi-th row of a matrix by the cofactors of another row of the matrix is zero:
n
∑

j=1

aijAkj = 0 if i 6= k (2.12)

This property follows from the previous, because the sum is equal to the determinant of the matrix that has two
equal rows. This matrix is obtained from the matrixA by replacing itsk-th with its i-th row.

5. detA⊤ = detA. It follows from this property, that every result that is proven to the columns of the determinant
applies to its rows.

6. Combining equations (2.10) and (2.12) we have
n
∑

j=1

aijAkj = δik detA (2.13)

7. If a a row of a matrix is multiplied by a number, then its determinant is also multiplied by the same number.
This property is obtained by multiplying both sides of (2.10) by a number.

8. If two rows of a matrix are proportional, the matrix is singular. Indeed, by factoring the proportionality coeffi-
cient we obtain the matrix with two equal rows which is singular.

9. If two matrices differ only by a row, then the determinant of the sum of the matrices is equal to the sum of their
determinants. This property follows from equation (2.10) in whichaij = bij + cij .

10. Addition of a row times any number to the other row of the matrix does not change its determinant. This
property is a corollary of the two previous properties sincethe determinant of the modified matrix can be
expressed as a sum of the determinants of the original matrixand the matrix with the proportional rows.

11. For the sizen× n matrixA, detλA = λn detA. This property follows from property (7): if we multiply A

by λ, then each its row is multiplied byλ.

2 Strictly speaking, we can use this definition using one particular row and then prove (by induction) that the result does not depend on the
row selection. We leave the proof to the reader as an exercise.

Copyright c©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



8 Matrices

12. Determinant of a triangular matrix is equal to the product of its diagonal elements. This property follows from
equation (2.10) according to whichdetA = a11A11 whereA11 is also a triangular matrix. Thus,

detA = a11a22 · · · ann (2.14)

13. Determinant of the the product of the matricesdetAB = detA detB.
14. Determinant of the Hermite transposedet(AH) = detA.
15. Determinant of a Hermitian matrix is real:det(AH) = detA = detA.

2.1.2 Rank of the Matrix

An order-k minor of the matrixA is a determinant of ak × k matrix








ai1j1 ai1j2 . . . ai1jk
ai2j1 ai2j2 . . . ai2jk
. . . . . . . . . . . .

aikj1 aikj2 . . . aikjk









. (2.15)

wherei1, i2, ..., ik andj1, j2, ..., jk represent the selected rows and columns ofA. Therank of the matrix is the
highest order of all the matrix minors that are different from zero. In other words, there is an order-k minor that
is not equal to zero while all the minors of higher orders are zeroes. If the rank of anm× n matrix is equal to
min(m,n), we say that the matrix hasfull rank.

The rank of the matrix can be found by the following recursiveprocedure: we try to find consequently the
non-zero minors of the order1, 2, . . . , adding at each step just one row and one column to the non-zerominor
found in the previous step. The process stops if we found a minor of the orderk that is not equal to 0, but all
minors of the orderk + 1, obtained in this process are equal to 0, then the rank of the matrix is k because in this
case the minors whose order is larger thank + 1 can be expressed using equation (2.10) as a linear combination
of the minors of orderk + 1 which all are zeroes.

2.1.3 Inverse Matrix

The matrixA−1 is called the inverse ofA if

A−1A = AA−1 = I (2.16)

The inverse matrix exists if and only ifA is non-singular. It follows from this equation that if the inverse matrix
exists, thenA must be non-singular. SincedetA−1A = detA−1 detA = det I = 1, we have

detA−1 =
1

detA
(2.17)

To obtain a formula for the inverse matrix, we rewrite equation (2.13) as

1

detA

n
∑

j=1

aijAkj = δik (2.18)

As we can see, the left hand side of this equation represents an element of the product of the matrixA and the
transposed matrix Adj(A) of the cofactors (called theadjugate matrix of A) multiplied by the scalar1/detA.
The right hand side is an element of the identity matrix (2.5). Thus, we can rewrite equation (2.18) in the following

Copyright c©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



Matrices 9

matrix form

A

(

1

detA
Adj(A)

)

= I (2.19)

Comparing this equation with (2.16) we conclude that for any non-singular matrixA the inverse matrix exists and
can be written as

A−1 =
1

detA
Adj(A) (2.20)

As an example of using this equation, let us find the inverse matrix for the second-order matrix

A =

[

a11 a12
a21 a22

]

(2.21)

We have

detA = a11a22 − a12a21 (2.22)

The matrix of cofactors is
[

a22 −a21
−a12 a11

]

(2.23)

The adjugate matrix is the transpose of this matrix. Thus, the inverse matrix

A−1 =
1

a11a22 − a12a21

[

a22 −a12
−a21 a11

]

(2.24)

To verify the correctness of this equation, we multiply

AA−1 =
1

a11a22 − a12a21

[

a11a22 − a12a21 −a11a12 + a12a11
a21a22 − a22a21 −a21a12 + a22a11

]

=

[

1 0

0 1

]

(2.25)

Caution: Equation (2.20) is used mostly in theoretical derivations. As we will see inthe sequel, there are many
practical algorithms that are both less computationally expensive and more accurate than (2.20).

2.1.3.1 Unitary and orthogonal matrices
A matrixU is calledunitary if UH = U−1 i.e.

UHU = UUH = I. (2.26)

A real unitary matrix is calledorthogonal:

U⊤U = UU⊤ = I. (2.27)

It follows from the properties of the determinants of the Hermite transpose of a matrix that

detUH detU = (detU)2 = det I = 1. (2.28)

Thus,

| detU | = 1 (2.29)

Copyright c©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



10 Matrices

and the determinant of a unitary matrix equals either -1 or +1:

detU = ±1. (2.30)

2.2 Systems of Linear Equations

A system of linear equations has the form

a11x1+ a12x2+ · · ·+ a1nxn = b1
a21x1+ a22x2+ · · ·+ a2nxn = b2
. . . . . . . . . . . .

am1x1+ am2x2+ · · ·+ amnxn = bm

(2.31)

Using matrix notations this system can be written as

Ax = b (2.32)

whereA = [aij ]m×n is called thematrix of the system, vectorx = [x1, x2, . . . , xn]
⊤ is called theunknown, and

b = [b1, b2, . . . , bn]
⊤ is a known vector.

A solutionof the system is every vectorx that satisfies the system, that is turns (2.32) into an identity. If such
vector does not exist, the system does not have a solution. Two systems are calledequivalentif they have the same
set of solutions. Multiplication of both sides of equation (2.32) by a non-singular matrixF leads to an equivalent
systemFAx = Fb. Indeed, as we can see, for any matrixF , every solution of the original system is a solution
of the modified system. IfF is non-singular, multiplying the modified system by the inverse matrixF−1 leads to
the original system (2.32) so that every solution of the modified system is also a solution of the original system.

Consider a system ofn equations withn unknowns. In this case,A is a square matrix. If the matrix of the
system in non-singular, it has an inverse matrixA−1. Multiplying both sides of equation (2.32) by the inverse
matrix, we obtainA−1Ax = A−1b which gives us the unique solution

x = A−1b (2.33)

If we use equation (2.20) for the inverse matrix and multiply the adjugate matrix Adj(A) by b, we obtain the well
known Cramer’s rule:

xi =
detAi

detA
(2.34)

whereAi is the matrix formed by replacing thei-th column ofA by the column vectorb. These formulae are
rarely used in practice, because the computation of the inverse matrix is more complex then solving the system
by Gaussian elimination. The efficient methods for solving linear systems are discussed in the next section.

2.2.1 Row Echelon Form

The process of solving the system of linear equation is basedon transforming it into a simpler equivalent system.
The followingelementary transformations of the systemare used to solve the system

1. interchanging the equations,
2. multiplying an equation by a non-zero number,
3. adding some equation times a number to the other equation.

Copyright c©2012 by H. Kobayashi, B.L. Mark, and W. Turin.
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It is convenient to perform the elementary transformationsof the system using the system’saugmentedmatrix

Aa = [A b] =









a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
· · · · · · · · · · · · · · ·
am1 am2 · · · amn bm









(2.35)

. Elementary transformations of the system are equivalent to the corresponding transformations of the rows of the
augmented matrix: interchanging equations is equivalent to interchanging the corresponding rows, multiplication
of an equation by a non-zero number is equivalent to multiplying the corresponding row of the augmented matrix
by this number, and adding some equation times a number to theother equation is equivalent to adding the
corresponding row of the augmented matrix times the number to the other row. It is easy to see that these operations
can be performed by multiplying from the left the augmented matrix of the system by theelementary matricesE
that are obtained by the same elementary transformations ofthe identity matrix. Since the elementary matrices are
non-singular, therefore, multiplications convert the augmented matrix into an augmented matrix of the equivalent
system. In other words, theelementary transformations of a linear system convert it into an equivalent system.

The first column ofAa always has a non-zero element (otherwise there would be no variablex1 in the system).
We can always assume thata11 6= 0 (this can be achieved by exchanging the rows of the augmentedmatrix). We
call thus obtained coefficienta11 6= 0 apivot.

By multiplying the first row by−ai1/a11 and adding it to thei-th row we obtain 0 in the place ofai1. Thus, we
can create zeroes belowa11 which means that we eliminate the variablex1 from the restm− 1 equations:

A(1)
a = [A(1), b(1)] =











a11 a12 . . . a1n b1

0 a
(1)
22 . . . a

(1)
2n b

(1)
2

. . . . . . . . . . . .

0 a
(1)
m2 . . . a

(1)
mn b

(1)
m











, (2.36)

where

a
(1)
ij = aij −

ai1a1j
a11

(2.37)

This process is called theGaussian eliminationof the variablex1. If the rest of the equations containx2, i.e.
a
(1)
i2 6= 0, we can assume thata(1)22 6= 0 (we can always achieve it by interchanging the equations) and use it as

a pivot to eliminatex2 from the rest ofm− 2 equations. Otherwise, it can happen that after the elimination of
x1 from the rest of the equations we also eliminatedx2, x3, . . . , xk2−1, but there is an equation containingxk2

.
Without loss of generality we can assume thata2k2

6= 0 (this can be achieved by swapping the rows of the matrix)
and use it as a pivot to eliminatexk2

, and so on. We can continue the process until we can find pivotsin the

Copyright c©2012 by H. Kobayashi, B.L. Mark, and W. Turin.



12 Matrices

following rows. Finally, we obtain the so-calledrow echelon form(REF) for the augmented matrix:

A(r)
a = [A(r)

a , b(r)] =





























a11 a12 . . . a1k2
. . . a1kr

. . . a1n b1

0 0 . . . a
(1)
2k2

. . . a
(1)
2kr

. . . a
(1)
2n b

(1)
2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . a
(r−1)
rkr

. . . a
(r−1)
rn b

(r−1)
r

0 0 . . . 0 . . . 0 . . . 0 b
(r)
r+1

0 0 . . . 0 . . . 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . 0 . . . 0 0





























. (2.38)

The system that corresponds to the matrix (2.38) has the form

a11x1+ a12x2+ · · ·+ a1k2
xk2

+ · · ·+ a1kr
xkr

+ · · ·+ a1nxn = b1

a
(1)
2k2

xk2
+ · · ·+ a

(1)
2kr

xkr
+ · · ·+ a

(1)
2n xn = b

(1)
2

. . . . . . . . . . . . . . .

a
(r−1)
rkr

xkr
+ · · ·+ a

(r−1)
rn xn = b

(r−1)
r

0 = b
(r)
r+1

(2.39)

The REF system is easy to solve and analyse.
First of all we note that ifb(r)r+1 6= 0, the last equation0 = b

(r)
r+1 is impossible to satisfy. Thus, the system does

not have a solution in this case.
If b

(r)
r+1 = 0,we can prove that the system has solutions which can be foundby the back substitution.

Since a
(r−1)
rkr

6= 0, we can findxkr
from the r-th equation of the system (2.39) by expressing it through

xkr+1, xkr+2, . . . , xn. Substituting it into the previous equations we findxkr−1
and so on. Finally, will express all

the unknownsx1, xk2
, ..., xkr

corresponding to the pivots through the rest of the unknowns

x1 = α1 +
∑

ν β1νxν

xk2
= α2 +

∑

ν β2νxν

.....................................

xkr
= αr +

∑

ν βrνxν

(2.40)

where the indexν in the RHS of this equation can take all the valuesν ≤ n except for1, k2, ..., kr. The unknowns
in the RHS of the previous equation are called thefree unknowns, because we can assign to them any values while
the unknowns in the LHS of this equation are themain or basicunknowns. Their values are uniquely defined
from (2.40) by the free unknowns. Any set of values ofn− r free unknowns and the correspondingr of the main
unknowns define a solutions of the linear system (2.31).

Note that the back substitution can be incorporated into theforward elimination if we eliminate not only the
elements below a pivot, but also the elements above the pivot.

Thus, the system has solutions if and only ifb
(r)
r+1 = 0. In this case, ifr = n, there is no free variables and the

system has the unique solution. Ifr < n, the system has an infinite number of solutions.
It is easy to verify using the properties of determinants that the elementary transformations of the matrix do not

change its rank. Therefore, the rank of the matrix is equal tothe rank of its REF which is equal to the number of
its non-zero rows. Note thatb(r)r+1 = 0 if and only ifRank(A) = Rank(Aa). These results are summarized in the
following theorem.
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Theorem 2.1 (Kronecker-Capelli). A system of linear equations has a solution if and only if the rank of its
coefficient matrix is equal to the rank of its augmented matrix: Rank(A) = Rank(Aa).

A system has the unique solution if and only ifRank(A) = Rank(Aa) = n.
A system has an infinite number of solutions solution if an only if Rank(A) = Rank(Aa) < n

Example 2.1: Let us solve the system of linear equations

2x +y −z = 8

−3x −y +2z = −11

−2x +y +2z = −3

1. We have the following transformations of the system augmented matrix




2 1 −1 8

−3 −1 2 −11

−2 1 2 −3



 ∼





2 1 −1 8

0 0.5 0.5 1

0 2 1 5



 ∼





2 1 −1 8

0 0.5 0.5 1

0 0 −1 1



 (2.41)

To obtain the second matrix, we multiplied the first row by 3/2and added it to the second row, then we added first
row to the last row. The last matrix (the REF) was obtained by multiplying the second row of the second matrix
by -4 and adding it to its third row.

The REF of the system, according to equation (2.41), is

2x +y −z = 8

0.5y +0.5z = 1

−z = 1

.

To find the solution, we perform the back substitution. From the last equation we havez = −1. Substituting it
into the previous equation, we obtainy = 3, and, substitutingy = 3 andz = −1 into the first equation we obtain
x = 2.

2. Note that the back substitution can be also performed using elementary operations starting from the last
equation.





2 1 −1 8

0 0.5 0.5 1

0 0 −1 1



 ∼





2 1 0 7

0 0.5 0 1.5

0 0 1 −1



 ∼





2 0 0 4

0 0.5 0 1.5

0 0 1 −1



 ∼





1 0 0 2

0 1 0 3

0 0 1 −1





The last matrix was obtained by dividing each row of the previous matrix by the pivot (so that the new pivots are
equal to 1). The system that corresponds to the last matrix has the form

x = 2

y = 3

z = −1

Thus, the last column (2,3,-1) of the previous matrix gives us the solution. The corresponding matrix is called the
reduced row echelon form(RREF)3of the system augmented matrix.

3 Matlab and the majority of other software packages have functionsrref() that perform the transformations.
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3. The back substitution can be incorporated into the forward part of the Gaussian elimination if in its each step
we not only eliminate the matrix elements below its pivots but also above them. Referring to equation (2.41), in
addition to the previously performed eliminations, we could have multiplied the second row by -2 and added it to
the first row and repeated similar eliminations in the third column as illustrated above. Thus, we could have





2 1 −1 8

−3 −1 2 −11

−2 1 2 −3



 ∼





2 1 −1 8

0 0.5 0.5 1

0 2 1 5



 ∼





2 0 −2 6

0 0.5 0.5 1

0 0 −1 1



 ∼





2 0 0 4

0 0.5 0 1.5

0 0 −1 1



 (2.42)

By dividing each row by its pivot, we obtain the RREF




1 0 0 2

0 1 0 3

0 0 1 −1





and the solution(2, 3,−1).

Example 2.2: In this example, we consider a system whose matrix has rank that is less than the number of
unknowns.

2x1 +4x2 −3x3 +5x4 +x5 = 9

3x1 +x2 +x4 −3x5 = 2

x1 +7x2 −6x3 +9x4 +5x5 = 16

Applying the Gaussian elimination to the augmented matrix of the system, we obtain the following RREF




2 4 −3 5 1 9

3 1 0 1 −3 2

1 7 −6 9 5 16



 ∼





1 0 0.3 −0.1 −1.3 −0.1

0 1 −0.9 1.3 0.9 2.3

0 0 0 0 0 0



 .

As we can see,Rank(A) = Rank(Aa) = 2 which is less than the number of unknownsn = 5. Hence, according
to the Kronecker-Capelli theorem, the system has an infinitenumber of solutions that can be expressed using
equation (2.40) which in our case takes the form:

x1 = −0.1 −0.3x3 +0.1x4 +1.3x5

x2 = 2.3 +0.9x3 −1.3x4 −0.9x5

wherex3, x4, x5 are the free variables that can take any values. For example,if x3 = 1, x4 = 0, x5 = 0, then the
solution of the system isx = (−0.4, 3.2, 1, 0, 0).

Example 2.3: In this example, we change the last element in the RHS of the system (e.g. write 7 instead of 16),
we obtain after the Gaussian elimination





2 4 −3 5 1 9

3 1 0 1 −3 2

1 7 −6 9 5 7



 ∼





1 0 0.3 −0.1 −1.3 −0.1

0 1 −0.9 1.3 0.9 2.3

0 0 0 0 0 1



 .
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Thus,Rank(A) = 2 < Rank(Aa) = 3 and the system does not have solutions.

2.2.2 Block Matrices

It is often convenient to represent a matrix in the block form

A =









A11 A12 . . . A1N

A21 A22 . . . A2N

. . . . . . . . . . . .

AM1 AM2 . . . AMN









= [Aij ]M×N
. (2.43)

whereAij are sub-matrices of the matrixA. The operations between the matrices can be written in the block
form. For example, the matrix productC = AB of the matrices in the block form is given by

Cij = Ai1B1j +Ai2A2j + · · ·+AiNBNj =
N
∑

k=1

AikBkj . (2.44)

provided that all the matrix products in this equation are defined.
A block-diagonal matrix is defined as

A =









A11 0 . . . 0

0 A22 . . . 0

. . . . . . . . . . . .

0 0 . . . ANN









= block diag[Aii]N×N . (2.45)

where all the diagonal blocks are square matrices. It is easyto prove that

detA = detA11 detA22 · · · detANN (2.46)

2.3 Linear Vector Space

Definition 2.1 (Linear vector space). A linear vector space is a setV whose elements are called vectors (or points)
if

1. there is a rule according to which for any vectorsx ∈ V andy ∈ V there is a unique vectorz ∈ V which is
called the sum of the vectors and denoted asz = x+ y;

2. there is a rule according to which for any vectorx ∈ V and a numberλ from some field of numbers there is a
unique vectorz ∈ V which is called the product of the number and vector and denoted asz = λx;

3. the defined operations of addition of the vectors and multiplication of a vector by a number satisfy the following
axioms (called the axioms of a linear space)

a) x+ y = y + x;
b) (x+ y) + z = x+ (y + z) for anyx,y), z ∈ V;
c) there is a null-vector0 ∈ V such thatx+ 0 = x for anyx ∈ V;
d) for anyx ∈ V there isy ∈ V such thatx+ y = 0. This vector is called the opposite tox and denoted as

−x;
e) 1 · x = x for anyx ∈ V;
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f) α(βx) = (αβ)x for anyx ∈ V and any two numbersα andβ;
g (α+ β)x = (αx+ βx for anyx ∈ V and any two numbersα andβ;
h) α(x+ y) = αx+ αy for anyx,y ∈ V and any numberα.

This axiomatic definition allows us to apply the theory of linear vector spaces not only to to geometrical vectors
but also to various objects (such as polynomials, solutionsof linear systems, solutions of the systems of differential
equations, random variables, and many other objects that satisfy the axioms of the linear vector space).

We call the vector space real and denoteR if the numbers are from the field of real numbers. We denote the
complex vector space asC if the numbers are from the field of complex numbers.

2.3.1 Linearly Independent Vectors

Definition 2.2 (Linearly dependent and independent vectors). Let a1,a2, . . . ,ak be vectors inC. We say that
these vectors are linearly dependent if there are numbersx1, x2, . . . , xk not all equal to zero, such that

x1a1 + x2a2 + · · ·+ xkak = 0 (2.47)

Otherwise (that is if this equation is satisfied only ifx1 = x2 = ... = xk = 0), the vectors are called linearly
independent.

If vectors are linearly dependent, then at least one of the coefficients is different from zero. Dividing equation
(2.47) by it we can express the corresponding vector as a linear combination of the rest of them.

Definition 2.3 (n-dimensional space). If in the linear space there aren linearly independent vectors and every
n+ 1 vectors of the space are linearly dependent, then we call this spacen-dimensional

In other words, the maximal number of the linearly independent vectors of the space is called its dimension. If
we use real numbers in the definition of the linear space, we denote then-dimensional space asRn; the complex
n-dimensional space is denoted asC

n.

Definition 2.4 (Basis of n-dimensional space). An ordered system ofn linearly independent vectors
e1, e2, . . . , en of then-dimensional space is called its basis

Theorem 2.2. Any vectorx of then-dimensional space can be uniquely represented as a linear combination of
its basis vectors

x = x1e1 + x2e2 + · · ·+ xnen. (2.48)

Proof. Since anyn+ 1 vectors are linearly dependent

α0x+ α1e1 + α2e2 + · · ·+ αnen = 0

where at least one of the coefficients is not zero. We claim that α0 6= 0 because otherwise it would mean that the
basis vectors are linearly dependent. Dividing this equation byα0 6= 0 we obtain (2.48). Uniqueness can be proven
by contradiction: if we assume that the representation is not unique, then subtracting an alternative representation
we will see that the basis vectors are linearly dependent.�
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The coefficientsx1, x2, . . . , xn are calledthe coordinatesof the vectora in the basise1, e2, . . . , en and we
will write x = (x1, x2, . . . , xn).

It is easy to see that if vectorsx = (x1, x2, . . . , xn) andy = (y1, y2, . . . , yn) are presented by their coordinates
in the same basis, thenx+ y = (x1 + y1, x2 + y2, . . . , xn + yn) andλx = (λx1, λx2, . . . , λxn).

2.3.2 Conditions of Linear Dependence

Consider now the conditions of the linear dependence of the vectors in the coordinate form. Letai =

(ai1, ai2, . . . , ain), i = 1, 2, . . . ,m bem vectors. They are linearly dependent if equation (2.47) has a non-zero
solution. This equation can be written in the following coordinate form

a11x1+ a12x2+ · · ·+ a1nxn = 0

a21x1+ a22x2+ · · ·+ a2nxn = 0

. . . . . . . . . . . .

am1x1+ am2x2+ · · ·+ amnxn = 0

(2.49)

which can be written in the following form

Ax = 0 (2.50)

where the vectorsa1,a2, . . . ,am are columns of the matrixA whilex = (x1, x2, . . . , xm). This system is called
ahomogeneous system. It always has a solutionx = 0 which is called atrivial solution. Thus, we can say that the
vectors are linearly dependent if and only if the system has anon-trivial solution. As we know, this is possible if
and only ifRank(A) < m (the rank of the system matrix is less than the number of unknowns). Thus, the rank
of the matrix is equal to the maximal number of its linearly independent columns (or rows).

For example, if

a1 = (1, 0, 1), a1 = (0, 1, 0), a1 = (1, 1, 1),

then

A =





1 0 1

0 1 1

1 0 1



 ∼





1 0 1

0 1 1

0 0 0



 .

Thus, theRank(A) = 2 < 3 and the vectors are linearly dependent.

2.3.3 Inner Product Space

Definition 2.5 (Inner product and the norm). An inner product on a complex vector spaceC is a function that
assigns to each ordered pairs of vectorsx,y ∈ C a scalar〈x,y〉 such that

(a) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;
(b) 〈cx,y〉 = c〈x,y〉;
(c) 〈y,x〉 = 〈x,y〉, the bar denoting complex conjugation;
(d) 〈x,x〉 > 0, if x 6= 0.

The positive square root of〈x,x〉 denoted by

‖x‖ =
√

〈x,x〉
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is called thenorm of x with respect to the inner product. �

The axioms (a), (b) and (c) imply

(e) 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉.
With (c), we have, for instance,

〈ix, ix〉 = −i〈ix,x〉 = −i2〈x,x〉 = 〈x,x〉 = ‖x‖2.

A complex linear space with the inner product is calledthe inner product space(or a unitary space) a real
linear space with the inner product is called theEuclidean space. Thus, for the Euclidean space, the axiom (c) is
replaced by:

(c’) 〈y,x〉 = 〈x,y〉;
Since we can define the distance ormetric between any elementsx andy by d(x,y) = ‖x− y‖, the inner
product space is ametric space.

Definition 2.6 (Orthogonality). Letx andy be vectors in an inner product spaceV . We say thatx andy are
orthogonal if 〈x,y〉 = 0. �

As we showed in Sec. 10.1 of our book [5] , the inner product satisfies the Cauchy-Schwarz inequality

|〈x,y〉|
‖x‖‖y‖ ≤ 1. (2.51)

Thus, we can define the cosine of the angle between the vectorsof the Euclidean space as4

cosϕ =
〈x,y〉
‖x‖‖y‖ . (2.52)

so that we can present the inner product as

〈x,y〉 = ‖x‖‖y‖ cosϕ. (2.53)

Consider a right triangle in the unitary space with the orthogonal legsx, y (xHy, and hypotenusez = y − x.
Then we have

‖z‖2 = ‖y − x‖2 = 〈y − x,y − x〉 = ‖x‖2 − 〈x,y〉 − 〈y,x〉+ ‖y‖2. (2.54)

Thus,

‖z‖2 = ‖x‖2 + ‖y‖2 (2.55)

which is the Pythagoras theorem for the inner product space.Similarly, we can extend many theorems of the
elementary geometry to the Euclidean space geometry. However, we must be careful using these theorems in
the general unitary space. For example, we know from the elementary geometry that diagonals of a rhombus (a
parallelogram whose sides all have the same length) are always orthogonal. However, this is not necessarily true
for a rhombus of a unitary space.

4 In the unitary space, it is defined as| cosϕ| = |〈x,y〉|
‖x‖‖y‖ .
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Suppose that vectorsx = (x1, x2, . . . , xn) andy = (y1, y2, . . . , yn) are presented by their coordinates in the
same basis, then

〈x,y〉 = 〈x1e1 + x2e2 + · · ·+ xnen, y1e1 + y2e2 + · · ·+ ynen〉

=
n
∑

i=1

n
∑

j=1

xiȳj〈ei, ej〉 (2.56)

This equation can be written in the following matrix form

〈x,y〉 = yHMx (2.57)

whereyH denotes the conjugate transpose of the column vectory andM is the matrix whose elements are the
inner products〈ei, ej〉. Since〈ei, ej〉 = 〈ej , ei〉, the matrixM is Hermitian:MH = M . (In the real space these
matrices are symmetrical:M⊤ = M .) In addition to being Hermitian, the matrix must bepositive definitethat is

〈x,x〉 = xHMx > 0, ∀x 6= 0 (2.58)

according to axiom (d).
We know from geometry, that it is convenient to use the orthonormal basisi,j,k in R

3. This is also true for
other spaces. For that we need the following theorem.

Theorem 2.3. Mutually orthogonal non-zero vectorsa1,a2, . . . ,ak are linearly independent.

Proof. Indeed, if we assume that these vectors are linearly dependent, then equation (2.47) has a non-zero solution
x1, x2, . . . , xk. If we assume thatxi 6= 0, then by multiplying both sides of equation (2.47) by ai and using the
orthogonality〈ai,aj〉 = 0 for i 6= j, we obtain the contradiction:xi〈ai,ai〉 = 0.�

Thus, anyn non-zero orthogonal vectors of then-dimensional space represent a basis of the space. If we divide
each vector by its length, we obtain theorthonormal basis. In the orthonormal basis, the matrixM = I is the
identity matrix and the inner product takes especially simple form

〈x,y〉 = yHx =
n
∑

i=1

xiȳi (2.59)

Example 2.4: Consider a set of all matricesA ∈ C
m×n with the previously defined matrix addition an multipli-

cation by a complex number. Obviously, this set represents alinear space. For any two matricesA andB of this
space define their inner product as

〈A,B〉 = Trace(BHA) =

m
∑

i=1

n
∑

j=1

aijbij . (2.60)

As we can see, this definition is equivalent to the definition of the inner product of the vectors inCm×n that are
constructed by concatenating columns of the matrices. Therefore, the inner product of the matrices satisfies all the
axioms of the unitary space.

The norm ofA induced by this definition

‖A‖ =
√

〈A,B〉 =
√

Trace(AHA) =

m
∑

i=1

n
∑

j=1

|aij |2. (2.61)
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is called theFrobenius norm.

2.3.3.1 Gram-Schmidt orthogonalization
Each inner product space has an orthonormal basis. It can be constructed by the so-called Gram-Schmidt orthog-
onalization of any basise1, e2, . . . , en. The first vector of the new basis we define asg1 = e1/‖e1‖, next we
construct a vector ash2 = e2 + α11g1 and findα11 such thatg1 andh2 were orthogonal:

〈g1,h2〉 = 〈g1, e2〉+ α11〈g1, g1〉 = 0

Thus,

α11 = −〈g1, e2〉.

since〈g1, g1〉 = 1. Therefore, we have

h2 = e2 − 〈e2, g1〉g1.

Dividing h2 by its length we obtain the second vectorg2 = h2/‖h2‖ of the orthonormal basis. Ifn = 2, we
have the orthonormal basis{g1, g2}, otherwise the process continues. Assuming thatg1, g2, . . . , gn−1 have been
constructed, we find that

hn = en − 〈en, gn−1〉gn−1 − · · · − 〈en, g1〉g1 (2.62)

is orthogonal tog1, g2, . . . , gn−1. By normalizing it we obtaingn = hn/‖hn‖5 the orthonormal basis
g1, g2, ..., gn. Since we have constructed an orthonormal basis, the algorithm is often called theGram-Schmidt
orthonormalization.

2.3.3.2 Matrix form of the Gram-Schmidt orthogonalization
Equation (2.62) can be written as

en = ‖hn‖gn + 〈en, gn−1〉gn−1 + · · ·+ 〈en, g1〉g1 =
n
∑

i=1

ringi (2.63)

where we substitutedhn = ‖hn‖gn and denoted asrin the coefficient ofgi.
Starting fromn = 1, we can rewrite this equation as

e1 = r11g1

e2 = r12g1 + r22g2 (2.64)

e3 = r13g1 + r23g2 + r33g3 (2.65)

. . . . . . . . . . . . . . . . . . . . . . . . (2.66)

en = r1ng1 + r2ng2 + · · ·+ rnngn.

5 We would like to point out that in the general unitary space the normalization can be achieved in the infinite number of ways:gn =
exp(iφ)hn/‖hn‖.
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If we denote asA = [e1, e2, . . . , en] the matrix whose columns are the vectors of the original basis, then we can
present the previous equation in the following matrix form

A = [g1, g2, . . . , gn]











r11 r12 · · · r1n
0 r22 · · · r2n
...

...
. ..

...
0 0 · · · rnn











= QnRn (2.67)

where we denoted asQn = [g1, g2, . . . , gn] and

Rn =











r11 r12 · · · r1n
0 r22 · · · r2n
...

...
.. .

...
0 0 · · · rnn











(2.68)

is an upper triangular matrix. Since, by construction, the vectorsgi represent an orthonormal basis

gH
i gj = δij . (2.69)

In other words, the Hermite transpose ofQn is the inverse matrix:QH
n = Q−1

n . The matrices that possess this
property are called theunitary matrices. The real unitary matrices are called theorthogonalmatrices, they are
defined byQ⊤

n = Q−1
n .

Thus, in the matrix form, the Gram-Schmidt orthogonalization is represented by the so-called theQR-
decomposition

A = QnRn (2.70)

whereQn is a unitary matrix andRn is the upper triangular matrix.
The direct Gram-Schmidt orthogonalization is in general anunstable process which is prone to propagation of

errors, because in each step we divide by the norm of a vector which can be small. On the other hand, if we can
find a stable algorithm for the QR-decomposition, then the columns ofQn will give us the desired orthonormal
basis. These algorithms are considered in [3].

Note that, in our development, the diagonal elements ofRn are all positive. However, in general, the QR-
decomposition by other algorithms might not satisfy this condition. Geometrically, this corresponds to select-
ing the vector−gi instead ofgi. By changing the direction of the corresponding vectors we obtain the QR-
decomposition with with positive diagonal elementsrii. Thus, if we obtained the QR-decomposition using a
general algorithm, we must write

‖ei‖ = |rii|. (2.71)

The Matlabqr() function performs the QR decomposition.

Example 2.5: Let a = (1, 2, 0), b = (2,−1, 3), c = (−1, 1,−1).
The Matlab functionqr(A), where

A =





1 2 −1

2 −1 1

0 3 −1




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r33g3

r22
g 2

e3

e2

e1 = r11g
1

Figure 2.1 Gram-Schmidt orthonormalization.

gives us

Q =





−0.4472 0.5345 −0.7171

−0.8944 −0.2673 0.3586

0 0.8018 0.5976



 , R =





−2.2361 0 −0.4472

0 3.7417 −1.6036

0 0 0.4781



 .

As we can seer11 = −2.2361 is negative. Multiplying first row ofQ by (-1), we obtain the QR-decomposition

A = Q1R1 =





0.4472 −0.5345 0.7171

−0.8944 −0.2673 0.3586

0 0.8018 0.5976









2.2361 0 −0.4472

0 3.7417 −1.6036

0 0 0.4781



 .

in which all the diagonal elements ofR1 are positive.

Note that if the original vectors are linearly dependent, the QR-decomposition is still possible (with some
rii = 0). In this case, the QR-decomposition allows us to obtain thebasis of the column space of the matrixA.

2.3.3.3 Geometrical interpretation of the Gram-Schmidt orthogonalization
Suppose that vectorse1, e2, e3 from R

3 are linearly independent. Then, sinceg1 is a unit vector, it follows from
(2.64) that ‖e1‖ = |r11|. Equation (2.65) decomposese2 into two orthogonal components. Sinceg2 is a unit
vector,|r22| is the altitude of the parallelogram whose sides are the vectorse1 ande2. Therefore, the area of this
parallelogramV2 = |r11r22|. Equation (2.66) tells us thatr33 is the altitude of the parallelepiped with the sides
e1, e2, ande3. Thus, its volume isV3 = |r11r22r33| (see Fig.2.3.3.3).

Based on these results, it is natural to define a volume of the parallelepiped whose sides represent linearly
independent vectorse1, e2, . . . , en as

Vn = |r11r22 · · · rnn|. (2.72)

whererii are the coefficients ofgi in the Gram-Schmidt decomposition ofei. This definition gives us the length
of the vector inR1, the area of the parallelogram inR2, and the volume of the parallelepiped inR3. I also agrees
with the general definition of measure in the Euclidean space.

To prove that this definition does not depend on the order of selecting vectors for the orthonormalization, we use
equation (2.70) according to whichdetAn = detUn detRn. Since| detUn| = 1 anddetRn = r11r22 · · · rnn,
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we conclude that

Vn = | detAn| (2.73)

i.e. the volume of the parallelepiped whose sides are the columns of the matrixAn is the absolute value of the
determinant of the matrix.

2.3.4 Linear Operator

LetX andY be two linear spaces.

Definition 2.7. A linear operatorY = ÃX is a rule that maps every vectorx ∈ X to a vectory ∈ Y satisfying
the following conditions

1. Ã(x1 + x2) = Ãx1 + Ãx2 for anyx1 ∈ X andx2 ∈ X ;
2. Ã(λx) = λÃx for anyx ∈ X and numberλ.

The space of ally = Ãx, x ∈ X is called theoperator range or theimageof X and is denoted as

R(Ã) =
{

Ãx : x ∈ X
}

. (2.74)

The dimension the operator range is called theoperator rank

Rank(Ã) , dimR(Ã) (2.75)

The space of allx ∈ X that the operator̃A maps onto the null-space is called theoperator kernel and is denoted
as

N (Ã) =
{

x ∈ X : Ã(x) = 0
}

. (2.76)

The dimension the operator kernel is called theoperator nullity

Null(Ã) , dimN (Ã) (2.77)

The rank and nullity of an operator inCn are related by [3, p.50]

Rank(Ã) + Null(Ã) = dimX (2.78)

TheÃ is invertible if there exists an operatorÃ −1 with domainY and rangeX such that

Ãx = y if and only if Ã −1y = x for any x ∈ X , y ∈ Y (2.79)

The operator̃A −1 is called the inverse tõA.

2.3.4.1 Matrix of a Linear Operator
Let e1, e2, ..., en andg1, e2, ..., gm be bases ofX andY, respectively. Then any vectorx ∈ V can be expressed
as

x = x1e1 + x2e2 + · · ·+ xnen (2.80)
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and

y = Ãx = x1Ãe1 + x2Ãe2 + · · ·+ xnÃen (2.81)

Thus, it is sufficient to define images of basis vectors to define a linear operator. SincẽAei ∈ V1, we can write

Ãe1 = a11g1 + a21g2 + · · ·+ am1gm

Ãe2 = a12g1 + a22g2 + · · ·+ am2gm

· · · · · · · · · · · · · · · · · · · · ·
Ãen = a1ng1 + a2ng2 + · · ·+ amngm

(2.82)

The matrix

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn









(2.83)

whose columns, according to equation (2.82), are coordinates of the images of the basis vectors is called the
matrix of linear operator.

Substituting (2.82) into (2.81) we obtain

y =
n
∑

j=1

xj

m
∑

i=1

aijgi =
m
∑

i=1

gi

n
∑

j=1

aijxj (2.84)

Thus, vectory has the following coordinates

yi =

n
∑

j=1

aijxj , i = 1, 2, ...,m (2.85)

This equation represents the relationship between the coordinates of the imagey through the coordinates ofits
pre-imagex and can be expressed in the following matrix form

y = Ax (2.86)

Thus, if the bases of both spaces are fixed, every linear operator has a unique matrix and every matrix defines a
unique linear operator. This relationship is similar to therelationship between a vector and its coordinates.

In a special case, when an operator mapsX onto itself, both bases are the same (i.e.gi = ei), the matrix of an
operator is asquare matrix.

Example 2.6: The projection operator Let us find a matrix of the operator that projects every vectorof R2 onto
some line in the orthonormal basise1 = i, e2 = j. Suppose that the line has angleα with the vectore1.

We need to find the coordinates of the images of the basis vectors.Ãe1 is the projection ofe1 onto the line that
is the vector along the line whose length iscosα. Its coordinates in the selected basis are its projections onto the
basis vectors:

cosα(cosα, sinα) = (cos2 α, cosα sinα)

Thus,

Ãe1 = cos2 α e1 + cosα sinα e2
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. We find similarly

Ãe2 = cosα sinα e1 + sin2 α e2

and, therefore, the matrix of the operator in the selected basis is

A =

[

cos2 α cosα sinα

cosα sinα sin2 α

]

Note that if we select a basis vectore∗1 as a unit vector along the projection line ande∗2 as a unit vector
perpendicular to it, then we would have

Ãe∗1 = e∗1 and Ãe∗2 = 0

Thus, in this basis, the matrix of the projection operator is

A∗ =

[

1 0

0 0

]

.

2.3.5 Transformation of Coordinates

Let us find the relationship between the coordinates of a vector x in different bases. Suppose that along with the
”old” basise1, e2, . . . , en of Cn we select a ”new” basisg1, g2, . . . , gn. Then we can write

x = x1e1 + x2e2 + · · ·+ xnen

x = x∗
1g1 + x∗

2g2 + · · ·+ x∗
ngn

Thus, we have
n
∑

i=1

xiei =

n
∑

j=1

x∗
jgj (2.87)

The vectors of the new basis can be expresses as linear combinations of the vectors of the old basis:

gj =
n
∑

i=1

tijei i = 1, 2, . . . , n. (2.88)

Substituting these equations into (2.87) and grouping coefficients of the same basis vectors, we obtain
n
∑

i=1

xiei =
n
∑

i=1

ei

n
∑

j=1

tijx
∗
j (2.89)

Since basis vectors are linearly independent, the coefficients of the same basis vectors on both sides of this equa-
tion must be equal:

xi =

n
∑

j=1

tijx
∗
j . (2.90)
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This equation expresses the coordinates of the vector in theold basis through the coordinates of the vector in the
new basis. It can be written in the following matrix form

x = Tx∗ (2.91)

where, according to equation (2.88), T = [tij ]n×n is the matrix whose columns are the coordinates of the new
basis vectors in the old basis. Since the matrixT is non-singular, we can express the new coordinates throughthe
old ones as

x∗ = T−1x. (2.92)

Example 2.7: Let e1 ande2 be two orthogonal unit vectors in the plane (R
2) and the new basisg1 andg1 is

obtained by rotating the old basis counter clockwise by angleα. Then it is easy to see that

g1 = cosα e1 + sinα e2, (2.93)

g2 = − sinα e1 + cosα e2. (2.94)

Therefore,

T =

[

cosα − sinα

sinα cosα

]

and we have the following relations between the old an new coordinates

x1 = x∗
1 cosα− x∗

2 sinα, (2.95)

x2 = x∗
1 sinα+ x∗

2 cosα. (2.96)

2.3.6 Similarity Transformation

Suppose that we have a linear operator in the matrix formy = Ax, wherex andy are the column matrices
of coordinates of the corresponding vectors in some basis. We would like to find the relationship between the
coordinates of these vectors in some other basis.

Using equation (2.90), we can write

Ty∗ = ATx∗ (2.97)

or

y∗ = T−1ATx∗. (2.98)

It follows from this equation that the matrix of the operatorin the new basis has the form

A∗ = T−1AT . (2.99)

The formula in the RHS of this equation is called thesimilarity transformationof the matrixA. Thus, we can say
that matrices of the same operator in different bases are similar to each other.
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2.3.6.1 Geometrical meaning of an operator determinant
Since

detA∗ = detT−1 detA detT =
1

detT
detA detT = detA

we conclude that the determinant of the linear operator matrix does not depend on the selected basis and, therefore,
can be called theoperator determinant.

Suppose that vectorsx1,x2, . . . ,xn are mapped onto vectorsy1,y2, . . . ,yn by the linear operator with the
matrixA in some basis. We can express this as

Y = AX, where X = [x1,x2, . . . ,xn] ,Y = [y1,y2, . . . ,yn] . (2.100)

Since the determinant of the matrix product equals to the product of the determinants, we can write

detY = detA detX (2.101)

As we know, the absolute value of the determinant of a matrix equals to the volume of the parallelepiped whose
sides are the columns of the matrix. Thus, it follows from theprevious equation that

Vy = | detA|Vx (2.102)

Thus, we can say that the absolute value of the determinant ofan operator̃A is the coefficient

| detA| = Vy

Vx

(2.103)

of contraction (expansion) of the volume of the parallelepiped after mapping by the operator. We use this result in
developing the variable substitution in multidimensionalintegrals.

In the two-dimensional space the volumes are replaced by theareas and the previous formula takes the form

| detA| = Sy

Sx

(2.104)

We can now ask a question: In which basis does the matrix of a linear operator has the simplest form? The answer
to this question will be given in the next section.

2.3.7 Eigenvalues and Eigenvectors

Definition 2.8. A vectorx 6= 0 is called the eigenvector (or characteristic vector) of a linear operatorÃ if there
is a numberλ called eigenvalue (or characteristic number) the such that

Ãx = λx. (2.105)

In other words, an operator transforms its eigenvectorx into its collinear vectorλx.
To find the eigenvectors, we rewrite equation (2.105) in a coordinate form in some basis

(A− λI)x = 0. (2.106)
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As we know, this homogeneous equation has a non-trivial solution if and only if its determinant is equal to zero:

∆(λ) = det(A− λI) =

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
. . . . . . . . . . . .

an1 an2 . . . ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (2.107)

This equation is called thecharacteristic equationfor the matrixA. As we can see, it is order-n algebraic equation.

Definition 2.9. The multiplicityki of the rootλi of the characteristic polynomial∆(λ) is called the algebraic
multiplicity of the eigenvalue.

This means that the characteristic polynomial can be factored as

∆(λ) = (λ− λi)
kiq(λ), q(λi) 6= 0. (2.108)

Definition 2.10. The maximal number of linearly independent eigenvectors corresponding to the eigenvalueλi is
called its geometric multiplicity.

According to equation (2.106), the geometric multiplicity ofλi is equal to the dimension of the null space:
dimN (A− λiI) = Null(A− λiI) = n− Rank(A− λiI).

An operator is said to have asimple structure[2] in C
n if it has n linearly independent eigenvectors. Let an

operatoropA have a simple structure with linearly independent eigenvectors x1,x2, . . . ,xn corresponding to
eigenvaluesλ1, λ2, . . . , λn. We can use these vectors as basis vectors ofC

n. In this basis, which is called an
eigenbasis, because of the relationship̃Axi = λixi, the operator has a diagonal matrix

Λ =











λ1

λ2

. . .

λn











(2.109)

Since matrices of the same operator are similar, we can write

Λ = T−1AT . (2.110)

A matrix of a simple structure operator is called asimple structure matrix. Thus, we can say that a simple
structure matrix is similar to a diagonal matrix.

The converse statement is also true. Indeed, equation (2.110) can be written as

TΛ = AT . (2.111)

which shows that the columns of the matrixT are the eigenvectors ofA. SinceT−1 exists,detT 6= 0 so that the
eigenvectors are linearly independent. Hence, a matrix hasa simple structure if and only if it isdiagonalizable
(i.e. is similar to a diagonal matrix).

Equation (2.110) can be rewritten as

A = TΛT−1 =
n
∑

i=1

λixiy
⊤
i (2.112)
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wherexi andyi denote columns ofT andT−1, respectively. SinceT · T−1 = I, we have

xiy
⊤
j = δij (2.113)

which means that the vectors are orthogonal if they are real.However, they are not orthogonal in the general case
since the inner product of the complex vectors isx · yH . Equation (2.112) is called thespectral decompositionor
eigendecompositionof the matrixA that has a simple structure.

Note, that if a simple structure matrixA is a real, the spectral decomposition in the real spaceR
n is possible

only if all the eigenvalues are real.
Consider now some conditions for the matrices to have a simple structure [1, p.98].

Theorem 2.4. A matrix has a simple structure if and only if for each eigenvalue λi its algebraic multiplicityki
equals its geometric multiplicityNull(A− λiI) = n− Rank(A− λiI).

Corollary 2.1. If all the eigenvalues of a matrix are different, the matrix has a simple structure.

Proof. In this caseki = 1, i = 1, 2, ..., n, and, therefore,Null(A− λiI) = ki = 1 and we haven linearly inde-
pendent eigenvectors.�

Note, that this corollary gives only asufficientcondition for the matrix to have a simple structure. The converse
is not true as we saw in the previous theorem. If a matrix has a simple structure, some eigenvalues can be the same
as long as the conditions of theorem2.4are satisfied.

Theorem 2.5. A matrix has a simple structure if and only if, for each eigenvalueλi of algebraic multiplicityki,
theRank (A− λiI) = n− ki.

Proof. All eigenvectors corresponding toλi represent the null spaceN(A− λiI) whose dimension isn− ri
whereri = Rank(A− λiI). According to the previous theorem,A has a simple structure if and only if this
dimension iski. Thus,n− ri = ki.�

Example 2.8: Let

A =

[

0.5 0.5

0.25 0.75

]

(2.114)

Its characteristic equation is

det[A− λI] = det

[

0.25− λ 0.75

0.25 0.75− λ

]

= λ2 − 0.75λ− 0.25 = 0 (2.115)

It has two solutions (eigenvalues)λ1 = 0.25 andλ2 = 1. Since the eigenvalues are different, the matrix has a
simple structure. The corresponding eigenvectors are found from (2.106). Forλ1 this system takes the form

[

0.5− λ1 0.5

0.25 0.75− λ1

] [

x1

x2

]

=

[

0.25 0.5

0.25 0.5

] [

x1

x2

]

= 0 (2.116)

This system is equivalent to one equation

0.25x1 + 0.5x2 = 0 (2.117)
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This equation has an infinite number of solutions. One of themis x1 = (2,−1). The eigenvector corresponding
to λ2 is found similarly:x2 = (1, 1). Thus,

T =

[

2 1

−1 1

]

, T−1 =
1

3

[

1 − 1

1 2

]

. (2.118)

The spectral decomposition has the following form

A =
1

3

[

2 1

−1 1

] [

0.25 0

0 1

] [

1 − 1

1 2

]

=
1

12

[

2

−1

]

[1 − 1] +
1

3

[

1

1

]

[1 2] (2.119)

2.3.8 Jordan Canonical Form

If a matrixA does not have a simple structure, there is not enough linearly independent eigenvectors to construct
an eigenbasis ofCn. Letλi, i = 1, 2, ...,m be all different eigenvalues ofA and we need to use some other vectors
to construct a basis ofCn.

Definition 2.11. (Generalized eigenvector) Vectorx is called the generalized eigenvectors of k-th order of an
operatorÃ if there is a numberλ such that

(Ã− λI)k−1x 6= 0 (Ã− λI)kx = 0 (2.120)

It is clear that previously defined eigenvectors are also generalized eigenvectors of the first order:

(Ã− λI)0x = x 6= 0 (Ã− λI)x = 0. (2.121)

If an operatorÃ does not have a simple structure, its matrix is not diagonalizable. In this case, the simplest
matrix that the operator can have is the so-called theJordan canonical form. This matrix is obtained if we select
the generalized eigenvectors ofÃ to construct a basis ofCn. Denote the pre-image ofx in equation (2.120) as
(x(1) : x = (Ã− λI)x(1), the pre-image ofx(1) asx(2) : x(1) = (Ã− λI)x(2), and so on. Thus we have the
sequencex,x(1), ...,x(k−1) of vectors constituting theJordan chain of vectorssatisfying

(Ã− λI)x = 0, (Ã− λI)x(1) = x, . . . , (Ã− λI)x(k−1) = x(k−2) (2.122)

After opening parentheses in these equations we obtain

Ãx = λx, Ãx(1) = λx(1) + x, . . . , Ãx(k−1) = λx(k−1) + x(k−2) (2.123)

If we include these vectors into a basis ofC
n, then, according to definition of the matrix of a linear operator, it

will have the following form
[

J C

0 D

]

(2.124)
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where

J =















λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
.. .

.. .
...

0 0 · · · λ 1

0 0 0 · · · λ















(2.125)

is called aJordan blockof the matrix.
If we can find enough Jordan chains such that their vectors canbe selected as a basis of theCn, then, in this

basis, the matrix of the operator (according to equation (2.124)) will be a block-diagonal matrix, called theJordan
canonical form, whose diagonal blocks are the Jordan blocks (2.125).

In other words, a basis ofCn can be constructed using Jordan chains of an operatorÃ. The structure of this
basis (and, therefore, the corresponding Jordan canonicalform) can be described as follows For every eigenvalue
λi of the algebraic multiplicityki,

• there are

h1 = n− 2Rank(Ã− λiI) + Rank(Ã− λiI)
2 blocks of size 1, (2.126)

• there are

h2 = Rank(Ã− λiI)− 2Rank(Ã− λiI)
2 +Rank(Ã− λiI)

3 second− order blocks (2.127)

and so on,
• there are

hk = Rank(Ã− λiI)
k−1 − 2Rank(Ã− λiI)

k +Rank(Ã− λiI)
k+1 blocks of size k (2.128)

• there are

hmi+1 = Rank(Ã− λiI)
mi−1 − Rank(Ã− λiI)

mi blocks of the largest sizemi + 1 (2.129)

wheremi is the smallest number such thatRank(Ã− λiI)
mi+1 = Rank(Ã = λiI)

mi+2.

For each eigenvalueλi, the total number of the Jordan chains equals to the geometric multiplicity of the eigen-
value:

gi =

mi+1
∑

j=1

hj = n− ri, (2.130)

and the total number of vectors in these chains equals to the algebraic multiplicity ofλi:

ki =

mi+1
∑

j=1

(mi + 1)hj . (2.131)

Thus, we proved that the number of Jordan chains corresponding to the eigenvalueλ is equal to its geometric
multiplicity g and the total number of vectors in these chains equals to the algebraic multiplicityk of λ. As we
have seen before, there is a Jordan matrix block corresponding to each Jordan chain of vectors. We construct
Jordan chains for all different eigenvalues. It is not difficult to prove that these vectors are linearly independent.
Since the sum of all the algebraic multiplicities of the eigenvalues equals to the degreen of the characteristic
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polynomial (which is also the dimension ofCn) we can always construct theJordan basis of theCn using the
Jordan chains of vectors. The matrix ofÃ in this basis is the Jordan canonical form which is a block-diagonal
matrix whose diagonal blocks have the form of equation (2.125):

J =







J1

.. .

Jp






, where J i =















λi 1 0 · · · 0

0 λi 1 · · · 0
...

...
. ..

. . .
...

0 0 · · · λi 1

0 0 0 · · · λi















(2.132)

wherep is the number of Jordan chains which is equal to the maximal number of the linearly independent eigen-
vectors ofÃ.

Thus, every matrix is similar to a Jordan canonical form:

A = TJT−1 or J = T−1AT (2.133)

The columns of the transformation matrixT , according to equation (2.91), are the coordinates of the vectors of the
Jordan basis in the ”old” basis in whichA is the matrix of the operator̃A. Thus, to obtain the matrix, we need to
find all the generalized eigenvectors of the matrix. Alternatively, if we know the structure of the Jordan canonical
form (e.q. by using equations (2.126-2.129)), we can obtain the matrix by solving forT equation (2.133) which
is a non-zero solution of

AT = TJ . (2.134)

Example 2.9: Let

A =





3 2 − 3

4 10 − 12

3 6 − 7



 (2.135)

Its characteristic equation

∆(λ) = det(A− λI) = det





3− λ 2 − 3

4 10− λ − 12

3 6 − 7− λ



 = 0 (2.136)

after simplifications becomes(2− λ)3 = 0. Its rootλ = 2 has the algebraic multiplicityk = 3. We have

r = Rank(A− 2I) = Rank





1 2 − 3

4 8 − 12

3 6 − 9



 = 1 (2.137)

because all the columns of this matrix are proportional to the first column. Since the geometric multiplicity ofλ
is g = dimN (A− 2I) = n− r = 2 < k = 3, this matrix has only two linearly independent eigenvectors and,
therefore, does not have a simple structure. Because(A− 2I)2 = 0, Rank(A− 2I)2 = 0. Then, according to
(2.126) and (2.127),

h1 = 3− 2 + 0 = 1
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and

h2 = 1− 2 · 0 + 0 = 1

. The corresponding Jordan canonical form contains one size-one block and one size-two block:

J =





2 1 0

0 2 0

0 0 2



 .

To find the transformation matrixT , we need to find two Jordan chains of sizes two and one. The length-two
chain vectorst1 andt(1)1 , representing two first columns ofT , satisfy equation (2.122) which in our case takes the
form

(Ã− 2I)t1 = 0, (Ã− 2I)t
(1)
1 = t1 (2.138)

These equations can be written in the following matrix form

[

A− 2I 0

−I A− 2I

]

[

t1

t
(1)
1

]

= 0 or



















1 2 − 3 0 0 0

4 8 − 12 0 0 0

3 6 − 9 0 0 0

−1 0 0 1 2 − 3

0 − 1 0 4 8 − 12

0 0 − 1 3 6 − 9





































t11
t21
t31
t12
t22
t32



















= 0 (2.139)

The REF of this system (which can be obtained using the Matlabfunctionrref()) is

t11 − t12 − 2t22 + 3t32 = 0

t21 − 4t12 − 8t22 + 12t32 = 0

t31 − 3t12 − 6t22 + 9t32 = 0

Heret12, t22, andt32 are free variables. To find a non-zero solution, we lett12 = 1, t22 = 0, andt32 = 0 to obtain

t1 = (1, 4, 3), t
(1)
1 = (1, 0, 0).

In order to complete the Jordan basis we need to find an eigenvector t2 which is linearly independent oft1. All
the eigenvectors are found as solutions of(A− 2I)x = 0 which is equivalent to

x1 + 2x2 − 3x3 = 0.

By settingx3 = 0 we find t2 = (−2, 1, 0). Thus, we have a Jordan basise1 = t1, e2 = t
(1)
1 , e3 = t2 and the

transformation matrix takes the following form

T =





1 1 − 2

4 0 1

3 0 0



 (2.140)

The inverse matrix

T−1 =





0 0 1
3

1 2 − 3

0 1 − 4
3



 (2.141)
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Equation (2.133) takes the form

TJT−1 =





1 1 − 2

4 0 1

3 0 0









2 1 0

0 2 0

0 0 2









0 0 1
3

1 2 − 3

0 1 − 4
3



 =





3 2 − 3

4 10 − 12

3 6 − 7



 (2.142)

or

T−1AT =





0 0 1
3

1 2 − 3

0 1 − 4
3









3 2 − 3

4 10 − 12

3 6 − 7









1 1 − 2

4 0 1

3 0 0



 =





2 1 0

0 2 0

0 0 2



 (2.143)

In conclusion, we would like to point out that there are several other methods for constructing the Jordan canonical
form. One of them uses the theory of the elementary polynomials and elementary quotients of polynomial matrices
[2], the other method is based on the minimal polynomial of the matrix [1, pp. 151-152].

2.4 Adjoint Operators

Hermitian matrices play an important role in applications (see, for example, Chapter 13 of our book [5]). In this
section, we study important properties of Hermitian matrices. These matrices are closely related to the self-ajoint
operators which we will study first.

Definition 2.12. Let Ã andB̃ be linear operators in an unitary spaceU . If for any two vectorsx,y ∈ U

〈Ãx,y〉 = 〈x, B̃y〉, (2.144)

the operators are called theadjoint operators.
If Ã = B̃ the operator is calledself-adjoint. In this case

〈Ãx,y〉 = 〈x, Ãy〉, (2.145)

The relationship between the self-adjoint operators and Hermitian matrices is established by the following
theorem

Theorem 2.6. An operatorÃ is self-adjoint if and only if its matrix in an orthonormal basis is Hermitian.

Proof. LetA be the matrix of the operator̃A in some orthonormal basis. To find the matrix of the adjoint operator,
we express the inner product in its coordinate form as

〈Ãx,y〉 = yHAx = (AHy)Hx = 〈x, ÃH
y〉. (2.146)

where we denoted as̃A
H

the adjoint operator because, as we can see, the matrix of theadjoint operator in the
orthonormal basis is the Hermite transpose of the matrixA. Thus, the operator is self-adjoint if and only if
A = AH i.e. the matrix is Hermitian.�

For operators inRn the matrix of the adjoint operator is the transpose matrixA⊤ (AH = A⊤for real matrices)
while the matrix of the self-adjoint operator is symmetric (A = A⊤).
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It is not difficult to prove [1, p. 116] that

• All eigenvalues of a self-adjoint operator are real.
• Eigenvectors of a self-adjoint operator corresponding to different eigenvalues are orthogonal.
• A self-adjoint operator has a simple structure.

It follows from these properties that any Hermitian matrix is similar to a diagonal matrix (2.109):

A = TΛT−1 (2.147)

whose elements are real numbers. Moreover, we can constructan orthonormal eigenbasis ofCn consisting of
eigenvectors of a self-adjoint operator. This can be achieved by constructing orthonormal eigenbases in subspaces
N (Ã− λiI) of the eigenvectors corresponding to each eigenvalue (for example, using the Gram-Schmidt orthog-
onalization).

We know that the columns of the transformation matrixT in equation (2.147) are the coordinates of the basis
eigenvectors. If the basis is orthonormal, we denote this matrix as U = [uij ]n×n. The orthonormality of the
vectors can be expressed as

n
∑

k=1

ūkiukj = uH
i vj = δij (2.148)

whereui are the columns of the matrixU . This equation shows thatUH is the inverse matrix ofU (see equation
(2.18)). Thus,U is an unitary matrix:

UH = U−1 (2.149)

Hence, equation (2.147) can be rewritten as

A = UΛUH (2.150)

Matrices satisfying this equation are calledunitary equivalent. Thus, any Hermitian matrix is unitary equivalent
to a diagonal matrix. The spectral decomposition of a Hermitian matrix has the form

A = UΛUH =

n
∑

i=1

λiuiu
H
i (2.151)

Real symmetrical matricesrepresent a special case of the Hermitian matrices. Thus, all the previous results are
also valid for the symmetrical matrices inRn with the replacement of the Hermite transposeAH with the real
transposeA⊤. For the real symmetrical matrices the spectral decomposition (2.151) can be written as

A = QΛQ⊤ =

n
∑

i=1

λiqiq
⊤
i . (2.152)

2.5 Hermitian and Quadratic Forms

Definition 2.13. A bivariate Hermitian form is a second-order homogeneous polynomial

H(x,y) = xHAy =

n
∑

i=1

n
∑

j=1

aijxiyj (2.153)
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wherex ∈ C
n, y ∈ C

n, andA is a Hermitian matrix which is called the matrix of the Hermitian form.

According to equation (2.57) the inner product of two vectors is an example of the Hermitian form.
If x = y, the Hermitian form

H(x,x) = xHAx =

n
∑

i=1

n
∑

j=1

aijxixj (2.154)

is called theunivariate Hermitian formor simply the Hermitian form. This form represents a real function of
the complex variables. Indeed, sinceH(x,x) is a number, its transpose is the same number. Using Property5
(Section2.1) of the Hermite transpose of the product of matrices, we obtain

H(x,x) = [H(x,x)]H = xHAHx = xHAx = H(x,x). (2.155)

Thus,H(x,x) = H(x,x) and, therefore,H(x,x) is real.

Definition 2.14. A bivariate quadratic form is a second-order homogeneous polynomial of real variables

Q(x,y) = x⊤Ay =

n
∑

i=1

n
∑

j=1

aijxiyj (2.156)

whereA is a real symmetrical matrix. An univariate quadratic form is defined by

Q(x,x) = x⊤Ax =

n
∑

i=1

n
∑

j=1

aijxixj (2.157)

If the matrix is not symmetrical, we can always make it symmetrical by replacingaijxixj + ajixjxi with

a
(1)
ij xixj + a

(1)
ij xjxi, wherea(1)ij = 0.5(aij + aji) without changing the quadratic form.

2.5.0.1 Equivalent Hermitian forms
A linear variable substitutiony = Tx transforms a Hermitian form as

H(y,y) = (Tx)HA(Tx) = xHTHATx = xHBx. (2.158)

where

B = THAT (2.159)

is the matrix of the Hermitian form in new variables. MatrixB defined by the previous equation is calledcongru-
ent to the matrixA.

Two Hermitian formsH(x,x) andH1(x,x) are calledequivalentif there exists a non-singular matrixT such
thatH(x,x) = H1(Tx,Tx). In other words, their matrices are related by equation (2.159) wheredetT 6= 0. In
the sequel we will use only non-singular matricesT .

It follows from equation (2.159) that

det(B − λI) = detTH det(A− λI) detT = det(A− λI)| detT |2 (2.160)

which means that the eigenvalues of the matrix of the Hermitian form do not change after a linear variable sub-
stitution with the non-singular matrixT . Therefore, matrices of all equivalent Hermitian forms have the same
eigenvalues which are called theeigenvalues of the Hermitian form. Since the rank of the matrix is equal to the
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number of its non-zero eigenvalues, it is also the same for all equivalent Hermitian forms an it is called therank
of the Hermitian form.

If the transformation matrix is a unitary matrix, then the matrices of the equivalent Hermitian forms areunitary
equivalentand equation (2.159) can be written as

B = UHAU = U−1AU . (2.161)

Since any Hermitian matrixA is unitary equivalent to a diagonal matrixΛ = diag[λ1, λ2, . . . , λn] whose diagonal
elements are the eigenvalues ofA:

Λ = UHAU , (2.162)

we conclude that any Hermitian form can be transformed to

H(Ux,Ux) = λ1|x1|2 + λ2|x2|2 + · · ·+ λn|xn|2. (2.163)

The RHS of this equation represents the so-called thediagonal Hermitian form.
Note that a unitary transformation of vectors does not change their inner product:

(Uy)H(Ux) = yHUHUx = yHIx = yHx. (2.164)

Therefore, they do not change lengths of the vectors and angles between the vectors and represent linear isome-
tries: rotations, reflections, and their combinations. A quadratic form with the real coefficients is a special case of
a Hermitian form, therefore, any quadratic form is orthogonally equivalent to the diagonal quadratic form is

Q(Tx,Tx) = λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n (2.165)

whereT is the orthogonal matrix. Since a transformation with the orthogonal matrix maps an orthogonal basis
into an orthogonal basis, this transformation has numerousapplications in geometry.

Example 2.10: Consider a second-order curve that is defined by the following equation

5x2 + 4xy + 8y2 − 32x− 56y + 80 = 0. (2.166)

We would like to find the canonical form of the equation of thiscurve.
The quadratic form in the LHS of equation (2.166) is

5x2 + 4xy + 8y2 = [x y]

[

5 2

2 8

] [

x

y

]

= [x y]A

[

x

y

]

. (2.167)

The characteristic polynomial of the matrix of this quadratic form is

det(A− λI) =

[

5− λ 2

2 8− λ

]

= λ2 − 13λ+ 36. (2.168)

Its rootsλ1 = 4 andλ2 = 9 are the eigenvalues ofA. Thus, the diagonal form of the quadratic form is4x2
1 + 9y21 .

To transform the linear terms of (2.166) to the new coordinates, we need to find the matrixT of the transfor-
mation of coordinates. The columns of this matrix are the orthonormal eigenvalues ofA.

The coordinates of the eigenvectors are found from the equation

(5− λ)v1 + 2v2 = 0

2v1 + (8− λ)v2 = 0
(2.169)
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in whichλ is one of the eigenvalues.
Forλ = 4 this equation has the form

v1 + 2v2 = 0

2v1 + 4v2 = 0
(2.170)

A non-zero solution of this system can be found by lettingv2 = −1 and findingv1 = 2. Thus, we have an eigen-
vector (2,-1). Dividing this vector by its length, we obtainthe normalized vector

(

2√
5
,− 1√

5

)

.

Next, we find similarly the normalized eigenvector corresponding toλ = 9:
(

1√
5
,
2√
5

)

.

These vectors are orthogonal. Therefore, the coordinate transformation matrix has the form

T =

[

2√
5

1√
5

− 1√
5

2√
5

]

. (2.171)

Hence, the old coordinatesx, y and the new coordinatesx1, y1 are related by the following formulae

x = 2√
5
x1 +

1√
5
y1

y = − 1√
5
x1 +

2√
5
y2.

(2.172)

Substituting these equations into (2.166) we obtain after grouping similar terms

4 x2
1 + 9 y21 −

8√
5
x1 −

144√
5
y1 + 80 = 0. (2.173)

After completing the squares we can rewrite this equation as

4(x1 −
1√
5
)2 + 9(y1 −

8√
5
)2 − 36 = 0 (2.174)

or

(x1 − 1√
5
)2

9
+

(y1 − 8√
5
)2

4
= 1. (2.175)

As we can see, the curve is an ellipse.

2.5.1 Definite Hermitian forms

Definition 2.15. A Hermitian formH(x,x) = xHAx, wherex ∈ C
n, and its matrixA are called

Positive definite if H(x,x) > 0 for all x 6= 0. In this case we writeA > 0.
Positive semidefinite or nonnegative definiteif H(x,x) ≥ 0 for all x and there isx 6= 0 such thatH(x,x) =

0. In this case we writeA ≥ 0.
Negative definite if −H(x,x) is positive definite. In this case we writeA < 0.
Negative semidefinite or nonpositive definiteif −H(x,x) is positive semidefinite. In this case we writeA ≤ 0.
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Since the negative (semi)definite forms are defined using thepositive (semi)definite forms, it is sufficient to
study the latter.

Theorem 2.7. A Hermitian form is positive definite (semidefinite) if and only if its all eigenvalues are positive
(non-negative).

Proof. A Hermitian formH(x,x) is positive definite (semidefinite) if and only if its equivalent diagonal form
H(Ux,Ux) is positive definite (semidefinite). The latter, according to equation (2.163) is positive definite if and
only if its all eigenvalues are positive (non-negative).�

As we pointed out previously, finding eigenvalues of a matrixis a difficult problem especially for large
matrices. There are simpler methods for deciding whether a general Hermitian form is positive (semi)definite,
because a Hermitian formH(x,x) is positive definite (semidefinite) if and only if its equivalent Hermitian form
H(Tx,Tx) is positive definite (semidefinite) whereT is any non-singular matrix (not necessarily a unitary
matrix). In other words, it is sufficient to find a diagonal congruent matrixTHAT (and not necessarily a similar
matrixU−1AU ) that lets us to solve the problem.

Any Hermitian form can be presented by linear transformation of its variables (in an infinite number of ways)
as an equivalent diagonal Hermitian form

H(Tx,Tx) = a1|x1|2 + a2|x2|2 + · · ·+ an|xn|2. (2.176)

It is often convenient to decide if a matrix is positive-definite by using the Cholesky decomposition which we
consider in the next section.

2.5.2 Cholesky Decomposition

Theorem 2.8(The Cholesky decomposition). A Hermitian matrixA is positive definite if and only if there exists
a non-singular lower triangular matrixC with positive real diagonal entries such that

A = CCH . (2.177)

This formula is known as theCholesky decompositionof A, andC is called the Cholesky factor or a square
root ofA.

Proof. If Hermitian matrix is positive definite, then all its eigenvalues are positive and we can rewrite equation
(2.150) as

A = CCH (2.178)

where

C = U diag(
√

λ1,
√

λ2, . . . ,
√

λn) = U











√
λ1 √

λ2

. . . √
λn











. (2.179)

The matrixC is non-singular since

detC = detU det diag(
√

λ1,
√

λ2, . . . ,
√

λn) = ±
√

λ1

√

λ2 · · ·
√

λn) 6= 0
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Conversely, ifA = CCH whereC is non-singular, then for anyx 6= 0

xHAx = xHCCHx = ‖CHx‖2 > 0.

�

We obtained equation (2.178) using the matrix spectral decomposition. However, the Cholesky decomposition
can be obtained without finding the eigenvalues ofA. Indeed, we can rewrite equation (2.178) as









a11 a21 · · · an1
a21 a22 · · · an2
· · · · · · · · · · · ·
an1 an2 · · · ann









=









c11 0 · · · 0

c21 c22 · · · 0

· · · · · · · · · · · ·
cn1 cn2 · · · cnn

















c11 c21 · · · cn1
0 c22 · · · cn2
· · · · · · · · · · · ·
0 0 · · · cnn









(2.180)

Multiplying matrices in the RHS of this equation and comparing the results with the corresponding elements of
A in the LHS we obtain a system of equations from which it is easyto find elements of the Cholesky factor. For
the first column ofA, we have

a11 = c211, a21 = c11c21, . . . , an1 = c11cn1. (2.181)

From this system we find

c11 =
√
a11, c21 = a21/c11, . . . , cn1 = an1/c11. (2.182)

Substituting this solution into (2.180), we can obtain similarly the second column ofC as

c22 =
√

a22 − |c21|2, c32 = (a32 − c21c31)/c22, . . . , cn2 = (an2 − c21cn1)/c22. (2.183)

Continuing the process, we obtain the following recursive equations

cii =
√

aii −
∑i−1

k=1 |cik|2
cij =

1
cii

(aij −
∑j−1

k=1 cikcjk), i = 1, 2, . . . , n.
(2.184)

We can now rephrase Theorem2.8: a Hermitian matrix is positive definite if and only if the recursive equations
in (2.184) are satisfied (i.e. all the expressions under the square root must be positive).

The other criterion of positive-definiteness of a Hermitianform (or matrix) is given by the following theorem

Theorem 2.9(Sylvester’s criterion). [4, p. 404], [1, p. 136] A Hermitian form is positive-definite if and only if
its all leading diagonal minors are positive:

D1 = a11 > 0, D2 = det

[

a11 a12
a21 a22

]

> 0, . . . , Dr = det









a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann









> 0. (2.185)

Let us consider now some other applications of the Cholesky decomposition.

2.5.2.1 Generation of multidimensional Gaussian variates
Consider an affine transformation

Y = AX + b (2.186)
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of a real random vector (RV)X with the meanE[X] = µx and the variance matrixΣx = E[(X − µx)(X −
µx)

⊤]. Applying the expectation to both sides of the previous equation, we obtain

µy = E[Y ] = E[AX] = Aµx + b

and

Σy = E[(Y − µy)(Y − µy)
⊤] = E[A(X − µx)(A(X − µx))

⊤]

= AE[(X − µx)(X − µx)
⊤]A⊤ = AΣxA

⊤.

Thus, the mean and the variance matrix of theY = AX + b are given by

µy = Aµx + b

Σy = AΣxA
⊤ (2.187)

As we can see, the variance matrixΣy is congruent toΣx. In particular, if the components of the RVX are
uncorrelated i.e.Σx = I, thenΣy = AΣxA

⊤. Therefore, if a RV has a positive definite variance matrix, we can
express it as

Y = CU + µy (2.188)

whereU is a random vector whose components are zero-mean and unit variance uncorrelated RVs,C is the
Cholesky factor ofΣy:

Σy = CC⊤, (2.189)

Equation (2.188) in the one-dimensional case represents the normalised RVU = (Y − a)/σ.
As we know, the uncorrelated Gaussian RVs are independent. Therefore, equation (2.188) can be used to gen-

erate multidimensional Gaussian variates with the meanµy and the variance matrixΣy from the independent
Gaussian variables with zero mean and unit variance that wasconsidered In Sec. 5.4.3 of our book [5].

2.5.2.2 Multivariate Gaussian conditional distribution
In our book [5] , we offered a derivation of equations (4.124) and (4.125) as an exercise. Let us derive these
equations using the Cholesky decomposition.

Let

X =

[

Xa

Xb

]

(2.190)

be a Gaussian RV with the mean and the variance matrices

µ =

[

µa

µb

]

, Σ =

[

Σaa Σab

Σba Σbb

]

. (2.191)

We would like to find the conditional PDF ofXa givenXb = xb.
For this purpose, we use equation (2.188) to presentX as a function of independent Gaussian RVs:

X = CU + µ (2.192)

whereC is the Cholesky factor ofΣ:
[

Σaa Σab

Σba Σbb

]

=

[

Caa 0

Cba Cbb

] [

C⊤
aa C⊤

ba

0 C⊤
bb

]

(2.193)
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Using these notations, equation can be rewritten in the following block form

Xa = CaaUa + µa (2.194)

Xb = CbaUa +CbbU b + µb. (2.195)

If Xb = xb is fixed, we can solve first of these equations forUa and substitute it into the second equation to
obtain

Xb = CbaC
−1
aa (xa − µa) +CbbU b + µb. (2.196)

This equation shows that theXb, givenXb = xb, is a Gaussian RV whose mean vector and the variance matrix
can be obtained using equation (2.187):

µb|a = µb +CbaC
−1
aa (xa − µa) (2.197)

Σb|a = CbbC
⊤
bb. (2.198)

Comparing matrices on both sides of equation (2.193), we find that

CbaC
−1
aa = ΣbaC

−H
aa C−1

aa = Σba(CaaC
−H
aa )−1 = ΣbaΣ

−1
aa (2.199)

and

CbbC
H
bb = Σbb −CbaC

H
ba = Σbb −ΣbaΣ

−1
aaΣ

H
ba. (2.200)

Using these equations, we can rewrite equations (2.197) as

µb|a = µb +ΣbaΣ
−1
aa (xa − µa)

Σb|a = Σbb −ΣbaΣ
−1
aaΣab

(2.201)
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3 The Dirac delta function

To be done.





4 Stieltjes and Lebesgue integrals, and dF
notation

To be done.





5 Selected topics in measure theory

To be done.





6 Interchanging limit and integral

To be done.





7 Differentiating integrals and sums

To be done.





8 Complex analysis: Contour integral and
the residue theorem

To be done.





9 Functional transformation and Jacobians

To be done.





10 Stirling’s Formula

Two functionsf(x) andg(x) are calledasymptotically equivalentasx → x0 if

lim
x→x0

f(x)

g(x)
= 1. (10.1)

In this case, we writef(x) ∼ g(x) and we callg(x) an asymptotic representation off(x).
The Stirling’s formula gives us an asymptotic representation of the factorial. Sincen! = Γ(n+ 1), we derive a

more general the asymptotic representation for the gamma-functionΓ(p+ 1):

Γ(p+ 1) ∼ pp exp(−p)
√

2π p. (10.2)

which means that

lim
p→∞

Γ(p+ 1)

pp exp(−p)
√
2π p

= 1.

To prove this formula, we use the following integral representation of the gamma-function

Γ(p+ 1) =

∫ ∞

0

xp exp(−x) dx =

∫ ∞

0

exp(p lnx− x) dx. (10.3)

To find the asymptotic formula, we note that the integrand in the RHS of this equation attains its maximum
pp exp(−p) atx = p. Asp grows, this maximal value becomes dominant and we expect thedominant contribution
to the integral from the small vicinity ofx = p. After the substitutionx = t+ p we obtain

Γ(p+ 1) =

∫ ∞

−p

(p+ t)n exp(−p− t) dt = pp exp(−p)

∫ ∞

−p

(

1 +
t

p

)p

exp(−t) dt. (10.4)

The logarithm of the last integrand can be written as

p ln(1 +
t

p
)− t = − t2

2p
+ · · · (10.5)

where we used the Taylor series for the natural logarithm. Thus, the integrand behaves asexp(− t2

2p ) in the vicinity
of the maximum. So we can write

Γ(p+ 1) ∼ pp exp(−p)

∫ ∞

−p

exp

(

− t2

2p

)

dt ∼ pp exp(−p)

∫ ∞

−∞
exp

(

− t2

2p

)

dt = pp exp(−p)
√

2π p (10.6)

where we used the Gaussian integral formula
∫ ∞

−∞
exp

(

− t2

2σ2

)

dt =
√
2π σ
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derived in Section 4.2.4 of our book [1].
Thus, the Stirling’s formula for the factorial has the form

n! ∼ nn exp(−n)
√
2π n. (10.7)
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