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Isentropic Efficiency in Engineering Thermodynamics

Introduction
This article is a summary of selected parts of chapters 4, 5 and 6 in the textbook by
Moran and Shapiro (2008). The intent is primarily to clarify for geologists the nature
of isentropic and isenthalpic processes as used in engineering, and the meaning of isen-
tropic efficiency. Equation numbers are those in Moran and Shapiro, except for three
equations in square brackets. We follow the common engineering practice of using
lower case for thermodynamic properties, e.g., h, u, etc., as referring to specific (per
gram) rather than molar quantities. The data used are from the NIST program REF-
PROP (Lemmon et al., 2007), and are slightly different from the data used in Moran
and Shapiro. In program REFPROP, the default reference states1 are defined as having
zero internal energy and zero entropy so that by definition delta notation is avoided,
i.e., we can use h, u rather than ∆h and ∆u and similarly for other properties. Never-
theless, whatever the definitions and notation, numerical values of internal energy and
all quantities containing it represent differences between two equilibrium states, real or
hypothetical.

Moving fluids may have thermodynamic state properties (T , p, v, etc.) which do
not change with time (steady state) so that at a fixed point in space (e.g., the inlet or
outlet of a turbine) the moving fluid can be considered to be in a state of equilibrium.
The fluid has kinetic and possibly gravitational energy as well as internal energy, but
these can be included in the formulations. Or these variables may be changing with
time, in which case the equations are differentiated with respect to time.

Equations for Control Volumes
Just as for a closed system, energy and mass can enter and leave a region in space (the
control volume, CV), and energy transfer can be in the form of work and heat. But with
the CV, another type of energy transfer occurs, the energy which accompanies mass
transfer.

Conservation of Mass in a Control Volume
For each of the extensive properties, mass, energy, and entropy, the CV form of the
property balance is obtained by transforming the corresponding closed system form.
First, consider mass, which in a closed system is constant.

1The reference state for water is the saturated liquid at the triple point, and for air is the saturated liquid
at the normal boiling point.
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Mass Rate balance

Consider that we have a CV with one inlet and one outlet. At time t the mass under
consideration is the sum m = mCV(t)+mi, where mCV(t) is the mass in the CV and mi
is the mass in a small volume i at the inlet. In the time interval ∆t the mass in region i
enters the CV, and some of the mass me initially in the CV exits and occupies a small
volume e at the outlet. The mass in regions i, CV, and e may differ from time t to time
t +∆t, but the total mass is constant. So

mCV(t)+mi = mCV(t +∆t)+me

or
mCV(t +∆t)−mCV(t) = mi−me

Now divide by ∆t,
mCV(t +∆t)−mCV(t)

∆t
=

mi

∆t
− me

∆t
Then as ∆t→ 0,

dmCV

dt
= ṁi− ṁe (4.1)

where dmCV/dt is the time rate of change of mass in the CV, and ṁi and ṁe are the
inlet and outlet mass flow rates, all at time t. If there is more than one inlet and outlet,
summation signs are added to the right-hand terms.

Mass Flow Rate

Consider a small quantity of mass having velocity V and density ρ flowing across a
small part of area A, dA, in time interval ∆t. If Vn is the velocity normal to the area A,
the mass that crosses dA in time ∆t is ρ(Vn∆t)dA. Dividing by ∆t and letting ∆t→ 0
gives ρVndA, the instantaneous mass flow rate across dA. Integrating over the area A
through which mass passes gives

ṁ =
∫

A
ρVndA (4.3)

For flow in one dimension, which covers most cases, this becomes

ṁ = ρAV (4.4a)

or
ṁ =

AV
v

(4.4b)

where v is the specific volume.
AV is the volumetric flow rate. Combining equations (4.1) and (4.4b),

dmCV

dt
=

AiVi

vi
− AeVe

ve
(4.5)

For flow at steady state, dmCV/dt = 0, so

ṁi = ṁe (4.6)
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The identity of the matter in the CV changes continuously, but the amount present at
any instant is constant. Note that steady state flow does not necessarily mean that the
CV is at steady state. For a CV at steady state, all properties including T , p, etc. are
constant.

Conservation of Energy in a Control Volume
Work and Heat

Energy is transferred to or from a system by work (W ) and/or heat (Q). Work is done
by a force moving through a distance (or its equivalent, as e.g. in the case of electrical
work). Neither work nor heat is a property of the system (a state variable) so neither
differential can be integrated without specifying a path. This is noted by using δ rather
than d in the expression2 ∫ 2

1
δW = W

The rate of energy transfer by work is called power, denoted by Ẇ , where in one
dimension,

Ẇ = FV (2.13)

where F is force and V is velocity.
Similarly, ∫ 2

1
δQ = Q (2.28)

The net rate of energy transfer by heat is Q̇, and if it is known how Q̇ varies with time,
then

Q =
∫ 2

1
Q̇dt (2.29)

The net rate of energy transfer as heat is related to the heat flux q̇, the rate of heat
transfer per unit area, by

Q̇ =
∫

A
q̇dA (2.30)

Energy Rate Balance

The closed system energy balance is not the familiar ∆U = Q−W , but

∆E = ∆U +∆KE+∆PE (2.35b)
= Q−W (2.35a)

where KE and PE are the terms for kinetic and potential energy. The differential form
is

dE = δQ−δW (2.36)

2See section 4 in the Additional Material file for a discussion of this point.
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and the instantaneous time rate form of the energy balance is

dE
dt

= Q̇−Ẇ (2.37)

or

dE
dt

=
dKE

dt
+

dPE
dt

+
dU
dt

= Q̇−Ẇ (2.38)

For one inlet, one outlet, 1D flow, then

dECV

dt
= Q̇−Ẇ + ṁi

(
ui +

V2
i

2
+gzi

)
− ṁe

(
ue +

V2
e

2
+gze

)
(4.9)

where ECV is the energy of the CV at time t, Q̇ and Ẇ are the net rates of energy transfer
as heat and work across the boundary of the CV at time t, u is specific internal energy,
g is the acceleration due to gravity and z is the elevation of the CV. If there is no mass
flow, the equation reduces to equation (2.37).

Evaluating Work for a CV

It is convenient to separate the net rate of energy transfer as work into or out of a CV
(Ẇ ) into two parts. One is the rate of work done by the fluid pressure at the inlet and
outlet as mass is transported in or out. The other, called ẆCV, is the rate of all other
work, such as done by rotating shafts, electrical work, etc.

The rate of energy transfer by work is force×velocity (equation (2.13)), so at the
outlet, say,

Ẇ = (peAe)Ve (4.10)

and similarly for the inlet, so the work rate term for equation (4.9) is

Ẇ = ẆCV +(peAe)Ve− (piAi)Vi (4.11)

and because AV = ṁv (equation (4.4b))

Ẇ = ẆCV + ṁe(peve)− ṁi(pivi) (4.12)

The terms ṁe(peve) and ṁi(pivi) account for the work associated with the pressure at
the outlet and inlet, and are called flow work.

The Energy Rate Balance

Inserting this relation, equation (4.9) becomes

dECV

dt
= Q̇CV−ẆCV + ṁi

(
ui + pivi +

V2
i

2
+gzi

)
− ṁe

(
ue + peve +

V2
e

2
+gze

)
(4.13)
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Subscript CV is added to Q̇ to emphasize that this is the rate of heat transfer over the
surface of the CV. And because h = u+ pv where h is specific enthalpy, this becomes

dECV

dt
= Q̇CV−ẆCV + ṁi

(
hi +

V2
i

2
+gzi

)
− ṁe

(
he +

V2
e

2
+gze

)
(4.14)

This is the master 1D, one inlet, one outlet form of the energy balance for a CV. It
only remains to relate Q̇CV to entropy.

Steady State Form of the Energy Balance

When ṁi = ṁe and dmCV/dt = 0, equation (4.14) becomes

0 =
Q̇CV

ṁ
− ẆCV

ṁ
+(hi−he)+

V2
i −V2

e

2
+g(zi− ze) (4.20b)

Nozzles and Diffusers

A nozzle is a tube of varying cross sectional area in which the fluid velocity increases
in the direction of flow. In a diffuser, the velocity decreases in the direction of flow.
In these, there is no work done other than flow work, and (as in a great many applica-
tions) change in potential energy is negligible. If in addition the heat loss is negligible,
equation (4.20b) becomes

0 = (hi−he)+
V2

i −V2
e

2
(4.21)

The Entropy Balance
The Entropy Balance for Closed Systems

The focus is on the balance, which means there is an explicit term σ representing the
entropy difference between the real process and that process carried out reversibly, i.e.,
the amount of entropy produced in the system by irreversibilities. Thus

S2−S1 =
∫ 2

1

(
δQ
T

)
b
+σ (6.24)

In words, this is

change in entropy in the sys-
tem during some time inter-
val

= amount of entropy trans-
ferred into the system during
the time interval

+ entropy produced in the sys-
tem during the time interval

and in differential form

dS =
(

δQ
T

)
b
+δσ (6.25)

When there are no internal irreversibilities, equation (6.25) reduces to the inter-
nally reversible form

dS =
(

δQ
T

)
int rev

(6.2b)
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A distinction is made between internal irreversibilities, those taking place in the sys-
tem, and external irreversibilities, those taking place in the environment. Engineering
design thus focusses on identifying the sources of the irreversibilities and reducing
them. Common sources are (p. 220):

1. Heat transfer due to a ∆T .

2. Unrestrained expansion of a fluid.

3. Spontaneous chemical reaction (including phase changes).

4. Spontaneous mixing.

5. Friction; sliding as well as within fluids.

6. Current flow through a resistance.

7. Magnetization or polarization with hysteresis.

8. Inelastic deformation.

All actual processes are irreversible, i.e., they contain irreversibilities and hence pro-
duce entropy.

Entropy Rate balance for Closed Systems

If temperature is constant, equation (6.24) becomes

S2−S1 =
Q
Tb

+σ

where Q/Tb represents the amount of entropy transferred through a portion of the sys-
tem boundary at temperature Tb. Similarly, Q̇/Tj represents the time rate of entropy
transfer through a portion of the boundary whose instantaneous temperature is Tj. The
closed system entropy rate balance is then

dS
dT

= ∑
j

Q̇ j

Tj
+ σ̇ (6.28)

time rate of change in en-
tropy in the system

= (sum of) time rate of en-
tropy transfer through the
portion(s) of the boundary
whose temperature is Tj

+ time rate of entropy produc-
tion due to irreversibilities in
the system

Entropy Rate Balance for Control Volumes
Entropy is extensive, so it can be transferred in or out of systems by streams of matter.
So modifying equation (6.28) gives

dSCV

dt
= ∑

j

Q̇ j

Tj
+∑

i
ṁisi−∑

e
ṁese + σ̇CV (6.34)
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where dSCV/dt represents the time rate of change of entropy within the CV, Q̇ j repre-
sents the time rate of heat transfer at the point on the boundary where the instantaneous
temperature is Tj, Q̇ j/Tj accounts for the accompanying rate of entropy transfer, ṁisi
and ṁese account for rates of entropy transfer accompanying mass flow into and out
of the CV, and σ̇CV denotes the time rate of entropy production due to irreversibilities
within the CV.

Rate balance for Control Volumes at Steady State
The steady state form of (6.34) is obtained by setting dSCV/dt = 0. The one inlet, one
outlet form is then

0 = ∑
j

Q̇ j

Tj
+ ṁ(si− se)+ σ̇CV (6.37)

or

se− si =
1
ṁ

(
∑

j

Q̇ j

Tj

)
+

σ̇CV

ṁ
(6.38)

The two terms on the right are now per unit mass flowing through the CV.
If there is no heat transfer,

se− si =
σ̇CV

ṁ
(6.39)

so when there are irreversibilities within the CV, unit mass entropy increases as it passes
from inlet to outlet, and when no irreversibilities are present, σ̇CV = 0, s1 = s2, and the
unit mass passes through isentropically. Calculation of σ̇CV/ṁ, the time rate of change
of entropy, is illustrated in Example E6.6 in the box on page 10.

Isentropic Turbine Efficiency
For no loss of heat, velocity, or potential energy in a turbine, equation (4.20b) shows
that the mass and energy rate balance becomes

Ẇ
ṁ

= hi−he [1]

For a fixed inlet state, the work per unit mass flowing through the turbine depends only
on he, and increases as he is reduced. The smallest allowed value of he will evidently
give the maximum possible work output. Because there is no heat loss, equation (6.39)
shows that this is the state having σ̇CV = 0 and se = si, i.e., an isentropic process. The
only outlet states that can actually be attained are those having se > si.

In Figure 2, for an inlet state 1 at pressure p1, the outlet state 2s at pressure p2
would be attained only in the limiting reversible case, and outlet state 2 represents a
possible actual exit state. Because s2 cannot be less than s1, the smallest allowed value
of h2 corresponds to state 2s, and the maximum turbine work is(

ẆCV

ṁ

)
s
= h1−h2s [2]
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Figure 1: Enthalpy and entropy data for water from program REFPROP. The dashed
line represents the expansion process in Example E6.6.
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Figure 2: A schematic Mollier or h-s diagram to illustrate turbine efficiency. Isobars
are blue, isotherms are red. The isotherm through state 2 is not shown for clarity. The
change from state 1 to state 2h is isenthalpic and irreversible. The change from state 1
to state 2s is isentropic and reversible. The dashed lines 1→2 and 1→2h represent
disequilibrium states which cannot be represented on the diagram.
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Entropy Production
Example E6.6
See Figure 1
Steam enters a turbine at p = 30 bar, T = 400◦C, and V=160 m/s. Saturated
vapor exits at 100◦C, V=100 m/s. At steady state, the turbine develops work
equal to 540 kJ per kg of steam flowing through. Heat loss from the turbine to
the surroundings occurs at an average surface temperature of 350 K. Find the
rate of entropy production in the turbine per kg of steam flowing.
From (6.38)

se− si =
1
ṁ

(
∑

j

Q̇ j

Tj

)
+

σ̇CV

ṁ

we evidently need the quantity Q̇ j/ṁ
Tj

, but work is involved so we must bring in
(4.20b). Dropping the potential energy term and rearranging,

Q̇CV

ṁ
=

ẆCV

ṁ
+(he−hi)+

V2
e−V2

i
2

From the NIST program REFPROP, the enthalpy terms are hi =
3231.7 kJkg−1and he = 2675.8 kJkg−1so

Q̇CV

ṁ
= 540+(2675.8−3231.75)+

[
1002−1602

2

]
/1000

=−23.75kJkg−1

where the factor of 1000 converts m2/s2 to kJkg−1.
From the NIST program REFPROP, the entropy terms are si = 6.9234 and se =
7.3610, so the rate of entropy production is

σ̇CV

ṁ
=−−23.75

350
+(7.3610−6.9234)

= 0.5055kJkg−1 K−1
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In the possible actual expansion through the turbine, h2 > h2s, and less work is done,
and the generalized version of equation ([1]) for any states 1 and 2 is(

ẆCV

ṁ

)
= h1−h2 [3]

The isentropic turbine efficiency is defined as

ηt =
ẆCV/ṁ

(ẆCV/ṁ)s

=
h1−h2

h1−h2s
(6.46)

Values of ηt for turbines are typically 0.7 to 0.9 (70–90%). Nozzle efficiencies are
calculated the same way, and are generally greater because they have no moving parts.
Isentropic nozzle efficiencies of 95% or more are common, indicating that well de-
signed nozzles are nearly free of internal irreversibilities. The calculation of isentropic
efficiency for a turbine is shown in the box on page 12.

Conclusions
Examples are also given in the text for the isentropic efficiencies of nozzles and com-
pressors, but they are all similar to the turbine example shown. Once you accept that a
flowing fluid can have the properties of an equilibrium state, the rest follows. We see
that the isentropic approximation is perfectly valid in the sense that real work efficiency
is simply compared to the maximum isentropic efficiency (which gives the maximum
possible work), and in some cases such as nozzles and diffusers which have no moving
parts, the efficiency can be high.

The problem then, if there is one, is not with engineering thermodynamics, but with
the geological applications. The text makes clear the role of irreversibilities in reducing
the efficiency and work output. Geological applications should therefore concentrate
on evaluating these rather than assuming constant (or approximately constant) entropy.
Venting volcanic fluids at high speed may well be adiabatic but with turbulence and
tumbling, falling rock fragments the possible sources of irreversibility would seem
to be very great. With a very low isentropic efficiency, the value of the isentropic
assumption or comparison is not very useful.

As the effect of irreversibilities increases, the state represented by point 2 in Fig-
ure 2 moves farther up the p2 isobar until finally h1 = h2, the isentropic efficiency is
zero, and the adiabatic expansion is isenthalpic. It is sometimes claimed in the ge-
ological literature that no work is done in an adiabatic isenthalpic expansion. This is
misleading. It means that there is no useful work done, i.e., work other than pv work. In
the Joule-Thompson expansion, pv work is done before and after the expansion. In the
volcanic environment, pv work is done inside the volcano, building up pressure until
fluids escape, perhaps explosively. These fluids then do pv work on the environment.
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Example E6.12
Turbine Efficiency

See Figure 2.
Air expands adiabatically through a turbine at steady state. The inlet air is at
p1 = 3.0 bar and T1 = 390 K (∼ 117◦C). Air exits the turbine at p2 = 1.0 bar.
The work developed is 74 kJ per kg of air flow. What is the isentropic turbine
efficiency?
In equation (6.46) the numerator is 74 kJkg−1. The denominator is(

ẆCV

ṁ

)
s
= h1−h2s

Program REFPROP gives h1 = 390.91 kJkg−1and s1 = 6.8190 kJkg−1 K−1.
The properties of the outlet state including T2s and h2s can be found by finding
the properties for air having the same entropy but at p = 1 bar. REFPROP
makes this easy. At one bar and s = 6.8190kJkg−1 K−1 , h2s = 285.29 kJkg−1,
and T2s = 285.07 K (∼ 12◦C), so(

ẆCV

ṁ

)
s
= 390.91−285.29

= 105.62kJkg−1

The isentropic efficiency is then

ηt =
ẆCV/ṁ

(ẆCV/ṁ)s

=
74

105.62
= 0.701(70.1%)

So the inlet temperature is 117◦C, and the outlet temperature would be 12◦C if
the turbine operated isentropically. What is the actual outlet temperature with
the turbine operating at 70.1% efficiency? From equation ([3])

h2 = h1−
(

ẆCV

ṁ

)
= 390.91−74

= 316.91kJkg−1

For a state having a pressure of 1 bar and an enthalpy of 316.91 kJkg−1, REF-
PROP shows the actual outlet temperature at state 2 to be 316.48 K or 43◦C.
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