
Appendix A

Finite-dimensional vector space

This appendix provides a catalog of many of the definitions and properties of vectors

and finite-dimensional vector spaces. Our aim is to provide a ready reference to

concepts and tools. Readers interested in the details of the proof of these results are

urged to consult any of the classic references cited at the end of this appendix.

A.1 Definition and operations

Vectors Let R denote the set of all real numbers. By definition, a real vector x is an

ordered m-tuple of real numbers (x1, x2, . . . , xm) arranged vertically in a column
as

x =

⎛
⎜⎜⎜⎝

x1

x2

...

xm

⎞
⎟⎟⎟⎠.

The term xi is called the i th component or the coordinate (with respect to the

standard coordinate system) of the vector x of size or order or dimension m. Often

to save space, x is written as the transpose of a row-vector x = (x1, x2, . . . , xm)T,

where T denotes the transpose operation. By convention, R
m denotes the set of all

m-dimensional real (column) vectors. A vector all of whose components are zero

is called a zero or null vector, and is denoted by 0. Any real vector of size one is

called a real scalar. Likewise, if C denotes the set of all complex numbers, then C
m

denotes the set of all complex vectors of size m.

Let x = (x1, x2, . . . , xm)T, y = (y1, y2, . . . , ym)T and z = (z1, z2, . . . , zm)T, and

let a, b, c be real scalars.

Operations on vectors z = x + y, where zi = xi + yi for i = 1, . . . , m is

called the component-wise sum or addition of vectors. The vector difference is

likewise defined as the component-wise difference. z = ax, where zi = axi , for

i = 1, . . . , m, is called the scalar multiplication of a vector x by a real number a.
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Linear vector space Let V denote a set or a collection of real vectors of size m.

Then V is called a (linear) vector space if the following conditions are true:

(V1)

(a) x + y ∈ V whenever x, y ∈ V – (V is closed under addition).

(b) (x + y) + z = x + (y + z) – (addition is associative).

(c) x + y = y + x – (addition is commutative).

(d) V contains the null vector 0 and x + 0 = 0 + x = x.

(e) For every x, there is a unique y in V such that x + y = y + x = 0. y is called

the (additive) inverse of x and is denoted by −x.

(V2)

(a) ax is in V if x is in V – (V is closed under scalar multiplication).

(b) a(bx) = (ab)x, for all x ∈ V , and a, b ∈ R.

(c) 1(x) = x, where 1 is the real number 1, for all x ∈ V .

(V3)

(a) a(x + y) = ax + ay – Distributivity.

(b) (a + b)x = ax + bx – Distributivity.

Typical examples of (linear) vector spaces include R
n for every n ≥ 1. Thus, for

any n, R
n is called the finite-dimensional vector space of dimension n.

Another example of a finite-dimensional vector space include Pn = set of all

polynomials with real coefficients and of degree less than n.

Remark A.1.1 The concept of vector spaces readily carries over to infinite dimen-

sions. Let x = {x0, x1, x2, . . .} be an infinite sequence. We say that x is square

summable if

∞∑
i=0

x2
i < ∞.

The set of all square summable sequences is denoted by l2. It can be verified that

under component-wise addition and scalar multiplication, l2 is a vector space. For

other examples of infinite dimensional vector spaces and their properties refer to

Kolmogorov and Fomin (1975).

Inner Product The inner or scalar product of two vectors x and y in R
m , denoted

by < x, y > and xTy is defined as

< x, y >= xTy =
m∑

i=1

xi yi (A.1.1)

=
m∑

i=1

yi xi = yTx =< y, x >
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and satisfies the following properties:

(a) < x, x >

{
> 0 if x �= 0
= 0 if x = 0

– (Positive definite).

(b) < x, y >=< y, x > – (Commutative).

(c) < x + y, z >=< x, z > + < y, z > – (Additivity).

(d) < ax, y >= a < x, y >=< x, ay > – (Homogeneity).

Remark A.1.1 When x and y are complex vectors, then the inner product is defined

as < x, y >= ∑m
i=1 xi ȳi , where ȳi is the complex conjugate of yi .

Let x, y be two vectors in R
m . Then, if < x, z >=< y, z > for all z ∈ R

m , then

x = y.

Outer Product The outer product of x and y in R
m , is an m × m matrix denoted

by xyT and is defined as:

xyT =

⎛
⎜⎜⎜⎝

x1

x2

...

xm

⎞
⎟⎟⎟⎠(y1, y2, . . . , ym) =

⎡
⎢⎢⎢⎣

x1 y1 x1 y2 . . . x1 ym

x2 y1 x2 y2 · · · x2 ym
...

...
...

...

xm y1 xm y2 · · · xm ym

⎤
⎥⎥⎥⎦

[xy1, xy2, . . . , xym] =

⎡
⎢⎢⎢⎣

x1yT

x2yT

...

xmyT

⎤
⎥⎥⎥⎦ .

Thus, xyT is a matrix (Appendix B) whose j th column is obtained by multiplying

the column vector x by the scalar y j for j = 1, . . . , m. Similarly, the i th row if xyT

is obtained by multiplying the row vector yT by the scalars xi , for i = 1, . . . , m.

A.2 Norm and distance

The norm of a vector x ∈ R
m , denoted by ‖x‖ is a real number that denotes the size

or the length of the vector x. There are several ways to specify this norm.

(a) Eucledian or 2-norm ‖x‖2 = [
∑m

i=1 x2
i ]1/2.

(b) Manhattan or 1-norm ‖x‖1 = ∑m
i=1 |xi |.

(c) Chebyshev or ∞-norm ‖x‖∞ = max1≤i≤n |xi |.
(d) Minkowski or p-norm ‖x‖p = [

∑m
i=1 |xi |p]1/p for any p > 0

(e) Energy norm ‖x‖A =< x, Ax >1/2= (xTAx)1/2, where A ∈ Rm×m is a real,
symmetric and positive definite matrix.

The distance between two vectors x and y, denoted by d(x, y) is defined to be

the norm of the difference, (x − y), that is,

d(x, y) = ‖x − y‖ . (A.2.1)
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Table A.2.1 FLOP ratings of basic operations on vectors

Operation Expression Number of Operations (FLOPs)

Vector sum/difference z = x ± y m

Scalar times a vector z = ax m

Inner product < x, y >= xTy 2m − 1

Outer product xyT m2

2-norm squared ‖x‖2
2 =< x, x >= xTx 2m − 1

Thus, we can define the Euclidean, Manhattan, Chebyshev, Minkowski, or Energy

distance by using the respective norm in (A.2.1).

Every vector norm must satisfy the following conditions:

(a) ‖x‖
{

> 0 when x �= 0
= 0 when x = 0

– (Positive definite).

(b) ‖ax‖ = |a| ‖x‖ – (Homogeneity).

(c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ – (Triangle inequality).

It can be verified that 2-norm is derivable from the inner product in the sense

‖x‖2
2 =< x, x >= xTx,

and the 2-norm satisfies the parallelogram identity

‖x + y‖2
2 + ‖x − y‖2

2 = 2(‖x‖2 + ‖y‖2).

Remark A.2.1 The amount of work required, measured in terms of the number of

basic (floating point) operations (FLOP) in various vector operations are summa-

rized in Table A.2, where it is assumed that the basic operations – add, subtract,
multiply, divide and compare, take an equal amount of time, which is taken as the

unit of time. This unit cost model for computation time is a good approximation to

reality and simplifies the quantification of work required by various algorithms.

Unit Sphere The set S of all vectors of length one, that is,

S = {x ∈ R
m | ‖x‖ = 1}

is called a unit sphere. The distinction between the various vector norms can be

understood by sketching the surface of the unit sphere in R
2. Refer to Figure A.2.1.

We invite the reader to draw the unit sphere in R
2 using p = 4 for ‖x‖p.

Remark A.2.2 Any vector space endowed with a norm is called a normed vector
space. If the norm is derivable from the inner product, then it is called the Euclidean
space. Hence, Rn with 2-norm has often come to be known as the finite-dimensional
Euclidean space. It can be verified that the p-norm, for p �= 2 are not derivable or

related to the inner product.
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Fig. A.2.1 Unit spheres in R
2 under various norms.

Unit vector/direction cosines If x ∈ R
m , then the unit vector in the direction of

x is given by

x̂ = x
‖x‖2

= (x̂1, x̂2, . . . , x̂m)T

and the components x̂i are called the direction cosines – the cosine of the angle made

by the vector x with respect to the standard i th coordinate axis, for i = 1, . . . , m.

It can be verified that ‖x̂‖2 = 1.

Fundamental inequalities Let θ be the angle between two vectors x and y in

R
m . Then

< x, y >= xTy = ‖x‖2 ‖y‖2 cos θ ≤ ‖x‖2 ‖y‖2

is a very useful fact, called the Bunyakowski–Cauchy–Schwartz (BCS) inequality.

If p and q are such that 1/p + 1/q = 1, then

xTy ≤ ‖x‖p ‖y‖q
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is called the Minkowski inequality. Clearly, BCS inequality is the special case when

p = q = 2.

Equivalent norms Two norms are said to be equivalent if the length of a vector

x is finite in one norm then it is also finite in the other norm. The 2-norm, 1-norm,

and the ∞-norm are equivalent, and they are related as follows.

‖x‖2 ≤ ‖x‖1 ≤ √
n ‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤ √
n ‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞ .

Functionals Let V be a vector space. Any scalar-valued function f that maps V
into the real line, that is, f : V → R is called a functional. In addition, if it satisfies

two conditions:

f (x1 + x2) = f (x1) + f (x2) – additivity

and

f (ax) = a f (x), a ∈ R – homogeneity

then f is called a linear functional. Otherwise, it is a nonlinear functional.

For any a ∈ R
n fixed, f1(x) =< a, x > denoting the inner product is a lin-

ear functional. f2(x) = 1
2
xTAx with A being n × n symmetric matrix which is a

quadratic form is an example of a nonlinear functional.

A.3 Orthogonality

Two vectors x and y are said to be orthogonal, denoted by x⊥y, if their inner product

is zero,

x⊥y ⇔< x, y >= xTy = 0.

A set S = {x1, x2, . . . , xm} on n vectors in R
m are said to be mutually orthogonal

if they are pairwise orthogonal.

< xi , x j >= xT
i x j =

{
0 for i �= j
‖xi‖2 , for i = j

In addition, if the vectors in S are also normalized to have unit length, then S is

called the orthonormal set.

Conjugacy Two vectors x and y in R
m are said to be A-conjugate if

< x, Ay >= xTAy = 0
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where A ∈ R
m×m is a symmetric positive definite matrix. Similarly, a set of n vectors,

S = {x1, x2, . . . , xn}, xi ∈ R
m , is said to be A-conjugate if

< xi , Ax j >=
{

0 for i �= j
xT

i Axi = ‖xi‖2
A , for i = j

A.4 Linear combination and subspace

Let S = {x1, x2, · · · , xn} be a set of n vectors in R
m , where xi =

(xi1, xi2, · · · , xim)T, and let a1, a2, . . . , an be scalars. The vector y defined as the

sum of the scalar multiples of the vectors in S

y = a1x1 + a2x2 + · · · + anxn (A.4.1)

is called a linear combination of vectors in S. When ai = 1/n, then the linear

combination

y = 1

n

n∑
i=1

xi

is called the centroid of S.

Linear dependence/independence If the linear combination in A.4.1 is zero

when not all the scalars ai ’s are zero, then the vectors in S are said to be linearly
dependent. On the other hand, if y is zero only when all the scalars ai ’s in A.4.1

are zero, then the vectors in S are said to be linearly independent.
It can be verified that if the vectors in the set S are mutually orthogonal, then

they are independent. The converse is not true.

Span and Subspace Given S,

Span(S) =
{

y|y =
n∑

i=1

ai xi , ai ∈ R
m

}

denotes the set of all linear combination of vectors in S. It can be verified that the

null vector 0 is in Span(S). Span(S) is a (linear) vector space generated by vectors

in S and is called the subspace of R
m , that is, Span(S) ⊆ R

m . The set {0} consisting

of the null vector is a subspace, called the trivial subspace.

Basis and Dimension Let V be a vector space and S be a subset of linearly

independent vectors in V . If every vector in V can be (uniquely) expressed as a

linear combination of those in S, then this set S is called a basis for V . The number

of linearly independent vectors in S is called the dimension of V , and is denoted

by Dim(V). If the members of S are orthogonal (orthonormal), then it is called an

orthogonal (orthonormal) basis for V . It can be verified that for given V , the basis

is not unique. S1 = {(1, 0)T, (0, 1)T} and S2 = {(1, 0.5)T, (1, 1)T} are two distinct
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basis for R
2, since R

2 = Span(S1) = Span(S2). S1 is also an orthonormal basis for

R
2.

Standard Unit Vectors Let ei = (0, 0, . . . , 1, 0, . . . , 0)T ∈ R
m be a vector with

1 as its i th element. The set

S = {e1, e2, . . . , em}

is the standard basis for R
m . Any vector x = (x1, x2, . . . , xm)T is given by

x = {x1e1 + x2e2 + · · · + xmem}

and xi is called the i th coordinate of x.

Direct sum and orthogonal complement Let V1 and V2 be two vector spaces.

If every vector in V1 is also a vector in V2, but not vice versa, then V1 is called the

proper subspace of V2, denoted by V1 ⊂ V2.

Let V1 ∪ V2 and V1 ∩ V2 denote the set union and set intersection of V1 and V2. If

Dim(Vi ) = ki , i = 1, 2, then

Dim(V1 ∪ V2) = Dim(V1) + Dim(V2) − Dim(V1 ∩ V2). (A.4.2)

Let V be a vector space and S ⊂ V be a subspace. Let S⊥ denote the set of all

vectors in V that are orthogonal to those in S. The set S⊥ is called the orthogonal
complement of S in V and

V = S ⊕ S⊥

called the direct sum of S and S⊥. It can be verified that S ∩ S⊥ = {0} and

Dim(V) = Dim(S) + Dim(S⊥).

Example A.4.1 Let V = R
3, and x = (1, 0, 0)T, and y = (1, −1, 0)T. Let S =

Span({x, y}) = R
2. Then S⊥ = Span(z), where z = (0, 0, 1)T, is the ortho-

gonal complement of Span({x, y}), and Dim(S) = 2, and Dim(S⊥) = 1, with

S ∩ S⊥ = {0}.
Completion Theorem Given a vector space V of dimension m. Let S1 =

{x1, x2, . . . , xn} be a set of n linearly independent vectors with n < m. Then there

exists a set S2 = {y1, y2, . . . , ym−n} of linearly independent vectors (distinct from

S1), such that S = {x1, x2, . . . , xn, y1, y2, . . . , ym−n} is linearly independent and

constitutes a basis for V .

A.5 Projection of a vector

Let h ∈ R
m be a unit vector. Given any vector z ∈ R

m , the inner product of z with

h, that is zTh, is called the magnitude of the projection of z onto the direction of
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Fig. A.5.1 An illustration of projection theorem: z = z∗ + e and z∗⊥e.

h. The vector (zTh)h is the representation of z in the direction h and is called the

projection of z onto h.

Bessel’s Inequality Let S = {h1, h2, . . . , hn} be an orthonormal set of vectors

in R
m . Let z ∈ R

m . Then zThi denotes the magnitude of the projection of z onto the

direction hi . Then,

z∗ = (zTh1)h1 + (zTh2)h2 + · · · + (zThm)hn

is a representation of z in S, called the projection of z onto S. It can be verified that

(z − z∗) is orthogonal to S, and

n∑
i=1

(zThi )
2 ≤ ‖z‖2 (A.5.1)

is called Bessel’s inequality.

Parseval’s Identity If the orthonormal set S is such that A.5.1 holds with

equality

n∑
i=1

(zThi )
2 = ‖z‖2 (A.5.2)

thenS is called the complete orthonormal set and A.5.2 is called Parseval’s identity.

Remark A.5.1 The representation of z in any complete orthonormal basis S =
{h1, h2, . . . , hm}, as

z =
m∑

i=1

(zThi )hi (A.5.3)

is called the Fourier expansion of z and the inner products (zThi ) are called the

Fourier coefficients. The right-hand side in (A.5.3) is called the spectral expansion

of z and Parseval’s identity states that the total energy in either representation is the

same when S is a complete orthonormal basis.

Orthogonal Projection Theorem LetV be a vector space and letS be a subspace

of V . For any vector z ∈ V , a vector z∗ ∈ S minimizes ‖z − z∗‖2 exactly when
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z − z∗ is orthogonal to S. Then, z∗ is called the orthogonal projection of z onto S.

See Figure A.5.1.

Notes and references

There are several excellent textbooks on the topic of this appendix. Halmos (1958) is

undoubtedly a classic in this area. Stewart (1973) provides an elementary treatment

of these topics. Basilevsky (1983) and Meyer (2000) are suitable for first year

graduate level.


