
4 Chapter 4 Solution Set

Problems

4.1 Prove that the Weyl expansion Eq.(4.4a) satisfies the homogeneous Helmholtz

equation if |Z| > 0.

This follows immediately from the easily established result that the expan-

sion converges uniformly ∀R with Z > 0. The orders of differentiation and

integration can then be exchanged thus establishing the desired result.

4.2 Use the angular spectrum expansion to prove that the solution to the RS

boundary value problem is unique; i.e., that Dirichlet or Neumann conditions

over any infinite plane bounding a half-space over which a field satisfies the

Sommerfeld radiation condition uniquely determine the field throughout this

half-space.

This follows from the angular spectrum expansion of the RS boundary

value problem presented in Section 4.3. For example, for Dirichlet conditions

we showed that

U+(ρ, z, ω) =
1

(2π)2

∫
d2Kρ Ũ+(Kρ, z0, ω)e±iγ(z−z0)eiKρ·ρ

valid ∀z > z0. The uniqueness of the solution then follows from the uniqueness

of the inverse Fourier transformation mapping U+(ρ, z, ω)→ Ũ+(Kρ, z0, ω).

4.3 Derive the plane wave expansion of the radiated field given in Eq.(4.15a) by

performing the Kz integration using contour integration and the calculus of

residues in the Fourier integral representation of the radiated field

U+(r, ω) =
1

(2π)3

∫
d3K

Q̃(K, ω)

k2 −K2
eiK·r. (4.1)

The key to this problem is the bound (cf., Problem 4.8)

|Q̃(K, ω)| ≤ |Qmax|
∫

τ0

d3r |e−iK·r| ≤ |Qmax|τρ
∫ z+

z−
dz e=Kzz

= |Qmax|τρ
e=Kzz

+ − e=Kzz
−

=Kz

which holds for all real values of Kρ = (Kx, Ky) and where |Qmax| is the
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maximum of Q(r, ω) in τ0 and τρ is the maximum area of τ0 in the ρ plane.

If we then rewrite Eq.(4.1) in the form

U+(r, ω) = − 1

(2π)3

∫
d2Kρe

iKρ·ρ
∫ ∞

−∞
dKz

Q̃(K, ω)

(Kz − γ)(Kz + γ)
eiKzz

we can close the Kz contour in the u.h.p. if z > z+ and in the l.h.p. if z < z−

and we obtain using Cauchy’s integral theorem the plane wave expansion of

the radiated field given in Eq.(4.15a).

4.4 Derive a plane wave expansion involving only homogeneous plane waves valid

for a field radiated by a causal source in a non-dispersive medium that is valid

for all times after the source ceases to radiate.

See Problem 3.3 at the end of Chapter 3 where the expansion was found to

be

u(r, t) = − ic

2(2π)3

∫ ∞

−∞
kdk

∫

4π

dΩs q̃(ks, ck)e
ik(s·r−ct),

where

q̃(ks, ck) =

∫ ∞

−∞
dt′

∫

τ0

d3r′ q(r′, t′)e−ik(s·r
′+ct′)

4.5 Comment on the relationship between the evanescent plane waves in the time-

domain angular spectrum expansion of the field radiated by the source in the

previous problem with the homogeneous waves in the plane wave expansion

of this field for times exceeding the turn-off time of the source.

The time-domain angular spectrum expansion in angle variable form is

found from Eq.(4.18a) to be given by

u+(r, t) =
1

2π

∫ ∞

−∞
dω U+(r, ω)e−iωt =

c

2π

∫ ∞

−∞
dkU+(r, ck)e−ickt

= − ic

2(2π)3

∫ ∞

−∞
kdk

∫ π

−π
dβ

∫

C±

sinαdα q̃(ks, ck)eik(s·r−ct), (4.2)

where we have set ω = ck and Q̃(ks, ω) = q̃(ks, ck). The plane wave expansion

valid for times t > T0 found in the previous problem is given by

u(r, t) = − ic

2(2π)3

∫ ∞

−∞
kdk

∫

4π

dΩs q̃(ks, ck)e
ik(s·r−ct),

which is formally identical to Eq.(4.2) with the exception that the complex

contours C± have been converted to the real contour 0 ≤ α ≤ 2π. We thus

conclude that the evanescent waves in the angular spectrum expansion of the

(time dependent) field are replaced by homogeneous waves propagating inward

toward the source region τ0 when t > T0.

4.6 Derive the radiation pattern of a uniform circular disk confined to the plane

z = 0 employed in Section 4.5 for comparison with the wavelet radiation

pattern.
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The source of a uniform circular disk on the plane z = 0 can be expressed

in the for

Q(r, ω) = circ(ρ/a)δ(z)

where circ(x) is the “circ” function (equal to unity if x < 1 and zero otherwise.)

The radiated field is then found to be

U+(r, ω) =

∫ a

0

ρdρ

∫ 2π

0

dφG+(r− ρ) ∼ {− 1

4π

∫ a

0

ρdρ

∫ 2π

0

dφ e−iks·ρ}e
ikr

r

from which we conclude that

f(s) = − 1

4π

∫ a

0

ρdρ

∫ 2π

0

dφ e−iks·ρ

= − 1

4π

∫ a

0

ρdρ

∫ 2π

0

dφ e−ikρ sinα(cosφ cosβ+sin φ sin β)

= − 1

4π

∫ a

0

ρdρ

∫ 2π

0

dφ e−ikρ sinα cos(φ−β)

= −1

2

∫ a

0

ρdρJ0(kρ sinα) = −a
2

2

J1(ka sinα)

ka sinα

Finally, since

lim
x→0

J1(x)

x
=

1

2

we find the normalized radiation pattern to be

f(α) = 2
J1(ka sinα)

ka sinα
.

4.7 Express the back propagated field in Eq.(4.25) in terms of Neumann condi-

tions.

This is obtained directly from Eq.(4.25) by making use of Eq.(4.23) in

Example 4.4.

4.8 Derive the inequality given in Eq.(4.16).

See the solution to problem 4.3.

4.9 Use the Weyl expansion in the expression for the field radiated by a source

located in the left-half space within the strip z− < z+ < 0 in the presence

of a Dirichlet plane (plane over which the field vanishes) located at z = 0

to develop an angular spectrum expansion of the radiated field in the half-

space z < z−; i.e., to the left of the source. [cf., Problems 2.14 and 2.15 from

Chapter 2.]

We found in Problem 2.15 that the field radiated in the presence of the

Dirichlet plane at z = 0 can be expressed in the form

U(r, ω) =

∫

τ0

d3r′ [G+(r− r′, ω)−G+(r̃− r′, ω)]Q(r′;ω), z < 0. (4.3)
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In the region z < z− lying to the left of the source strip [z−, z+] we have that

z − z′ < 0 while −z − z′ is still positive. It then follows that

G+(r− r′, ω) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eik

−·(r−r
′),

G+(r̃− r′, ω) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eik

+·(r̃−r
′),

which, when used in Eq.(4.3) yield

U(r, ω) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
[Q̃(k−, ω)− Q̃(k+, ω)]eik

−·r.

The field in the region to the left of the source is seen to consist of a super-

position of left propagating and evanescent plane waves. The first expansion is

the usual plane wave expansion resulting from the source Q while the second

expansionrepresents the field reflected from the conducting plane.

4.10 Represent the radiated field in an angular spectrum expansion for the previous

problem in the interior strip z+ < z < 0 lying between the source and Dirichlet

plane.

In this region both z − z′ as well as −z − z′ are positive and we find that

G+(r− r′, ω) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eik

+·(r−r
′),

G+(r̃− r′, ω) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eik

+·(r̃−r
′),

where , again, it is assumed that z+ < z < 0 . Using these expansions we find

after a bit of algebra that

G+(r− r′, ω)−G+(r̃− r′, ω)

=
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eiKρ·ρ[eiγz − e−iγz]e−i(Kρ·ρ′+γz′).

On using the above result in Eq.(4.3) we find that for all z ∈ [z+, 0]

U(r, ω) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
eiKρ·ρ[eiγz − e−iγz ]Q̃(k+, ω).

We can interpret the above expression for the field U within the strip region

z+ < z < 0 as two superpositions of plane wave fields with one propagating in

the positive z direction and the second in the negative z direction. The first

expansion is the usual plane wave expansion resulting from the source Q while

the second expansion represents the field reflected from the conducting plane.

Clearly the sum U = U+ + U− vanishes over the conducting plane (when

z = 0). Note also that each pair of plane waves in the expansions satisfy the

“law of reflection” that states that a plane wave having wave vector (Kρ, γ)

incident on a planar surface that is perpendicular to the z axis will generate

a reflected plane wave whose wave vector will be (Kρ,−γ).



36 Chapter 4 Solution Set

4.11 Use the angular spectrum expansion of the outgoing wave multipole fields

given in Eq.(4.66a) to derive the angular spectrum expansion of the radiated

field from the multipole expansion of this field given in Eq.(4.52a).

The solution to this problem follows almost identical lines as the solution to

problem 3.10 of the previous chapter. In particular, we use the plane wave (an-

gular spectrum) expansion of the outgoing wave multipole fields h+
l (kr)Y ml (r̂)

given in Eq.(4.66a) in place of the plane wave expansions of the free multipole

fields jl(kr)Y
m
l (r̂) given in Eq.(3.36) of Example 3.4. We also consider the ra-

diation problem rather than the interior boundary value problem considered

in problem 3.10 but the manipulations are almost identical.

We begin with the multipole expansion

U+(r, ω) = −ik
∞∑

l=0

l∑

m=−l
qml (ω)h+

l (kr)Y ml (r̂)

which, upon substitution of the angular spectrum expansion of the outgoing

wave multipole fields given in Eq.(4.66a) yields

U+(r, ω) = −ik
∞∑

l=0

l∑

m=−l
qml (ω)

h+
l

(kr)Ym
l (r̂)

︷ ︸︸ ︷
(−i)l
2π

∫ π

−π
dβ

∫

C±

sinαdαY ml (s)eiks·r

=
ik

2π

∫ π

−π
dβ

∫

C±

sinαdαA(s, ω)eiks·r

which is the required angular spectrum expansion with plane wave amplitude

A(s, ω) = −
∞∑

l=0

l∑

m=−l
(−i)lqml (ω)Y ml (s).

As a check we note that

A(s, ω) = f(s, ω)

as found in Section 4.8.4.

4.12 Derive the angle variable form of the expression for the wavelet field in

Eq.(4.31) of Section 4.5 using the angle variable form of the angular spectrum

expansion. Check your result by transforming your expression to Cartesian

variable form.

We use the angle variable for the angular spectrum expansion with the
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angular spectrum equal to the wavelet radiation pattern to obtain

U+(r, ω) =
ik

2π

∫ π

−π
dβ

∫

C±

sinαdα

f(s,ω)︷ ︸︸ ︷[
eka cosα

eka

]
eiks·r

=
ik

2π

∫ π

−π
dβ

∫

C±

sinαdα
eka cosα

eka
eik[sinα cosβx+sin α sin βy+cosαz]

=
ik

2π

∫

C±

sinαdα
eka cosα

eka
eik cosαz

∫ π

−π
dβ eik[sin α cosβx+sin α sin βy]

= ik

∫

C±

sinαdα
eka cosα

eka
eik cosαzJ0(k sinαρ)

which is the required result.

We can transform to Cartesian integration variables by setting

Kρ = k sinα, dKρ = k cosαdα, k sinαdα =
KρdKρ

γ

with γ = k cosα =
√
k2 −K2

ρ . It is then an easy step to show that

U+(r, ω)→ i

∫ ∞

0

KρdKρ

γ

e±aγ

eka
J0(Kρρ)e

±iγz ,

where the plus sign is used in the r.h.s. z > a and the minus sign in the l.h.s.

z < −a.
4.13 Use the scheme given in Example 4.11 to derive the 2D angular spectrum

expansion of the 2D outgoing wave multipole fields.

To do this problem we will use the Cartesian x, y system employed in Sec-

tion 4.9 which employs a polar angle φ relative to the positive x axis and an

angular spectrum expansion with angle α relative to the positive y axis. The

2D angular spectrum expansion of a general outgoing wave field is then found

from Eq.(4.39b) of Section 4.6.3 to be of the form

U+(r, ω) =

√
k

2π
eiπ/4

∫

C±

dαA(s, ω)eiks·r (4.4a)

where s = sinαx̂ + cosαŷ. Note that relative to the coordinate system used

in Section 4.6.3 that the z axis has now been replaced by the y axis so that

the plane waves propagate out from the x axis into half-spaces y > 0 or y < 0.

The multipole expansion of a general outgoing wave field was obtained in

Section 4.9 where it was shown to be given by

U+(r, ω) = − i
4

∞∑

n=−∞
qn(ω)H+

n (kr)einφ (4.4b)

We now select U+ in Eq.(4.4a) to be the 2D outgoing wave Green function



38 Chapter 4 Solution Set

G+ = −i/4H0(kR) and U+ in Eq.(4.4b) to be the multipole fieldH+
n (kr) exp(inφ).

We then find that

H+
n (kr)einφ =

√
k

2π
eiπ/4

∫

C±

dαAn(s, ω)eiks·r

where the angular spectrum An of the multipole field is to be determined.

The multipole expansion of the Green function was derived in Section 3.6 of

Chapter 3 where it was found to be

G+(r− r′, ω) = − i
4

∞∑

n=−∞
Jn(kr′)H+

n (kr)ein(φ−φ′),

and where we have taken r > r′. On substituting the angular spectrum expan-

sion of the multipole fields into the above multipole expansion of the Green

function we obtain

G+(r− r′, ω) = − i
4

∞∑

n=−∞
Jn(kr′)e−inφ

′

H+
n (kr)einφ

︷ ︸︸ ︷√
k

2π
eiπ/4

∫

C±

dαAn(s, ω)eiks·r

=

√
k

2π
eiπ/4

∫

C±

dα {− i
4

∞∑

n=−∞
Jn(kr′)e−inφ

′

An(s, ω)}eiks·r. (4.5a)

The angular spectrum expansion of the 2D outgoing wave Green function

was found in Section 4.6.3 to be

G+(r− r′, ω) =
−i
4π

∫

C±

dαeiks·(r−r
′). (4.5b)

On equating the above two expansions for the Green function we then require

that

e−iks·r
′

=

√
kπ

2
eiπ/4

∞∑

n=−∞
Jn(kr

′)e−inφ
′

An(s, ω).

As a final step we use the Jacobi Anger expansion of the 2D plane wave field

obtained in Example 3.9 of Chapter 3:

e−iks·r
′

=

∞∑

n=−∞
(−i)nJn(kr′)e−in(φ′−α),

from which we conclude that
√
kπ

2
eiπ/4An(s, ω) = (−i)neinα → An(s, ω) =

√
2

kπ
e−iπ/4(−i)neinα

which yields the angular spectrum expansion of the 2D multipole fields

H+
n (kr)einφ =

(−i)n
π

∫

C±

dα einαeiks·r. (4.6)
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As a check we take n = 0 to find that

G+(r− r′, ω) =
−i
4
H0(kR) =

−i
4π

∫

C±

dα eiks·R,

which agrees with Eq.(4.5b).

4.14 Use the 2D angular spectrum expansion of the 2D outgoing wave multipole

fields found in the previous problem to derive the 2D multipole expansion of

a radiated field from its angular spectrum expansion.

We start with the 2D angular spectrum expansion

U+(r, ω) =

√
k

2π
eiπ/4

∫

C±

dαA(s, ω)eiks·r

and expand that angular spectrum using Eq.(4.64a) from Section 4.9 to obtain

U+(r, ω) =

√
k

2π
eiπ/4

∫

C±

dα { 1

2π

∞∑

n−∞
fn(ω)einα}eiks·r

=

√
k

8π3
eiπ/4

∞∑

n−∞
fn(ω)

∫

C±

dαeinαeiks·r

where the expansion coefficients are related to the multipole moments of the

radiated field via Eq.(4.64b) of Section 4.9:

fn(ω) = − i
4

√
8π

k
e−iπ/4(−i)nqn(ω). (4.7)

We now make use the multipole expansion found in the previous problem

H+
n (kr)einφ =

(−i)n
π

∫

C±

dα einαeiks·r.

to find that

U+(r, ω) =

√
k

8π
eiπ/4

∞∑

n−∞
infn(ω)H+

n (kr)einφ = − i
4

∞∑

n−∞
qn(ω)H+

n (kr)einφ

where we have made use of Eq.(4.7).

4.15 Use the 2D angular spectrum found in Problem 4.13 to derive the angu-

lar spectrum expansiion of a 2D outgoing wave field from its 2D multipole

expansion.

This is simply the previous problem done in reverse order.

4.16 Derive the expression for the radiation pattern expansion coefficients fml (ω)

given in Problem 3.11 of the last chapter directly from the multipole expansion

of the radiated field.

This is done in one step by projecting both sides of the multipole expansion

of the radiated field given in Eq.(4.52) onto the spherical harmonics.


