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Boundedness Theorem

Theorem 1

Let f : [a, b] → R be continuous. Then the image of f is bounded.

Proof. Assume that f is unbounded on [a, b] = [a1, b1].
Define c1 = (a1 + b1)/2.
Then f is unbounded on at least one of [a1, c1] and [c1, b1].
Let that one be called [a2, b2].
Repeating this process, we get

[a, b] = [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ · · · ,

so that f is unbounded on each of them, and with
bn − an = (b − a)/2n−1.
Note that a = a1 ≤ a2 ≤ · · · ≤ b2 ≤ b1 = b.
The Completeness Axiom gives α ∈ R such that an ≤ α ≤ bn for
every n.
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Boundedness Theorem

(proof continued)

From an ≤ α ≤ bn for every n, we find that α is in each [an, bn].

Since f is continuous at α, there is a δ > 0 such that |x − α| < δ
implies |f (x)− f (α)| < 1.

In particular, f is bounded on (α− δ, α+ δ).

Since the length of the intervals [an, bn] is halved at each stage, for
large enough n we will have [an, bn] ⊂ (α− δ, α+ δ), implying that
f is bounded on [an, bn].

This is a contradiction. □
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Extreme Value Theorem

Theorem 2

Let f : [a, b] → R be continuous. Then there are c , d ∈ [a, b] such
that

f (c) = max{ f (x) | x ∈ [a, b] },
f (d) = min{ f (x) | x ∈ [a, b] }.

Proof. We will prove the existence of c .
We use supI f to denote sup{ f (x) | x ∈ I }.
By the Boundedness Theorem, M = sup[a,b] f exists.
We have to show that f actually takes the value M at some c .
Let a1 = a, b1 = b and define c1 = (a1 + b1)/2.
Then M = sup[a1,c1] f or sup[c1,b1] f .
Let the subinterval that gives equality be called [a2, b2].
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Extreme Value Theorem

(proof continued)

Repeating the process, we get

[a, b] = [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ · · · ,

with bn − an = (b − a)/2n−1 and M = sup[an,bn] f for each n.

Completeness Axiom gives a point c which is in each [an, bn].

If f (c) < M then there is a δ > 0 such that x ∈ (c − δ, c + δ)

implies f (x) <
M + f (c)

2
.

For large enough n we will have [an, bn] ⊂ (α− δ, α+ δ), implying
that the values of f on [an, bn] are bounded above by
M + f (c)

2
< M.

This contradicts the choice of [an, bn], hence f (c) = M. □
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Span

Let f : [a, b] → R be a bounded function. The span of f on [a, b]
is sup{|f (x)− f (y)| : x , y ∈ [a, b]}.

Task 1: Find the spans of the following functions on [0, 1]: sgn(x),
sinπx .

Task 2: Let f : [a, b] → R be a continuous function. Show that the
span of f on [a, b] equals

max{ f (x) | x ∈ [a, b] } −min{ f (x) | x ∈ [a, b] }.
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Small Span Theorem

Theorem 3

Let f : [a, b] → R be continuous. For every ϵ > 0 there is a
partition P of [a, b] such that the span of f is less than ϵ on every
subinterval of P.

Proof. Suppose there is an ϵ > 0 such that no such partition exists.
Let a1 = a, b1 = b and define c1 = (a1 + b1)/2.
Then at least one of [a1, c1] and [c1, b1] fails to have such a
partition.
Let that one be called [a2, b2].
Repeating, we get a sequence of intervals

[a, b] = [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ · · · ,

none of which have such a partition, and with
bn − an = (b − a)/2n−1.
In particular, the span of f is at least ϵ on every [an, bn].

Amber Habib Calculus



Continuity and Variation Continuity and Integration Limits Involving Infinity

Small Span Theorem

Theorem 3

Let f : [a, b] → R be continuous. For every ϵ > 0 there is a
partition P of [a, b] such that the span of f is less than ϵ on every
subinterval of P.

Proof. Suppose there is an ϵ > 0 such that no such partition exists.

Let a1 = a, b1 = b and define c1 = (a1 + b1)/2.
Then at least one of [a1, c1] and [c1, b1] fails to have such a
partition.
Let that one be called [a2, b2].
Repeating, we get a sequence of intervals

[a, b] = [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ · · · ,

none of which have such a partition, and with
bn − an = (b − a)/2n−1.
In particular, the span of f is at least ϵ on every [an, bn].

Amber Habib Calculus



Continuity and Variation Continuity and Integration Limits Involving Infinity

Small Span Theorem

Theorem 3

Let f : [a, b] → R be continuous. For every ϵ > 0 there is a
partition P of [a, b] such that the span of f is less than ϵ on every
subinterval of P.

Proof. Suppose there is an ϵ > 0 such that no such partition exists.
Let a1 = a, b1 = b and define c1 = (a1 + b1)/2.

Then at least one of [a1, c1] and [c1, b1] fails to have such a
partition.
Let that one be called [a2, b2].
Repeating, we get a sequence of intervals

[a, b] = [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ · · · ,

none of which have such a partition, and with
bn − an = (b − a)/2n−1.
In particular, the span of f is at least ϵ on every [an, bn].
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Small Span Theorem

(proof continued)

By the Completeness Axiom, there is an α ∈ R such that
ai ≤ α ≤ bi for every i .

Hence α is in each [an, bn].

Since f is continuous at α, there is a δ > 0 such that |x − α| < δ
implies |f (x)− f (α)| < ϵ/2.

And then x , y ∈ (α− δ, α+ δ) =⇒ |f (x)− f (y)| < ϵ.

By taking large enough n we can ensure that
[an, bn] ⊂ (α− δ, α+ δ).

Then we would have span of f being less than ϵ on [an, bn], which
contradicts our earlier observation about these intervals. □
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Integrability of Continuous Functions

Theorem 4

Let f : [a, b] → R be continuous. Then f is integrable on [a, b].

Proof. Let ϵ > 0. The Small Span Theorem gives a partition
P = {x0, . . . , xn} of [a, b] such that

xi−1 ≤ x , y ≤ xi =⇒ |f (x)− f (y)| < ϵ

b − a
.

Let mi = min{ f (x) | x ∈ [xi−1, xi ] },
Mi = max{ f (x) | x ∈ [xi−1, xi ] }.

Then Mi −mi < ϵ/(b − a) for every i .
Define step functions s ∈ Lf and t ∈ Uf by s(xi ) = t(xi ) = f (xi )
for each i and

s(x) = mi if xi−1 < x < xi ,

t(x) = Mi if xi−1 < x < xi .
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Integrability of Continuous Functions

(proof continued)

Then s ≤ f ≤ t on [a, b] and∫ b

a
t(x) dx −

∫ b

a
s(x) dx =

n∑
i=1

(Mi −mi )(xi − xi−1)

<
ϵ

b − a

n∑
i=1

(xi − xi−1) = ϵ.

By the Riemann Condition, f is integrable on [a, b]. □
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Piecewise Continuous Functions

A function f : [a, b] → R is called piecewise continuous if there is
a partition P = {x0, . . . , xn} of [a, b] such that f is continuous on
each open interval (xi−1, xi ) and the one-sided limits of f exist at
the xi ’s.

Theorem 5

Let f : [a, b] → R be a piecewise continuous function. Then f is
integrable.

Proof. Mimic the proof of integrability of piecewise monotonic
functions. □
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Average of a function

If f : [a, b] → R is integrable, we define its average by

f̄ = f̄[a,b] =
1

b − a

∫ b

a
f (x) dx .

The average of a function has the same basic properties as the
average of a collection of numbers.

Task 1: Show that if f has upper and lower bounds M and m
respectively then m ≤ f̄ ≤ M.

Task 2: Suppose a < b < c and f : [a, c] → R is integrable. Show
that

f̄[a,c] =
b − a

c − a
f̄[a,b] +

c − b

c − a
f̄[b,c].

Task 3: Suppose that f is a decreasing function. Show that f̄[a,x] is
also a decreasing function of x .
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Mean Value Theorem for Integration

Theorem 6

Let f : [a, b] → R be continuous. There is c ∈ (a, b) such that

f (c) =
1

b − a

∫ b

a
f (x) dx .

Proof. Let m,M be the minimum and maximum values,
respectively, of f (x) on [a, b].

Then there exist a′, b′ ∈ [a, b] such that f (a′) = m and f (b′) = M.

Further, f (a′) = m ≤ 1

b − a

∫ b

a
f (x) dx ≤ M = f (b′).

By the intermediate value theorem, there is a number c between a′

and b′ with f (c) =
1

b − a

∫ b

a
f (x) dx . □
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Weighted average

A weighted mean or weighted average of numbers x1, . . . , xn is
a combination

∑n
i=1 wixi where each wi ≥ 0 and

∑n
i=1 wi = 1.

The concept of weighted average generalises that of ordinary
average by allowing different importance (or weight) for each
number. If we set each wi = 1/n we get the original x̄ .

The analogue for integration is to define the weighted average of
an integrable function f to be

∫ b
a f (x)g(x) dx where g is

non-negative on [a, b] and
∫ b
a g(x) dx = 1.

This definition requires fg to be integrable. For that, see Exercise
10 of §2.2.
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Mean Value Theorem for Weighted Integration

Theorem 7

Consider functions f , g : [a, b] → R where f is continuous, while g
is integrable and g ≥ 0 on [a, b]. There is c ∈ (a, b) such that

f (c)

∫ b

a
g(x) dx =

∫ b

a
f (x)g(x) dx .

Proof. Let m,M and a′, b′ be as in the previous proof. Then,

m ≤ f (x) ≤ M =⇒ mg(x) ≤ f (x)g(x) ≤ Mg(x)

=⇒ m

∫ b

a
g ≤

∫ b

a
fg ≤ M

∫ b

a
g .

If
∫ b
a g = 0, these give

∫ b
a fg = 0, and then any c will work.

If
∫ b
a g ̸= 0, we have m ≤

∫ b
a fg∫ b
a g

≤ M.

Then intermediate value theorem gives the desired c . □
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Limit at infinity

We write lim
x→∞

f (x) = L to indicate that as x gets larger, the

values f (x) approach L.

Formally, lim
x→∞

f (x) = L means that for every ϵ > 0 there is an

M ∈ R such that x > M implies |f (x)− L| < ϵ.
Similarly, lim

x→−∞
f (x) = L means that for every ϵ > 0 there is an

M ∈ R such that x < M implies |f (x)− L| < ϵ.

L
L+ ϵ

L− ϵ

lim
x→∞

f (x) = L

M

L
L+ ϵ

L− ϵ

lim
x→−∞

f (x) = L

M
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Examples

Example: The basic limit for calculations at infinity is: lim
x→∞

1

x
= 0.

This is easily proved by taking M = 1/ϵ.

ϵ

M = 1/ϵ

Task: Show that lim
x→∞

e−x = lim
x→−∞

ex = 0.
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Monotone Convergence Theorem

Theorem 8

Suppose f is increasing on [a,∞). Then lim
x→∞

f (x) exists if and

only if f is bounded above, and then the limit equals the
supremum of the values of f .
Similarly, if f is decreasing then lim

x→∞
f (x) exists if and only if f is

bounded below, and then the limit equals the infimum of the
values of f .

Proof. Let f be increasing on [a,∞). Define A = { f (x) | x ≥ a }.
Suppose that f is bounded above. Let L = sup(A).
Consider any ϵ > 0.
L− ϵ is not an upper bound of A, hence there is an M such that
f (M) > L− ϵ.
Hence, x ≥ M =⇒ L− ϵ < M ≤ f (x) ≤ L < L+ ϵ.
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Monotone Convergence Theorem

(proof continued)

Conversely, suppose that lim
x→∞

f (x) = L exists. Let its value be L.

If any f (x0) is greater than L, set ϵ = L− f (x0).

Then ϵ > 0 and for every x ≥ x0 we have f (x)− L ≥ ϵ, which
contradicts L being the limit of f .

Hence L is an upper bound of A and f is bounded above.

The first part of the proof gives L = sup(A). □
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Standard results

Theorem 9

The algebra of limits and the sandwich theorem hold for limits at
infinity.

Proof. The proofs are minor modifications of the earlier ones.

We shall prove the sandwich theorem in this setting.

Suppose f (x) ≤ g(x) ≤ h(x) on an interval (a,∞) and
lim
x→∞

f (x) = lim
x→∞

h(x) = L.

Consider an ϵ > 0.

There exists Mf > a s.t. x > Mf implies L− ϵ < f (x) < L+ ϵ.
There exists Mg > a s.t. x > Mg implies L− ϵ < h(x) < L+ ϵ.

Let M = max{Mf ,Mg}.
Then x > M =⇒ L− ϵ < f (x) ≤ g(x) ≤ h(x) < L+ ϵ.
Hence lim

x→∞
g(x) = L. □
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There exists Mg > a s.t. x > Mg implies L− ϵ < h(x) < L+ ϵ.

Let M = max{Mf ,Mg}.
Then x > M =⇒ L− ϵ < f (x) ≤ g(x) ≤ h(x) < L+ ϵ.
Hence lim
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g(x) = L. □
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Examples

Example 1: An application of the algebra of limits:

lim
x→∞

3x2 + x + 5

x2 − 5
= lim

x→∞

3 + 1/x + 5/x2

1− 5/x2
=

3 + 0 + 5 · 02

1− 5 · 02
= 3.

Example 2: Consider lim
x→∞

sin x

x
.

We use the Sandwich Theorem, after observing that we can take
x > 0 in this limit calculation.

−1 ≤ sin x ≤ 1 =⇒ −1

x
≤ sin x

x
≤ 1

x
.

We know that lim
x→∞

±1

x
= 0.

Hence lim
x→∞

sin x

x
= 0.
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Continuity and limit at infinity

Theorem 10

Let f , g be real functions such that g ◦ f is defined on (a,∞). Let
q = lim

x→∞
f (x) and suppose g is continuous at q. Then

lim
x→∞

g(f (x)) = g(q) = g( lim
x→∞

f (x)).

Proof. Let ϵ > 0.
There is δ > 0 such that |y − q| < δ implies |g(y)− g(q)| < ϵ.
There is M > a such that x > M implies |f (x)− q| < δ.
Hence x > M =⇒ |f (x)− q| < δ =⇒ |g(f (x))− g(q)| < ϵ. □

Example: lim
x→∞

1√
x + 1 +

√
x
= lim

x→∞

√
1/x√

1 + 1/x + 1

=

√
0√

1 + 0 + 1
= 0.
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Logarithmic growth

Recall that for x > 1, we have 0 < log x ≤ x − 1.

Therefore, x > 1 =⇒ 0 <
log x

x2
≤ 1

x
− 1

x2
.

Replacing x by
√
x , we have x > 1 =⇒ 0 <

1

2

log x

x
≤ 1√

x
− 1

x
.

The Sandwich Theorem gives lim
x→∞

log x

x
= 0.

Task: Show that for any n ∈ N, lim
x→∞

log x

x1/n
= 0.

Thus, log grows more slowly than any positive power of x .
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Limits at ∞ and 0

Theorem 11

Let a > 0 and f : (a,∞) → R. Then lim
x→∞

f (x) = L if and only if

lim
x→0+

f (1/x) = L.

Proof. Suppose lim
x→∞

f (x) = L.

Let ϵ > 0.
Then there is M > a such that y > M implies |f (y)− L| < ϵ.
Take δ = 1/M.
Then 0 < x < δ implies 0 < M < 1/x and hence |f (1/x)− L| < ϵ.
Therefore lim

x→0+
f (1/x) = L.

The steps are easily reversed to prove the converse as well. □

Task: Find lim
x→0+

x log x and lim
x→0+

xx .
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Limits equal to infinity

• We say lim
x→a

f (x) = ∞ if for every N ∈ R there is a δ > 0 such

that 0 < |x − a| < δ implies f (x) > N.

• We say lim
x→∞

f (x) = ∞ if for every N ∈ R there is an M ∈ R
such that x > M implies f (x) > N.

N

δ−δ

lim
x→0

f (x) = ∞

N

M

lim
x→∞

f (x) = ∞

There are similar definitions for limits involving −∞ and for
one-sided limits.
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Examples of infinite limits

1 lim
x→0+

1

x
= ∞: Take δ =

1

N
.

2 lim
x→∞

x = ∞: Take M = N.

3 lim
x→∞

xp = ∞ when p > 0: Take M = N1/p.

4 lim
x→∞

ex = ∞: Take M = logN.

5 lim
x→∞

log x = ∞: Take M = eN .
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Algebra of limits

Theorem 12

Let a stand for a real number or for the symbol ∞. Let f , g be
functions defined in an open interval around a (when a ∈ R) or on
an interval (b,∞) (when a = ∞). Let c ∈ R. The limits of f , g as
x → a obey the following rules.

1 f → ∞ and c > 0 implies cf → ∞.

2 f → ∞ and c < 0 implies cf → −∞.

3 f → ∞ and g → c implies f + g → ∞.

4 f , g → ∞ implies f + g → ∞.

5 f , g → ∞ implies fg → ∞.

6 f → ∞ and g → c > 0 implies fg → ∞.

7 f → ∞ implies 1/f → 0.
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Algebra of limits

Proof. We prove the third implication and leave the others to you.

Let N ∈ R. First, let a ∈ R.

Since g → c we have |g | → |c |.

So there is δ′ > 0 s.t. 0 < |x − a| < δ′ implies |g(x)| < |c |+ 1.

Since f → ∞ there is δ′ > 0 such that 0 < |x − a| < δ′′ implies
f (x) > N + |c |+ 1.

Let δ = min{δ′, δ′′}. Then 0 < |x − a| < δ implies

f (x) + g(x) ≥ f (x)− |g(x)| > N + |c |+ 1− (|c |+ 1) = N.

Now consider a = ∞.
There are M ′,M ′′ s.t. x > M ′ implies |g(x)| < |c |+ 1 and x > M ′′

implies f (x) > N + |c |+ 1.

Now take M = max{M ′,M ′′}. □
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Polynomials

Consider a non-constant polynomial of the form
p(x) = xn + an−1x

n−1 + · · ·+ a0.

Let us compute its limit at infinity.

We begin with p(x) = xn
(
1 +

an−1

x
+ · · · a0

xn

)
.

We repeatedly apply the Algebra of Limits to xk with k > 0:

lim
x→∞

xk = ∞ =⇒ lim
x→∞

1

xk
= 0 =⇒ lim

x→∞

an−k

xk
= 0

=⇒ lim
x→∞

(
1 +

an−1

x
+ · · · a0

xn

)
= 1

=⇒ lim
x→∞

p(x) = ∞.
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Indeterminate forms

There is no general rule for f − g or f /g when f , g → ∞.

So these are called indeterminate forms of type ∞−∞ and
∞/∞ respectively.
Each such limit has to be worked out individually without recourse
to a general formula.

Example: Consider lim
x→∞

(x − log x).

This is an ∞−∞ form.
We can use the properties of the log function:

x − log x = x
(
1− log x

x

)
→ ∞.

Similarly, there is no general formula for the limit of fg when
f → ∞ and g → 0.
This is called an indeterminate form of type ∞ · 0.
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Comparison Theorem, Composition

Theorem 13 (Comparison Theorem)

If f (x) ≤ g(x) for every x, and f (x) → ∞ as x → a, then
g(x) → ∞ as x → a. Here a can be a real number or ±∞.

Proof. Exercise. □

Theorem 14

Let lim
x→∞

g(x) = L where L is a real number or ∞, and

lim
x→a

f (x) = ∞ where a is a real number or ∞. Then

lim
x→a

g(f (x)) = L.

Proof. Exercise. □
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Exponential growth

We start with the known limits lim
x→∞

ex = ∞ and lim
x→∞

log x

x
= 0.

Then, lim
x→∞

x

ex
= lim

x→∞

log(ex)

ex
= lim

t→∞

log t

t
0.

Now, for n ∈ N, lim
x→∞

x

ex/n
= n lim

x→∞

x/n

ex/n
= n lim

y→∞

y

ey
= 0.

Hence lim
x→∞

xn

ex
=

(
lim
x→∞

x

ex/n

)n
= 0.

Thus, the exponential function grows faster than any power of x ,
and therefore faster than any polynomial.

Here is a comparison with x4:

8.61

5504
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Continuity and Variation Continuity and Integration Limits Involving Infinity

Asymptotes

If lim
x→∞

f (x) = L then the graph of f merges with the line y = L as

x increases. This line is called a horizontal asymptote of f .

In the same way, lim
x→−∞

f (x) = L also gives a horizontal

asymptote, the merging happening in the negative direction.

Similarly, if either one-sided limit is infinite at x = a, we call the
line x = a a vertical asymptote of the function.

The graph may also approach a slanted line as x → ±∞. We say
that y = ax + b is a slant asymptote of y = f (x) as x → ∞ if

lim
x→∞

(f (x)− ax − b) = 0.

We have the analogous definition of a slant asymptote as
x → −∞.

The concept of slant asymptote includes that of horizontal
asymptote as a special case (a = 0).
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Continuity and Variation Continuity and Integration Limits Involving Infinity

Slant asymptotes

Theorem 15

The line y = ax + b is a slant asymptote of the function y = f (x)

as x → ∞ if and only if a = lim
x→∞

f (x)

x
and b = lim

x→∞
(f (x)− ax).

Proof. First, suppose lim
x→∞

(f (x)− ax − b) = 0.

Then lim
x→∞

x
( f (x)

x
− a− b

x

)
= 0.

Since x → ∞, this is only possible if
f (x)

x
− a− b

x
→ 0, which

gives
f (x)

x
→ a.

The formula for b is a rearrangement of lim
x→∞

(f (x)− ax − b) = 0.

The converse is trivial. □
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Hyperbola

Consider the upper branch of the hyperbola y2 − x2 = 1.

It is the graph of the function f (x) =
√
x2 + 1.

We have

a = lim
x→∞

f (x)

x
= lim

x→∞

√
1 + 1/x2 = 1

b = lim
x→∞

(
√
x2 + 1− 1 · x) = lim

x→∞

1√
x2 + 1 + ·x

= 0.

Hence the line y = x is a slant asymptote as x → ∞.
Similarly, y = −x is a slant asymptote as x → −∞. The graph is:
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