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REGIONS OF STEADY STATE TRANSPORT
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I: Linear region: ν = µF

µ =

II: Negative resistance region (in direct gap conduction band):
velocity decreases with field due to charge transfer 
from low mass valley to high mass valley

III: Velocity saturation region

IV: Breakdown region due to impact ionization
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LOW FIELD TRANSPROT: MOBILITY
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Mobility: µ = 

<<τ>> =

where
< >       averaging over the equilibrium distribution
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Low-field mobility of electrons in silicon 
as a function of temperature.

Low-field Hall mobility of electrons in GaAs as a 
function of temperature. The material has an 
ionized impurity concentration of 7 x 1013 cm–3.
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MONTE CARLO APPROACH TO TRANSPORT
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Monte Carlo is based on the computer simulations of transport events: 
injection, free flight, and scattering.

A schematic of processes involved in the physical picture used in Monte Carlo methods.

Mapping of random probability function to a randomly generated number from a uniform 
random number generator.
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Monte Carlo depends upon using random numbers to mimick a 
probability function
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A FLOW CHART OF THE MONTE CARLO METHOD
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MONTE CARLO METHOD FOR TRANSPORT
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Identify all important scattering processes

Wk = Total scattering rate for an electron in state k,
W(k,k') = Angular dependence of scattering rate,

Wtot
 = Total scattering rate

Random number allows one to select the scattering event.
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A schematic showing how a random number allows one to determine the 
scatteirng mechanism responsible for scattering.



MONTE CARLO METHOD FOR TRANSPORT
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The two coordinate systems used in Monte Carlo method. One uses the system (left) where 
the momentum before scattering is along the z-axis to determine the final state after 
scattering. This has then to be transformed in the fixed-coordinate system (right) where the 
F-field is along the z-axis.

Final state after scattering once the process responsible for scattering 
is known:

Final Energy:

Ionized impurity: ∆E = 0

Alloy scattering: ∆E = 0
Polar optical phonon: ∆E = + hω0
Acoustic phonon: ∆E ~ 0
Intervalley scattering: ∆E = + ∆E IV + hω

–

––

Final Angle:

Random number(s) to simulate W(k,k') 
+ conversion into fixed coordinate system
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ELECTRON TRANSPORT IN DIRECT GAP SEMICONDUCTORS: 
GaAs
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Electron velocity as a function of electric field in a GaAs. The impurity density for the different 
curves is (a) ND = 0; (b) ND = 1.0 x 1017 cm–3; (c) ND = 2.0 x 1017 cm–3 (d) ND = 4.0 x 1017 

cm–3; and (e) ND = 8.0 x 1017 cm–3.
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A schematic of how electrons transfer from 
the Γ-valley to the X-valley in GaAs as the 
field is increased.

Occupation of the Γ-valley in GaAs electron 
transport as a function of electric field.



NON-LOCAL TRANSPORT: VELOCITY OVERSHOOT
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A schematic of how velocity overshoot occurs in a direct bandgap material like GaAs.

A schematic of how velocity overshoot occurs in a direct bandgap material like GaAs.
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When the electric field changes rapidly (in space or time) electrons may gain high 
velocities in times shorter than scattering time, thus reaching velocities higher than 
steady state velocities.



VERY HIGH FIELD TRANSPORT: IMPACT IONIZATION
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The impact ionization proccess where a 
high energy electron scatters from a 
valence band electron producing two 
conduction band electrons and a hole. Hot 
holes can undergo a similar process.

Breakdown electric fields in some materials.

Impact ionization (or avalanche breakdown) occurs at very high fields when carrier 
energies become larger than the bandgap.
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MATERIAL BANDGAP BREAKDOWN ELECTRIC

 (eV) FIELD (V/cm)

GaAs 1.43 4 x 105

Ge 0.664 105

InP 1.34

Si 1.1 3 x 105

In0.53Ga0.47As 0.8 2 x 105

C 5.5 107

SiC 2.9 2-3 x 106

SiO2 9 107

Si3N4 5 107

A schematic of how the carrier distribution 
function change as field is increased. The high 
energy tail responsible for impact ionization is 
shown.



TRANSPORT IN QUANTUM WELLS
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(a)  A schematic of a MOSFET with gate length L. (b) By applying a gate bias the 
semiconductor  bands can be “inverted” as shown, inducing electrons in the triangular 
quantum well.

In devices such as MOSFETs and MODFETs 2 dimensional electron gas (2DEG) is formed 
and the nature of scattering is altered.

• Interface roughness effects can be important.
• Inter-subband scattering + 2 dimensional intra-subband scattering ocurs.
• Ionized impurity scattering can be eliminated by modulation doping.
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DEVICE IMPORTANT CONSIDERATIONS

FIELD EFFECT TRANSISTORS • Superior low field moblity     
       improved source-gate resistance 
   • Si    GaAs    InGaAs
• Superior high field velocity     
       high frequency/high speed operation
• Low impact ionization coefficient    
       high power devices
       Si    GaAs    SiC    GaN    C(?)

• Superior hole mobility     low base 
  resistance
• Superior electron low field mobility 
  (diffusion coefficient)     small base 
  transit time
• Superior high field electron velocity     
      small base-collector transit time, 
  high frequency/high field response
• Power devices     high bandgap
  collector region.
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IMPORTANT ISSUES IN ELECTRNIC DEVICES

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

An overview of two important classes of electrnic devices nad influences of carrier 
transport on their performance.


