
of quasimomenta (Fig. 1D). By probing for a
spread in Berry curvature, we can place a bound
on imperfections in the lattice, while simulta-
neously benchmarking the resolution of our
interferometer.
The interferometer sequence (Fig. 2B) begins

with the preparation of an almost pure 87Rb BEC
in the state j↑〉 ¼ jF ¼ 2;mF ¼ 1〉 at quasimomen-
tum k = 0 in a V0 = 1 Er deep lattice, where
Er ¼ h2=ð2ml2LÞ ≈ h$ 4 kHz is the recoil en-
ergy and h is Planck’s constant. A resonant p/2-
microwave pulse creates a coherent superposition
of j↑〉 and j↓〉 ¼ jF ¼ 1;mF ¼ 1〉 states (i). Next,
a spin-dependent force from a magnetic field
gradient and an orthogonal spin-independent
force from lattice acceleration (Fig. 2A) move the
atoms adiabatically along spin-dependent paths
in reciprocal space (ii) (28). The two spin com-
ponents move symmetrically about a symmetry
axis of the dispersion relation. After an evolution
time t, a microwave p pulse swaps the states j↓〉
and j↑〉 (iii). The two atomic wave packets now
experience opposite magnetic forces in the x di-
rection, such that both spin components arrive at
the same quasimomentum kfin after an additional
evolution time t (iv). At this point, the state of
the atoms is given by jyfin〉ºj↑; kfin〉þ eiϕ; kfin〉
with relative phaseϕ. A second p/2-microwave
pulse with a variable phase ϕMW closes the in-
terferometer (v) and converts the phase infor-
mation into spin population fractions n↑;↓º1 T
cosðϕþϕMW Þ, which are measured by stan-
dard absorption imaging after a Stern-Gerlach
pulse and time of flight.
The phase difference ϕ at the end of the in-

terferometer sequence consists of the geometric
phase and any difference in dynamical phases
between the two paths of the interferometer.
Ideally, the dynamical contribution should van-
ish because of the symmetry of the paths and the
use of the spin-echo sequence (13). To ascertain
that the measured phase is truly of geometric
origin, we additionally employ a “zero-area” re-
ference interferometer, comprising a V-shaped
path (Fig. 2B) produced by reversing the lat-
tice acceleration after the p-microwave pulse
of Fig. 2B (iii).
We locate the Berry flux of the Dirac cone by

performing a sequence ofmeasurements inwhich
we vary the region enclosed by the interferometer.
This is achieved by varying the lattice acceleration
at constant magnetic field gradient to control
the final quasimomentum kfiny (kfinx ¼ 0) of the
diamond-shaped measurement loop. The result-
ing phase differences betweenmeasurement and
reference loops are shown in Fig. 2C. When one
Dirac point is enclosed in themeasurement loop,
we observe a phase difference of ϕ ≃ p. In con-
trast, we find the phase difference to vanishwhen
enclosing zero or two Dirac points. We find very
good agreement between our data and a theo-
retical model that includes the finite spread sk in
the initial momentum of the weakly interacting
BEC (blue curve in Fig. 2C) (13). Because of this
spread, each atomhas sampled a slightly different
path inmomentum space andmay therefore have
acquired a different geometric phase. Once the

Dirac point lies within the interferometer area
for exactly half of the atoms, the first phase jump
occurs. Because of the small opening angle of
the chosen interferometer path (~70°), this hap-
pens slightly later than in the ideal case of sk = 0
(black curve in Fig. 2C). Although sk thereby af-
fects the positions of the p phase jumps, it does
not limit their sharpness. Indeed, the data are
fully consistent with the behavior expected for
an inversion-symmetric lattice, where it is im-
possible to identify the sign of the singular Berry
flux (Tp). Small deviations of the phases from 0 or
p can be attributed to an imperfect alignment of
the magnetic field gradient, magnetic field fluctu-
ations, or an imperfect lattice geometry (13). These
systematic effects are particularly relevant close to
the phase jump, where the contrast is minimal
and can influence the perceived direction of the
phase jump.
To minimize systematic errors and improve

our measurement precision, we performed self-

referenced interferometry close to the Dirac
points. As illustrated in Fig. 3A, a standard band-
mapping technique (29) projects those sectors
of the cloud that have (left and right) or have
not (bottom) crossed the edge of the BZ onto
three different corners of the first BZ, such that
we can measure their acquired phases indepen-
dently. Combining these measured phases to
ϕ ¼ ðϕL þϕRÞ=2 − ϕB, where ϕL, ϕR, and ϕB

refer to the phases of the three sectors, elimi-
nates the need for a separate reference mea-
surement and significantly reduces sensitivity to
drifts in the experiment. The resulting phase
again shows a sudden jump from 0 to p (Fig. 3B).
The position of the phase jump is in excellent
agreement with a simple single-band model (13)
that includes an initial momentum spread of
sk = 0.15(1)kL, consistent with an independent
time-of-flight measurement. Notably, the phase
jump occurs within a very small quasimomentum
range of <0.01 kL, and an arctangent fit to the
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Fig. 3. Self-referenced interferometry at the Dirac point. (A) (Left) Interferometer path closing at
the K point. Because of the initial momentum spread, the cloud (circle with colored sectors, not to
scale) is split by the edges of the BZ. (Middle) Band mapping spatially separates the three different
parts of the cloud onto three corners of the first BZ (schematic and image, where cloud sizes are
dominated by in situ size). (Right) The fraction of atoms for which the Dirac point lies within the
interferometer loop (green sectors) increases with final quasimomentum kfin. (B) Phase differences
between atoms that have crossed the band edge (sectors L and R) and those that have not (sector B)
versus final quasimomentum kyfin for paths close to the K (K′) point in red (blue). The shaded region
indicates a range dkW = 0 – 12 × 10–4kL for the spread in Berry curvature, whereas the line is calculated
for dkW ≃ 10−4kL using the model described in (13), corresponding to an A-B offset of D ≃ h$ 3 Hz.The
inset shows the contrast ðn↓max − n↓

minÞ=ðn↓max þ n↓
minÞ of the interference fringes of the full cloud.Theory

line and shading are for the same parameters as in the main graph and include only geometrical
phases (13). All calculations assume sk = 0.15kL.
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