
Supplement 5.1. R code for GRS sampling

Trent McDonald, Western EcoSystems Technology, Inc., Cheyenne, Wyoming, USA.

This supplement contains two R functions for implementing the General Random Sample (GRS)

algorithm outlined in Chapter 7: one to draw a General Random Sample (GRS), the other to

approximate second-order inclusion probabilities for a GRS. Inputs, outputs, and example calls

are contained in the header comments of both functions. The functions are identical to those

presented in Appendix 5.1 of Chapter 5.

General Random Sample Function

F.grs <- function(id, n, x=NULL, sort.by=NULL, seed=NULL){

F.grs - R function for drawing a General Random Sample.

Inputs:
id= either a scalar or vector. If id is a scalar, it is
assumed to be population size (N), and an equal
probability sample of size n is drawn from a population
of size N. The ID's in this case are 1:N. If id is a
vector, the values in ID are used as ID values for
units in the population. Population size is the length
of id in this case.
n = scalar, the desired sample size.
x = a vector of weights to which inclusion probabilities are
proportional.
Length of x must be same as length of id. Or,
x=NULL if id is a scalar.
sort.by = a vector parallel to id and x used to sort units
in the population. If sort.by is null, no sorting is
performed.
seed = an integer scalar to use for the initial random seed
If missing, set.seed is not called.

Output:
A data frame with dimension nx2 containing the general random
sample. The data frame contains the variables $id = ID's of
units in the sample and $pi = inclusion probability for units
in the sample.

Examples:
s <- F.grs(100,20,sort.by=runif(100)) # draw a simple random
sample of 20 from 100

s <- F.grs(100,20) # draw simple systematic sample of 20 from 100
s <- F.grs(1:100,20,1:100) # draw systematic sample of units
with ID's 1 to 100 and probabilities
proportional to ID values
s <- F.grs(1:100,20,1:100,runif(100)) # draw randomized sample
of with probability
proportional to ID values

 if(length(id) <= 1){
 id <- 1:id
 x <- rep(1,length(id))
 }
 if(length(x) <= 0 & is.null(x)){
 x <- rep(1, length(id))
 }
 if(!is.null(sort.by)){
 ind <- order(sort.by)
 id <- id[ind]
 x <- x[ind]
 }
 if(!is.null(seed)){
 set.seed(seed)
 }

 p <- n * x / sum(x)

 while(any(p > 1)){
 gt.1 <- p > 1
 p[gt.1] <- 1
 p[!gt.1] <- (n - sum(gt.1)) * x[!gt.1] / sum(x[!gt.1])
 }

 x <- cumsum(p)
 m <- seq(runif(1), n, by=1)
 ind <- findInterval(m,x)+1
 s <- id[ind]
 p.s <- p[ind]

 ans <- data.frame(id = s, inclusion.prob = p.s)
 ans
}

Function to Generate 2nd-order Inclusion Probabilities

F.2nd.order <- function(id, n, x=NULL, randomize=FALSE, seed=NULL,
reps=1000){

F.2nd.order - R function to approximate 2nd order inclusion
probabilities of a General Random Sample.

Inputs:
id= either a scalar or vector. If id is a scalar, it is
assumed to be population size (N), and a equal
probability sample of size n is drawn from a population

of size N. The ID's in this case are 1:N. If id is a
vector, the values in ID are used as ID values for
units in the population. Population size is the length
of id in this case.
n = scalar, the desired sample size.
x = a vector of weights to which inclusion probabilities are

 proportional. Length of x must be same as length of id. Or,
x=NULL if id is a scalar.
randomize = a boolean value specifying whether or not
to randomize the population before drawing the
sample. TRUE = randomize, FALSE = do not randomize.
seed = an integer scalar to use for the initial random seed
reps = scalar specifying the number of iterations to
do in the simulation.

Output:
A symmetric matrix of size NxN containing 2nd order inclusion
probabilities. Cell (i,j) is the approximate probability
that unit i and unit j both appear in the sample.

Note: Inputs id, n, and x are exactly the same as the
inputs to F.grs. To implement a design ordered by another
variable, sort the vectors id and x before calling
this routine.
Examples:
pi2 <- F.2nd.order(100,20,randomize=T)# 2nd order inclusion
probs for simple
random sample.
pi2 <- F.2nd.order(100,20) # 2nd order probs for systematic
pi2 <- F.2nd.order(1:100,20,1:100) # 2nd order probs for
unequal prob systematic
pi2 <- F.2nd.order(1:100,20,1:100,T) # 2nd order probs
for randomized unequal
prob design.

 if(length(id) <= 1){
 id <- 1:id
 x <- rep(1,length(id))
 }
 N <- length(id)
 pi2 <- matrix(0,nrow=N,ncol=N)
 id.ord <- sort(id)

 for(i in 1:reps){
 if(randomize){
 s <- F.grs(id, n, x, sort.by=runif(N))
 } else {
 s <- F.grs(id, n, x)
 }
 ind <- id.ord %in% s$id
 ind <- matrix(ind, ncol=1) %*% matrix(ind, nrow=1)
 pi2 <- pi2 + ind
 }

 pi2 <- pi2 / reps
 pi2
}

	Supplement 5.1. R code for GRS sampling
	General Random Sample Function
	Function to Generate 2nd-order Inclusion Probabilities

