
7

Epigenetics & Genetic
Regulation in Cis

7.1 Nucleosomes and their enzymes

7.2 Nucleosome mediated epigenetics

7.2.1 Simulate the A–U–M model from Fig. 7.5 without cell divisions, but
with the modification that recruitments U → A and U → M are local, whereas
the other recruitments are global. Use an L = 60 nucleosome system, ignore
cell divisions and select a feedback strength that gives reasonable bistability.
Examine behavior in a space-time plot of nucleosome states as a function of
position and time measured in updates per nucleosome.

Answer There is one parameter α ∈ [0; 1] with F = α/(1−α). At each step
select a random nucleosome n1 ∈ [1, L]:

• A recruited conversion is attempted with probability α. Given this
choice one selects, with probability β = 0.5, whether the recruitment
should be local or global. If global: a second random nucleosome
n2 ∈ [1, L] is selected (n2 �= n1). If n2 is in either the M or the A
state, nucleosome n1 is changed to U if and only if n1 is in the opposite
state of n2. If local: If n1 is in U state a second random nucleosome
n2 = n1 − 1 or n2 = n1 +1 is selected. If n2 is either in the M or the A
state, nucleosome n1 is changed to the state of n2.
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Figure 7.1 Nucleosome-mediated epigenetics, with mixed local and global
recruitment. The value F sets overall recruitment to noise. Given the recruit-
ment, one may still choose which of the two recruitment processes should be
strongest (see right-hand panels).

• A noisy change is attempted with probability 1 − α: a nucleosome is
selected and converted to one of its neighbor states along the A–U–M
axis.

Simulations for F = 8 are seen in Fig. 7.1, where we also explore variations
in β in the relative strength β of the two recruitment processes. Notice that
bistability now requires substantially larger F , reflecting the fact that we
lose about 1/2 the recruitment attempts by selecting the type of recruitment
before selecting whether it actually is feasible.

7.2.2 Simulate the A–U–M model above, but with the modification that
recruitments A → U and M → U are local, whereas the other recruitments
are global. Use the same overall approach as above.

Answer Repeat the procedure from the question above, but switching the
global and local recruitments, such that the global recruitment now makes
U → M , U → A. Simulations for F = 8 is seen in Fig. 7.2.

7.2.3 Repeat the above simulations, but now where global recruitments are
acting across a distance x with probability 1/x.
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Figure 7.2 Nucleosome-mediated epigenetics, with mixed local and global
recruitment. The value F sets overall recruitment to noise. Given recruit-
ment one may still choose which of the two recruitment processes should be
strongest (see right-hand panels).

Answer The algorithm is as for two previous questions, except that one
global recruitment is replaced by selecting two nucleosomes in [1, N ] at a
distance x with probability 1/x. In practice, given the first position ni, the
distance x is chosen as x = 60random with random ∈ [0, 1]. Position nj is then
either nj = ni + x or nj = ni − x. If nj < 1 nj = ni or nj > N is selected a
new nj is selected. The simulations for the two models are shown in Fig. 7.3.

7.2.4 Reproduce the bifurcation plot in Fig. 7.7 by plotting fixed points for the
model defined by Eqs. (7.1) and (7.2) as a function of F . Show analytically
that bistability is only possible when F > 1√

2−1
= 2.4142.

Answer Given F = α/(1 − α) and α = 1/(1 + F ), the steady-state values
of the two equations give us two equations with two unknowns, a and m:

f ∼ a · (1− a)− 2a ·m+
1− 3a−m

2F
= 0

g ∼ m · (1−m)− 2a ·m+
1− a− 3m

2F
= 0
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Figure 7.3 Nucleosome-mediated epigenetics, with mixed local and global
recruitment, and global recruitment selected at distance x with probability
1/x.

giving

f − g = (a−m)

(
1− (a+m)− 1

F

)
= 0

which is equal to zero when a = m or when a+m = 1−1/F . These two types
of solution can be inserted into the f = 0 equation. The −m = a− 1 + 1/F
solution gives

f ∼ a− a2 − 2a ·
(
1− a− 1

F

)
+

1

2F

(
−2a+

1

F

)

= −a+ a2 +
2a

F
− a

F
+

1

2F 2
=
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f ∼ −
(
1− 1

F

)
a+ a2 +

1

2F 2
= 0 ⇒

a =
1

2

((
1− 1

F

)
±
√
1− 2

F
− 1

F 2

)

expressing that, for F → ∞, the fixed point for a approaches respectively 1
or 0. When a takes one of these solutions for finite F , then the methylated
fraction m takes the other, and the unmodified nucleosome fraction:

u = 1−m− a = 1−
(
1− 1

F

)
=

1

F

The two solutions for the fixed point are possible when:

1− 2

F 2
− 1

F
> 0 ⇒ F >

1√
2− 1

= 2.4142

which is thus the critical minimal F for obtaining bistability.
The m = a solution:

f ∼ −3a2 +

(
1− 2

F

)
a+

1

2F

f = 0 ⇒ a2 − 1

3

(
1− 2

F

)
a− 1

6F
= 0 ⇒

a =
1

6

(
1− 2

F
±
√
(1− 2

F
)2 +

6

F

)

where only the largest solution is above 0. These equation have solutions
a = m = u ∼ 1/3 for F → ∞. The solutions are shown in Fig. 7.4.

7.2.5 The linear stability analysis of a set of equations dx/dt = f and
dy/dt = g consider the dynamics of a small deviation (δx, δy), around a
fixed point (x0, y0):

d(δx)

dt
= f(x, y)− f(x0, y0) =

df

dx
δx+

df

dy
δy = fxδx+ fyδy

d(δy)

dt
= g(x, y)− g(x0, y0) =

dg

dx
δx+

dg

dy
δy = gxδx+ gyδy
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Figure 7.4 Upper panel: fixed points as a function of F for the standard
nucleosome model from the text. Lower panel. The largest eigenvalue for the
m = a solution using linear stability analysis (from Question 8.2.5).

The stability of a fixed point is given by the sign of the largest eigenvalue:

λ =
fx + gy

2
+

√
(fx + gy)2

4
− fxgy + fygx

Insert Eqs. (7.1) and (7.2) into this equation and plot the largest eigenvalue
as function of F for the m = a fixed-point solution.

Answer In general, the eigenvalues for the matrix that describes the
dynamics of a small deviation (δx, δy), around fixed point (x0, y0):
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d(δx)

dt
= f(x, y)− f(x0, y0) =

df

dx
δx+

df

dy
δy = fxδx+ fyδy

d(δy)

dt
= g(x, y)− g(x0, y0) =

dg

dx
δx+

dg

dy
δy = gxδx+ gyδy

where the last step uses the fixed point condition f(x0, y0) = g(x0, y0) = 0.
With M as the matrix for linear variations, the eigenvalues λ for linear
stability are given by:

dδr

dt
= Mδr = λδr

Solving this:

det(M− λ · 1) = 0

(fx − λ) · (gy − λ)− gxfy = 0 ⇒
λ2 − (fx + gy) · λ+ fxgy − gxfy = 0 ⇒

λ =
fx + gy

2
±

√
(fx + gy)2

4
− fxgy + fygx

For our model:

f ∼ a · (1− a)− 2a ·m+
1− 3a−m

2F
= 0

g ∼ m · (1−m)− 2a ·m+
1− a− 3m

2F
= 0

Giving:

fa ∼ 1− 2a− 2m− 3

2F

fm ∼ −2a− 1

2F

ga ∼ −2m− 1

2F

gm ∼ 1− 2m− 2a− 3

2F

giving the largest eigenvalue:

λ =
fa + gm

2
±
√

(fa + gm)2

4
− fagm + fmga

= 1− 2a− 2m− 3

2F
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+

√(
1− 2a− 2m− 3

2F

)2

−
(
1− 2a− 2m− 3

2F

)2

+

(
2a+

1

2F

)
·
(
2m+

1

2F

)

= 1− 2a− 2m− 3

2F
+

√(
2a+

1

2F

)
·
(
2m+

1

2F

)

= 1− 4a− 3

2F
+ 2a+

1

2F
= 1− 2a− 1

F

= 1− 1

F
− 1

3

⎛
⎝1− 2

F
+

√(
1− 2

F

)2

+
6

F

⎞
⎠

=
2

3
− 1

3F
− 1

3

√(
1− 2

F

)2

+
6

F

which is plotted in the lower panel of Fig. 7.4. The m = a solution is unstable
when λ > 0. Notice that the m = a solution becomes unstable when F
exceeds 2.4.

7.3 A Regulated 2-State Model

7.3.1 Simulate the two-state model for different F values for an L = 30
system.

Answer Consider the L = 30 system, where each position can be 0 or 1.
Define α = 1/(F + 1). Algorithm reads: choose random number r ∈ [0, 1]
uniformly. If r < α select two nucleosomes. If in the different state, nothing
is done. If in same state, a third nucleosome is selected. This nucleosome is
then set to the majority state. If r > α, a nucleosome at a random position
is switching state, s(i) = 1 − s(i). Result is shown in Fig. 7.5 for various F
values, pinpointing F = 4 as the critical F for this model.

7.3.2 Discuss the two-state model in terms of movements in an epigenetic
landscape of the form:

V ∼ −
∫

〈dm/dt〉dm

∝
∫ (

m(1−m)− 1

F

)
(1− 2m)dm

= m(1−m) ·
(
1

2
m(1−m)− 1

F

)
(7.1)
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Figure 7.5 Two-state model simulated for various ratios of feedback to passive
conversions.

Plot the potential, and discuss how residence time in one of the “potential
wells” depends on the system size L.

Answer The assumed potential in the question would be correct if the dif-
fusion and mobility of the m-particle was independent of its position. We
therefore compare the real system simulation with this approximate poten-
tial. Results shown in the left-hand panels of Fig. 7.6. A more careful calcula-
tion that takes into account that the diffusion depends on position m ∈ [0, 1]
gives a potential:

V

L
= 2 ·m · (1−m) +

(
1

L
− 4

F

)
ln(Fm(1−m) + 1)

D =
1

2L2
·
(
m(1−m) · F

F + 1
+

1

F + 1

)
where the last equation expresses the diffusion constant. D has a maximum
at m = 1/2, reflecting the fact that dynamics is most active when passing
the barrier. Notice that the full potential above is more pronounced than the
approximate potential used in the question, although the two potentials are
qualitatively similar. For more details on how to derive the real potential see
Micheelsen et al., q-bio 1002.1600v2, 23 Sep. 2010.

In any case, the potential scale with N or the diffusion constant decreases
as 1/L, and therefore the barrier-passing time:

τ ∼ exp(constant · L) (7.2)
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and thus a doubling of system size should leads to a lifetime raised to the
power 2 (in units of natural timescale).

7.3.3 Implement and simulate gene regulation in a two-state version of the
nucleosome model where the co-operative recruitment only acts in one direc-
tion. Thus the co-operative recruitment acts by converting S to A, when two
random nucleosomes are in the A state, and the effect of the transcription
factor is to convert the A state to S with some adjustable rate R.

Answer Consider the L = 30 system, where each position can be 0 or 1.
Define α = F/(F +1), R ∈ [0, 1] as representative of regulator concentration.
For illustration we here provide the algorithm in a Gillespie version: Select
three times:

(1) Set t1 = − ln(ran)/α
(2) Set t2 = − ln(ran)/(1− α)
(3) set t3 = − ln(ran)/R
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select the process with minimal ti. If this is process i = 1 then select two
different nucleosomes and check whether both are in state 1. If so then select
a third nucleosome and set this to state 1.

If the chosen process is i = 2, a nucleosome at a random position k
switches state, s(k) = 1− s(k).
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Figure 7.7 Two-state model with regulator, simulated for various values of
feedback F and concentrations of regulator.
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If the chosen process is i = 3 then set a random nucleosome to state = 0.

Notice that the Gillespie-like formulation allows for easy extension to
cases where some rates exceed 1.

Figure 7.7 shows distribution of nucleosomes in state 1 as a function
of strength of regulator. Notice that at a critical value of R, the system
is bistable. Further, as one varies R across this value, the system is ultra-
sensitive. The ultra-sensitivity is less pronounced than in cases where there
is recruitment in both directions, as such recruitment represses leakiness.

7.3.4 Consider a two-state nucleosome model with co-operative recruitment
from state S to state A and with passive conversion of nucleosome in the
opposite direction. Assume direct transitions β per active recruitment
attempt, and that directed drift (toward “y”) has strength drift per active
recruitment attempt. Derive equations for the model and plot regions in x, y
where dx/dt > 0 and dy/dt > 0. Verify that there are parameters where the
model is bistable, i.e. where there are two stable fixed points separated by an
unstable one.
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Figure 7.8 Model with recruitment in one direction, but only a drift in
the other, corresponding to enzymes acting from the bulk. The region with
dx/dt > 0 is shown in cyan shading, the region with dy/dt > 0 is shown with
red shading. Sign of eigenvalues for fixed points are indicated. See question
for the equations.
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Answer

dx

dt
=

β

2
(1− y)− 3β

2
x+ (1− y − drift) · x− x2

dy

dt
=

β

2
(1− x)− 3β

2
y + (1− x− y) · drift− x · y

Choosing drift = 0.30 and β = 0.02 indeed gives three fixed points (see
Fig. 7.8).

7.4 Coupled epigenetics in olfactoric differ-

entiation

7.4.1 Consider the model for olfactoric differentiation from Fig. 7.19, with
nucleosomes in the silenced state (red in panel C), being partially protected
from conversion to the a state (blue) by a protein P, produced by all active
genes. Argue for negative feedback through P that reduces the rate of recruit-
ment from S to A:

Rate(S → A) → Rate(S → A) · 1

1 + r · P (7.3)

where P is the total activity of all olfactory genes.

Answer The negative feedback between olfactoric genes is assumed to act
through any protein P produced by these genes. This interaction is here
assumed to act through conversion of the silenced nucleosomes to a form
that cannot be changed by enzymes that makes nucleosomes “active.” One
way to do this is to let P act catalytically on s:

s+ P → s∗ + P whereas s∗ → s with rate r′

⇒ (s− s∗) · P = r′ · s∗ ⇒

s∗ =
s · P
r′ + P

⇒

s− s∗ =
s · r′
r′ + P

=
s

1 + r′′ · P

where s− s∗ is the fraction sfree that can be converted to a.
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In the above, the critical number is the protein P , which in turn could be
produced from any olfactoric gene. If we assume that the activity is thresh-
olded by its fraction of nucleosome in active state a, then:

dP

dt
= const ·

∑
j

ahj −
P

τ

where the Hill coefficient characterizes the threshold function. If, for example,
h = 1, we simply set the activity of the gene proportional to the likelihood
that nucleosomes on promoter sites are in an active state, the assumption
used in our model for gene activity. The dynamics equation for P can be
simply integrated to a realistic steady state for τ :

P = const · τ ·
∑
j

ahj ∝
∑
j

ahj

a realistic approximation when τ is short compared to other timescales in
the dynamics of individual genes.

7.4.2 Assume that each gene has an activity proportional to the fraction of
active nucleosomes of that gene to an exponent h, and use this to find an
expression for the amount of a protein P that is produced due to the activity
of all genes. Combine this expression with the results from Question 7.4.1 to
argue for the following equation for differentiation between the i = 1, 2, . . . N
genes from Fig. 7.19:

dai
dt

=
1

1 + r ·
∑

j a
h
j

· a2i · (1− ai)− μ · ai · (1− ai)
2

+
1

1 + r ·
∑

j a
h
j

· β · (1− ai)− β · ai (7.4)

Here μ < 1 describes an inherent bias, giving a weaker basic recruitment
from the silenced state. In contrast, recruitment from active nucleosomes is
reduced due to influence from other genes. β represents passive conversions.
Analyze the model for h = 4, r = 3, μ = 1 and β = 0.03.

Answer Combining the equations, the fraction of silenced nucleosomes that
can be converted to a is:

s → sfree =
s

1 + r ·
∑

j a
h
j

with some constant r = const · τ · r′′.
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Figure 7.9 Two-gene model for olfactoric differentiation.

The recruitment acting from a on s is then:

rate(s → a) = a2 · (1− a) · sfree = a2 · 1− a

1 + r ·
∑

j a
h
j

whereas the recruitment in opposing directions is:

rate(a → s) = μ · (1− a)2 · a

Adding the small passive drift terms to this recruitment rate leads to the
deterministic equations:

dai
dt

=
1

1 + r ·
∑

j a
h
j

· a2i · (1− ai)− μ · ai · (1− ai)
2

+
1

1 + r ·
∑

j a
h
j

· β · (1− ai)− β · ai

c© K. Sneppen



77

where ai is the fraction of active nucleosomes in gene i, and μ < 1 is the bias
that favors the active state of all genes.

Figure 7.9 analyzes the N = 2 case for the model:

dai
dt

=
1

1 + 3 ·
∑

j a
4
j

· a2i · (1− ai)− ·ai · (1− ai)
2

+
1

1 + 3 ·
∑

j a
4
j

· 0.03 · (1− ai)− 0.03 · ai

This model is indeed bistable, selecting one and only one of the genes as the
active one. In Fig. 7.9 panel (A) it can thus be seen that da1/dt is positive
for high a1 values, allowing for a stable fixed point, provided that a2 is small.
However, if a2 is big then there is a stable fixed point for a1 that is larger
than 0.1.

7.4.3 Simulate the two-gene version of the equations from Question 7.4.2,
using a Gillespie algorithm on the four different terms in the equations (mak-
ing a total of eight rates for the two genes). Use an update where each of the
state fractions is changed in steps of size 0.1.

Answer Assign eight discrete processes, with rates:

rate(i, 1) =
1

1 + 3 ·
∑

j a
4
j

· a2i · (1− ai)

rate(i, 2) = ai · (1− ai)
2

rate(i, 3) =
1

1 + 3 ·
∑

j a
4
j

· 0.03 · (1− ai)

rate(i, 4) = 0.03 · ai

and assign interaction times:

time(i, k) = −δ · ln(random)/rate(i, k)

where random is a random number drawn uniformly between 0 and 1. Select
minimal time, and change ai → ai + δ if k = 1, 3 and assign ai → ai − δ if
k = 2, 4. Use δ = 0.1. For panel C, we use variable values of step size −δ ·
ln(random) in panel C. The simulation is shown in Fig. 7.9 B,C).
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