
Topics in Digital Communications

April, 2015

Timing Synchronization

Fuyun Ling

© 2013, 2015 Fuyun Ling

fling@twinclouds.com



Topics in Digital Communications

April, 2015

Outline
• Overview 

• Classic timing synchronization techniques – non-data 

assisted

– Squarer Based Timing Recovery

– Early/Late Gate Timing Recovery

– Gardener’s Algorithm

• Data assisted timing synchronization techniques

– Mueller-Müller algorithm

– CDMA Early/Late Gate DLL

– CIR/EQ Estimates Based Timing synchronization

– Timing Synchronization in OFDM systems

• Timing adjustments using digital interpolation
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OVERVIEW OF TIMING 

SYNCHRONIZATION
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Block Diagram of a Digital Communication 

System
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Continuous time Signal Model

• The passband signal at the receiver frontend:

– ak: modulation data symbol

– h(t) overall channel impulse response (CIR)

– z(t) additive noise

– T: Tx symbol time interval or baud interval

• 1/T is the Tx symbol rate, or baud rate

– t : time delay introduced in transmission

– fc : carrier frequency
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Continuous time Signal Model (cont.)

• The received baseband signal can be expressed as:

• Here we assume:

– Perfect carrier synchronization,

– t < T

• The continuous received signal is sampled to generate 

digital samples for processing

– The sampling rate may be equal to, or higher than, the symbol 

rate 1/T
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Objectives of Timing Synchronization 

(Timing Recovery)

• To achieve best receiver performance, it is necessary:

(1) the receiver digital sampling frequency need to be synchronous 

to the Tx symbol rate (timing frequency synchronization)

• Receiver sampling rate is usually equal to 1/T, m/T or (m/n)/T

(2) The receiver sampling need to occur at the right time instant 

(timing phase) relative to the symbol waveform 

• The sampling phase need to be stable

• It may need to be adjusted (from time to time) to achieve best 

receiver performance 

• It is necessary to achieve both timing frequency and phase

synchronization 

– Timing synchronization is also called timing clock recovery. (We 

shall use these two terms interchangeably.) 
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Timing Synch Realizations
• In general, a second order loop can be used to achieve 

both timing frequency and phase synchronization

– It is called timing locked loop (TLL), timing control loop (TCL), or 

delay locked loop (DLL)

– The loop is driven by timing phase error (the difference between 

the sampling phase and the desired timing phase)

• Timing frequency and phase synchronizations can be 

jointly implemented but may be optimized independently

– The objective of timing frequency synch is to track long term 

average Tx sampling rate

– Timing phase may need to be adjusted based on short time 

channel change or time skipping due to, e.g., entering and exiting 

receiver sleep state

• Such adjustments should not cause sudden timing frequency change
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Timing Synch Realizations (cont.)
• Relationship between timing and carrier synchronizations

– Carrier frequency offset is caused by the differential between 

modulation and demodulation frequency references

– Timing frequency offset is caused by the difference between the Tx

symbol generating clock and Rx sampling clock frequencies

– Recovered carrier frequency clock in the receiver can be used for 

timing clock generation if the same frequency reference is used for 

demodulation and sampling clock generation

• Here we assume the transmitter modulation and symbol rate clock are 

always accurate and locked with each other

– If different frequency references are used for demodulation and 

sampling, timing clock recovery need to be performed separately 

from the carrier clock recovery

– In all digital implementation, carrier and timing adjustments are 

usually performed independently
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Optimal Timing Phase Selection

• For a single path AWGN channel with optimal receiver

– The overall channel impulse response satisfied Nyquist criterion, 

i.e., there’s no intersymbol Interference (ISI) with right sampling 

timing

– Overall channel impulse response has, e.g., raised cosine 

waveform
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Optimal timing phase selection (cont.)
• For ISI channels, equalizers are needed for good reception 

performance

– Performance of symbol rate EQ (SRE) depends on sampling phase

– Performance of fractional spaced EQ (FSE) is insensitive to 

sampling phase
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SRE

FSE

From Gitlin and Weinstein, BSTJ, Feb. 

1981 

– SRE need precise sampling 

timing phase to achieve good 

receiver performance

• Optimal timing phase difficult 

to determine in real time

– FSE only need stable relative 

timing, i.e., accurate sampling 

frequency

• FSE simplifies timing synch 

implementation
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Optimal timing phase selection (cont.)
• Above results are for single carrier receiver in general

– The sampling rate of SRE does not meet the Nyquist criterion of 

sampling

– Sampling rate of FSE satisfies the Nyquist criterion

• With proper guard-carriers the OFDM receiver sampling 

rate (equal to OFDM chip rate) satisfies Nyquist criterion

– No subchip sampling adjustment is necessary

• The timing phase selection is equivalent to optimal FFT 

window (the sample block for performing FFT) placement

– The FFT window should contain one complete period of the data 

convolve with channel or contains most of the data energy

– The optimal placement may not be unique
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A Typical Digital Timing Locked Loop

• Operations of a second order timing locked loop (TLL)
– The input r(t) is sampled at r(nTt) according to the timing phase value 

contained in the register D1.

– The sample phase is compared to the desired timing phase t0 by phase 

error detector to generate phase error Dt with a phase unit, e.g., T

• The phase error detector has a gain kd (number unit/phase unit)

– The phase error is scaled by coefficients a1 and a2 and fed to the 

perfect integrators with registers D1 and D2
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A Typical Digital Timing Locked Loop (cont.)
• Operations (cont.)

– The register D2 contains the (scaled) timing frequency offset 

value

• D2 can be set, reset or modified by external circuitries, e.g., 

– initial acquisition block for setting initial frequency value

– carrier synchronization block for estimated local oscillator frequency offset

– The register D1 contains the timing phase offset value (in unit of, 

or proportional to, T)

• The scaled value of D2 is added to D1 every T (constant phase 

increment due to frequency offset)

– The changed D1 value modifies the timing sampling phase by the 

sampling phase controller and thus complete the loop

• The sampling phase controller has a gain kc (phase unit/number unit)

– TLL is a case of PLL

• The first and second order gains are k1=a1kckd and k2=a21a22kckd, 

respectively
14
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A Typical Digital Timing Locked Loop (cont.)
• The linearized system equation is:

– Using time impulse invariance mapping z = (1-s)-1 we convert the 

system equation to s-domain:

– The two roots are:

– System is stable as long as

– System critical damped if

– System under damped (oscillating when converging) if 

– Denominator in standard second order linear system form:
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CLASSIC TIMING 

SYNCHRONIZATION TECHNIQUES 

– NON-DATA ASSISTED
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Squarer Based Timing Recovery

• Block Diagrams

– Square-law timing recovery of PAM signal (real)

– Envelop timing recovery of QAM signal (complex)
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Squarer Based Timing Recovery (cont.)

• Analysis of PAM Signal timing recovery

– The baseband received signal can be written as

– The expectation of the squared form of        is:

• It is periodic with a period of T

– It can be shown (Poisson Sum Formula):

Where 
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Squarer-Based Timing Recovery (cont.)

• Analysis (cont.)

– For conventional communication signal with an excess 

bandwidth less than 1/T, Dl ≠ 0, only for l = -1, 0, 1

– The term with D0 is a DC term, D-1 = D1

– x2(t) is bandpass filtered around 1/2T to remove the DC and 

interference/ noise terns, to extract the cos(2t/T) component
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Squarer-Based Timing Recovery (cont.)
• Discussion

– Only signal at the transitional bands (at bandedges) are useful

• Performance can be improved by bandpass prefiltering to remove the 

other parts of the signal

– It will not work if there’s no or little transitional band signal

– It does not necessary lock to the optimal timing phase

– Analysis of envelop timing recovery is similar

– Intensive analog processing is needed for such implementations

• High sampling rate will be desirable if to implement using digital signal 

processing (DSP) but requires high computational complexity

– For today’s modem implementations, it is advantageous to 

implement timing recovery using DSP with lower sampling rate

• Timing recovery using baud-rate samples is especially attractive

– This method is not data assisted.  It can be performed 

independently of demodulation/decoding process.

– It is widely used in wireline modem implementations
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Early/Late Gate Timing Recovery

• Assume h(t) similar to a raised cosine waveform

• The right timing phase at the maximum eye opening has 

a derivative equals to zero

– The optimal timing phase can be

computed recursively

• This is an approximate form

of ML estimate

• This is another way to implement

squarer based timing recovery

• Lead to Early/Lage Gate implementation
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Early/Late Gate Timing Recovery (cont.)

• Approximated derivative by:

• We use 3 samples every T, i.e.

r(tk), r(tk+d) and r(tk-d), for tk=t+kT

with d < T/2

• Use

as the input to the timing 

loop that drives m’(tk) to zero

• In steady state, tk’s are the optimal

sampling timing phases and r(tk) are 

the samples for demodulation/decoding
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Gardener’s Algorithm

• This algorithm was proposed by Floyd Gardener in 1986

– It was derived based on the squarer timing recovery

• The input data are sampled at every T/2

– The samples at integer multiple of T, r(nT), are used by the 

demodulator/decoder

– The timing error detection (TED) function is defined by

– It is input to a timing loop to drive mG(tn) to zero

• This algorithm operates on the sample sequence spaced 

T/2, which is practical feasible for implementation

– Acceptable rate (1/T will be even better)

– Such sequence is convenient for timing adjustment using digital 

interpolation techniques described below
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Gardener’s Algorithm (cont.)

• An intuitive view of the algorithm

– Assuming the symbol waveform close to a raised cosine function

– At the optimal sampling time, r(nT) is an estimate of symbol an

– The TED mG(tn) is approximately a scaled version of 

– When h(t) is symmetric, nT is the optimal sample timing if and 

only if mG(tn) = 0

• It is not data assisted

– It is very similar to the data assisted Early-Late timing algorithm 

widely used in digital receivers, such as receivers used in 

wireless CDMA receivers

– It may not work well if for low SNR and/or high ISI cases
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DATA ASSISTED TIMING 

SYNCHRONIZATION TECHNIQUES
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All-Digital/Symbol-Rate Timing Recovery

• For today’s modem implementation, all digital processing 

at lower sampling rate is preferable

– Symbol rate (1/T) is probably the practically lowest possible rate

• Assume single path AWGN channel with no ISI

– p(t) satisfies Nyquist criterion, e.g., a raised cosine waveform

– We construct the timing discriminator function for t = kT:

– It is a monotonic decreasing function of t with m(0) = 0

• It’s shape (slop) is a function of the excess bandwidth b
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All Digital-Symbol Rate TR (cont.)

• To computer m(t), we define:                                    , 

where                    .  It can be shown:

• This is the Mueller-Müller algorithm widely used for 

timing recovery with symbol rate processing
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All Digital Symbol Rate TR (cont.)

• Discussion

– The output m(t) can be used to drive a TLL for timing phase and 

frequency synch

– For signals over channels that satisfy Nyquist criterion (no ISI), 

the timing phase generated is optimal (maximum eye opening)

– For general ISI channels, the timing generated will be stable but 

may not be optimal

• Additional methods to determine optimal timing delay may be used for 

generating sample for generating Tx symbol estimates

– It is a data-assisted method.  Tx symbols ak’s and their rough 

timing (to within a fraction of a symbol interval) should be known.

• Suitable to be used in training mode.

• Tentative decisions may be used instead of true Tx symbols.
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CDMA Early/Late Gate Delay Locked Loop
• In a CDMA system, the SNR at chip level can be very low 

at operation point, the early/late gate timing recovery 

method described above does not work well

• For CDMA receivers the early/late gate approach is 

modified by incorporating pilot PN sequence despreading

– CDMA receiver usually implemented as a Rake structure

– Each rake finger corresponds to a single path of a multipath 

channel with certain delay and its CIR similar to RCOS

– The Tc spaced early/late samples of each rake finger correlate 

with the corresponding PN sequences (despread) to improve SNR

• The despread output approximately follows the channel path CIR

– It is usually called the delay locked loop (DLL) in CDMA literature

– Each Rake finger has its own DLL

– It is the most popular timing recovery approach in CDMA systems
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CDMA Early/Late Gate DLL (cont.)

• CDMA DLL operation

– The received signal are sampled at every Tc/2 (Tc is chip interval)

– The approximate optimal timing (delay) ti of the i-th finger is 

determined by searchers when the i-th path is found

– Assume each CDMA pilot symbol consists of Np chips

– The n-th CDMA pilot symbol corresponds to the chip sample 

sequence                                             for the i-th finger

– The early and late gate outputs of the i-th finger is formed by

where pp(n,k) is the k-th chip value of the n-th pilot symbol

– The delay error metric is 

– mi(n) is fed to the i-th DLL to control the sampling delay for 

driving mi(n) towards to, and maintaining at, zero
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CDMA Early/Late Gate DLL (cont.)
• The operations of CDMA DLLs (cont.)

– When mi(n’) is zero, the delay tn’,i is optimal, which is used for pilot 

and data despreading

– The pilot despread output of center samples:

is the channel estimate of the i-th path 

– The despread output of center samples by data spreading 

sequence are data symbol estimates distorted by channel

– The despread data symbols are weighed by phase and magnitude 

of the complex conjugate of the channel estimate to generate data 

symbol estimates for finger combining and demodulation.

– When CDMA receivers operate at low SNRs, as most likely the 

case, a timing phase resolution of Tc/8 would be sufficient
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CDMA Early/Late Gate DLL (cont.)

• Rake finger block diagram

– Normally, 8 Tc/8 samples are shifted into the delay line when 

processing a chip sample

– If an adjustment is needed, 7 or 9 samples will be shifted into the 

delay line instead of 8
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Channel-Impulse-Response/Equalizer Coefficient 

Estimates based Timing Synchronization
• CIR/EQ for communication over multipath channel

– To achieve desirable performance for communication over 

multipath channels at higher SNR, it is necessary to use some 

form of equalization techniques

– Equalizer coefficients can be generated directory from the 

received signal or derived from estimated CIR coefficients

– An OFDM receiver can also be viewed a form of equalizer

– Timing synchronizations in the receiver of a single carrier system 

is to determine the starting position of received data signal 

samples to convolve with the equalizer coefficients

• Samples back-off may be needed. 

– In an OFDM system, time synch is to determine the position of 

the FFT window on the data signal sample sequence
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CIR/EQ Estimates Based Timing Synch (cont.)

• Pilot/reference signals in data transmission

– In such communication systems, known symbols, called pilots or 

references, are often sent together with data signal 

• Such pilot signals are usually sent at the beginning of data 

transmission, during data burst, or distributed along with data signals

– Pilot signals are used for initial acquisition and other 

synchronization tasks.

– Pilot signals are also used for channel estimation, i.e., to 

generate the estimates of channel impulse responses (CIR) 

and/or Equalizer coefficients, directly or indirectly

– Once the reception is established, if data detection has little or 

no error, CIR and EQ coefficients can be generated/updated 

using the detected data symbols
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CIR/EQ Estimates Based Timing Synch (cont.)

• Implementation of timing phase synch in such systems

– In communication systems with pilot signal embedded in data 

transmission blocks

• CIR/EQ coefficients are generated or updated every data block and 

proper data segments are then selected 

• Namely timing phase synch is done through CIR/EQ estimation for 

each received data block

– In systems the pilot signal is only sent at the beginning of data 

transmission

• CIR/EQ is estimated at initialization and updated during receiving 

using decision recovered

• Additional increment or decrement may be needed occasionally where 

the coefficients shifts due to various reasons
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CIR/EQ Estimates Based Timing Synch (cont.)

• Determine optimal timing sampling phase

– For sub-Nyquist rate, e.g. symbol rate, sampling processing

• It is important to select optimal sampling phase to ensure best 

possible receiver performance, but it is difficult in general

• One simple but effective method is to have multiple samples per 

symbol but only use the T-spaced stream with the highest energy

– For Nyquist rate, e.g., fractional symbol rate sampling (single 

carrier system) or OFDM system with proper guard-carriers

• No sub-sample-spacing adjustment is needed

• Implementation of timing frequency synchronization 

– Timing frequency is usually estimated at the initialization stage

• Timing frequency error can be determined from the timing phase error 

change from sample to sample or from burst to burst 

• Timing frequency error may also be corrected based on estimated 

carrier frequency error
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CIR/EQ Estimates Based Timing Synch (cont.)
• Implementation of timing frequency synch (cont.)

– In data mode, the residual timing frequency error is reflected in 

and will be corrected when there is a consistent increase of 

positive or negative timing phase error increase

– It should be noted the timing frequency error has less impact to 

receiver performance than carrier frequency error

• E.g. if there is 2 ppm XO error, the impact will only be seen, say, after 

104 samples

– Timing frequency adjustment should have a long time constant

– Timing frequency adjustment should not respond to occasional 

large phase error adjustment

• Which could due to sudden appearing disappearing of a new path in a 

wireless fading environment or due to other reasons, such as the 

coefficients drifting in a fractional spaced equalizer
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Timing Synchronization in OFDM systems
• In OFDM system, timing synchronization need to address 

two aspects: Sampling frequency and Positioning of the 

FFT window

• OFDM is usually tolerant to sampling frequency error

– It may only need to be fine-tuned during data mode

• Due to that Nyquist rate sampling is commonly used, no 

subsample sampling phase optimization is needed

– The timing adjustment is at a resolution of an OFDM chip

• Thus, most important and challenging task is to determine 

the position of FFT window, which is determined by CIR.

– FFT window position can be initialized by

• Initial estimation of CIR using special sequences/TDM pilots, if available

• Estimate based on cyclic preamble (CP)
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Timing Synchronization in OFDM systems (cont.)

• The criterions of determining the position of FFT window:

– The RX CP shall contain the first arriving path (FAP)

• If possible add some back-off

– The Rx CP should contain the last arriving path (LAP)

– If not possible to satisfy both, Rx CP should cover the paths with 

most of the energy
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OFDM Timing Synchronization (cont.)
• Timing Synch initialization 

– Special sequence/TDM pilot Method

• Generate an estimate of CIR

• Determine initial FFT window position based on such estimated CIR

– CP based Delay-and-correlation Method 

• CP is a repetition of the last portion of the OFDM symbol

• delay-and-correlation:

• Determine OFDM symbol timing with: 
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OFDM Timing Synchronization (cont.)
• Timing tracking in data mode

– In most OFDM systems, FDM pilots are inserted for frequency 

domain channel estimation (FCE) for demodulation

– For timing tracking, time domain CIR can be generated from FCE 

by iFFT

– For every OFDM symbol or every burst OFDM symbols, CIR is 

used to determine the optimal OFDM Rx timing according to the 

above criterions

• FFT windows will adjusted by integer number of samples accordingly

– If such adjustments are consistently in one direction, it is an 

indication of sample clock frequency error

• Sample clock frequency need to be adjusted to correct such error

• Sample clock frequency should not be changed if such adjustments are 

random or only happen rarely

– It could due to other reasons, e,g, multipath appearing or disappearing, or 

due to receiver sleep, rather than sampling frequency error
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Introduction

• To correct and change receiver timing, sampling phase 

need to be adjusted

• In early digital receiver designs such changes are done 

by changing the sampling instant of the AD converter

• Nyquist (1928) showed that an analog signal can be 

totally recovered from its samples if generated at a rate 

higher than twice of the highest frequency component 

– They are called Sampling Theorem and Nyquist Rate

– It also implies that samples with a different sampling phase can 

be generated from a Nyquist rate sample sequence

• This technique is called Digital Interpolation in the literature

• From 1960’s the research on and usage of digital signal 

processing (DSP) had greatly increased
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Introduction (cont.)
• Along with the popularity of DSP, digital interpolation also 

attracted more and more attention

– Papers on digital interpolation started appearing in early 1970’s, 

e.g., Schafer and Rabiner (1973)

– The most well know literature on this topic is the book: Multirate

Digital Signal Processing by Crochiere and Rabiner, (1983).

• In mid 1980’s it was proposed to use digital interpolation to 

generate a sample sequence from another sequence with 

a different rate for timing recovery in echo cancellation 

modems, e.g., Shahid Quresh, Codex Corp., Jan. 1985

• This approach was implemented in Codex V.32 modem 

commercialized in 1986/1987 time frame

– It is probably the earliest commercial modem products with timing 

recovery based on digital interpolation technique
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Introduction (cont.)
• Floyd Gardener did similar work independently for 

European Space Agency also in mid or late 1980’s 

– I am not sure exactly what was the time frame of this work

– His papers: Interpolation in digital modems part I and II 

published in IEEE T-Comm 1993 March/June had become the 

most widely cited reference on this topic

• Digital interpolation based timing recovery has become 

standard technique in today’s digital modem 

implementation
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Introduction (cont.)
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Sampling Phase Control and Rate Conversion
• Sampling phase can be controlled digitally as follows:

– A Ts-spaced digital sample sequence passes through filter FIR1

with a group delay g1(f), as the reference sequence.

– Passing the input sequence through another filter (FIR2) with the 

same amplitude and phase response but a group delay of 

g1(f)+dTs, the output’s sampling phase is changed by dTs (d can 

be positive or negative) relative to is the reference sequence 

• In such way, the modem receiver timing phase is adjusted

• Rate conversion by sampling phase shift

– We generate a sequence such that each output sample with a 

negative group delay DTs relative to the previous sample, the 

output sequence’s sampling frequency is 1/DTs

• The sample to sample delay has to be negative for a valid sequence

– The sampling frequency ratio of the input and output is 1/D, which 

can be greater or less than one
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Rational Digital Rate conversion

• Considering up-sampling an input sequence by adding 

Nup -1 zeros and passing through a low-pass FIR filter

– Low-pass filter is for rejecting the images of the repeated 

spectrum due to zero insertion

• The output is down-sampled by taking every Ndown outputs 

of the FIR filter to achieve an rational rate conversion with 

a conversion ratio of Rc = Nup/Ndown
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Rational Digital Rate conversion (cont.)
• Remarks

– Rc can be greater than 1 (interpolation) or less than 1 (decimation)

– If Rc < 1, the low-pass filter need to prevent aliasing

– The low-pass filter can be considered as consisting of Nup

subfilters, each of which has L coefficients

– Because the input to the filter has Nup-1 zeros for every non-zero 

sample, the complexity is proportional to L to generate one output

• Its complexity is thus proportional to LxNdown independent of Nup

– We can view the FIR filter as having Nup subfilters, 0, …, Nup-1

• The subfilters have almost identical frequency responses, just differing 

by group delays.  The differences are constants in passband

• The difference of group delays between k-th and (k+1)-th subfilters is 

equal to Ts/Nup, with the k-th subfilter has higher delay

– The low-pass filter can be usually designed by using McClellan-

Parks, LS or other FIR filter designing methods
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Poly-Phase Filter Bank

• An efficient implementation 

of the rate converter is the

poly-phase filter bank

– The FIR subfilters discussed 

above are used here

– The output is generated by the

subfilter selected, 

– Then the filter index increments by Nup, modulo Nup, to select 

next one

– A new sample is shifted into the delay line when each modulo 

operation occurs 

• Poly-phase filter-bank can be used for sampling phase 

control with the resolution of phase shift equals to Ts/Nup
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Arbitrary Sampling Phase Shift
• To achieve higher resolution of sampling phase shift, a 

large number of subfilters will be needed
– This will increase the storage requirement

• An efficient way is to use two stage interpolation
– Linear interpolation approximation is most popular for the second 

stage.  Zero-th and high order approximations can also be used

• The linear interpolation (first order approximation):
– Assuming the desired sampling phase of sample n is equal to 

– Compute the outputs yk(n) and yk+1(n) of subfilters k and k+1 with 

sampling phases k    k+1 and

– The desired output is computed by

• The zero-th order approximation: 

• Higher order spline approximations can also be used
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Arbitrary Sampling Phase Shift (cont.)

Zero-th order approximation       First order approximation

(Linear Interpolation)
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Arbitrary Sampling Phase Shift (cont.)

• Distortion analysis

– Analysis of zero-th order approximation

• Total signal power:

– For flat signal spectrum with magnitude |Y()|=A in range [x, x]

• Assuming U subfilters, the maximum error |a/U| ≤ 0.5/U.  Error in 

frequency domain:                                                         , the total 

error due to distortion is:

• The signal to distortion ratio gsd =  

• Example: 
– For x = 0.8, gsd = 31622 (45 dB) 

– subfilters

53

2
21

( )
2

y

y

y

s

A
P Y d






 

 
 

   ( / )( ) /j j U jY e e Y e Ut  t a t  a  

2 2 3
2

2 2

2

1 1 0.5
( ) /

2 2 12

y y

y y

yj

e

A
P Y e U d A d

U U

 
t

 


 a   

   

 
   

 
 

2 212s e yP P U 

410 12 129yU  



Topics in Digital Communications

April, 2015 © 2013, 2015 Fuyun Ling

fling@twinclouds.com

Arbitrary Sampling Phase Shift (cont.)
• Distortion analysis (cont.)

– Analysis of first order approximation (linear interpolation)

• Total signal power is the same as before

• The frequency response of the filter with linear interpolation is

• The error in frequency domain is:

• Using a(1a) ≤ 0.25, we have an upper bound of the total error energy

• The signal to distortion ratio is then higher than

• For y=0.8, gsd=45dB,                                            subfilters
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A Design Example of All Digital Timing Loops
• We consider a (non-adjustable) XO based design 

– The input is at a fixed sampling rate of 1/Ts, approximately equal to 2/T

– It is essentially a second order loop. Its components are: 
• D2 contains estimated sampling frequency error

• D1 contains desired sampling phase represented by an integer number 

corresponding to time delay t t  [0, Ts).

• Phase controller controls the sampling phase according to the value of D1(gain kc) 

• Timing phase error detector computes the difference between the current phase 

and the desired phase (various implementations, gain kd)

• The units of kd and kc are timing-unit/integer-unit and integer-unit/timing-unit, 

respectively.

– The output samples are at 2/T (usually close to input sampling frequency)
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All Digital Timing Loop Design (cont.)
• Operations of the digital sample phase controller

– It uses a poly-phase filter bank with 2L subfilters.  (L = 3 in the figure)

– The phase register has M+K bits, which is interpolated as an unsigned 
integer with maximum value is equal to one
• The value of the L MSBs, k, determines which two subfilter to use

• The middle M-L bits (unsigned) is the value of 0 ≤ a  1 

• The K LSBs are needed for phase error accumulation as k2 is small

• The number is unsigned.  It will wrapping around when overflow

– By defining phase-error of Ts/2 to be one, the gain kc = 1

– Shift controller operations
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All Digital Timing Loop Design (cont.)
• Design of the Interpolation filter for poly-phase filter bank

– Signal is sampled at Ts.

– The filter’s passband is [y y], which is of interest for interpolation

• The passband should be as flat as possible, but also as necessary

– Stop bands are the image bands of the passband due to zero insertion.

• The attenuation of stop bands determines the uniformity of the subfilters

– The transitional bands are the bands between the stop and pass bands

• It can be chosen as “don’t care,” with very low weighting, for FIR filter design.  

• The aliased signal in these bands does not affect the results of interpolation

– The filter can be designed using various FIR filter design tools

– An example of an interpolation filter prototype with Nup=2L subfilters:
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CDMA DLL with Tc/2 Samples and Linear 

Interpolation
• For low SNR applications, four 2-coefficients linear interpolating 

subfilters can be used to generate Tc/8 samples from Tc/2 input

• The subfilter selection is controlled by the phase register of DLL
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CDMA DLL with Tc/2 Samples and Linear 

Interpolation (cont.)
• The simple linear interpolating coefficients shown in the above 

figure are: (a, b) = (1.0, 0.0), (0.75, 0.25), (0.5, 0.5), (0.25, 0.75)

• They should work fine for demodulation, however they have 

different gains to random data input

– It will cause problem when the output need to be normalized by the power 

of the random input data, e.g., for searcher with fixed threshold

• The samples at t and t+0.5T are correlated with correlation coefficient r

• The output power is equal to (a2+b2+2abr) times the input power

• If the received filter is a square-root RCOS filter with 1/8 excess bandwidth, the 

correlation coefficient r  0.635 (see figure)
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• We may also determine the coefficients by 

designing a 7 tap lowpass filter
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THE END
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