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These solutions are meant to apply for both the first and second editions. The exer-
cises are mainly the same in the two editions; however, there are some differences and the
exercise numbers have changed in many cases. To avoid confusion, the exercise statements
are given along with the solutions so it is clear which problem the solution is for. The ref-
erences are numbered as in the second edition, but I have included enough information to
find a reference even one does not have the second edition.

In addition, I have tried to indicate the differences between the exercises in the two
editions. The statement of the exercise may be slightly different from the final published
version since there were some typos and grammatical corrections in the published version.

Many of the solutions below are expressed in words rather than equations. In the
view of the author the exercises are an extension of the text. The main purpose is to not
to solve mathematical problems but to increase understanding. In some cases this means
working out mathematical expressions in more depth than is desirable in the text; it is better
not to load the text with details but rather to describe the physical effects with only essential
mathematics and have exercises that go into more depth. In many cases it is appropriate to
go to references rather than for me to write out solutions; if the reader goes to the references
he/she learns more than just the solution to the particular problem!

Many solutions or part of the solutions were provided by Benchen Huang. I have
tried to indicate in every case the parts provided by him by giving credit to "Benchen” or
”Benchen Huang”.

At the end are two separate appendices:

One is copies of pages from Pines’ book with detailed solution for a problem in Chapter 5.
The other is the detailed solution of the two site Hubbard model by Luke Shulenberger.

NOTES:

Solutions not done for Chapters 16 and 17 as of September 16, 2021.

These solutions have NOT been checked carefully and in some cases the notation
may be different from the text. I hope the readers will let me know of errors and
corrections!

Many places have notes: NOT FINISHED or ADD MORE or similar comments.



2 Solutions to exercises

There are two sets of solutions for chapter 5. The first is by RMM and it refers to
the extensive derivation by Pines copied in Appendix T. The second set is due to Benchen
Huang. It is very detailed but has fewer comments.
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SOLUTIONS

There are no exercises in Chapters 1 and 2.
Solutions for Chapter 3

Exercise 3.1. Show that the many-body Schrodinger equation (3.13) also results from
explicit variation of the energy in (3.9) without use of Lagrange multipliers.
Solution:
In (3.9) the wavefunction does not need to be normalized. If we vary the wavefunction in
(3.9), then we must consider the variation in both numerator and denominator. The simplest
form is to vary the bra and the ket independently which leads to the variational equation
0F 1 5 (U|H|W)

51w = gy MM gy M =0 5D

which immediately gives the desired result
H|U) = E|T). (S.2)

If we insist that that the bra and ket are not independent, then we arrive at equations
that are the sum of a term like the one above plus the complex conjugate equal to zero.
This is equivalent since the value for the energy must be real, we also have the equivalent
expression

(U|H = E(V|. (S.3)

We can also write out explicitly the expressions in the form of a functional variation like
in Appendix A.

(V)W) ((GU|H|W) + (V|H]6W)) — (V[H|V)({5¥]|¥) + (¥[|0V))
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Exercise 3.2 Show that the independent-particle Schrodinger equation (3.36) is a spe-
cial case of the many-body solution. First show this for one particle; then for many non-
interacting particles.

Solution:

For one particle the result is simply that the sum in the many-body equation is just one
particle and there is no interaction.

For many electrons the essential point is that the particles are fermions and there no inter-
action terms. At this point we are ignoring spin—orbit interaction, so the problem reduces
to independent problems for the two spin states. Thus this problem is the same as Hartree-
Fock with no interactions. In that case the essential point is that the orbitals in the many-
body wavefunction Eq. (3.43) are given by which leads to the Hartree-Fock equations in

Eq due to

Benchen Huang
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Eq. (3.45) or 3.46. This is the desired result since there are no interactions.

A key step in the logic is in Exercise 3.6 that the solutions of the independent-particle
Schrodinger equation (3.36) are functions that are orthogonal, which is a general property
of second order differential equations. For orthogonal orbitals the determinate simplifies
and the proper expression for the antisymmetric wavefunctions for many fermions is given
by the independent-particle function that are orthogonal which the requirement that they
are also normalized and IV orbitals are filled for IV electrons of a given spin, i.e., one it
obeys the exclusion principle that there is particle per orbital. This applies to both ground
state with only the N lowest energy states occupied or excited states with some of higher
states occupied.

Exercise 3.3 As part of his undergraduate thesis, Feynman showed that the force theorem
applied to a nucleus leads to the force being exactly the electric field at the given nucleus
due to the charge density of the rest of the system (electrons and other nuclei) times the
charge of the given nucleus. Derive this result from (3.18).

(NOTE: it would be better to refer to the following equation (3.19).)

Solution:

As shown by (3.19), the force is the field of the nucleus acting on the charge of the rest of
the crystal. Partial integration yields the desired result that the force is the electric field at
the given nucleus due to the charge density of the rest of the system (electrons and other
nuclei) times the charge of the given nucleus. This can be written out explicitly using the
fact that in a system of ion and nuclei viewed as fixed positive charges Z;, in units where
le] = 1 the external potential acting on the electrons is:

Veat (F= =3, Zr__ And then we can do the differentiation:

|Ry—7
OB _ N~ __Z1Zy  Bi— Ry (S.5)
OR; = |Rr — R;|? |R; — Ry
Oeeecion [ oy et _ [ ey 21 JT s
R, O |Ry = 1% | Ry — 7]

So that we have for the force:

. Eotoei z Ry — 7 VAYA R, — R

F]:—6 elei ion :_/dgrn(f») _ I }EI r +Z _ I i IEI }EJ7
Ry |Rp — 712 |Rp =7 57 |Rr — Ry |R — Ry

(S8.7)

which has the interpretation as Coulomb force on nucleus /.

Exercise 3.4 Derive the additional terms that must be included so that the expression for
the force given by the force theorem is identical to the explicit derivative of the energy, if
the basis depends explicitly on the positions for the nuclei. Show that the contribution of
these terms vanishes if the basis is complete.

Solution:

The key step in deriving the theorem is that the terms involving the derivative of ¥ in
(3.18) vanish. This follows from the general requirement that the energy is minimized for
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the exact ground state W. But what does minimized mean? If there is a complete basis set it
is minimized with respect to all possible variations and there is no linear term in the energy
as a function of any possible variation of W. However, if the basis set is not complete and
it depends on the nuclear positions (e.g., , a finite set of orbitals centered on the nuclei)
the ground state is minimized only with respect to all possible variations within that set of
orbitals. In that case there can be a linear variation of the energy as a function of ¥ with
the nuclear positions that does not vanish. These are called Pulay corrections.

It is useful to note that if the functions do not depend on the nuclear positions, the terms
vanish even if the basis set is not complete. One of the great advantages of plane waves is
that the functions are not tied to the nuclei. This also applies to real-space grids so long as
the positions of grid points are not constrained and are independent of the nuclear positions.

Exercise 3.5 Derive the stress theorem (3.23). Show that this equation reduces to the
well-known virial theorem (3.24) in the case of isotropic pressure and Coulomb interac-
tions.

Solution:

The expression is simply a scaling of space as described in the text. The details require
careful formulation and they can be found in the 1985 paper by Nielsen and Martin [162].
The virial theorem follows if one uses the relation to pressure given below (3.23). Often
the theorem is quoted only for the special case of P = 0.

Exercise 3.6 Show that the relations for non-interacting particles given in the equations
following Eq. (3.36) remain valid, if a fully antisymmetric determinant wavefunction like
Eq. (3.43) is created from the orbitals. Note that this holds only if the particles are non-
interacting.

Solution:

The key step is explained in the solution of Exercise 3.2 and repeated here in slightly differ-
ent words. Note that the particles are non-interacting, which is stronger requirement than
that they are independent; the latter can occur in a Hartree-Fock-type approximation even
though interactions are included approximately. The solutions of the independent-particle
Schrodinger equation (3.36) are functions that are orthogonal, which is a general property
of second order differential equations. For orthogonal orbitals the determinate simplifies
and the proper expression for the antisymmetric wavefunctions for many fermions is given
by the independent-particle function that are orthogonal. It is not stated explicitly in the
statement of this exercise, but it is implicitly assumed that the orbitals are normalized and
N orbitals are filled for IV electrons of a given spin, i.e., it obeys the exclusion principle
that there is particle per orbital. This applies to both ground state with only the N lowest
energy states occupied or excited states with some of higher states occupied.

Exercise 3.7. Derive the Fermi—Dirac distribution (3.38) for non-interacting particles
from the general definition of the density matrix (3.32) using the fact that the sum over
many-body states in (3.32) can be reduced to a sum over all possible occupation numbers
{nZ} for each of the independent particle states, subject to the conditions that each ng can
beeither Oor I,and ), ny = N°.
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Solution:
If one treats a fixed number of fermions, the probability is difficult to calculate due to the
number constraint. However, if the number of fermions is not conserved, then the occu-
pation of each state is zero or one weighted by the Boltzmann factor, independent of the
occupation of all other states. The partition function for the entire system is the product of
partition functions for each state . It follows immediately that the probability of occupation
of each state given by

s, O0+lePd 1

fi - 1+ e Be? T ePed 1
The final expression follows using the fact that the chemical potential u represents the
energy of particles in a reservoir that can supply arbitrary numbers of particles. Then the
above formula holds except that the Boltzmann factor depends upon the difference of the
energy for a fermion in state ¢ and the energy of the reservoir which can supply or absorb
any number of fermions at energy . This leads to the expression (3.38),

1

fi= eBEf—n) 117 (5.9)

(S.8)

Exercise 3.8 Following Exercise 3.7, show that Eq. (3.35)) simplifies to Eq. (3.37) for
any operator in the independent-particle approximation.

Solution:
The expectation value in Eq. (3.35) can be written in terms of the eigenvectors of the
hamiltonian as in Eq. (3.32), so that Eq. (3.35) can be written as a sum over eigenstates with
probability given by the Boltzman factor in Eq. (3.29). In an independent-particle problem
the states can be classified by the set of occupations of 0 or 1 in states ¢ with energy ;. In
Exercise 3.7 it was shown that for independent particles in states with occupation 0 or 1, the
Boltzman factor leads to the probability of occupation 1 given by f; defined in Eq. (S.9)
independently for each independent-particle state . This is the physical reasoning that
explains the form in Eq. (3.37), which can also be expressed in terms of the independent-

From Benchen’s particle density matrix p = >, |¢7) f7 (¥7|, given in Eq. (3.40).

notes Since we know that p = > [47) f7 (7|, we have:
(0) = Trp0 = 3 _(Willy]) f7 (47 101w3)
2]
= Z fﬂlﬁﬂé(z |@3) (W) [49) (S.10)
J %
=D _ [T I01))

Exercise 3.9 Why is the independent particle density matrix (3.41) diagonal in spin? Is
this always the case?

Solution:
As discussed at the beginning on this chapter, in much of this book the expressions as-
sume spin is conserved and one can diagonalize to treat spin up and down independently.
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However, the density matrix is not always diagonal in the spins. If the hamiltonian is spin
independent, then this is sufficient for calculations of the energy, but the form with cor-
rect particle symmetry in general is a linear combination of up and down states. If there is
spin-orbit interaction, then of course spin is not separately conserved.

Exercise 3.10 Show that the Hartree—Fock wavefunction Eq. (3.43) is normalized if the
independent-particle orbitals are orthonormal.

Solution:
To find the norm (®|®) of the Hartree—Fock wavefunction in Eq. (3.43) we note that the
determinant can be expanded into N! terms, each a product of the IV independent-particle
orbitals. In the orbitals are orthogonal, for each of the N! terms in (®| the overlap integral
is non-zero only for one of the N! functions in |®). That term is the product of the N
overlaps (1;|1;), which is unity if the each orbital v; is normalized. Because of the factor
(1/N!)'/? the result is (®|®) = N!/N! = 1.

Exercise 3.11. Show that the Hartree—Fock wavefunction (3.43) leads to the exchange
term in (3.44) and that the variational equation leads to the Hartree—Fock equation (3.45)
if the independent-particle orbitals are orthonormal. Explain why the forms are more com-
plicated if the independent-particle orbitals are not orthonormal.

Solution:

If the the independent-particle orbitals are orthonormal then all integrals simplify, and the
needed expectation values can be written as shown in (3.44). The integrals over all the other
electron coordinates simplify because (1;|¢|;) = ;5. The two electron terms are non-zero
only if the orbitals involved are in either the same order in the two determinants or are
interchanged. This leads to the form in (3.44). In the general case (¢;|9|;) = S;;, and
the right hand side of (3.44) must involve integrals over four functions 4, j, k, [. The form
(3.45) follows straightforwardly from the variation of each independent-particle function.
The derivation of the equations has been written out in detail by Benchen Huang:

@l = (V= DS [ a0 |59+ Vi 0 )

1 . PR 1 o i
* V-2t 3 [ e ) o e )

1 o’* o * 1 (e _; ag
- —Z'CN;/drdrw (95" () g () )

- ;/dﬁpf*(f’) [—2v2 - Vw} ¥y (7)

1 S 1 Ok (= TG~ 1 o, Oj (~
e X[ e ) e (07 ()

4,§,0,0;
o
7

-5 3 [arrur @)

,J,0

re G

(S.11)



8 Solutions to exercises

Next we derive the Hartree Fock equation. Since there are constraints on N spin orbitals,
we have NV Lagrange multipliers:

S((P[H|®) — Zé (W7 =) N) = (60 |H|®) — ) €7 (507 |[7) + c.c.

1,0

-3 [ g (-39 4 Vearlu?

— 1 o * ok 1 " os 0
+ m%;j /d?“d?“ o; (W)% (™) |F— r—»‘ (08 (F)iﬁj (r)
i,5,0

(S.12)

The second and third term of the second equality involves permutation of ¢ and j indices.
Since the variation is arbitrary, we would have:

1 A Oj% 1 5 (A o
—5 Vit Ve ) [ difyg ()5 ()| w77
i, (S.13)
—Z/drw*ﬁ U (U () = €] + e =0
1 1 T5% A 1 05 (A a
3V Ve + 3 [ drs ) gy 5 )| 979
4,0 (S8.14)

ox 1 o (7 o, 0
3 [ ) ) ) = e
j =7
which are the Hartree Fock equations.

Exercise 3.12 Show explicitly from the definition (3.54) that the exchange hole around
each electron always integrates to one missing electron. Show that, as stated in the text,
this is directly related to the fact that “exchange” includes a self-term that cancels the
unphysical self-interaction in the Hartree energy.

Solution:

Note: There is a misprint in (3.54) - a spurious vertical bar following the summation
sign. The correct expression is

Angpa(r, 051, 0") = Ang(r,051,07) = —8,00 |3, 07 ()07 (). (S.15)

The desired result is found by integrating the expression over all ¢’ for a given r., which
can be written

Jdr'Angpa(r, o5t 0) = 37,0 [ dr'yf (v)g (v/+) 7" (r)F (). (S.16)
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From the orthonormality of the functions, it immediately follows that the only non-zero
terms are for ¢ = j and the expression becomes

J dr’' Anppa(r, 051, 0) = —n(r,0). (S.17)

This is the desired relation since the probability of finding an electron at r with spin o is
n(r, o), the integral over the exchange hole is —1.
The derivation has been worked out in detail by Benchen Huang:
We start from the definition of n and An, and by performing several integrations to see the
physical meaning of exchange hole. We know that:
An(7 o7 o) =n(F o7, ') — n(7, o)n(i, o)

S.18
= Nge(7, 037, 0" (7, o (5.18)

If we integrate 7" and o', we would get:
Z/df'An(F,U;F’,U’) = (N — D)n(F,0) — Nn(7, o) = —n(7, o) (S.19)
If we integrate 7, 7" and o, ', we would get:

Z/dFdF’An(F,J; 7,0 )=N(N—-1)—N?>=—-N (S.20)

An(F, o7, 0")
d®r'ng (7, /d"’—:—l S.21
S [ #rmatrioitioh =3 - 21
So the exchange hole around each electron integrates to -1.

Exercise 3.13. Derive the formulas for the pair distribution (3.53) and the exchange hole
(3.54) for non-interacting fermions by inserting the Hartree—Fock wavefunction (3.43) into
the general definition (3.50).

Solution:

This is a bit tedious to write down (An explicit derivation is given below.) but it is straight-
forward to show that the expressions involve all pairs of orbitals since there are two ar-
guments (r,o and r’, o’) in the expression (3.50). One always finds two terms as in the
expansion of the 2 x 2 determinant in (3.53). This leads directly to (3.54) as sown in the
following exercise.

The derivation has been worked out in detail by Benchen Huang:

nHFA(Fa0'§7ﬂ7U/) = N(N — 1)/d773...d77N|\I/|2

_ 1 1 ¢i(r, o) ¢;(7,0)
—N(N—l)ﬁ(N_m!iZ o o) ¢jﬂ(f,7o,) (S.22)
,J
iy~ |iFo) 550 [
zz (", 0") (", 0")
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Note that in the summation, index ¢ and j could be the same. Now we can set one step
further to calculate the An:

Anpgpa(F o7, o) = nHFA(F,a;F',U’) — n(f’, U)n(f",a')
¢i(Fyo) ¢;(F,o
:72 (;517" o) 7;»/ / Z|¢l ||¢]T U)l
'L

2 2

— D7 (T 0)7 (7,0

7

S0 (P ()

7

a'a"

(S.23)

Note from Benchen: I’'m not 100 percent sure about the last equality because I don’t know
CHECK if xf(o)xi(0") = 050

Exercise 3.14 By expanding the 2 x 2 determinant in Eq. (3.53): (a) show that
Z/dr’Anx(r,a;r’,o’) = (N = 1)n(r,0), (S.24)
O./

where n(r, o) is the density; and (b) derive the formula (3.54) for the exchange hole.
Solution:
The determinant in Eq. (3.53) has the form D = ¢;(r,0)¢,(r',0’) — ¢,(r,0)p;(r', 0")
so that one-half the sum over all ¢ and j of the square of the determinant is the product
n(r,o)n(r’, o) — crossterm. The product is the probablity for uncorrelated particles and
the cross term is the correction. The sum over 7 and j vanishes except for the terms with
¢ = 7 and the same spin, which is exactly the expression in (3.54).
The explicit equations been worked out by Benchen Huang:

Z/df"anA(F,a,r ') /dr —

% Z Z/d’fj |¢7(F’ U)QSJ(FI’ OJ) - (bj(ﬁ U)(bi(’F/?U,)‘Z

o’ 1,

waz o) Z/drzmr o)
LY | o ’)@(ﬁa@] 917, 0)0;(7 )

o’ 4,7

= Naliio) - L5 | [ a637,0)0i0%. )| 6171047201

o’ i=j

= (N = 1)n(7,0)

(S.25)

Exercise 3.15. The relation (3.55) is a general property of non-interacting identical parti-
cles (see, e.g., Landau and Pitaevskii, Statistical Physics: Part 1 [278]). As shown in (3.54),
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Ang(r,o;1’,0') is always negative for fermions. Show that for bosons with a symmetric
wavefunction, the corresponding exchange term is always positive.
Solution:

For the case of non-interacting bosons, the wavefunction is a “permanent” - a symmetrized
wavefunction. All expressions are identical to those for fermions except that the wavefunc-
tion does not change sign when particles are interchanged. All results are the same except
there are no negative signs. Writing out the expressions leads to exactly the same expres-
sion for the joint probability for fermions and bosons except for the sign. This establishes
the relation (3.55) for both bosons and fermions.

Exercise 3.16 Derive the results stated after Eq. (3.57) that: (a) for a one-electron prob-
lem like hydrogen, the exchange term exactly cancels the Hartree term as it should; and
(b) for the ground state of two electrons in a spin singlet state, e.g., in helium, the Hartree—
Fock approximation leads to a V¢ sum of the external (nuclear) potential plus one-half the
Hartree potential.

Solution:

(a) For any case where there is only one single-particle wavefunction, the direct (Hartree)
potential and the exchange potentials are identical and cancel out leaving only the bare
potential, the potential due to the proton in H.

(b) For two electrons in the ground state in the Hartree-Fock uncorrelated approximation,
the two particles are in the same spatial state with up and down spins. The Hartree term
involves the total density so that it is 4 times that for one electron alone. However the
exchange term involves each electron separately (since it involves only electrons with the
same spin) so that it is 1/2 the Hartree term.

Exercise 3.17 Following the exercise above, consider two electrons in a spin triplet state.
Show that the situation is not so simple as for the singlet case, i.e., that in the Hartree—Fock
approximation there must be two different functions Vg for two different orbitals.

Solution:

This is really a simple problem stated in a complicated way. Two electrons of the same
spin cannot be in the same state. In Hartree-Fock this is apparent because the two-particle
wavefuntion is a determinant that vanishes if the two orbitals in the dedterminant are the
same.

Exercise 3.18 Derive Koopmans’ theorem by explicitly taking matrix elements of the
hamiltonian with an orbital to show that the eigenvalue is the same as the energy difference
if that orbital is removed.

Solution:

Solution due to Benchen
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We know that orbitals would satisfy the HF equation as:

L oo

1 Ok —y — o
3V Ve + Y [ ) gty (7] 42

ot (S.26)
1
=3 [ ) e ) ) =
J

First of all we could compute the value of €7 as:

€ =hi + Z Jijo; T Jiso=o; + Jiioto; — ZKij - Kj;, (5.27)
#i,0 i

where .J stands for the Coulombic repulsion term while K stands for the exchange integral.
In this formula, Ji; ;—o; is the unphysical term and it cancels with Kj;. If we remove a
electron away from orbital ¢, then we lost the single electron term of that orbital, interaction
between that electron with electrons in other orbitals, and interaction between that electron
with the other electron in the same spatial orbital but different spin, which is exactly the
expression of €. Since now we are considering a orbital not occupied, we have:

6;-7 S h“ + Z Jij70']» — Z Kij (528)
3,04 J

If we have one more electron occupying this orbital, we would get an additional energy

exactly the same as €7 .

Exercise 3.19. (NOTE: There is a error in the statement of the problem in the first print-
ing of first edition. Corrected in the second printing. This correct form is given here, with
the changes indicated by the italicized parts.)

For adding electrons one must compute empty orbitals of the Hartree—Fock equation
(3.45). Show that such an empty orbital does not experience a self contribution to the ex-
change energy, whereas for a filled state there is an attractive self term in the exchange.
This is responsible for much of the overestimate of energy gaps in the Hartree—Fock ap-
proximation.

Solution:

This result follows immediately from the definition, since the exchange term involves only
integrals over the occupied states. The gap is increased because this term lowers the filled
states, but not the empty ones.

Exercise 3.20 In a finite system Hartree—Fock eigenfunctions have the (surprising) prop-
erty that the form of the long-range decay of all bound states is the same, independent of
binding energy. For example, core states have the same exponential decay as valence states,
although the prefactor is smaller. Show that this follows from (3.45).

Solution:

This follows because each orbital is mixed with each other orbital by the exchange terms
and because of orthogonality. To see this consider the Schrédinger equation as written in
Eq. (3.46). If there were no exchange term V,, this would be a simple differential equa-
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tion and each bound state would decay at large distance with a value depending on its
eigenvalue. However, the non-local exchange term V I? in Eq. (3.48) has a different con-
sequence. To see its effect consider the action on state ;. The factor of 1/1; in Eq. (3.48)
is canceled leaving a sum over all the other occupied functions ;. Thus each orbital in
general has some part of the longest range behavior of the density. For a very localized
state like a core state the coefficient is very small (This can be seen in the expression in
square brackets is small because the overlap with extended states is small.) nevertheless it
is non-zero. Since the determinant is invariant to mixing the orbitals, it should be possible
to require that only one orbital has the longest range part and all the others are shorter
range, but this is not required and it is not the case for the eigenvectors in the Hartree-Fock
method.

Exercise 3.21 Show that all contributions involving ¢ and j both occupied vanish in the
expectation value Eq. (D.4).

Solution:

This follows because there is a double sum over ¢ and j. For each pair ¢, j there is another
7, ¢ that cancels it it since the denominator changes sign. A essential ingredient is that the
expectation value for must be real in which case the numerators are real and the same for
1,7 and 7, 1.

Exercise 3.22 Show that the correlation hole always integrates to zero, i.e., it rearranges
the charge correlation. This does not require complex calculations beyond Hartree—Fock
theory; all that is needed is to show that conservation laws must lead to this result.

Solution:

It is instructive to realize that this follows from the definitions of exchange and correla-
tion. The essential point is that it is the total exchange-correlation hole that is the physical
quantity. As stated in the text the division into exchange and correlation is arbitrary (but
useful) and we use the accepted convention that correlation is defined to be correlation
beyond Hartree-Fock. This is essentially what is in the text where it is stated that correla-
tion only affects the relative positions of other particles, with no change in the number. To
see this more mathematically one can start from the definition in terms of the many-body
wavefunction ¥ (ry,rs, ldots). If one particle is at position ry, the probability of finding
another at point r is py(r) [ drsdry ... |¥(rg,r,r3, 14, ldots)|?. The integral over posi-
tions r is [ drp(r) which counts all particles except the one at ry. This is a formal way of
saying the exchange-correlation hole integrates to one missing electron as stated in the text
after Eq. (3.58).

The fact the the exchange hole integrates to minus one follows from the fact that this ar-
gument applies as well to the approximation that particles are uncorrelated except for the
requirement of antisymmetry, as in Hartree-Fock. Since correlation is defined to be corre-
lation beyond Hartree-Fock, the correlation hole integrates to zero.

Exercise 3.23 As an example of the force theorem consider a one-dimensional harmonic
oscillator with hamiltonian given by —3(d?/da?) + 5 Az?, where A is the spring constant
and the mass is set to unity. Using the exact solution for the energy and wavefunction,
calculate the generalized force dE'/d A by direct differentiation and by the force theorem.
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Solution:
The exact ground state solution is an Gaussian 1(z) = (£)Y*exp(—(1/2)wz?) with en-
ergy Fo = (1/2)w with w = A'/? in units where the mass is unity. The derivative of
the ground state energy is dEy/dA = idEo /dw = ﬁ. The generalized force theorem
is dEy/dA = (dH/dA) = ((1/2)x?). Using a table of integrals for gaussians, the expec-
tation value of 22 gives ((1/2)22) = [ da(1/2)22[i(z)|2 = (£)V2 2 = L.
Exercises 24, 25 in first edition moved to App. D in second edition.
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Solutions for Chapter 4
Same as first edition

Exercise 4.1 Derive the expression for primitive reciprocal lattice in three dimensions
given in Equation (4.13).

Solution:
This can be derived using the fact that the cross product of two vectors as X ag is perpen-
dicular to both, as required in the definition of by, and the requirement that b, - a; = 27,
and similarly for the other vectors.

1

In terms of matrices b = 27 (a”) ™!, we can write out the explicit form as:

-1
A1g A2z A3y

b =27 a1y a2y azy (5.29)

A1z G2, A3

- 27 A N N

by = ﬁ[(a2yb32 — G2,a3y)1 + (A2:035 — A3:025)] + (A203y — G2yA34) kK]
o 1 7k (@ x @) (S.30)
- 0 A2x G2y G2z| = 9

A3z 3y A3z
And for the other two vectors the same procedures apply.

Exercise 4.2 For a two-dimensional lattice give an expression for primitive reciprocal
lattice vectors that is equivalent to the one for three dimensions given in Equation (4.13).
Solution:
This can be derived from the 3 dimensional form by taking cross products of a; and as
with the unit vector perpendicular to the plane, which can be written:

(S.31)

Exercise 4.3 Show that for the two-dimensional triangular lattice the reciprocal lattice
is also triangular and is rotated by 90°.

Solution:
Since the reciprocal lattice vectors are orthogonal to the respective real lattice vectors,
explicit construction shows that the reciprocal lattice is triangular and rotated by 90°. See
Fig. 4.1.

Exercise 4.4 Show that the volume of the primitive cell in any dimension is given by
Equation (4.4).

Solution:
Here we consider that “any” means D = 1,2 or 3 dimensions. Then it is a matter to work
out the expressions for a determinant of the square D x D matrix with columns the vector
components of the D vectors:

From Benchen’s

notes

From Benchen’s

notes
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api az; -+
aiz az -+ (8.32)

The algebra is the same as used in the previous problems.

The general solution in any dimension, including greater than 3, can be worked out by
induction using the fact that a determinant of dimension N can by expressed in terms of
indeterminists of dimension N — 1.

Exercise 4.5 Find the Wigner—Seitz cell for the two-dimensional triangular lattice. Does
it have the symmetry of a triangle or of a hexagon. Support your answer in terms of the
symmetry of the triangular lattice.

Solution:
The solution is given in Fig. 4.1 for the special case where the angles are 60°. In this
case the Wigner—Seitz cell is a hexagon. This must be the case since the negative is any
reciprocal lattice vector is also a reciprocal lattice vector. In 2 dimensions the lattice is
called “triangular” but in 3 dimensions the similar lattice is called “hexagonal.”

Exercise 4.6 Draw the Wigner-Seitz cell and the first Brillouin zone for the two-
dimensional triangular lattice.

Solution:
See previous problem. Note the Brillouin zone is rotated by 90°.

Exercise 4.7 Consider a honeycomb plane of graphite in which each atom has three
nearest neighbors. Give primitive translation vectors, basis vectors for the atoms in the unit
cell, and reciprocal lattice primitive vectors. Show that the BZ is hexagonal.

Solution:
See also Exercise 14.19. The lattice is illustrated in Fig. 4.5 and the primitive lattice vectors
are a; = (1,0)a and a, = (3, ?)a, where the nearest neighbor distance is a/+v/3. The
reciprocal lattice vectors follow from the definition and are by = (0, %)27r /a and by =
(-1, %)277 /a. Thus the BZ is hexagonal and the reciprocal lattice vectors are rotated by

30° relative to the real space vectors.

Exercise 4.8 Covalent crystals tend to form structures in which the bonds are not at
180°. Show that this means that the structures will have more than one atom per primitive
cell.

Solution:
All Bravais lattices have the property that if a is a primitive translation vector then na is
a translation vector where n is any integer. It follows that the points are always in straight
lines. If the bond angles are not at 180°. the atoms are not in straight lines and there must
be more then one atom per primitive cell.
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Exercise 4.9 Show that the fcc and bcc lattices are reciprocal to one another. Do this in
two ways: by drawing the vectors and taking cross products and by explicit inversion of
the lattice vector matrices.

Solution:

This is a matter of drawing the vectors to reproduce the figure in the text. The explicit
inversion is given in the solution to Exercise 4.1. The results are in Eq. (4.14).

Exercise 4.10 Consider a body centered cubic crystal, like Na, composed of an element
with one atom at each lattice site. What is the Bravais lattice in terms of the conventional
cube edge a? How many nearest neighbors does each atom have? How many second neigh-
bors? Now suppose that the crystal is changed to a diatomic crystal like CsCl with all the
nearest neighbors of a Cs atom being Cl, and vice versa. Now what is the Bravais lattice in
terms of the conventional cube edge a? What is the basis?

Solution:

The real space lattice is bee with the lattice vectors 1/2,1/2,1/2), etc., in units of the cube
edge unusually called a. The Bravais lattice is conventionally given in units of 27 /a, where
it is fcc with vectors (1, 1,0), etc. To derive this use the basic formula
- 2w (C_ig X 63)
by = —q
where da X d3 = |dz|||@3)|sin n where 0 is the angle between @ and d3 and n is the
normal unit vector, and Q = a; - (ds X d3).
There are 8 first neighbors and 6 second neighbors.

The Bravais is simple cubic with vectors (1,0, 0), etc., and the basis is two atoms that
can be chosen to have positions (0, 0,0) and (1/2,1/2,1/2).

(S.33)

Exercise 4.11 Derive the value of the ideal ¢/a ratio for packing of hard spheres in the
hcp structure.

Solution:
The ratio is twice the vertical distance between layers of close packed planes as de-
picted in Fig. 4.9. In units of a (the distance between spheres) the distance between layers
is [1—(1/2)% — ((1/2)tan(n/6))?]*/? = [1 — (1/4)(1 4+ 1/3)]*/2 = (2/3)'/2. So the re-
sultis 2 x (2/3)1/2 = (8/3)1/2

One can note that this is twice the height of a tetrahedron over its side length.

Exercise 4.12 Derive the formulas given in (4.12), paying careful attention to the defi-
nitions of the matrices and the places where the transpose is required.
Solution:
Explicitly the expression is

bl:c bly blz A1z A22 G3g
T
ba = bgz bgy bgz A1y A2y A3y [ = 27l

b3z bSy b3 A1z G2z (32

Exercise 4.13 Derive the formulas given in (4.18).

From Benchen

From Benchen
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Solution:
(k+G)F+T) = (kF +m)bi Y (v} +n;)a
i J

= (K +ma)(r] +15)65
ij (8.34)

=21 Y (kf +mi)(7) + )
= 2m (k" + ) (FF + 7l)

Exercise 4.14 Derive the formulas given in (4.19).
Solution:
We have to write 7+ T as:

A1y A1y G1z
(rF + n)a = (r1 +ny 72 + N2 73+ n3) a2, a2y a2; (S.35)
A3z A3y 03z

F+TP = F+T)(F+T)"

~—

A1z A1y Q12 | [Q1z Q24 Q32| |71+ M1
= [7"1 +ny re +neo 7‘3+n3] A2y A2y G2z | |Q1y G2y A3y | T2 + N2
A3y G3y A3, | Q12 G2, Q32| [T3 + N3

= (% + n)aa” (r* + n)”
(S.36)

For example, if the three basis vectors are orthogonal, then aa” actually represents a diag-
onal matrix with square of basis vectors, and the physical meaning of length here is more
straight forward. And the length of k 4+ G is the same way.

Exercise 4.15 Derive the relations given in (4.20) and (4.21) for the parallelepiped that
bounds a sphere in real and in reciprocal space. Explain the reason why the dimensions of
the parallelepiped in reciprocal space involve the primitive vectors for the real lattice and
vice versa.

Solution:

The expressions follow straightforwardly from the description in the text. The key point is
the the distance in any one direction is the distance to the plane that bounds the cell in that
direction. For the real space lattice the perpendicular direction is given by the reciprocal
lattice vector, and vice versa.

Exercise 4.16 Determine the coordinates of the points on the boundary of the Brillouin
zone for fce(X, W, K, U) and bee(H, N, P) lattices.

Solution:
For fcc X = (1,0,0)27/a (1/2 the reciprocal lattice vector (2,0,0)27/a) and the other
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points can be found using Fig. 4.10 and the fact that this is a cubic lattice with orthogo-
nal vectors the same length in the three directions. For bcc the expressions are analogous
with the point H == (1,0,0)27/a (1/2 the reciprocal lattice vector (2,0,0)27/a). See
Eq. (4.14).

Exercise 4.17 Derive the formulas given in (4.20) and (4.21). Hint: Use the relations of
real and reciprocal space given in the sentences before these equations.

This exercise was included by mistake. It is essentially the same as Ex. 4.15.

Here is a good exercise.
One of the derivations of the Bloch theorem is given in Eqs 4.23 to 4.31. Since the crystal
is invariant to translations, k is conserved and the hamiltoniancan be defined for each k in
the BZ and diagonalized separately for each k. Derive the formula for the eigenvalue of
the translation operator acting on the wavefuntions given in Eq. 4.30.

Solution:

If we apply the T;,, operator, we have:

Tm%; ('F) = w,; ('F + T:rn) = t?l t;w f?;”‘ ¢E('F)
= . . . BT . (S.37)
= exp [Zk' (mydy +mads + m3a3)] Y () = e mahp(7)

Exercise 4.18 Show that the expressions for integrals over the Brillouin zone Eq. (4.35),
applied to the case of free electrons, lead to the same relations between density of one spin
state n° and the Fermi momentum k% that was found in the section on homogeneous gas
in Eq. (5.5). (From this one relation follow the other relations given after Eq. (5.5).)

Solution:

This exercise is closely related to Exercise 5.4. The first expression Eq. (5.5) is the re-
quirement that the volume of the occupied states in k-space is (27)/Q times the number
of electrons per cell for each spin. In this problem you are asked to show that this is also
equivalent to the expressions in Eq. (4.35), applied to the case of free electrons. In this case
the bands are isotropic and filled to the Fermi energy, which is described by Eq. (4.35) if
the integrand f;(k) = 1 for k < kp and zero otherwise. Thus if we consider the integral
over filled states instead of the integral over the BZ in Eq. (4.35), the middle expression is
just Qrirea/Qpiiea = 1. Thus Eq. (4.35) becomes

Qeell /
dk f;(k) =1. S.38
(27T)d filled Il ) ( )

At this point we we have not specified what is €)..y. There is no periodic cell but in this

case the equivalent is the volume per electron (of each spin). As discussed in Exercise 5.4
the density can be viewed as the number of electrons IV in a large volume divided by the
volume 2, so that the volume per electron is the inverse of the density 2/N. Then Qcen
is replaced by £2/N. Then Q. is replaced by 2/N. Since the integral is the volume in k
space, we have

4 N
/ dk fi(k) = g(k%)g’ = (27r)35. (S.39)
filled

CHECK is this
right

due to Benchen
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Finally note that although we have used the artifice of a large volume, the final result is
simple in terms of the density % which is a physical quantity.

Exercise 4.19 In one dimension, dispersion can have singularities only at the end points
where E(k) — Eqg = A(k — ko)?, with A positive or negative. Show that the singularities
in the DOS form have the form p(E) o< |E — Eg|~'/2, as illustrated in the left panel of
Fig. 14.4.

Solution:
The DOS is the density of states per unit energy. For each band there is a state for each
k-point, the DOS is proportional to the volume k space per unit energy.
In one dimension with E(k) — Ey = A(k — ko)?, we have dE/dk = 2A(k — kg) =
2A|E — Fy|'/2. Thus the DOS is proportional to dk/dE = |E — Fy|~'/2. A signature
of one dimension is that the DOS diverges at the boundary.

Exercise 4.20 Show that singularities like those in Fig. 14.4 occur in three dimensions,
using (4.46) and the fact that E o< Ak? + B kz + Ok? with A, B, C all positive (negative)
at minima (maxima) or with different signs at saddle points.

Solution:
We can use the same logic as in the previous problem. To simply notation assume the band
is isotropic with A = B = C. If it is not isotropic the same logic but more complicated ex-
pressions. Then the volume in k-space is proportional to k2dk and the DOS is proportional
to k?dk/dE = |E — Ep|'/2. This the signature is the square root form shown in Fig. 14.4.
NOT FINISHED FOR SADDLE POINT. See [598] L. Mihaly and M. C. Martin, Solid
State Physics : Problems and Solutions.

Exercise 4.21 The “special points” defined by Monkhorst and Pack are chosen to inte-
grate periodic functions efficiently with rapidly decreasing magnitude of the Fourier com-
ponents. This is a set of exercises to illustrate this property:

(a) Show that in one dimension the average of f(k) at the k points = and 3 is exact
if f is a sum of Fourier components k + n%”, with n = 0,1, 2, 3, but that the error is
maximum for n = 4.

(b) Derive the general form of (4.41).

(c) Why are uniform sets of points more efficient if they do it not include the I" point?

(d) Derive the 2- and 10-point sets given for an fcc lattice, where symmetry has been
used to reduce the points to the irreducible BZ.

Solution:

(a) The statement of this problem is embarrassing. I confused the periodicity in real space
with Fourier components 2n7/a and functions that are periodic in reciprocal space with
Fourier components na. The problem should have said “Fourier components na, with n =
1,2,3. Because f(k) is a sum of cosines, if the sum is only up to n = 3 the sum of values
of the at the two points are the desired result (the average) plus terms A, [cos((n7/4) +
cos(3nm/4)], where A,, is the magnitude of the Fourier component. Each of the terms sum
to zero for n = 1,2, 3. However, if f(k) includes a Fourier component with non-zero Ay
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the sum is A4[cos((m) + cos(37)] = 244, which the maximum possible error. One has to
have more £ points to treat such Fourier components.

(b) The derivation of Eq. (4.41) follows the same logic for each direction in a three
dimensional crystal, which is given in the paper by Monkhorst and Pack [287]. Here we
consider orthogonal lattice vectors but it is generalizes readily to the general case. The
directions can be treated independently. It is easiest to see by noticing that the set of points
is equally spaced by G/N in each direction. The sum is over N k points from —(N —
1)(w/Na) to +(N — 1)(w/Na) which integrates a function exactly if it has only Fourier
components up to N. The proof follows from the relations:

72n—N7127r

4
N 2 (5.40)

W o 1 = ik, ma k
(m) - N T; e ) n
where k,, are the special points defined in Eq. (4.41). The sum is zero except for Fourier
component m an integer multiple of N. For m = I N where I is an integer, the phases
add constructively so that |IW| = 1. This is exactly what is expected for a grid that corre-
sponds to a lattice of vectors in reciprocal space separated by 1/N compared to the crystal
reciprocal lattice.

(c) Using the fact that =k are equivalent for properties like the sum of eigenvalues, etc.,
the total number of inequivalent points is always smaller for a given spacing. In general, the
I" point and other high-symmetry points are not representative of other points in BZ; hence
they are less effective in calculating the integral. Take 2D square lattice as an example, the
more general points have 8-fold symmetry while M points on the BZ boundary has only 4-
fold and I' point is not degenerate at all. So excluding these points can make the sampling
more efficient. This makes a large difference in three dimensions as illustrated in the text
and part (d).

(d) This is left for the reader to do explicitly. The idea is that the sum is reduced to
1/48 of the BZ by symmetry and the 2 and 10 point formulas are efficient because they
have fewer points on the boundaries of 1/48 of the BZ; each point not on a boundary is
equivalent to 48 points in the full BZ. Points on the boundary are equivalent to fewer other
points, and the zone center and zone corner are the worst because they are unique.

Exercise 4.22 The bands of any one-dimensional crystal are solutions of the Schrodinger
equation (4.22) with a periodic potential V (z + a) = V(). The complete solution can be
reduced to an informative analytic expression in terms of the scattering properties of a
single unit cell and the Bloch theorem. This exercise follows the illuminating discussion
by Ashcroft and Mermin [280], Problem 8.1, and it lays a foundation for exercises that
illustrate the pseudopotential concept (Exercise 11.2, 11.6, and 11.14) and the relation to
plane wave, APW, KKR, and MTO methods, respectively, in Exercise 12.6, 16.1, 16.7, and
16.13.)

An elegant approach is to consider a different problem first: an infinite line with
f/(z) = 0 except for a single cell in which the potential is the same as in a cell of the
crystal, V(z) = V(z) for —a/2 < x < a/2. At any positive energy ¢ = (h?/2m,)K?,
there are two solutions: v;(z) and v,.(x) corresponding to waves incident from the left
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and from the right. Outside the cell, ¢; (z) is a given by ¢ (z) = €57 + re 57 4 < — 2,
and 1, (z) = te'f? x> a/2, where t and r are transmission and reflection amplitudes.
There is a corresponding expression for v,.(x). Inside the cell, the functions can be found
by integration of the equation, but we can proceed without specifying the explicit solution.
(a) The transmission coefficient can be written as ¢ = |t|e?®, with § a phase shift which is
related the phase shifts defined in Appendix J as clarified in Exercise 11.2. It is well known
from scattering theory that [¢|? + |r|? = 1 and r = =i|r|e®®, which are left as an exercise
to derive.

(b) A solution ¥(z) in the crystal at energy e (if it exists) can be expressed as a linear
combination of ¢;(z) and ¢, (z) evaluated at the same energy. Within the central cell all
functions satisfy the same equation and ¢)(x) can always be written as a linear combination,

W(z) = Api(z) + By (2), —g <z< g (S.41)

with A and B chosen so that ¢(z) satisfies the Bloch theorem for some crystal momentum
k. Since t(z) and d(x)/dz must be continuous, it follows that ¢(%) = ¢?**4)(—%) and
Y/(%) = e'k*y/(—2). Using this information and the forms of ¢;(2) and 1, (z), find the
2 x 2 secular equation and show that the solution is given by

2t cos(ka) = e 1 (12 — p?)eifa, (5.42)

Verify that this is the correct solution for free electrons, V(x) = 0.
(c) Show that in terms of the phase shift, the solution, (4.48), can be written

h2

Me

|t| cos(ka) = cos(Ka +9), €= 5 K2, (S.43)
(d) Analyze (4.49) to illustrate properties of bands and indicate which are special features
of one dimension. (i) Since since |¢| and § are functions of energy ¢, it is most convenient
to fix € and use (4.49) to find the wavevector k; this exemplifies the “root tracing” method
used in augmented methods (Chapter 16). (ii) There are necessarily band gaps where there
are no solutions, except for the free electron case. (iii) There is exactly one band of allowed
states £(k) between each gap. (iv) The density of states, (4.46), has the form shown in the
left panel in Fig. 14.4.

(e) Finally, discuss the problems with extending this approach to higher dimensions.

Solution for Exercise 4.22:
The solution follows Ashcroft and Mermin [280], problem 8.1, where many steps are left
as exercises.
(a) This is a standard problem in almost every quantum mechanics book. For a single
cell with V() = 0 except V(x) = V() for —§ < < 5. Atany energy ¢ > 0 there are
two solutions: a wave incident from the left given by ¢;(z) = expiKx + rexp —i Kz,

r < —§,texpiKx,x > §,and acorresponding wave ¢; () incident from the right, where
_ R?
E = Tme

nast = |t|expin.

K?2. The transmission coefficient can always be written in terms of the phase shift
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It follows from particle conservation that [t|? + |r|? = 1.
One proof that = |r| exp in £ /2 follows A and M Eq. 8.75.

(b) Using the definitions of v, 1, and () = At + B, it is straightforward to find
the matrix equation for the coefficients.

From this it follows “easily” (but see below) that

2t cos(ka) = exp —iKa + (t* — r?) expiKa. (S.44)

Working this out in detail does not look so easy. Here is an explicit derivation provided
by Benchen to use the boundary conditions to determine relation between A and B, at
r=—3:

Y (—%) = Ae7 KL 1 AretS2 4 Bte'K5 | o (—%) =iK (Ae_”{% — Are'fs — BteiK%)
(S.45)
Atx = %, we have:

(4 (g) = Ate’®% 4 Be K5 4 BretKE |y (g) =iK (AteiK% — Be iK% 4 BreiK%)

(S.46)
By 1’/}(%) - eikaw(fg) and wl(%) = eikawl(*%), we will get two secular equations for
A and B. To ensure nonzero solutions we have:

teiK % _ gikag—iK§ _ oikagiKg oiK§ | o—iK$ _ yeika ik g . 47

teil s _ gikapg—iK§ | oikagiK$§ oiK§ _ —iK§ | yeikagiKg| = (S.47)
Simplifying it we get:

otcos(ka) = e K 4 (12 — r?)eila (5.48)

For free electrons, V(x) = 0, ¢ = 1, » = 0 and the solution is simply K = k, which the
correct solution .
(c) Substituting [¢|? + |r|?> = 1 and r = =+i|r| expin in 4.48, a little algebra leads to
2

2me

[t| cos(ka) =cos Ka+mn, €= K2, (5.49)

Explicit derivation provided by Benchen:
Since we have ¢ = |t|e?® and r = +i|r|e’’, we could plug this into the above equation to
get:

2|t|ei‘scos(ka) _ e—iKu + (‘t|2 =+ |r|2)e2iéeiKa — e—iKa +62i6€iKa (S.SO)

[t|cos(ka) = cos(Ka + 6) (S8.51)

(d) Many properties of bands are illustrated by Eq. (4.49) including:
i) In one dimension it is straightforward to find |¢| and 7 for any energy . Then Eq. (4.49)
is simply the solution of a transcendental equation, which is called “root tracing”. On the
other hand it is much more difficult to find the energy that leads to a given |¢| and 7, which
is a non-linear problem that depends upon the particular potential.
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ii) As a function of € = %K 2, cos Ka + n covers the entire range from —1 to 1. There
can be no solution for cos Ka + n > |t| since cos(ka) cannot exceed unity. Thus there are
necessarily band gaps in all cases, except for the free electrons.

ii1) Each period of cos K a + 7 leads to two bands and two band gaps.

iv) Band edges occur at extrema of cos(ka); since the cosine is quadratic function of & at
the extrema, it follows that (k) is quadratic and the density of states has the form shown
(see also Exercise 14.6).

(e) It is very difficult to extend this approach to higher dimensions because the there is a
separate boundary condition for each direction. The requirement that all the boundary con-
ditions are satisfied is a more complicated procedure than the other band methods are the
subject of Chapters 12 -17. Many of the methods solve the Schrodinger equation directly
in a basis; however, the present method has close connections to augmented methods that
involve matching the solution of the radial equation in a sphere to the wavefunction an
interstitial region that connects spheres.
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Solutions for Chapter 5

Same as exercises first edition. An alternative set of solutions with much more de-
tails is given in the following section called “Alternative Set of Solutions for Chapter
5”

Exercise 5.1 For fcc and bee crystals with Z valence electrons per primitive cells, show
that r is given, respectively, by

r _¢ —3 1/gandr -2 i v
T2\ 2z T2 \nz ’

If r, is in atomic units (ag) and the cube edge a is in Angstrons, then r; = 0.7387 ~1/34
and r, = 0.930Z /3.

Solution:
Note that %’Trf is the volume per electron and the equations can be written

4m 4 a® 4 4 ad
—r,=— and —1r, = —.
3Tz M 3Ty
The result follows from the fact that the conventional cube contains 4 and 2 atoms per cube

for fcc and bece respectively.

Exercise 5.2 For semiconductors with eight valence electrons per primitive cell in
diamond- or zinc-blende-structure crystals, show that r; = 0.369a.

Solution:
The result follows from the above equations with the fact that these crystals are fcc.

Exercise 5.3 Argue that the expression for Coulomb interaction in large parentheses in
(5.4) is finite due to cancellation of the two divergent terms. Show that the scaled hamilto-
nian given in (5.4) is indeed equivalent to the original hamiltonian (5.2).

Solution:
The scaled hamiltonian results from the definitions with r/ag — 7 /7 in the original hamil-
tonian in atomic units in (5.2). The cancelation of the divergence at large distance in the
last two terms follows from the fact that the sum in the first term approaches a continuum
o points 1/|r; — r;| where the volume for each point j is 4773 /3 which is 47 /3 in units
of r,. This is has the same form at large distance as the last term which in the integral of
1/|r| divided by the volume per point.

Exercise 5.4 Derive the relation (5.5) between the Fermi wavevector k% and the density
n? for a given spin. Do this by considering a large cube of side L, and requiring the
wavefunctions to be periodic in length L in each direction (Born—von Karmen boundary
conditions).

Solution:
This is algebraic substitution and is not given explicitly here. The first expression is the
volume of the occupied states in K-space is (27)3 /€2 times the number of electrons per cell
for each spin. The point is essentially the same as in Exercise 4.18 The point of considering
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a large cube is to go back to the definitions of the density of k points for a given density in
real space using the simplest possible geometry.

Exercise 5.5 Show that relation (5.6), between kpr and the density parameter 7 for an
unpolarized gas, follows from the basic definition (5.5) (see also previous problem.)

Solution:
This is algebraic substitution and is not given explicitly here.

Exercise 5.6 Show that Eq. (5.10) follows from Eq. (5.9) by carrying out the indicated
differentiation and partial integration. Use this form to derive the 7' = 0 form, Eq. (5.11).
Also show that the factor in brackets approaches unity for y — 0.

Solution:
The derivation of the form is given explicitly in Goedecker, Phys. Rev. B, 58, 3501
(1998)[302]. It results from transforming the three dimension form to the one dimensional
integral in Eq. (5.10) and partial integration. The result for temperature zero follows from
the fact that f approaches a delta function for k = kp scaled by 1/(8kr/2), and carrying
out the derivatives with the dimensionless parameter y = kp7.

Exercise 5.7 Verify expression (5.8) for the kinetic energy of the ground state of a non-
interacting electron gas. Note that in (5.8), the denominator counts the number of states
and the numerator is the same integral but weighted by the kinetic energy of a state, so that
this equation is independent of the number of spins. Derive the corresponding results for
one and two dimensions.

Solution:

The result follows since the integral in the numerator is k3. /5 and in the denominator k3. /3.
For one and two dimensions the result is 1/2 and 2/3. This applies to each spin separately.

Exercise 5.8 Show that plane waves are eigenstates for the Hartree—Fock theory of a
homogeneous electron gas — assuming the ground state is homogeneous, which may not be
the case when interactions are included. Thus the kinetic energy is the same for Hartree—
Fock theory as for non-interacting particles.

Solution:
The only requirement is that the solutions are plane waves which follows from the fact
that the hamiltonian is translation invariant. The kinetic energy is the same operator in
Hartree-Fock and non-interacting independent particles.

Exercise 5.9
Derive expression (5.12) for eigenvalues in the Hartree—Fock approximation from the gen-
eral definition in (3.48). Hint: The exchange integral for plane wave states has the form
—47 Zﬁl,<kp 1/|k — k/|?. This leads to the singular log form in three dimensions. For
more details, see, e.g., Ashcroft or Pines [280, 297].

Solution:
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(See also similar problem in the companion book (Martin, Reining, Ceperley), Chap. 4,
Ex.4.2)
The eigenvalues are the kinetic energy plus the exchange energy as given in (5.12)

kr

ka — (@), (S.52)

where x = k/kp. The object of the exercise is to show that f(x) is given by the expression
Eq. (5.13)

1—2? 1+
f(a:)z—(1+ 5 In | |> (58.53)

1—2z

This follows from the general expression for the Hartree-Fock hamiltonian operator given
in (3.45),

e ivm Y / dr' g7 () () | e ()

2 _ |r — 1’|
3,05

—Z / dr' 7™ (v') 97 (v) L V7 (r) = e7yf (r), (S.54)

v — x|

where the sum is over occupied states. In the homogeneous system the external potential
and the the direct Coulomb term are constants that merely shifts the energy of all states
and is not considered here. For a plane wave with wavevector k, 47 (r) = (1/Q'/2)eikr
where (2 is the volume, the last term on the left side becomes

/dr/ —ik’-r’ Zkr i /-I" (SSS)

\r—rl

523/2
K/ k' <kp

where the sum is over states with k' < kp. If we define k/ = k + q, this becomes

. 1 1 .
!, —iq-(r'—r) ik-r
k/ k§/<k /dr e Ty o1z e, (8.56)

Transforming to an integral over k’ and using the Fourier transform of the Coulomb poten-
tial, the term in square brackets becomes

dp (KR
~ T / A’ (S.57)

The only difficulty is to express ¢ and the limits of the integral in terms of k” and carry
out the integral. This can be done using the diagram shown in Fig. S.1 where the magnitude
q is given in terms of the components of k’. In spherical coordinates, we have Thus the
integral becomes

47 kr 1
- dk'k" / d(—cos(0 S.58
(2m)? /0 (—cos(9)) k% — 2kk’cos(0) + k2’ (5.58)
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Figure S.1. Geometrical conditions that define the variables needed in the solution of Exercise 5.9.

with g2 = k? — 2kk’cos(6) + k'2. The double integral can be worked out using the geo-
metrical conditions defined in Fig. S.1. It is most convenient to work with variables scaled
by kp in order to find the expression Eq. (S.52) in terms of « = k/kp and ©’ = k' /kp
with the factor kr /7, and the expression becomes
1 l
_ kr / dr'Z 1n
T Jo x

/

1
— [ da'—1
T Jo Yo

T+
e

2 + 2z’ + x'?
z2 — 2xx’ 4 22

(S.59)

r—x

With the definition that this expression is (kp/7)f(z) and a partial integration this be-
comes the desired result in Eq. (S.53).

The implication of these results for the effective mass of electrons at the Fermi surface is
a disaster - a mass that goes to zero since the dispersion is vertical at k = kp due to the log
terms. This is totally at variance with experiment and Fermi liquid theory. The divergence
is due to the long range nature of the Coulomb which goes as 1/¢>. If the interaction is
screened there is no divergence and there is an effective mass that is finite and is affected
by interaction as expected.

Exercise 5.10 Derive the broadening of the bands in the Hartree—-Fock approximation
from the unpolarized gas AW = (9/472)'/3 /r, using (5.12).

Solution:
The result follows from (5.12) where one must take the limit of small z to show f(0) = —2,
as stated after the equation, and express kg in terms of 7.

Exercise 5.11 Derive analytically that the electron velocity v = de/dk diverges at k =
kr in the Hartree—Fock approximation. Argue that: (1) this happens in a/l metals due to the
Coulomb interaction and the Hartree—Fock approximation, and (2) there is no divergence
for short-range interactions.

Solution:
The velocity is the derivative of the energy in Eq. (5.12) and it is straightforward to show it
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has the log divergence. The log comes from the 1/¢ interaction as derived in Exercise 5.9.
The same integrals for short range interactions have renomalization of the velocity but no
divergence.

Exercise 5.12 Show that the average value of the factor f(z) in Eq. (5.13) is —3/4, as
stated before (5.15). Then, for the ground state of the homogeneous gas, verify the result
for the exchange energy (5.15).

Solution:

This is a matter of doing the integral. Note that in 3 dimensions the average is o
i x2dxz f(z) so that the integral involves only powers of = times log functions. The re-
sult is given in Slater’s paper Phys. Rev. 81, 385 (1951) [453].

It is interesting to note that the factor 3/4 is related to the difference between the Kohn—
Sham formula for the exchange potential (8.16) and the local form Slater had proposed
earlier [453] based on his approach of finding a local potential that is a weighted average
of the non-local Hartree—Fock exchange operators (9.20). By averaging the exchange po-
tential of the homogeneous gas, Slater found V,, = 2¢,, rather than the factor % in (8.16)
found by Kohn and Sham from the derivative of the exchange energy.

Exercise 5.13 Show that (5.19) follows directly from evaluating the expressions in (3.54)
or (3.52) by inserting the plane wave eigenfunctions (normalized to a large volume §2) and
evaluating the resulting expression. Alternatively, ¢, (r) can be found from the general
relation (3.56) of the pair correlation function and the density matrix for non-interacting
fermions (see, e.g., the books by Landau and Pitaevskii and Jones and March [278, 260],
gz(r) =1 —|p(r)|?/n?, where n is the density and the density matrix p(r) is given by
(5.11).

Solution:
The alternative method leads to the result with only a little algebra. But of course that relies
upon the derivation of the other formulas.
The direct evaluation using (3.52) for the exchange hole is

kr ) k3 1 )
o / cos 0d6 / k2dke*roos? — ox / cos fdf—= / y2dye™ oos? (S.60)
0 Yy Jo

Carrying out the integral leads to the described result.
Alternative detailed solution in set of solutions for Ch 5 by Benchen. See below.

Exercise 5.14
Consider a point charge in an otherwise uniform gas. Use the Thomas—Fermi (TF) approx-
imation (Chapter 6) to derive the TF screening length (5.21). (Hint: Assume the change
in the density due to the impurity is dn(r) o< exp(—krpr)/r and determine the decay
constant krp from the TF equations expanded to linear order in dn(r).)

Solution:
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The density of electrons in the presence of the impurity is given by n(r) = ng + dn(r)
and in the TF approximation the energy is given by

Erp[n] = Cy /d3r n(r)(5/3) + /d3r Vext (r)n(r)

by [ @rar n(rjn(r') (5.61)

r—r'|

where the first term is the local approximation to the kinetic energy with Cp =
%(3%2)(2/3) = 2.871 in atomic units. For a point charge V.,; = —Q/r and by charge
neutrality [ on(r) = Q.

If we assume dn(r) = Aexp(—krpr)/r, then it follows that Q = [dn(r) =
47 A [ drrexp(—krpr) = 4rA/k3p [zexp(z) = dnA/k%p or A = (k3.5 /47)Q. Also
if the density has this form, it is readily proven using the Poisson equation that the potential
is ¢(r) = —Q exp(—krpr) /1.

To evaluate the Kinetic term, expand the expression (ng + 6n)>/3 = nJ/3[1 + 3dn
g(%)2 + ...]. This leads to the kinetic term T'

5/3 5n 5 on
T = Cl/dg’f 77,(7“)(5/3) :Clno/ /dST [1—|—§n70 +§(n70)2+]

=To+ ErQ + EF3%/d3r (6n(r)*+ ..., (S.62)
0

where Tp is the total kinetic energy and we have used the relation Clng/ 3= gEF. In-

serting the form of the density on(r) = (k2. /4m)Q exp(—krpr)/r, the integrals can be
evaluated to yield
Er Q*

T = Constant + %n—ok%p (S.63)

For the potential terms, the sum of the two terms is

1 3
V =—Q%rp+ ZQ2I€TF = _ZQ2]€TF~ (S.64)

The first term is readily evaluated as a radial integral. The second term can be determined
by first finding the potential due to én(r) which is V,, = phi(r) + Q/r = (Q/r)(1 —
exp(—krpr)).

Finally, we have the total energy in the TF approximation:

Er 4 3
sionKtr = ghrr (S.65)

Erp = Constant + Q[

Minimizing the energy with respect to k7 leads to

kTF :67TTL0/EF, (866)
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and inserting the expressions in terms of rg, ng = ﬁ and Er = %(%7‘1’)2/ 3. leads to the
final result ‘

12

2yt

Ts

krp = ( 2, (S.67)

which is the formula given in (5.21).

Exercise 5.15 Derive the expression for the exchange—correlation hole (5.29) in terms
of the hole at larger densities (smaller r5). Would there be an analogous form that involves
an integral of \ from 1 to oo, i.e., for larger r¢?

Solution:
This is basically three steps: identifying the steps that the equations can be written in the
scaled form in Exercise 5.3, the energy is given by the coupling constant average, and the
xc energy is determined by the integral over the hole. Detailed derivation left for the reader.

Exercise 5.16 Using Fig. 5.5 sketch the shape of the average hole, (5.29), for
antiparallel-spin electrons Al, Na, and Cs.

Solution:
This is meant to be qualitative. Values of 7 are given in Table 5.1. We can see from Fig. 5.5
that the hole becomes much more pronounced in Cs (r5 ~ 5) compared to Al (r; = 2).
From the figures (and the knowledge that there is no hole at infinite density (r; = 0) we
can see that the average hole in Al is roughly that for r, = 1 in Fig. 5.5 and for Cs is is
similar to the curve for r, = 3.

Exercise 5.17 Derive the expression for the equilibrium r, given in (5.32) from the
expression for total energy and using o« = 1.80. In which direction will the predicted r;
change if correlation is included? Find the explicit expression using the Wigner interpola-
tion formula for €.

Solution:
**Misprint in text! 0.899 should be 0.8142 = 0.663 I have no idea where 0.899 came from
** This problem is worked out in Ashcroft and Mermin p. 410-414, which agrees with the
corrected result.

Differentiating to find the stationary point we find a quadratic equation and the result is
the equation

T R.\?
-2 =0.81+1/0.66 + 3.31 (C) , (S.68)

ao ag
which is the same as Eq. (5.32) corrected and rounded to fewer decimal places.

Exercise 5.18 Derive the Lindhard expression for the dielectric function of a homoge-
neous gas (5.38). This is a tedious integral and the steps are given by Pines [297], p. 144.

Solution:
See solution in pages copied from Pines book in appendix for solutions.
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Alternative Set of Solutions for Chapter 5
Provided by Benchen. Not edited by me.

5.1
For fcc lattice, each cubic cell contains 4 atoms so we have:
363 \% a/ 3 \?
.= e S.69
" <167TZ> 2 (%Z) (5.69)
For bcc lattice, each cubic cell contains 2 atoms:
3a® g a 3 3
s = ——= =— | — S.70
" <87TZ> 2 (wz) (5.70)
5.2

For a diamond cell, it contains 8 atoms and each primitive cell contains 2 atoms. So
Z = 4 and we have:

1 1
3a3 3 g 3 \3
(m) 4(2772) = 0:369 871

5.3 NOT DONE
54
The wavefunction of electrons have to satisfy certain boundary conditions:

'(/J(x + Lw7yvz) = ¢(3«"ayyz),
V(@Y + Ly, z) = ¥(x,y,2),
w(xayy z+ Lz) = w(xaya Z)

And from Bloch’s Theorem we know that: (z + L) = e¢*4(x), so k could only take
discrete values of szz So the number density of &k values in reciprocal space is by: #
So we have:

o Q 4 ag a ag
N = @ X g7r(kF)3, (k%)® = 67n (S.72)
55
, 51
kp = (3n2n)% = (9;) - (S.73)

5.6
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There are several notation issues in this question that may cumber the derivation. Let’s
start with the original definition.

o7 = ) = p(7) / FfGe
= @n? / sinfd / K2dk f (¢)etkreos?
™

22/ ksin(kr)f(e)dk
7

= W /_oo ksin(kr)f(e)dk

Now let’s switch back to the final expression and try to start from there and get back to
the above formula:

o) = e ey | akeostins (8 (352 =)

1 1d1d [ cos(kr) 1.,
- -°- d ZR2
(2m)2 rdrrdr k ! <B <2 ,u>>
1 1d1d [~ krsin(kr) + cos(kr)

K‘l
3

(S.74)

T @n)rdrrdr ) = F(e)dk (S.75)
_ (271) iddr / cos(kr) f(e)dk

/ ksin(kr) f(e)dk
27T

So we see that we arrive at the same expression. But several things worth mentioning are:
the expression (5.10) in the book lacking a minus sign and also the following:

d d
f’(ﬂ(;kzu»# dJ,; dﬁ f'Bk (S.76)

If the temperature is zero, then the Fermi function would be a step function and its
derivative would be a negative delta function, so we could simplify density as:

B 1 1d1d cos(kr) d 1,
plr) = (27r)dd/ b=’ (ﬁ <2’“ *‘))
1 1d1d2cos(kpr)

S0 C & ZO0SEET) 77
(277) rdrrdr  kp 5.77)

_ ﬁ 3szny —ycosy| _ o 35iny ~ ycosy
672 3 3

The derived density is for each spin, and if the system is unpolarized, we can write the

total density as:

k3. [ siny — ycosy
plr) = gty [ 78
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5.7
For 3D cases, we have:
2 dr 37 k'dk

3
TS — = —E7 S.79
© 2medn [Frp2ap 5 &7

For 2D and 1D cases,

K2 2w [ KSdE 1

TO‘ _ _ _fo
© 2me op (R par 2
N S

e [¥F dk

5.8

In Hartree Fock Approximation for the homogeneous electron gas, there is only two
terms in the Hamiltonian, kinetic energy operator and exchange integral, and we know that
plane waves are the eigenfunction of kinetic operator. So we only need to verify whether
plane waves are the eigenfunction of the exchange integral operator or not:

S [ e ) s ()

7

So we see that plane waves are indeed the eigenfunction of exchange integral operator. So
it’s also the eigenstate of Hartree Fock equations.
5.9

J
_ k2 1 47
9 - O 12
wkr K =K (S.81)

L /kF &R

2 272 J, k' — k|2

k kr  k
- 3 7f(E)’
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where the second equality is due to the 3D Fourier transform of % (a noteworthy fact is that
this transform starts from Yukawa potential and then take the parameter to be 0), and f(x)
is defined by:

1—22 |14z
=—11 .82
() <+ - ln‘l_x) (5.82)
5.10
51
aw=Fe (9L (S.83)
T 472 T
5.11
de 1 df 1 1 1422 |[1+x
= — = _—— = — _— .4
YTk k+7rdx k+7r<x+ 212 ln‘l—x) (5.84)

So that when k& = kp, the log term would blow up while the rest terms are finite, so the
velocity would be infinity, which is unphysical.

512
fohf@ade 3 ke 3ke (585)
- fola?Qdm 20 2 A .
513

2

1 o 1 [ Bk
=1—-|— k-7 =1—|= k-7
nQ Z ¢ n/o (27r)3e
k<kp
1 T kr 1.2
=1- f/ sin@d@/ Mescp(ik:rcoge) (5.86)
n Jo o (2m)?
1 [k i
=1- 7/ ksin(kr)dk
2m2nr Jo

; 2
_ sin(y) — ycos(y)
=1- [30—F =
Y
where y = kpr. And of course, by using p(r) to derive this result would be even easier.
(Check exercise 5.6 out!)

5.14 NOT DONE
517
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First of all let’s ignore the correlation effect. We would have:

Eiotar 3R?  1.105 1.358

= —_— - S.87
N 2r3 r2 Ty (5.87)
By taking the extremum, we could find that the 7 is:
T R\
— =10.813+1/0.664 + 3.31 (c> , (S.88)
ao ag

which is close to the (5.32). If we include the effect of correlation, then r, would be smaller.
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Solutions for Chapter 6

The exercises in Ch 6 and 7 are mainly “thinking” questions that do NOT require exten-
sive calculation, but they may be hard to deal with because it is difficult to understand what
is exact in principle in DFT. I wrote these questions for a class where we could discuss the
issues and see that the answers are not hard if you know what to do! See comments at start
of solutions for Chapter 7 for examples.

Exercises same as in first edition except 6.2 in first ed. omitted in second edition.
Equation numbers shifted by 1 in second edition.

Exercise 6.1 Derive the Thomas—Fermi equation, (6.5), from the variational of the func-
tional. Use the method of Lagrange multipliers as given in (3.10) and used in (6.3).
Solution:
This is a straightforward application of the variational method where V,(r)=
C(4/3)n'/3(r) if we include the Dirac addition of exchange in the local approximation.
All terms are local except the Hartree potential. The definition of functional derivatives is
in Appendix A and Exercise A.1.

Solution:
Qrp[n] _ 6Err(n] / Sron(7
_ gcl/d3rn(77)2/3§n+/dgr‘/el‘t(/)?)an
(5.89)

4
+ §CQ/d3rn(F)1/36n+/d3rd37°’ n_7|5n—u/d37°5n(77)
—F

|7

_ / [gcln(F)Q/S V() - M] Snd®r

Since the variation of density is arbitrary, then the terms in the bracket has to be zero.
Omitted this Ex in Second Edition.

Ex. 6.2 in first Ed. Derive the Thomas—Fermi—Weizsacker equation which is the general-
ization of (6.5) when the Weizsacker gradient term is included. The gradient expression is
given following (6.5). Variations of a functional of the gradient of the density are discussed
in Chapter 8.

Solution:
Solution by Benchen:
Now we have included the gradient term:

= = 2
Erpwln] = /der [C’ms/g+%xt(F)n+Czn4/3+/d3r’n(r n(r") +E(Vn)

expressions due

to Benchen

Omitted this Ex
in Second Edi-

tion.
Omitted this Ex

in Second Edi-

tion.



Ex numbers dif-
ferent in Second

Edition.

38

Solutions to exercises

So the variation is the following:

6QTF [n]

on(r)

ST

on(7r) 5|Vn| |Vn|
)

— 701/d3rn(7")2/35n+/d3r‘/;mt(?)5n

3

+é02/d3rn(")1/3§n+/d3 d*r ’L‘(Sn

Vn Vn
/d3 ( G w) ‘”/d?’”s”

/d3 { Cin( 2/3+V@+1M_

()’

The terms in the bracket has to be zero.
NOTE: Numbers for following exercises are different in Second Edition since Ex.
6.2 in first edition is omitted.

(S.91)

u} on

Exercise 6.2 This is essentialll=y the same as Exercise 5.14. No solution given here. for
a problem involving the Thomas—Fermi (TF) approximation.

Exercise 6.3 The simplest example of the Mermin theorem is the homogeneous gas.
For a gas held at fixed volume, as the temperature is varied the density does not change.
Describe the meaning of the Mermin functional in this case.

Solution:

The key point is that the Mermin functional is defined for a given temperature T. It is not
the same as the T=0 functional. Even though the the density does not change the functional
changes. The free energy is determined by the density and the temperature, not just the

density.

Exercise 6.4 Theorem I of Hohenberg—Kohn shows that ng(r), in principle, uniquely
determines all properties of the many-body system of electrons, including ground and ex-
cited states. We have argued that, for example, the electron density uniquely determines
the positions and types of nuclei, which then defines the complete hamiltonian and there-
fore, in principle, determines all properties. Show explicitly that only the density and its

derivatives near the nuclei are sufficient to establish the proof in this case.

Solution:

Near each nucleus the hamiltonian is dominated by the divergent nuclear potential, so that
the electron density must have the same cusp condition (ratio of
non-interacting electron Schrodinger equation. Since this is known as a function of the
nuclear charge, it follows that only the density near the nuclei is sufficient to determine the
external potential and thus satisfy the Hohenberg—Kohn theorem.

= to n) as given by the

Exercise 6.5 In one dimension it is possible to construct orthonormal independent-
particle orbitals that describe any density that satisfies simple positivity and continuity
conditions. See Exercise 7.9.
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Solution:
See Exercise 7.9.

Exercise 6.6 Following the approach of Section 6.6, show that it is not possible to con-
struct the density of the 2s state of hydrogen (one electron in the potential of a proton) as
the ground state density of any smooth potential, i.e., one without delta functions.

Solution:

In this one-electron case the wave function must be proportional to v/n (with a plus or
minus sign). If the wavefunction changes sign then it cannot be a ground state. Thus the
only possibility is that the wavefunction is given by

(r) o< |(r = 11)] exp(—ar/2)

If this is the ground state of a potential V' (r) the potential must satisfy V (r) = [(V?* +
€)(r)] /v (r). However, this expression diverges at 7 = 7.

Another way to derive the conclusion is to note that the only external potential that
gives this state as an eigenstate is the 1/r Coulomb potential (plus a constant). But the
wavefunction is not the ground state of this potential. Since it is not the ground state of this
potential, and it is not an eigenstate of any other potential, it follows that it cannot be the
ground state of any potential.

Exercise 6.7 Consider the lowest-energy state of Li with three electrons, which may be
1522s, or one of the degenerate states (1s)?2p?, 1s?2p~—, or 1s?2p™. The densities of the
last two states are identical, so that the density does not determine the state. Show that,
nevertheless, the energy is the same for any combination of these states so that the energy
is still a functional of the density as needed for the Hohenberg—Kohn functional.

Solution:

First, the theory is meant to describe the full many-body problem; thus we emphasize that
the notation does not denote independent-particle orbitals but rather the correlated state of
three electrons. The latter two states are the degenerate lowest energy states with angular
momentum +1. Any linear combination has the same energy, for example, the real states
with

Exercise 6.8 In this problem you are asked to show that in the absence of an external
magnetic field the total density is, in principle, enough to determine all the properties of
the system even if it is spin polarized. To do this, consider the system in a Zeeman field
h - & that distinguishes between & parallel and antiparallel to h. Show that if h is reversed,
the new solution will have exactly the same density, but with ¢ reversed. Using this fact
show that you can reach the desired conclusion.

Solution:

Note that the assumption is that it is spin polarized, i.e., no orbital comment is considered
and it is implicitly assumed the is on spin—orbit interaction. Thus this is an example of the
next problem, i.e., an HK functional with spin polarization in presence of spin independent
external potential. For the last part of the problem, we see that the system can be polarized
only ifthe functional leads to lower total energy for the polarized system since the density is
the same. Thus such a solution is an effect of interactions. The comments about a Zeeman
field apply to the Kohn—Sham approach in which the Kohn—Sham potential for the auxiliary
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independent-particle system is spin-dependent which is equivalent to an external Zeeman
field.

Exercise 6.9 Suppose particles can be divided into two types (e.g., spins) of density n;
and ny with internal energy Ei,g[n1, no]. If the external potential acts on 11 and ns equally,
the total energy can be written Fiota1 = E[n1, no] + f Vextn, where n = ny + na. Show
that Fiota1 is a functional only of n. Do this in three ways: (a) using arguments similar
to the original arguments of Hohenberg and Kohn; (b) the Levy-Lieb constrained search
method; and (c) formal solution by variational equations in terms of n and ¢ = n; — ns.

Solution:

The full solution will not be written out, but the key point given here is sufficient for all the
proofs. First note that the internal energy can always be written Ein¢[n1, no] = Eing[n, ol.
Then all the proofs reduce to the fact that the ground state is defined as the state in which
all variables are at the values for minimum energy. The proof using the Hohenberg—Kohn
argument is the same as the argument presented in the text. The last two ways of proving
the result follow from the fact that Ej,¢ is minimized with respect to the function o. Thus
for any n, o is determined by the minimization condition and it follows that o fixed by n.

The physics is brought out bye the Levy-Lieb construction that searches for the lowest
energy many-body wavefunction for a given density; a polarized solution occurs if the
lowest energy wavefunction is polarized.

Exercise 6.10 Consider a many-body hamiltonian H=H int + Vext, Where H int de-
notes all intrinsic internal kinetic and interaction terms and V¢ is the external potential.
Show that the external potential V¢ (r) is determined to within a constant, given H int
and any eigenfunction ¥,. Hint: solve for Vi (r) using the Schrodinger equation. (Note a
specific example of a determinant wavefunction is considered as an exercise in Chapter 7.)

Solution:

For a single particle it is clear that the Schrodinger equation can be inverted to find the
potential given the wavefunction and the eigenvalue. For the ground state there are no
zeros in the parafunction and it is straightforward. Exactly the same reasoning applies to
the many-body case, where the ground state has no nodes. This is a general theorem used in
Monte Carlo simulations that find the ground state sampling the wavefunction considered
as a probability which must always be positive. (See [1].)

Exercise 6.11 Show that in a finite system the kinetic energy must be a non-analytic
function of the density n with derivatives that are discontinuous at integer occupations.
Hint: It is sufficient to show the result in an independent-particle example (see Exercise 7.5)
with an argument that the result must also apply to many-body cases. Generalize this argu-
ment to all properties of the system and to solids with an insulating gap.

Solution:

This problem should have been in the next chapter. For a finite system the arguments in this
chapter do not define the Hohenberg—Kohn functional for fractional numbers of particles.
One could consider a large finite system where the variation with number approaches a
derivative. In that case, for a system with a finite gap the functional must jump as the
number changes around the gap. (The gap is well defined in the interacting many-body
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system by the jump in E(N =1) — E(N) so that E(N + 1)+ E(N — 1) — 2E(N) is
vanishingly small for large N, except at points where there is a gap Eg,p = E(N + 1) +
E(N —1) —2E(N). (See [1] where the gap defined in this way is crucial in the theory
of interacting systems.) All parts of the functional including the kinetic energy must jump.
(The kinetic energy plays a special role in the Kohn—Sham approach where it is difficult to
construct a functional of the density only, and the need to have a discontinuous function is
one way to see the difficulty of constructing functionals, even fopr non-interacting systems.
The problem does not go away with interactions!)
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Solutions for Chapter 7

As stated at the beginning of the solutions for Chapter 6, the exercises in Ch 6 and 7
are mainly “thinking” questions that do NOT require extensive calculation, but they may
be hard to deal with because it is difficult to understand what is exact in principle in DFT.
For example, in exercise like Exercise 6.6, part a, think about the logic: The ground state
solution of the Schr. Eq. for a H atom is well-known. Can I work backward and show that
the only potential that gives the wavefuntion is the Coulomb potential? (That is also the
point of Ex 7.6) and several other problems that relate to possible potentials and densities.
This is enough to answer the question.

Another example is Exercise 7.10, which is clear if you know the meaning of “to lowest
order”. That is the hint. The change in density is proportional to the potential. Then ask
yourself what is the condition to work backward from the density to get the potential.

Exercises same as in first edition except in second edition. Exercises 7.11 and 7.15
are omitted and all the Exercises from Ch. 9 in first Ed. are moved here

Exercise 7.1 For any one-electron problem, one can readily determine whether or not
any given density is a possible ground state density. Using the known properties of solu-
tions of the Schrodinger equation, give a sufficient set of conditions that any function must
satisfy in order to guarantee that it is the ground state density of some potential. See Exer-
cise 7.7 for an example of an allowed density and Exercise 6.6 for a function that is not an
allowed ground state density.

Solution:

Using the reasoning involved in Exercise 7.2, it follows that for a one-electron problem
any function that integrates to unity and is everywhere positive (i.e., it has no zeros) is a
ground state of a potential.

Exercise 7.2 For any density n(r) that is allowed (see Exercise 7.1) and integrates to
one electron, show that the Kohn—Sham potential V.%(r)|min = ViZs(r) is unique, except
for an arbitrary constant, and give an explicit algorithm for constructing V;Zg(r) from n(r).
See Exercise 7.7 for an explicit example of an allowed density.

Solution:

The potential VZ¢(r) is easily by inverting the Schrodinger equation since the wave-
function (¥ (r) = (n(r))? and eigenvalue ¢ = ()| H|t) are known. Here H is the actual
hamiltonian for the one-electron system, —%VQ + Veaternal(r), it follows that VZ¢(r) =
Vewternat (r) apart from an arbitrary constant with o the spin of the one electron.

Exercise 7.3 Generalize the arguments of Exercise 7.2 to show that V;Z¢(r) is unique,
except for an arbitrary constant, for a non-interacting Kohn—Sham system of any integer
number of electrons.

Solution:

All the steps in the solution for Exercise 7.2 apply here also. In this case, since the system
is defined to be non-interacting, H contains some effective potential. The needed proof still
follows since the resulting Kohn—Sham potential is always the same apart for an arbitrary
constant. In general, there are two potentials V7 (r) for the two spins.



Solutions to exercises 43

Exercise 7.4 For any non-interacting Kohn—Sham system, use the result of Exercise 7.3
to show that the kinetic energy 7T for each spin o must be a unique functional of the density
n(r, o) for that spin. Generalize the argument to show that all properties of the system are
uniquely determined by the density.

Solution:

Since it is shown in Exercise 7.3 that the Kohn—Sham potential for each spin V,Z4(r) is
a unique functional of the density for that spin, it follows immediately that independent-
particle kinetic energy T for each spin o must be a unique functional of the density for
that spin. This is simply the statement that the Kohn—Sham equations are completely deter-
mined by VZ¢(r) and their solution determines 7. It also follows that all properties of the
Kohn—Sham system are uniquely determined since the Kohn—Sham equation determines all
the independent-particle eigenstates. Finally, one must invoke the Hohenberg—Kohn theo-
rem to conclude that in principle all properties of the interacting system are determined by
the unique Kohn—Sham potential.

Exercise 7.5 Based on the result of Exercise 7.4, show that in a finite system with dis-
crete states the kinetic energy functional T[] must be a non-analytic function of the den-
sity n with derivatives that are discontinuous at integer occupations. Hint: Use the known
solutions of the Schrodinger equation, 1); that are different for each i. Generalize this ar-
gument to all properties of the system and to filled bands in the case of a solids.

Solution:

See answer to Exercise 6.6. The general case is easily proven by considering the density
that corresponds to an excited state of non-interacting particles in an external potential.
There is no other potential for which the wavefunction is an eigenstate (except for a trivial
addition of a constant). Since it is not the ground state of this potential, it follows that it
cannot be the ground state of any potential. This is specific example where the density can
be constructed from a single determinant of orbitals but not orbitals that are the lowest
eigenstates of any potential.

Additional observation by Benchen:

We take the example of 1D infinite well of length L. First let’s consider the one electron
case. We know that the wavefunction is:

i 2 . LT . g . 9 @
W = \/;sm <L> , n(x) = 7 sin < 7 ) (5.92)

This is a special case because kinetic energy functional could be written in an analytic

form. We have:
L . 2
T,[n] = /0 ;(12) n(z)dx (S.93)

So we could write the functional derivative as:

8Ts[n]  in?
—— = S.94
on 2L (5.94)
which is a constant and depends on the occupied orbital. If now there happens an excitation,

this derivative would be different and depends on the new orbital. There is a discontinuity.
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In the more general cases, where there are more than one electron, the coefficient coming
out of the gradient calculation would be different for different orbitals so we can’t write the
kinetic energy functional in an analytic form. Besides, if there is an addition or subtraction
of an integer of electrons, by analogy the derivative would be discontinuous as well.

Exercise 7.6 As an example of the fact that arbitrary densities cannot be constructed
from the lowest eigenstates of a non-interacting hamiltonian, see Exercise 6.6. Use this
example as the basis for constructing a general argument that it is not possible to construct
any density from a determinant formed from the lowest [V eigenvectors of a non-interacting
particle problem.

Solution:

The essential point is that the ground state density never has nodes. (Sese solution for
Exercise 6.10.) Since a determinant formed from the lowest N eigenvectors of a non-
interacting particle problem is an example of a ground state, it cannot describe a density
withe a surface of zeros. This assumes that the potential has no singularities. This is not
specifically stated in the problem statement, but it is stated in the text that some of the
conclusions apply only if the potential is required to be non-singular.

Exercise 7.7 As an example of the explicit construction of a potential determined by
the density, find the one-dimensional potential V (z) that gives the density A exp(—ax?),
where normalization constant A is chosen so that the density corresponds to one electron.
Express the answer in terms of .

Solution:

The wavefunction is 9 () oc exp(—aw?/2) and it is easiest to use atomic units. Invert-
ing the Schrodinger equation, [(—1/2)(d?/dx? + V (x)]y(x) = ep(x), where ¢ is the
eigenvalue, leads to the equation for find V, V (z)v(z) = [(1/2)(d?/dz? — €]y (z), apart
from an arbitrary constant. Taking the derivatives gives [(1/2)(ax)? + aji(x) so that
V(z) = (1/2)a?x? + constant.

Exercise 7.8 For a one-electron radial problem it is straightforward to find the unique
Kohn—-Sham potential that will lead to any radial density with no nodes. (The Schrodinger
equation in radial coordinates is given in Section 10.1.)

(a) Find the potential Vkg(r) that gives the hydrogen atom density.

(b) Find the potential for a gaussian density A exp(—ar?), where A is a normalization
constant chosen so that the density integrates to one (See also Exercise 7.7.). Express the
answer in terms of .

Solution:
The radial equation is given in Eq. (10.4),

1 d[,d (l+1)

52 qr [T dr%,l(r)] + [ gz T Vext(r) = eni| ¥na(r) =0, (5.95)
and V (r) can be found by the same approach as in Exercise 7.7.

(a) For H the ground state wavefunction is ¢)(r) o exp(—7) in atomic units. Taking the

derivatives, we find V(r) = +1/r + constant
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(b) Taking derivatives similar to the previous problem, we find V(r) = 2(ar)? +
constant. (Verify that factor of 2 is correct.)

Exercise 7.9 This problem is an example of explicit construction of orthonormal
independent-particle orbitals that describe any density of IV particles and, furthermore, that
there are many such choices for the same density. This example is for one dimension and is
taken from p. 55 of Book by Parr and Yang [273]. For a density n(z) and s(x) = n(z)/N
given in the range ;1 < x < x4, define the set of functions

Yr(z) = [s(x)]1/2 exp [i2mkq(z)], (S.96)

with ¢(z) = f;l s(z')dz’ and k = integers or half-integers. Show that the orbitals satisfy
the desired conditions since each has the same density s(x) and the orbitals are orthonor-
mal. Show that it follows that an infinite number of such choices can be made.

Solution:
The full solution is in the reference given. As a step toward understanding, the factor
q(z) = f;l s(z")da’ increases as x so the factor exp [i27kq(x)] is similar to a Bloch factor
exp [i2mkx].

It’s easy to verify that these orbitals are properly normalized and N orbitals would yield
the desired density. We only need to show explicitly that they are also orthogonal.

z2

(Wellin) = / s(x)exp[i2nng(z)] de

1

T2 d
z/ —qe:cp [i27ng(x)] dx

' de (S.97)
= / exp [i2mng(x)] dg
0
1 o
— = (2™ _ 1) =0
2min (6 )

where we writek — [ = n and w have assumed that k& # [. So we see that these orbitals are
orthonormal. Since ks are either integers or half integers, and we only N orbitals, there are
infinite ways to choose [V integers or half integers.

Exercise 7.10 Show that, to lowest-order, small deviations from the homogeneous den-
sity can be reproduced by non-interacting fermions. Hint: Use the fact that, to lowest order,
any change in the density is linear in the potential.

Solution:

This is a case that really does not involve DFT reasoning, only that you know the meaning
of “to lowest order”. That is the hint. The change in density is proportional to the potential.
Then ask yourself what is the condition to work backward from the density to get the
potential.

To lowest order the change in density is proportional to the potential. The derivative
is a susceptibility as worked out in Chapter 20 and appendix D. So long as the system
is stable the susceptibility is finite and we can define the inverse, the relation defines the

due to Benchen
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potential that would produce any given density (to lowest order). This dependents upon the
susceptibility being general enough that any density can be created; one way to see that this
is possible is to consider the Fourier transform where there are specific expressions given
for independent-particle systems like the Kohn—Sham system general Fourier components.

Exercise 7.11 Consider an independent-particle hamiltonian H= H’int + Viexy for
which the wavefunction for any state ¢ is a single determinant ®; and the subscript
“int” denotes all internal terms. Then the total energy can be written Eyo = Eing[P] +
[ d3rVexi (r)n(r). Show that the external potential Voxs(r) is determined to within a con-
stant given Hiy and any eigenfunction ®;, not only the ground state. (Hint: Solve for
Vext (r) using the Schrodinger equation.) Explain why it is more difficult numerically to

find Vext (r) from the wavefunction for an excited state than for the ground state.

Solution:
This is really the same as several previous problems. The basic ideas are in Exercise 7.7.
In this problem you are asked to consider excited states. The derivations apply for any
eigenstate. A difficulty for excited states is the nodes in the wavefunction. Where it goes
to zero the both sides of the equations to determine V' (z) vanish making the numerical
calculation difficult.

Ex. 7.11 in first ed. is moved to 9.1 in second ed. See solution there.

Following numbers are different in First Ed. Exercise 7.12 For a two-electron prob-

lem in a singlet state, it is straightforward to find the Kohn—Sham potential that will lead to
any density with no nodes. The purpose of this exercise is to emphasize the relation to the
one-electron case in Exercise 7.8 by constructing the potential Vikg(r) for the following
cases:

(a) a density that is twice that of the H atom;

(b) a gaussian density A exp(—ar?), where A is chosen so that the density integrates to
two electrons.

Solution:

The point of this exercise is to be aware of of which aspects are relevant which are part
of understanding how the derivation for one electron are generalized to more than one.
Independent electrons in a singlet state is the simplest case. This is NOT DFT; it is simply
the inversion of an independent-particle Schrodinger equation using an eigenvector.

(a) Both this part and part (b) involve solution for up and down electron states in the same
potential, which is just two equations that are identical and are the same as if there were
only one electron. Thus the inversion of the Schrodinger equations leads to the Coulomb
potential of a nucleus with with charge +1. The total electron density is twice that of H.
The interpretation may seem tricky because it seems so unphysical. The moral of this
story is that any method that attempts to be physical must have some way of taking into
account electron-electron interactions even if it is approximate. For example, Kohn—Sham
DFT would include an average interaction that greatly affects the binding energy. It might
even be unstable. (It would be a good exercise to check stability for a chosen functional.)
Hartree-Fock would have an average repulsion of one electron due to the other (no self-
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term). A more realistic problem would be He with nucleus of charge 2 with two electrons
each having a scaled hydrogen-like wavefunction.

(b) This case is really the same as Exercise 7.7 with the same equation for the up and down
electrons. It may be more physical that part (a) since there may be real problems where
interactions between particles may be small or may have little effect if the binding is very
strong. It is like a textbook problem of independent non-interacting particles with no issues
related to Coulomb interactions.

Exercise 7.13 Project: Using an atomic program (such as the one discussed in conjunc-
tion with Chapter 10) one can find the density of a closed-shell atom and the Kohn—Sham
potential.

(a) This exercise is to invert the problem: construct a minimization program to find the
potential V'(r) that will produce that density and show that it is the same potential. This is
essential for the potential to be unique.

(b) Now modify the density by multiplying by a gaussian and normalizing. For this
density find the potential.

Solution:
This is a problem that requires a computer calculation. The idea is an iterative loop to vary
the potential until; one gets the desired density. This is an example of the general problem
of finding the exact Kohn—Sham potential which has been done for atoms with densities
determined by very accurate many-body methods. An example is the work of Umrigar -
check references and where it is in this book and in [1].

THE FOLLOWING PROBLEMS WERE IN CHAPTER 9 IN THE FIRST EDI-
TION. ALL ARE MOVED HERE IN THE SAME ORDER.

Exercise 7.14 In actual calculations one can determine the energy from either of the two
functionals, Eq. (7.21) or Eq. (7.22). Describe how it can be useful to compute both. Which
is expected to be closest to the actual converged result before convergence is reached?
Which is a true variational bound? Can the difference be used as a measure of convergence?

Solution:
This is really just an exercise to state in your own words what is in the text - or to give your
own may to thin it about different from the text. In the opinion of the author the key points
are:
The Kohn—Sham function in Eq. (7.21) is variational as shown explicitly in the text. This is
an essential aspect for DFT! The energy is always above the correct Kohn—Sham solution
for the given functional. (Since the functional is approximate we do not know if the energy
is above or below the true energy for the system!)
The functional in Eq. (7.22) is lower than the correct Kohn—Sham energy for the giben
functional. This is not so obvious but it is shown in the text.
If we have two functionals below and above the correct energy, and they must be equal if
we had the correction self-consistent solution, the difference is a measure of how close we
are to the correct energy.
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The analysis in text shows that usually the second energy is closer to the final self-
consistent energy. This may be surprising but it is simply that the input density is in general
closer to the correct self-consistent density than the output density! See the text.

Exercise 7.15 As posed before Eq. (7.24), derive the expressions for the linear terms
and thus the form of (7.24).

Solution:
The expression for the potential before Eq. (7.24) is the definition of the effective potential
for a give density. To linear order the difference in the last term in Eq. (7.23) is canceled
by the previous term. This leaves the quadratic terms defined by the first line in Eq. (7.25)
which equals the second line. It is a good exercise in the meaning of functionals to see that
the Coulomb term is the second derivative of the Hartree energy in Eq. (7.4).

Explicit equations due to Benchen:

Eks[V™ — Exwr[n™] = Z/dﬂ/,fn (7) [n° (7, 0) — ni"™(7, )]

g

=-3 / dFV.5%. (F) An(7, ) + 5?’)“ An(F, o)
n

1 0%Epy
2 6n(7, 0)on(, ')

— ,Z/ /dr K (70,7, 0") An(F, o) An(7, o)

An(7, o) An(7, o")

(S.98)
Note in the book Eq. (7.24) ((9.11) in first Ed) lacks a minus sign in front of the first term
on the right hand side. Since 5?2”" = V2, (7), then the linear term would cancel and only

second and higher order terms survive.

Exercise 7.16 Fill in the steps to show that Eq. (7.26) defines a functional that is indeed
extremal at the correct solution for independent variations of potential and density.

Solution:
The functional is extremal if the linear variations vanish for both potential and density. To
prove this we must derived Eq. (7.27), which gives explicitly the linear terms; there we
see that they vanish at self-consistency where output density and potential are the same as
the input. This is done by straightforward expansion of the terms in Eq. (7.26). Since the
potential and density are viewed as independent the middle term is linear in each and the
derivatives easily lead to the terms —V " (r)dn(r, o) and —n'"(r, )6V (r) The other
terms follow because the fist line only involves the variation of the density and as stated
after Eq. (7.27), V'"(r) is just the definition of that potential. The only thing left to
do is to show the derivative of the sum of eigenvalues E[V] with respect to V' is the
density. This follows from the same logic as for DFT (it is explicitly done in the Levy-Lieb
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derivation), but in the case the total energy for non-interacting particles is simply F[V]
and the problem is simpler. The only way the potential enters the independent-particle
hamiltonian is the bilinear term Vn. At the solution all internal degree of freedom (the
independent-particle wavefunctions) are st the variational minimum and the derivative is
simply n. At the self-consistent solution this is the output density that is determined by the
input potential, i.e., the term n“)/‘}ﬁ (r, o). This completes the derivation that the expression
is extremal.

It is not asked for in this problem, but we can also note that it is a saddle point. It is shown
in the chapter before Eq. (7.26) that the Kohn—Sham functional in a variational minimum
with energy that increases quadratically around the solution, and the HWF expression is
maximum at the solution. This does not change in the generalized functional, so that the
solution is an saddle point.

Exercise 7.17 On general thermodynamic grounds, show that E(T) increases quadrat-
ically with T, whereas F'(T') decreases quadratically. Thus a linear combination of E(T')
and F(T) can be chosen in which the quadratic terms cancel. Using the expressions for
E(T) and F(T) that follow from the occupation numbers, find the value of « for which
aE(T)+ (1 —a)F(T) = E(T = 0) with corrections o T*.

Solution:

The use of the the calculation of energy and free energy is exemplified by the calculations
in Gillan, J. Phys.: Condensed Matter 1,689(1989).[369], who says: “It is easily shown that
for small T the free energy deviates from Ej by a quantity quadratic in T: F = Ey — yT?;
and that the deviation of the energy E is equal and opposite: £ = Eg + yT=.”

The problem we want to consider is a metal. For an insulator the difference from T=0 for

all quantitative are exponentially small. For a metal one must integrate over the density of
states which leads to the Sommerfeld expansion given in many texts such as Ashcroft and
Mermin, Appendix C and detailed expressions in Marder [300] page 146. The energy is
given by E = [ dep(e)ef(e — pu) where p is the density of states and f is the Fermi func-
tion. The key is an integration by parts to a form that involves df /de which is symmetric
about ¢ — u = 0 and decays rapidly for small T. This shows that odd powers of T vanish
and the result is that the energy E increases oc T2 + higher order terms. For the lowest
order term it is sufficient to consider p(¢) to be constant p near the Fermi energy so that
E = — [depdf/de ate = p). The result is a definite integral that can be evaluated to yield
E = E) + (7 /6)p(kyT)?. This corresponds to the linear specific heat C = dE/dT = 4T
where 7 is a constant for low 7. Thus E = Eq + (1/2)CT = Eq + (1/2)yT? for small
T.
In an actual calculation the free energy would be calculated by F' = E — T'S where the en-
tropy S is given by Eq. (7.29). However, we can use well-known general thermodynamic
arguments to show the desired result that it decreases an equal and opposite amount. A
change in the entropy is related to the energy by dS = dE/T. Thus at low T, dS = CdT
and F = E —TS = Ey + (1/2)yT? — yT? = Ey — (1/2)yT?. This is sufficient for the
proofs needed here.
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Exercise 7.18 Complete the arguments to show that (7.32) is extremal at the correct
solution for independent variations of all the quantities: yin pin u, T', and the form of the
occupation function f(g).

Solution:

The extremal properties with respect to the potential and density are the same as shown in
Exercise 7.16. The linear term involving the chemical potential 1 is vanishes at the correct
number. The argument for the variation with the form of f(¢) may seem unusual, but it
is one way to see how the Fermi function is derived, Indeed the general form derived by
Mermin is using the variational condition. See also the following exercise.

ERROR! I believe there is a mistake in the statement of the e4xercise. I think that the
functional is NOT extremal with respect to temperature T. If we fix V, n, and p it is like
and ordinary independent-particle problem and the free energy is is linear except at T’ = 0.

Exercise 7.19 Show that the form of the electronic entropy > . filn f; +> (1 —
fi)In(1 — f;) presented in (7.32) in fact follows from the general many-body from in terms
of the density matrix given by Mermin in (6.20).

Solution:

Before starting the derivation, it is good to recall that the general expressions are given in
Section 3.5 and the reason that a log is involved is that the entropy is the log of the number
of possible states, and the sum of two terms involving f and 1 — f is because the number
of states at fixed density is the number of electron-hole pairs. For independent particles this
is just the product of electron and hole states. The general expression is in Eq. (3.28) and
the expression for the density matrix for independent particles is in Eq. (3.40).

I believe the following is correct but it is very hand waving! Unlike the energy the
entropy is not an expectation value. (In many cases there are analytic expression, but in a
general case derive the form using the single body density matrix for particles Eq. (3.40)
and the principle that number conserving excitations are products of electrons and holes.
Then Eq. (3.28) leads directly to the expression involving >, f;In f; +>.(1 — f;) In(1 —
fi).

Exercise 7.20 Show that y in Equation (7.34) is given by

5nout 5nout (ﬂ/in
Y +1= — = - - S.99
XL = G = Sym g (559)
where dn°Ut /§V1 is a response function defined to be x° in Equation (D.6) and the last
term 6V /§n'* is K defined in Equation (7.25). Thus the needed function ¥ can be calcu-

lated and is closely related to other uses of response functions.

Solution:
Really this is just the definition plus the chain rule. The expression for K follows from the
definition that the potential is the derivative of the potential part of the energy here called
E,:. What we want is the derivative of the potential which is the second derivative of the
Epoi. Since Ej,y; is the internal energy called H,. in Equation (7.25) plus the part due
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to the external potential [ V. (r)n(r), the expression in Equation (7.25) follows because
the last term is linear in the density (V. is a fixed quality) and does not contribute to the
second derivative.

Exercise 7.21 Derive the constraint on the o parameter in the simple linear mixing
scheme in terms of the response function; i.e., that the iterations converge only if o <
2/XmL. = 2Xmin- See also Exercise 13.3.

max

Solution:
It is sufficient to examine the iterations close to the minimum where linear response is
enough. The behavior from self-consistency depends on the problem, but it is always linear
near the solution. The expression for the error at step i (1 — ay;,L.)? given after Eq. (7.36)
shows that if o > 2 the output “overshoots” and the results diverge alternating plus and
minus around the solution. (Since  is a matrix it is not as simple as scalars, but the idea is
that one has the examine the maximum or minimum eigenvalues of x.

Exercise 7.22 Derive the two terms in the corrections to the force given in Eq. (7.40) for
a self-consistent independent-particle method, starting from the general form, Eq. (3.18).
The self-consistency adds the second term that is not present is the general case where the
hamiltonian never changes. Hint: Derive this term from the original definition of the force
as a derivative of the total energy.

Solution:

The first term is the contribution if the wavefunctions vary, where 2x the real part takes
into account the variation of the ket vector.

The second term can be derived using the expression for the energy in Egs. (7.26) and 7.27.
There Eqgs. (7.26) was considered to define a function for arbitrary V' and n. However,
the equations can be used for specific variations around the solution. At the solution all
quantities agree and the linear variation is zero. However, the expression for the force
involves a variation in the potential. In the general many-body expression the only part of
the potential that varies is the external potential and we arrive at the form given in Eq. (3.18)
or Eq. (3.19). However, in the Kohn—Sham problem the potential may not be fully self-
consistent so that the potential and density are not consistent. If we consider Eq. (7.26) and
assign n' to denote the correct self-consistent density, then V% 1s the correct Kohn—Sham
self-consistent potential Vi g, whereas the non-self-consistent potential is V*"*. Then the
first line of Eq. (7.27) is the desired result, the second line of Eq. (7.40).

What about the other term in Eq. (7.27) that involves that 1/ ? It also is an error but it has
a different interpretation. It does not change the interpretation that the force is the density
times the gradient of the potential; it is merely the fact that the density is not exactly correct.

Reader, CHECK
this is really cor-

rect!
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Solutions for Chapter 8

These are the Ex. in the second ed. Some of the problems in Chapter 8 the first
edition are the same as the ones below, but some have been moved to Chapter 9 of the
second edition (the problems involving the OEP and KLI).

Exercise 8.1 Derive the “spin-scaling relation” (8.9). From this it follows that in the
homogeneous gas, one needs only the exchange in the unpolarized case.

Solution:
The relations follow from the fact that exchange involves only the same spin, so it is a
sum of a term for up and for down. Since E,[n] on the right side of (8.9) is defined to
be the energy for system with density n = 2n' = 2n*, it follows that (1/2)E,[2n] is the
exchange energy for up spins and similarly for down spins and the total for a polarized (or
unpolarized) system is the expression in (8.9).

Explicit Egs. from Benchen:
Since the exchange interaction only happens within same spin electrons so we could sepa-
rate the functional as:

E.[n",n%] = E,[n",0] + E,[0,n}] (S.100)
For an unpolarized case, we have:
n n n n n
Eyn] = E;[-, =] = Bzl =, E.0, =] =2E;|=, S.101
(0] = Eul5, 21 = Bal 2,01+ E.l0, 2] = 2B, (2., 0) (s.101)

So apply the above equation to the question we have:
1 1
E.[n",nY] = E,[n",0] + E,[0,n'] = 5)530[%T J+ 5B [2n}] (S.102)

There might be some confusion with the notation. E,[n", nt] stands for the general spin
case where it might be polarized or unpolarized. F,[n] means unpolarized case where the
total density is n. So E,[2n1] stands for unpolarized case where the total density is twice
the density of n'.

Exercise 8.2 (a) Show that the expression for the dimensionless gradients s; = s in
(8.10) can be written in terms of 7, as (8.11).
(b) Find the form of the second gradient s, in terms of 7.

Solution:
This is a matter of inserting the definitions of kr and r. Explicit Egs. from Benchen:

(a)
El X 9 ‘VT | _ |VTS|
© 2kpn 2x3(2m/3)V/3 x 3 7 dmrd! TN 2(27/3)1/3

Note that there is a typo in the book. There shouldn’t be a 7 in the denominator otherwise

4 4
_ vl _ Uik (S.103)

S1

it wouldn’t be dimensionless.

(b)

|V2n| |4Vr, — r V2r|
So9 = =

T 4(3m2)2/3n5/3 (1272)1/3 (S.104)
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Exercise 8.3 Use the known form of the density near a nucleus to analyze the final term
in (8.18) near the nucleus. Show that the term involves higher-order derivatives of the den-
sity that are singular at the nucleus.

(a) Argue that such a potential is unphysical using the facts that the exact form of the ex-
change potential is known and correlation is negligible compared to the divergent nuclear
potential.

(b) Show that, nevertheless, the result for the total energy is correct since it is just a trans-
formation of the equations.

(c) Finally, discuss how the singularity can lead to numerical difficulties in actual calcula-
tions.

Solution:
The problem is the gradient of the density Vn. Near the nucleus the density has a cusp so
that Vin = (dn(r)/dr)r.

NOTE: NOT FINISHED

Note that his is analogous to the famous cusp condition on the wavefunction for two
electrons that interact with a Coulomb potential as discussed in [1].

Exercise 8.4 Show that if a three-dimensional system is compressed in one direction
so that the electrons are confined to a region that approaches a two-dimensional plane,
the density diverges and the LDA expression for the exchange energy approaches negative
infinity. Show that this is unphysical and that the exchange energy should approach a finite
value that depends on the area density. Argue that this is not necessarily the case for a
GGA, but that the unphysical behavior can be avoided only by stringent conditions on the
form of the GGA.

Solution:

You can answer the first parts straightforwardly. It is simple to see that the LDA di-
verges since it is proportional to n'/3 and it is straightforward to prove that the actual
coulomb terms for electrons in 2d does not diverge. The exchange in two dimensions for
the Coulomb interaction 1/r (the three-dimensional form so that the potential extends into
the space in the third dimension. Thus the integral is proportional to [ (1/7)rdr which is fi-
nite. The last part is tricky: how can gradients be arranged to give a finite result. In fact this
is one of the limits considered in the functionals such as the SCAN meta-GGA in Chapter
9. See the original papers for the reasoning.

Exercise 8.5 Problem on a diatomic molecule that demonstrates the breaking of sym-
metry in mean-field solutions such as LSDA.
(a) Prove that the lowest state is a singlet for two electrons in any local potential.
(b) Show this explicitly for the two-site Hubbard model with two electrons.
(c) Carry out the unrestricted HF calculation for the two-site Hubbard model with two elec-
trons. Show that for large U the lowest-energy state has broken symmetry.
(d) Computational exercise (using available codes for DFT calculations): Carry out the
same set of calculations for the hydrogen molecule in the LSDA. Show that the lowest-
energy state changes from the correct symmetric singlet to a broken symmetry state as the
atoms are pulled apart.

See note -

finished

not
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(e) Explain why the unrestricted solution has broken symmetry in parts (c) and (d), and
discuss the extent to which it represents correct aspects of the physics even though the
symmetry is not correct.

(f) Explain how to form a state with proper symmetry using the solutions of (c) and (d) and
a sum of determinants.

Solution:

This is a problem with many parts that I think are very instructive. I have done this is class
as important example that shows key aspects of many-body systems. A long very detailed
solution for part b is given at the end of these solution notes.

Part a. The solution to part b can be carried over to any problem with the argument
that for a more complicated problem the energy is always pushed down if one adds addi-
tional states at higher energy. The fact that it has the same symmetry as for independent
particles is one of the ways of looking at the problem as evolving continuously from the
non-interacting case as interactions are “turned on”, which is on the important concepts in
many-body physics. A formal proof is that the ground state is always a state with no nodes
(see [1]).

Part b. A long very detailed solution is given at the end of these solution notes. Since the
total number of states is 4, the solution for O and 4 electrons is trivial. For 1 and 3 electrons
the states are simply banding and antibonding. The interesting case is 2 electrons that can
be departed into spin singlets and triplets. The result is that all solutions can be found with
no more than 2x2 matrices. There is always a state that is spin singlet and even in space
that has the same symmetry as an independent-particle bonding state, with binding energy
that is reduced by the repulsive interaction but is always positive, i.e., the lowest energy
state.

Part c. The HF solution is for uncorrected particles but keeping the interaction. For large
enough repulsive interaction the solution is for the two electrons to be on different sites.
(See the list of all states in the detailed solution to part b.) which are a triplet with spin 1,
and two singlet states with up on one atom and down on the other. The unrestricted HF
solution is a single determinant that is one of the two states, i.e., a broken symmetry state
with that is not a proper singlet and not even or odd. The solution to part f resolves the
quandary and restores the symmetry.

Part d. For az hydrogen molecule this is a computational problem, but we can under-
stand the results without doing the calculation. A Kohn—Sham DFT calculation is for a
independent-particle problem in an effective potential which is a single determinant. We
consider a spin-dependent functional and the possibility of a broken symmetry, i.e., an
unrestricted solution. It is intuitive clear that as the atoms are pulled apart the ratio of in-
teraction to the interatomic independent-particle terms increase, at some point the ground
state will have broken symmetry solution just like the unrestricted HF. The spin density is
opposite around the two atoms and the Kohn—Sham potential is higher for one spin than
the other around each atom. The solution of part f brings out something that is missing in
the Kohn—Sham solution.

Part e. The reasons for the broken symmetry have been described above. The sense in
which this captures real physics is that it indicates the correlated regime where there is
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a large correlation: If one electron is near the left atom the other is more likely to near
the right atom. Of course this always happens for any degree of repulsion and the broken
symmetry indicate where this become the dominant physics and bonding can be viewed as
a perturbation.

Part f. Finally we come to the solution that can be stated definitive for the Hubbard
model; The true ground state is a linear combination of the two degenerate broken symme-
try states, i.e., the bonding combination. This is the way that one achieves a proper spin
singlet which is not a state with up on one site and down on the other. It is a multiple deter-
minant. What do we learn about real problems? For a hydrogen molecule the logic applies
but the final solution depends changes in quantitative ways when one makes the linear com-
bination. For a larger system it is MUCH more difficult! The number of determinants grows
exponentially and there is no exact solution. An example is an antiferromagnet in a DFT
calculation. Is this correct? It may be that indeed there is long range order with net spin
on each site. This is real physics unlike the broken symmetry in in the molecule. Thus the
DFT solution may be correct even if it is not quantitatively correct. But one can understand
the physics better by realizing that DFT is designed to give only the (spin) density NOT
the correlations; one must use a different theory to describe the correlations. The value of
the net average spin always is decreased by the fact that correlated spin flips are included.
At some point the DFT solution is not broken symmetry and this is also what happens in
the real world. Thus it becomes a question of accuracy in the reproduction of the ground
state using a practical, approximate functional, keeping in mind that theory (even the exact
theory) is ONLY for the average (spin) density and energy, NOT the correlations.

Exercise 8.6 Compute the exact exchange potential as a function of radius 7 in an H
atom using the exact wavefunction in the ground state. This can be done with the formulas
in Chapter 10 and numerical integration. Compare with the LDA approximation for the
exchange potential using the exact density and expression (8.16), (note the system is full-
spin polarized). Show the comparison explicitly by plotting the potentials as a function
of radius. Justify the different functional forms of the potentials at large radius in the two
cases.

Solution:

The exact exchange potential can be found because cancels exactly the Hartree potential,
which can be found by standard equations for the Coulomb potential for a spherically
symmetry charge density which is given. In the LDA exchange potential can be calculated
from the density at each point. To calculate the potential as a function of radius requires a
calculation left for the reader to do.

However we the total exchange energy is given in Table 9.1! The results in Table 9.1
are computed with the density from EXX, which is essentially the same as Hartree-Fock.
For H Hartree-Fock is exact. Since the results in Table 9.1 are calculated with the EXX
density, the results for EXX are exact and for the LDA there are in the table. We see that
the LDA is not too bad as a fraction, but because the exchange energy is so large it is finally
a very bad approximation. See Table 9.1 for the great improvement using GGA and hybrid
functionals.

Calculation not

actually done!
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Exercise 8.7 The hydrogen atom is also a test case for correlation functionals; of course,
correlation should be zero in a one-electron problem. Calculate the correlation potential
using the approximate forms given in Appendix B (or the simpler Wigner interpolation
form). Is the result close to zero? Does the correlation potential tend to cancel the errors in
the local exchange approximation?

Solution:

If we use the known density of the atom (exponential decay) to calculate the various terms,
it is straightforward to evaluate the terms for any functional, and to integrate the terms to
get the total correlation energy. This is left for the reader to do.

However, we can see from Table 9.1 the results for the total correlation energy. (See the
previous problem.) The LDA is amazingly good considering it is based on a homogeneous
gas! But till not good enough and the GGA and hybrids are much better.
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Solutions for Chapter 9

THIS IS A NEW CHAPTER IN THE SECOND EDITION.

Some Some of the problems in Chapter 8 the first edition (the ones involving the OEP
and KLI) and others are new exercises.

The exercises that were in chapter 9 in the first edition are all are moved to the end of
exercises in chapter 7 in the same order in the second edition.

Exercise 9.1 (Ex. 7.11 in fist ed.) It is interesting to note that construction of a kinetic
energy functional of the density is a “fermion problem.” See Section H.1 and Exercise H.1
and H.2. For non-interacting bosons, construct explicitly a practical, exact density func-
tional theory.

Solution:

The exact result is given by all particles in a symmetric product wavefunction ¥({r;}) =
va ¥(r;) with ¢(r) = y/n(r). Then the kinetic energy functlona] is simply N times the

kinetic energy for a smgle partlcle T[n T [Vnviy/n=-2([V*n-1 yn)® )

n

Exercise 9.2 (Ex. 8.5 in first ed.) Derive the general OEP expression, (9.11), using the
chain rule, and show that it leads to the compact integral expression, (9.17).

Solution:
The expression using the chain rule is in Eq. (9.13) (8.27) in first ed.). The physical picture
is that the wavefunctions are determined by the potential and the last term is the dependence
of the potential on the density. However, this is not trivial. If it were the LDA the depen-
dence is not hard to work out, but in this case the potential is calculated self-consistently
with the density using the functional of the wavefunctions.

Solution due to Benchen:
First of all we could multiply Eq. (9.13) (8.27) in first ed.) by x§ (', 7) on both sides to
get:

—~X0 (7, 7), (S.105)

Then we could expand it as:

§jw0* WV OB (G (7, 77 (7) + c.c.

EOEP 51/)0/ ( —»//)
507 (7) 3V KS() o M

—ZZ/W/

ol i=1

(S.106)
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Then we could integrate 7 on both sides to get:
Z/dr wo* VO'OEP(,F‘)GG'( ,,—,»)q/}a( )+CC

EOEP 5¢U, ( ﬁ//)

= (7/,—1 — o —
_;;/d /d 597 () 5V KS () tec /dF/Xo GRIIGAS
(S.107)
For the response functions we have:
/df'XS/’_l(Fl’ )XG (7, 7) = 0gor6(FL — 7). (S.108)

(check equation (13) and (16) in A.Gorling and M.Levy: Phys.Rev.A 50,196(1994)) So we
plug it in to get:

o* o,0OEP o= o 6E:?CEP &ﬁf(ﬁ) _
Z/d’l“ [¢ V ( )GO (T W_W)i (F) - 51/);7(f7) 6VU‘7KS(f‘) +tce = 07

(S.109)
where we have rename the variable 7 to 7. By expanding the second term we can get:

Z/dr wa* VO'OEP( )7‘/1‘0.1,5,\[1/( )} GO(T 7—,»)11) (7—,»)+CC =0 (S.110)

Note that in the book there is a typo in Eq. (9.13) (8.27) in first ed.), where on the right
hand side there should be ¢* not ).

Exercise 9.3 (Ex. 8.6 in First ed.) Write out explicit expressions for the inversion of the
response function needed in (9.11) by expressing the response function in a basis. Consider
appropriate bases for two cases: a radially symmetric atom (with the potential and density
on a one-dimensional radial grid) and a periodic crystal (with all quantities represented in
Fourier space).

Solution:

This is a matter of writhing out the equations to see exactly what needs to be done. The
calculation of x{’ KS( ,r’) is the sum on the right side of Eq. (9.16) which involves the
wavefunctions in a basis. However, Y is expressed in terms of continuous positions in real
space. This is what needs to be inverted. To do this we need finite matrix expressed in a
basis which may or may not be the same as the basis for the wavefunctions. For the cases
mentioned one would use a set of radial functions or plane waves, but in general they are
exactly the same for for the wavefunctions. For example, for a periodic system in general
the density involves plane waves up to a cutoff twice as large as the wavefunctions. Once
X is expressed in a basis, it is just a matter of matrix inversion.

Exercise 9.4 (Ex. 8.7 in First ed.) An impediment in actual application of the OEP for-
mula, (9.11) is the fact that the response function is singular. Show that this is the case
since a constant shift in the potential causes no change in the density. Describe how such
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a response function can be inverted. Hint: One can define a non-singular function by pro-

jecting out the singular part. This may be most transparent in the case of a periodic crystal

where trouble arises from a constant potential which is known to be undetermined.
Solution:

As stated in the exercise, for plane waves it is essay to omit the constant k = 0 term. for a

finite system, it is not so obvious. One way is to define a basis where each basis function

has average value zero.

Exercise 9.5 (Ex. 8.8 in First ed.) Show that the approximation, (9.18), substituted into
the integral equation, (9.17), leads to the KLI form, (9.19), and discuss the ways in which
this is a much simpler expression than the integral equation, (9.17).

Solution:

The great implication of KLI is that is the denominator is constant the sums are just over-
laps fo wavefunctions and the result is for the OEP is a vast simplification that does not
even require an inversion.

Explicit solution due to Benchen:

By substituting q. (9.18) into (9.17) ((8.32) into (8.31) in First Ed.) we get:

Z/drw* ) [V s ) — VR 50— ) — 07 e ()9 () + . =0

(S.111)
Further simplification would lead to:
n? PV () = Yo gVt = Yoy (VR - vat) s
VoKL () = Z (Va NL( 7 + Vo KLI Va NL)
(S.113)

S+ 3 o (VR vt

Exercise 9.6 Derive the power law for the London dispersion interaction, using a model
with two oscillators, each with a charged particle attached to a spring, that are coupled
by the Coulomb interaction. The longest range term results for using the lowest non-zero
term in a perturbation expansion. Is this sufficient to establish the result for any problem
approximated by a single pole?

Solution:

Not worked out specifically. A nice derivation is in Kittel for coupled harmonic oscillators.
The basic idea is second order perturbation theory where the energy is proportional to the
interaction (1 /72 for dipoles) squared divided by an energy denominator, leading the 1/7°.

Exercise 9.7 Derive the relation in Eq. (9.28) using the expression for a coefficient in
Eq. (9.25) and the single-pole approximation in Eq. (9.27).

Solution:
Carrying out the integral for C 4 in Eq. (9.25) using the from for « in Eq. (9.27) we find
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(see Tkatchenko, PhysRevLett.102.073005)

3 Wl W
Coap = —a%al—A4"B_ S.114
6AB QQAQBW%+WOB ( )

From the this point algebraic manipulations lead to Eq. (9.28).

Exercise 9.8 Show that the polarizability in Eq. (21.7) has units of volume. Show also
that the polarizability of a perfectly conducting sphere is equal to its volume. This is derived
in Jackson [480] and other books, but it is a good exercise to do it yourself.

Solution:

See texts on electrodynamics such as Jackson [480] and the text by Zangwill listed at the
end of Appendix E. The idea is that a conducting sphere has zero field inside, i.e., the field
is excluded in for the volume of the sphere. This is the basis for the idea of an effective
volume in a molecule or insulating solid where the field is reduced for the volume.

Exercise 9.9 See Exercise 8.6 and 8.7 for exchange and correlation (fictitious) terms in
the LDA for H. Compare with the results in Table 9.1. Discuss the extent to which the
results are improved in the hybrid functionals.

Solution:

Even though Exercise 8.6 and 8.7 are not solved explicitly, we can answer this question,
as is pointed out in the solutions to those problems. The results in Table 9.1 are computed
with the density from EXX, which is essentially the same as Hartree-Fock. The LDA is
amazingly good considering it is based on a homogeneous gas! But till not good enough
and the GGA and hybrids are much better. The results for the total support the general idea
that DFT can provide accurate results many systems, including H with in some ways is a
worst case!
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Solutions for Chapter 10
Same as exercises in first edition.

Exercise 10.1 Show explicitly that the wave equation can indeed be written in the form
of Eq. (10.4).

Solution:
Equation (10.4) follows from the transformation to radial coordinates in the previous equa-
tion and the derivation of the angular momentum contribution the the energy ¢(¢ + 1) de-
rived in standard texts.

Exercise 10.2 Derive the form of the radial equation, Eq. (10.8) in terms of the trans-
formed variable p = In(r). Give two reasons why a uniform grid in the variable p is an
advantageous choice for an atom.

Solution:

There is an error in the equation in the text. The factor of //2 should be 1/2. The
equation follows by transforming the variables and using the definition ¢;(p) = r'/24)(r).
It is most convenient to use Eq. (10.5) in terms of ¢ = r¢p = r2/2¢ so that ¢ = r—1/2¢
and transform to an equation in term of p = In(r). The derivatives transform as d/dr =
(1/r)d/dp = e~ Pd/dp. If we work in terms of e instead of r the derivative are easy to
evaluate and

d? 1 {

p=eP—

dr? dp

-p 1 p/2 ] —3p/2 1, &5

From this follows Eq. (10.8) using the relation (£ + 1/2)% = £(¢ + 1) + 1/4.

Two reasons are that near the origin the wavefunctions have a power law like hydrogen
functions (see Eq. (10.9)) and in the the tails the functions have exponential decay. As an
aside, for DFT the functions do not decay properly for a neutral atom since the potential
do not have the proper Coulomb form. However, Hartree Fock does have the proper form
of decay. The reason is that for a neutral atom the DFT potential is neutral, but the actual
potential felt by an electron is that due to the nucleus and the other electrons, i.e., a net
positive charge of 1.

Exercise 10.3 Show that the Hartree—Fock equations are exact for the states of H. Show
that the change in energy computed by energy differences gives exact excitations; but the
eigenvalues do not.

Solution:
The proof that the Hartree—Fock equations are exact for the states of H is the same as for
any one-electron problem: the exchange term exactly cancels the spurious self-interaction
term. Thus each state of H is given exactly by the HF equation for that state, and the change
in energy computed by energy differences between two different calculation gives the exact
excitation energies.

However, the eigenvalues of the unoccupied states are NOT exact. By Koopmans’ theo-
rem they are the energies required to add an electron keeping the occupied states constant.
These are not true excitation energies of any system.
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Exercise 10.4 Show that the OEP equations are exact for the states of H, just like
Hartree—Fock. But unlike Hartree—Fock the eigenvalues give exact excitation energies.

Solution:

The OEP equations are exact for the occupied state of H, just like Hartree—Fock because
the exchange term exactly cancels the spurious self-interaction term. But unlike Hartree—
Fock the OEP potential is the same for all states. Thus the potential is just the Coulomb
potential of the proton —1/r and the eigenvalues of this potential are the exact eigenvalues
for H in its ground and excited states. Thus (unlike Hartree—Fock) differences between
eigenvalues are the exact excitation energies. Of course, this applies only to the case of one
particle where there are no interactions and the issues are 0Only whether or not the method
produces the exact results.

Exercise 10.5 Show that the general Hartree—Fock equations simplify in the closed-shell
case so that the exchange potential is spherically symmetric.

Solution:
The essential point is that the closed shell system is spherically symmetric. The Hartree
term in the potential is the potential due to all the electrons and is clearly spherically
symmetric. The exchange term is not so obvious since the equation involves the given
wavefunction itself. The essential point is that effect of the non-local operator is symmetric,
which can be shown be considering the operation on a wavefunction of a given angular
momentum [, m. The is most easily see in Eq. (3.45), and the conclusion also applies
to Eq. (3.48) since it is just a transformation. In Eq. (3.45) The issue is the integral in the
exchange term in the second line where the sum is over all occupied states 7. If we multiply
by ¥¢ (r) and integrate over r the result is manifestly invariant. Similarly each other term
in the equation is invariant. Thus the wavefunctions in Eq. (3.45) can be expanded in a
basis of radial functions and solved for each [, m.

Exercise 10.6 Show that for the ground state of He the general Hartree—Fock equations
simplify to the very simple problem of one electron moving in the average potential of the
other, with both electrons required to be in the same spatial orbital.

Solution:

Since the ground state is a spin singlet, the energy is the same as for the same spatial orbital
with up and down spins. Thus the self term is exactly 1/2 the Hartree term leaving the net
effect of a potential that it the Coulomb potential due to the nucleus and the average of the
other electron.

Exercise 10.7 There are results that emerge in relativistic quantum mechanics that may
be surprising. For example, show that there is a 2p state that has non-zero expectation value
at the origin, whereas it is zero in the non-relativistic theory.

Solution:

In the non-relativistic theory the wavefunctions near the origin behave as (1) oc ¢ so that
1(0) = 0forall £ > 0. Often spin is added in the non-relativistic equations as just doubling
the number of eigenfunctions. However, it a proper relativistic theory there is spin—orbit
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interaction that mixes the spatial angular momentum. For example in spherical symmetry
the £ = 1 p states is split into a triplet with j = 3/2 and a singlet with j = 1/2. The latter
mixes with the £ = 0 s states which have j = 1/2. Thus the p state acquires a non-zero
value at the nucleus.

Exercise 10.8 The Slater transition state argument ( Slater’s 1974 book [489], p. 51) is
based on two facts. First, an eigenvalue is the derivative of the energy with respect to the
occupation of the given state (the “Janak theorem”), and, second, that the eigenvalue varies
with occupation and can be represented in a power series.

(a) Using these facts derive the “half-way” rule.

(b) Argue that one can derive the “half-way” rule based purely on the fact that one wants
a result that is symmetric between the two states.

(c) Derive the explicit expression (10.21) for electron removal.

Solution:

All the arguments follow from the idea that the energy is a quadratic function of occupation,
if occupation is considered to be a continuous variable. This is exactly true in models
that have interactions between particles, which causes a quadratic term in the energy. In
a many-electron atom or other finite system, the orbitals change with occupation and the
quadratic dependence should be viewed as the lowest order approximation. Assuming the
energy is a quadratic function of occupation the derivative at the midpoint is the slope of
the energy at interger occupations E(N + 1) — E(N) = dE/dN = e(N + 1/2) where
the eigenvalue ¢ is the derive of the energy and it is evaluated at the half-way point. The
physical significance is that it is the energy at integer values that is physical for an isolated
finite system and the derivative is a way of calculating the energy differences using a theory
where the occupation can be continuous. A fractional occupation actually occurs if the
system is not isolated; however, care must be taken to interpret the physics correctly. See
[1] for more indepth discussion.

Exercise 10.9 Solve the Schrodinger equation in Section 10.1 for a particle in a spherical
box of radius R. If the boundary conditions are that ¢) = 0 atr = R, show that the solutions
are 1(r) = sin kr/r and derive the eigenvalues and normalization factors for the states
with the three lowest energies. Show that all energies scale as 1/ R2.

Solution:

For a spherical box, the radial equations for £ = 0 and ¢(r) = ru(r) are exactly the
same as ¢ (x) in a one-dimensional box of length L. The solutions with boundary condi-
tions zero at both ends are ¢ (x) o sin kx or ¢(r) o sin kr/r, and in each case energies
scale as 1 /L? or <1/ R?.

The problem was poorly stated since it asked for the lowest states. It should have said
the lowest states for £ = 0.

In addition there are states of the spherical box with angular momentum ¢ > 0 where there
is a “centrifugal” term that acts like a potential /(£ + 1) /r2.
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Exercise 10.10 Derive the pressure —dF /d€) from the expression for the energy in the
problem above. Show that this is equivalent to the expression for the pressure in a spherical
geometry given in (L.8).

Solution:

Since the energy scales as 1/R?, the pressure dE/dQ) = (1/4nR?*)dE/dR ~ 1/R°. The
expression in (I.8) has this scaling (For this non-interacting problem the exchange term in
is not relevant.) If we take the expression in (I.8) and insert the expressions for the lowest
wavefunction ¢(r) o sin kr/r, it is straightforward to carry out the derivatives.

Exercise 10.11 The expression (10.22) provides a way to calculate interactions.

(a) Show that these are “effective” in the sense that orbital relations are included and are
exact if the energies E(N), E(N — 1), and E(N — 2) are exact.

(b) Derive expression (10.22) using the same arguments as in Exercise 10.8.

(c) Use an atomic code to calculate the first and second ionization energies of 3d elec-
trons in Cu. The difference is the effective d—d interaction. A better measure of the net
effect in a solid is to calculate the difference E(3d?) — E(3d%4s!). Compare your results
with those of Mihaly and Martin [490]. In this case, the effective d—d interaction is de-
creased because the added s electron “screens” the change in charge of the d state. As
argued in the paper by Herbst et al. Phys. Rev. B 17, 3089 (1978) [492] this is close to the
screening that occurs in a solid; hence, the screened interaction is the appropriate effective
interaction in the solid.

Solution:

(a) The term “exact” applies if we define the conditions: In free space and one is filling
the same orbital (strictly only for a singlet with spin degeneracy) or orbitals with the same
density so the interactions are the same and the orbital does not change, the interaction is
purely quadratic and the expression applies. If the orbitals relax it is not purely quadratic
and it is effective

In a solid there is screening and there is another use of the term “effective” to mean the
screening due to other electrons in the solid. This leads to an effective interaction since the
other orbitals relax. However, as long as this screening is linear it is just a factor.

(b) This is just a matter of using the eigenvalue for half-occupation intermediate between
the two integer occupations, no matter what is the value of N.

(c) This is a computational exercise to be worked out by the reader.

Exercise 10.12 Following the arguments given in conjunction with (10.23)—(10.25), de-
rive the approximate expressions (10.24) and (10.25) for the band width. The full argument
requires justifying the argument that this corresponds to the maximum band width in a solid
and deriving the explicit expression using the linearized formulas for energy as a function
of boundary condition.

Solution:

The key point is that the band minimum is for the case with slope equal zero at the cell
boundary and maximum for value zero where the wavefunction changes sign, as illustrated
in Fig. 4.11. In a 3 dimensional close packed crystal the Wigner-Seitz cell is almost spher-
ical and the band maximum corresponds to value zero in all directions.
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If we follow the prescription before (10.23), when we take the difference of the two equa-
tions the potential term V (1)t ()12 (r) drops out since v is the same in the two equations.
The kinetic energy integrated up the boundary is the first derivative of ¢ at the bound-
ary. This leads to (10.23). Equation (10.24) follows because only one of the terms on the
left side is non-zero. Equation (10.25) follows with a factor of 4 time the expression in
Equation (10.24) using the argument that the functions are approximated by even and odd
combinations of the atomic states, which is illustrated in Fig. 4.11.

The relations can be worked out explicitly as in the following equations due to Benchen:
After we follow the instructions by the question and do the subtraction, we get:

T0 2 2 70
LHSz—%/O 2 (zpzddf;l 02 z/’2>dr—/0 (wzdz/’l—wld%)
o1 dipy dap e di dipy
:5/0 <ww1 )/0 (wzwl )
{ (%dwl—%d%)]
0

d dr
(S.116)
So we have:
d d ro
- 7‘0 <¢2 i — “/’2) = (g1 — 52)/ 2 abodr (S.117)
r=ro 0
If we take 15 (1) = 0, we would have:
w rg ( d(#)r:m S.118
T T R adr e

And if we take atomic function for further approximation, and knowing at rq, 11, ¥ and
their slope would be twice of that of atomic functions, we get:

Bl (v ): (S.119)

W = — =
€2 — &1 foro r2(1h®)2dr

Exercise 10.13 The wavefunction for atomic hydrogen can be used to estimate hydrogen
band widths at various states, using the approximate form of Eq. (10.25). Apply this ap-
proach to the Hs molecule to calculate bonding/anti-bonding splitting and compare these
with the results shown in Fig. 8.2. Use this expression to derive a general argument for the
functional form of the splitting as a function of proton separation R at large R. Evaluate
explicitly at the equilibrium R and compare with Fig. 8.2. Calculate the band width ex-
pected for hydrogen at high density (rs = 1.0) where it is expected to be stable as a close
packed crystal with 12 neighbors. (The result can be compared with the calculations in
Exercises 12.13 and 13.4.)
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Solution:

The wavefunction for atomic hydrogen is v (r) o< exp(—r/ap). Thus the expression
given in Eq. (10.25) gives:

2 adyp®

r2(,
0 (w dr )7‘:7‘0 _ ﬁ exp(—2r0/ap) _ 8ﬁ exp(—2ro/ap)
Jo O drr2(ypa)? ao [3© drr2 exp(—2ro/ao) 3

W~ -2

%o 1—exp(—27”0/ao)(1—i-20%3-‘,—iLQg ’

In atomic units this can be written in terms of the bond length R = 2r(/ag: ’
W= 2R R R

At large distance, clearly the predicted width (the difference of even and odd states, i.e,
the bonding/anti-bonding splitting ) is exponential in the distance W =~ 2R? exp(—R) in
atomic units.

At the equilibrium position in He, 79 = 0.7aq is half the bond length, or R ~ 1.4. This
yields W ~ 5.8 Hart. The results shown in Fig. 8.2 show that the splitting of the even
and odd states is ~ 10eV. We see that the formula has given a huge overestimate of the
splitting. The reason is that the derivation of the equation assumed each atom is surrounded
by other atoms so that it is in a spherical environment. The wavefunction or its slope is
required to vanish on a sphere that is very close to nucleus in this case. This is a very poor
assumption for a molecule. It is a much better assumption for a close packed solid (see the
second part of the problem) where there are twelve neighbors. As a first approximation we
can estimate that the effect in a molecule is reduced by a factor of 12, i.e., ~ 5.8/12 =~ 0.5
Hart. = 13 eV, which is quite close to the actual value of ~ 10 eV.

As explained above the estimate should be reasonable for the band width expected for
hydrogen at high density in a close packed crystal with 12 neighbors. If we consider a very
high density, s = 1.0, which corresponds to a bond length R ~ 2. The predicted width is
W =~ 3.3 Hart. This is the full width of the band and the occupied width is roughly 1/2 this
value (since there is one electron per atom) which is ~ 1.6 Hart. This is actually a very rea-
sonable estimate that can be compared with the free electron estimate of Epepp; = 1.84
Hart. (See Table 5.3 for E'rerm; as a function of r,. As discussed in Chapter 12 and Exer-
cise 12.13 and 13.4, the nearly free-electron approximation is an excellent approximation
for H at such high density.

Exercise 10.14 Use an atomic code (possibly modified to have different boundary con-
ditions) to calculate the band widths for elemental solids using the approach described in
Section 10.7. As an example consider 3d and 4s bands in fcc Cu. Compare these with the
bands shown in Fig. 16.4.

Solution:
This is a problem the requires computation - not worked out here.
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Solutions for Chapter 11
Same as first edition

Exercise 11.1 Consider s-wave (I = 0) scattering in the example illustrated in Fig. 11.1.
Using formula Equation (J.4) for the radial wavefunction v, with the definition ¢ = 7,
and the graphical construction indicated in Fig. 11.1, show that the scattering length ap-
proaches a well-defined limit as < — 0, and find the relation to the phase shift 7 (¢).

Solution:

The formulas for the Bessel and Neuman function jj and ng in App. K show that ¢ = r.
Must check - since ng diverges, must work out what happens. Need to check refs for
scattering.

NOTE: NOT FINISHED

Exercise 11.2 The pseudopotential concept can be illustrated by a square well in one
dimension with width s and depth —V}. (See also Exercises 11.6 and 11.14; the general
solution for bands in one dimension in Exercise 4.22; and relations to the plane wave,
APW, KKR, and MTO methods, respectively, in Exercises 12.6, 16.1, 16.7, and 16.13.)

A plane wave with energy € > 0 travelling to the right has a reflection coefficient r and
transmission coefficient ¢ (see Exercise 4.22).

(a) By matching the wavefunction at the boundary, derive r and ¢ as a function of Vj, s,
and ¢. Note that the phase shift ¢ is the shift of phase of the transmitted wave compared to
the wave in the absence of the well.

(b) Show that the same transmission coefficient ¢ can be found with different V{j and/or s’
at a chosen energy .

(c) Combined with the analysis in Exercise 4.22, show that a band in a one-dimensional
crystal is reproduced approximately by the modified potential. The bands agree exactly at
energy €, = €o and have errors linear in €, — g plus higher-order terms.

Solution:

This problem is more complicated than it should have been and it is incomplete in
an important way. If it had asked for bound states instead of transmission of states at
positive energies, it would have been more appropriate. Usually for pseudopotentials
one considers bound states. Pseudopotentials work for unbound states also but it is
not as instructive. See below and Exercise 11.14 for examples of bound states. It is
incomplete because it only asks for transmission ¢; this illustrates only part of the
idea of pseudopotentials. Even though this determines the magnitude of the reflection
it does not determine the phase. See Exercise 11.6 where we see that both ¢ and r
must be the same at the given energy to describe the bands. In higher dimensions
this is the requirement that the scattering must be the same in all directions, i.e., for
the same angular momenta. Thus a pseudopotential replaces a state with a strong
potential with a pseudofunction with the same angular momentum. In one dimension
this means the same parity. That does not change the solution here but it does change
the interpretation.

See note -

finished

Part (a)

Benchen

not

from
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(a) The transmittance is:

F eiks
t=—= . , S.120
A cos(K's) — ik;;g,f,z sin(k's) ( )
so that
4(kk"? 1

= (S.121)

t| = = 7
g A(RK')? + (K2 = k2)25in? (2K's) ~ 1+ g5y sin?(2K's)

where h2k? = 2m.F and h?k'? = 2m,.(E + V;), and this equation can easily be rewritten
in terms of €, Vj, s. This calculation could be found in quantum mechanics textbooks, e.g.,
Griffith. The idea is that matching the wavefunctions value and slope at the edges of the
cell.

(b) The last equation is easiest to demonstrate the result. For given values of the well

depth Vj and width s, the fact that the sine function is periodic means that the transmission
can be the same for two or more different values of 1, s. For example, for a fixed 1} the
argument of the sin function can change by multiples of 27 by varying s. The analogy to a
pseudopotential is that for a strong potential with fixed values of Vj, s, the same transmis-
sion at a given energy E can occur with a weak potential weak different 19, s.
A physical picture can be understood by the fact that a phase shift greater than 27 occurs
if there is a bound state. This illustrates a pseudopotential: the same scattering occurs for
a strong potential with a bound state (analogous to a core state in an atom) and a weak
potential with no bound state and a phase shift n + 2.

(c) The statement of the problem is not quite correct. As discussed in Exercise 11.6 the
phase of both the transmission and reflection must be correct to determine the interference
between two wells; therefore the solution for a periodic set of wells requires both to be
correct and the bands are the same at that chosen E. This is an example of the fact that the
scattering must be the same in all directions. That means backward and forward in
1D, and the same angular momentum in in 2D and 3D. As stated above, I believe this
means having pseudofunctions with the same symmetry (even or odd) as the orginal
function.

More instructive exercise
If the Ex. had asked for negative energies, the solution would be the same except with
decaying functions outside the well (complex k). A detailed solution can be found on
wikipedia and I stole the following graph from there. See

https://en.m.wikipedia.org/wiki/Finite_potential_well

In this case an example of a solution with several bound states is shown in the figure
taken from that web page. There are three bound states. It is clear that one can find a weak
potential with the lowest energy state having same energy as the top state. Since it is the
lowest energy state it has no nodes like a pseudofunction and it is even as required to have
the same symmetry are the original function shown in the graph. However, that potential
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E/V,

1.OF

06

Figure S.2. Bound states in a finite square well in one dimension

will not have a state at the same energy as the middle state in the figure, i.e., the states are
not reproduced correctly at that energy. This looks like a great error in 1D, but in higher
dimensions it can be work because states of a local potential have angular momentum
states with energy that increases with momentum. There is still error in the energy of other
states and the accuracy is determined by the “hardness”. The “transferability” to different
situations is improved by the norm-conserving condition.

Exercise 11.3 Following Eq. (11.9) it is stated that if u;; = v}, in the OPW, then the
smooth function @ZNJZ" (r) has no radial nodes. Show that this follows from definition of the
OPW.

Solution:

NOTE: NOT FINISHED

Exercise 11.4 Verify expression Equation (11.10) for the norm of an OPW. Show this
means that different OPWs are not orthonormal and each has norm less than unity.
Solution:
It’s pretty straight forward to show that:

CEVINGY) = g [ =23 [wsla) P+ Y fusla) Y dalui)
= 1= {usla) [

(S.122)

See note - not
finished

From Benchen
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Exercise 11.5 Derive the transformation from the OPW equation Equation (11.11) to
the pseudopotential equation Equation (11.12) for the smooth part of the wavefunction.
Solution:
First of all, we use 1/)]6. as u;, and we have for these wavefunctions:

1
=5 VA5 + V(7)Y = e5uf (S.123)
And for the expansion coefficient, we have:
B; + <w§|z/?$> =0 (S.124)

So we can plug equation (11.4) into (11.10) to get:

Hv? + V(F)] by = (sl s | = {or =0 (wslir ) us | (s129)
J J

Further simplification would lead to:

ALY D SR IO R R TACEED
J
Since we have the relation:
VAR =3 = 25) (W) S (.127)
J
So we have derived equation (11.10).

Exercise 11.6 Consider the one-dimensional square well defined in Exercise 11.2. There
(and in Exercise 4.22) the scattering was considered in terms of left and right propagating
waves ; and 1,.. However, pseudopotentials are defined for eigenstates of the symmetry.
In one dimension the only spatial symmetry is inversion, so that all states can be classified
as even or odd. Here we construct a pseudopotential; the analysis is also closely related to
the KKR solution in Exercise 16.7.

(a) Using linear combinations of v; and 1),., construct even and odd functions, and show
they have the form

er _ efik|m| + (t + T)eik|z\7
YT = [e_iklxl +(t— r)eiklwq sign(z). (S.128)
(c) From the relation of ¢ and r given in Exercise 4.22, show that the even and odd phase
shifts are given by
Q2T == ei(‘sw)7

W6-0) (S.129)

M =t—r=e

where ¢ = |t|e?® and § = cos™'(J¢t]).

(d) Repeat the analysis of Exercise 11.2 and show that the band of a one dimensional
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crystal at a given energy ¢ is reproduced by a pseudopotential if both phase shifts 57 (¢)
and 7~ (g) are correct.

Solution:
(a) The even wavefunction comes from the addition of two plane waves: (a) and (b) from
. . Bench
Pt = e el g (p 4 p)eitlal S.130)
And the odd wavefunction comes from the subtraction of the two:
YT = {e‘ik‘xl +(r— t)e"’klxl} sign(x) (S.131)
(b) Since we have: r = i|r|e*® and cosf = |t|, we would derive it as:
2int _ (|t | ) s _ i(5+6)
e =t+r=(—5—-—75]€e" =¢€ S.132
(s 5152
M =t —r= (|t| —ilr| ) e = ¢H0-0) (S.133)
[t[> + |r[?
(c) The interference between different wells requires the both forward and backward
scattering ¢ and r including their phases be correct. This is the reason that the pseudopo-
tentials are for states with the same symmetry in order for the scterring the be the same
in all directions for the weak and strong potentials. Here it means even and odd. In higher
dimensions it means the same angular momentum. See Exercise 11.2.
Exercise 11.7 Find the analytic formulas for the Fourier transforms of a spherical square
well potential V' (r) = vg,r < Ry, and a gaussian potential V (r) = Ag exp —ar?, using
the expansion of a plane wave in spherical harmonics.
Solution:
For the first potential, we have: From Benchen
Ro - 4 Ro
V(k) = / drugeF 7 = 70 / rsin(kr)dr
0 k- Jo
dmvg sin(kr) — krcos(kr) 4rr3
= 2 = v ji(kr)
For the second potential, the same procedure applies.
Exercise 11.8 Show that the radial Schrodinger equation can be transformed to the non-
linear first-order differential equation Equation (11.24).
Solution:
The radial Schr. Eq. is: From Benchen
1 I(l+1
~3 7 (r) + (M ) + Verp(r) —e| gu(r) =0 (S.134)

And we also have the relation:

7' (e,r) + 2%(e,r) = ZZ/((:)),

(S.135)
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which leads to

o (e,r) + 2%(e,r) = l(l; D +2[Vesp(r) —el (5.136)

Exercise 11.9 Show that Equation (11.26) indeed holds for any function f and that this
relation leads to Equation (11.27) with the choice f(r) = (9/0¢)zi(e, r). To do this use
the fact that ¢ = 0 at the origin so that the final answer depends only on f(R) and ¢(R) at
the outer radius.

Solution:
First of all let’s prove equation (11.26):
1 ding;(r
RO = 10+ 200V T ) 2 0) 6157
1
And then combining with equation (11.25) we would have:
1 0
oL (r) ol r)] =-2 (S.138)
7o A0
Multiplying qbf(r) on both sides on integrate between 0 and R we have:
0
-2 ¢z r)dr = ¢l (e,7)dr = ¢7(R )agxl(E’R) (S.139)
So as a conclusion we have:
9 2 (B
—z;(e,R) = ——— &2 (r)dr (S.140)
O « ) ¢12(R) 0 (r)

Exercise 11.10 Show that the third condition of norm conservation (agreement of loga-
rithmic derivatives of the wavefunction) ensures that the potential is continuous at R..
Solution:
First of all let’s prove equation (11.26):

1 dl
D162 £0) = £/0) + 240 0 pe) famenf) (s.141)
¢l( r) or dr
And then combining with equation (11.25) we would have:
1 0
=-2 S.142
P [A 0 gemten)] (5.14)
Multiplying ¢?(r) on both sides on integrate between 0 and R we have:
R, ) )
-2 ¢y (r)dr = d)l (r ) zy(e,r)dr = ¢} (R )(9 zi(e, R) (S.143)
0 0 €

So as a conclusion we have:

) R
gajl(a,R) = _QS%?R)/O o7 (r)dr (S.144)
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Exercise 11.11 Computational exercise (using available codes for pseudopotential cal-
culations): Generate a “high quality” (small R.) pseudopotential for Si in the usual atomic
ground state 3s?3p?. Check that the eigenvalues are the same as the all-electron calculation.

(a) Use the same pseudopotential to calculate the eigenvalues in various ionization states
+1, +2, +3, +4. How do the eigenvalues agree with the all-electron results.

(b) Repeat for a poorer quality (larger R.) pseudopotential. Is the agreement worse?
Why or why not?

(c) Carry out another set of calculations for a “compressed atom,” i.e., confined to a
radius :z% the nearest neighbor distance. (This may require changes in the code.) Calculate
the changes in eigenvalues using the all-electron code and using the same pseudopotential,
i.e., one derived from the “compressed atom.” How do they agree?

(d) Non-linear core correlation corrections can also be tested. In many generation codes,
the corrections can simply be turned on or off. One can also calculate explicitly the
exchange—correlation energy using the pseudo and the entire density. The largest effects
are for spin polarized transition metals, e.g., Mn 3d°T compared to 3d*" 3d'+.

Solution:

Computational exercise not solved here.

Exercise 11.12 Show that unphysical “ghost states” can occur at low energies as eigen-
values of the hamiltonian with the non-local potential operator Equation (11.41) if Vigcai ()
is chosen to be large and negative (attractive) so that the non-local 6V;(r) must be large
and positive. Hint: Consider the limit of a very large negative Vi,ca1(r) acting on a state
that is orthogonal to ¢;(r).

Solution:

To find out why there might be ghost states, we usually resort to spectral analysis. Let’s
use €p and €1 to denote the two lowest eigenvalues. For the Hamiltonian, we can write it
as:

Hy =T + Vioear + x1)Mx1| (S.145)

If A\ = 0, then the energy we get is ;(0) with local potential only. And if A\ = EX P that
would give the reference valence level ¢;.

Take the A\, EffB > 0 case as an example, from the Figure 2 we see that if ¢;, which is
pre-known from atomic calculations, is larger than €, then there would be a ghost state be-
low it. And that situation is likely to happen when the local potential is extremely negative,
causing a really low eigenvalue €.

Exercise 11.13 Show that each 1) is a solution of H s = €51, if the “ultrasoft” poten-
tial is constructed using Equation (11.47).
Solution:
Here for sake of simplicity we assume that all wavefunctions, basis sets are real. So we

From Benchen

From Benchen
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= forany |\, E}'" > 0| spectra ordered like *

A A
Ef® aaee.- e1(N) EF® ...... éa(N)
0 ——(0) 0 —62(0)
B (M) = EM e 61(N) = ¢
0 —cp(0) 0 —— e (0)

B (M) X

0 co(0)

no ghost if ¢; < €1(0) ghost if ¢; > ¢,(0)

- for ’A l/l\“ < () have (1)(/\) < (h(.(()) < (~|(/\) cee

l no ghost if ¢, < €,(0) | l ghost if €; > €,(0) ]

Figure S.3. ghost state demonstration

have:

H|¢s> = _%VZ + Wocal + Z (Z BPJZ'ﬁpMBq) ‘¢S>

I,)m \pyq

( v? +Vlocal+ZquZB IXT Z qt(Xt|> |¢3>
1
( §V2 + Wocal) ws + Z (Bp,qu_,v{) (BS,tBt;tl) ‘XT> (8146)

w\»—‘

p,q,7,t

+ WOcal> 1/15 + Z 6qr§sq|X7‘>

p,q,T,t

1
= (—2V2 + Vlocal> Ps + |XS> = 63|¢3>

Exercise 11.14 The square well in one dimension considered in Exercises 11.2 and 11.6

illustrates ideas of the OPW and pseudopotential methods and also shows close relations to
other methods (see Exercise 11.2). In this example we consider a bound state with ¢ < 0,
but similar ideas apply for € > 0 (Exercise 11.2).
(a) A deep well has states analogous to core states with ¢, < 0. Consider a well with width
s = 2ag and depth —V[y = —12Ha. Solve for the two lowest “core” states using the ap-
proximation that they are bound states of an infinite well. Solve for the third “valence”
state by matching the wavefunction.
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(b) Construct a generalized OPW-like valence state using the definition ¢* (x) = ¢* (x) +
> ; Bju; (z), analogous to (11.4). Rather than using the expressions in Fourier space, it
is easiest to use the definition B; = (u;|)"). The overlap B, is zero for one of the “core”
states; give the reason and generalize the argument to apply to core states of an atom in
three dimensions. Show that the “smooth state” ¢)” is indeed smoother than the original
(ChS
(c) Construct the PKA pseudopotential analogous to (11.13) and show that its operation on
" is effectively that of a weaker potential.
(d) Construct a model potential with the same width s but weaker potential V that has the
same logarithmic derivative at the “valence” energy ¢. Is this potential norm-conserving?
(e) Construct a norm-conserving potential, which can be done by first finding a nodeless
norm-conserving wavefunction and inverting it as in (11.32). If the form of the wavefunc-
tion is analytic, e.g., a polynomial inside the well, all steps can be done analytically.
(f) Write a computer code to integrate the one-dimensional Schrédinger equation and eval-
uate the logarithmic derivative as a function of energy near € and compare the results for
the original problem with the pseudopotentials from parts (d) and (e).
(g) Transform the potential to a separable form as in Section 11.8. There is only one pro-
jector since only one state is considered. Show that for a symmetric well in one dimension
the general form involves only two projectors for even and odd functions.
(h) Generate an “ultrasoft” potential and the resulting generalized eigenvalue problem anal-
ogous to (11.59). Discuss the relation to the OPW method and PKA form of the potential.
(1) Generate a PAW function and show the relation to the OPW and APW methods (part
(b) above and Exercise 16.1).

Solution:
Computational problem. Solution not given here.
But we note some important points. This deals with bound states like what is suggested in
the solution to Exercise 11.2, where we point out that a bound state is more appropriate for
actual construction of a pseudopotential and the unbound states. See also Exercise 11.6.
The construction here is for the third state which is even like the example illustrated in the
figure in the solution for Exercise 11.2.
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Solutions for Chapter 12
Same as first edition

Exercise 12.1 See many excellent problems (and solutions) on the nearly-free-electron
approximation in the book by Mihaly and Martin [598].

Solution:
No solution given here.

Exercise 12.2 Show that the Fourier transform of (12.15) leads to the expression in terms
of form and structure factors given in (12.16).
Solution:

1
chll

V(G) = /Q drV (r)exp(iG - r)

Nspec N

S / dr Z Z Z Vi —74,; — T)exp(iG - r)
chll Qeenr

k=1 j=1 T

Nspec N’

1
= chll /Qﬂll dr Z Z Z VK(I')BJU])(Z'G : (I' + Tk,j + T)) (8147)

k=1 j=1 T
Nspec OF n" 1
= exp(iG - T, i) — drV*(r)exp(iG - r
Zl chll Zl p( 7])QH /all space ( ) p( )
K= j=
Nspec O
- S5(G)V*(G)
=1 chll

Exercise 12.3 Show the equivalence of expressions (4.11) and (12.18) which express
the final Fourier component in two ways, one an integral over the cell and the other as a
structure factor times an integral for one unit only but over all space.

Solution:

This follows because V" (r) is the potential due to one atom. The Fourier transform of a
periodic array of the atoms is non-zero only for reciprocal lattice vectors and is the integral
over the cell. The proof is the same as the manipulations in the previous problem.

Exercise 12.4 Plot the bands for a nearly-free-electron system in one dimension if the
lattice constant is a.
(a) First plot the bands using analytic expressions for the energy in the free-electron limit.
(b) Then qualitatively sketch the changes if there is a small lattice potential.
(c) Use an empirical pseudopotential program, such as ones listed in Appendix R, or write
your own to calculate the bands for a pure sine wave potential V(x) = V sin(27z/a).
This is the Mathieu potential for which there are solutions; check your results with known
results.

Solution:
Parts (a) and (b). Straightforward to plot bands in one dimension - just |k + G |2 where
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k varies from —m/a to w/a and G = n(27/a). A small potential opens gaps at the BZ
boundaries, but leaves the degeneracies at k = 0.

Part (c). Solution of the Mathieu potential in one, two and three dimensions - paper by J.
C. Slater, Phys Rev 87, 807 (1952).

Exercise 12.5 Consider a one-dimensional crystal with potential V(z)=
Vocos(2mz/a) as in Exercise 12.4. In this exercise make the simplifying approxi-
mation that a state with wavevector k is the solution of the 2 x 2 hamiltonian

=0, (S.148)

Vo @ —e(k)

where G = 27 /a. Give the analytic expressions for the bands (k) and the periodic part of
the Bloch functions wuy (z). If there are two electrons per cell, give the expression for the
density n(x) as an integral over k. Evaluate the density using a grid of “special” k points
(Section 4.6). Note that more points are required for an accurate answer if Vj; is small. Plot
the lowest two bands and the electron density for the case where V) = %(ﬂ' /a)? in atomic
units. (See Exercise 23.13 Wannier functions and Exercise 24.10 for polarization using a
variation of this model.)

Solution:
The solution of the two by two problem is a straightforward solution of a quadratic equation
for the eigenvalues and eigenvectors. The density is just 2 times the sum of squares of the
eigenfunctions at the special points.

Not worked out explicitly.

Exercise 12.6 Consider a one-dimensional crystal with a square well potential which in
the cell at the origin has the form V(z) = Vj for —s/2 < x < s/2 and V = 0 otherwise.
The potential is repeated periodically in one dimension with V(z + Na) = V(z), with
cell length a > s. (See also Exercises 11.2, 11.6, 11.14; the general solution for bands in
one dimension in Exercise 4.22; and relations to the APW, KKR, and MTO methods, re-
spectively, in Exercises 16.1, 16.7, and 16.13.)
(a) First find the Fourier transform of the potential V' (G).
(b) Computational exercise: Construct a computer (it is a matter of setting up the hamil-
tonian and diagonalizing) or use an available empirical pseudopotential code (see Ap-
pendix R) to solve for the bands. As an explicit example, choose a =4, s = 2, and
Vo = 0.2 in atomic units and choose a sufficient number of plane waves so that the so-
lution is accurate.
(c) Compare the results with the solutions in Exercise 16.1 in which the bands are found by
matching the wavefunctions at the boundary, i.e., a simple example of the APW method.
Of course, the result must be the same as derived by other methods: compare and contrast
the plane approach with the general solution for any potential in one dimension given in
Exercise 4.22.

Solution:
Computational exercise not worked out explicitly here.
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Exercise 12.7 Find the bands for Al using a simple empirical pseudopotential. One
source is the paper by Segall Phys. Rev. 124, 1797 (1961) [558] that shows bands similar to
those in Fig. 16.6 calculated with V' (111) = 0.0115Ha and V' (111) = 0.0215Ha and mass
m* = 1.03m. (The last can be included as a scaling factor.) Use the NFEA to calculate
energies at the X point analytically. Use an empirical pseudopotential program (See notes
on codes in Exercise 12.12.) to generate full bands.

Solution:

Computational exercise not worked out explicitly here. The codes listed in App. R can be
used. For example, the codes at nanohub include easy to use codes for empirical pseudopo-
tentials.

Exercise 12.8 Show that the derivations in Section 12.1 also hold for non-local potentials
as given in Eq. (12.24).

Solution:
One van see that the expressions apply to non-local potentials by noting that they depend
only on the fact that the sum of potentials is periodic. The explict derivation is the same as
given in the next problem.

Exercise 12.9 Derive the semilocal and separable forms of the pseudopotential in
Egs. (12.23) and (12.24). Hint: Use the definitions of the potential operators in real space
in Chapter 11 and the expansion of a plane wave in spherical harmonics, Eq. (J.1).
Solution:
From Benchen For the semilocal form in (12.23) we can expand e
assumed no explicit dependence on m, we can simplify it using (J.2) as:

Vi L (Kn, Kp/) = Z (Ko [Yim) 0V (Y [Kinr)

ilm
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For the nonlocal form in 12.24 the derivation is simpler. It just the expression in 11.41
with v replaced by a plane wave with wavevector k + K where K denotes K,,, or K.
Using the expansion of the plane wave in spherical waves in Eq. (J.1), we get the from in
12.24.
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Exercise 12.10 Pseudopotentials are used because calculations with the full nuclear
Coulomb potential are very expensive for heavy atoms of nuclear charge Z. Derive the
power law with which the number of plane waves needed scales with Z. Do this by using
perturbation theory for very high Fourier components, where the matrix element is given
by V(@) and the energy denominator is approximately given by the kinetic energy. Argue
that screening is not effective for high Fourier components.

Solution:

Screening is not effective for very high Fourier components because the charge density is
smoother then the nuclear potential and the Fourier components of the change decrease for
high Fourier components. An example is the Thomas-Fermi approximation for screening
of a charge that has a Gaussian decay.

In perturbation theory the energy varies as V?/(E — E,,4,) where E = k? /2m and
V o< 1/¢5 &~ 1/k?. Thus the effect scales as 1/E3. This is a slow cutoff as far as computa-
tions are concerned, but the perturbation theory can be used to add the effect analytically.
For heavy atoms this is still much much more expensive than pseudopotentials, but it is
not hard to do for a case like hydrogen with a reasonable number of plane waves. See
Exercise 12.13 for this case.

Exercise 12.11 Project: Use an empirical pseudopotential program (see notes on codes
in Exercise 12.12) to find the bands and charge densities of Si in the diamond structure
at the lattice constant 10.26 ag. The bands should be insulating and the bonds should be
visible in the charge density.

(a) Verify that the minimum along the A direction (see Fig. 4.10) is qualitatively the
same as in experiment, which is given in many texts, e.g., Kittel [285].

(b) Now compress the system until it is metallic (this can only be done in theory; in real-
ity it transforms). Can you tell when the system becomes a metal just from the density? In
principle, if you had the exact functional, what aspect of the density would be the signature
of the insulator—metal transition?

(c) Do a similar calculation replacing the Si atoms with Al, still in the diamond structure
with lattice constant 10.26 ag. (Of course this is a theoretical structure.) There are three Al
electrons/atom, i.e., six electrons per cell and it turns out to be a metal. Show that it must
be metallic without doing the calculation. Does the density plot look a lot like Si? Can you
find any feature that shows it is a metal?

Solution:
This can be done with codes in App. R.
Al is a metal because it has an odd number of electrons. But it is very hard to see this just
by looking at the density; it can be be established by the fact that the density integrates to
an odd number of electrons, but we knew that is advance!

Exercise 12.12 Project: Use an empirical pseudopotential program to find the bands for
GaAs. (See codes listed in Appendix R. Figure 14.9 was calculated using online tools at
nanohob.org which also has empirical pseudopotential codes.)

(a) Verify that it has a direct gap at I.
(b) Displace the atoms in the unit cell a small amount along the (111) direction. Check the
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splitting of the top of the valence band at . Is the splitting what you expect?
(c) Repeat with the displacement in the (100) direction.

Solution:
Computational exercise.

Exercise 12.13 This exercise is to work out the form factor for the screened H potential
in the Thomas—Fermi approximation and calculate the bands for fcc H at very high density,
re = 1.0.

(a) Estimate the deviation of the bands from the free electron parabola by calculating the
gaps at the X and L points of the BZ in lowest non-zero-order perturbation theory.

(b) Carry out calculations using an empirical pseudopotential program (see Exercise 12.12)
and compare with the results from perturbation theory.

(c) Compare with the simple expression for the band width in Exercise 10.13 and with fully
self-consistent band structure results as described in Exercise 13.4.

Solution:

Using the Thomas—Fermi approximation the potential is given by eq:tf-screening. The val-
ues can be worked out easily using the expressions for k7 in Eq. (5.21). The bands are
no worked out here.

Note that this is an example of screening no being effects at high & so that the potential
is simple o< 1/k? as discussed in Exercise 12.10.
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Solutions for Chapter 13
Same as first edition except Ex. 13.1 is omitted. It was not an exercise, only a pointer
to other exercises.

Exercise 13.1 There are excellent open source codes available on-line for DFT cal-
culations using plane waves (see Appendix R). Two well-known ones are ABINIT and
quantumESPRESSO which have large user groups. These codes can be used in the calcu-
lations for metallic H in Exercise 13.4 and other problems in the book. The codes often
have tutorials similar to the exercises and also many examples for materials.

Solution:

No need for solution.

Exercise 13.2 Show that the Eq. (7.20) leads to the expression Eq. (13.2) written in
Fourier components. In particular, show that the groupings of terms lead to two well-
defined neutral groupings: the difference of the ion and the electron terms in the square
bracket and the sum of eigenvalues that are the solution of a the Kohn—Sham equation with
a neutral potential.

Solution:

This follows directly if one uses two facts (at least things that are usually true). Usually the
largest screening (largest value of ¢) is for lowest wavevector G,;,,. The error in the output
is in the right direction but overshoots by the factor of €. This is very familiar from dielectric
screening where £ = €D where D is the internal field. It is inherent in the expressions for
response functions in this book. It then follows that oz must be less than 1/e to converge.

Exercise 13.3 Derive the result that the o parameter in the linear mixing scheme (13.5)
must be less than 1/€(Gin) for convergence. Show that this is a specific form of the
general equations in Section 7.4 and is closely related to Exercise 7.21. In this case it is
assumed that €, occurs for G = Gy, Discuss the validity of this assumption. Justify it
in the difficult extreme case of a metal surface as discussed in Section 13.2.

Solution:

This is not a familiar property but it follows from the hint. The point is that the density of
states (the number of states per unit energy) as a function of energy F is the sum over k of
d(e(k) — E). The distribution of values z of a function in real space f(r) is the sum over
points r of 6(f(r) — x).

Exercise 13.4 This exercise is to calculate the band structure of metallic H at high den-
sity (rs = 11is a good choice) in the fcc structure and to compare with (1) the free-electron
bands expected for that density and (2) bands calculated with the Thomas—Fermi approx-
imation for the potential (Exercise 12.13). Use the Coulomb potential for the proton and
investigate the number of plane waves required for convergence. (There is no need to use
a pseudopotential at high density, since a feasible number of planes is sufficient.) Compar-
ison with the results of Exercise 12.13 can be done either by comparing the gaps at the X
and L points of the BZ in lowest non-zero-order perturbation theory, or by carrying out the
full band calculation with the Thomas—Fermi potential.
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Solution:
Calculational problem not solved here. Calculations with the bare potential are feasible.
An example for Li in the literature (can’t remeber reference right now.)
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Solutions for Chapter 14

Most are same as first edition except Eq. numbers are slightly shifted.
Tight-binding is used more in second ed. in Chapters 20 and 26-28. Exs. 14.17 and
14.24 in first edition are omitted, there are now references to Ch. 20 and 26, and Ex.
14.20 below is added in second edition. Other differences?

Exercise 14.1 See Appendix R for examples of codes are available (or can be run on-
line) for tight-binding calculations that are both pedagogical and able to treat problems
such as semiconductor devices.

Solution:

No need for solution here.

Exercise 14.2 See many excellent problems (and solutions) on tight-binding bands, den-
sities of states, and the meaning of the bands in the book by Mihaly and Martin [598].
Solution:
See text referred to in Ex.

Exercise 14.3 Using translation invariance of the matrix elements, show that matrix
elements of the hamiltonian with basis functions x,,x and X,k are non-zero only for
k = K/, i.e., the Bloch theorem, and derive the form given in Equation (14.4).

Solution:

The first part is simply that k is conserved, which is proved in many places in this book. If
we want to use this is a good case to derive this property, consider Equation (14.4) with two
functions at k and k’. Inserting the definition in Eq. (14.3), we find the expression involves
the factor 3 e’ ~K)Tm — () unless k — k' = 0. Also we find the result Equation (14.4)
fork =k’

Exercise 14.4 Derive the factor A, in (14.3) required for the Bloch basis states Xk (r)
to be normalized. Show that A, = 1 if the functions x,,(r — (7., + T)) are orthonor-
mal and that in general A,,x = (S, m(k = 0))‘%, where S (k) is defined in (14.5). This
relation is used in Exercise 23.2 in examples of Wannier functions.

Solution:
If the functions X,,(r — (7, + T)) are not orthonormal, then the [ dr|x,x(r)|* =
ApkSm,m (k = 0), which leads to the desired relation.

Exercise 14.5 Show that, in general, one has the relation K;;/,,, = (—1)“’1/[( 1/1m under
interchange on the indices of the K matrix. This follows from a consistent definition of the
orbitals.

Solution:

The result follows because the wavefunctions have parity (—1)! and the interchange is a
inversion of the directional band from one atom to the other, which leads to a change of
sign of each function. It is not required but it is useful to note that m is the azimuthal
quantum number around the axis between the atoms, and matrix elements are zero unless
the values of m on each atom are the same.
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Exercise 14.6 Show that for an s band in a line, square lattice, and simple cubic lattice
with only nearest neighbor hamiltonian matrix elements, the respective densities of states
(DOS) have the forms shown schematically in Fig. 14.4. First determine the form for the
DOS for the one-dimensional line analytically. Then use this result along with the fact
that the bands, (14.13), are simply a sum of cosines for orthogonal directions to derive the
form of the DOS for the square and simple cubic lattice. Show that the bands are divided
into segments of width 4¢ as stated, and show that in three dimensions the DOS is exactly
symmetric and flat in the central range.

Solution:

The density of states for 1D has the form shown which can realized by the definition
in Eq. (4.46) and the fact that the states are uniformly along the line —7/a < k < 7/a.
The energy near the band edge is quadratic ¢ o k2 and thus the DOS is o dk/dE =
1/(dE/dk) which diverges as 1/k oc 1/E*/2. At the upper end of the spectrum the same
arguments apply. In between there is variation that depends upon the system.

For higher dimensions, this not the most concise derivation but I think it is instruc-

tive.
In 2D the dispersion can be expressed as ¢(k,, k,). Near a band edge it has the form
e = AkZ + BE;. For each value of k, the DOS has the form of a 1D DOS. The total DOS
in 2D is found by summing over k,, which leads to a constant DOS so long as the energy
has the quadratic form. Just as for 1D, the upper end of the spectrum where the energy is
e=—-Ck2 - Dk,f/ the same arguments apply. In between there is variation that depends
upon the system, but at some point there is a change when the dispersion along the two
directions has opposite sign e = Fk2 — F ki In that case there is a direction where ¢ = 0
and the DOS has a 1D type divergence, leading to the peak in the middle of the DOS.

We can repeat this for 3D with the result that it is a sum of 2D DOS. This leads to
the form near the upper and lower bounds o E'/? since the 2D DOS is constant and the
2D DOS is o k o< E'/2. At intermediate energies there can be saddle points such as one
where ¢ = Ak? + ka/ — Ck? where the dispersion along one direction is negative. At
such a point the DOS is different above and below the saddle point energy. The arguments
are analogous to those for 1D. For energy above the saddle point there is a direction where
AR2 + Bkz — Ck2 = 0; the DOS is like the 2D DOS for the other two directions. For
energy below the saddle point the coefficient C' decreases from positive to zero as the
energy increases and the DOS is like an upside down 3D form. Similar arguments apply
the next saddle point where the dispersion is negative along two directions, leading the the
form of the DOS shown in the figure.

NOTE: FINISH? - is the reasoning for “upside down” OK?

Exercise 14.7 Consider an s band in a square lattice with nearest neighbor matrix el-
ement ¢ and one electron per cell. Show that the Fermi surface is a square as shown in
Fig. 14.3 and there is a divergence in the density of states at the Fermi energy as shown in
Fig. 14.4.

Solution:
The form for an s band in a square lattice with nearest neighbor matrix element ¢ is given
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by (see text and following problem)

e(k) = 2t(cos(kza) + cos(kya)),

where the on-site matrix element has been chosen to be zero.

The key point is that the cosine terms change sign between the zone center k = 0 and the
zone boundary. The general relation is cos(k,a) = — cos([k,, + m/a]a) and similarly for
the y direction. From this result we can derive two points:

1) The bands are symmetric about € = 0; if ¢ < 0 the bands are minimum at k = 0 and
maximum the zone corner k = (7 /a, 7 /a). If the band is 1/2 full, then the Fermi energy
must be Er = 0 since 1/2 the eigenvalues have energy € < 0.

2) The solution for e(k) =0 is the rotated square shown in Fig. 14.3. The
equation for the square is k, =m/a+|k;|, and using the above relation it
follows that e(k)) = 2t(cos(kza) + cos(kya)) = 2t(cos(kza) + cos([r/a £ |kz|]a)) =
2t(cos(kya) — cos(kza)) = 0.

A full derivation of the density of states is discussed in Exercise 14.6 and in the book

”Solid State Physics: Problems and Solutions”, by Mihaly and Martin, Wiley (1996). One
can show that the density of states diverges at the Fermi energy simply by noting that the
derivative de/dk, = 0 everywhere on the Fermi surface where k&, denotes the direction of
k perpendicular the Fermi surface. Using the general relation Eq. (4.46) (see Ashcroft and
Mermin, p. 143-4) which can be written,

P(E) = G [ dk 0(eix — B) o< [¢(B)dS g

with S(FE) the surface with energy F it follows that the DOS diverges at E' = 0.

Exercise 14.8 Derive the expression for the tight-binding s band (k) in a simple cubic
crystal. Assume the states are orthonormal and have hamiltonian matrix elements t;, to,
and t3 for the first three neighbors. The bands for {5 = ¢35 = 0 are an approximation for
the s-like conduction bands in CsCl which has simple cubic structure. Compare with a
calculated band structure in the literature.

Solution:
e(k)) = Eo + 2t1(cs + ¢y + ;) + dta(cacy + cacs + cyc.) + 8ta(cgeycs),
where Ej is the on-site matrix element and ¢, = cos(kga), ¢, = cos(kya) and ¢, =
cos(k.a)
(from the paper by Slater and Koster [613], Table IIT)

Exercise 14.9 Derive the expression for an s band (k) in a fcc crystal with nearest
neighbor hamiltonian matrix element ¢ assuming the states are orthonormal. This should
be a qualitative approximation for the lowest conduction band in a fcc metal like Al or
an ionic insulator like NaCl which has the fcc structure. Compare with the nearly-free-
electron bands in Fig. 12.1, Fig. 16.6, or calculated band structures in the literature. (Note
that there is a relation to the expressions derived in Exercise 14.8 for second neighbors in
a simple cubic lattice. Explain the relation in detail.)

Solution:
e(k)) = Ep + 4ta(cpey + cucs + cycs),
where a is the fcc cube edge, E) is the on-site matrix element and ¢, = cos(%kma), Cy =
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cos(1kya) and ¢, = cos($k.a).

The relation to Exercise 14.8 is that the second neighbors in a simple cubic lattice are in the
fcc positions and the factor of % is due to the choice of a to be the conventional cube edge
for the fcc lattice which is twice the value of « in the corresponding simple cubic lattice.

Exercise 14.10 Derive the expression for an s band in a hep crystal with nearest neighbor
hamiltonian matrix element ¢ assuming the states are orthonormal. Assume the ¢/a ratio is
the ideal value. Explicitly evaluate the bands in the direction along the c axis perpendicular
to the hexagonal planes. Show that the lower and upper bands touch at the zone bound-
ary,i.e., there is no gap at the zone boundary. Explain why this happens even though there
are two atoms per primitive cell.

Solution:

The structure is triangular places on atoms stacked in ABAB... sequence with two atoms
per cell. The two atoms are equivalent since they are in the A and B planes the are only
shifted as shown in the figure in the text. The hamiltonian is 2x2 with a simple form: in
plane variation on the diagonal a sum of coupling to the 6 neighbors and coupling in the z
direction to the 3 atoms above and s below that are equivalent. There are no angular factors
for the s orbitals so the hamiltonianhas the form:

Hyy 6t cos(k.c/2)

H(k) = 6t cos(k.c/2) Hoo

(S.150)
where Hyy = Hay = t(2cos(kya) + 2cos(kya/2 + ky3Y%a/2) + 2cos(kya/2 —
k,3'2a/2)).

There is no gap at any point on the zone boundary in the z direction because the A and B
layers are equivalent and the AB and BA couplings are the same. For each value of k, k,
it is like a 1D chain viewed as 2 sites per cell and matrix elements ¢; and ¢-, but with with
equal coupling t; = to, which is equivalent to one site per cell. See Chapter 26 m (in the
second edition) for the 2-site chain and the explicit derivation in Exercise 26.2.

Exercise 14.11 Derive expressions for p bands respectively in simple cubic and fcc
crystals with nearest neighbor hamiltonian matrix element ?,,, and t,,,. Compare with
calculated bands in the literature for the CI p state in CsCl and NaCl, respectively, to find
reasonable values of ¢,,,» and ¢,

Solution:
See Ashcroft 10.2¢ for fcc

Exercise 14.12 There is a close relation of p bands to the equations for phonons as ex-
pressed in Exercises 20.3-20.5. As an example, derive the explicit relation of tight-binding
equations for p bands in Exercise 14.11 and the phonon dispersion curves in Exercise 20.6
for a nearest neighbor central potential model.

Solution:
See Exercise 20.2 - 20.6 for more complete descriptions and solutions.
The problem for p states and phonons map onto one another because the 3 orthogonal
degrees for freedom for p states on an atom is equivalent to the 3 degrees of freedom
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for motion of the atom. However, there are crucial differences in the interpretation. The
eigenvalues for the linear Schrodinger Eq. are the energies whereas they are Mw? for
the classical harmonic oscillator. The zero of energy is merely a constant shift for the
Schrodinger Eq. (the onsite energies which are diagonal matrix elements), whereas the
zero for phonos is dete4rmined by translation invariance that there is no energy cost to
move all atoms the same. This requires a relation between the on-site and intersite matrix
elements, which is called the “acoustic sum rule.” (see Pick, Cohen and Martin [180]) and
it is worked out in Exercise 20.4.
See Exercise 14.11 and the hamiltonian matrix for fcc

Exercise 14.13 See Exercise 26.2 for bands in the 2-site model in Fig. 26.2.
Solution:
See that Ex.

Exercise 14.14 Consider a model like that in Exercise 26.2 except that the state on the
B atom has p symmetry. For on-site energies €4 > €p, this is a one-dimensional model
for an ionic crystal like NaCl. From the symmetry of the crystal, show that two bands are
formed from the s and p,, states decoupled from bands formed by the orthogonal p, and p.
states. Assume the states are orthonormal and there are only nearest neighbor hamiltonian
matrix elements of magnitude ¢. In terms of A = €4 — € and ¢, give analytic expressions
for s—p, bands ¢;(k). Describe any simplifications in the expressions at k = 0 and the
BZ boundary. Plot the bands in the Brillouin zone for the case A = 4t and show there is
qualitative agreement with published bands of NaCl in the (100) direction. What values
of A and ¢ provide a reasonable description of NaCl bands? Suggest changes that would
better describe the bands.

Solution:
The py and pz states are decoupled because there are odd in the directions perpendicular
the the line whereas s and Px are even. For the s and px states, The only difference from a
problem with two a states is that the s-p matrix element changes sign for the left and right
neighbors so the hamiltonian matrix is

Eq—ce(k)  t(k)

k) B (k) =0, (S.151)

Hk) - 5(k)’ - ’

with t(k) = 2ts,sin(k).

Thus the states are decoupled at k=0 and k = 7 and they repel at other k.

An example of the bands of NaCl predicted by many-body methods is in Bechstedt, et
al., PRB 72, 245114 (2005). The gap is so big that there is not much dispersion. The present
model is not so good because there are significant s-s and p-p matrix elements, especially
for the more spread out s atates which causes larger dispersion.

Exercise 14.15 Show that the model of Cu and O states shown on the left-hand side of
Fig. 14.8 leads to effective model nearest neighbor interactions between Cu states as shown
on the right-hand side of the figure. Hint: Construct a 3 X 3 matrix and diagonalize to find
the highest band that corresponds to the band that crosses the Fermi energy in Fig. 17.8.
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Solution:
The 3 x 3 hamiltonian is defined by the Cu dxy and two O p states, px on the x axis and py
on the y axis. In the nearest neighbor model there is only d-p matrix element t,4 = ¢ and
the hamiltonian can be written

€d tcos(kya/2) tecos(kya/2)
H(k) = | tcos(kya/2) €p 0 , (5.152)
tcos(kya/2) 0 €p

This can be block diagonalized to a 2 x 2 and a 1 x 1 by defining the even and odd
combination of the O states. The dxy couples only to the combination of O states that has
dxy symmetry, i.e., have opposite signs for the lobes pointing to the a Cu atom; the matrix
elements are then equal since the dxy state has opposite sign in the x and y directions.

The resultis a flat band with energy ¢,,, and the two mixed Cu-O bands given by the 2 x 2
problem in Eq. (S.151) with ¢(k) = v/2t(cos(k,) + cos(k, ). This leads to an antibonding
band above €4, and the other a bonding band below ¢,,. If there is one hole (5 electrons
in the 6 orbitals counting spin) the Fermi energy is in the middle of the upper antibonding
band.

This is the nature of the bands that actually occur in a full calculation.

Exercise 14.16 Show that the expression for bands with non-orthogonal basis orbitals,
Eq. (14.15), is correct. The bands are no longer symmetric about ¢ = 0. Why is this? What
is the physical interpretation? See the following problem for more general properties.

Solution:

The general form of the equations for the equations with non-orthogonal orbitals is
|H(k) —eS(k)| = 0. For a single function this is a scalar equation and and & =
H(k)/S(k) and for one dimension and nearest neighbor it has the form given in
Eq. (14.15). This can be understood in terms of the overlap term having opposite effects at
the zone center and zone boundary. It is equivalent to more distant neighbor interactions in
a orthonormal basis, which makes the bands not symmetric about the band center.

Exercise 14.17 This problem is to analyze the general consequences of the overlap term
in a non-orthogonal basis. Show that the effect of the overlap can be transformed to an
orthogonal form, with the result that the hamiltonian matrix elements have infinite range,
decaying exponentially. This is the correct result as shown by the decay of orthonormal
Wannier functions in Chapter 23. Thus show that rigorously it can never be fully consistent
to assume that the hamiltonian matrix elements are finite range and yet the orbitals are
orthogonal. The same conclusion is found in Exercise 23.2.

Solution:

Following the previous exercise, the general form of the equations for the equations with
non-orthogonal orbitals is |H (k) — £5(k)| = 0. In general this leads to a matrix equation
in terms of HS™!, and it can be illustrated by the scalar form in Eq. (14.15). If we ex-
pand the denominator in powers of s we see that £(k) has Fourier components that extend
without limit. In one dimension it is easy to see that each power of s corresponds to a
Fourier component increased by a lattice vector. Thus the matrix elements decrease by a
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factor of s from one neighbor to the next, this is an exponential decay. This is an example
of generating Wannier functions that defines a orthonormal basis.

Exercise 14.18 Give a simple argument why “cosine” appeared many times in this chap-
ter, whereas “sine” did not appear at all.

Solution:
The reason is that in all Bravais lattices if there is an neighbor at r there is also one at —r.

kT sum to a cosine.

The factors of e
However, this is really only because the explicit examples were all simple case where the
basis states were even parity. For matrix elements between states of opposite parity sines
occur. See for example the problems with s and p states like 14.14 and 26.2. In addition,
however, that if time reversal symmetry is broken as in a Chern insulator or if we consider
spin-orbit interactions, the reasoning is different. See the 2D square lattice with p states in

Chapter 27.

Exercise 14.19 This problem relates to the structure and bands of a plane of graphene.
Show that the Brillouin zone has the shape and orientation shown in the two cases in
Fig. 14.7; also show that one of the K points is given by k, = 47/3a, k, = 0 and find the
coordinates of all six K points. Show that the bands indeed touch at all six K points.

Solution for Exercise 14.19 and Exercise 14.20

See also Exercise 4.7 which shows that for a graphene sheet oriented as in Fig. 14.7,
part a, the primitive lattice vectors are a; = (1,0)a and a5 = (1, ?)a, where the nearest

neighbor distance is a/+/3, and the primitive reciprocal lattice vectors can be chose to be
b; = (0, %)277/@ and by = (-1, %)QW/G. Thus the BZ is hexagonal and the M point

is % any of the 6 equivalent shortest vectors; the M point indicated is (1, %)w /a. The

K point at the corner indicated on the figure is (%, %)27‘(‘ /a; an equivalent corner point
is (2,0)27/a. (Note there is an error in the first printing of the first edition. The K point
given in the text and Eqs. (14.15) and (14.16) should have x and y interchanged.) The

correct equations are:
His(k) =t [eikya/\/g 1 2e~ihya/2V3 g <klg>} , (S.153)

where a is the lattice constant. This is readily solved to yield the bands (see Saito, Phys.
Rev. B 46, 1804-1811 (1992)[233] where a different convention is used for the x and y
axes)

e(k) = £|Hi2(k)| = £t {1 —|—4cos<ky \/2511) cos(k:w%) + 40052(1630%)} 1/2(.S.154)

If we evaluate the terms in the square bracket in Eq. (14.19) at the K point (Z,0)27 /a,
we find [1+4(—3) +4(—3)?] =0.

Thus the bands touch at the K points where the coupling vanishes and the solution is
¢(K') = 0 for both the upper and the lower bands.

Exercise 14.20 Derive Eq. (14.17) for the bands in graphene.

CHECK: Is
error only in first
printing? Does
this answer both

problems?
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Solution for Exercise 14.20:
See solution for previous problem.

Exercise 14.21 Show that rolling of a graphene sheet to form (n,0) and (n,n) tubes
leads, respectively, to the structures and Brillouin zones for the “zigzag” and “armchair”
tubes that are shown in Fig. 14.7. For the armchair tubes show that the allowed states al-
ways include the states at the K point in graphene, so that simple mapping of graphene
bands always leads to the prediction of metallic bands. For the zigzag tubes, give the con-
ditions for which the allowed states include the graphene K point.

Solution:
See references given in text which give a full analysis.

Exercise 14.22 Show that the expressions for the force and stress theorems in tight-
binding form, Egs. (14.28) and Equation (14.29), follow immediately from the condition
that energy is minimum w.r.t. the coefficients in the wavefunctions.

Solution:

This is really just the same as the proofs in all cases of the force theorem: Linear variations
come only from the explicit dependence in the hamiltonian since the energy is minimum
wr.t. the eigenfunctions. Even though the parafunction changes the energy changes only to
second order.

Exercise 14.23 Consider a heteropolar diatomic molecule with a total of two electrons.
The hamiltonian is approximated by a orthogonal tight-binding model with one state per
atom and hamiltonian matrix elements Hy; = Ey, Hoy = Eo, and Hyio = Hoy = t(x),
where z is the distance between atoms. Find the analytic expression for the ground state
energy F.

(a) Calculate the force on atoms 1 and 2 directly from the derivative of the analytic expres-
sion for the energy, and also from the force theorem.
(b) Do the same for a generalized force dF/dA, where A = E; — Fs.

Solution:

This is a problem to work out a simple example. The energy is the lowest state of a 2 x 2
problem and the force is due to the variation of ¢(z), which depends on the distance. There
must be no net force the force on each atom is equal magnitude and opposite direction and
is non-zero if the molecule is not at the minimum energy length. The magnitude is |dt/dzx|.
In general there must be some other term in the energy to balance this term as described
in the text. A generalized force is the derivative with respect to any quantity. The example
in part (b) might be a model for a molecule in an environment that changes the relative
energies of two atoms, e.g., it might describe an internal strain defined as the change in
bond length with applied pressure.

Exercise 14.24 Find expressions for the valence and conduction band eigenvalues in
a diamond-structure crystal at k = 0 in terms of the matrix elements of the hamiltonian,
the on-site energies E and E,, and the matrix elements Hs,, Hypo, Hppo, and Hypr.
Do this in two steps. First, show that the eigenstates at k = 0 are pure s or pure p. Next,
use this fact to find expressions for the four eigenvalues for bonding and anti-bonding s
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and p states. Assuming four electrons per atom, identify the valence and conduction states
and the gap between filled and empty states at k = 0. Find numerical values for Si using
Harrison’s “universal” table (Harrison’s books in 1989 and 1999 [354, 615])and compare
with bands that can be found in many references. The valence bands should be similar but
the conduction bands are quite different.

Solution:

The s and p states are decoupled at k = 0 since they have opposite parity. The gap for the
s states is easy to figure out since there are two atoms per cell, each with an s state. If the are
labelled A and B, and the 4 neighbors of an A atom are B atoms and vice versa. Since the s
states have the same energy E; on the two atoms, the k = 0 energies are F/s; & 4t,5, where
tss 1s the ss matrix element. The 3 p states per atom lead to triply degenerate banding and
antibonding states like the s states, but one must take into account the angular factors. The
unit vector toward a neighboris (1,1,1)/ /3 (and the three other vectors in the tetrahedron)
so that a typical matrix element is (see Table 14.1) t,, = t,p0/3 + 2tpp-/3. It is not hard
to see from the structure in Fig. 4.7 that at k = 0 the p,, p, and p, are are independent and
form a triplet with energies E,, & 4¢,,,.

CHECK this is

really correct!
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Solutions for Chapter 15
Same as in first edition.

Exercise 15.1 There are excellent open source codes (SEE Appendix R) freely available
on-line for DFT calculations using gaussian, such as CRYSTAL and numerical orbitals,
such as FHI-aims and SIESTA. These codes can be used for localized systems and crys-
tals. (Plane waves can be used for localized systems also, but that is not appropriate for
examples since many plane waves are needed. Real-space grids, wavelets, etc. also re-
quire large basis sets.) he codes often have tutorials similar to the exercises and also many
examples for materials.

Exercise 15.2 Show that the product of two gaussians is a gaussian as in Eq. (15.2), and
derive the expressions for the coefficients in the product gaussian Eqgs. (15.3)-15.5.

Solution
The proof is simply a consequence of the fact that the sum of two quadratic functions is
a quadratic function. the equations are simplified if we choose the origin at one center
R4 =0 and and o = 1. Then all cases can be reduced to the form 22 + b(x — B)? =
(14 b)z® — 2bBx + bB? where B is Rp in units where o = 1. This can be written
(14 b)(x? — 2Cz + C?) + D. With some algebra this leads to the form given and K is

determined by normalization. This is worked out in many standard texts.

Exercise 15.3 Find the analytic formula for the kinetic energy matrix element between
gaussian basis functions with spreads « and 3 and separated by displacement R.
(a) First consider only simple gaussians with s symmetry and not multiplied by powers of
the radius.
(b) Then show that the formulas can be generalized to any [, m and power r? by taking
appropriate derivatives of expressions derived in (a). You do not need to work out all the
detailed formulas, which can be found in texts.

Solution
The kinetic energy is the matrix element of — V> /2 which is straughforward to work out
and the Gaussian integrals are standard and not worked out here.

Exercise 15.4 Derive Eq. (15.17) using a chain rule and show that the right-hand side
vanishes if the basis is complete. Hint: Use the completeness relation.

Solution
The equation follows simply from taking the derivatives. The fact that it vanishes for a
complete basis is a matter of understanding that in a complete basis the density at a point
is independent of the choice of and complete basis, i.e., it is the same for any positions of
the centers of the orbitals and the derivative is manifestly zero.

Exercise 15.5 Construct a simple computer program for a gaussian s band in one dimen-
sion. This entails calculating the overlap and hamiltonian matrix elements that are analytic
if we assume the potential is also a sum of gaussians centered on each atom. Vary the
band shapes from nearly-nearest-neighbor tight-binding-like given in (14.15) to nearly-
free-electron-like.
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Solution
Computational problem and no solution is given here.

Exercise 15.6 Use the results for the eigenvectors from Exercise 15.5 to construct Wan-
nier functions. Construct the atom-centered “maximally projected” form defined in Sec-
tion 23.2 with the phase (sign) chosen to maximize the function on the central atom.

(a) Show that the function has positive and negative values (a plot is best) and it is longer
range than the gaussian basis function.

(b) With a careful fit to the long-range behavior (the log of the absolute value) of the
Wannier function, show it decays exponentially as a function of distance as claimed in
Section 23.2.

Solution
Computational problem and no solution is given here.
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Solutions for Chapter 16

Same as in first edition.

Sorry, but solutions are not worked out for this chapter. Many derivation for the
equations in the actual methods used can be found in the references given in the text.
Some good general references are given at the end of the chapter.

Exercise 16.1 The basic ideas of the APW method can be illustrated by a one-
dimensional Schrodinger equation for which the solution is given in Exercise 4.22. In
addition, close relations to pseudopotentials, plane wave, KKR, and MTO methods are
brought out by comparison with Exercises 11.14, 12.6, 16.7, and 16.13. Consider an array
of potentials V' (z) spaced by lattice constant a; V () is arbitrary except that it is assumed
to be like a muffin-tin composed of non-overlapping potentials with V' (z) = 0 in the inter-
stitial regions. For actual calculations it is useful to treat the case where V' (x) is a periodic
array of square wells.

(a) Consider the deep well defined in Exercise 11.14 with width s = 2ao and depth
—Vb = —12Ha. Solve for the two lowest states (analogous to “core” states) using the ap-
proximation that they are bound states of an infinite well.

(b) Construct APW functions that are e'*® outside the well; inside, the APW is a sum of
solutions at energy ¢ (as yet unknown) that matches e'** at the boundary. Show that the
expansion inside the cell analogous to (16.2), and the plane wave expansion, analogous to
(16.4), are sums only over two terms, sine and cosine, and give the explicit form for the
APW.

(c) Derive the explicit APW hamiltonian for this case. Include the terms from the disconti-
nuity of the derivative. Show that the equation has the simple interpretation of plane waves
in the interstitial with boundary conditions due to the well.

(d) Construct a computer code to solve for the eigenvalues and compare to the results of
the general method described in Exercise 4.22.

(e) Use the computer code also to treat the shallow square well defined in Exercise 12.6
and compare with the results found there using the plane wave method.

(f) Compare and contrast the APW, plane wave, and the general approach in Exercise 4.22.

Exercise 16.2 Derive the form for the contribution to the hamiltonian matrix elements
from the kink in the wavefunctions given in Eq. (16.8) using Green’s identity to transform
to a surface integral.

Exercise 16.3 Derive the identity given in (16.21)—(16.23) for the expansion of a spher-
ical wave defined about one center in terms of spherical waves about another center. One
procedure is through the use of Eq. (J.1), which is also given in (16.4).

Exercise 16.4 Evaluate values for the logarithmic derivatives of the radial wavefunctions
for free electrons and compare with the curves shown in Fig. 16.3 for Cu. The expressions
follow from (16.4) (also given in Eq. (J.1)) for zero potential and the functions should be
evaluated at the radius .S = 2.415a appropriate for metallic Cu.

Exercise 16.5 Show that the nearly parabolic s band for Cu in Fig. 16.4 are well ap-
proximated by free-electron values given that Cu has fcc crystal structure with cube edge
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a = 6.831ag. Show also that the states at the zone boundary labeled would be expected to
act like p states (I=1, odd) about each atom. (Quantitative comparisons are given in the
book by Kubler and Eyert [157], p. 25).

3

Exercise 16.6 As the simplest example of the “s—d” hybridization model, derive
the bands for a 2 x 2 hamiltonian for flat bands crossing a wide band in one dimen-
sion: Hy1(k) = By + W cos(2nk/a), Haa(k) = Eo, and Hi2(k) = Ha1(k) = A. Find
the minimum gap, and the minimum direct gap in the bands. Show that the bands have
a form resembling the bands in a transition metal.

Exercise 16.7 The KKR method can be illustrated by a one-dimensional Schrédinger
equation, for which the solution is given in Exercise 4.22. See the paper by Butler, Phys.
Rev. B 31, 3260 (1985) [694] for an extended analysis. Close relations to pseudopotentials,
plane wave, APW, and MTO methods are brought out by comparison with Exercises 11.6,
12.6, 16.1, and 16.13. As in Exercise 16.1, the KKR approach can be applied to any peri-
odic potential V' (x). The KKR solution is then given by (16.28) with the structure constants
defined in (16.26). (Here we assume V' (z) is symmetric in each cell for simplicity. If it is
not symmetric there are also cross terms 77 ~.)

(a) The phase shifts are found from the potential in a single cell. In Exercise 11.6 it is
shown that the scattering is described by two phase shifts n+ and .

(b) In one dimension the structure constants define a 2 x 2 matrix By, 1 (e, k), with
L =+,— and L' = +,—. Each term is a sum of exponentials that oscillates and does
not converge at large distance. Find physically meaning expressions for By, 1/ (e, k) by
adding a damped exponential convergence factor.

(c) Using the relations from Exercise 11.6, show that the KKR equations lead to the same
results as the general solution, (4.49), with § = ™ + 1~ and [t| = cos(n™ — 7).

Exercise 16.8 This exercise is to show the relation of the Green’s function expression,
(16.31), and the Schrodinger equation. This can be done in four steps that reveal subtle
features.

(a) Show that application of the free-electron hamiltonian H, to both sides of the equation
leads to a Schrodinger-like equation but without the eigenvalue. Hint: Use the fact that
Hy Gy =d(jr —1')).

(b) Show that this is consistent with the Schrodinger equation using the fact that a constant
shift in V" has no effect on the wavefunction.

(c) Give an auxiliary equation that allows one to find the eigenvalue.

(d) Finally, give the expression for the full Green’s function G analogous to (16.12) from
which one can derive the full spectrum of eigenvalues.

Exercise 16.9 Show that Xl}fTo (e,0,r), defined in (16.37) is continuous and has con-
tinuous derivative (i.e., D is the same inside and outside) at the boundary rr = S.

Exercise 16.10 Find the relation of the mass parameter p to the energy derivative
dD(FE)/dFE evaluated at the band center, assuming P; has the simple form given in (16.48).

Exercise 16.11 The diamond structure can be viewed as a dense-packed structure of
touching spheres with some spheres not filled with atoms. Show this explicitly, starting
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with the crystal structure shown in Fig. 4.7 and insert empty spheres in the holes in the
structure.

Exercise 16.12 Show that (16.37) indeed leads to a function that is continuous and has
a continuous derivative at its boundary.

Exercise 16.13 The MTO method can be illustrated by a one-dimensional Schrodinger
equation. The purpose of this exercise is to show that the solution in Exercises 4.22 and
16.7 can be viewed as “tail cancellation.” (An extended analysis can be found in a paper
by Mishra and Satpathy, Am. J. Phys. 69, 512 (2001) [708].) This re-interpretation of
the equations can be cast in terms of the solutions of the single cell problem given in
Exercise 4.22, ¢/; and v,., which correspond to waves incident from the left and from the
right; only the part outside the cell is needed. Consider the superposition of waves inside a
central cell at ' = 0 formed by the sum of waves ;(x) and 1,.(x) from all other cells at
positions 7' # 0 with a phase factor e’*”'. Show that the requirement that the sum of waves
from all other cells vanishes at any point = in the central cell (i.e., tail cancellation) and
leads to the same equations as in Exercises 4.22 and 16.7.
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Solutions for Chapter 17

Same as in first edition.

Sorry, but solutions are not worked out for this chapter. Many derivation for the
equations in the actual methods used can be found in the references given in the text.
Some good general references are given at the end of the chapter.

Exercise 17.1 Derive Eq. (17.4) from the definition of ’(/J In addition, show the more
general relation

(H —e)p™(e,r) = np™ (e, r), (S.155)
where n is the order of the derivative. Hint: Use the normalization condition.

Exercise 17.2 Carry out the manipulations to show that the hamiltonian and overlap
matrix elements can be cast in the linearized energy-independent form of Egs. (17.14) to
(17.17). Thus the matrix elements are expressed in terms of I and 2, which are functions
of the wavefunctions t and ¢ calculated in the sphere at the chosen energy E,,.

Exercise 17.3 Derive the result that [, ~ 8 in LAPW calculations. Consider a simple
cubic crystal with one atom/cell with the volume of the atomic sphere ~21/2 the volume
of the unit cell. The order of magnitude of ~100 planes waves is reasonable since it cor-
responds to a resolution of ~100'/3 points in each direction. If the plane waves are in a
sphere of radius Gy, find Gpax in terms of the lattice constant a. This is sufficient to
find an estimate of [, using the arguments in the text. If the number of plane waves were
increased to 1,000, what would be the corresponding lax?

Exercise 17.4 The condition (17.23) requires that the LMTO be independent of the
energy to first order and is the key step that defines an LMTO orbital; this removes the
rather arbitrary form of the MTO and leads to the expression in terms of w Show that this
condition leads to the expression, (17.24), for the J function proportional to ¢ inside the
sphere.

Exercise 17.5 If the augmented wavefunction (LAPW or LMTO) is expanded in Yj,,
Up t0 lyax, What is the corresponding 19751 needed in an exact expansion for the charge
density for the given wavefunction? Give reasons why it may not be essential to have

Jdensity this large in an actual calculation.

Exercise 17.6 If the density is expanded in Y},,, up to ! ﬁf;fity, what is [,,,, for the Hartree
potential? For V,.?

Exercise 17.7 What is the maximum angular momentum [P’ of the potential Equation
(17.35) needed for exact evaluation of matrix elements (L|V|L’}) if the wavefunction is
expended up to ., ? Just as in Exercise 17.5, give reasons why smaller values of [P

may be acceptable.

Exercise 17.8 Consider the compound YBasCu307. Determine the number of electrons
that would be required to fill the oxygen states to make a closed-shell ionic compound.
Show that for YBa;Cu30Oy there is one too few electrons per Cu atom. Thus, this material
corresponds to one missing electron (i.e., one hole per Cu).
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Solutions for Chapter 18

This was in Chapter 23 in first edition. Exs. are the same.

NOTE: The references for recursion in the text are to books. One reference online
that is useful is The recursive solution of the Schrodinger equation, Roger Haydock,
Computer Physics Communications 20, 11-16 (1980).

Exercise 18.1 Derive the result stated in the text that the normalization constant in
(18.11) is given by Cy, 11 = 1/6,, n > 1. Show this by directly calculating the normal-
ization of 1,11 assuming 1, is normalized.

Solution:

This argument follows that given in the paper by Haydock, but it is equivalent to other
derivations. The result follows using the definitions of « and S given after (18.11) that at
each step the operation

f{¢n - a7z7/)n - /Bn—lwn—l = 5n+1¢n+1

defines the next component where the terms —a, %, — 3,,—1%,,—1 subtract the component
of H 1, along the previous eigenvectors, so that 5, 11,11 is the orthogonal component.
By definition 3,41 = H,, »+1 where 9,11 is normalized. Thus this is really a definition
of how the next vector is constructed iteratively the operation H 1y, projected into the or-
thogonal space and interpreted as a hamiltonian matrix element with an normalized vector.

Exercise 18.2 Derive the continued fraction representation of (18.12) using the Lanczos
algorithm for the coefficients. It follows that the spectrum of eigenvalues is given by the
poles of the continued fraction (i.e., the zeros of the denominator) in (18.12). (Thus the
spectrum of eigenvalues is given either by the continued fraction form or by the zeros of
the polynomial of the previous problem.)

Solution:

The Greens function is given by the inverse of the matrix ¢ — H and the tri-diagonal matrix
makes the inversion have this special form. The key point is that we want the first com-
ponent of G called G It can be derived by considering the simplest 2 x 2 matrix. For
any symmetric matrix A let B = A~! so that AB = 1. Thus A11Bi1+A12By1 =1,
and A271B1,1 + AQ,QBQ71 =0, so that B271 = —A27131,1/A272 and inserting in the first
equation, Al,lBl,l — A172A271B171/A272 =1.

Finally we have

Bi1=[A11— A12451/A25]7 .

Identifing A as ¢ — H and B, ; as the first component of G defined to be G  leads to the
desired result. This can be continued to the next step and a series of continued fractions.

Exercise 18.3 Derive the form of the terminator given in (18.13) and (18.14). Show that
imaginary part is non-zero in the band range indicated, so that no poles and only continuous
DOS can result in this range. In fact, there is another solution with a plus sign in the square
root in (18.14); show that this is not allowed since ¢(z) must vanish for |z| — occ.

Solution:

The form in (18.13) follows from the same logic as in the previous problem. If the series
has the same form at every step, then it has the self-consistent solution of ¢(z) in terms of
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t(z). Then (18.14) follows from solving for ¢(z). This is the famous “semicircular density
of states” where the square root is imaginary where the argument is negative, only in the
rage where (z — a)? — 4% < 0, i.e., where |z — @] < 2|Bool-

Exercise 18.4 Show that the square root form for terminator (18.14) satisfies Kramers—
Kronig relations, Eq. (D.18), as it must if G(z) is a physically meaningful Green’s function.
Solution:
This follows because it is an analytic function that vanishes at large z, which is the require-
ment for a physically meaningful G.

Exercise 18.5 Show that the Green’s function G(z) = 1/(H — z) becomes more local-
ized for large z for the case where Hisa short-range operator in real space. This is the
essence of localization in both the recursion and Fermi function expansion methods. Hint:
First consider the z — oo limit and then terms in powers of H /z.

Solution:

The arguments about the range follow because of the assumption that H is localized, i.e.,
is connects only nearby regions. Thus each power of an operator involving H extends the
range further. For large z, G can be expended in powers of H/z and it converges faster for
larger z.

Exercise 18.6 Derive Eq. (18.29) by showing that the variation around X = S~ is
quadratic and always positive for matrices B that are negative definite.

Solution:
It is easy to see that the right hand side is zero for X = S~!. For X = S7(1 + A), the
term in parentheses is negative since the terms linear in A vanish and the quadratic terms
are negative since S is positive definite. The result follows if B is negative definite.

Exercise 18.7 This exercise is to derive the form of the “purification” functional, Eq.
(18.24), that leads to idempotency of the density matrix.
(a) The first step is to demonstrate that the function y = 322 — 223 has the form shown in
the left panel of Fig. 18.6 and that the result y is always closer to 0 or 1 than the input z.
(b) Next, generalize this to a matrix equation for any symmetric matrix leading to eigen-
values closer to 0 or 1.
(c) Finally, show that the functional (18.23) minimized using the gradients (18.24) leads to
the desired result.

Error in text. Eq. numbers in part (c) should be (18.23) and (18.24).

Solution:
Part (a) is a matter of plotting the graph. Comparing to the straight line we see that the
curve is always closer to 0 for input z < 1/2 or 1 for x > 1/2.
(b) This can be shown by considering the matrix diagonalized so the eigenvalues are on the
diagonal and the problem reduces to separate problem for each eigenvalue.
(c) This is a matter of rewriting the scalar equations in terms of matrices and it is easiest to
see in the diagonalized form.

Exercise 18.8 This exercise is designed to provide simple examples of the properties of
the unconstrained functional, Eq. (18.26).
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(a) Consider a diagonal 2 x 2 hamiltonian with H1; = €; < 0, Hog = €5 > 0, and Hyo =
Hs; = 0 in an orthonormal basis, 1 and 5. Show that minimization of the functional
leads to the ground state 1/, properly normalized.
(b) Now consider the same basis as in part (a) but with a hamiltonian that is not diagonal:
Hi, = Hys = 0 and H15 = H1 = €y. Show that in this case the functional also leads to
the properly normalized ground state ¢ = % (1 + o).

Solution:
Part (a) works since it is two scalar equations. We know this must work in part (b) since it
can be done in the diagonalized form, but it is interesting to see in the form given in part
(b). This is a minimization problem not worked out here. See examples in the references
given in the text.

Exercise 18.9 Show that the functional, Eq. (18.27), has the property that it leads to
orthonormal eigenvectors for states below the Fermi energy p and projects to zero the
amplitude of any states with eigenvalue above the Fermi energy.

Solution:

This is similar to the pervious exercises. The form of the functional shown in the figure
drives the solution to occupation of states with negative eigenvalues. This is a minimization
problem not worked out here. See examples in the references given in the text.
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Solutions for Chapter 19
This was in Ch. 18 in first edition. Exs. are the same.

Exercise 19.1 In the text it was stated that the “SHAKE” algorithm ( see Ryckaert, et
al., J. Comput. Phys. 33, 327 (1977) [788] and article by Car and Parrinello in in volume
[789] maintains constraints in a holonomic manner, i.e., with no energy loss. An alternative
might be the Gram—Schmidt procedure in which one updates the wavefunctions with H V;
and then orthonormalizes starting with the lowest state.

(a) Show that this will cause energy loss. Hint: one way is to consider the two-state prob-
lem in Exercise 19.2. Treat the wavefunctions explicitly and show that there is a difference
from the equations given below in which the constraint is imposed analytically.

(b) Read the references for SHAKE in the articles mentioned in the problem [788, 789]
and summarize how it works.

Solution:

See the two state problem in Exercise 19.2 which is equivalent to a harmonic oscillator.
A Gram-Schmitt scheme would update at each step with a linearized form and orthogonal-
ization

NOTE: NOT FINISHED

Exercise 19.2 Car—Parrinello-type simulation for one electron in a two-state problem is
the simplest case and is considered in the tutorial-type paper by Pastore, Smargiassi, and
Buda [791]. In this case, the wavefunction can always be written as a linear combination
of any two orthonormal states ¢; and ¢s,

1) = cos (Z) ¢1 + sin (2) .

With this definition orthogonality and normalization are explicitly included and we can
consider 6 to be the variable in the fictitious lagrangian (written for simplicity in the case
where ¢1 and ¢, are eigenvectors):

de
L = p|—|? + e1cos? + ezsin®
dt
Solving the Lagrange equations gives
d20(t) ,
h—qp = (e2 —€1)sin (6(t) — 6o) ,

which is the equation for a pendulum. For small deviations 6 — 6y, the solution is simple
harmonic oscillations of frequency w? = AE/pu. Thus so long as the oscillations are small,
the electronic degrees of freedom act like simple oscillators.

Pastore et al. [791] have analyzed the two-state model and large cell calculations to
identify the key features, as illustrated in the figures from their paper. If u is chosen so
that the fictitious electronic frequencies are well above all lattice frequencies and motions
are small, then there is only slow energy transfer and the Car—Parrinello method works

See note -

finished

not
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well. This can be done in an insulator. But level crossing, metals, etc., give interesting
difficulties.

The exercise is to analyze the algorithm for three cases in which the system is driven by
an external perturbation of frequency wy:

a. For the case of small amplitudes and y chosen so that w. >> wy, show that the elec-
trons respond almost instantaneously adiabatically following the driving field.

b. For the more difficult case with w, of order wg, show that the electrons couple strongly
with large non-linear oscillations. (Note: this fictitious dynamics is not the correct quantum
dynamics.)

c. For the case where there is a level crossing and AE changes sign, show that the
electrons can undergo real transitions. (See note in (b).)

Solution:

See the reference is the problem for an instructive tutorial.

Exercise 19.3 Project for simulation of quantum systems with Car—Parrinello methods.
The purpose of this problem set is to write programs and carry out calculations in sim-
ple cases for the Car—Parrinello method for simulation of quantum systems by molecular
dynamics techniques. Ignore the spin of the electron, which only adds a factor of 2 in
paramagnetic cases with even numbers of electrons per cell.

(a) For the case of an “empty lattice” where the potential energy is a constant set equal to
zero, write down the Car—Parrinello equations of motion for the electrons. Work in atomic
units.

(i) Set up the problem on a one-dimensional lattice, where the wavefunctions are re-
quired to be periodic with length L. Write a program that iterates the Verlet equation for a
single wavefunction expressed in terms of Fourier coefficients up to M x (27/L).

(i1) Choose L = 10 a.u., i = 300 a.u., and M = 16, which are reasonable numbers for
solids. Start with a wavefunction having random coefficients, velocities zero, and iterate
the equations. Choose a time step and show that the fictitious energy is conserved for
your chosen time step. Show that you can carry out the exercise equivalent to the original
calculation of Car and Parrinello in Fig. 19.1. Extract energy from the system by rescaling
the velocities at each step. Show that the system approaches the correct ground state with
energy zero. Make a graph of the energy versus time analogous to Fig. 19.1.

(iii)) Now consider several states. Add the orthogonalization constraints, and find the
ground state for two, three, and four filled states. Verify that you find the correct lowest
states for a line with periodic boundary conditions.

Make a graph of the total energy and fictitious kinetic energy as a function of time. Show
the variation in total energy on a fine scale to verify that it is well conserved.

(b) Now add a potential V(z) = Asin(27z/L). Use an FFT to transform the wave-
function to real space, multiply by the potential, and the inverse FFT to transform back to
Fourier space.

(1) For two electrons per cell (up and down) one has a filled band with a gap to the next
band. Find the ground wavefunction and electron density for a value of A = 1 Hartree, a
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reasonable number for a solid. (All results can be verified by using the plane wave methods
and diagonalization as described in Chapter 12.)

(c) Consider a system with the electrons coupled to slow classical degrees of freedom;
let A be coupled to an oscillator, A = Ay + A;x, and the energy of the oscillator £ =
0.5Mwix?. Choose values typical for ions and phonon frequencies (Chapter 20).

(1) Choose a fictitious mass x so that all the electronic frequencies are much greater than
wo. See Exercise 19.2.

(i1) Start the system at = 0, which is not the minimum, and let it evolve. Does the
oscillator go through several periods before significant energy is transferred to the electron
state? Plot the total energy of the system and the fictitious kinetic energy as a function of
time. Show that the total energy is accurately conserved, and the fictitious kinetic energy
is much less than the oscillator kinetic energy for several cycles.

(iii) The oscillator should oscillate around the minimum. Check, by calculating the total
energy by the quenching method, for fixed x, for several values of x near the minimum. Is
the minimum in energy found this way, close to the minimum found from the oscillations
of the dynamic system?

Solution:

Computation problem not solve here.
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Solutions for Chapter 20
This was in Ch. 19 in first edition. Exs. are the same.

Exercise 20.1 See many excellent problems (and solutions) on phonons in the book by
Mihaly and Martin [598].

Exercise 20.2 Show that the Bloch theorem for phonons follows from exactly the same
logic as for electrons treated in the local orbital representation (Exercise 14.3).

Solution:
See solution in Exercise 14.3 and the places where it is shown in the text.

Exercise 20.3 By comparing expressions Eq. (14.7) and (20.8), show that the equations
for phonons are exactly the same as a tight-binding formulation in which there are three
states of p symmetry for each atom, corresponding to the three degrees of freedom for
the atomic displacements. Show explicitly the correspondence of the terms of the two
problems, especially the fact that the eigenvalue in the electron problem corresponds to
the square of the frequency in the phonon problem.

Solution:

We can see the equations for p states and vibrations are essentially the same because they
are solutions of wave equations for three degrees of freedom on each atomic site. The TB
equations are more general since they apply for non-orthogonal basis; the overlap matrix .S
is unity for phonons so the phonon case corresponds to orthogonal TB equations. (ASIDE:
Why are phonons orthonormal? Would there ever be non-orthogonal basis?). Phonons have
eigenvalues w? because they are quantized harmonic oscillators.

Exercise 20.4 This exercise is to explain a salient difference in the tight-binding electron
and the phonon problems. The force constant has the property of translational invariance;
show that the fact that the total energy does not change if all the atoms are displaced
uniformly leads to the relation ) ; C7 45,3 = 0. This condition can be used to fix the self
term C7 o1, so that, unlike the electron tight-binding problem, the on-site term is not an
independent variable. In addition, show that this means that there are three zero frequency
phonon modes at k = 0. The relation between the on-site and intersite matrix elements is
called the “acoustic sum rule.” ( see Pick, Cohen and Martin [180]).

Solution:

The difference is that the hamiltonian for electrons is for a fixed lattice. They are invariant
to displacement of all electrons by a lattice constant but no invariant to general displace-
ments of the electrons if the lattice of nuclei is held fixed. Phonons are defined differently:
they are equations for the entire lattice and the energy does not change if the entire lattice
is displaced uniformly.

This is illuminating for the theory of phonons starting from the total energy of the elec-
trons. In fact the total energy is for the entire lattice including the nuclei and the forces and
vibration energies are for the entire system. In this book and almost everywhere the theory
is worked out in the adiabatic approximation where the electrons are in the ground state.

Exercise 20.5 The simplest model for phonons is the central force model in which the
energy is a function only of the distance between the nearest neighbors. Find expressions
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for a force constant C . s using the definition as a second derivative of the energy ex-
pressed as a sum of pair terms ' =, _; E1;(]Rr — R[). Show that the resulting ex-
pressions are equivalent to a tight-binding problem of electron p states, Exercise 14.11,
with the %, matrix elements equal to zero.
Solution:

As noted in Exercise 20.3, the phonon equations are the same as for p states. The central
forces constant for phonons corresponds to having energy a function only of distance be-
tween the atoms. For p states this means only ¢,,, matrix elements as illustrated in Fig.
14.2.

Exercise 20.6 Find expressions for phonon dispersion curves respectively in elemental
simple cubic and fcc crystals using the simplest model for phonons, a nearest-neighbor
central potential model with energy given by E =13, _; K|R; — R,|?, where J is
restricted to nearest neighbor. Show the relation to tight-binding equations for p bands in
Exercise 14.11 as explicit examples of the relationship given in Exercises 20.3-20.5.

(a) Show that there are two dispersion curves that have zero frequency for all k£ in simple
cubic but not in fcc crystals. Explain why this instability occurs in a simple cubic crystal
in a central potential model.

(b) There is a corresponding result in the tight-binding model for p bands in a simple cubic
crystal if the only non-zero matrix element is ¢,,, between nearest neighbors. Show that
in this case there are two bands with no dispersion.

Solution:

A simple way to derive this result is to consider the equations for a simple cubic crystal.
The problem reduces to a case where the energy is a sum of terms for decoupled lines of
atoms along the 3 axes. Consider k along a cubic axis (k,, 0, 0). For phonons the energy
is a function of displacement in the x direction and independent of displacement in the y
and z directions, which means two zero frequency dispersion curves. For the tight binding
problem, there are two flat bands for p, and p.. The same happens for the other cubic
directions. Consider now a general k = (k,, ky, k.); the energy is simply a sum of terms
for the three axes with no coupling between them, i.e., E(k) = E(k,) + E(k,) + E(k.).
NOTE: NOT FINISHED

Exercise 20.7 Computational exercise : Using the properties established in Exer-
cises 20.3-20.5, construct a computer program (or use a tight-binding code that is avail-
able) to evaluate phonon frequencies in a model analogous to a tight-binding model for
electrons.

Solution:

Computational ex. no solution given here.

Exercise 20.8 Why is there no term involving 9*n/(0X;0);) in the expression for
O?E/(0X\;0);) in Eq. (20.12)?

Solution:
The lack of this term in the second equation follows directly from the first equation, i.e.,
the Hellman-Feynman theorem. To understand it from a physical perspective, it is because
the quantity calculated is the second derivative of the energy w.r.t. an effect external to the

See note -

finished

not
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electron system. It is not required that the second derivative of the energy with respect to
changes in n(r) are zero, but rather that at second order the second derivative of the energy
does not depend on the second derivative n(r) .

Exercise 20.9 Show that Eq. (20.19) follows from Eq. (20.26) by taking matrix elements
of the equation.

Solution:
NOTE: NOT FINISHED - CHECK. MISTAKE IN EQ?

Exercise 20.10 This is an example of the variational principle in perturbation theory.
Consider a system composed of three points x(, 21, 2 in a line connected by two springs.
The energy is F = %kl(:cl —10)? + %kg(xg — x1)2. Suppose forces f = fo = —f2 are
applied to the two ends.

(a) Identify the functional F'[f, 1] valid for all f and .

(b) If the middle position x; is free to move, calculate the change in position 1 — xg
and total length zo — x( as a function of f.

(c) See Exercise D.7 for extension to non-linear springs.

Solution: (See also Exercise G.4 for a closely related exercise.)

The energy E = %kl (x1 —20)% + %k‘g (9 — x1)? is expressed in terms of three positions;
since the absolute position is not relevant, the energy can be expressed in terms of two
variables that can be chosen to be the length L = x5 — g and 1 — 29 = y. A symmetric
form is

FE = %kl(fﬂl — Xg — L/2)2 + %kQ(L/Q + 21 — (E(])2 = %kl(L/Q — y)2 + %k‘z(L/2 +
y)? = 3 (k1 + k2)(y> + L?) + (k2 — k1) Ly.

This is analogous to the internal energy of a solid expressed as a function of internal
variables (analogous to y) and the volume (analogous to L). We can convert this to a
function of the force f and y, which is analogous to the internal energy of a solid expressed
as a function of internal variables (analogous to y) and the externally applied pressure
(analogous to f):

f=—dE/dL = (k1 + ko)L + (k1 — ko)y so that L = f/(k1 + ko) — [(k1 — k2)/(k1 +
k2)ly

Substituting this in the expression for the energy gives the desired expression. It is
straightforward and not written out here.

This expression gives the energy as a function of the applied force and y; if it is mini-
mized with respect to y, itis the equilibrium energy as a function of force f This is analo-
gous to the enthalpy which the the energy as a function of pressure in a solid. It does not
appear very useful. It is much easier to calculate the energy as a function of the internal
variables, just as in a solid where iot is easier to calculate energy as a function of volume.

It is interesting to note that one dimension is special. Since the force is transmitted
from one atom to the next the effect of the applied force is transmitted into the body. The
interpretation leads to problems identifying what is intrinsic as explained in some detail
in the paper by Nielsen and Martin [162, 102]. It is the same as the issues with regard
to polarization where the effects of charge at the surface does not decrease as the size of
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solid increases so that one must take great care to identify the intrinsic polarization and the
surface effect, as described in Chapter 24.



see note in text

See note in text
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Solutions for Chapter 21
This was in Ch. 20 in first edition. Exs. are the same except two new Exs are added.

Exercise 21.1 Derive expression Equation (21.9) for the dielectric function for non-
interacting particles. Show that the first term in brackets comes from the A2 term as stated
following Eq. (21.9).

Solution:

This is straightforward perturbation theory for the second term. The first term arises be-
cause A is just a multiplicative term that acts on each electron. NOTE: I have forgotten the
physical reason this terms must be present!

Exercise 21.2 Derive the matrix equation Equation (21.15) for the eigenvalues €2,, of the
density response from the preceding equations. Although there are many indices, this is a
straightforward problem of matrix manipulation.

Solution:

As stated this is tedious. See the reference given and many more recent papers and texts.

Exercise 21.3 The general approach for exponentials of operators is described in the text
preceding Eq. (21.18); it is also used in the rotation operators in Appendix N. Show that
for any operator A, exp(A) = >, |¢;) exp(A;;)((i|, where A;; and (; are eigenvalues and
eigenvectors of A. Hint: Use the power series expansion of the exponential and show the
equivalence of the two sides of the equation at every order.

Solution:

This can be shown by following the hint. At each order one can insert a complete set of
states and show that it is equivalent to the expression in terms of eigenvalues and vectors.

Exercise 21.4 Show that Eq. (21.18) has error of order oc §¢2. Would the error be of the
same order if the potential part were not symmetric?

Solution:
See references for the Suzuki-Trotter form (often called just Trotter) for the fill reasoning.
The simple way to see it is that the symmetric form has the derivation operator at the middle
of a time step, whereas if it were are the start or the end of the step it would introduce an
extra error.

Exercise 21.5 Derive the f sum rule for the strength function S(w) in Eq. (21.23). The
proof is analogous to Exercise E.2.

Solution:
See derivation in Exercise E.2.

Exercise 21.6 Describe qualitatively how the top and bottom parts of Fig. 21.6 lead to
broad and sharp spectra, respectively.

Solution:
The qualitative answer is given in the caption, that the rapid decay In the topo curve corre-
sponds to a broad peak that can be described by broadened Lorentzian, just like a friction
term in a harmonic oscillator.

NOTE: I am not sure why there are persistent oscillations in the top part on the figure.
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Solutions for Chapter 22
This is a new Chapter not in first edition.

Exercise 22.1 The work function ¢ in Section 22.2 involves intrinsic properties of the
material plus surface effects that are equivalent to the change in potential of a capacitor
as described in Section F.5. An important effect is the reduction of the work function of a
metal by adding a layer of atoms that donate electrons (become positively charged). The
magnitude can be estimated by simple models. Consider a metal with a layer of adatoms
in a square array separated by 4 a positive charge |e| at a height of 4 a( above the surface
layer of atoms(the compensating negative charge is assumed to be on the surface layer of
the metal). Find the change in the work function in eV.

Solution:

This is a problem that might apply to a metal coated with atoms that changes the work
function, a well known phenomenon. It is the voltage of a capacitor with charge density
e/16a3 and spacing 4ao. One has to get the right units! Left as exercise for the reader!

Exercise 22.2 Show that there is always a surface (end) state due to the form of the den-
sity of states in a one-dimensional system shown in Fig. 14.4. This is an example of a state
caused by a potential as described by Tamm. (Hint: use a Green’s function formulation.
Since the density of states diverges at the edge of the band any localized effect, such as the
potential at the surface, always leads to a bound state either below the band for attractive
potentials or above the band for repulsive potentials.)

Solution:

The solution using the Green’s function G(w) follows the hint, and it requires two basic
ideas: a pole in G(w) in an energy range where there is no bulk state (a gap) denotes a
bound state, and G is determined by the Green’s function for the unperturbed system G°
(i.e., the infinite bulk) and the perturbation potential. The relation is

Such a state is guaranteed if the Green’s function for the unperturbed system GV diverges
at the band edge. This occurs in 1 dimension, and in 2 or 3 dimensions if the perturbation is
periodic so that Ky r4cc is conserved. In that case the problem reduces a one-dimensional
problem for the position orthogonal z to the surface for each Ky, face-

NOTE: NOT FINISHED - where is the appropriate G in the book

Exercise 22.3 See Exercise 26.7 for an analytic solution for a Shockley midgap surface
state wavefunction as it decays into the crystal for a two-site model.

Solution:
See that Ex.

Exercise 22.4 Show that the potential has the “polar catastrophe” form shown at the
top of Fig. 22.6 for the sequences of + and - charged planes. Show that if there is there is
added a layer with 1/2 negative change per cell, the resulting potential does not increase
indefinitely.

Solution:

Consider plane perpendicular to = and a potential defined to be zero at x = —oo. A critical
point is that the crystal is neutral. This is often an assumption that is hidden and not made

See note -

finished

not
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explicit. Then there is no electric field outside the crystal and the potential is zero up to the
first plane at the surface. As one crosses the first plane (which is charged, chosen to be +
in Fig,22.6) the electric field jumps to a finite value exactly like a capacitor. The potential
for a negative electron is shown in Fig. 22.6. Crossing the next plane of opposite charge
the field is again zero as shown. The potential increases the same at each pair of planes, so
that is increases indefinitely.

As shown at the bottom of Fig. 22.6 reducing the charge of the first plane by 1/2 cures
the problem.

What does this have to do with neutrality? The half charge at the surface is the physical
realization of neutrality in a local sense. The first example with the catastrophe is really
artificial; it is neutral only id the system terminates in a plane with the opposite charge; it
is not a physical situation that the potential for electrons in the left region of the crystal
depends upon the right edge at a large distance. In the text is clarified that a physical
situation is that changed plane come from transfer of charge between planes with naturally
leads to half charge at a plane that has a neighboring plane on only one side. This is the
physical realization of change neutrality and is what happen in an ionic system that results
from bring together neutral atoms which transfer charge to make an ionic crystal,

Exercise 22.5 Describe qualitatively the bands shown in Fig. 22.7 in terms of the d states
shown in the figure. Explain why the three bands would be independent for a layer of Ti
atoms in vacuum, but they are mixed and repel one another because it is a surface layer.
Explain also that spin—orbit interaction splits the states at I and mixes the states at other k
points.

Solution:

For a layer in the vacuum the d, (even in reflection in the plane) states are decoupled from
the d, and d,,, which are odd. However the up-down symmetry is broken in a surface; the
states are not even and odd and the states are mixed.

Spin-orbit coupling mixes the three d states even without symmetry breaking. For ex-
ample, a small SO coupling mixes the d,, d;. and d,. states and gives rise to a a large
mixing at the points where the bands cross in the figure, i.e., where they would be degen-
erate except for SO coupling.
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Solutions for Chapter 23

This was in Ch. 21 in first edition. Exs. are the same except addition of short Exer-
cise 23.10 pointing to another Ch.

bf Many solutions in this chapter are only references to papers, where they are written
out explicitly.

Exercise 23.1 This exercise is to construct a localized Wannier function for the s bands
described in Section 14.5 and Exercises 14.6 and 14.7. The hamiltonian has only nearest-
neighbor matrix elements ¢ and the basis is assumed to be orthogonal. For all cases (line,
square, and simple cubic lattices), show that one can choose the periodic part of the Bloch
functions w;k(r) to be real, in which case they are independent of k. Next, show from
the definition, Eq. (23.6), that this choice leads to the most localized possible Wannier
function, which is identical to the basis function.

Solution:

There is an error in these Exs and they are stated in a way are much harder than they
need to be. The error is that in general uy (r) is NOT independent of k.

It is useful to see how the functions are defined in terms of the u’s because the theory later
is in terms of the periodic u’s. However, to solve these Exs, there is no need to introduce
the w’s which just complicates the problem. The solution can be stated in a simpler, more
general way for a problem with one basis function per site and one site per cell, i.e., one
band so that there are no issues of multiple bands. The basis functions are assumed to
be orthonormal. No matter what is the hamiltonian, the Bloch function ;i (r) can be ex-
pressed as Y (r) = > e Tny(r — T},), where there is a phase factor e’ T» times each
function centered at cell n. At any point r only functions that are non-zero at r contribute.
Then it is most straightforward to use the definition of the Wannier function in Eq. (23.4)

Qcen —ik- Ty _ Qcen —ik- Ty ik- T, _
Win(r) = 2n)? /BZ dke Yik(r) = an)? /BZ dke ;e x(r — Ty).
(S.156)
For one band, the integral over k is non-zero only for T,, = T} and it follows that the
Wannier function centered on site 0 is w(r) = x(r)

In terms of the periodic part of the Bloch functions u, they can always be chosen to
be real if there is a center of inversion. This follows because the basis function x(r) can
be chosen to be symmetric. We can see from Eq. (23.6) that for a symmetric function the
Wannier function (chosen to be the basis function) is a real cosine transform of the u’s.
But this does not mean they are independent of k. Of course they can also be complex by
a unitary transformation, but this is the most useful case. For example, the Berry phase is
4 so the the imaginary part vanishes in many of the derivations later in this book.

Exercise 23.2 This exercise is to analyze Wannier functions for s bands as described
in Exercise 23.1, except that the basis is non-orthogonal with nearest-neighbor overlap s.
Show that one can choose the periodic part of the Bloch functions w;x(r) to be real, and
find the k dependence of w;x(r) as a function of s. (Hint: For non-orthogonal functions,
the normalization coefficient given in Exercise 14.4 is k dependent, which is relevant for
constructing the Wannier function using Eq. (23.6).) Show that the resulting Wannier func-
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tion has infinite range; even though it decays rapidly, its amplitude does not vanish at any
finite distance.

Solution:

I believe there is a more elegant solution but I cannot reproduce it now.

This problem can be solved by noting that the generalized eigenvalue problem can be

converted to a problem with orthogonal functions withe hamiltonian S'/2 H S/2, as done
in Exercise 14.17. There it is shown that the decay is exponential.
Is this a quandary? The overlap matrices led to a longer range hamiltonian in terms of
orthogonal functions. Since we never said anything about the shape of the wavefunctions,
why does the extent of the hamiltonian matrix elements imply anything about Wannier
functions. The answer is that the Wannier functions are expressed as linear combinations
of the basis functions x(r). The hamiltonian matrix elements are non-zero only if the two
Wannier functions involved are both non-zero. It is a different problem to find the r depen-
dence of the basis functions x(r).

Exercise 23.3 Derive Eq. (23.8) using definition Equation (23.6) and properties of the
eigenfunctions.

Solution:
The definition of each of the the Wannier functions is an integral over k of the periodic
Bloch function in Eq. (23.6). Thus Eq. (23.8) can be written as (ignoring prefactors)

(im|jm’) /dr/dk/dk’e_ik'(”_Tm)uik(r)eik/'(r_Tm”uik/(r). (S.157)

Since the product of the u’s is a periodic function the integral over r is non-zero only for
k = k’ and the integral over k is zero unless Ty, = Ty, which establishes the orthogo-
nality given that the u’s are normalized.

Exercise 23.4 Show that expression Equation (23.13) to second order in q follows in
analogy to the expansion that leads to Eq. (23.9).

Solution:
This is just a straightforward expansion as in Eq. (23.9). The exercise is given to ask the
reader to be sure he/she realizes that this is key to the later arguments.

Exercise 23.5 Show that {2; is always positive by noting that Q = Q2 so that Eq. (23.19)
can be written as the sum of expectation values of squares of operators.

Solution:
The reason Q = Q2 is that applying the projection operator once projects the empty states
and and there is no change by applying it again any number of times. Thus £ Qf =
f'aQQf“a which is an absolute value squared since we can let the operators act to the left
and right in a symmetric form.

Exercise 23.6 Show that Equation (23.23) and Equation (23.24) have the same limit for
b — 0 as Egs. (23.20) and Equation (23.21), and that they obey the translation invariance
conditions, Eq. (23.22). Show further that this means that €2 is unchanged.
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Solution:

NOTE: The formulas are written following the notation of Marzari and Vanderbilt [900];
it may seem confusing unless one understands that the weight factore have magnitude
o 1/b2. This form is useful to take into account the cartesian components in 2 and 3 di-
mensions.

The equivalence in the small b limit follows if we expand the log as in(z) = — 1+ .. ..
This applies at any point k. GHowever, the translation invariance conditions, Eq. (23.22),
involves the depe4ndence as a function of k for all k in the BZ. The translation invariance
involves a shift by a multiple of a lattice constant where change of phase of the function
P (r) — e K Tmahy (r), is multiples of 27 (see definition just before Eq. (23.22)). This
is obeyed by the expression in terms of the imaginary part of the log, which is a trigono-
metric function. As discussed in the text, € in Eq. (23.14) is not gauge invariant; however,
the special choice of change of phase by the factor e %"Tm is just a translation, and the
definition in Eq. (23.14) is such that there is no change in €2 with a translation. Some alge-
bra is required to show that in terms of the formulas, but it is left for the reader. Detailed
derivations are in Marzari and Vanderbilt [900].

Exercise 23.7 Show that €}; in Eq. (23.25) is positive using the definition of the M
matrices and the fact that the overlap of Bloch functions at different k points must be less
than unity.

Solution:

This is easily shown for a single band where the matrices reduce to scalars and noting that
the overlap on neighboring points cannot exceed unity. The general case is explained in
Marzari and Vanderbilt [900].

Exercise 23.8 Explain why it is not possible to make Q vanish in higher dimensions.

(a) First show that the projected operators { P2 P, PjP, PzP} do not commute. Show
this is equivalent to the statement that & and P do not commute. Then show that & and P
do not commute.

(b) Use the fact that non-commuting operators cannot be simultaneously diagonalized
to complete the demonstration.

Solution:
In general two position operators commune with one another. However, a position operator
x does not commute with the projection P. This is because projecting the wavefuntions and
then multiplying by x (zP) is different from multiplying by x and then projecting (Px).
For Pz the result is clearly within the projected manifold of occupied states, whereas x P
clearly is not since multiplication by x in general brings in components of the unoccupied
states. A full discussion is explained in Marzari and Vanderbilt [900].

Exercise 23.9 Demonstrate that it is possible to find functions with Q = 0 in one dimen-
sion by explicitly minimizing €) for a one-band, nearest-neighbor tight-binding model with
overlap (see definitions in Section 14.5):

Hii11 =1t Siit1=s5, (S.158)

where S; ; = 1.

NOTE: Explain

better here?
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(a) First consider the case with s = 0: show that in this artificial model the minimum
spread is the spread of the basis function. However, one can also choose more delocalized
states, e.g., the eigenstates.

(b) For s # 0, find the minimum spread 2 as a function of ¢. Show it is greater than in
part (a). For explicit evaluation of the spread €);, use (21.23) with the eigenvectors given
by analytic solution of the Schrodinger equation and the sum over k& done approximately
on a regular grid of values in one dimension.

Solution:

The solution of part (a) is the same as in Exercise 23.1.

For part (b) the proof follows the same approach as in Exercise 23.2. The spread is larger
because it extends to the functions centered on neighboring site. The explicit evaluation
can be done analytically but not done here!

Exercise 23.10 See exercises in Chapter 26 for solutions for the two-site model in
Fig. 26.2, which is also used in Exercise 23.11 and 23.12.

Solution:
See those Exs.

Exercise 23.11 This exercise is to construct maximally localized Wannier functions for
the one-dimensional ionic dimer model in Fig. 26.2 using the fact that the gauge-dependent
term in it can be made to vanish.

(a) Let t; = to so that each atom is at a center of symmetry. Show that the maximally
localized Wannier function for the lower band is centered on the atom with lower energy
€4 or €, and the function for the upper band is centered on the atom with higher energy.
(Hint: If there is a center of inversion the periodic part of the Bloch functions can be made
real.)

(b) Similarly, there are two centers of inversion if €4 = e and ¢; # t5. Show that in this
case the Wannier functions are centered respectively on the strong and the weak bonds
between the atoms.

(c) In each of the cases above, calculate the maximally localized Wannier function as a
sum of localized basis functions. The eigenfunctions can be calculated analytically and the
Wannier functions constructed using the definition in (21.3) and approximating the integral
by a sum over a regular grid of k points. (This can be done with a small computer code.
Note that the grid spacing must be small for a small gap between the bands.)

Solution:

The first two parts can be answered by noting that in each case there are two centers of
inversion and there are two bands that are symmetric (¢, = +|eg|) about a zero of energy
determined by the average energy (¢4 +¢)/2 or average hopping (¢1 + t2)/2. This means
that one can chose two Wannier functions for the two bands that are identical except that
are centered on the two different centers of inversion. It follows that the lower energy must
be the function for the lower band, centered on atom with lower energy or the strong bond.
The only remaining thing needed is that the maximally localized functions can be chosen
in this way.
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The full solution of the functions requires a numerical calculation as pointed out in part
(c). It can be done by band since the problem involves only 2x2 matrices or with a small
code like that used to calculate the Berry phases later in the book.

Exercise 23.12 Using the model of Exercise 23.11 and the methods described in Sec-
tion 23.3, construct a computer code to calculate the centers of the Wannier functions in
a general case, €4 # ¢p and ¢; # t2. This can be used to find polarization and effective
charges as described in Exercises 24.8 and 24.9.

Exercise 23.13 Construct the maximally localized Wannier function for the lowest band
in the one-dimensional continuum model of Exercise 12.5. Show that the function is cen-
tered at the minimum of the potential. Calculate the functions using the analytic expres-
sions for the Bloch functions and the same approach as in Exercise 23.11, part (c).

Solution:

Computational problem not solved here.

Exercise 23.14 See Exercise 15.6 for a project to construct Wannier functions in one
dimension.

Solution:
Computational problem not solved here.

Exercise 23.15 Show that UX, defined in Eq. (23.27), is unitary if WK is antihermitian,
i.e., Wij = —W;;-.

Solution:
The definition of a unitary matrix is one that obeys U*U = UU* = 1. Thus if U = e".
then ¢V " = 1. Then e~ =" and —W* = W which means W is anti-hermitian.
An example is the scalar case where W must be a purely imaginary phase factor in order
for [e"| = 1.

Exercise 23.16 Show that the gradient, Eq. (23.31), follows from the definitions. To do
this, verify the operator commutation relations, and note that Tr[X’ X p] = 0, etc.
Solution:
This is just a matter of matrix algebra. It is worked out in the references given in text and
I have not written out the steps.

Exercise 23.17 Show that the minimization of the functional Q[A] + C,min{Q,[A4, X|}
leads to the desired solution of a non-singular transformation to non-orthogonal orbitals.
Hint: Use the conditions stated following Eq. (18.33) and the relations given in Equation
(23.32)-Equation (23.35).

Solution:

This is also matrix algebra which may be tedious. It is useful for a practical approach
to finding non-orthogonal functions, and is especially important in the order-N methods
where it is very important to have functions as localized as possible, and non-orthogonal
functions can greatly reduice the computational time. The methods are described in Sec-
tion 18.6 where there are references to the compact derivation by Yang [746] and Liu [774].
They are also important in the real space approach in disordered systems (which has a lot
in common with the order-N methods) in Silvestrelli [902] and Berghold [903].

NOTE: Explain
this better?!
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Solutions for Chapter 24
This was in Ch. 22 in first edition. Exs. are the same.

Exercise 24.1 Verify that the well-known expression for a dipole moment, Eq. (24.3),
follows from the definition of the polarization field, Eq. (24.1), with the boundary condition
given.

Solution:

Often Eq. (24.3) is taken to be the definition and here we want to see that ir follows from
Eq. (24.1) if the n and P are restricted to a finite region and zero outside. This can be done
a a scalar equation for each directing by integration by parts:

/dx d(uwv)/dx = (uv)|2, =0 = /dx [u(dv/dx) + (du/dz)v],

where we have required  and v to be zero at the limits. Choosing v = x and v = P, and
using Eq. (24.1) where dP/dx = —n, we have

/d;v (du/dz)P = /dm P = /dac (u(dP/dx) = /dx n.

Since [ P is the total dipole moment, this is the desired relation Eq. (24.3).

There are two lessons from this exercise that reveal the quandaries that have plagued
the theory of polarization in condensed matter. First, the choice u = z is the source of the
difficulty; what does one do with the usual approach to treat condensed matter as the limit
of a system that extends to infinity where = is unbounded? The other is that the integral
converges only if P is required to vanish outside the system; however, the definition is only
i terms of the derivative of P so that its absolute value id not defined by Eq. (24.1). It seems
we had a circular definition where we added a requirement to define the absolute value of
P in order to determine the absolute value of P. This makes sense for a finite system. What
about an infinite system? These are the quandaries resolved only recently.

Exercise 24.2 Show that expressions (24.7) and (24.8) for the expectation values in
terms of the commutators follow from the definition of H (k, \).

Solution:
This is really just a clarification of where the commutator means. Since the derivatives are
operators acting on all functions to the right (or left) the commutator is just the restriction
the the derivative acts only on the hamiltonian H. This interpretation leads to (24.8) and
to (24.7) with the definition of H (k). On the other hand, since the wavefunctions in the
expression are eigenvectors of H (k) one can let the H operator act to the left or right to
see that

(u;|[0/0k H(k,\) — H(k,\) 8/8k}|uﬁj> = (uj;llens — Eﬁj]|aul>c\j/ak> (S5.159)
and similarly for the A derivative.

Exercise 24.3 Show that Eq. (24.9) follows from the previous equations as stated in the
text. Hint: Use completeness relations to eliminate excited states.

Solution:
Putting the results of the previous problem into Eq. (24.5) and Eq. (24.6), we can see that
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the factors of energy differences cancel in the numerator and denominator and lead to the
desired result Eq. (24.9).

Exercise 24.4 Show that the dipole moment averaged over all possible cells vanishes in
any crystal.

Solution:
Even though we have argued that the equation for the dipole is problematic in a crystal,
it can be argued that the expression in Eq. 24.3 is well defined if the dipole is averaged
over all choices of the origin for the position vector r, i.e., if we replace r by r — ry and
average over ry in a cell it is well defined and clearly zero since it averages over all possible
expressions for the dipole with charges to the left and right equally.

Exercise 24.5 Define a “localization gap” Ef, by turning Eq. (24.19) into an equality:
£ =h?/(2m.Fy).

(a) Using the f sum rule and Eq. (24.17), show that E';, can be expressed as the first
inverse moment of the optical conductivity distribution:

1 fw o (w)dw

Eil=-4 7
L h [ wlo!(w)dw

(b) Use the f sum rule and the Kramers—Kronig expression for ¢(0) to show that the
Penn gap defined in D. R. Penn, "Wave-Number-Dependent Dielectric Function of Semi-
conductors, Phys. Rev. 128, 2093 (1962) [941] Epenn defined via the relation €(0) =
1+ (hwp /Epenn), where wy, is the plasma frequency, can be expressed as the second in-
verse moment:

g _ 1 Jw'—20'(w)dw
Penn ™ p2 - [W00! (w)dw
(c) Using the results of (a) and (b), show that inequalities ((24.19)) and ((24.20)) can be
recast in a compact form as follows:

9 . .2
EPenn > ELE;:; > (E‘ga‘gl) .

Solution:
The solution for the first two parts is a matter of using the relation to the plasma frequency
given in Exercise E.2 and realizing the mistakes in the equations! The symbol w® should
be w. The Eq for Fpeny, is dimensionally incorrect. There is a latex erropr. It should be
9 ifw'_za’(w)dw

Penn = 72 JwOo! (w)dw
The second inequality follows from the fact that an average gaps is always greater then
the minimum gap. The first inequality follows from the powers of w in the expressions for
E2,... FL,and Eg(;ig‘?

ADD MORE?

Exercise 24.6 Find a reasonable estimate and upper and lower bounds for Zi:l £
using gaps and dielectric constants of typical semiconductors and the expressions given in

ADD MORE?
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Exercise 24.5. The lowest direct gaps can be taken from Sgiarovell, et al. [942] or other
sources and values of the dielectric functions can be found in texts such as Marder, Kittel
or Ashcroft [300, 285, 280], e.g., € =~ 12 in Si.

Solution:

This is a matter of checking values for representative cases.
ADD MORE?

Exercise 24.7 It is also instructive to calculate values of the average ‘“Penn gap” in the
1962 paper by Penn [941] which is defined in Exercise 24.5. The Penn gap is an estimate
of the average gap in the optical spectrum and is directly related to the inequalities in
Exercises 24.5 and 24.6. As an example, find the gap in Si with € ~ 12 and compare with
the minimum direct gap. Find values for other semiconductors as well, using standard
references or [941].

Solution:

This is a matter of checking values for representative cases. Also check Exercise 24.5.

ADD MORE?

Exercise 24.8 Construct a small computer code to calculate the electronic contribution
to the polarization from the Berry phase expressions given in Section 24.3 for the one-
dimensional ionic dimer model of Fig. 26.2 in a general case, € 4 # €p and t; # t2. Com-
pare with the calculations of the centers of the Wannier function found in Exercise 23.12.

Solution:

This is a computational problem not solved here.

Exercise 24.9 The effective charge, Eq. (E.20), is defined by the change in the polariza-
tion induced by displacement on an atom. An important part of the charge is the “dynam-
ical” electronic contribution that results from changes in the electronic wavefunctions in
addition to rigid displacements. A simple model for this is given by the one-dimensional
ionic dimer model of Fig. 26.2. Consider e 4 # ep and let t; =t + 6t and to =t — Jt. A
change in Jt causes a change in polarization in addition to any change due to rigid dis-
placement of ionic charges. For a given Ae = £4 — e calculate 6P /4§t for small ¢ using
computer codes for the Berry phase (Exercise 24.8) or the centers of the Wannier functions
(Exercise 23.12). Show that the contribution to the effective charge can be large and have
either sign (depending on the variation of ¢ with displacement), which can explain large
“anomalous effective charges” as described in Section 24.5.

Solution:

The calculation of the Berry phase requires a computation, but we can see the physical
effect with out computation. The charge is moved to the left or right since the perturbation
is not symmetrical around each atom, i.e., the center of inversion is broken. In a real crystal
there is an effect of displacement of the positive nuclei and in addition this displacement of
the electrons that depends up the way the band structure varies as the atoms are displaced.
It can be in either direction and large or smaller than the nuclear component of the effective
charge.
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Exercise 24.10 Consider the one-dimensional continuum model of Exercise 12.5 for
which Wannier functions are found in Exercise 23.13. The polarization is zero since the
crystal has a center of inversion and the eigenfunctions can be chosen to be real. If the
entire crystal is shifted rigidly a distance A, so that V(z) — Vj cos(2n(z — Ax)/a), the
origin is not at the center of inversion and the eigenfunctions are not real. Using the Berry
phase expressions in Section 24.3, show that the change in the electronic contribution to
the polarization is AP = —2|e|Ax/a. The interpretation of this simple result is that the
electrons simply move rigidly with the potential. Give the reasons that this shift does not
actually lead to a net polarization since in a real crystal this electronic term is exactly
cancelled by the contribution of the positive nuclei which shift rigidly.

Solution:

This is a variation of the previous problem in terms of Wannier functions. The transfor-
mation from the Berry phase expressions in the previous problem to Wannier is a rigorous
transformation bevause it is really just a different interpretaion of the quations because the
Wannier functions are defined by the same Berry phase expressions! A quantitative calcu-
lation requires a computation, but we can see the physical effect that the displacements of
the centers of Wannier functions is the charge in electronic polarization is we multiply by
the charge e. It is just another way of dealing with the problem in a real crystal where there
is a sum of displacement of the positive nuclei and negative electrons.
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Solutions for Chapter 25
This is a new Chapter in second edition

Exercise 25.1 Apply same arguments as in Exercise P.1 to show that (u |0 us) is purely
imaginary.

Solution:
Since the norm (ug|ux) =1 is normalized, the derivative Oy (uy|ug) = 0. Thus
(ug|Okug) + (Opur|ur) = 0. The two terms are complex conjugates of one another, and
therefore each is purely imaginary.

Exercise 25.2 See Exercise P.2 for the general form of Berry curvature. Apply the ar-
guments to derive the first equality in expression for 2(k) in Eq. (25.8) from the previous
expressions the Berry phases. Discuss how added factors of 27 might occur in crystals.
Show that the second equality follows from the normalization condition for the Bloch
functions.

Solution:

Note that in Eq. (25.8) 0, means Oy, etc. The formulas are expressed in a form where
k is a continuous function, but a way to derive the result is to consider a small box of
size Deltak, x Ak,, where the value (u|0,u) and (u|0,u) can be taken to be constant
along each edge, and then take the limit. Thus the clockwise line integral is the sum of the
differences (bottom - top) + (right - left) which is [(u|0yu)|k, — (u|0pu) |k, +ak, | Ak +
[(u|0yw) |k, + Ak, — (u|Oyu)|k,] Ak,. Taking the limit leads to the differential expression
in the middle expression in Eq. (25.8). Taking into account that (u|J,,u) is purely imaginary
leads to the form at the right in Eq. (25.8).

This is a consequence of the same analysis as used in Section D.1 where the change
in the ground state wavefunctions is only by mixing in the unoccupied states. See also
Exercise C.1.

Exercise 25.3 In Section P.7 it is pointed out that one way the to treat the monopole
is to define two different smooth gauges for the northern and southern hemispheres and
“glue” them together, which is allowed because the Berry phase is defined modulo 27. The
integer factor of 27 is the Chern number. The winding around the cylinder results from
a smooth variation across the Brillouin zone. Discuss the way this is analogous when we
“glue” together the two ends of the cylinder to describe the behavior of the Berry phase on
the torus that is the Brillouin zone (or the torus defined by a cyclic variable A.

Solution:

This is an elegant way to relate the problem of two bands defined on the BZ which is a
torus show at the right in Fig. 25.1. The torus is a closed surface with an inside and an
outside that is essential for the arguments on Chern numbers and for the conclusions about
whether the zero of the hamiltonian is inside or outside the surface. However, it is often
easier to visualize the BZ as a cylinder shown at the center if the figure. It is MUCH easier
to draw the winding around the cylinder than around the torus! And it makes clearer the
relation to the linear shift of the centers of the Wannier functions in real space. The relation
is that forcing all properties including the wavefunction to be periodic means they are the
same at the two ends which in equivalent to the torus. For the wavefunction, the phase can
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wind as illustrated in the top part of Fig. 25.2, which means that there is a zero point inside
the torus as illustrated in Fig. 26.6. The same arguments apply for action of the pump in
a periodic crystal with no surfaces, where the torus represents one unit cell of a crystal;

a cycle of the pump translates the electrons by one cell which is the same as pumping
through each cell or equivalently around the torus.
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Solutions for Chapter 26
This is a new Chapter in second edition

Exercise 26.1 Derive the expression for the hamiltonian for the two-site model Fig. 26.2
in Eq. (26.4) and the eigenvalues (k) given after Eq. (26.4). Show that the results are the
same if the cell is chosen with B sites on the left and A on the right.

Solution:

This exercise illustrates the subtleties of using this model to illustrate the bulk-boundary
effect. Any 2x2 hamiltonian can be expressed in the form of Eq. (26.4) with the zero of
energy chosen to be midway between the two site energies. As stated in the text the choices
of t(k) depend upon the choice of the cell and the choice of the exp(ikR) factors. As is
clear from the solution for the eigenvalues multiplying ¢ by any factor exp(ikX) leaves
the eigenvalues unchanged. A simple way to choose ¢(k) is to tom define the cell as in
the text with the choice that the phase factors are only between cells. Then it is clear that
the two choice of the cell lead to t(k) = t1 + toexp(—ika) or t(k) = tiexp(—ika) + to
depending on whether ¢, or ¢; is the intercell term. There are many choice with the same
dispersion curves for the bulk crystal (or any finite crystal with periodic boundary condi-
tions and no surfaces), but the eigenvectors are different. This is the essential point that one
must make a choice and use it consistently. The effects of forming a surface appear when
it ends on an A atom or a B atom, and the relation to the bulk Berry phase (which depends
upon the eigenvectors) depends upon using the phases of the eigenvectors consistently.

Exercise 26.2 Consider the one-dimensional tight-binding model with two atoms per
cell labeled A and B. If the basis is one s state on each atom, the model can denoted
pictorially by Fig. 26.2 where € 4, € g are the on-site energies and ¢1, to the hopping matrix
elements. By varying the parameters, this model describes a symmetric ionic crystal (e 4 #
€p, t1 = t2), a molecular elemental crystal (€4 = €, t; # t2), and any ionic/molecular
combination. Derive the bands as a function of the parameters and show that there is a
gap between the two bands for all cases except the one-atom/cell limit where ¢4 = €3,
t1 = to. See Exercise 26.1 for a related exercise and Exercises 23.11, 23.12, 24.8, and 24.9
for examples of Wannier functions, polarization, and effective charges using this model.

Solution:

See the answer for Exercise 26.1 where the eigenvalues given after Eq. (26.4). This is an
example of the fact that the bands repel and do not cross in the middle of the BZ, and the
only possibile places where a degeneracy (no gap)can occur are k = 0 and k = 7 /a. The
only case where there is no gap is where the primitive cell contains only one atom and
there is a half filled band if there is one electron per atom. In that case the two-atom cell is
just an artificial construction with no gap.

Exercise 26.3 Show the transformation of the calculations in Exercise 26.2 to the s — p
model in Fig. 26.3 using the relations given in Section 26.2.

Solution:
The most compact way to describe the relation is that the eigenvalues are plus and minus
the magnitude os the h vector in Egs. (26.6) - 26.8. It is not an exact mapping of the
dispersion but rather another possible form, which is more flexible with more parameters.
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It is more messy to write out the equations, where the determinant equation |H (k) — |
with H (k) given by Eq. (26.5) becomes

(ep + 2t cos(ka) — €)(es + 2ts cos(ka) — €) — 4(typ sin(ka))? = 0. (5.160)

Exercise 26.4 Derive the equations for of the dispersion curves for the one-dimensional
lattice illustrated in Fig. 26.4 and show that the bands have the normal and inverted order
respectively in the two cases.

Solution:

This is a matter of solving the quadratic equation from the previous problem or using a
computer program such as the TBPW code.lIt is easier to determine whether the system is
normal or inverted since one needs only the symmetry of the eigenvectors at £k = 0 and
k = 7 /a. At those points sin(ka) = 0, cos(0) = 1, and cos(w) = —1 . All that is required
is to checked if the states at £, + 2tpp, €5 + 2¢5, and €, — 21, €, — 2t have exchanged
order.

Exercise 26.5 See Exercise 14.14 for a related problem of an A-B model with p states
on the B sites.

Exercise 26.6 Show that the Berry phase takes the value 7 (mod(2 7)) for the case where
the oval encloses the origin. Explain how this relates to the fact that the wavefunction for a
fermion changes sign for a 27 rotation. See also Exercise 28.7 for Weyl points.

Solution:

(NOTE: There is much in common with Exercise P.3 and P.4 which have a sequence of
three and four states.)
The Berry phase is phase of the lowest eigenfunction accumulated as k varies from —7/a
to +7/a. It may seem like one merely has to know the phase at two points and take the
difference. this is NOT true. The phase of the eigenfunction at any point is undefined! One
way to find the change accumulated along the path is to follow the discrete set of points
that define a path and calculate the change in phase from one point to the next using the
log formula Eq. (25.1); a physically meaningful result can occur only if it is a closed path.
Others ways the find the Berry phase include the mathematical transformations for a con-
tinuous variation of k£ with the result that there is no way to have a globally continuous
phase of the eigenfunction if the path encircles a zero point where the gap vanishes.

A calculation using the discrete formulation Eq. (25.1) is easily done with a small com-
puter program which is left to the reader. However, it is more instructive to go through the
arguments by hand with a small number of points and a few examples to see how the result
comes about. Even for a small number it is not hard to conclude what the answer must be
since the only possibilities are 0 or 7 mod(27). One can choose a simple hamiltonian and
vary the form to show that the result depends only on whether the path encircles a zero.
Consider the s — p model in Eq. (26.7) with u = 0, A = 0 and d = w = 1 which forms a
circle in the hq, hs plane as shown in the left side of Fig. S.4. Consider four £ points 0,
7/2a, 7/a, 37 /2a, where the hamiltonians H (k) are:

This should
have been em-
phasized more.
Many instructive
points.

Change in future

reprinting?
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Figure S.4. Path for evaluation of Berry phase in Exercise 26.6.
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One choice of eigenvalues are 1 at each point and eigenvector for the lowest energy —1

are:
i L) B 510
The expression Eq. (25.1) for the accumulated phase around the loop
¢ = —ImIn[(ug|ur)(ur|uz)(ua| ... lun—2){((un—2lun—1)(un—1luo)],  (S.163)
gives
p=—[0+7/2 + 7/2 + 0] =—7 (S.164)

which is a change of sign. It is easy to verify that choosing a different phase for eigenvectors
at each point does not affect the result.

To see that the result depends on whether the zero point is inside or outside the path one
can consider A = 1 &+ § where ¢ is a small, § << 1, as shown at the right in Fig. S.4. The
calculations are now messier at 7/2a since the calculation of eigenvalues requires solving
a quadratic equation (not very hard!) but the result can be appreciated by considering only
the eigenvector for the point at the right for ¥ = 7/a where the hamiltonian is

+5 0
{ 0 _5} (S.165)

The eigenvector for the lowest state can be chosen to be real
1 . 0 .
ol if 6 >0, or e if 6 <0. (S.166)

It is easy to verify that the result is the same as in the previous case(change of sign) for
0 > 0 since the eigenvector at k = 7 /a is the same. For § < 0 (the circle does not include
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the zero point of |h|, the eigenvector is flipped and it is easy to see that the result is
¢p=—-[0+0+ 0+ 0]=0, (S.167)

i.e., no change of sign.

Finally, we can see that these results hold for any set of points that include or do not include
the zero! This is because the eigenvectors at k = 0 and k = 7 /a always can be chosen to
be real. If the eigenvectors do not exchange between 0 and 7/a, the eigenvectors are the
same and we always get the result ¢ = 0. If the eigenvectors exchange (6 < 0) and the zero
is included in the path. Furthermore, the result is the same for any set of eigenvectors and
any set of points that include the £ = 0 and k = 7/a points; this can be seen directly if
the vectors for k£ and —k are conjugates which is always a possible choice for a hermitian
hamiltonian. Thus we finally have answered the question! We needed the proof for many
points since it is only in the limit of many points that the curve is continuous and it is
well-defined to say if the path includes the zero point or not.

Exercise 26.7 Derive the analytic solution for the surface state wavefunction as it decays
into the crystal for the two-site model. Hint: first show that the state has non-zero amplitude
only on A sites if the crystal is terminated on an A site (and similarly for B sites). The
solution can be found in [967].

Solution:

The solution follows from the condition that the hamiltonian is terminated at the surface,
i.e., it ends with ¢; or to bonds. It is not difficult and it is given in detail in the paper by
Pershoguba and Yakovenko, Phys. Rev. B 86, 075304 2012 [967].

Exercise 26.8 Use the results of Exercise 26.7 to explain why the two end states in
Fig. 26.4 are degenerate even though the calculation is for a finite size crystal.

Solution:
The proof comes from the solution in the previous proble. As shown in [967], the surface
state has non-zero amplitude only on alternate sites, eiethr A or B sites. Thus the two states
from the two ends are on different sites they are orthogonal.

Exercise 26.9 In the text is worked out the pump using the 2-site model Eq. (26.8) and a
cycle of parameters as shown in Fig. 26.7. Find an equivalent cycle using the s — p model
Eq. (26.7) and show that there are equivalent results for the pump.

Solution:

For the s — p model Eq. (26.7) the symmetry is broken only if « is non-zero. In the 2-site
model it is clear that if £;

neqto ten the symmetry is broken around a site. That happens in the s — p model if there
is interaction of s and p on a site. Thus the cycle is a variation of A = €, — €, and u such
that each varies from positive to negative in a cyclic fashion. Physically tey are the same
and the exact form can be seen by the relation of the forms for the vector h in Egs. (26.6)
- 26.8. The results are qualitatively the same if the variation of A,¢; — ¢ is replaced by
A, u.

Very instructive

that it is exact!



CHECK to be
sure this is all
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Exercise 26.10 Show that a narrow armchair ribbon is an insulator with no edge bands.
It is useful to check Exercise 27.9 which shows the gap vanishes in the limit of a wide
ribbon, but there are no edge bands.

Solution:
See Exercise 27.9 where it is shown that there is only a point where there the gap vanishes
as a function of k parallel to the strip for the infinite width strip. For a finite width, there
are a discrete set of bands and a gap, with no edge state.

Exercise 26.11 The counting of the winding numbers is done in the paper of Cao, et al.
[236]. The exercise is to go through the arguments in the paper to find the winding numbers
as a function of width, and the show that the 7 and the 9 atom ribbons are different.

Solution:

See the paper as suggested in the Exercise. This requires extensive calculations and it is
appropriate only to read the paper to see the results.

Exercise 26.12 Show that a junction between two ribbons with different winding num-
bers has an interface state. The simplest example is the two-site model in Fig. 26.2 with
A = 0 which is the Su-Schrieffer-Heeger (SSH) model (PRI 42, 1698 (1979) [954]. The
famous result is is that there is a bound state an interface between two sections, one with
t1 > to and the other with t1 < 5.

Solution:

There is always an interface state so long as the bulk on each side is insulating and there
are different widing numbers. This follows because the difference in winding numbers is a
difference Berry phase which means a shift in the relative positions of the Wannier centers
on the two sides that means the occupied states must include an extra state at the interface.
It may or may not be in the gap. It is midgap if the system has electron hole symmetry
everywhere including the interface, but in general is is shifted and may not be a state in
the gap. This can also cars in terms of the arguments for the pump: a fraction of the cycle
corresponds to a partial shift and if there are integer winding numbers there are integer
states that appear at the interface.

Exercise 26.13 This exercise is at two levels. One is to explain the qualitative behavior
of the pump shown in Figs. 26.7 and Fig. 26.8. Explain why a cycle that does not enclose
the zero point in the upper left figure in Fig. 26.7 is not a pump. The second level is to do
a calculation to derive the results. This can be done using available tight-binding codes for
a large finite system. Verify that a pump transfers a state from one ene to the other.

Solution:

It is straightforward using the connection of the Berry phase and the shift in the Wannier
center. The Berry phase is illustrated in Fig. 25.2 in a way that shows that it can very by
multiples of 27 (a shift of the electrons by one lattice constant) or it can return to itself
with no shift. A shift corresponds to the loop in the upper left of figure, and no shift results
if it does not enclose the zero. The calculation and the proof are actually the same as in
Exercise 26.6 where the logic and the proof by induction is given.
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Solutions for Chapter 27
This is a new Chapter in second edition

Exercise 27.1 Show that the matrix W;,,,(K,) = (um-xk,|7T)|unk,) defined after
Eq. (27.4) is skew symmetric (a matrix with A;; = —A};). Check the original paper by
Fu and Kane, Phys. Rev. B, 76, 045302 (2007) [972] and summarize the derivation of the
formula involving Pfafians.

Solution:
The operation for time reversal 7 is conjugation with a spin flip. The spin operation can be
written i, which flips the spin and changes the sign of one component and 72 = —1. (If

there were no spin—orbit interaction, the set of up spin functions are flipped to down spin
functions that are orthogonal so that the W’s would be zero.)

The derivation of the formula in terms of Pfafians is in [972] and the earlier paper by
Kane and Mele PRL 95, 146802 (2005) [86]. The arguments are related to the variation
of the wavefunctions in a way that is related to the simpler derivations for the case where
there is a center of inversion, but they are more general. See also the book by Vanderbilt
[918].

Exercise 27.2 Work out explicitly for yourself the conclusion that all cases reduce to
even or odd and the relation to the Shockley problem stated in Section 27.4.

Solution:
Meant for the reader to do!

Exercise 27.3 Show that for zero spin—orbit interaction the bands for the square lat-
tice have the general form shown in the left figure in Fig. 27.6 with degeneracies at high
symmetry points as shown.

Solution:

The purpose of this problem is to examine what can be established just from symmetry.
The basis is one s and two p states and spin is not relevant. Since there is a center of
inversion, at I the s and p states do not mix. Since there ios 4-fold rotation symmetry the p
state must be degenerate. The same at the M point (7, 7). Along the line from I to X the
s state mixes with one of the p states and not with the other, e.g., s mixes with p, along
the line (0,0) to (m,0). Along T" to M the s state mixes with one p states. (This model
obscures some features of the bands. The flat bands and the near degeneracy of the p bands
along part of the line from I" to M are artifacts of this model with only nearest neighbor
ppo matrix elements.)

Exercise 27.4 Show that the bands do not cross at general k-points and the parities of the
bands at the TRIM lead to a Z5 odd state for any non-zero spin—orbit interaction. Give an
example of a gauge transformation can change the parity at any one point, but the product
remains the same. (Hint: There are more than one centers of inversion.) Show also that the
definition in terms of Pfaffians gives the same result.

Solution:

The bands do not cross at general k-points in the surface BZ because they have the same
symmetry. To see this it is sufficient to notice that the only symmetries for the surface

Derivation

referred to
original refs and
Vanderbilt book.



See note - not
finished

See note - not
finished

128 Solutions to exercises

(a one-dimensional edge) are time-reversal and inversion in the direction parallel to the

surface. Only at the TRIM are states with k and —k the same (modulo 27 /a) and k 1 and

—k | are degenerate by symmetry.

An example of a gauge that affects each TRIM point and leaves the total invariant is a

choice of the center of inversion at the center of the cell between atoms in the bulk.
NOTE: NOT FINISHED showing the Pfaffian result.

Exercise 27.5 Find the value of the ratio that leads to a zero gap for the model in used
in Fig. 27.9. This can be done with a relatively simple calculation for the bulk bands at the
zone boundary. Does the result agree with the transition point in Fig. 27.97

Solution:

This is “relatively simple” since one can decide on the point in the BZ where the bulk
band gap must vanish (the zone boundary) with no calculations; however, it still involves
a 3 X 3 matrix since the is a competition between the spin—orbit interaction and the ratio
of  and y matrix elements.

The 3 x 3 matrix matrix is the hamiltonian give in the text and the SO interactionfor p
states given for example in the solution of thew next problem, but simplified here sine it is
only two dimension.

NOTE: NOT FINISHED - left to reader to solve 3x3 problem.

Exercise 27.6 Starting with the full sp® model on a honeycomb lattice, show that in
a model appropriate for graphene with only p, states near the Fermi energy and nearest
neighbor hopping, derive the perturbation expressions for the effects of spin—orbit inter-
action. Show that in the approximation that spin is conserved ( 1 or | ), this leads to an
effective hamiltonian with complex second-neighbor hopping. Hint: Even if there is no di-
rect hopping to second-neighbors, show that there is hopping to a second neighbor due to
spin—orbit interaction on the atom that is in between - a second-order effect. Estimate the
size of the interaction using the spin—orbit interaction for the atom which can be found in
the literature, and show that the final effect is indeed extremely small.

Solution:
The 7 bands are purely p, is there is no spin—orbit interaction. There is no matrix element
with p, and p, which have opposite parity in the z direction. However, spin—orbit interac-
tion adds a term that mixes p,, p, and p.. Since it is a small perturbation it is sufficient to
consider the effective matrix element for two spin up p, states on second neighbors due to
the spin—orbit interaction on the atom between them. Note that the intermediate state is not
purely spin up.
The matrix element for coupling of the p, 1 and the p, | states on an atom are given by
the expression at the right in Eq. (14.12),

00 ¢
Hso(l1) =10 0 —ic|. (S.168)
—¢i¢ 0
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Since the first-neighbor hopping ¢ is spin-independent, the effective second-neighbor hop-
ping is second order in Hg¢. For hopping to the neighbor at an angle of —7/6 to the right
is the zz component of the matrix

Hy(11) = 2 HY§ * HEJ(r/6) sin(—n/6)/ AE, (S.169)
where AF is the difference of z and x, y energies. This is
22 001 0 0 c—is
Hy(11) = 00— 0 0 —ic+s|, (S.170)
AFE3 . .
—-14 0 —c+isic—s 0

where ¢ = cos(—7/6) and s = sin(—n/6). Taking the zz component we find
2,42 242
=t LS
AFE3 2AE3

Ho(11).. 2isin(—m/6)* = (S.171)

CHECK!
Note that the effect is opposite for left and right hopping and is zero for straight-ahead
hopping. Time reversal symmetry is obeyed since the oppiste happens for the opposite spin.

Exercise 27.7 Show that in the bismuthene system described in Section 27.9 the spin—
orbit interaction is first-order effect, i.e., it does not require other bands. Calculate the
eigenvalues at at high symmetry points for a nearest neighbor hopping model and estimate
the size of the effects. Compare with the observations in the 2017 Science paper by Reis,
et al. [979].

Solution:

This is described in detail in the supplementary material for [979]. Here we give a sum-
mary. (In the opinion of the author) is sufficient for understanding the problem.)

In this case the states near the Fermi energy are primarily p, and p, and we consider the
system as purely two dimensional ignoring p, bands that are in the bonding states with the
substrate.

If we first consider the p, — p, bands ignoring the spin—orbit interaction then we must
consider two states per site and two sites A and B per cell of the honeycomb lattice. The
on-site energies for p, and p,, are the same by symmetry since there are three-fold rotations
around each site. In a nearest-neighbor model there are only AB matrix elements that are
Vipo and V.. It is straightforward to the basis can be chosen as in the square lattice as
Dz £ ipy. If we approximate the system then we can consider only the

IS THIS USEFUL? z component of the spin is conserved and the problem decouples
into two distinct bands with spin up and down respectively (like two Chern insulator states)
split by £¢. which are split by the spin—orbit interaction into J, = 3/2 and J, = 1/2.

Exercise 27.8 Show that a wide strip of graphene with a zigzag edge has an edge state
like that shown in left side of Fig. 27.14. The answer is given in the text and this exercise
is to verify the statements.

Solution:

Left for reader to over statements in text.

CHECK Ex-
ercise 27.6.
Be sure AFE3
imag. parts are

correct?
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Exercise 27.9 An armchair edge is one that ends on pairs of atoms. It is the same as the
edges on the nanoribbon in Fig. 26.9 for the case where the ribbon is very wide. (It is also
the same as an end of a nanotube in Fig. 14.7.) Show that the projected bulk density of
states has only one point is the surface BZ where the gap vanishes, and there is no surface
state. See also Exercise 26.10 for a narrow nanoribbon.

Solution:

A wide armchair nanoribbon corresponds to a buld crystal oriented as shown in the figure.
Consider the corresponding BZ and projection in the direct perpendicular to the edge in
the figure. It is straightforward to see that the projection has only one point in the surface
BZ with zero gap.
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Solutions for Chapter 28
This is a new Chapter in second edition

Exercise 28.1 Consider a bilayer formed by bringing together two planes each with Zs
odd. For each plane there are two oppositely circulating currents. Give the arguments that
with weak coupling no gap should vanish in the bulk, and the counting rules for even and
odd number of crossings in Section 27.4 imply that this is a Zs-even case. Sketch how this
could happen by considering anti-crossing points between weakly coupled bands.

Solution:

As shown in Section 27.4 for a single layer states at k=0 must be degenerate so there is no
gap at any energy in the gap. However, if there are two layers, there are two bands, even
and odd at high symmetry points. They are shifted in energy and cross at points in the BZ
at non-zero k where they can mix and create a gap. Note that there are special cases where
the states are even and off at all k and the states do not mix, but there depend on the crystal
symmetry and hamiltonian and are not generic.

Exercise 28.2. Show that the cases marked (0; 011) and (0; 111) in Fig. 28.1 correspond
to stacks of planes along other directions in the crystal.

Solution:
The cases marked (0;011) and (0;111) in Fig. 28.1 each have black dots in a line so that
the crystal can eb viewed as a stack of planes perpendicular to those lines.

Exercise 28.3 Describe explicitly how one can ensure the vanishing of an energy gap
for some range of hamiltonians in three dimensions but not two. Hint: for k in three di-
mensions, the condition A (k) = 0 can occur for a two-dimensional surface. Continue the
argument to reach the conclusion.

Solution:

This is a matter of filling in the steps in the arguments. The condition for a gap in the BZ
not at a symmetry point is that both real and imag. parts of H (k) vanish. In 2D, there are
only two variables k; and k, and in general there is only be one point where both vanish.
But in 3D there are three variables k., k,, and k. ; for a range of hamiltonians, there can be
a point in where the two conditions are satisfied.

Exercise 28.4 Show that in the absence of a magnetic field (b = 0) the expression
Eq. (28.4) reduces to a Dirac-like equation with the speed of light ¢ replaced by v. The ad-
dition of a Zeeman term bo, completes the derivation of Eq. (28.4). Also derive Eq. (28.5).

Solution:

For b = 0 the equations are linear in k as shown in Eq. (28.3) with energies that are sym-
metric plus and minus. Derivation of Eq. (28.5) is a matter of carrying through the equa-
tions using the Pauli matrices for ¢ and 7. Thus this involves 4 x 4 matrices, which can be
simplified to 2 x 2 by inspection. See the nice discussion in the RMP review by Armitage
[986] Sec. 3B.

Exercise 28.5 Solve for the energies for three cases: (1)m =b=0;2)m =1, b = 0.5;
and (3) m = 0.5, b = 1.0. Show that these parameters lead to the results with the form
shown in Fig. 28.6. (These are three of the cases that are shown in fig. 2 of [986])
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Solution:
This is a matter of carrying through the equations using the Pauli matrices for o and 7.
Thus this involves 4 x 4 matrices, which can be simplified to 2 x 2 by inspection.

Exercise 28.6 Show that near the zero-gap nodes, the hamiltonian has the form of the
Weyl hamiltonian in Eq. (28.1).

Solution:
This is follows since near the zero gap point the energies are linear with k with the form
k - o, as derived in the previous exercises.

Exercise 28.7 Go through the arguments to convince yourself that this problem is indeed
the same as the problem for spins. See also Exercise 26.6 for the one-dimensional two-band
problem.

Solution:

This is meant to be a problem to work out yourself, and to see that it is the same as the
reason the two-band problems can be cast in terms of Pauli matrices in Chap. 26, the
relation to spin in App. P, sech as in Sec. P.7, and so forth.
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Solutions for Appendix A
Same as in first edition

Exercise A.1 Show that Eq. (A.5) follows from (A.3), and that application of the ex-
pression to the Thomas—Fermi approximation leads to expression (6.4).

Solution:
See Exercise 6.1.

Exercise A.2 Derive the form of the variational expression in (A.10) involving the gra-
dient terms.

Solution:
This expression follows from the previous two equations using integration by parts. To
prove integration by parts one must show the boundary terms vanish which follows for a
finite system since the functions vanish outside the system and for periodic systems since
the boundary terms vanish for integration over a periodic cell.
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Solutions for Appendix C [No exercises for Appendix B]

Exercise C.1 Show that the requirement that W is normalized is sufficient to prove 4;; =
0. Hint: Use the fact that any derivative of (¥||¥) must vanish.

Solution:

The normalization condition is (¥|¥) = 1. The perturbed wavefunction is ¥ + ¥ which
must be normalized (U + 6¥|¥ + §U) = 1. Thus to first order (U|§T) + (§T|T) = 0. If
the wavefunction is real each term must vanish (¥|6¥) = (0¥|¥) = 0. This is sufficient
for the desired proof for any matrix element for a Hermitian operator and a physical quan-
tity such as the density, energy, force, etc., which must be real.

This is an example of the consequence of normalization that occurs for any variation
of the hamiltonian. For example see Section D.1 where the change in the ground state
wavefunctions is only by mixing in the unoccupied states. Another example is the con-
struction of basis functions in Exercise 17.1 for the variations as a function of energy. The
normalization requirement leads to the consequence that the expression (1|0,.4)) is purely
imaginary which is used in several places in the expressions for the Berry phase and Berry
connection (see Exercise P.2 and Exercise 25.2).

Exercise C.2 Derive the equation for nuclear motion, (C.7), from (C.4) using the as-
sumption of the adiabatic approximation as described before (C.7).

Solution:
This is really just following the prescription to define the equations and to recognize that the
adiabatic approximation is that the occupied electronic wavefunctions vary as a function
of the positions of the nuclei but they do not change order, i.e., there is no exchange where
empty states become filled and vice versa. This is violated if there is level crossing, e.g.,
in a molecule, where the adiabatic approximation fails.

Exercise C.3 For small nuclear displacements about their equilibrium positions, show
that (C.7) leads to harmonic oscillator equations.

Solution:
This is also just a simple exercise that depends upon U acting a a potential that is a function
of nuclear positions and expanding the second order. Note that U has a subscript ¢ for the
electronic state. This is a general expression that holds for ground and excited states so
long as the states do not cross. The normal case for solids is that ¢ is the ground state for
the electrons that varies as the atoms move but alays the instantaneous ground state.

Exercise C.4 For a simple diatomic molecule treated in the harmonic approximation,
show that (C.7) leads to the well-known result that the ground state energy of the nuclear—
electron system is E,,in + %hw, where w is the harmonic oscillator frequency.

Solution:
This is a standard problem in undergraduate quantum mechanics not worked out here. The
energies of the harmonic oscillator are (n + 1/2)hw.
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Solutions for Appendix D

Exercise D.1 Derive the general form of the density response function y,, in Fourier
space, (D.8). This applies to any function, periodic or non-periodic.

Solution:
The expression Eq. (D.8) is general since any function can be expressed in the terms of
Fourier components. It is just a transform of the expression in Eq. (D.5) and it follows from
integrating the expression in Eq. (D.5) with elareia’ T’ ng crystal Eq. (D.8) simplifies as
indicated after the equation.

Exercise D.2 Derive the second form given in (D.14) from the first expression. Hint:
Move all terms involving  to the left-hand side, solve for y in terms of x° and K, and
invert both sides of the equation.

Solution:
This is a matter of knowing what to do and some algebra. Following the hint, the first
step is x[1 — X" K] = x" and the rest is algebra. The first expression in Eq. (D.14) is must
useful to see that  diverges if Y’/ = 1 and the second brings out the correction to x°,
which is most easily expressed in terms of the inverses.

Exercise D.3 See Exercise 7.20 for the way in which the response function can be used
to analyze the form of the energy functionals near the minimum.

Solution:
See Exercise 7.20.

Exercise D.4 Show that the response of a harmonic oscillator, Eq. (D.16), obeys the KK
relations. Hint: The key point is the sign of the damping term that corresponds to energy
loss, i.e., I' > 0. See Exercise D.5 for an explanation.

Solution:
This is an example where one should first go to the general analysis in the next problem.
It follows from the general theory of complex variable that the KK relations hold for any
function with no poles in the upper half-plane, and we understand the definition of a prin-
cipal part.

Exercise D.5 Derive the KK relations, Eq. (D.18), from the analytic properties of the
response functions. Causality requires that all poles as a function of complex frequency z
be in the lower plane Sz < 0. Hint: An integral along the real axis can be closed in the
upper plane with a contour that is at | z| — co. Since the contour encloses no poles, the line
integral vanishes; also the integral at infinity vanishes. The integral along the axis can be
broken into the principal value parts and the residue parts leading to Eq. (D.18). See the
book by Pines and also material in the book by Marder [297, 300].

Solution:
The KK expressions are widely used for response functions and can be found in many
places. In addition to the references given a good deception is in Kittel. (In the 6th edition
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of Kittel it is Egs. 10 -20 in Ch. 11. It may be different in other editions. There Kittel gives
the explicit integrals for the principal parts in addition to the analysis in the complex plane.
The contour integral along the real axis and closed at high frequency in the upper or lower
planes is equal to 27¢ times the sum of residues for the poles. The integral in the upper half
plane vanishes as explained in the problem, so that the contour integral vanishes. But due
to factor 1/(w — w’) there is a pole of the real axis in the integrand. The integral over w’
can be divided into the principal parts plus a segment that goes around the point w = w’
in the upper plane. The latter is 1/2 the integral around the pole mix(w). Since the total
integral must be zero, the real and imaginary parts of the integral lead to the two equations
for the relation of the real and imaginary parts given in the KK expressions.

Exercise D.6 Derive the formula (D.36) for energy to third order from the preceding
equations.

There is an error in Eq. (D.36) in the text. Somehow the tex file was messed up
the Eq. is completely wrong. It was correct in the first edition (in Ch. 3). This correct
equation is (note definition of /7 given below):

(@O HO @) (S.172)
+ (@ HO ) + (@ HO )
+ WO + (OO D) + (OO @)

< + @O [PO) + @OEO @) + O HO ),

where we have defined H()) = H(U) — ¢ for each order j to simplify the notation.

Solution:

This equation is used to derive the expression in (D.36) for the energy to third order £(*)
using the condition the each row and column sum to zero. The desired result follows by
requiring the sum of the last line the be zero. We can use the fact that H(*)|¢)()) =0
to see that the last term is zero. The first term is (¢(O|H®) | = (O |(HG) —
N[Oy = (O |H®)|4p(©)) — () The term involving ¥(?) can be replaced by terms
involving only (9 and (") using the third row and third column, with the re-
sult that (O |HD6®) = (O [H@[p0) + @O HOO) = OHO[H0) +
(PO HD® — W)|pM) | Combining these results leads to (D.36). In summary, the trick
is that the terms involving 1)(?) can be replaced by ones that involve only 1/(®) and ¢)(") and
the eigenvalue to first order (1) which is determined by 1(*) and /(!). The generalization
of this analysis leads to the general results for 2n + 1 theorem.

It is useful to note that the higher order terms H @), H (), etc., arise only in a system
with an effective hamiltonian that changes due to the changes in the wavefunctions, i.e.,
a self-consistent Kohn—Sham problem. For a perturbation in a text-book case with a fixed
H© and H), there are no tems like H?® or H®),

Exercise D.7 Exercise 20.10 considers the variational principle in perturbation theory
applied to a system composed of two springs. Let each spring have a non-linear term
%’yl(xl — x0)? and similarly for spring 2. Find an explicit expression for the change in
energy to third order due to the applied force.
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Solution:
This is a poor choice of a problem! One reason is that it is not clearly stated that we want
to quantum solution for the oscillators. See also below for why it is rather trivial as stated.

The system in reduces to two harmonic oscillators. If k; = ko the result is two degen-
erate oscillators. If they are different, one can always transform to two independent oscil-
lators and the non-linear term is the same for each. Therefore we need analyze only one
oscillator that can be defined by £ = %ka + %vx?’.

As stated in the pervious problem solution, the higher order terms o 2, o 3, etc.,
arise only in a system with an effective hamiltonian such as a self-consistent Kohn—Sham
problem. Here we have only H(®) and H(1). The energy is given by

£® — (OO _ D)0y, (S.173)

This problem is rather trivial because the perturbation in odd the first order change in
energy is zero, and the change in wavefunction is odd, () |HM |1} = 0. So the third
order term t vanishes. There is a second order term given by the usual perturbation expres-
sion, which does not illustrate the 2n + 1 theorem!
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Solutions for Appendix E

Exercise E.1 Derive Eq. (E.12) for the dielectric tensor at high frequency using only the
fact that electrons respond as free particles at sufficiently high frequency. It may be helpful
to relate to the high-frequency limit of the harmonic oscillator response function given in
Section D.4.

Solution:
At high frequency the electrons respond as a system of charged particles that are free, i.e.,
independent of the lattice, and the analysis is given in Section 5.5. At high frequency the
electrons act like an oscillator with frequency wp and the dielectric function approaches
€ = 1 —wh/w?, as given in Eq. (E.12).

Exercise E.2 Show that the f sum rule, (E.13), follows from the high-frequency behav-
ior in Equation (E.12) and the Kramers-Kronig relations, (D.18).

Solution:

From the first of Kramers-Kronig relations in Eq. (D.18), we can see that in the limit of

high frequency
1 [ I ! 1 [

Rex(w) = —f/ dw’%w,) - —— dw'Imy(w")(1+w'/w).  (S.174)

T J oo w—w TW J_o

Using the expression valid at high frequency € — 1 — —w? /w?, where € — 1 is the re-

sponse function, we find

/ dw'Tme(w’)w’ = gw%, (S.175)
0

where we have used the fact that the imaginary part of the repones function is odd in
frequency to transform to an integral over positive frequencies. (The integral over Ime(w’)
is zero and over w'Ime(w’) is twice the integral from 0 to co.)

Exercise E.3 Show that Eq. (E.15) results from the definition of internal and external
charges in Eq. (E.4) and the definition of ¢! in Eq. (E.14).

Solution:
This exercise is really just the definitions and some algebra. The idea is that ¢ ! defined in
the left equation in Eq. (E.14) is the change in the total internal field per unit external field.
Since the total is external plus internal, we arrive at the delta function plus the internal
response which is V¢ times x defined in Eq. (D.9). The equations following Eq. (D.9)
show useful relations, but they are not really needed.

Exercise E.4 The expression for the macroscopic dielectric function, Eq. (E.17), can be
derived by carefully applying the definition that it is the ratio of external to total internal
fields given in Eq. (E.17) for the case where there are no short wavelength external fields,
Vext (4 + G,w) = 0 for G # 0, and using the definition that the inverse function is the
response to external fields. Use these facts to derive Eq. (E.17).
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Solution:

The definition of the macroscopic dielectric constant is the ratio of macroscopic applied
external field to macroscopic internal field. There are no applied microscopic external fields
(fields that vary of the scale of the unit cell and defined by non-zero G components);
but there may be generated microscopic internal fields. Thus the useful approach is to
find the response to the external field which is given by ¢~!; this includes macroscopic
and microscopic internal fields and we define the dielectric constant by taking only the
macroscopic part of the internal fields. Thus

Vint(G) = € (G, 0)Veys (0) (S.176)
so that
Vint(0) = € (0,0) Ve (0) (S.177)
and
€macro = Vet (0)/Vint(0) = 1/¢7(0,0). (S.178)

A detailed derivation with the relation to €(0,0) and local field corrections is given in
Pick, R., Cohen, M. H. and Martin, R. M., “Microscopic theory of force constants in the
adiabatic approximation,” Phys. Rev. B 1:910-920, 1970.
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Solutions for Appendix F

As stated below, there is a mistake in the second edition that two problems (Ex
F.6 and 7 in the first ed.) are omitted. They are computational problems so solutions
are not given, but it leaves out the instruction to make a code and it changes the
numbering.

Exercise F.1 Show that the potential in (F.4) has zero average value as claimed. As a
hint in the reasoning, the final term can be considered as the limit G — 0 of the middle
term.

Solution:
The average value is the integral over a cell. Since the terms with non-zero G vanish, the
only thing is consider is the integral of r of the first term and the last term. It is a matter of
integrating over the er fc terms to show that these terms cancel to give an average value of
zero. See, for example, thye paper by Frasewr, et al., Phys. Rev. B, 53, 1814 (1996) [1018].

Exercise F.2 Discuss the values of the Madelung constant in Table F.1. Compare these
with the result of the previous problem. Why are the values larger or smaller? Rationalize
the variation of av among the structures.

Solution:

This exercise was meant to be after Exercise F.3. It should say to compare with the
result of Exercise F.3.

This is a qualitative discussion question. The value for a close-packed system should be
close to the value for the neutral sphere since the system can be considered to be a sum
of neutral Wigner-Seitz cells, each of which can be approximated as spherical. indeed this
is the case as shown in the bottom line of the table. However, the simple cubic lattice has
higher energy and the diamond lattice yet higher because the near-neighbor positive nuclei
are closer together and the Wigner-Seitz cells are further from a spherical shape.

Exercise F.3 The problem of a point charge at the center of a sphere with a neutralizing
uniform charge density can be solved analytically. Derive the expressions given for the
potential, (F.9) and energy, (F.10). Hint: Use the knowledge that the potential due to the
uniform distribution must vary as 72 (Why?) and that the last term in (F.9) has been chosen
to make V' = 0 at the boundary for the neutral cell (Why?). (Related analysis is given for
the Wigner interpolation formula for electron correlation energy by Pines [297], p. 92-94.)

Solution:
The fact that the potential due to the uniform charge density is proportional to r? is
one of the classic problems in freshman physics that the gravitational potential inside
the earth is proportional to r2. It results from the fact that the electric field at point r is
E(r)ninsiae (1) /7% where njpsiqe (1) is the total charge inside the sphere of radius r, which
is Zr3 / R® where Z is the total charge. Thus V (r) = [ E(r)dr = £ Zr?/R3. This leads to
the expression in (F.9) with the choice that the total potential is zero at the boundary. This
follows from the definition that the potential is zero at infinity and field is zero outside the
neutral sphere. Thus the integral of the field to from infinity to R is zero. In the expression
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for the energy in (F.10) the first term is the ion interacting withe the uniform density. (Note
that e is negative in the formulas in text. It is omitted here.))

The energy is the sum of the nucleus-electron term and el-el interaction. Since the un-
form density is n = Z/(47R3/3) = Z 225, Ene is

31 3 72

S _R*=-"2 S.179

R32 2R ( )
The self-interaction of the uniform density is the one-half the integral of the density

times the potential due to the density given in (F.9)

Ene = -2 /47Tr2drn/r = 72

1 1,,3 r? 3 3.1 1
E..= = [ 4nr2dmV(r) = —=Z2?>= | r2dr(— — —) = —=(——= — —).
‘ 2/ mrdrnVir) = =3 R?’/T "& 2w~ 2\ R
(S.180)
The expressions can be put in the form of (F.9) with some algebra, and the main result is

that the total energy is (F.9),

9
Eior = —1—0Z2. (S.181)
Exercise F.4 Show that the two expressions for the Ewald energy, (F.6) and (F.7), are
equivalent. As a first step in the proof show that the right-hand side of (F.7) is real. Hint:
Expand exponentially and use the cosine addition formula cos(A — B) = cos Acos B +
sin Asin B.

Solution:

The result follows by applying the relation cos(A — B) = cos A cos B + sin A sin B to
the left side where A and B correspond the 75 and 7. The right side is cos A cos B +
sin A sin B, using the same relation that A and B correspond to 74 and 7y, plus cross
terms icos(A)sin(B) that are imaginary, which must vanish in order for the sum to be
real. This is due to the condition stated before that the cell must be chosen so there is
no net polarization, i.e., Y. Zs7s = 0. In an ionic crystal this may seem tricky to do. For
example for a cell with two atoms of charge 1, one can choose the origin at the ion with
charge —1 (71 = 0 so the sin term is zero) and the ion with charge +1 considered to be at
the cell boundaries with charge +1/2. Then the sum is centered on the origin and the sum
of sin terms is zero.

(NOTE: In fact, this is one of the clever ways that convergence sums purely in real space
can be generated by summing over neutral cells such as this.)

Exercise F.5 Explain the meanings of the terms in real and reciprocal space in (F.6) in
terms of the physical interactions of gaussian charge distributions, and verify the statements
made in the interpretation following (F.7).

Solution:
The first line of Eq. (F.6) is only conditionally convergent. Each of the terms for s and

Check that this
choice is really

needed!
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s" diverges. The next lines provide a well-defined result where the sum in real space is
the difference between the sum for point charges and the the sum for gaussian charges,
which converges.The sum over non-zero G also converges; it is the energy of the gaussian
charges except for the G = 0 term. As explained following Eq. (F.6), the first term in the
last line removes the self term. Finally all the convergence problems are swept into the
G = 0 term, and the last term is the limit forq — 0

There is a mistake in the second edition. Before the following exercises there should
be an exercise to construct a program to perform Ewald sums given in Eq. (F.4), or
find a program. (It is not a difficult job to make such a program.) It to be used in the
following problems Exercise F.6 to Exercise F.11. These are numerical problems not
solved explicitly here, except for the analytic part of Exercise F.7.

Exercise F.6 For a chosen simple crystal structure calculate the energy versus lattice
constant a. Show that it varies as 1/a. From the slope of energy vesus volume, calculate the
pressure. Check that this agrees with the pressure given by the stress theorem, Eq. (F.13).

Solution:
Computation exercise not worked out here.

Exercise F.7 Show analytically that in the simple crystal structures in Table F.1, the
force on each atom vanishes. Verify this numerically using the force theorem.

Solution:
The analytic demonstration is that for a crystal with atoms at a center of inversion the sum
for the force involves equal and opposite forces that sum to zero. For the diamond and zinc
blende structure the sum of forces due to neighbors in a tetrahedral symmetry also sums to
ZEero.

The remaining problems are computations and solutions are not given here.

Exercise F.8 Construct a crystal with two atoms per cell, e.g., diatomic molecules with
spacing d placed on an fcc lattice with lattice constant a. Calculate the energy for several
values of d; from the slope calculate the force on an atom and compare with the force found
using the force theorem, (F.11).

Exercise F.9 Following the previous problem, calculate the stress using the stress theo-
rem, Eq. (F.13), and compare with the slope of the energy versus lattice constant a. Give
the analytic proof that the stress is given by scaling both d and a, and also show this nu-
merically by direct calculation.

Exercise F.10 Consider a molecule represented by plus and minus charges so that it has
a dipole moment. Place the molecules on a simple cubic lattice and evaluate the Ewald
energy. Now make the cell long in one direction so that it is orthorhombic witha = b < c.
(Be sure that the program sums over sufficient vectors in both real and reciprocal space
for this anisotropic case.) Find the energy for dipoles along the c¢ direction and for dipoles
oriented along a. Are they different? Why? What does this have to do with Chapter 24?

Exercise F.11 Modify the program to calculate the potential at an arbitrary point. For
the case in the problem above with dipoles along the ¢ direction, show that the potential



Solutions to exercises 143

has the dipole offset given by Eq. (F.22). Vary the in-plane lattice constant a = b (but still
with a = b < ¢) and show the point stated in Section E.5 that variation of the fields in the
plane decreases exponentially as a function of distance from the plane of dipoles.
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Solutions for Appendix G

Exercise G.1 Show that for particles interacting via two-body central potentials the con-
tribution to the stress tensor is given by the generalized virial expression Eq. (G.6). Further,
transform the expression to the symmetric form Eq. (G.7).

Solution:

The soOlution to this and the next exercise are not written out here. They are given in detail
in the paper Nielsen, O. H. and Martin, R. M., “Quantum-mechanical theory of stress and
force,” Phys. Rev. B 32(6):3780-3791, 1985. The key aspects are that the effect of the strain
dilation is proportional to the position r of a particle and the change in energy is the force
times displacement as in Eq. (G.6). This would be an unphysical expression except for the
fact that there is always an equal and opposite force on the other atom in the pair; for short
range forces this means only local relative dilations matter and not the absolute position.
This is shown explicitly in the symmetric form Eq. (G.7) which explicitly sums over the
pair and the dilation of the distance between the atoms in the pair. Eq. (G.7) can be derived
by carefully counting the equal and opposite forces on the atoms in each pair.

Exercise G.2 Derive the expression, (G.8), for the Hartree contribution to the stress
tensor.

Solution:
As stated in the previous problem, the detailed deviation is in the paper by Nielsen and
Martin. The dilation is expressed in terms of the reciprocal lattice in analogy to expressions
. . G.Ggs .
in real space. The geometrical factors =2z are analogous to the factors in the real space
expression.

Exercise G.3 Using the argument of the scaling of reciprocal space, show that the kinetic
contribution to the stress can be written in the form (G.10), which is convenient for plane
wave calculations.

Solution:
The kinetic energy in k-space is very straightforward. Because it is simple k2 the dilation
of space is isotropic and has the same form in all cases that given in the text. It is the same
in classical virial theorem in thermodynamic where the kinetic energy is proportional to
velocity squared. See the Nielsen paper for more description.

Exercise G.4 Find the elastic constant C' = d2F/dL? and the internal strain parameter
I' defined by Eq. (G.14) for a one-dimensional chain of diatomic molecules. The atoms
in a molecule are spaced a distance 21 and are connected by a spring with constant K7;
spacing between the molecules is [?> and they are connected by a spring with constant /(5.
The cell length is L = R; + Ro. Show that the system has the expected behavior that the
molecules are incompressible for /{1 > K.

Solution:
This is really the same as the first steps in the solution of Exercise 20.10. Recasting the
expressions there using the symbols defined in this problem, the energy can be expressed
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in terms of the length L = Ry + Ry and Ry — Ry = y. The value of y in the unstrained
system is not relevant since the energy involves only changes from equilibrium, dL and
dy,

1 1 1
E = S K\(dL/2 = dy)* + S Ka(dL/2 + dy)* = S (K1 + Ka)(dy® + (dL/2)*) + (K> — K1)(dL/2)dy.
(S.182)
Here it is most useful to define v = dy/(dL/2), so that

= (LK + Ko)(1+77) + (K — K)2y| (dL/2). (5.183)

The parameter -y is an internal strain that is determined by minimizing the energy as L is
varied. Thus

dE/dy = [(K1 + K2)v + (K2 — K1)] (dL/2)* = 0 (S.184)
from which it follows that
v = (Ko — K1)/(K1 + Ky), (S.185)

which is the expected result. v = 0 means no internal strain and the two springs change the
same. For large spring constant K1, v — —1 which means no compression of the molecule.

Exercise G.5 Show that in any crystal with one atom per cell the internal strain is zero
by symmetry.

Solution:
There are many ways to see this. All ways depend on the fact that in a crystal with one
atom per cell, every atom is at a center of inversion symmetry. Since there is no force
by symmetry the atoms do not move from their site as the distance beteen atoms is scaled.
Another way to see it is simple that there is only one parameter and there no inetrnal degree
of freedom.

Exercise G.6 As an example of the condition in the previous problem, show that for the
molecular chain in Exercise G.4, internal strain vanishes for Ry = Ry and K| = K. For
a homonuclear case, this means one atom per cell. Note that the internal strain is still zero
for a diatomic ionic crystal with two different atoms so long as 1 = Rs and K1 = Ko.

Solution:
The answer is given above.

Exercise G.7 Show that it is impossible to have a chain with three inequivalent atoms
per cell and still have zero internal strain.

Solution:
The more correct statement is the requirement that there are three atoms per PRIMITIVE
cell, i.e., not an artificial supercell. Then if there are three inequivalent atoms, each one
has two inequivalent neighbors. Thus it cannot be at a center of inversion. It follows that
the porions are not determined by symmetry and they will change under stress. One can
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invent special cases where the forces vanish but those are of vanishing probability in real
systems.
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Solutions for Appendix H

Exercise H.1 Show that Zf\il Voi(r)]* = — Zf\il $i(r)V2¢;(r) follows from the re-
quirement Zfil |pi(r)|> = 1 atall (r).
Hint: Use Egs. (H.10) and (H.11).

Solution:
The key is the requirement stated in the exercise. We write out the equations for a single
function and it easily generalizes to a sum of functions. Because of the way ¢(r) is defined
in Eq. (H.10)
VIg(r)[? = ¢(r)Ve « (r) + Vo(r) Ve« (r) = 0
and V2|g(r)|* = 2V(r)V x (r) + d(r) V¢ * (r) + V2(r)d * (r) = 0
Using the fact that the expressions are real leads to the desired result.

Exercise H.2 Show that the excess fermion kinetic energy density in Eq. (H.13) follows
from Eq. (H.11). The previous problem may be helpful.

Solution:
This follows directly from the previous problem. The fact that this is the excess kinetic
energy due to fermions is that for bosons in the ground state ¢; is a constant for all ¢ so that
the derivatives are non-zero only for fermions.

Exercise H.3 Show that Eq. (H.17) follows from the definitions of the terms in the
energy density given before and the Kohn—Sham equation for the eigenvalues.

Solution:
This expression for energy density follows from the same arguments as for the total energy
in . The energy can be expressed as either kinetic plus potential energies or as the sum of
eigenvalues minus the Hartree term that is double counted in the sum of eigenvalues plus
the difference of the total zc energy and the potential times density.

Exercise H.4 Show that the formulas for the stress given by Nielsen and Martin [162]
in their Eqgs. (33) and (34) can be written in the form of Eq. (H.21), using definition
Eq. (H.10).

Solution:

With apologies to the readers for errors. In the first edition, there was some TEX error that
caused the equation reference to be wrong. The correct number is Eq. H.20 as given in
the second edition. In addition, those are not the right equations in the Nielsen paper. The
relevant expressions are (30a) - (30e). The relation to Eq. (H.21) is that for electrons and
nuclei, the ion-ion, ion-electron and electron-electron Hartree terms can all be gathered into
the Maxwell density in terms of the total electric field given in the last line in Eq. (H.21).
The zc term is the same and the kinetic energy term in Eq. (H.21) is the same except it is
expressed in the way that separates the boson and excess fermion terms.
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Solutions for Appendix I

Exercise 1.1 Show that the expression, Eq. (I.4), for an energy difference to first order
follows from the form of the energy functional given in Eq. (7.26). Use this result with the
special choice for the change in potential to derive the final result, Eq. (1.5).

Solution:
This is really a exercise that depends only upon the fact that the form of the Functional is
stationary w.r.t. the potential and that we have freedom to choose the change in potential.
Thus the solution is a summary of why this is the case.
To really appreciate the result one needs to realize that the change in the sum of eigenval-
ues is the change taking into account the effective potential, which is given explicitly in
Eq. (1.4).

Exercise 1.2 Using the fact that ¢); is a solution of the Kohn—Sham equations in a spher-
ical geometry, show that the potential can be eliminated and the expression for pressure
can be written in terms of the wavefunction and its derivatives as in Eq. (I.8). Also show
that there is an added term for exchange and correlation that can be written in the form in
Eq. (I.8) in the local approximation. Hint: The first part can be done by partial integration
and the second is the correction due to the fact that the potential is not fixed as the spherical
system is scaled.

Solution:
This is closely related to Exercise 10.10 and the other exercises there. We can use the ex-
pressions in terms of the wavefunctions given in Section 10.7.
The pressure is the change in energy per unit change in volume which in a spherical ge-
ometry is d[(4m/3)r® = Sdr where S is the area. The derivation is given in the paper by
Liberman [496] who refers to Slater [1026] for the derivation of the equation. Note the
Salter paper is in issue 1 of JCP in 1933.
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Solutions for Appendix L [No exercises for Appendices J and K]
The solutions in this section can be found in standard texts that are referenced in
this chapter.

Exercise L.1 Derive the leading error in the finite difference approximation to the second
derivative that is O(h?) and is given explicitly in Eq. (L.2).

Exercise L.2 Derive the Numerov expressions (L.3) and (L.4) and show the leading
error in the solutions are, respectively, O(h*) and O(h®).

Exercise L.3 Show that the conjugate gradient minimization equations, (L.8) and (L.9),
follow from differentiating the functional and assuming it is quadratic. Then derive the key
equation, (L.10), that if each direction is made conjugate to the previous one, then it is
also conjugate to all previous directions. This can be shown by induction given that each
direction is defined to be conjugate to the previous direction and it is a linear combination
only of the new steepest descent gradient and the previous direction, as in Eq. (L.11).

Exercise L.4 For the quadratic functional (L.6), show that the conjugate directions
(L.12) are also given by (L.13).

Consider a two-dimensional case F(z,y) = Az? + By?, with B = 10A. Show that
the CG method reaches the exact minimum in two steps, starting from any point (z,y),
whereas SD does not. What is the value of F' in the SD method after two steps starting
fromz=1; y = 1.

Exercise L.6 As the simplest three-dimensional example, consider F'(z,vy,2) = Az? +
By? + Cz2, and show that the third direction d? is conjugate to the first direction d! = g'.

Exercise L.7 Make a short computer program to do the CG minimization of a function
F =G -x+x-G - xinany dimension for any G and H.

Exercise L..8 The Broyden method generates a new approximation to the inverse Jaco-
bian J i_l at each step 7 based on the conditions outlined before Eq. (L.24). Verify that J; 1
defined by Eq. (L.24), satisfies (L.22) and that J;* — J; "', | gives a null result when acting
on any residual orthogonal to JR,;.
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Solutions for Appendix M

NOTE: The references for recursion in the text are to books. One reference online
that is useful is The recursive solution of the Schrodinger equation, Roger Haydock,
Computer Physics Communications 20, 11-16 (1980).

Exercise M.1 Show by induction that each vector 1,, generated by the Lanczos algo-
rithm is orthogonal to all the other vectors, and that the hamiltonian has tridiagonal form,
Eq. (M.10). Regarding the problem that orthogonality is guaranteed only for infinite nu-
merical precision, show how errors in each step can accumulate in the deviations from
orthogonality.

Solution: The solution can be found in standard texts that are referenced in this chapter.

Exercise M.2 The solution for the eigenvalues of the tridiagonal matrix  in Eq. (M.10)
is given by | H;; — Ad;;| = 0, which is polynomial Py () of degree M. This may be solved
in a recursive manner starting with the subdeterminant with M = 1. The first two polyno-
mials are P;(A\) = a3 — A and P2(A\) = (az — A\)P1()\) — 33. Show that the general rela-
tion for higher polynomials is

Py(N) = (an = A)Pr—1(A) — ﬂZ[Pn—QO\)], (S5.186)

and thus that the solution can be found by root tracing (varying A successively to reach
condition Py, () = 0 in computer time proportional to M for each eigenvalue.
Solution: The solution can be found in standard texts that are referenced in this chapter.

Exercise M.3 Consider a plane wave calculation with the wavefunction limited to
Fourier components with |G| < |Gax|. Show that all Fourier components of the external
potential and the Hartree potential are given exactly (with no “aliasing”) by the FFT al-
gorithm, so long as the FFT extends to |2G,.x|. For the non-linear exchange—correlation
potential, show that there is no exact expression and that the expressions are “reasonable.”

Solution: This is an important point for electronic structure calculations. This is explic-
itly for plane wanes but related issues happen for other bases.

The idea is straightforward. Squaring a wavefunction is get a density means that the den-
sity extends to |2Gax|- An FFT transforms a grid of data with size N 3 (in 3 dimensions)
in reciprocal space to N2 points in real space, and vice versa. Thus a plane wave calcu-
lation expresses each wavefunction in terms of Fourier components with |G| < |G pax|-
The square has components t0 |2Gax| for the density and the potential is found by mul-
tiplying by 1/G2. This must be padded with zeros to define points on a parallelpiped that
encloses the sphere with radius |2G,.«| (the double grid). Operations can be carried out
on this grid, such as multiplying the wavefunction by the potential. Finally, the key is that
the kinetic energy is restricted to the second derivation of the wavefunction in the original
basis, which is a type of smoothing operation on the expressions on the double grid.

For an operation that is not limited to the double grid this introduces errors. An example
is the LDA where the potential at point R. is proportional to n(R)*/3.
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Solutions for Appendix P [No exercises for for Appendices N and O]
New App in second edition

Exercise P.1 Show that (u,|0,u, ) needed in Eq. (P.3) is purely imaginary.
Solution:
The solution is the same as for Exercise 25.1 with k replaced by z.

Exercise P.2 Derive the first equality in expression for £2(k) in Eq. (P.12) from the ex-
pressions for the Berry phases in the previous equations. Discuss when there might be
added factors of 2. Show that the second equality follows from the normalization condi-
tion for the wave functions.

Solution:

The solution is the same as for Exercise 25.2 with &k, k,, replaced by z, y.

Exercise P.3 Work out the expressions for the eigenvectors Eq. (P.20) and verify the
result ¢ = /4.

Solution:
For the set of states for the path leads to the Berry phase (see Eq. (P.19))

¢ = —ImI[(T 2| T 2) (T 2| T y) (T yl T 2)] = [0+ /4 +0] = —m/4,  (S.187)
which is half the solid angle of 7w/2. NOTE: The sign of ¢ is a convention.

Exercise P.4 Calculate the Berry phase for the loop with four states from z to X to —z
to y and back to z.

Solution:
The the path visits the south pole there is a state | | z) between the  and y states and the
Berry phase becomes

¢ = —Im[(t 2| T )t all L) 2 T o) (hyl 1 2)] = —[0+0+m/240] = —7/2,
(S.188)
which is half the solid angle of 7.
NOTE: This is very similar to the analysis in Exercise 26.6 which involves a sequence of
four states. There the exchange of the eigenstates from the case with the singularity inside
to outside the circle is a change of Berry phase from /2 to zero. Here this is analogous to
the change between two paths: the one considered in this exercise that visits the south pole
(z,x,-z,y) with solid angle 7 and Berry phase 7 /2, and another that returns to the north pole
(z,x,z,y) with solid angle and Berry phase zero.
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Solution for Exercise 5.18. Pages from Pines book

[297]

This appendix are contains added solutions that are placed here because they are
long. They are referred to in the main list of solutions.

Solution for Exercise 5.18. Pages from Pines book [297] that provide the integrals
to find the Lindhard dielectric function for the homogeneous electron gas (5.38).
These are copied from the book I used as a grad student in 1960s.
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ELEME}NTARY EXCITATIONS IN SOLIDS
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Appendix U

Solution of Exercise 8.5 part b - 2-site Hubbard
model

This appendix are contains added solutions that are placed here because they are
long. They are referred to in the main list of solutions.

Solution of Exercise Exercise 8.5 part b in Electronic Structure, Second Ed.

(This is the Exact Solution of the Two Site Hubbard Dimer from homework in UTUC
Course 598 SCM Fall 2004 Homework 4 by Luke Shulenburger)

The Hamiltonian for this system is:

H=1) (a,d00 + dbya15) + U(faginy + fiapiia))

o

In the following, I will find the solutions of the hamiltonian for 0, 1, 2, 3 and 4 electrons.

(i) 0 electrons

In this case, the solution is just the vacuum, |0), which has energy 0.

(i1) 1 electron
For one electron, the interaction terms (involving U) are all zero. This means that the
eigenstates are the eigenstates of the kinetic energy operator. They are degenerate with
respect to spin. The solutions %(dJ{T + &;T)|O> and %(dh + d;ﬂ\O) have energy t,
and the solutions %(dh - dgT)|O> and %(&L - d;¢)|0> have energy -t.

(iii) 2 electrons
In this case, there are two electrons. In determining the solutions, it is convenient to
choose a basis that consists of antisymmetrized products of single particle states on
individual sites with a given spin. It is also convenient to separate this basis out into the
four states that have s, = 0, which are dhdhm), &J{T&L‘O% dZTdL|O>, &;d;ﬁO), and
the two states that have a nonzero s, which are dJ{Td;T\O% and ! L&; 110).
Looking at this basis, the first thing to notice is that when the Hamiltonian acts on the
states for which s, is nonzero, the result is zero. In fact there is a degenerate subspace
of this problem with energy 0, spanned by the states dITd§T|O>, and d]i i&; 110)-
The situation is slightly more difficult for the states with s, = 0. To make the no-
tation a bit easier, adopt the following notation: |1) = &J{T&J{“O), |2) = dh&;“o%
13) = &LTdMO), and |4) = d;T&£¢|O>. In this notation, the Hamiltonian becomes:

H =t[(12) + [3) (1] + (&) + (1) + [4) (2] + BD] + U(1){1] + [4){4])
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In matrix form this is:

Utt0
t00t
t00¢
0ttU

Diagonalization of this matrix gives the following states as solutions:

1
—(]1) - |4
Z5 (10 —14)
1
—(|2) — I3
Z5(12-13)
4¢2 () — U+ V16t2 + U2|2> U+ V162 +U2|3> L)
U2 +16t2 +UV16t2 + U2 4t 4t
4¢2 (m_U—\/16t2+U2|2>_U—\/16t2+U2|3>+|4>)
U? + 16t2 — UV/16t2 + U2 4t 4t

That respectively have eigenvalues: U, 0, Y=Y 1gt2+U2 , and U+ 1gt2+U2

These solutions have interesting interpretations in two limits. First in the case where
U >> t, the solutions become:

25 (1)~ 14)
25 (12— 13)
Z5(12)+13)
25 (1) +14)

That respectively have eigenvalues: U, 0, 0, U. This sets an energy scale whereby only
the second two solutions are accessible. These solutions correspond to a spin system
that is antiferromagnetic with opposite spin electrons sitting on the two sites.

The other case with an interesting interpretation is when ¢ >> U. In this case the solu-
tions become:

1

E(H) —14))
1
ﬁ(@) - 13))

(1) +12) +13) + 14))

DN = N =

(1) = 12) = 13) + 14))
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That respectively have eigenvalues: U, 0, 2t, -2t. In this case we see bonding and an-
tibonding character in the last two states, with the last state being the bonding state of
the system.

(iv) 3 electrons

There is a trick that will allow us to see that the solution to a system of three electrons
is the same a system of one electron with a suitably defined zero of Energy. The trick is
to define the vacuum state to be the state with four electrons. To maintain consistancy,
the anhillation operators become creation operators because they create holes from the
vacuum. The creation operators become anhillation operators because they anhillate the
vacuum. Under this change, the Hamiltonian becomes:
H =t (a104}, + t200],) + Ularral a1 a], + aaralas al)
-
= —t Z(&Iadgg + d;aalg) + U(ﬁlTﬁli + ’fLQT'fLQL — 2)
o
If we take the view that we are creating holes, particles that have opposite mass of
an electron, it makes sense that the kinetic energy part of the hamiltonian will have
the opposite sign. Furthermore we can arbitrarily redefine the zero of energy to be 2U.
Under these changes, this Hamiltonian for holes becomes equivalent to the Hamiltonian
for electrons that we started with.
Now, creating 3 electrons from the vacuum produces the same physical state as creating
1 hole from our new vacuum. In this sense, the solution for three electrons is equivalent
to the solution for one electron, we just have to remember that the particles we talk
about are holes, not electrons. The solutions are:

the eigenvalues of these states are 2U — t, 2U — t, 2U + t, and 2U + ¢ respectively.

(v) 4 electrons

Using the same trick as in the 3 electron case, we realize that this is the same as the
zero electron case where we have just redefined the state to be the vacuum of our hole
system. Its energy is 2U.



Appendix Z

Errata in Second Edition

Major Errors (below are more minor errata)

Chapter 23 - first two exercises
There is an error in these Exs. and they are stated in a way are much harder than they need
to be.
The periodic part of the Bloch function uy (r) is NOT independent of k as stated. (Also the
exercises would have been simpler to work in terms of v instead of in terms of u.) See the
solutions for discussion.

Errata identified in 2020 after book is in press

sksksk

CHECK THE FOLLOWING IS CORRECT!
Error in Monkhorst Pack points. It should be integrated exactly up to (N; — 1)T; instead
of NiTi

sksksk

Error in Eq. (5.32): 0.899 should be 0.814? = 0.663 I have no idea where 0.899 came
from This problem is worked out in Ashcroft and Mermin p. 410-414, which agrees with
the corrected result. See also Exercise 5.17 solution. The correct equation is

r R.\2
2 =0.81 +1/0.66 + 3.31 () , (Z.1)
ag ago

which is the same as Eq. (5.32) corrected and rounded to fewer decimal places.

skskek

In Eq. (9.13) (8.27) in first ed.), on the right hand side there should be * not .
skskek

In Eq 10.8, the factor of ¢/2 should be 1/2.
skskek

In Eq 10.23, the subscript » — 7o is a typo. The expression the left side is evaluated at
T =T0.

sksksk

At the end of Ex. 11.2 omit the phrase “at other energies at most o< €, — €¢.”
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160 Errata in Second Edition

ko

In Exercise 18.7 Eq. numbers in part (c) should be (18.23) and (18.24).
skokok

CHECK: Is the line before Eq. 27.4 correct where it states “invariant”?
skeskok

After Eq. 27.4 and in Ex 27. the expression for W has an extra paren: “T)” should be “T”
where T is the time reversal operator. The usual symbol is O.

skksk
Error in lines before Eq. C.4. ¥, should be ¥;.

gk

There is an error in Eq. (D.36) in the text. Somehow the tex file was messed up the Eq.
is completely wrong. It was correct in the first edition (in Ch. 3). This correct equation is
(note definition of H given below):

0= (| HO ) (Z.2)
+ (@ HO ) + (@O )
+ (@O + OO D) + (OO |y @)
+ <¢(O)\H(3)W(O)> + <¢(0)|g(2)|w(1)> + <¢(0)|g(1)|¢(2)> + ¢(0)|g(0)‘¢(3)>’

where we have defined H) = H) — £() for each order j to simplify the notation.
ko

There are errors in Exercise H.4. In the first edition, the equation reference to be wrong.
The correct number is Eq. H.20 as given in the second edition. In addition, those are not
the right equations in the Nielsen paper. The relevant expressions are (30a) - (30e).

sk

In Eq. (1.4) the last term should be { V{75 (r) + exc[n(r)] — Veg(r) }



